SemaOverload.cpp revision cca21b8ae5bb22ca9625ce96bdc858853bd57123
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Promotion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion
53  };
54  return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60  static const ImplicitConversionRank
61    Rank[(int)ICK_Num_Conversion_Kinds] = {
62    ICR_Exact_Match,
63    ICR_Exact_Match,
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Promotion,
68    ICR_Promotion,
69    ICR_Promotion,
70    ICR_Conversion,
71    ICR_Conversion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion
80  };
81  return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88    "No conversion",
89    "Lvalue-to-rvalue",
90    "Array-to-pointer",
91    "Function-to-pointer",
92    "Qualification",
93    "Integral promotion",
94    "Floating point promotion",
95    "Complex promotion",
96    "Integral conversion",
97    "Floating conversion",
98    "Complex conversion",
99    "Floating-integral conversion",
100    "Complex-real conversion",
101    "Pointer conversion",
102    "Pointer-to-member conversion",
103    "Boolean conversion",
104    "Compatible-types conversion",
105    "Derived-to-base conversion"
106  };
107  return Name[Kind];
108}
109
110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113  First = ICK_Identity;
114  Second = ICK_Identity;
115  Third = ICK_Identity;
116  Deprecated = false;
117  ReferenceBinding = false;
118  DirectBinding = false;
119  RRefBinding = false;
120  CopyConstructor = 0;
121}
122
123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127  ImplicitConversionRank Rank = ICR_Exact_Match;
128  if  (GetConversionRank(First) > Rank)
129    Rank = GetConversionRank(First);
130  if  (GetConversionRank(Second) > Rank)
131    Rank = GetConversionRank(Second);
132  if  (GetConversionRank(Third) > Rank)
133    Rank = GetConversionRank(Third);
134  return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146  // Note that FromType has not necessarily been transformed by the
147  // array-to-pointer or function-to-pointer implicit conversions, so
148  // check for their presence as well as checking whether FromType is
149  // a pointer.
150  if (ToType->isBooleanType() &&
151      (FromType->isPointerType() || FromType->isBlockPointerType() ||
152       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153    return true;
154
155  return false;
156}
157
158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAsPointerType())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290    // Is this new function an overload of every function in the
291    // overload set?
292    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293                                           FuncEnd = Ovl->function_end();
294    for (; Func != FuncEnd; ++Func) {
295      if (!IsOverload(New, *Func, MatchedDecl)) {
296        MatchedDecl = Func;
297        return false;
298      }
299    }
300
301    // This function overloads every function in the overload set.
302    return true;
303  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
306    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
308
309    // C++ [temp.fct]p2:
310    //   A function template can be overloaded with other function templates
311    //   and with normal (non-template) functions.
312    if ((OldTemplate == 0) != (NewTemplate == 0))
313      return true;
314
315    // Is the function New an overload of the function Old?
316    QualType OldQType = Context.getCanonicalType(Old->getType());
317    QualType NewQType = Context.getCanonicalType(New->getType());
318
319    // Compare the signatures (C++ 1.3.10) of the two functions to
320    // determine whether they are overloads. If we find any mismatch
321    // in the signature, they are overloads.
322
323    // If either of these functions is a K&R-style function (no
324    // prototype), then we consider them to have matching signatures.
325    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
327      return false;
328
329    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
331
332    // The signature of a function includes the types of its
333    // parameters (C++ 1.3.10), which includes the presence or absence
334    // of the ellipsis; see C++ DR 357).
335    if (OldQType != NewQType &&
336        (OldType->getNumArgs() != NewType->getNumArgs() ||
337         OldType->isVariadic() != NewType->isVariadic() ||
338         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339                     NewType->arg_type_begin())))
340      return true;
341
342    // C++ [temp.over.link]p4:
343    //   The signature of a function template consists of its function
344    //   signature, its return type and its template parameter list. The names
345    //   of the template parameters are significant only for establishing the
346    //   relationship between the template parameters and the rest of the
347    //   signature.
348    //
349    // We check the return type and template parameter lists for function
350    // templates first; the remaining checks follow.
351    if (NewTemplate &&
352        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353                                         OldTemplate->getTemplateParameters(),
354                                         false, false, SourceLocation()) ||
355         OldType->getResultType() != NewType->getResultType()))
356      return true;
357
358    // If the function is a class member, its signature includes the
359    // cv-qualifiers (if any) on the function itself.
360    //
361    // As part of this, also check whether one of the member functions
362    // is static, in which case they are not overloads (C++
363    // 13.1p2). While not part of the definition of the signature,
364    // this check is important to determine whether these functions
365    // can be overloaded.
366    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368    if (OldMethod && NewMethod &&
369        !OldMethod->isStatic() && !NewMethod->isStatic() &&
370        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
371      return true;
372
373    // The signatures match; this is not an overload.
374    return false;
375  } else {
376    // (C++ 13p1):
377    //   Only function declarations can be overloaded; object and type
378    //   declarations cannot be overloaded.
379    return false;
380  }
381}
382
383/// TryImplicitConversion - Attempt to perform an implicit conversion
384/// from the given expression (Expr) to the given type (ToType). This
385/// function returns an implicit conversion sequence that can be used
386/// to perform the initialization. Given
387///
388///   void f(float f);
389///   void g(int i) { f(i); }
390///
391/// this routine would produce an implicit conversion sequence to
392/// describe the initialization of f from i, which will be a standard
393/// conversion sequence containing an lvalue-to-rvalue conversion (C++
394/// 4.1) followed by a floating-integral conversion (C++ 4.9).
395//
396/// Note that this routine only determines how the conversion can be
397/// performed; it does not actually perform the conversion. As such,
398/// it will not produce any diagnostics if no conversion is available,
399/// but will instead return an implicit conversion sequence of kind
400/// "BadConversion".
401///
402/// If @p SuppressUserConversions, then user-defined conversions are
403/// not permitted.
404/// If @p AllowExplicit, then explicit user-defined conversions are
405/// permitted.
406/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407/// no matter its actual lvalueness.
408ImplicitConversionSequence
409Sema::TryImplicitConversion(Expr* From, QualType ToType,
410                            bool SuppressUserConversions,
411                            bool AllowExplicit, bool ForceRValue)
412{
413  ImplicitConversionSequence ICS;
414  if (IsStandardConversion(From, ToType, ICS.Standard))
415    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
416  else if (getLangOptions().CPlusPlus &&
417           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
418                                   !SuppressUserConversions, AllowExplicit,
419                                   ForceRValue)) {
420    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
421    // C++ [over.ics.user]p4:
422    //   A conversion of an expression of class type to the same class
423    //   type is given Exact Match rank, and a conversion of an
424    //   expression of class type to a base class of that type is
425    //   given Conversion rank, in spite of the fact that a copy
426    //   constructor (i.e., a user-defined conversion function) is
427    //   called for those cases.
428    if (CXXConstructorDecl *Constructor
429          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
430      QualType FromCanon
431        = Context.getCanonicalType(From->getType().getUnqualifiedType());
432      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
434        // Turn this into a "standard" conversion sequence, so that it
435        // gets ranked with standard conversion sequences.
436        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437        ICS.Standard.setAsIdentityConversion();
438        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
440        ICS.Standard.CopyConstructor = Constructor;
441        if (ToCanon != FromCanon)
442          ICS.Standard.Second = ICK_Derived_To_Base;
443      }
444    }
445
446    // C++ [over.best.ics]p4:
447    //   However, when considering the argument of a user-defined
448    //   conversion function that is a candidate by 13.3.1.3 when
449    //   invoked for the copying of the temporary in the second step
450    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451    //   13.3.1.6 in all cases, only standard conversion sequences and
452    //   ellipsis conversion sequences are allowed.
453    if (SuppressUserConversions &&
454        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
456  } else
457    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
458
459  return ICS;
460}
461
462/// IsStandardConversion - Determines whether there is a standard
463/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464/// expression From to the type ToType. Standard conversion sequences
465/// only consider non-class types; for conversions that involve class
466/// types, use TryImplicitConversion. If a conversion exists, SCS will
467/// contain the standard conversion sequence required to perform this
468/// conversion and this routine will return true. Otherwise, this
469/// routine will return false and the value of SCS is unspecified.
470bool
471Sema::IsStandardConversion(Expr* From, QualType ToType,
472                           StandardConversionSequence &SCS)
473{
474  QualType FromType = From->getType();
475
476  // Standard conversions (C++ [conv])
477  SCS.setAsIdentityConversion();
478  SCS.Deprecated = false;
479  SCS.IncompatibleObjC = false;
480  SCS.FromTypePtr = FromType.getAsOpaquePtr();
481  SCS.CopyConstructor = 0;
482
483  // There are no standard conversions for class types in C++, so
484  // abort early. When overloading in C, however, we do permit
485  if (FromType->isRecordType() || ToType->isRecordType()) {
486    if (getLangOptions().CPlusPlus)
487      return false;
488
489    // When we're overloading in C, we allow, as standard conversions,
490  }
491
492  // The first conversion can be an lvalue-to-rvalue conversion,
493  // array-to-pointer conversion, or function-to-pointer conversion
494  // (C++ 4p1).
495
496  // Lvalue-to-rvalue conversion (C++ 4.1):
497  //   An lvalue (3.10) of a non-function, non-array type T can be
498  //   converted to an rvalue.
499  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500  if (argIsLvalue == Expr::LV_Valid &&
501      !FromType->isFunctionType() && !FromType->isArrayType() &&
502      Context.getCanonicalType(FromType) != Context.OverloadTy) {
503    SCS.First = ICK_Lvalue_To_Rvalue;
504
505    // If T is a non-class type, the type of the rvalue is the
506    // cv-unqualified version of T. Otherwise, the type of the rvalue
507    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508    // just strip the qualifiers because they don't matter.
509
510    // FIXME: Doesn't see through to qualifiers behind a typedef!
511    FromType = FromType.getUnqualifiedType();
512  }
513  // Array-to-pointer conversion (C++ 4.2)
514  else if (FromType->isArrayType()) {
515    SCS.First = ICK_Array_To_Pointer;
516
517    // An lvalue or rvalue of type "array of N T" or "array of unknown
518    // bound of T" can be converted to an rvalue of type "pointer to
519    // T" (C++ 4.2p1).
520    FromType = Context.getArrayDecayedType(FromType);
521
522    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
523      // This conversion is deprecated. (C++ D.4).
524      SCS.Deprecated = true;
525
526      // For the purpose of ranking in overload resolution
527      // (13.3.3.1.1), this conversion is considered an
528      // array-to-pointer conversion followed by a qualification
529      // conversion (4.4). (C++ 4.2p2)
530      SCS.Second = ICK_Identity;
531      SCS.Third = ICK_Qualification;
532      SCS.ToTypePtr = ToType.getAsOpaquePtr();
533      return true;
534    }
535  }
536  // Function-to-pointer conversion (C++ 4.3).
537  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
538    SCS.First = ICK_Function_To_Pointer;
539
540    // An lvalue of function type T can be converted to an rvalue of
541    // type "pointer to T." The result is a pointer to the
542    // function. (C++ 4.3p1).
543    FromType = Context.getPointerType(FromType);
544  }
545  // Address of overloaded function (C++ [over.over]).
546  else if (FunctionDecl *Fn
547             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
548    SCS.First = ICK_Function_To_Pointer;
549
550    // We were able to resolve the address of the overloaded function,
551    // so we can convert to the type of that function.
552    FromType = Fn->getType();
553    if (ToType->isLValueReferenceType())
554      FromType = Context.getLValueReferenceType(FromType);
555    else if (ToType->isRValueReferenceType())
556      FromType = Context.getRValueReferenceType(FromType);
557    else if (ToType->isMemberPointerType()) {
558      // Resolve address only succeeds if both sides are member pointers,
559      // but it doesn't have to be the same class. See DR 247.
560      // Note that this means that the type of &Derived::fn can be
561      // Ret (Base::*)(Args) if the fn overload actually found is from the
562      // base class, even if it was brought into the derived class via a
563      // using declaration. The standard isn't clear on this issue at all.
564      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
565      FromType = Context.getMemberPointerType(FromType,
566                    Context.getTypeDeclType(M->getParent()).getTypePtr());
567    } else
568      FromType = Context.getPointerType(FromType);
569  }
570  // We don't require any conversions for the first step.
571  else {
572    SCS.First = ICK_Identity;
573  }
574
575  // The second conversion can be an integral promotion, floating
576  // point promotion, integral conversion, floating point conversion,
577  // floating-integral conversion, pointer conversion,
578  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
579  // For overloading in C, this can also be a "compatible-type"
580  // conversion.
581  bool IncompatibleObjC = false;
582  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
583    // The unqualified versions of the types are the same: there's no
584    // conversion to do.
585    SCS.Second = ICK_Identity;
586  }
587  // Integral promotion (C++ 4.5).
588  else if (IsIntegralPromotion(From, FromType, ToType)) {
589    SCS.Second = ICK_Integral_Promotion;
590    FromType = ToType.getUnqualifiedType();
591  }
592  // Floating point promotion (C++ 4.6).
593  else if (IsFloatingPointPromotion(FromType, ToType)) {
594    SCS.Second = ICK_Floating_Promotion;
595    FromType = ToType.getUnqualifiedType();
596  }
597  // Complex promotion (Clang extension)
598  else if (IsComplexPromotion(FromType, ToType)) {
599    SCS.Second = ICK_Complex_Promotion;
600    FromType = ToType.getUnqualifiedType();
601  }
602  // Integral conversions (C++ 4.7).
603  // FIXME: isIntegralType shouldn't be true for enums in C++.
604  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
605           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
606    SCS.Second = ICK_Integral_Conversion;
607    FromType = ToType.getUnqualifiedType();
608  }
609  // Floating point conversions (C++ 4.8).
610  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
611    SCS.Second = ICK_Floating_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  }
614  // Complex conversions (C99 6.3.1.6)
615  else if (FromType->isComplexType() && ToType->isComplexType()) {
616    SCS.Second = ICK_Complex_Conversion;
617    FromType = ToType.getUnqualifiedType();
618  }
619  // Floating-integral conversions (C++ 4.9).
620  // FIXME: isIntegralType shouldn't be true for enums in C++.
621  else if ((FromType->isFloatingType() &&
622            ToType->isIntegralType() && !ToType->isBooleanType() &&
623                                        !ToType->isEnumeralType()) ||
624           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625            ToType->isFloatingType())) {
626    SCS.Second = ICK_Floating_Integral;
627    FromType = ToType.getUnqualifiedType();
628  }
629  // Complex-real conversions (C99 6.3.1.7)
630  else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631           (ToType->isComplexType() && FromType->isArithmeticType())) {
632    SCS.Second = ICK_Complex_Real;
633    FromType = ToType.getUnqualifiedType();
634  }
635  // Pointer conversions (C++ 4.10).
636  else if (IsPointerConversion(From, FromType, ToType, FromType,
637                               IncompatibleObjC)) {
638    SCS.Second = ICK_Pointer_Conversion;
639    SCS.IncompatibleObjC = IncompatibleObjC;
640  }
641  // Pointer to member conversions (4.11).
642  else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
643    SCS.Second = ICK_Pointer_Member;
644  }
645  // Boolean conversions (C++ 4.12).
646  else if (ToType->isBooleanType() &&
647           (FromType->isArithmeticType() ||
648            FromType->isEnumeralType() ||
649            FromType->isPointerType() ||
650            FromType->isBlockPointerType() ||
651            FromType->isMemberPointerType() ||
652            FromType->isNullPtrType())) {
653    SCS.Second = ICK_Boolean_Conversion;
654    FromType = Context.BoolTy;
655  }
656  // Compatible conversions (Clang extension for C function overloading)
657  else if (!getLangOptions().CPlusPlus &&
658           Context.typesAreCompatible(ToType, FromType)) {
659    SCS.Second = ICK_Compatible_Conversion;
660  } else {
661    // No second conversion required.
662    SCS.Second = ICK_Identity;
663  }
664
665  QualType CanonFrom;
666  QualType CanonTo;
667  // The third conversion can be a qualification conversion (C++ 4p1).
668  if (IsQualificationConversion(FromType, ToType)) {
669    SCS.Third = ICK_Qualification;
670    FromType = ToType;
671    CanonFrom = Context.getCanonicalType(FromType);
672    CanonTo = Context.getCanonicalType(ToType);
673  } else {
674    // No conversion required
675    SCS.Third = ICK_Identity;
676
677    // C++ [over.best.ics]p6:
678    //   [...] Any difference in top-level cv-qualification is
679    //   subsumed by the initialization itself and does not constitute
680    //   a conversion. [...]
681    CanonFrom = Context.getCanonicalType(FromType);
682    CanonTo = Context.getCanonicalType(ToType);
683    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
684        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
685      FromType = ToType;
686      CanonFrom = CanonTo;
687    }
688  }
689
690  // If we have not converted the argument type to the parameter type,
691  // this is a bad conversion sequence.
692  if (CanonFrom != CanonTo)
693    return false;
694
695  SCS.ToTypePtr = FromType.getAsOpaquePtr();
696  return true;
697}
698
699/// IsIntegralPromotion - Determines whether the conversion from the
700/// expression From (whose potentially-adjusted type is FromType) to
701/// ToType is an integral promotion (C++ 4.5). If so, returns true and
702/// sets PromotedType to the promoted type.
703bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
704{
705  const BuiltinType *To = ToType->getAsBuiltinType();
706  // All integers are built-in.
707  if (!To) {
708    return false;
709  }
710
711  // An rvalue of type char, signed char, unsigned char, short int, or
712  // unsigned short int can be converted to an rvalue of type int if
713  // int can represent all the values of the source type; otherwise,
714  // the source rvalue can be converted to an rvalue of type unsigned
715  // int (C++ 4.5p1).
716  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
717    if (// We can promote any signed, promotable integer type to an int
718        (FromType->isSignedIntegerType() ||
719         // We can promote any unsigned integer type whose size is
720         // less than int to an int.
721         (!FromType->isSignedIntegerType() &&
722          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
723      return To->getKind() == BuiltinType::Int;
724    }
725
726    return To->getKind() == BuiltinType::UInt;
727  }
728
729  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
730  // can be converted to an rvalue of the first of the following types
731  // that can represent all the values of its underlying type: int,
732  // unsigned int, long, or unsigned long (C++ 4.5p2).
733  if ((FromType->isEnumeralType() || FromType->isWideCharType())
734      && ToType->isIntegerType()) {
735    // Determine whether the type we're converting from is signed or
736    // unsigned.
737    bool FromIsSigned;
738    uint64_t FromSize = Context.getTypeSize(FromType);
739    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
740      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
741      FromIsSigned = UnderlyingType->isSignedIntegerType();
742    } else {
743      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
744      FromIsSigned = true;
745    }
746
747    // The types we'll try to promote to, in the appropriate
748    // order. Try each of these types.
749    QualType PromoteTypes[6] = {
750      Context.IntTy, Context.UnsignedIntTy,
751      Context.LongTy, Context.UnsignedLongTy ,
752      Context.LongLongTy, Context.UnsignedLongLongTy
753    };
754    for (int Idx = 0; Idx < 6; ++Idx) {
755      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
756      if (FromSize < ToSize ||
757          (FromSize == ToSize &&
758           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
759        // We found the type that we can promote to. If this is the
760        // type we wanted, we have a promotion. Otherwise, no
761        // promotion.
762        return Context.getCanonicalType(ToType).getUnqualifiedType()
763          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
764      }
765    }
766  }
767
768  // An rvalue for an integral bit-field (9.6) can be converted to an
769  // rvalue of type int if int can represent all the values of the
770  // bit-field; otherwise, it can be converted to unsigned int if
771  // unsigned int can represent all the values of the bit-field. If
772  // the bit-field is larger yet, no integral promotion applies to
773  // it. If the bit-field has an enumerated type, it is treated as any
774  // other value of that type for promotion purposes (C++ 4.5p3).
775  // FIXME: We should delay checking of bit-fields until we actually perform the
776  // conversion.
777  using llvm::APSInt;
778  if (From)
779    if (FieldDecl *MemberDecl = From->getBitField()) {
780      APSInt BitWidth;
781      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
782          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
783        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
784        ToSize = Context.getTypeSize(ToType);
785
786        // Are we promoting to an int from a bitfield that fits in an int?
787        if (BitWidth < ToSize ||
788            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
789          return To->getKind() == BuiltinType::Int;
790        }
791
792        // Are we promoting to an unsigned int from an unsigned bitfield
793        // that fits into an unsigned int?
794        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
795          return To->getKind() == BuiltinType::UInt;
796        }
797
798        return false;
799      }
800    }
801
802  // An rvalue of type bool can be converted to an rvalue of type int,
803  // with false becoming zero and true becoming one (C++ 4.5p4).
804  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
805    return true;
806  }
807
808  return false;
809}
810
811/// IsFloatingPointPromotion - Determines whether the conversion from
812/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
813/// returns true and sets PromotedType to the promoted type.
814bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
815{
816  /// An rvalue of type float can be converted to an rvalue of type
817  /// double. (C++ 4.6p1).
818  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
819    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
820      if (FromBuiltin->getKind() == BuiltinType::Float &&
821          ToBuiltin->getKind() == BuiltinType::Double)
822        return true;
823
824      // C99 6.3.1.5p1:
825      //   When a float is promoted to double or long double, or a
826      //   double is promoted to long double [...].
827      if (!getLangOptions().CPlusPlus &&
828          (FromBuiltin->getKind() == BuiltinType::Float ||
829           FromBuiltin->getKind() == BuiltinType::Double) &&
830          (ToBuiltin->getKind() == BuiltinType::LongDouble))
831        return true;
832    }
833
834  return false;
835}
836
837/// \brief Determine if a conversion is a complex promotion.
838///
839/// A complex promotion is defined as a complex -> complex conversion
840/// where the conversion between the underlying real types is a
841/// floating-point or integral promotion.
842bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
843  const ComplexType *FromComplex = FromType->getAsComplexType();
844  if (!FromComplex)
845    return false;
846
847  const ComplexType *ToComplex = ToType->getAsComplexType();
848  if (!ToComplex)
849    return false;
850
851  return IsFloatingPointPromotion(FromComplex->getElementType(),
852                                  ToComplex->getElementType()) ||
853    IsIntegralPromotion(0, FromComplex->getElementType(),
854                        ToComplex->getElementType());
855}
856
857/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
858/// the pointer type FromPtr to a pointer to type ToPointee, with the
859/// same type qualifiers as FromPtr has on its pointee type. ToType,
860/// if non-empty, will be a pointer to ToType that may or may not have
861/// the right set of qualifiers on its pointee.
862static QualType
863BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
864                                   QualType ToPointee, QualType ToType,
865                                   ASTContext &Context) {
866  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
867  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
868  unsigned Quals = CanonFromPointee.getCVRQualifiers();
869
870  // Exact qualifier match -> return the pointer type we're converting to.
871  if (CanonToPointee.getCVRQualifiers() == Quals) {
872    // ToType is exactly what we need. Return it.
873    if (ToType.getTypePtr())
874      return ToType;
875
876    // Build a pointer to ToPointee. It has the right qualifiers
877    // already.
878    return Context.getPointerType(ToPointee);
879  }
880
881  // Just build a canonical type that has the right qualifiers.
882  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
883}
884
885/// IsPointerConversion - Determines whether the conversion of the
886/// expression From, which has the (possibly adjusted) type FromType,
887/// can be converted to the type ToType via a pointer conversion (C++
888/// 4.10). If so, returns true and places the converted type (that
889/// might differ from ToType in its cv-qualifiers at some level) into
890/// ConvertedType.
891///
892/// This routine also supports conversions to and from block pointers
893/// and conversions with Objective-C's 'id', 'id<protocols...>', and
894/// pointers to interfaces. FIXME: Once we've determined the
895/// appropriate overloading rules for Objective-C, we may want to
896/// split the Objective-C checks into a different routine; however,
897/// GCC seems to consider all of these conversions to be pointer
898/// conversions, so for now they live here. IncompatibleObjC will be
899/// set if the conversion is an allowed Objective-C conversion that
900/// should result in a warning.
901bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
902                               QualType& ConvertedType,
903                               bool &IncompatibleObjC)
904{
905  IncompatibleObjC = false;
906  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
907    return true;
908
909  // Conversion from a null pointer constant to any Objective-C pointer type.
910  if (Context.isObjCObjectPointerType(ToType) &&
911      From->isNullPointerConstant(Context)) {
912    ConvertedType = ToType;
913    return true;
914  }
915
916  // Blocks: Block pointers can be converted to void*.
917  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
918      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
919    ConvertedType = ToType;
920    return true;
921  }
922  // Blocks: A null pointer constant can be converted to a block
923  // pointer type.
924  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
925    ConvertedType = ToType;
926    return true;
927  }
928
929  // If the left-hand-side is nullptr_t, the right side can be a null
930  // pointer constant.
931  if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
932    ConvertedType = ToType;
933    return true;
934  }
935
936  const PointerType* ToTypePtr = ToType->getAsPointerType();
937  if (!ToTypePtr)
938    return false;
939
940  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
941  if (From->isNullPointerConstant(Context)) {
942    ConvertedType = ToType;
943    return true;
944  }
945
946  // Beyond this point, both types need to be pointers.
947  const PointerType *FromTypePtr = FromType->getAsPointerType();
948  if (!FromTypePtr)
949    return false;
950
951  QualType FromPointeeType = FromTypePtr->getPointeeType();
952  QualType ToPointeeType = ToTypePtr->getPointeeType();
953
954  // An rvalue of type "pointer to cv T," where T is an object type,
955  // can be converted to an rvalue of type "pointer to cv void" (C++
956  // 4.10p2).
957  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
958    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
959                                                       ToPointeeType,
960                                                       ToType, Context);
961    return true;
962  }
963
964  // When we're overloading in C, we allow a special kind of pointer
965  // conversion for compatible-but-not-identical pointee types.
966  if (!getLangOptions().CPlusPlus &&
967      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
968    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
969                                                       ToPointeeType,
970                                                       ToType, Context);
971    return true;
972  }
973
974  // C++ [conv.ptr]p3:
975  //
976  //   An rvalue of type "pointer to cv D," where D is a class type,
977  //   can be converted to an rvalue of type "pointer to cv B," where
978  //   B is a base class (clause 10) of D. If B is an inaccessible
979  //   (clause 11) or ambiguous (10.2) base class of D, a program that
980  //   necessitates this conversion is ill-formed. The result of the
981  //   conversion is a pointer to the base class sub-object of the
982  //   derived class object. The null pointer value is converted to
983  //   the null pointer value of the destination type.
984  //
985  // Note that we do not check for ambiguity or inaccessibility
986  // here. That is handled by CheckPointerConversion.
987  if (getLangOptions().CPlusPlus &&
988      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
989      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
990    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
991                                                       ToPointeeType,
992                                                       ToType, Context);
993    return true;
994  }
995
996  return false;
997}
998
999/// isObjCPointerConversion - Determines whether this is an
1000/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1001/// with the same arguments and return values.
1002bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1003                                   QualType& ConvertedType,
1004                                   bool &IncompatibleObjC) {
1005  if (!getLangOptions().ObjC1)
1006    return false;
1007
1008  // First, we handle all conversions on ObjC object pointer types.
1009  const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
1010  const ObjCObjectPointerType *FromObjCPtr =
1011    FromType->getAsObjCObjectPointerType();
1012
1013  if (ToObjCPtr && FromObjCPtr) {
1014    // Objective C++: We're able to convert between "id" and a pointer
1015    // to any interface (in both directions).
1016    if (ToObjCPtr->isObjCIdType() && FromObjCPtr->isObjCIdType()) {
1017      ConvertedType = ToType;
1018      return true;
1019    }
1020    // Objective C++: Allow conversions between the Objective-C "Class" and a
1021    // pointer to any interface (in both directions).
1022    if (ToObjCPtr->isObjCClassType() || FromObjCPtr->isObjCClassType()) {
1023      ConvertedType = ToType;
1024      return true;
1025    }
1026    // Conversions with Objective-C's id<...>.
1027    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1028         ToObjCPtr->isObjCQualifiedIdType()) &&
1029        ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
1030      ConvertedType = ToType;
1031      return true;
1032    }
1033    // Objective C++: We're able to convert from a pointer to an
1034    // interface to a pointer to a different interface.
1035    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1036      ConvertedType = ToType;
1037      return true;
1038    }
1039
1040    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1041      // Okay: this is some kind of implicit downcast of Objective-C
1042      // interfaces, which is permitted. However, we're going to
1043      // complain about it.
1044      IncompatibleObjC = true;
1045      ConvertedType = FromType;
1046      return true;
1047    }
1048  }
1049  // Beyond this point, both types need to be C pointers or block pointers.
1050  QualType ToPointeeType;
1051  if (const PointerType *ToCPtr = ToType->getAsPointerType())
1052    ToPointeeType = ToCPtr->getPointeeType();
1053  else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
1054    ToPointeeType = ToBlockPtr->getPointeeType();
1055  else
1056    return false;
1057
1058  QualType FromPointeeType;
1059  if (const PointerType *FromCPtr = FromType->getAsPointerType())
1060    FromPointeeType = FromCPtr->getPointeeType();
1061  else if (const BlockPointerType *FromBlockPtr = FromType->getAsBlockPointerType())
1062    FromPointeeType = FromBlockPtr->getPointeeType();
1063  else
1064    return false;
1065
1066  // If we have pointers to pointers, recursively check whether this
1067  // is an Objective-C conversion.
1068  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1069      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1070                              IncompatibleObjC)) {
1071    // We always complain about this conversion.
1072    IncompatibleObjC = true;
1073    ConvertedType = ToType;
1074    return true;
1075  }
1076  // If we have pointers to functions or blocks, check whether the only
1077  // differences in the argument and result types are in Objective-C
1078  // pointer conversions. If so, we permit the conversion (but
1079  // complain about it).
1080  const FunctionProtoType *FromFunctionType
1081    = FromPointeeType->getAsFunctionProtoType();
1082  const FunctionProtoType *ToFunctionType
1083    = ToPointeeType->getAsFunctionProtoType();
1084  if (FromFunctionType && ToFunctionType) {
1085    // If the function types are exactly the same, this isn't an
1086    // Objective-C pointer conversion.
1087    if (Context.getCanonicalType(FromPointeeType)
1088          == Context.getCanonicalType(ToPointeeType))
1089      return false;
1090
1091    // Perform the quick checks that will tell us whether these
1092    // function types are obviously different.
1093    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1094        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1095        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1096      return false;
1097
1098    bool HasObjCConversion = false;
1099    if (Context.getCanonicalType(FromFunctionType->getResultType())
1100          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1101      // Okay, the types match exactly. Nothing to do.
1102    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1103                                       ToFunctionType->getResultType(),
1104                                       ConvertedType, IncompatibleObjC)) {
1105      // Okay, we have an Objective-C pointer conversion.
1106      HasObjCConversion = true;
1107    } else {
1108      // Function types are too different. Abort.
1109      return false;
1110    }
1111
1112    // Check argument types.
1113    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1114         ArgIdx != NumArgs; ++ArgIdx) {
1115      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1116      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1117      if (Context.getCanonicalType(FromArgType)
1118            == Context.getCanonicalType(ToArgType)) {
1119        // Okay, the types match exactly. Nothing to do.
1120      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1121                                         ConvertedType, IncompatibleObjC)) {
1122        // Okay, we have an Objective-C pointer conversion.
1123        HasObjCConversion = true;
1124      } else {
1125        // Argument types are too different. Abort.
1126        return false;
1127      }
1128    }
1129
1130    if (HasObjCConversion) {
1131      // We had an Objective-C conversion. Allow this pointer
1132      // conversion, but complain about it.
1133      ConvertedType = ToType;
1134      IncompatibleObjC = true;
1135      return true;
1136    }
1137  }
1138
1139  return false;
1140}
1141
1142/// CheckPointerConversion - Check the pointer conversion from the
1143/// expression From to the type ToType. This routine checks for
1144/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1145/// conversions for which IsPointerConversion has already returned
1146/// true. It returns true and produces a diagnostic if there was an
1147/// error, or returns false otherwise.
1148bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1149  QualType FromType = From->getType();
1150
1151  if (const PointerType *FromPtrType = FromType->getAsPointerType())
1152    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
1153      QualType FromPointeeType = FromPtrType->getPointeeType(),
1154               ToPointeeType   = ToPtrType->getPointeeType();
1155
1156      if (FromPointeeType->isRecordType() &&
1157          ToPointeeType->isRecordType()) {
1158        // We must have a derived-to-base conversion. Check an
1159        // ambiguous or inaccessible conversion.
1160        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1161                                            From->getExprLoc(),
1162                                            From->getSourceRange());
1163      }
1164    }
1165  if (const ObjCObjectPointerType *FromPtrType =
1166        FromType->getAsObjCObjectPointerType())
1167    if (const ObjCObjectPointerType *ToPtrType =
1168          ToType->getAsObjCObjectPointerType()) {
1169      // Objective-C++ conversions are always okay.
1170      // FIXME: We should have a different class of conversions for the
1171      // Objective-C++ implicit conversions.
1172      if (FromPtrType->isObjCIdType() || ToPtrType->isObjCIdType() ||
1173          FromPtrType->isObjCClassType() || ToPtrType->isObjCClassType())
1174        return false;
1175
1176  }
1177  return false;
1178}
1179
1180/// IsMemberPointerConversion - Determines whether the conversion of the
1181/// expression From, which has the (possibly adjusted) type FromType, can be
1182/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1183/// If so, returns true and places the converted type (that might differ from
1184/// ToType in its cv-qualifiers at some level) into ConvertedType.
1185bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1186                                     QualType ToType, QualType &ConvertedType)
1187{
1188  const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1189  if (!ToTypePtr)
1190    return false;
1191
1192  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1193  if (From->isNullPointerConstant(Context)) {
1194    ConvertedType = ToType;
1195    return true;
1196  }
1197
1198  // Otherwise, both types have to be member pointers.
1199  const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1200  if (!FromTypePtr)
1201    return false;
1202
1203  // A pointer to member of B can be converted to a pointer to member of D,
1204  // where D is derived from B (C++ 4.11p2).
1205  QualType FromClass(FromTypePtr->getClass(), 0);
1206  QualType ToClass(ToTypePtr->getClass(), 0);
1207  // FIXME: What happens when these are dependent? Is this function even called?
1208
1209  if (IsDerivedFrom(ToClass, FromClass)) {
1210    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1211                                                 ToClass.getTypePtr());
1212    return true;
1213  }
1214
1215  return false;
1216}
1217
1218/// CheckMemberPointerConversion - Check the member pointer conversion from the
1219/// expression From to the type ToType. This routine checks for ambiguous or
1220/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1221/// for which IsMemberPointerConversion has already returned true. It returns
1222/// true and produces a diagnostic if there was an error, or returns false
1223/// otherwise.
1224bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1225  QualType FromType = From->getType();
1226  const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1227  if (!FromPtrType)
1228    return false;
1229
1230  const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1231  assert(ToPtrType && "No member pointer cast has a target type "
1232                      "that is not a member pointer.");
1233
1234  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1235  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1236
1237  // FIXME: What about dependent types?
1238  assert(FromClass->isRecordType() && "Pointer into non-class.");
1239  assert(ToClass->isRecordType() && "Pointer into non-class.");
1240
1241  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1242                  /*DetectVirtual=*/true);
1243  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1244  assert(DerivationOkay &&
1245         "Should not have been called if derivation isn't OK.");
1246  (void)DerivationOkay;
1247
1248  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1249                                  getUnqualifiedType())) {
1250    // Derivation is ambiguous. Redo the check to find the exact paths.
1251    Paths.clear();
1252    Paths.setRecordingPaths(true);
1253    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1254    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1255    (void)StillOkay;
1256
1257    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1258    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1259      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1260    return true;
1261  }
1262
1263  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1264    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1265      << FromClass << ToClass << QualType(VBase, 0)
1266      << From->getSourceRange();
1267    return true;
1268  }
1269
1270  return false;
1271}
1272
1273/// IsQualificationConversion - Determines whether the conversion from
1274/// an rvalue of type FromType to ToType is a qualification conversion
1275/// (C++ 4.4).
1276bool
1277Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1278{
1279  FromType = Context.getCanonicalType(FromType);
1280  ToType = Context.getCanonicalType(ToType);
1281
1282  // If FromType and ToType are the same type, this is not a
1283  // qualification conversion.
1284  if (FromType == ToType)
1285    return false;
1286
1287  // (C++ 4.4p4):
1288  //   A conversion can add cv-qualifiers at levels other than the first
1289  //   in multi-level pointers, subject to the following rules: [...]
1290  bool PreviousToQualsIncludeConst = true;
1291  bool UnwrappedAnyPointer = false;
1292  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1293    // Within each iteration of the loop, we check the qualifiers to
1294    // determine if this still looks like a qualification
1295    // conversion. Then, if all is well, we unwrap one more level of
1296    // pointers or pointers-to-members and do it all again
1297    // until there are no more pointers or pointers-to-members left to
1298    // unwrap.
1299    UnwrappedAnyPointer = true;
1300
1301    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1302    //      2,j, and similarly for volatile.
1303    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1304      return false;
1305
1306    //   -- if the cv 1,j and cv 2,j are different, then const is in
1307    //      every cv for 0 < k < j.
1308    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1309        && !PreviousToQualsIncludeConst)
1310      return false;
1311
1312    // Keep track of whether all prior cv-qualifiers in the "to" type
1313    // include const.
1314    PreviousToQualsIncludeConst
1315      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1316  }
1317
1318  // We are left with FromType and ToType being the pointee types
1319  // after unwrapping the original FromType and ToType the same number
1320  // of types. If we unwrapped any pointers, and if FromType and
1321  // ToType have the same unqualified type (since we checked
1322  // qualifiers above), then this is a qualification conversion.
1323  return UnwrappedAnyPointer &&
1324    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1325}
1326
1327/// Determines whether there is a user-defined conversion sequence
1328/// (C++ [over.ics.user]) that converts expression From to the type
1329/// ToType. If such a conversion exists, User will contain the
1330/// user-defined conversion sequence that performs such a conversion
1331/// and this routine will return true. Otherwise, this routine returns
1332/// false and User is unspecified.
1333///
1334/// \param AllowConversionFunctions true if the conversion should
1335/// consider conversion functions at all. If false, only constructors
1336/// will be considered.
1337///
1338/// \param AllowExplicit  true if the conversion should consider C++0x
1339/// "explicit" conversion functions as well as non-explicit conversion
1340/// functions (C++0x [class.conv.fct]p2).
1341///
1342/// \param ForceRValue  true if the expression should be treated as an rvalue
1343/// for overload resolution.
1344bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1345                                   UserDefinedConversionSequence& User,
1346                                   bool AllowConversionFunctions,
1347                                   bool AllowExplicit, bool ForceRValue)
1348{
1349  OverloadCandidateSet CandidateSet;
1350  if (const RecordType *ToRecordType = ToType->getAsRecordType()) {
1351    if (CXXRecordDecl *ToRecordDecl
1352          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1353      // C++ [over.match.ctor]p1:
1354      //   When objects of class type are direct-initialized (8.5), or
1355      //   copy-initialized from an expression of the same or a
1356      //   derived class type (8.5), overload resolution selects the
1357      //   constructor. [...] For copy-initialization, the candidate
1358      //   functions are all the converting constructors (12.3.1) of
1359      //   that class. The argument list is the expression-list within
1360      //   the parentheses of the initializer.
1361      DeclarationName ConstructorName
1362        = Context.DeclarationNames.getCXXConstructorName(
1363                          Context.getCanonicalType(ToType).getUnqualifiedType());
1364      DeclContext::lookup_iterator Con, ConEnd;
1365      for (llvm::tie(Con, ConEnd)
1366             = ToRecordDecl->lookup(ConstructorName);
1367           Con != ConEnd; ++Con) {
1368        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1369        if (Constructor->isConvertingConstructor())
1370          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1371                               /*SuppressUserConversions=*/true, ForceRValue);
1372      }
1373    }
1374  }
1375
1376  if (!AllowConversionFunctions) {
1377    // Don't allow any conversion functions to enter the overload set.
1378  } else if (const RecordType *FromRecordType
1379               = From->getType()->getAsRecordType()) {
1380    if (CXXRecordDecl *FromRecordDecl
1381          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1382      // Add all of the conversion functions as candidates.
1383      // FIXME: Look for conversions in base classes!
1384      OverloadedFunctionDecl *Conversions
1385        = FromRecordDecl->getConversionFunctions();
1386      for (OverloadedFunctionDecl::function_iterator Func
1387             = Conversions->function_begin();
1388           Func != Conversions->function_end(); ++Func) {
1389        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1390        if (AllowExplicit || !Conv->isExplicit())
1391          AddConversionCandidate(Conv, From, ToType, CandidateSet);
1392      }
1393    }
1394  }
1395
1396  OverloadCandidateSet::iterator Best;
1397  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1398    case OR_Success:
1399      // Record the standard conversion we used and the conversion function.
1400      if (CXXConstructorDecl *Constructor
1401            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1402        // C++ [over.ics.user]p1:
1403        //   If the user-defined conversion is specified by a
1404        //   constructor (12.3.1), the initial standard conversion
1405        //   sequence converts the source type to the type required by
1406        //   the argument of the constructor.
1407        //
1408        // FIXME: What about ellipsis conversions?
1409        QualType ThisType = Constructor->getThisType(Context);
1410        User.Before = Best->Conversions[0].Standard;
1411        User.ConversionFunction = Constructor;
1412        User.After.setAsIdentityConversion();
1413        User.After.FromTypePtr
1414          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1415        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1416        return true;
1417      } else if (CXXConversionDecl *Conversion
1418                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1419        // C++ [over.ics.user]p1:
1420        //
1421        //   [...] If the user-defined conversion is specified by a
1422        //   conversion function (12.3.2), the initial standard
1423        //   conversion sequence converts the source type to the
1424        //   implicit object parameter of the conversion function.
1425        User.Before = Best->Conversions[0].Standard;
1426        User.ConversionFunction = Conversion;
1427
1428        // C++ [over.ics.user]p2:
1429        //   The second standard conversion sequence converts the
1430        //   result of the user-defined conversion to the target type
1431        //   for the sequence. Since an implicit conversion sequence
1432        //   is an initialization, the special rules for
1433        //   initialization by user-defined conversion apply when
1434        //   selecting the best user-defined conversion for a
1435        //   user-defined conversion sequence (see 13.3.3 and
1436        //   13.3.3.1).
1437        User.After = Best->FinalConversion;
1438        return true;
1439      } else {
1440        assert(false && "Not a constructor or conversion function?");
1441        return false;
1442      }
1443
1444    case OR_No_Viable_Function:
1445    case OR_Deleted:
1446      // No conversion here! We're done.
1447      return false;
1448
1449    case OR_Ambiguous:
1450      // FIXME: See C++ [over.best.ics]p10 for the handling of
1451      // ambiguous conversion sequences.
1452      return false;
1453    }
1454
1455  return false;
1456}
1457
1458/// CompareImplicitConversionSequences - Compare two implicit
1459/// conversion sequences to determine whether one is better than the
1460/// other or if they are indistinguishable (C++ 13.3.3.2).
1461ImplicitConversionSequence::CompareKind
1462Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1463                                         const ImplicitConversionSequence& ICS2)
1464{
1465  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1466  // conversion sequences (as defined in 13.3.3.1)
1467  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1468  //      conversion sequence than a user-defined conversion sequence or
1469  //      an ellipsis conversion sequence, and
1470  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1471  //      conversion sequence than an ellipsis conversion sequence
1472  //      (13.3.3.1.3).
1473  //
1474  if (ICS1.ConversionKind < ICS2.ConversionKind)
1475    return ImplicitConversionSequence::Better;
1476  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1477    return ImplicitConversionSequence::Worse;
1478
1479  // Two implicit conversion sequences of the same form are
1480  // indistinguishable conversion sequences unless one of the
1481  // following rules apply: (C++ 13.3.3.2p3):
1482  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1483    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1484  else if (ICS1.ConversionKind ==
1485             ImplicitConversionSequence::UserDefinedConversion) {
1486    // User-defined conversion sequence U1 is a better conversion
1487    // sequence than another user-defined conversion sequence U2 if
1488    // they contain the same user-defined conversion function or
1489    // constructor and if the second standard conversion sequence of
1490    // U1 is better than the second standard conversion sequence of
1491    // U2 (C++ 13.3.3.2p3).
1492    if (ICS1.UserDefined.ConversionFunction ==
1493          ICS2.UserDefined.ConversionFunction)
1494      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1495                                                ICS2.UserDefined.After);
1496  }
1497
1498  return ImplicitConversionSequence::Indistinguishable;
1499}
1500
1501/// CompareStandardConversionSequences - Compare two standard
1502/// conversion sequences to determine whether one is better than the
1503/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1504ImplicitConversionSequence::CompareKind
1505Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1506                                         const StandardConversionSequence& SCS2)
1507{
1508  // Standard conversion sequence S1 is a better conversion sequence
1509  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1510
1511  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1512  //     sequences in the canonical form defined by 13.3.3.1.1,
1513  //     excluding any Lvalue Transformation; the identity conversion
1514  //     sequence is considered to be a subsequence of any
1515  //     non-identity conversion sequence) or, if not that,
1516  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1517    // Neither is a proper subsequence of the other. Do nothing.
1518    ;
1519  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1520           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1521           (SCS1.Second == ICK_Identity &&
1522            SCS1.Third == ICK_Identity))
1523    // SCS1 is a proper subsequence of SCS2.
1524    return ImplicitConversionSequence::Better;
1525  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1526           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1527           (SCS2.Second == ICK_Identity &&
1528            SCS2.Third == ICK_Identity))
1529    // SCS2 is a proper subsequence of SCS1.
1530    return ImplicitConversionSequence::Worse;
1531
1532  //  -- the rank of S1 is better than the rank of S2 (by the rules
1533  //     defined below), or, if not that,
1534  ImplicitConversionRank Rank1 = SCS1.getRank();
1535  ImplicitConversionRank Rank2 = SCS2.getRank();
1536  if (Rank1 < Rank2)
1537    return ImplicitConversionSequence::Better;
1538  else if (Rank2 < Rank1)
1539    return ImplicitConversionSequence::Worse;
1540
1541  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1542  // are indistinguishable unless one of the following rules
1543  // applies:
1544
1545  //   A conversion that is not a conversion of a pointer, or
1546  //   pointer to member, to bool is better than another conversion
1547  //   that is such a conversion.
1548  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1549    return SCS2.isPointerConversionToBool()
1550             ? ImplicitConversionSequence::Better
1551             : ImplicitConversionSequence::Worse;
1552
1553  // C++ [over.ics.rank]p4b2:
1554  //
1555  //   If class B is derived directly or indirectly from class A,
1556  //   conversion of B* to A* is better than conversion of B* to
1557  //   void*, and conversion of A* to void* is better than conversion
1558  //   of B* to void*.
1559  bool SCS1ConvertsToVoid
1560    = SCS1.isPointerConversionToVoidPointer(Context);
1561  bool SCS2ConvertsToVoid
1562    = SCS2.isPointerConversionToVoidPointer(Context);
1563  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1564    // Exactly one of the conversion sequences is a conversion to
1565    // a void pointer; it's the worse conversion.
1566    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1567                              : ImplicitConversionSequence::Worse;
1568  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1569    // Neither conversion sequence converts to a void pointer; compare
1570    // their derived-to-base conversions.
1571    if (ImplicitConversionSequence::CompareKind DerivedCK
1572          = CompareDerivedToBaseConversions(SCS1, SCS2))
1573      return DerivedCK;
1574  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1575    // Both conversion sequences are conversions to void
1576    // pointers. Compare the source types to determine if there's an
1577    // inheritance relationship in their sources.
1578    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1579    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1580
1581    // Adjust the types we're converting from via the array-to-pointer
1582    // conversion, if we need to.
1583    if (SCS1.First == ICK_Array_To_Pointer)
1584      FromType1 = Context.getArrayDecayedType(FromType1);
1585    if (SCS2.First == ICK_Array_To_Pointer)
1586      FromType2 = Context.getArrayDecayedType(FromType2);
1587
1588    QualType FromPointee1
1589      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1590    QualType FromPointee2
1591      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1592
1593    if (IsDerivedFrom(FromPointee2, FromPointee1))
1594      return ImplicitConversionSequence::Better;
1595    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1596      return ImplicitConversionSequence::Worse;
1597
1598    // Objective-C++: If one interface is more specific than the
1599    // other, it is the better one.
1600    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1601    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1602    if (FromIface1 && FromIface1) {
1603      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1604        return ImplicitConversionSequence::Better;
1605      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1606        return ImplicitConversionSequence::Worse;
1607    }
1608  }
1609
1610  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1611  // bullet 3).
1612  if (ImplicitConversionSequence::CompareKind QualCK
1613        = CompareQualificationConversions(SCS1, SCS2))
1614    return QualCK;
1615
1616  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1617    // C++0x [over.ics.rank]p3b4:
1618    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1619    //      implicit object parameter of a non-static member function declared
1620    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1621    //      rvalue and S2 binds an lvalue reference.
1622    // FIXME: We don't know if we're dealing with the implicit object parameter,
1623    // or if the member function in this case has a ref qualifier.
1624    // (Of course, we don't have ref qualifiers yet.)
1625    if (SCS1.RRefBinding != SCS2.RRefBinding)
1626      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1627                              : ImplicitConversionSequence::Worse;
1628
1629    // C++ [over.ics.rank]p3b4:
1630    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1631    //      which the references refer are the same type except for
1632    //      top-level cv-qualifiers, and the type to which the reference
1633    //      initialized by S2 refers is more cv-qualified than the type
1634    //      to which the reference initialized by S1 refers.
1635    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1636    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1637    T1 = Context.getCanonicalType(T1);
1638    T2 = Context.getCanonicalType(T2);
1639    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1640      if (T2.isMoreQualifiedThan(T1))
1641        return ImplicitConversionSequence::Better;
1642      else if (T1.isMoreQualifiedThan(T2))
1643        return ImplicitConversionSequence::Worse;
1644    }
1645  }
1646
1647  return ImplicitConversionSequence::Indistinguishable;
1648}
1649
1650/// CompareQualificationConversions - Compares two standard conversion
1651/// sequences to determine whether they can be ranked based on their
1652/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1653ImplicitConversionSequence::CompareKind
1654Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1655                                      const StandardConversionSequence& SCS2)
1656{
1657  // C++ 13.3.3.2p3:
1658  //  -- S1 and S2 differ only in their qualification conversion and
1659  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1660  //     cv-qualification signature of type T1 is a proper subset of
1661  //     the cv-qualification signature of type T2, and S1 is not the
1662  //     deprecated string literal array-to-pointer conversion (4.2).
1663  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1664      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1665    return ImplicitConversionSequence::Indistinguishable;
1666
1667  // FIXME: the example in the standard doesn't use a qualification
1668  // conversion (!)
1669  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1670  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1671  T1 = Context.getCanonicalType(T1);
1672  T2 = Context.getCanonicalType(T2);
1673
1674  // If the types are the same, we won't learn anything by unwrapped
1675  // them.
1676  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1677    return ImplicitConversionSequence::Indistinguishable;
1678
1679  ImplicitConversionSequence::CompareKind Result
1680    = ImplicitConversionSequence::Indistinguishable;
1681  while (UnwrapSimilarPointerTypes(T1, T2)) {
1682    // Within each iteration of the loop, we check the qualifiers to
1683    // determine if this still looks like a qualification
1684    // conversion. Then, if all is well, we unwrap one more level of
1685    // pointers or pointers-to-members and do it all again
1686    // until there are no more pointers or pointers-to-members left
1687    // to unwrap. This essentially mimics what
1688    // IsQualificationConversion does, but here we're checking for a
1689    // strict subset of qualifiers.
1690    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1691      // The qualifiers are the same, so this doesn't tell us anything
1692      // about how the sequences rank.
1693      ;
1694    else if (T2.isMoreQualifiedThan(T1)) {
1695      // T1 has fewer qualifiers, so it could be the better sequence.
1696      if (Result == ImplicitConversionSequence::Worse)
1697        // Neither has qualifiers that are a subset of the other's
1698        // qualifiers.
1699        return ImplicitConversionSequence::Indistinguishable;
1700
1701      Result = ImplicitConversionSequence::Better;
1702    } else if (T1.isMoreQualifiedThan(T2)) {
1703      // T2 has fewer qualifiers, so it could be the better sequence.
1704      if (Result == ImplicitConversionSequence::Better)
1705        // Neither has qualifiers that are a subset of the other's
1706        // qualifiers.
1707        return ImplicitConversionSequence::Indistinguishable;
1708
1709      Result = ImplicitConversionSequence::Worse;
1710    } else {
1711      // Qualifiers are disjoint.
1712      return ImplicitConversionSequence::Indistinguishable;
1713    }
1714
1715    // If the types after this point are equivalent, we're done.
1716    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1717      break;
1718  }
1719
1720  // Check that the winning standard conversion sequence isn't using
1721  // the deprecated string literal array to pointer conversion.
1722  switch (Result) {
1723  case ImplicitConversionSequence::Better:
1724    if (SCS1.Deprecated)
1725      Result = ImplicitConversionSequence::Indistinguishable;
1726    break;
1727
1728  case ImplicitConversionSequence::Indistinguishable:
1729    break;
1730
1731  case ImplicitConversionSequence::Worse:
1732    if (SCS2.Deprecated)
1733      Result = ImplicitConversionSequence::Indistinguishable;
1734    break;
1735  }
1736
1737  return Result;
1738}
1739
1740/// CompareDerivedToBaseConversions - Compares two standard conversion
1741/// sequences to determine whether they can be ranked based on their
1742/// various kinds of derived-to-base conversions (C++
1743/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1744/// conversions between Objective-C interface types.
1745ImplicitConversionSequence::CompareKind
1746Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1747                                      const StandardConversionSequence& SCS2) {
1748  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1749  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1750  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1751  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1752
1753  // Adjust the types we're converting from via the array-to-pointer
1754  // conversion, if we need to.
1755  if (SCS1.First == ICK_Array_To_Pointer)
1756    FromType1 = Context.getArrayDecayedType(FromType1);
1757  if (SCS2.First == ICK_Array_To_Pointer)
1758    FromType2 = Context.getArrayDecayedType(FromType2);
1759
1760  // Canonicalize all of the types.
1761  FromType1 = Context.getCanonicalType(FromType1);
1762  ToType1 = Context.getCanonicalType(ToType1);
1763  FromType2 = Context.getCanonicalType(FromType2);
1764  ToType2 = Context.getCanonicalType(ToType2);
1765
1766  // C++ [over.ics.rank]p4b3:
1767  //
1768  //   If class B is derived directly or indirectly from class A and
1769  //   class C is derived directly or indirectly from B,
1770  //
1771  // For Objective-C, we let A, B, and C also be Objective-C
1772  // interfaces.
1773
1774  // Compare based on pointer conversions.
1775  if (SCS1.Second == ICK_Pointer_Conversion &&
1776      SCS2.Second == ICK_Pointer_Conversion &&
1777      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1778      FromType1->isPointerType() && FromType2->isPointerType() &&
1779      ToType1->isPointerType() && ToType2->isPointerType()) {
1780    QualType FromPointee1
1781      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1782    QualType ToPointee1
1783      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1784    QualType FromPointee2
1785      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1786    QualType ToPointee2
1787      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1788
1789    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1790    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1791    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1792    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1793
1794    //   -- conversion of C* to B* is better than conversion of C* to A*,
1795    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1796      if (IsDerivedFrom(ToPointee1, ToPointee2))
1797        return ImplicitConversionSequence::Better;
1798      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1799        return ImplicitConversionSequence::Worse;
1800
1801      if (ToIface1 && ToIface2) {
1802        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1803          return ImplicitConversionSequence::Better;
1804        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1805          return ImplicitConversionSequence::Worse;
1806      }
1807    }
1808
1809    //   -- conversion of B* to A* is better than conversion of C* to A*,
1810    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1811      if (IsDerivedFrom(FromPointee2, FromPointee1))
1812        return ImplicitConversionSequence::Better;
1813      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1814        return ImplicitConversionSequence::Worse;
1815
1816      if (FromIface1 && FromIface2) {
1817        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1818          return ImplicitConversionSequence::Better;
1819        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1820          return ImplicitConversionSequence::Worse;
1821      }
1822    }
1823  }
1824
1825  // Compare based on reference bindings.
1826  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1827      SCS1.Second == ICK_Derived_To_Base) {
1828    //   -- binding of an expression of type C to a reference of type
1829    //      B& is better than binding an expression of type C to a
1830    //      reference of type A&,
1831    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1832        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1833      if (IsDerivedFrom(ToType1, ToType2))
1834        return ImplicitConversionSequence::Better;
1835      else if (IsDerivedFrom(ToType2, ToType1))
1836        return ImplicitConversionSequence::Worse;
1837    }
1838
1839    //   -- binding of an expression of type B to a reference of type
1840    //      A& is better than binding an expression of type C to a
1841    //      reference of type A&,
1842    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1843        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1844      if (IsDerivedFrom(FromType2, FromType1))
1845        return ImplicitConversionSequence::Better;
1846      else if (IsDerivedFrom(FromType1, FromType2))
1847        return ImplicitConversionSequence::Worse;
1848    }
1849  }
1850
1851
1852  // FIXME: conversion of A::* to B::* is better than conversion of
1853  // A::* to C::*,
1854
1855  // FIXME: conversion of B::* to C::* is better than conversion of
1856  // A::* to C::*, and
1857
1858  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1859      SCS1.Second == ICK_Derived_To_Base) {
1860    //   -- conversion of C to B is better than conversion of C to A,
1861    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1862        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1863      if (IsDerivedFrom(ToType1, ToType2))
1864        return ImplicitConversionSequence::Better;
1865      else if (IsDerivedFrom(ToType2, ToType1))
1866        return ImplicitConversionSequence::Worse;
1867    }
1868
1869    //   -- conversion of B to A is better than conversion of C to A.
1870    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1871        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1872      if (IsDerivedFrom(FromType2, FromType1))
1873        return ImplicitConversionSequence::Better;
1874      else if (IsDerivedFrom(FromType1, FromType2))
1875        return ImplicitConversionSequence::Worse;
1876    }
1877  }
1878
1879  return ImplicitConversionSequence::Indistinguishable;
1880}
1881
1882/// TryCopyInitialization - Try to copy-initialize a value of type
1883/// ToType from the expression From. Return the implicit conversion
1884/// sequence required to pass this argument, which may be a bad
1885/// conversion sequence (meaning that the argument cannot be passed to
1886/// a parameter of this type). If @p SuppressUserConversions, then we
1887/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1888/// then we treat @p From as an rvalue, even if it is an lvalue.
1889ImplicitConversionSequence
1890Sema::TryCopyInitialization(Expr *From, QualType ToType,
1891                            bool SuppressUserConversions, bool ForceRValue) {
1892  if (ToType->isReferenceType()) {
1893    ImplicitConversionSequence ICS;
1894    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1895                       /*AllowExplicit=*/false, ForceRValue);
1896    return ICS;
1897  } else {
1898    return TryImplicitConversion(From, ToType, SuppressUserConversions,
1899                                 ForceRValue);
1900  }
1901}
1902
1903/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1904/// the expression @p From. Returns true (and emits a diagnostic) if there was
1905/// an error, returns false if the initialization succeeded. Elidable should
1906/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1907/// differently in C++0x for this case.
1908bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1909                                     const char* Flavor, bool Elidable) {
1910  if (!getLangOptions().CPlusPlus) {
1911    // In C, argument passing is the same as performing an assignment.
1912    QualType FromType = From->getType();
1913
1914    AssignConvertType ConvTy =
1915      CheckSingleAssignmentConstraints(ToType, From);
1916    if (ConvTy != Compatible &&
1917        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1918      ConvTy = Compatible;
1919
1920    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1921                                    FromType, From, Flavor);
1922  }
1923
1924  if (ToType->isReferenceType())
1925    return CheckReferenceInit(From, ToType);
1926
1927  if (!PerformImplicitConversion(From, ToType, Flavor,
1928                                 /*AllowExplicit=*/false, Elidable))
1929    return false;
1930
1931  return Diag(From->getSourceRange().getBegin(),
1932              diag::err_typecheck_convert_incompatible)
1933    << ToType << From->getType() << Flavor << From->getSourceRange();
1934}
1935
1936/// TryObjectArgumentInitialization - Try to initialize the object
1937/// parameter of the given member function (@c Method) from the
1938/// expression @p From.
1939ImplicitConversionSequence
1940Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1941  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1942  unsigned MethodQuals = Method->getTypeQualifiers();
1943  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1944
1945  // Set up the conversion sequence as a "bad" conversion, to allow us
1946  // to exit early.
1947  ImplicitConversionSequence ICS;
1948  ICS.Standard.setAsIdentityConversion();
1949  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1950
1951  // We need to have an object of class type.
1952  QualType FromType = From->getType();
1953  if (const PointerType *PT = FromType->getAsPointerType())
1954    FromType = PT->getPointeeType();
1955
1956  assert(FromType->isRecordType());
1957
1958  // The implicit object parmeter is has the type "reference to cv X",
1959  // where X is the class of which the function is a member
1960  // (C++ [over.match.funcs]p4). However, when finding an implicit
1961  // conversion sequence for the argument, we are not allowed to
1962  // create temporaries or perform user-defined conversions
1963  // (C++ [over.match.funcs]p5). We perform a simplified version of
1964  // reference binding here, that allows class rvalues to bind to
1965  // non-constant references.
1966
1967  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1968  // with the implicit object parameter (C++ [over.match.funcs]p5).
1969  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1970  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1971      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1972    return ICS;
1973
1974  // Check that we have either the same type or a derived type. It
1975  // affects the conversion rank.
1976  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1977  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1978    ICS.Standard.Second = ICK_Identity;
1979  else if (IsDerivedFrom(FromType, ClassType))
1980    ICS.Standard.Second = ICK_Derived_To_Base;
1981  else
1982    return ICS;
1983
1984  // Success. Mark this as a reference binding.
1985  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1986  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1987  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1988  ICS.Standard.ReferenceBinding = true;
1989  ICS.Standard.DirectBinding = true;
1990  ICS.Standard.RRefBinding = false;
1991  return ICS;
1992}
1993
1994/// PerformObjectArgumentInitialization - Perform initialization of
1995/// the implicit object parameter for the given Method with the given
1996/// expression.
1997bool
1998Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1999  QualType FromRecordType, DestType;
2000  QualType ImplicitParamRecordType  =
2001    Method->getThisType(Context)->getAsPointerType()->getPointeeType();
2002
2003  if (const PointerType *PT = From->getType()->getAsPointerType()) {
2004    FromRecordType = PT->getPointeeType();
2005    DestType = Method->getThisType(Context);
2006  } else {
2007    FromRecordType = From->getType();
2008    DestType = ImplicitParamRecordType;
2009  }
2010
2011  ImplicitConversionSequence ICS
2012    = TryObjectArgumentInitialization(From, Method);
2013  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2014    return Diag(From->getSourceRange().getBegin(),
2015                diag::err_implicit_object_parameter_init)
2016       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2017
2018  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2019      CheckDerivedToBaseConversion(FromRecordType,
2020                                   ImplicitParamRecordType,
2021                                   From->getSourceRange().getBegin(),
2022                                   From->getSourceRange()))
2023    return true;
2024
2025  ImpCastExprToType(From, DestType, /*isLvalue=*/true);
2026  return false;
2027}
2028
2029/// TryContextuallyConvertToBool - Attempt to contextually convert the
2030/// expression From to bool (C++0x [conv]p3).
2031ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2032  return TryImplicitConversion(From, Context.BoolTy, false, true);
2033}
2034
2035/// PerformContextuallyConvertToBool - Perform a contextual conversion
2036/// of the expression From to bool (C++0x [conv]p3).
2037bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2038  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2039  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2040    return false;
2041
2042  return Diag(From->getSourceRange().getBegin(),
2043              diag::err_typecheck_bool_condition)
2044    << From->getType() << From->getSourceRange();
2045}
2046
2047/// AddOverloadCandidate - Adds the given function to the set of
2048/// candidate functions, using the given function call arguments.  If
2049/// @p SuppressUserConversions, then don't allow user-defined
2050/// conversions via constructors or conversion operators.
2051/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2052/// hacky way to implement the overloading rules for elidable copy
2053/// initialization in C++0x (C++0x 12.8p15).
2054void
2055Sema::AddOverloadCandidate(FunctionDecl *Function,
2056                           Expr **Args, unsigned NumArgs,
2057                           OverloadCandidateSet& CandidateSet,
2058                           bool SuppressUserConversions,
2059                           bool ForceRValue)
2060{
2061  const FunctionProtoType* Proto
2062    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2063  assert(Proto && "Functions without a prototype cannot be overloaded");
2064  assert(!isa<CXXConversionDecl>(Function) &&
2065         "Use AddConversionCandidate for conversion functions");
2066  assert(!Function->getDescribedFunctionTemplate() &&
2067         "Use AddTemplateOverloadCandidate for function templates");
2068
2069  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2070    if (!isa<CXXConstructorDecl>(Method)) {
2071      // If we get here, it's because we're calling a member function
2072      // that is named without a member access expression (e.g.,
2073      // "this->f") that was either written explicitly or created
2074      // implicitly. This can happen with a qualified call to a member
2075      // function, e.g., X::f(). We use a NULL object as the implied
2076      // object argument (C++ [over.call.func]p3).
2077      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2078                         SuppressUserConversions, ForceRValue);
2079      return;
2080    }
2081    // We treat a constructor like a non-member function, since its object
2082    // argument doesn't participate in overload resolution.
2083  }
2084
2085
2086  // Add this candidate
2087  CandidateSet.push_back(OverloadCandidate());
2088  OverloadCandidate& Candidate = CandidateSet.back();
2089  Candidate.Function = Function;
2090  Candidate.Viable = true;
2091  Candidate.IsSurrogate = false;
2092  Candidate.IgnoreObjectArgument = false;
2093
2094  unsigned NumArgsInProto = Proto->getNumArgs();
2095
2096  // (C++ 13.3.2p2): A candidate function having fewer than m
2097  // parameters is viable only if it has an ellipsis in its parameter
2098  // list (8.3.5).
2099  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2100    Candidate.Viable = false;
2101    return;
2102  }
2103
2104  // (C++ 13.3.2p2): A candidate function having more than m parameters
2105  // is viable only if the (m+1)st parameter has a default argument
2106  // (8.3.6). For the purposes of overload resolution, the
2107  // parameter list is truncated on the right, so that there are
2108  // exactly m parameters.
2109  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2110  if (NumArgs < MinRequiredArgs) {
2111    // Not enough arguments.
2112    Candidate.Viable = false;
2113    return;
2114  }
2115
2116  // Determine the implicit conversion sequences for each of the
2117  // arguments.
2118  Candidate.Conversions.resize(NumArgs);
2119  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2120    if (ArgIdx < NumArgsInProto) {
2121      // (C++ 13.3.2p3): for F to be a viable function, there shall
2122      // exist for each argument an implicit conversion sequence
2123      // (13.3.3.1) that converts that argument to the corresponding
2124      // parameter of F.
2125      QualType ParamType = Proto->getArgType(ArgIdx);
2126      Candidate.Conversions[ArgIdx]
2127        = TryCopyInitialization(Args[ArgIdx], ParamType,
2128                                SuppressUserConversions, ForceRValue);
2129      if (Candidate.Conversions[ArgIdx].ConversionKind
2130            == ImplicitConversionSequence::BadConversion) {
2131        Candidate.Viable = false;
2132        break;
2133      }
2134    } else {
2135      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2136      // argument for which there is no corresponding parameter is
2137      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2138      Candidate.Conversions[ArgIdx].ConversionKind
2139        = ImplicitConversionSequence::EllipsisConversion;
2140    }
2141  }
2142}
2143
2144/// \brief Add all of the function declarations in the given function set to
2145/// the overload canddiate set.
2146void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2147                                 Expr **Args, unsigned NumArgs,
2148                                 OverloadCandidateSet& CandidateSet,
2149                                 bool SuppressUserConversions) {
2150  for (FunctionSet::const_iterator F = Functions.begin(),
2151                                FEnd = Functions.end();
2152       F != FEnd; ++F) {
2153    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2154      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2155                           SuppressUserConversions);
2156    else
2157      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2158                                   /*FIXME: explicit args */false, 0, 0,
2159                                   Args, NumArgs, CandidateSet,
2160                                   SuppressUserConversions);
2161  }
2162}
2163
2164/// AddMethodCandidate - Adds the given C++ member function to the set
2165/// of candidate functions, using the given function call arguments
2166/// and the object argument (@c Object). For example, in a call
2167/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2168/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2169/// allow user-defined conversions via constructors or conversion
2170/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2171/// a slightly hacky way to implement the overloading rules for elidable copy
2172/// initialization in C++0x (C++0x 12.8p15).
2173void
2174Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2175                         Expr **Args, unsigned NumArgs,
2176                         OverloadCandidateSet& CandidateSet,
2177                         bool SuppressUserConversions, bool ForceRValue)
2178{
2179  const FunctionProtoType* Proto
2180    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2181  assert(Proto && "Methods without a prototype cannot be overloaded");
2182  assert(!isa<CXXConversionDecl>(Method) &&
2183         "Use AddConversionCandidate for conversion functions");
2184  assert(!isa<CXXConstructorDecl>(Method) &&
2185         "Use AddOverloadCandidate for constructors");
2186
2187  // Add this candidate
2188  CandidateSet.push_back(OverloadCandidate());
2189  OverloadCandidate& Candidate = CandidateSet.back();
2190  Candidate.Function = Method;
2191  Candidate.IsSurrogate = false;
2192  Candidate.IgnoreObjectArgument = false;
2193
2194  unsigned NumArgsInProto = Proto->getNumArgs();
2195
2196  // (C++ 13.3.2p2): A candidate function having fewer than m
2197  // parameters is viable only if it has an ellipsis in its parameter
2198  // list (8.3.5).
2199  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2200    Candidate.Viable = false;
2201    return;
2202  }
2203
2204  // (C++ 13.3.2p2): A candidate function having more than m parameters
2205  // is viable only if the (m+1)st parameter has a default argument
2206  // (8.3.6). For the purposes of overload resolution, the
2207  // parameter list is truncated on the right, so that there are
2208  // exactly m parameters.
2209  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2210  if (NumArgs < MinRequiredArgs) {
2211    // Not enough arguments.
2212    Candidate.Viable = false;
2213    return;
2214  }
2215
2216  Candidate.Viable = true;
2217  Candidate.Conversions.resize(NumArgs + 1);
2218
2219  if (Method->isStatic() || !Object)
2220    // The implicit object argument is ignored.
2221    Candidate.IgnoreObjectArgument = true;
2222  else {
2223    // Determine the implicit conversion sequence for the object
2224    // parameter.
2225    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2226    if (Candidate.Conversions[0].ConversionKind
2227          == ImplicitConversionSequence::BadConversion) {
2228      Candidate.Viable = false;
2229      return;
2230    }
2231  }
2232
2233  // Determine the implicit conversion sequences for each of the
2234  // arguments.
2235  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2236    if (ArgIdx < NumArgsInProto) {
2237      // (C++ 13.3.2p3): for F to be a viable function, there shall
2238      // exist for each argument an implicit conversion sequence
2239      // (13.3.3.1) that converts that argument to the corresponding
2240      // parameter of F.
2241      QualType ParamType = Proto->getArgType(ArgIdx);
2242      Candidate.Conversions[ArgIdx + 1]
2243        = TryCopyInitialization(Args[ArgIdx], ParamType,
2244                                SuppressUserConversions, ForceRValue);
2245      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2246            == ImplicitConversionSequence::BadConversion) {
2247        Candidate.Viable = false;
2248        break;
2249      }
2250    } else {
2251      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2252      // argument for which there is no corresponding parameter is
2253      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2254      Candidate.Conversions[ArgIdx + 1].ConversionKind
2255        = ImplicitConversionSequence::EllipsisConversion;
2256    }
2257  }
2258}
2259
2260/// \brief Add a C++ function template as a candidate in the candidate set,
2261/// using template argument deduction to produce an appropriate function
2262/// template specialization.
2263void
2264Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2265                                   bool HasExplicitTemplateArgs,
2266                                 const TemplateArgument *ExplicitTemplateArgs,
2267                                   unsigned NumExplicitTemplateArgs,
2268                                   Expr **Args, unsigned NumArgs,
2269                                   OverloadCandidateSet& CandidateSet,
2270                                   bool SuppressUserConversions,
2271                                   bool ForceRValue) {
2272  // C++ [over.match.funcs]p7:
2273  //   In each case where a candidate is a function template, candidate
2274  //   function template specializations are generated using template argument
2275  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2276  //   candidate functions in the usual way.113) A given name can refer to one
2277  //   or more function templates and also to a set of overloaded non-template
2278  //   functions. In such a case, the candidate functions generated from each
2279  //   function template are combined with the set of non-template candidate
2280  //   functions.
2281  TemplateDeductionInfo Info(Context);
2282  FunctionDecl *Specialization = 0;
2283  if (TemplateDeductionResult Result
2284        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2285                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2286                                  Args, NumArgs, Specialization, Info)) {
2287    // FIXME: Record what happened with template argument deduction, so
2288    // that we can give the user a beautiful diagnostic.
2289    (void)Result;
2290    return;
2291  }
2292
2293  // Add the function template specialization produced by template argument
2294  // deduction as a candidate.
2295  assert(Specialization && "Missing function template specialization?");
2296  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2297                       SuppressUserConversions, ForceRValue);
2298}
2299
2300/// AddConversionCandidate - Add a C++ conversion function as a
2301/// candidate in the candidate set (C++ [over.match.conv],
2302/// C++ [over.match.copy]). From is the expression we're converting from,
2303/// and ToType is the type that we're eventually trying to convert to
2304/// (which may or may not be the same type as the type that the
2305/// conversion function produces).
2306void
2307Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2308                             Expr *From, QualType ToType,
2309                             OverloadCandidateSet& CandidateSet) {
2310  // Add this candidate
2311  CandidateSet.push_back(OverloadCandidate());
2312  OverloadCandidate& Candidate = CandidateSet.back();
2313  Candidate.Function = Conversion;
2314  Candidate.IsSurrogate = false;
2315  Candidate.IgnoreObjectArgument = false;
2316  Candidate.FinalConversion.setAsIdentityConversion();
2317  Candidate.FinalConversion.FromTypePtr
2318    = Conversion->getConversionType().getAsOpaquePtr();
2319  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2320
2321  // Determine the implicit conversion sequence for the implicit
2322  // object parameter.
2323  Candidate.Viable = true;
2324  Candidate.Conversions.resize(1);
2325  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2326
2327  if (Candidate.Conversions[0].ConversionKind
2328      == ImplicitConversionSequence::BadConversion) {
2329    Candidate.Viable = false;
2330    return;
2331  }
2332
2333  // To determine what the conversion from the result of calling the
2334  // conversion function to the type we're eventually trying to
2335  // convert to (ToType), we need to synthesize a call to the
2336  // conversion function and attempt copy initialization from it. This
2337  // makes sure that we get the right semantics with respect to
2338  // lvalues/rvalues and the type. Fortunately, we can allocate this
2339  // call on the stack and we don't need its arguments to be
2340  // well-formed.
2341  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2342                            SourceLocation());
2343  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2344                                &ConversionRef, false);
2345
2346  // Note that it is safe to allocate CallExpr on the stack here because
2347  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2348  // allocator).
2349  CallExpr Call(Context, &ConversionFn, 0, 0,
2350                Conversion->getConversionType().getNonReferenceType(),
2351                SourceLocation());
2352  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2353  switch (ICS.ConversionKind) {
2354  case ImplicitConversionSequence::StandardConversion:
2355    Candidate.FinalConversion = ICS.Standard;
2356    break;
2357
2358  case ImplicitConversionSequence::BadConversion:
2359    Candidate.Viable = false;
2360    break;
2361
2362  default:
2363    assert(false &&
2364           "Can only end up with a standard conversion sequence or failure");
2365  }
2366}
2367
2368/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2369/// converts the given @c Object to a function pointer via the
2370/// conversion function @c Conversion, and then attempts to call it
2371/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2372/// the type of function that we'll eventually be calling.
2373void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2374                                 const FunctionProtoType *Proto,
2375                                 Expr *Object, Expr **Args, unsigned NumArgs,
2376                                 OverloadCandidateSet& CandidateSet) {
2377  CandidateSet.push_back(OverloadCandidate());
2378  OverloadCandidate& Candidate = CandidateSet.back();
2379  Candidate.Function = 0;
2380  Candidate.Surrogate = Conversion;
2381  Candidate.Viable = true;
2382  Candidate.IsSurrogate = true;
2383  Candidate.IgnoreObjectArgument = false;
2384  Candidate.Conversions.resize(NumArgs + 1);
2385
2386  // Determine the implicit conversion sequence for the implicit
2387  // object parameter.
2388  ImplicitConversionSequence ObjectInit
2389    = TryObjectArgumentInitialization(Object, Conversion);
2390  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2391    Candidate.Viable = false;
2392    return;
2393  }
2394
2395  // The first conversion is actually a user-defined conversion whose
2396  // first conversion is ObjectInit's standard conversion (which is
2397  // effectively a reference binding). Record it as such.
2398  Candidate.Conversions[0].ConversionKind
2399    = ImplicitConversionSequence::UserDefinedConversion;
2400  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2401  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2402  Candidate.Conversions[0].UserDefined.After
2403    = Candidate.Conversions[0].UserDefined.Before;
2404  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2405
2406  // Find the
2407  unsigned NumArgsInProto = Proto->getNumArgs();
2408
2409  // (C++ 13.3.2p2): A candidate function having fewer than m
2410  // parameters is viable only if it has an ellipsis in its parameter
2411  // list (8.3.5).
2412  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2413    Candidate.Viable = false;
2414    return;
2415  }
2416
2417  // Function types don't have any default arguments, so just check if
2418  // we have enough arguments.
2419  if (NumArgs < NumArgsInProto) {
2420    // Not enough arguments.
2421    Candidate.Viable = false;
2422    return;
2423  }
2424
2425  // Determine the implicit conversion sequences for each of the
2426  // arguments.
2427  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2428    if (ArgIdx < NumArgsInProto) {
2429      // (C++ 13.3.2p3): for F to be a viable function, there shall
2430      // exist for each argument an implicit conversion sequence
2431      // (13.3.3.1) that converts that argument to the corresponding
2432      // parameter of F.
2433      QualType ParamType = Proto->getArgType(ArgIdx);
2434      Candidate.Conversions[ArgIdx + 1]
2435        = TryCopyInitialization(Args[ArgIdx], ParamType,
2436                                /*SuppressUserConversions=*/false);
2437      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2438            == ImplicitConversionSequence::BadConversion) {
2439        Candidate.Viable = false;
2440        break;
2441      }
2442    } else {
2443      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2444      // argument for which there is no corresponding parameter is
2445      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2446      Candidate.Conversions[ArgIdx + 1].ConversionKind
2447        = ImplicitConversionSequence::EllipsisConversion;
2448    }
2449  }
2450}
2451
2452// FIXME: This will eventually be removed, once we've migrated all of the
2453// operator overloading logic over to the scheme used by binary operators, which
2454// works for template instantiation.
2455void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2456                                 SourceLocation OpLoc,
2457                                 Expr **Args, unsigned NumArgs,
2458                                 OverloadCandidateSet& CandidateSet,
2459                                 SourceRange OpRange) {
2460
2461  FunctionSet Functions;
2462
2463  QualType T1 = Args[0]->getType();
2464  QualType T2;
2465  if (NumArgs > 1)
2466    T2 = Args[1]->getType();
2467
2468  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2469  if (S)
2470    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2471  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2472  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2473  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2474  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2475}
2476
2477/// \brief Add overload candidates for overloaded operators that are
2478/// member functions.
2479///
2480/// Add the overloaded operator candidates that are member functions
2481/// for the operator Op that was used in an operator expression such
2482/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2483/// CandidateSet will store the added overload candidates. (C++
2484/// [over.match.oper]).
2485void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2486                                       SourceLocation OpLoc,
2487                                       Expr **Args, unsigned NumArgs,
2488                                       OverloadCandidateSet& CandidateSet,
2489                                       SourceRange OpRange) {
2490  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2491
2492  // C++ [over.match.oper]p3:
2493  //   For a unary operator @ with an operand of a type whose
2494  //   cv-unqualified version is T1, and for a binary operator @ with
2495  //   a left operand of a type whose cv-unqualified version is T1 and
2496  //   a right operand of a type whose cv-unqualified version is T2,
2497  //   three sets of candidate functions, designated member
2498  //   candidates, non-member candidates and built-in candidates, are
2499  //   constructed as follows:
2500  QualType T1 = Args[0]->getType();
2501  QualType T2;
2502  if (NumArgs > 1)
2503    T2 = Args[1]->getType();
2504
2505  //     -- If T1 is a class type, the set of member candidates is the
2506  //        result of the qualified lookup of T1::operator@
2507  //        (13.3.1.1.1); otherwise, the set of member candidates is
2508  //        empty.
2509  // FIXME: Lookup in base classes, too!
2510  if (const RecordType *T1Rec = T1->getAsRecordType()) {
2511    DeclContext::lookup_const_iterator Oper, OperEnd;
2512    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
2513         Oper != OperEnd; ++Oper)
2514      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2515                         Args+1, NumArgs - 1, CandidateSet,
2516                         /*SuppressUserConversions=*/false);
2517  }
2518}
2519
2520/// AddBuiltinCandidate - Add a candidate for a built-in
2521/// operator. ResultTy and ParamTys are the result and parameter types
2522/// of the built-in candidate, respectively. Args and NumArgs are the
2523/// arguments being passed to the candidate. IsAssignmentOperator
2524/// should be true when this built-in candidate is an assignment
2525/// operator. NumContextualBoolArguments is the number of arguments
2526/// (at the beginning of the argument list) that will be contextually
2527/// converted to bool.
2528void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2529                               Expr **Args, unsigned NumArgs,
2530                               OverloadCandidateSet& CandidateSet,
2531                               bool IsAssignmentOperator,
2532                               unsigned NumContextualBoolArguments) {
2533  // Add this candidate
2534  CandidateSet.push_back(OverloadCandidate());
2535  OverloadCandidate& Candidate = CandidateSet.back();
2536  Candidate.Function = 0;
2537  Candidate.IsSurrogate = false;
2538  Candidate.IgnoreObjectArgument = false;
2539  Candidate.BuiltinTypes.ResultTy = ResultTy;
2540  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2541    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2542
2543  // Determine the implicit conversion sequences for each of the
2544  // arguments.
2545  Candidate.Viable = true;
2546  Candidate.Conversions.resize(NumArgs);
2547  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2548    // C++ [over.match.oper]p4:
2549    //   For the built-in assignment operators, conversions of the
2550    //   left operand are restricted as follows:
2551    //     -- no temporaries are introduced to hold the left operand, and
2552    //     -- no user-defined conversions are applied to the left
2553    //        operand to achieve a type match with the left-most
2554    //        parameter of a built-in candidate.
2555    //
2556    // We block these conversions by turning off user-defined
2557    // conversions, since that is the only way that initialization of
2558    // a reference to a non-class type can occur from something that
2559    // is not of the same type.
2560    if (ArgIdx < NumContextualBoolArguments) {
2561      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2562             "Contextual conversion to bool requires bool type");
2563      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2564    } else {
2565      Candidate.Conversions[ArgIdx]
2566        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2567                                ArgIdx == 0 && IsAssignmentOperator);
2568    }
2569    if (Candidate.Conversions[ArgIdx].ConversionKind
2570        == ImplicitConversionSequence::BadConversion) {
2571      Candidate.Viable = false;
2572      break;
2573    }
2574  }
2575}
2576
2577/// BuiltinCandidateTypeSet - A set of types that will be used for the
2578/// candidate operator functions for built-in operators (C++
2579/// [over.built]). The types are separated into pointer types and
2580/// enumeration types.
2581class BuiltinCandidateTypeSet  {
2582  /// TypeSet - A set of types.
2583  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2584
2585  /// PointerTypes - The set of pointer types that will be used in the
2586  /// built-in candidates.
2587  TypeSet PointerTypes;
2588
2589  /// MemberPointerTypes - The set of member pointer types that will be
2590  /// used in the built-in candidates.
2591  TypeSet MemberPointerTypes;
2592
2593  /// EnumerationTypes - The set of enumeration types that will be
2594  /// used in the built-in candidates.
2595  TypeSet EnumerationTypes;
2596
2597  /// Context - The AST context in which we will build the type sets.
2598  ASTContext &Context;
2599
2600  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2601  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2602
2603public:
2604  /// iterator - Iterates through the types that are part of the set.
2605  typedef TypeSet::iterator iterator;
2606
2607  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2608
2609  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2610                             bool AllowExplicitConversions);
2611
2612  /// pointer_begin - First pointer type found;
2613  iterator pointer_begin() { return PointerTypes.begin(); }
2614
2615  /// pointer_end - Past the last pointer type found;
2616  iterator pointer_end() { return PointerTypes.end(); }
2617
2618  /// member_pointer_begin - First member pointer type found;
2619  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2620
2621  /// member_pointer_end - Past the last member pointer type found;
2622  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2623
2624  /// enumeration_begin - First enumeration type found;
2625  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2626
2627  /// enumeration_end - Past the last enumeration type found;
2628  iterator enumeration_end() { return EnumerationTypes.end(); }
2629};
2630
2631/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2632/// the set of pointer types along with any more-qualified variants of
2633/// that type. For example, if @p Ty is "int const *", this routine
2634/// will add "int const *", "int const volatile *", "int const
2635/// restrict *", and "int const volatile restrict *" to the set of
2636/// pointer types. Returns true if the add of @p Ty itself succeeded,
2637/// false otherwise.
2638bool
2639BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2640  // Insert this type.
2641  if (!PointerTypes.insert(Ty))
2642    return false;
2643
2644  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2645    QualType PointeeTy = PointerTy->getPointeeType();
2646    // FIXME: Optimize this so that we don't keep trying to add the same types.
2647
2648    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2649    // pointer conversions that don't cast away constness?
2650    if (!PointeeTy.isConstQualified())
2651      AddPointerWithMoreQualifiedTypeVariants
2652        (Context.getPointerType(PointeeTy.withConst()));
2653    if (!PointeeTy.isVolatileQualified())
2654      AddPointerWithMoreQualifiedTypeVariants
2655        (Context.getPointerType(PointeeTy.withVolatile()));
2656    if (!PointeeTy.isRestrictQualified())
2657      AddPointerWithMoreQualifiedTypeVariants
2658        (Context.getPointerType(PointeeTy.withRestrict()));
2659  }
2660
2661  return true;
2662}
2663
2664/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2665/// to the set of pointer types along with any more-qualified variants of
2666/// that type. For example, if @p Ty is "int const *", this routine
2667/// will add "int const *", "int const volatile *", "int const
2668/// restrict *", and "int const volatile restrict *" to the set of
2669/// pointer types. Returns true if the add of @p Ty itself succeeded,
2670/// false otherwise.
2671bool
2672BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2673    QualType Ty) {
2674  // Insert this type.
2675  if (!MemberPointerTypes.insert(Ty))
2676    return false;
2677
2678  if (const MemberPointerType *PointerTy = Ty->getAsMemberPointerType()) {
2679    QualType PointeeTy = PointerTy->getPointeeType();
2680    const Type *ClassTy = PointerTy->getClass();
2681    // FIXME: Optimize this so that we don't keep trying to add the same types.
2682
2683    if (!PointeeTy.isConstQualified())
2684      AddMemberPointerWithMoreQualifiedTypeVariants
2685        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2686    if (!PointeeTy.isVolatileQualified())
2687      AddMemberPointerWithMoreQualifiedTypeVariants
2688        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2689    if (!PointeeTy.isRestrictQualified())
2690      AddMemberPointerWithMoreQualifiedTypeVariants
2691        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2692  }
2693
2694  return true;
2695}
2696
2697/// AddTypesConvertedFrom - Add each of the types to which the type @p
2698/// Ty can be implicit converted to the given set of @p Types. We're
2699/// primarily interested in pointer types and enumeration types. We also
2700/// take member pointer types, for the conditional operator.
2701/// AllowUserConversions is true if we should look at the conversion
2702/// functions of a class type, and AllowExplicitConversions if we
2703/// should also include the explicit conversion functions of a class
2704/// type.
2705void
2706BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2707                                               bool AllowUserConversions,
2708                                               bool AllowExplicitConversions) {
2709  // Only deal with canonical types.
2710  Ty = Context.getCanonicalType(Ty);
2711
2712  // Look through reference types; they aren't part of the type of an
2713  // expression for the purposes of conversions.
2714  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2715    Ty = RefTy->getPointeeType();
2716
2717  // We don't care about qualifiers on the type.
2718  Ty = Ty.getUnqualifiedType();
2719
2720  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2721    QualType PointeeTy = PointerTy->getPointeeType();
2722
2723    // Insert our type, and its more-qualified variants, into the set
2724    // of types.
2725    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2726      return;
2727
2728    // Add 'cv void*' to our set of types.
2729    if (!Ty->isVoidType()) {
2730      QualType QualVoid
2731        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2732      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2733    }
2734
2735    // If this is a pointer to a class type, add pointers to its bases
2736    // (with the same level of cv-qualification as the original
2737    // derived class, of course).
2738    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2739      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2740      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2741           Base != ClassDecl->bases_end(); ++Base) {
2742        QualType BaseTy = Context.getCanonicalType(Base->getType());
2743        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2744
2745        // Add the pointer type, recursively, so that we get all of
2746        // the indirect base classes, too.
2747        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2748      }
2749    }
2750  } else if (Ty->isMemberPointerType()) {
2751    // Member pointers are far easier, since the pointee can't be converted.
2752    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2753      return;
2754  } else if (Ty->isEnumeralType()) {
2755    EnumerationTypes.insert(Ty);
2756  } else if (AllowUserConversions) {
2757    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2758      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2759      // FIXME: Visit conversion functions in the base classes, too.
2760      OverloadedFunctionDecl *Conversions
2761        = ClassDecl->getConversionFunctions();
2762      for (OverloadedFunctionDecl::function_iterator Func
2763             = Conversions->function_begin();
2764           Func != Conversions->function_end(); ++Func) {
2765        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2766        if (AllowExplicitConversions || !Conv->isExplicit())
2767          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2768      }
2769    }
2770  }
2771}
2772
2773/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2774/// operator overloads to the candidate set (C++ [over.built]), based
2775/// on the operator @p Op and the arguments given. For example, if the
2776/// operator is a binary '+', this routine might add "int
2777/// operator+(int, int)" to cover integer addition.
2778void
2779Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2780                                   Expr **Args, unsigned NumArgs,
2781                                   OverloadCandidateSet& CandidateSet) {
2782  // The set of "promoted arithmetic types", which are the arithmetic
2783  // types are that preserved by promotion (C++ [over.built]p2). Note
2784  // that the first few of these types are the promoted integral
2785  // types; these types need to be first.
2786  // FIXME: What about complex?
2787  const unsigned FirstIntegralType = 0;
2788  const unsigned LastIntegralType = 13;
2789  const unsigned FirstPromotedIntegralType = 7,
2790                 LastPromotedIntegralType = 13;
2791  const unsigned FirstPromotedArithmeticType = 7,
2792                 LastPromotedArithmeticType = 16;
2793  const unsigned NumArithmeticTypes = 16;
2794  QualType ArithmeticTypes[NumArithmeticTypes] = {
2795    Context.BoolTy, Context.CharTy, Context.WCharTy,
2796    Context.SignedCharTy, Context.ShortTy,
2797    Context.UnsignedCharTy, Context.UnsignedShortTy,
2798    Context.IntTy, Context.LongTy, Context.LongLongTy,
2799    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2800    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2801  };
2802
2803  // Find all of the types that the arguments can convert to, but only
2804  // if the operator we're looking at has built-in operator candidates
2805  // that make use of these types.
2806  BuiltinCandidateTypeSet CandidateTypes(Context);
2807  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2808      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2809      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2810      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2811      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2812      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2813    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2814      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2815                                           true,
2816                                           (Op == OO_Exclaim ||
2817                                            Op == OO_AmpAmp ||
2818                                            Op == OO_PipePipe));
2819  }
2820
2821  bool isComparison = false;
2822  switch (Op) {
2823  case OO_None:
2824  case NUM_OVERLOADED_OPERATORS:
2825    assert(false && "Expected an overloaded operator");
2826    break;
2827
2828  case OO_Star: // '*' is either unary or binary
2829    if (NumArgs == 1)
2830      goto UnaryStar;
2831    else
2832      goto BinaryStar;
2833    break;
2834
2835  case OO_Plus: // '+' is either unary or binary
2836    if (NumArgs == 1)
2837      goto UnaryPlus;
2838    else
2839      goto BinaryPlus;
2840    break;
2841
2842  case OO_Minus: // '-' is either unary or binary
2843    if (NumArgs == 1)
2844      goto UnaryMinus;
2845    else
2846      goto BinaryMinus;
2847    break;
2848
2849  case OO_Amp: // '&' is either unary or binary
2850    if (NumArgs == 1)
2851      goto UnaryAmp;
2852    else
2853      goto BinaryAmp;
2854
2855  case OO_PlusPlus:
2856  case OO_MinusMinus:
2857    // C++ [over.built]p3:
2858    //
2859    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2860    //   is either volatile or empty, there exist candidate operator
2861    //   functions of the form
2862    //
2863    //       VQ T&      operator++(VQ T&);
2864    //       T          operator++(VQ T&, int);
2865    //
2866    // C++ [over.built]p4:
2867    //
2868    //   For every pair (T, VQ), where T is an arithmetic type other
2869    //   than bool, and VQ is either volatile or empty, there exist
2870    //   candidate operator functions of the form
2871    //
2872    //       VQ T&      operator--(VQ T&);
2873    //       T          operator--(VQ T&, int);
2874    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2875         Arith < NumArithmeticTypes; ++Arith) {
2876      QualType ArithTy = ArithmeticTypes[Arith];
2877      QualType ParamTypes[2]
2878        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
2879
2880      // Non-volatile version.
2881      if (NumArgs == 1)
2882        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2883      else
2884        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2885
2886      // Volatile version
2887      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
2888      if (NumArgs == 1)
2889        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2890      else
2891        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2892    }
2893
2894    // C++ [over.built]p5:
2895    //
2896    //   For every pair (T, VQ), where T is a cv-qualified or
2897    //   cv-unqualified object type, and VQ is either volatile or
2898    //   empty, there exist candidate operator functions of the form
2899    //
2900    //       T*VQ&      operator++(T*VQ&);
2901    //       T*VQ&      operator--(T*VQ&);
2902    //       T*         operator++(T*VQ&, int);
2903    //       T*         operator--(T*VQ&, int);
2904    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2905         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2906      // Skip pointer types that aren't pointers to object types.
2907      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
2908        continue;
2909
2910      QualType ParamTypes[2] = {
2911        Context.getLValueReferenceType(*Ptr), Context.IntTy
2912      };
2913
2914      // Without volatile
2915      if (NumArgs == 1)
2916        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2917      else
2918        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2919
2920      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2921        // With volatile
2922        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
2923        if (NumArgs == 1)
2924          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2925        else
2926          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2927      }
2928    }
2929    break;
2930
2931  UnaryStar:
2932    // C++ [over.built]p6:
2933    //   For every cv-qualified or cv-unqualified object type T, there
2934    //   exist candidate operator functions of the form
2935    //
2936    //       T&         operator*(T*);
2937    //
2938    // C++ [over.built]p7:
2939    //   For every function type T, there exist candidate operator
2940    //   functions of the form
2941    //       T&         operator*(T*);
2942    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2943         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2944      QualType ParamTy = *Ptr;
2945      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2946      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
2947                          &ParamTy, Args, 1, CandidateSet);
2948    }
2949    break;
2950
2951  UnaryPlus:
2952    // C++ [over.built]p8:
2953    //   For every type T, there exist candidate operator functions of
2954    //   the form
2955    //
2956    //       T*         operator+(T*);
2957    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2958         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2959      QualType ParamTy = *Ptr;
2960      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2961    }
2962
2963    // Fall through
2964
2965  UnaryMinus:
2966    // C++ [over.built]p9:
2967    //  For every promoted arithmetic type T, there exist candidate
2968    //  operator functions of the form
2969    //
2970    //       T         operator+(T);
2971    //       T         operator-(T);
2972    for (unsigned Arith = FirstPromotedArithmeticType;
2973         Arith < LastPromotedArithmeticType; ++Arith) {
2974      QualType ArithTy = ArithmeticTypes[Arith];
2975      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2976    }
2977    break;
2978
2979  case OO_Tilde:
2980    // C++ [over.built]p10:
2981    //   For every promoted integral type T, there exist candidate
2982    //   operator functions of the form
2983    //
2984    //        T         operator~(T);
2985    for (unsigned Int = FirstPromotedIntegralType;
2986         Int < LastPromotedIntegralType; ++Int) {
2987      QualType IntTy = ArithmeticTypes[Int];
2988      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2989    }
2990    break;
2991
2992  case OO_New:
2993  case OO_Delete:
2994  case OO_Array_New:
2995  case OO_Array_Delete:
2996  case OO_Call:
2997    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2998    break;
2999
3000  case OO_Comma:
3001  UnaryAmp:
3002  case OO_Arrow:
3003    // C++ [over.match.oper]p3:
3004    //   -- For the operator ',', the unary operator '&', or the
3005    //      operator '->', the built-in candidates set is empty.
3006    break;
3007
3008  case OO_Less:
3009  case OO_Greater:
3010  case OO_LessEqual:
3011  case OO_GreaterEqual:
3012  case OO_EqualEqual:
3013  case OO_ExclaimEqual:
3014    // C++ [over.built]p15:
3015    //
3016    //   For every pointer or enumeration type T, there exist
3017    //   candidate operator functions of the form
3018    //
3019    //        bool       operator<(T, T);
3020    //        bool       operator>(T, T);
3021    //        bool       operator<=(T, T);
3022    //        bool       operator>=(T, T);
3023    //        bool       operator==(T, T);
3024    //        bool       operator!=(T, T);
3025    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3026         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3027      QualType ParamTypes[2] = { *Ptr, *Ptr };
3028      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3029    }
3030    for (BuiltinCandidateTypeSet::iterator Enum
3031           = CandidateTypes.enumeration_begin();
3032         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3033      QualType ParamTypes[2] = { *Enum, *Enum };
3034      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3035    }
3036
3037    // Fall through.
3038    isComparison = true;
3039
3040  BinaryPlus:
3041  BinaryMinus:
3042    if (!isComparison) {
3043      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3044
3045      // C++ [over.built]p13:
3046      //
3047      //   For every cv-qualified or cv-unqualified object type T
3048      //   there exist candidate operator functions of the form
3049      //
3050      //      T*         operator+(T*, ptrdiff_t);
3051      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3052      //      T*         operator-(T*, ptrdiff_t);
3053      //      T*         operator+(ptrdiff_t, T*);
3054      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3055      //
3056      // C++ [over.built]p14:
3057      //
3058      //   For every T, where T is a pointer to object type, there
3059      //   exist candidate operator functions of the form
3060      //
3061      //      ptrdiff_t  operator-(T, T);
3062      for (BuiltinCandidateTypeSet::iterator Ptr
3063             = CandidateTypes.pointer_begin();
3064           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3065        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3066
3067        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3068        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3069
3070        if (Op == OO_Plus) {
3071          // T* operator+(ptrdiff_t, T*);
3072          ParamTypes[0] = ParamTypes[1];
3073          ParamTypes[1] = *Ptr;
3074          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3075        } else {
3076          // ptrdiff_t operator-(T, T);
3077          ParamTypes[1] = *Ptr;
3078          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3079                              Args, 2, CandidateSet);
3080        }
3081      }
3082    }
3083    // Fall through
3084
3085  case OO_Slash:
3086  BinaryStar:
3087  Conditional:
3088    // C++ [over.built]p12:
3089    //
3090    //   For every pair of promoted arithmetic types L and R, there
3091    //   exist candidate operator functions of the form
3092    //
3093    //        LR         operator*(L, R);
3094    //        LR         operator/(L, R);
3095    //        LR         operator+(L, R);
3096    //        LR         operator-(L, R);
3097    //        bool       operator<(L, R);
3098    //        bool       operator>(L, R);
3099    //        bool       operator<=(L, R);
3100    //        bool       operator>=(L, R);
3101    //        bool       operator==(L, R);
3102    //        bool       operator!=(L, R);
3103    //
3104    //   where LR is the result of the usual arithmetic conversions
3105    //   between types L and R.
3106    //
3107    // C++ [over.built]p24:
3108    //
3109    //   For every pair of promoted arithmetic types L and R, there exist
3110    //   candidate operator functions of the form
3111    //
3112    //        LR       operator?(bool, L, R);
3113    //
3114    //   where LR is the result of the usual arithmetic conversions
3115    //   between types L and R.
3116    // Our candidates ignore the first parameter.
3117    for (unsigned Left = FirstPromotedArithmeticType;
3118         Left < LastPromotedArithmeticType; ++Left) {
3119      for (unsigned Right = FirstPromotedArithmeticType;
3120           Right < LastPromotedArithmeticType; ++Right) {
3121        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3122        QualType Result
3123          = isComparison? Context.BoolTy
3124                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3125        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3126      }
3127    }
3128    break;
3129
3130  case OO_Percent:
3131  BinaryAmp:
3132  case OO_Caret:
3133  case OO_Pipe:
3134  case OO_LessLess:
3135  case OO_GreaterGreater:
3136    // C++ [over.built]p17:
3137    //
3138    //   For every pair of promoted integral types L and R, there
3139    //   exist candidate operator functions of the form
3140    //
3141    //      LR         operator%(L, R);
3142    //      LR         operator&(L, R);
3143    //      LR         operator^(L, R);
3144    //      LR         operator|(L, R);
3145    //      L          operator<<(L, R);
3146    //      L          operator>>(L, R);
3147    //
3148    //   where LR is the result of the usual arithmetic conversions
3149    //   between types L and R.
3150    for (unsigned Left = FirstPromotedIntegralType;
3151         Left < LastPromotedIntegralType; ++Left) {
3152      for (unsigned Right = FirstPromotedIntegralType;
3153           Right < LastPromotedIntegralType; ++Right) {
3154        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3155        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3156            ? LandR[0]
3157            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3158        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3159      }
3160    }
3161    break;
3162
3163  case OO_Equal:
3164    // C++ [over.built]p20:
3165    //
3166    //   For every pair (T, VQ), where T is an enumeration or
3167    //   (FIXME:) pointer to member type and VQ is either volatile or
3168    //   empty, there exist candidate operator functions of the form
3169    //
3170    //        VQ T&      operator=(VQ T&, T);
3171    for (BuiltinCandidateTypeSet::iterator Enum
3172           = CandidateTypes.enumeration_begin();
3173         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3174      QualType ParamTypes[2];
3175
3176      // T& operator=(T&, T)
3177      ParamTypes[0] = Context.getLValueReferenceType(*Enum);
3178      ParamTypes[1] = *Enum;
3179      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3180                          /*IsAssignmentOperator=*/false);
3181
3182      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3183        // volatile T& operator=(volatile T&, T)
3184        ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
3185        ParamTypes[1] = *Enum;
3186        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3187                            /*IsAssignmentOperator=*/false);
3188      }
3189    }
3190    // Fall through.
3191
3192  case OO_PlusEqual:
3193  case OO_MinusEqual:
3194    // C++ [over.built]p19:
3195    //
3196    //   For every pair (T, VQ), where T is any type and VQ is either
3197    //   volatile or empty, there exist candidate operator functions
3198    //   of the form
3199    //
3200    //        T*VQ&      operator=(T*VQ&, T*);
3201    //
3202    // C++ [over.built]p21:
3203    //
3204    //   For every pair (T, VQ), where T is a cv-qualified or
3205    //   cv-unqualified object type and VQ is either volatile or
3206    //   empty, there exist candidate operator functions of the form
3207    //
3208    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3209    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3210    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3211         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3212      QualType ParamTypes[2];
3213      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3214
3215      // non-volatile version
3216      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3217      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3218                          /*IsAssigmentOperator=*/Op == OO_Equal);
3219
3220      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3221        // volatile version
3222        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3223        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3224                            /*IsAssigmentOperator=*/Op == OO_Equal);
3225      }
3226    }
3227    // Fall through.
3228
3229  case OO_StarEqual:
3230  case OO_SlashEqual:
3231    // C++ [over.built]p18:
3232    //
3233    //   For every triple (L, VQ, R), where L is an arithmetic type,
3234    //   VQ is either volatile or empty, and R is a promoted
3235    //   arithmetic type, there exist candidate operator functions of
3236    //   the form
3237    //
3238    //        VQ L&      operator=(VQ L&, R);
3239    //        VQ L&      operator*=(VQ L&, R);
3240    //        VQ L&      operator/=(VQ L&, R);
3241    //        VQ L&      operator+=(VQ L&, R);
3242    //        VQ L&      operator-=(VQ L&, R);
3243    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3244      for (unsigned Right = FirstPromotedArithmeticType;
3245           Right < LastPromotedArithmeticType; ++Right) {
3246        QualType ParamTypes[2];
3247        ParamTypes[1] = ArithmeticTypes[Right];
3248
3249        // Add this built-in operator as a candidate (VQ is empty).
3250        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3251        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3252                            /*IsAssigmentOperator=*/Op == OO_Equal);
3253
3254        // Add this built-in operator as a candidate (VQ is 'volatile').
3255        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3256        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3257        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3258                            /*IsAssigmentOperator=*/Op == OO_Equal);
3259      }
3260    }
3261    break;
3262
3263  case OO_PercentEqual:
3264  case OO_LessLessEqual:
3265  case OO_GreaterGreaterEqual:
3266  case OO_AmpEqual:
3267  case OO_CaretEqual:
3268  case OO_PipeEqual:
3269    // C++ [over.built]p22:
3270    //
3271    //   For every triple (L, VQ, R), where L is an integral type, VQ
3272    //   is either volatile or empty, and R is a promoted integral
3273    //   type, there exist candidate operator functions of the form
3274    //
3275    //        VQ L&       operator%=(VQ L&, R);
3276    //        VQ L&       operator<<=(VQ L&, R);
3277    //        VQ L&       operator>>=(VQ L&, R);
3278    //        VQ L&       operator&=(VQ L&, R);
3279    //        VQ L&       operator^=(VQ L&, R);
3280    //        VQ L&       operator|=(VQ L&, R);
3281    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3282      for (unsigned Right = FirstPromotedIntegralType;
3283           Right < LastPromotedIntegralType; ++Right) {
3284        QualType ParamTypes[2];
3285        ParamTypes[1] = ArithmeticTypes[Right];
3286
3287        // Add this built-in operator as a candidate (VQ is empty).
3288        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3289        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3290
3291        // Add this built-in operator as a candidate (VQ is 'volatile').
3292        ParamTypes[0] = ArithmeticTypes[Left];
3293        ParamTypes[0].addVolatile();
3294        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3295        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3296      }
3297    }
3298    break;
3299
3300  case OO_Exclaim: {
3301    // C++ [over.operator]p23:
3302    //
3303    //   There also exist candidate operator functions of the form
3304    //
3305    //        bool        operator!(bool);
3306    //        bool        operator&&(bool, bool);     [BELOW]
3307    //        bool        operator||(bool, bool);     [BELOW]
3308    QualType ParamTy = Context.BoolTy;
3309    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3310                        /*IsAssignmentOperator=*/false,
3311                        /*NumContextualBoolArguments=*/1);
3312    break;
3313  }
3314
3315  case OO_AmpAmp:
3316  case OO_PipePipe: {
3317    // C++ [over.operator]p23:
3318    //
3319    //   There also exist candidate operator functions of the form
3320    //
3321    //        bool        operator!(bool);            [ABOVE]
3322    //        bool        operator&&(bool, bool);
3323    //        bool        operator||(bool, bool);
3324    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3325    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3326                        /*IsAssignmentOperator=*/false,
3327                        /*NumContextualBoolArguments=*/2);
3328    break;
3329  }
3330
3331  case OO_Subscript:
3332    // C++ [over.built]p13:
3333    //
3334    //   For every cv-qualified or cv-unqualified object type T there
3335    //   exist candidate operator functions of the form
3336    //
3337    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3338    //        T&         operator[](T*, ptrdiff_t);
3339    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3340    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3341    //        T&         operator[](ptrdiff_t, T*);
3342    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3343         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3344      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3345      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3346      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3347
3348      // T& operator[](T*, ptrdiff_t)
3349      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3350
3351      // T& operator[](ptrdiff_t, T*);
3352      ParamTypes[0] = ParamTypes[1];
3353      ParamTypes[1] = *Ptr;
3354      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3355    }
3356    break;
3357
3358  case OO_ArrowStar:
3359    // FIXME: No support for pointer-to-members yet.
3360    break;
3361
3362  case OO_Conditional:
3363    // Note that we don't consider the first argument, since it has been
3364    // contextually converted to bool long ago. The candidates below are
3365    // therefore added as binary.
3366    //
3367    // C++ [over.built]p24:
3368    //   For every type T, where T is a pointer or pointer-to-member type,
3369    //   there exist candidate operator functions of the form
3370    //
3371    //        T        operator?(bool, T, T);
3372    //
3373    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3374         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3375      QualType ParamTypes[2] = { *Ptr, *Ptr };
3376      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3377    }
3378    for (BuiltinCandidateTypeSet::iterator Ptr =
3379           CandidateTypes.member_pointer_begin(),
3380         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3381      QualType ParamTypes[2] = { *Ptr, *Ptr };
3382      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3383    }
3384    goto Conditional;
3385  }
3386}
3387
3388/// \brief Add function candidates found via argument-dependent lookup
3389/// to the set of overloading candidates.
3390///
3391/// This routine performs argument-dependent name lookup based on the
3392/// given function name (which may also be an operator name) and adds
3393/// all of the overload candidates found by ADL to the overload
3394/// candidate set (C++ [basic.lookup.argdep]).
3395void
3396Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3397                                           Expr **Args, unsigned NumArgs,
3398                                           OverloadCandidateSet& CandidateSet) {
3399  FunctionSet Functions;
3400
3401  // Record all of the function candidates that we've already
3402  // added to the overload set, so that we don't add those same
3403  // candidates a second time.
3404  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3405                                   CandEnd = CandidateSet.end();
3406       Cand != CandEnd; ++Cand)
3407    if (Cand->Function) {
3408      Functions.insert(Cand->Function);
3409      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3410        Functions.insert(FunTmpl);
3411    }
3412
3413  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3414
3415  // Erase all of the candidates we already knew about.
3416  // FIXME: This is suboptimal. Is there a better way?
3417  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3418                                   CandEnd = CandidateSet.end();
3419       Cand != CandEnd; ++Cand)
3420    if (Cand->Function) {
3421      Functions.erase(Cand->Function);
3422      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3423        Functions.erase(FunTmpl);
3424    }
3425
3426  // For each of the ADL candidates we found, add it to the overload
3427  // set.
3428  for (FunctionSet::iterator Func = Functions.begin(),
3429                          FuncEnd = Functions.end();
3430       Func != FuncEnd; ++Func) {
3431    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3432      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3433    else
3434      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3435                                   /*FIXME: explicit args */false, 0, 0,
3436                                   Args, NumArgs, CandidateSet);
3437  }
3438}
3439
3440/// isBetterOverloadCandidate - Determines whether the first overload
3441/// candidate is a better candidate than the second (C++ 13.3.3p1).
3442bool
3443Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3444                                const OverloadCandidate& Cand2)
3445{
3446  // Define viable functions to be better candidates than non-viable
3447  // functions.
3448  if (!Cand2.Viable)
3449    return Cand1.Viable;
3450  else if (!Cand1.Viable)
3451    return false;
3452
3453  // C++ [over.match.best]p1:
3454  //
3455  //   -- if F is a static member function, ICS1(F) is defined such
3456  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3457  //      any function G, and, symmetrically, ICS1(G) is neither
3458  //      better nor worse than ICS1(F).
3459  unsigned StartArg = 0;
3460  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3461    StartArg = 1;
3462
3463  // C++ [over.match.best]p1:
3464  //   A viable function F1 is defined to be a better function than another
3465  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3466  //   conversion sequence than ICSi(F2), and then...
3467  unsigned NumArgs = Cand1.Conversions.size();
3468  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3469  bool HasBetterConversion = false;
3470  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3471    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3472                                               Cand2.Conversions[ArgIdx])) {
3473    case ImplicitConversionSequence::Better:
3474      // Cand1 has a better conversion sequence.
3475      HasBetterConversion = true;
3476      break;
3477
3478    case ImplicitConversionSequence::Worse:
3479      // Cand1 can't be better than Cand2.
3480      return false;
3481
3482    case ImplicitConversionSequence::Indistinguishable:
3483      // Do nothing.
3484      break;
3485    }
3486  }
3487
3488  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3489  //       ICSj(F2), or, if not that,
3490  if (HasBetterConversion)
3491    return true;
3492
3493  //     - F1 is a non-template function and F2 is a function template
3494  //       specialization, or, if not that,
3495  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3496      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3497    return true;
3498
3499  //   -- F1 and F2 are function template specializations, and the function
3500  //      template for F1 is more specialized than the template for F2
3501  //      according to the partial ordering rules described in 14.5.5.2, or,
3502  //      if not that,
3503
3504  // FIXME: Implement partial ordering of function templates.
3505
3506  //   -- the context is an initialization by user-defined conversion
3507  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3508  //      from the return type of F1 to the destination type (i.e.,
3509  //      the type of the entity being initialized) is a better
3510  //      conversion sequence than the standard conversion sequence
3511  //      from the return type of F2 to the destination type.
3512  if (Cand1.Function && Cand2.Function &&
3513      isa<CXXConversionDecl>(Cand1.Function) &&
3514      isa<CXXConversionDecl>(Cand2.Function)) {
3515    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3516                                               Cand2.FinalConversion)) {
3517    case ImplicitConversionSequence::Better:
3518      // Cand1 has a better conversion sequence.
3519      return true;
3520
3521    case ImplicitConversionSequence::Worse:
3522      // Cand1 can't be better than Cand2.
3523      return false;
3524
3525    case ImplicitConversionSequence::Indistinguishable:
3526      // Do nothing
3527      break;
3528    }
3529  }
3530
3531  return false;
3532}
3533
3534/// \brief Computes the best viable function (C++ 13.3.3)
3535/// within an overload candidate set.
3536///
3537/// \param CandidateSet the set of candidate functions.
3538///
3539/// \param Loc the location of the function name (or operator symbol) for
3540/// which overload resolution occurs.
3541///
3542/// \param Best f overload resolution was successful or found a deleted
3543/// function, Best points to the candidate function found.
3544///
3545/// \returns The result of overload resolution.
3546Sema::OverloadingResult
3547Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3548                         SourceLocation Loc,
3549                         OverloadCandidateSet::iterator& Best)
3550{
3551  // Find the best viable function.
3552  Best = CandidateSet.end();
3553  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3554       Cand != CandidateSet.end(); ++Cand) {
3555    if (Cand->Viable) {
3556      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3557        Best = Cand;
3558    }
3559  }
3560
3561  // If we didn't find any viable functions, abort.
3562  if (Best == CandidateSet.end())
3563    return OR_No_Viable_Function;
3564
3565  // Make sure that this function is better than every other viable
3566  // function. If not, we have an ambiguity.
3567  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3568       Cand != CandidateSet.end(); ++Cand) {
3569    if (Cand->Viable &&
3570        Cand != Best &&
3571        !isBetterOverloadCandidate(*Best, *Cand)) {
3572      Best = CandidateSet.end();
3573      return OR_Ambiguous;
3574    }
3575  }
3576
3577  // Best is the best viable function.
3578  if (Best->Function &&
3579      (Best->Function->isDeleted() ||
3580       Best->Function->getAttr<UnavailableAttr>()))
3581    return OR_Deleted;
3582
3583  // C++ [basic.def.odr]p2:
3584  //   An overloaded function is used if it is selected by overload resolution
3585  //   when referred to from a potentially-evaluated expression. [Note: this
3586  //   covers calls to named functions (5.2.2), operator overloading
3587  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3588  //   placement new (5.3.4), as well as non-default initialization (8.5).
3589  if (Best->Function)
3590    MarkDeclarationReferenced(Loc, Best->Function);
3591  return OR_Success;
3592}
3593
3594/// PrintOverloadCandidates - When overload resolution fails, prints
3595/// diagnostic messages containing the candidates in the candidate
3596/// set. If OnlyViable is true, only viable candidates will be printed.
3597void
3598Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3599                              bool OnlyViable)
3600{
3601  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3602                             LastCand = CandidateSet.end();
3603  for (; Cand != LastCand; ++Cand) {
3604    if (Cand->Viable || !OnlyViable) {
3605      if (Cand->Function) {
3606        if (Cand->Function->isDeleted() ||
3607            Cand->Function->getAttr<UnavailableAttr>()) {
3608          // Deleted or "unavailable" function.
3609          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3610            << Cand->Function->isDeleted();
3611        } else {
3612          // Normal function
3613          // FIXME: Give a better reason!
3614          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3615        }
3616      } else if (Cand->IsSurrogate) {
3617        // Desugar the type of the surrogate down to a function type,
3618        // retaining as many typedefs as possible while still showing
3619        // the function type (and, therefore, its parameter types).
3620        QualType FnType = Cand->Surrogate->getConversionType();
3621        bool isLValueReference = false;
3622        bool isRValueReference = false;
3623        bool isPointer = false;
3624        if (const LValueReferenceType *FnTypeRef =
3625              FnType->getAsLValueReferenceType()) {
3626          FnType = FnTypeRef->getPointeeType();
3627          isLValueReference = true;
3628        } else if (const RValueReferenceType *FnTypeRef =
3629                     FnType->getAsRValueReferenceType()) {
3630          FnType = FnTypeRef->getPointeeType();
3631          isRValueReference = true;
3632        }
3633        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3634          FnType = FnTypePtr->getPointeeType();
3635          isPointer = true;
3636        }
3637        // Desugar down to a function type.
3638        FnType = QualType(FnType->getAsFunctionType(), 0);
3639        // Reconstruct the pointer/reference as appropriate.
3640        if (isPointer) FnType = Context.getPointerType(FnType);
3641        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3642        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3643
3644        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3645          << FnType;
3646      } else {
3647        // FIXME: We need to get the identifier in here
3648        // FIXME: Do we want the error message to point at the operator?
3649        // (built-ins won't have a location)
3650        QualType FnType
3651          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3652                                    Cand->BuiltinTypes.ParamTypes,
3653                                    Cand->Conversions.size(),
3654                                    false, 0);
3655
3656        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3657      }
3658    }
3659  }
3660}
3661
3662/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3663/// an overloaded function (C++ [over.over]), where @p From is an
3664/// expression with overloaded function type and @p ToType is the type
3665/// we're trying to resolve to. For example:
3666///
3667/// @code
3668/// int f(double);
3669/// int f(int);
3670///
3671/// int (*pfd)(double) = f; // selects f(double)
3672/// @endcode
3673///
3674/// This routine returns the resulting FunctionDecl if it could be
3675/// resolved, and NULL otherwise. When @p Complain is true, this
3676/// routine will emit diagnostics if there is an error.
3677FunctionDecl *
3678Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3679                                         bool Complain) {
3680  QualType FunctionType = ToType;
3681  bool IsMember = false;
3682  if (const PointerType *ToTypePtr = ToType->getAsPointerType())
3683    FunctionType = ToTypePtr->getPointeeType();
3684  else if (const ReferenceType *ToTypeRef = ToType->getAsReferenceType())
3685    FunctionType = ToTypeRef->getPointeeType();
3686  else if (const MemberPointerType *MemTypePtr =
3687                    ToType->getAsMemberPointerType()) {
3688    FunctionType = MemTypePtr->getPointeeType();
3689    IsMember = true;
3690  }
3691
3692  // We only look at pointers or references to functions.
3693  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3694  if (!FunctionType->isFunctionType())
3695    return 0;
3696
3697  // Find the actual overloaded function declaration.
3698  OverloadedFunctionDecl *Ovl = 0;
3699
3700  // C++ [over.over]p1:
3701  //   [...] [Note: any redundant set of parentheses surrounding the
3702  //   overloaded function name is ignored (5.1). ]
3703  Expr *OvlExpr = From->IgnoreParens();
3704
3705  // C++ [over.over]p1:
3706  //   [...] The overloaded function name can be preceded by the &
3707  //   operator.
3708  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3709    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3710      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3711  }
3712
3713  // Try to dig out the overloaded function.
3714  FunctionTemplateDecl *FunctionTemplate = 0;
3715  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3716    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3717    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3718  }
3719
3720  // If there's no overloaded function declaration or function template,
3721  // we're done.
3722  if (!Ovl && !FunctionTemplate)
3723    return 0;
3724
3725  OverloadIterator Fun;
3726  if (Ovl)
3727    Fun = Ovl;
3728  else
3729    Fun = FunctionTemplate;
3730
3731  // Look through all of the overloaded functions, searching for one
3732  // whose type matches exactly.
3733  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3734
3735  bool FoundNonTemplateFunction = false;
3736  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3737    // C++ [over.over]p3:
3738    //   Non-member functions and static member functions match
3739    //   targets of type "pointer-to-function" or "reference-to-function."
3740    //   Nonstatic member functions match targets of
3741    //   type "pointer-to-member-function."
3742    // Note that according to DR 247, the containing class does not matter.
3743
3744    if (FunctionTemplateDecl *FunctionTemplate
3745          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3746      if (CXXMethodDecl *Method
3747            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3748        // Skip non-static function templates when converting to pointer, and
3749        // static when converting to member pointer.
3750        if (Method->isStatic() == IsMember)
3751          continue;
3752      } else if (IsMember)
3753        continue;
3754
3755      // C++ [over.over]p2:
3756      //   If the name is a function template, template argument deduction is
3757      //   done (14.8.2.2), and if the argument deduction succeeds, the
3758      //   resulting template argument list is used to generate a single
3759      //   function template specialization, which is added to the set of
3760      //   overloaded functions considered.
3761      FunctionDecl *Specialization = 0;
3762      TemplateDeductionInfo Info(Context);
3763      if (TemplateDeductionResult Result
3764            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3765                                      /*FIXME:*/0, /*FIXME:*/0,
3766                                      FunctionType, Specialization, Info)) {
3767        // FIXME: make a note of the failed deduction for diagnostics.
3768        (void)Result;
3769      } else {
3770        assert(FunctionType
3771                 == Context.getCanonicalType(Specialization->getType()));
3772        Matches.insert(
3773                cast<FunctionDecl>(Context.getCanonicalDecl(Specialization)));
3774      }
3775    }
3776
3777    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3778      // Skip non-static functions when converting to pointer, and static
3779      // when converting to member pointer.
3780      if (Method->isStatic() == IsMember)
3781        continue;
3782    } else if (IsMember)
3783      continue;
3784
3785    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3786      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
3787        Matches.insert(cast<FunctionDecl>(Context.getCanonicalDecl(*Fun)));
3788        FoundNonTemplateFunction = true;
3789      }
3790    }
3791  }
3792
3793  // If there were 0 or 1 matches, we're done.
3794  if (Matches.empty())
3795    return 0;
3796  else if (Matches.size() == 1)
3797    return *Matches.begin();
3798
3799  // C++ [over.over]p4:
3800  //   If more than one function is selected, [...]
3801  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
3802  if (FoundNonTemplateFunction) {
3803    // [...] any function template specializations in the set are eliminated
3804    // if the set also contains a non-template function, [...]
3805    for (llvm::SmallPtrSet<FunctionDecl *, 4>::iterator M = Matches.begin(),
3806                                                     MEnd = Matches.end();
3807         M != MEnd; ++M)
3808      if ((*M)->getPrimaryTemplate() == 0)
3809        RemainingMatches.push_back(*M);
3810  } else {
3811    // [...] and any given function template specialization F1 is eliminated
3812    // if the set contains a second function template specialization whose
3813    // function template is more specialized than the function template of F1
3814    // according to the partial ordering rules of 14.5.5.2.
3815    // FIXME: Implement this!
3816    RemainingMatches.append(Matches.begin(), Matches.end());
3817  }
3818
3819  // [...] After such eliminations, if any, there shall remain exactly one
3820  // selected function.
3821  if (RemainingMatches.size() == 1)
3822    return RemainingMatches.front();
3823
3824  // FIXME: We should probably return the same thing that BestViableFunction
3825  // returns (even if we issue the diagnostics here).
3826  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
3827    << RemainingMatches[0]->getDeclName();
3828  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
3829    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
3830  return 0;
3831}
3832
3833/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3834/// (which eventually refers to the declaration Func) and the call
3835/// arguments Args/NumArgs, attempt to resolve the function call down
3836/// to a specific function. If overload resolution succeeds, returns
3837/// the function declaration produced by overload
3838/// resolution. Otherwise, emits diagnostics, deletes all of the
3839/// arguments and Fn, and returns NULL.
3840FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3841                                            DeclarationName UnqualifiedName,
3842                                            bool HasExplicitTemplateArgs,
3843                                 const TemplateArgument *ExplicitTemplateArgs,
3844                                            unsigned NumExplicitTemplateArgs,
3845                                            SourceLocation LParenLoc,
3846                                            Expr **Args, unsigned NumArgs,
3847                                            SourceLocation *CommaLocs,
3848                                            SourceLocation RParenLoc,
3849                                            bool &ArgumentDependentLookup) {
3850  OverloadCandidateSet CandidateSet;
3851
3852  // Add the functions denoted by Callee to the set of candidate
3853  // functions. While we're doing so, track whether argument-dependent
3854  // lookup still applies, per:
3855  //
3856  // C++0x [basic.lookup.argdep]p3:
3857  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3858  //   and let Y be the lookup set produced by argument dependent
3859  //   lookup (defined as follows). If X contains
3860  //
3861  //     -- a declaration of a class member, or
3862  //
3863  //     -- a block-scope function declaration that is not a
3864  //        using-declaration, or
3865  //
3866  //     -- a declaration that is neither a function or a function
3867  //        template
3868  //
3869  //   then Y is empty.
3870  if (OverloadedFunctionDecl *Ovl
3871        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3872    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3873                                                FuncEnd = Ovl->function_end();
3874         Func != FuncEnd; ++Func) {
3875      DeclContext *Ctx = 0;
3876      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
3877        if (HasExplicitTemplateArgs)
3878          continue;
3879
3880        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3881        Ctx = FunDecl->getDeclContext();
3882      } else {
3883        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
3884        AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
3885                                     ExplicitTemplateArgs,
3886                                     NumExplicitTemplateArgs,
3887                                     Args, NumArgs, CandidateSet);
3888        Ctx = FunTmpl->getDeclContext();
3889      }
3890
3891
3892      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
3893        ArgumentDependentLookup = false;
3894    }
3895  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3896    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
3897    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3898
3899    if (Func->getDeclContext()->isRecord() ||
3900        Func->getDeclContext()->isFunctionOrMethod())
3901      ArgumentDependentLookup = false;
3902  } else if (FunctionTemplateDecl *FuncTemplate
3903               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
3904    AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
3905                                 ExplicitTemplateArgs,
3906                                 NumExplicitTemplateArgs,
3907                                 Args, NumArgs, CandidateSet);
3908
3909    if (FuncTemplate->getDeclContext()->isRecord())
3910      ArgumentDependentLookup = false;
3911  }
3912
3913  if (Callee)
3914    UnqualifiedName = Callee->getDeclName();
3915
3916  // FIXME: Pass explicit template arguments through for ADL
3917  if (ArgumentDependentLookup)
3918    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3919                                         CandidateSet);
3920
3921  OverloadCandidateSet::iterator Best;
3922  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
3923  case OR_Success:
3924    return Best->Function;
3925
3926  case OR_No_Viable_Function:
3927    Diag(Fn->getSourceRange().getBegin(),
3928         diag::err_ovl_no_viable_function_in_call)
3929      << UnqualifiedName << Fn->getSourceRange();
3930    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3931    break;
3932
3933  case OR_Ambiguous:
3934    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3935      << UnqualifiedName << Fn->getSourceRange();
3936    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3937    break;
3938
3939  case OR_Deleted:
3940    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3941      << Best->Function->isDeleted()
3942      << UnqualifiedName
3943      << Fn->getSourceRange();
3944    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3945    break;
3946  }
3947
3948  // Overload resolution failed. Destroy all of the subexpressions and
3949  // return NULL.
3950  Fn->Destroy(Context);
3951  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3952    Args[Arg]->Destroy(Context);
3953  return 0;
3954}
3955
3956/// \brief Create a unary operation that may resolve to an overloaded
3957/// operator.
3958///
3959/// \param OpLoc The location of the operator itself (e.g., '*').
3960///
3961/// \param OpcIn The UnaryOperator::Opcode that describes this
3962/// operator.
3963///
3964/// \param Functions The set of non-member functions that will be
3965/// considered by overload resolution. The caller needs to build this
3966/// set based on the context using, e.g.,
3967/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3968/// set should not contain any member functions; those will be added
3969/// by CreateOverloadedUnaryOp().
3970///
3971/// \param input The input argument.
3972Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3973                                                     unsigned OpcIn,
3974                                                     FunctionSet &Functions,
3975                                                     ExprArg input) {
3976  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3977  Expr *Input = (Expr *)input.get();
3978
3979  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3980  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3981  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3982
3983  Expr *Args[2] = { Input, 0 };
3984  unsigned NumArgs = 1;
3985
3986  // For post-increment and post-decrement, add the implicit '0' as
3987  // the second argument, so that we know this is a post-increment or
3988  // post-decrement.
3989  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3990    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3991    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3992                                           SourceLocation());
3993    NumArgs = 2;
3994  }
3995
3996  if (Input->isTypeDependent()) {
3997    OverloadedFunctionDecl *Overloads
3998      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3999    for (FunctionSet::iterator Func = Functions.begin(),
4000                            FuncEnd = Functions.end();
4001         Func != FuncEnd; ++Func)
4002      Overloads->addOverload(*Func);
4003
4004    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4005                                                OpLoc, false, false);
4006
4007    input.release();
4008    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4009                                                   &Args[0], NumArgs,
4010                                                   Context.DependentTy,
4011                                                   OpLoc));
4012  }
4013
4014  // Build an empty overload set.
4015  OverloadCandidateSet CandidateSet;
4016
4017  // Add the candidates from the given function set.
4018  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4019
4020  // Add operator candidates that are member functions.
4021  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4022
4023  // Add builtin operator candidates.
4024  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4025
4026  // Perform overload resolution.
4027  OverloadCandidateSet::iterator Best;
4028  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4029  case OR_Success: {
4030    // We found a built-in operator or an overloaded operator.
4031    FunctionDecl *FnDecl = Best->Function;
4032
4033    if (FnDecl) {
4034      // We matched an overloaded operator. Build a call to that
4035      // operator.
4036
4037      // Convert the arguments.
4038      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4039        if (PerformObjectArgumentInitialization(Input, Method))
4040          return ExprError();
4041      } else {
4042        // Convert the arguments.
4043        if (PerformCopyInitialization(Input,
4044                                      FnDecl->getParamDecl(0)->getType(),
4045                                      "passing"))
4046          return ExprError();
4047      }
4048
4049      // Determine the result type
4050      QualType ResultTy
4051        = FnDecl->getType()->getAsFunctionType()->getResultType();
4052      ResultTy = ResultTy.getNonReferenceType();
4053
4054      // Build the actual expression node.
4055      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4056                                               SourceLocation());
4057      UsualUnaryConversions(FnExpr);
4058
4059      input.release();
4060      return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4061                                                     &Input, 1, ResultTy,
4062                                                     OpLoc));
4063    } else {
4064      // We matched a built-in operator. Convert the arguments, then
4065      // break out so that we will build the appropriate built-in
4066      // operator node.
4067        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4068                                      Best->Conversions[0], "passing"))
4069          return ExprError();
4070
4071        break;
4072      }
4073    }
4074
4075    case OR_No_Viable_Function:
4076      // No viable function; fall through to handling this as a
4077      // built-in operator, which will produce an error message for us.
4078      break;
4079
4080    case OR_Ambiguous:
4081      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4082          << UnaryOperator::getOpcodeStr(Opc)
4083          << Input->getSourceRange();
4084      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4085      return ExprError();
4086
4087    case OR_Deleted:
4088      Diag(OpLoc, diag::err_ovl_deleted_oper)
4089        << Best->Function->isDeleted()
4090        << UnaryOperator::getOpcodeStr(Opc)
4091        << Input->getSourceRange();
4092      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4093      return ExprError();
4094    }
4095
4096  // Either we found no viable overloaded operator or we matched a
4097  // built-in operator. In either case, fall through to trying to
4098  // build a built-in operation.
4099  input.release();
4100  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4101}
4102
4103/// \brief Create a binary operation that may resolve to an overloaded
4104/// operator.
4105///
4106/// \param OpLoc The location of the operator itself (e.g., '+').
4107///
4108/// \param OpcIn The BinaryOperator::Opcode that describes this
4109/// operator.
4110///
4111/// \param Functions The set of non-member functions that will be
4112/// considered by overload resolution. The caller needs to build this
4113/// set based on the context using, e.g.,
4114/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4115/// set should not contain any member functions; those will be added
4116/// by CreateOverloadedBinOp().
4117///
4118/// \param LHS Left-hand argument.
4119/// \param RHS Right-hand argument.
4120Sema::OwningExprResult
4121Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4122                            unsigned OpcIn,
4123                            FunctionSet &Functions,
4124                            Expr *LHS, Expr *RHS) {
4125  Expr *Args[2] = { LHS, RHS };
4126
4127  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4128  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4129  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4130
4131  // If either side is type-dependent, create an appropriate dependent
4132  // expression.
4133  if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4134    // .* cannot be overloaded.
4135    if (Opc == BinaryOperator::PtrMemD)
4136      return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4137                                                Context.DependentTy, OpLoc));
4138
4139    OverloadedFunctionDecl *Overloads
4140      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4141    for (FunctionSet::iterator Func = Functions.begin(),
4142                            FuncEnd = Functions.end();
4143         Func != FuncEnd; ++Func)
4144      Overloads->addOverload(*Func);
4145
4146    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4147                                                OpLoc, false, false);
4148
4149    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4150                                                   Args, 2,
4151                                                   Context.DependentTy,
4152                                                   OpLoc));
4153  }
4154
4155  // If this is the .* operator, which is not overloadable, just
4156  // create a built-in binary operator.
4157  if (Opc == BinaryOperator::PtrMemD)
4158    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4159
4160  // If this is one of the assignment operators, we only perform
4161  // overload resolution if the left-hand side is a class or
4162  // enumeration type (C++ [expr.ass]p3).
4163  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4164      !LHS->getType()->isOverloadableType())
4165    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4166
4167  // Build an empty overload set.
4168  OverloadCandidateSet CandidateSet;
4169
4170  // Add the candidates from the given function set.
4171  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4172
4173  // Add operator candidates that are member functions.
4174  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4175
4176  // Add builtin operator candidates.
4177  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4178
4179  // Perform overload resolution.
4180  OverloadCandidateSet::iterator Best;
4181  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4182    case OR_Success: {
4183      // We found a built-in operator or an overloaded operator.
4184      FunctionDecl *FnDecl = Best->Function;
4185
4186      if (FnDecl) {
4187        // We matched an overloaded operator. Build a call to that
4188        // operator.
4189
4190        // Convert the arguments.
4191        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4192          if (PerformObjectArgumentInitialization(LHS, Method) ||
4193              PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4194                                        "passing"))
4195            return ExprError();
4196        } else {
4197          // Convert the arguments.
4198          if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4199                                        "passing") ||
4200              PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4201                                        "passing"))
4202            return ExprError();
4203        }
4204
4205        // Determine the result type
4206        QualType ResultTy
4207          = FnDecl->getType()->getAsFunctionType()->getResultType();
4208        ResultTy = ResultTy.getNonReferenceType();
4209
4210        // Build the actual expression node.
4211        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4212                                                 OpLoc);
4213        UsualUnaryConversions(FnExpr);
4214
4215        return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4216                                                       Args, 2, ResultTy,
4217                                                       OpLoc));
4218      } else {
4219        // We matched a built-in operator. Convert the arguments, then
4220        // break out so that we will build the appropriate built-in
4221        // operator node.
4222        if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4223                                      Best->Conversions[0], "passing") ||
4224            PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4225                                      Best->Conversions[1], "passing"))
4226          return ExprError();
4227
4228        break;
4229      }
4230    }
4231
4232    case OR_No_Viable_Function:
4233      // For class as left operand for assignment or compound assigment operator
4234      // do not fall through to handling in built-in, but report that no overloaded
4235      // assignment operator found
4236      if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4237        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4238             << BinaryOperator::getOpcodeStr(Opc)
4239             << LHS->getSourceRange() << RHS->getSourceRange();
4240        return ExprError();
4241      }
4242      // No viable function; fall through to handling this as a
4243      // built-in operator, which will produce an error message for us.
4244      break;
4245
4246    case OR_Ambiguous:
4247      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4248          << BinaryOperator::getOpcodeStr(Opc)
4249          << LHS->getSourceRange() << RHS->getSourceRange();
4250      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4251      return ExprError();
4252
4253    case OR_Deleted:
4254      Diag(OpLoc, diag::err_ovl_deleted_oper)
4255        << Best->Function->isDeleted()
4256        << BinaryOperator::getOpcodeStr(Opc)
4257        << LHS->getSourceRange() << RHS->getSourceRange();
4258      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4259      return ExprError();
4260    }
4261
4262  // Either we found no viable overloaded operator or we matched a
4263  // built-in operator. In either case, try to build a built-in
4264  // operation.
4265  return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4266}
4267
4268/// BuildCallToMemberFunction - Build a call to a member
4269/// function. MemExpr is the expression that refers to the member
4270/// function (and includes the object parameter), Args/NumArgs are the
4271/// arguments to the function call (not including the object
4272/// parameter). The caller needs to validate that the member
4273/// expression refers to a member function or an overloaded member
4274/// function.
4275Sema::ExprResult
4276Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4277                                SourceLocation LParenLoc, Expr **Args,
4278                                unsigned NumArgs, SourceLocation *CommaLocs,
4279                                SourceLocation RParenLoc) {
4280  // Dig out the member expression. This holds both the object
4281  // argument and the member function we're referring to.
4282  MemberExpr *MemExpr = 0;
4283  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4284    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4285  else
4286    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4287  assert(MemExpr && "Building member call without member expression");
4288
4289  // Extract the object argument.
4290  Expr *ObjectArg = MemExpr->getBase();
4291
4292  CXXMethodDecl *Method = 0;
4293  if (OverloadedFunctionDecl *Ovl
4294        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4295    // Add overload candidates
4296    OverloadCandidateSet CandidateSet;
4297    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4298                                                FuncEnd = Ovl->function_end();
4299         Func != FuncEnd; ++Func) {
4300      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4301      Method = cast<CXXMethodDecl>(*Func);
4302      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4303                         /*SuppressUserConversions=*/false);
4304    }
4305
4306    OverloadCandidateSet::iterator Best;
4307    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4308    case OR_Success:
4309      Method = cast<CXXMethodDecl>(Best->Function);
4310      break;
4311
4312    case OR_No_Viable_Function:
4313      Diag(MemExpr->getSourceRange().getBegin(),
4314           diag::err_ovl_no_viable_member_function_in_call)
4315        << Ovl->getDeclName() << MemExprE->getSourceRange();
4316      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4317      // FIXME: Leaking incoming expressions!
4318      return true;
4319
4320    case OR_Ambiguous:
4321      Diag(MemExpr->getSourceRange().getBegin(),
4322           diag::err_ovl_ambiguous_member_call)
4323        << Ovl->getDeclName() << MemExprE->getSourceRange();
4324      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4325      // FIXME: Leaking incoming expressions!
4326      return true;
4327
4328    case OR_Deleted:
4329      Diag(MemExpr->getSourceRange().getBegin(),
4330           diag::err_ovl_deleted_member_call)
4331        << Best->Function->isDeleted()
4332        << Ovl->getDeclName() << MemExprE->getSourceRange();
4333      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4334      // FIXME: Leaking incoming expressions!
4335      return true;
4336    }
4337
4338    FixOverloadedFunctionReference(MemExpr, Method);
4339  } else {
4340    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4341  }
4342
4343  assert(Method && "Member call to something that isn't a method?");
4344  ExprOwningPtr<CXXMemberCallExpr>
4345    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4346                                                  NumArgs,
4347                                  Method->getResultType().getNonReferenceType(),
4348                                  RParenLoc));
4349
4350  // Convert the object argument (for a non-static member function call).
4351  if (!Method->isStatic() &&
4352      PerformObjectArgumentInitialization(ObjectArg, Method))
4353    return true;
4354  MemExpr->setBase(ObjectArg);
4355
4356  // Convert the rest of the arguments
4357  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4358  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4359                              RParenLoc))
4360    return true;
4361
4362  return CheckFunctionCall(Method, TheCall.take()).release();
4363}
4364
4365/// BuildCallToObjectOfClassType - Build a call to an object of class
4366/// type (C++ [over.call.object]), which can end up invoking an
4367/// overloaded function call operator (@c operator()) or performing a
4368/// user-defined conversion on the object argument.
4369Sema::ExprResult
4370Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4371                                   SourceLocation LParenLoc,
4372                                   Expr **Args, unsigned NumArgs,
4373                                   SourceLocation *CommaLocs,
4374                                   SourceLocation RParenLoc) {
4375  assert(Object->getType()->isRecordType() && "Requires object type argument");
4376  const RecordType *Record = Object->getType()->getAsRecordType();
4377
4378  // C++ [over.call.object]p1:
4379  //  If the primary-expression E in the function call syntax
4380  //  evaluates to a class object of type “cv T”, then the set of
4381  //  candidate functions includes at least the function call
4382  //  operators of T. The function call operators of T are obtained by
4383  //  ordinary lookup of the name operator() in the context of
4384  //  (E).operator().
4385  OverloadCandidateSet CandidateSet;
4386  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4387  DeclContext::lookup_const_iterator Oper, OperEnd;
4388  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4389       Oper != OperEnd; ++Oper)
4390    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4391                       CandidateSet, /*SuppressUserConversions=*/false);
4392
4393  // C++ [over.call.object]p2:
4394  //   In addition, for each conversion function declared in T of the
4395  //   form
4396  //
4397  //        operator conversion-type-id () cv-qualifier;
4398  //
4399  //   where cv-qualifier is the same cv-qualification as, or a
4400  //   greater cv-qualification than, cv, and where conversion-type-id
4401  //   denotes the type "pointer to function of (P1,...,Pn) returning
4402  //   R", or the type "reference to pointer to function of
4403  //   (P1,...,Pn) returning R", or the type "reference to function
4404  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4405  //   is also considered as a candidate function. Similarly,
4406  //   surrogate call functions are added to the set of candidate
4407  //   functions for each conversion function declared in an
4408  //   accessible base class provided the function is not hidden
4409  //   within T by another intervening declaration.
4410  //
4411  // FIXME: Look in base classes for more conversion operators!
4412  OverloadedFunctionDecl *Conversions
4413    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4414  for (OverloadedFunctionDecl::function_iterator
4415         Func = Conversions->function_begin(),
4416         FuncEnd = Conversions->function_end();
4417       Func != FuncEnd; ++Func) {
4418    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4419
4420    // Strip the reference type (if any) and then the pointer type (if
4421    // any) to get down to what might be a function type.
4422    QualType ConvType = Conv->getConversionType().getNonReferenceType();
4423    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
4424      ConvType = ConvPtrType->getPointeeType();
4425
4426    if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4427      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4428  }
4429
4430  // Perform overload resolution.
4431  OverloadCandidateSet::iterator Best;
4432  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4433  case OR_Success:
4434    // Overload resolution succeeded; we'll build the appropriate call
4435    // below.
4436    break;
4437
4438  case OR_No_Viable_Function:
4439    Diag(Object->getSourceRange().getBegin(),
4440         diag::err_ovl_no_viable_object_call)
4441      << Object->getType() << Object->getSourceRange();
4442    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4443    break;
4444
4445  case OR_Ambiguous:
4446    Diag(Object->getSourceRange().getBegin(),
4447         diag::err_ovl_ambiguous_object_call)
4448      << Object->getType() << Object->getSourceRange();
4449    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4450    break;
4451
4452  case OR_Deleted:
4453    Diag(Object->getSourceRange().getBegin(),
4454         diag::err_ovl_deleted_object_call)
4455      << Best->Function->isDeleted()
4456      << Object->getType() << Object->getSourceRange();
4457    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4458    break;
4459  }
4460
4461  if (Best == CandidateSet.end()) {
4462    // We had an error; delete all of the subexpressions and return
4463    // the error.
4464    Object->Destroy(Context);
4465    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4466      Args[ArgIdx]->Destroy(Context);
4467    return true;
4468  }
4469
4470  if (Best->Function == 0) {
4471    // Since there is no function declaration, this is one of the
4472    // surrogate candidates. Dig out the conversion function.
4473    CXXConversionDecl *Conv
4474      = cast<CXXConversionDecl>(
4475                         Best->Conversions[0].UserDefined.ConversionFunction);
4476
4477    // We selected one of the surrogate functions that converts the
4478    // object parameter to a function pointer. Perform the conversion
4479    // on the object argument, then let ActOnCallExpr finish the job.
4480    // FIXME: Represent the user-defined conversion in the AST!
4481    ImpCastExprToType(Object,
4482                      Conv->getConversionType().getNonReferenceType(),
4483                      Conv->getConversionType()->isLValueReferenceType());
4484    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4485                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4486                         CommaLocs, RParenLoc).release();
4487  }
4488
4489  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4490  // that calls this method, using Object for the implicit object
4491  // parameter and passing along the remaining arguments.
4492  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4493  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4494
4495  unsigned NumArgsInProto = Proto->getNumArgs();
4496  unsigned NumArgsToCheck = NumArgs;
4497
4498  // Build the full argument list for the method call (the
4499  // implicit object parameter is placed at the beginning of the
4500  // list).
4501  Expr **MethodArgs;
4502  if (NumArgs < NumArgsInProto) {
4503    NumArgsToCheck = NumArgsInProto;
4504    MethodArgs = new Expr*[NumArgsInProto + 1];
4505  } else {
4506    MethodArgs = new Expr*[NumArgs + 1];
4507  }
4508  MethodArgs[0] = Object;
4509  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4510    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4511
4512  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4513                                          SourceLocation());
4514  UsualUnaryConversions(NewFn);
4515
4516  // Once we've built TheCall, all of the expressions are properly
4517  // owned.
4518  QualType ResultTy = Method->getResultType().getNonReferenceType();
4519  ExprOwningPtr<CXXOperatorCallExpr>
4520    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4521                                                    MethodArgs, NumArgs + 1,
4522                                                    ResultTy, RParenLoc));
4523  delete [] MethodArgs;
4524
4525  // We may have default arguments. If so, we need to allocate more
4526  // slots in the call for them.
4527  if (NumArgs < NumArgsInProto)
4528    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4529  else if (NumArgs > NumArgsInProto)
4530    NumArgsToCheck = NumArgsInProto;
4531
4532  bool IsError = false;
4533
4534  // Initialize the implicit object parameter.
4535  IsError |= PerformObjectArgumentInitialization(Object, Method);
4536  TheCall->setArg(0, Object);
4537
4538
4539  // Check the argument types.
4540  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4541    Expr *Arg;
4542    if (i < NumArgs) {
4543      Arg = Args[i];
4544
4545      // Pass the argument.
4546      QualType ProtoArgType = Proto->getArgType(i);
4547      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4548    } else {
4549      Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
4550    }
4551
4552    TheCall->setArg(i + 1, Arg);
4553  }
4554
4555  // If this is a variadic call, handle args passed through "...".
4556  if (Proto->isVariadic()) {
4557    // Promote the arguments (C99 6.5.2.2p7).
4558    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4559      Expr *Arg = Args[i];
4560      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4561      TheCall->setArg(i + 1, Arg);
4562    }
4563  }
4564
4565  if (IsError) return true;
4566
4567  return CheckFunctionCall(Method, TheCall.take()).release();
4568}
4569
4570/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4571///  (if one exists), where @c Base is an expression of class type and
4572/// @c Member is the name of the member we're trying to find.
4573Action::ExprResult
4574Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
4575                               SourceLocation MemberLoc,
4576                               IdentifierInfo &Member) {
4577  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4578
4579  // C++ [over.ref]p1:
4580  //
4581  //   [...] An expression x->m is interpreted as (x.operator->())->m
4582  //   for a class object x of type T if T::operator->() exists and if
4583  //   the operator is selected as the best match function by the
4584  //   overload resolution mechanism (13.3).
4585  // FIXME: look in base classes.
4586  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4587  OverloadCandidateSet CandidateSet;
4588  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
4589
4590  DeclContext::lookup_const_iterator Oper, OperEnd;
4591  for (llvm::tie(Oper, OperEnd)
4592         = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
4593    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4594                       /*SuppressUserConversions=*/false);
4595
4596  ExprOwningPtr<Expr> BasePtr(this, Base);
4597
4598  // Perform overload resolution.
4599  OverloadCandidateSet::iterator Best;
4600  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4601  case OR_Success:
4602    // Overload resolution succeeded; we'll build the call below.
4603    break;
4604
4605  case OR_No_Viable_Function:
4606    if (CandidateSet.empty())
4607      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4608        << BasePtr->getType() << BasePtr->getSourceRange();
4609    else
4610      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4611        << "operator->" << BasePtr->getSourceRange();
4612    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4613    return true;
4614
4615  case OR_Ambiguous:
4616    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4617      << "operator->" << BasePtr->getSourceRange();
4618    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4619    return true;
4620
4621  case OR_Deleted:
4622    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4623      << Best->Function->isDeleted()
4624      << "operator->" << BasePtr->getSourceRange();
4625    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4626    return true;
4627  }
4628
4629  // Convert the object parameter.
4630  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4631  if (PerformObjectArgumentInitialization(Base, Method))
4632    return true;
4633
4634  // No concerns about early exits now.
4635  BasePtr.take();
4636
4637  // Build the operator call.
4638  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4639                                           SourceLocation());
4640  UsualUnaryConversions(FnExpr);
4641  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4642                                 Method->getResultType().getNonReferenceType(),
4643                                 OpLoc);
4644  return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
4645                                  MemberLoc, Member, DeclPtrTy()).release();
4646}
4647
4648/// FixOverloadedFunctionReference - E is an expression that refers to
4649/// a C++ overloaded function (possibly with some parentheses and
4650/// perhaps a '&' around it). We have resolved the overloaded function
4651/// to the function declaration Fn, so patch up the expression E to
4652/// refer (possibly indirectly) to Fn.
4653void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4654  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4655    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4656    E->setType(PE->getSubExpr()->getType());
4657  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4658    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4659           "Can only take the address of an overloaded function");
4660    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4661      if (Method->isStatic()) {
4662        // Do nothing: static member functions aren't any different
4663        // from non-member functions.
4664      }
4665      else if (QualifiedDeclRefExpr *DRE
4666                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4667        // We have taken the address of a pointer to member
4668        // function. Perform the computation here so that we get the
4669        // appropriate pointer to member type.
4670        DRE->setDecl(Fn);
4671        DRE->setType(Fn->getType());
4672        QualType ClassType
4673          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4674        E->setType(Context.getMemberPointerType(Fn->getType(),
4675                                                ClassType.getTypePtr()));
4676        return;
4677      }
4678    }
4679    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4680    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4681  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4682    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4683            isa<FunctionTemplateDecl>(DR->getDecl())) &&
4684           "Expected overloaded function or function template");
4685    DR->setDecl(Fn);
4686    E->setType(Fn->getType());
4687  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4688    MemExpr->setMemberDecl(Fn);
4689    E->setType(Fn->getType());
4690  } else {
4691    assert(false && "Invalid reference to overloaded function");
4692  }
4693}
4694
4695} // end namespace clang
4696