SemaOverload.cpp revision cd7e4450853285412c60d7e0556367b9a91b1db8
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/TypeOrdering.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/STLExtras.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  Deprecated = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
148  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
149
150  // Note that FromType has not necessarily been transformed by the
151  // array-to-pointer or function-to-pointer implicit conversions, so
152  // check for their presence as well as checking whether FromType is
153  // a pointer.
154  if (ToType->isBooleanType() &&
155      (FromType->isPointerType() || FromType->isBlockPointerType() ||
156       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
157    return true;
158
159  return false;
160}
161
162/// isPointerConversionToVoidPointer - Determines whether this
163/// conversion is a conversion of a pointer to a void pointer. This is
164/// used as part of the ranking of standard conversion sequences (C++
165/// 13.3.3.2p4).
166bool
167StandardConversionSequence::
168isPointerConversionToVoidPointer(ASTContext& Context) const {
169  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
170  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
171
172  // Note that FromType has not necessarily been transformed by the
173  // array-to-pointer implicit conversion, so check for its presence
174  // and redo the conversion to get a pointer.
175  if (First == ICK_Array_To_Pointer)
176    FromType = Context.getArrayDecayedType(FromType);
177
178  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
179    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
180      return ToPtrType->getPointeeType()->isVoidType();
181
182  return false;
183}
184
185/// DebugPrint - Print this standard conversion sequence to standard
186/// error. Useful for debugging overloading issues.
187void StandardConversionSequence::DebugPrint() const {
188  bool PrintedSomething = false;
189  if (First != ICK_Identity) {
190    fprintf(stderr, "%s", GetImplicitConversionName(First));
191    PrintedSomething = true;
192  }
193
194  if (Second != ICK_Identity) {
195    if (PrintedSomething) {
196      fprintf(stderr, " -> ");
197    }
198    fprintf(stderr, "%s", GetImplicitConversionName(Second));
199
200    if (CopyConstructor) {
201      fprintf(stderr, " (by copy constructor)");
202    } else if (DirectBinding) {
203      fprintf(stderr, " (direct reference binding)");
204    } else if (ReferenceBinding) {
205      fprintf(stderr, " (reference binding)");
206    }
207    PrintedSomething = true;
208  }
209
210  if (Third != ICK_Identity) {
211    if (PrintedSomething) {
212      fprintf(stderr, " -> ");
213    }
214    fprintf(stderr, "%s", GetImplicitConversionName(Third));
215    PrintedSomething = true;
216  }
217
218  if (!PrintedSomething) {
219    fprintf(stderr, "No conversions required");
220  }
221}
222
223/// DebugPrint - Print this user-defined conversion sequence to standard
224/// error. Useful for debugging overloading issues.
225void UserDefinedConversionSequence::DebugPrint() const {
226  if (Before.First || Before.Second || Before.Third) {
227    Before.DebugPrint();
228    fprintf(stderr, " -> ");
229  }
230  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
231  if (After.First || After.Second || After.Third) {
232    fprintf(stderr, " -> ");
233    After.DebugPrint();
234  }
235}
236
237/// DebugPrint - Print this implicit conversion sequence to standard
238/// error. Useful for debugging overloading issues.
239void ImplicitConversionSequence::DebugPrint() const {
240  switch (ConversionKind) {
241  case StandardConversion:
242    fprintf(stderr, "Standard conversion: ");
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    fprintf(stderr, "User-defined conversion: ");
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    fprintf(stderr, "Ellipsis conversion");
251    break;
252  case BadConversion:
253    fprintf(stderr, "Bad conversion");
254    break;
255  }
256
257  fprintf(stderr, "\n");
258}
259
260// IsOverload - Determine whether the given New declaration is an
261// overload of the declarations in Old. This routine returns false if
262// New and Old cannot be overloaded, e.g., if New has the same
263// signature as some function in Old (C++ 1.3.10) or if the Old
264// declarations aren't functions (or function templates) at all. When
265// it does return false, MatchedDecl will point to the decl that New
266// cannot be overloaded with.  This decl may be a UsingShadowDecl on
267// top of the underlying declaration.
268//
269// Example: Given the following input:
270//
271//   void f(int, float); // #1
272//   void f(int, int); // #2
273//   int f(int, int); // #3
274//
275// When we process #1, there is no previous declaration of "f",
276// so IsOverload will not be used.
277//
278// When we process #2, Old contains only the FunctionDecl for #1.  By
279// comparing the parameter types, we see that #1 and #2 are overloaded
280// (since they have different signatures), so this routine returns
281// false; MatchedDecl is unchanged.
282//
283// When we process #3, Old is an overload set containing #1 and #2. We
284// compare the signatures of #3 to #1 (they're overloaded, so we do
285// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
286// identical (return types of functions are not part of the
287// signature), IsOverload returns false and MatchedDecl will be set to
288// point to the FunctionDecl for #2.
289Sema::OverloadKind
290Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
291                    NamedDecl *&Match) {
292  for (LookupResult::iterator I = Old.begin(), E = Old.end();
293         I != E; ++I) {
294    NamedDecl *OldD = (*I)->getUnderlyingDecl();
295    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
296      if (!IsOverload(New, OldT->getTemplatedDecl())) {
297        Match = *I;
298        return Ovl_Match;
299      }
300    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
301      if (!IsOverload(New, OldF)) {
302        Match = *I;
303        return Ovl_Match;
304      }
305    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
306      // We can overload with these, which can show up when doing
307      // redeclaration checks for UsingDecls.
308      assert(Old.getLookupKind() == LookupUsingDeclName);
309    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
310      // Optimistically assume that an unresolved using decl will
311      // overload; if it doesn't, we'll have to diagnose during
312      // template instantiation.
313    } else {
314      // (C++ 13p1):
315      //   Only function declarations can be overloaded; object and type
316      //   declarations cannot be overloaded.
317      Match = *I;
318      return Ovl_NonFunction;
319    }
320  }
321
322  return Ovl_Overload;
323}
324
325bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
326  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
327  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
328
329  // C++ [temp.fct]p2:
330  //   A function template can be overloaded with other function templates
331  //   and with normal (non-template) functions.
332  if ((OldTemplate == 0) != (NewTemplate == 0))
333    return true;
334
335  // Is the function New an overload of the function Old?
336  QualType OldQType = Context.getCanonicalType(Old->getType());
337  QualType NewQType = Context.getCanonicalType(New->getType());
338
339  // Compare the signatures (C++ 1.3.10) of the two functions to
340  // determine whether they are overloads. If we find any mismatch
341  // in the signature, they are overloads.
342
343  // If either of these functions is a K&R-style function (no
344  // prototype), then we consider them to have matching signatures.
345  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
346      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
347    return false;
348
349  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
350  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
351
352  // The signature of a function includes the types of its
353  // parameters (C++ 1.3.10), which includes the presence or absence
354  // of the ellipsis; see C++ DR 357).
355  if (OldQType != NewQType &&
356      (OldType->getNumArgs() != NewType->getNumArgs() ||
357       OldType->isVariadic() != NewType->isVariadic() ||
358       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
359                   NewType->arg_type_begin())))
360    return true;
361
362  // C++ [temp.over.link]p4:
363  //   The signature of a function template consists of its function
364  //   signature, its return type and its template parameter list. The names
365  //   of the template parameters are significant only for establishing the
366  //   relationship between the template parameters and the rest of the
367  //   signature.
368  //
369  // We check the return type and template parameter lists for function
370  // templates first; the remaining checks follow.
371  if (NewTemplate &&
372      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
373                                       OldTemplate->getTemplateParameters(),
374                                       false, TPL_TemplateMatch) ||
375       OldType->getResultType() != NewType->getResultType()))
376    return true;
377
378  // If the function is a class member, its signature includes the
379  // cv-qualifiers (if any) on the function itself.
380  //
381  // As part of this, also check whether one of the member functions
382  // is static, in which case they are not overloads (C++
383  // 13.1p2). While not part of the definition of the signature,
384  // this check is important to determine whether these functions
385  // can be overloaded.
386  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
387  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
388  if (OldMethod && NewMethod &&
389      !OldMethod->isStatic() && !NewMethod->isStatic() &&
390      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
391    return true;
392
393  // The signatures match; this is not an overload.
394  return false;
395}
396
397/// TryImplicitConversion - Attempt to perform an implicit conversion
398/// from the given expression (Expr) to the given type (ToType). This
399/// function returns an implicit conversion sequence that can be used
400/// to perform the initialization. Given
401///
402///   void f(float f);
403///   void g(int i) { f(i); }
404///
405/// this routine would produce an implicit conversion sequence to
406/// describe the initialization of f from i, which will be a standard
407/// conversion sequence containing an lvalue-to-rvalue conversion (C++
408/// 4.1) followed by a floating-integral conversion (C++ 4.9).
409//
410/// Note that this routine only determines how the conversion can be
411/// performed; it does not actually perform the conversion. As such,
412/// it will not produce any diagnostics if no conversion is available,
413/// but will instead return an implicit conversion sequence of kind
414/// "BadConversion".
415///
416/// If @p SuppressUserConversions, then user-defined conversions are
417/// not permitted.
418/// If @p AllowExplicit, then explicit user-defined conversions are
419/// permitted.
420/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
421/// no matter its actual lvalueness.
422/// If @p UserCast, the implicit conversion is being done for a user-specified
423/// cast.
424ImplicitConversionSequence
425Sema::TryImplicitConversion(Expr* From, QualType ToType,
426                            bool SuppressUserConversions,
427                            bool AllowExplicit, bool ForceRValue,
428                            bool InOverloadResolution,
429                            bool UserCast) {
430  ImplicitConversionSequence ICS;
431  OverloadCandidateSet Conversions;
432  OverloadingResult UserDefResult = OR_Success;
433  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
434    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
435  else if (getLangOptions().CPlusPlus &&
436           (UserDefResult = IsUserDefinedConversion(From, ToType,
437                                   ICS.UserDefined,
438                                   Conversions,
439                                   !SuppressUserConversions, AllowExplicit,
440				   ForceRValue, UserCast)) == OR_Success) {
441    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
442    // C++ [over.ics.user]p4:
443    //   A conversion of an expression of class type to the same class
444    //   type is given Exact Match rank, and a conversion of an
445    //   expression of class type to a base class of that type is
446    //   given Conversion rank, in spite of the fact that a copy
447    //   constructor (i.e., a user-defined conversion function) is
448    //   called for those cases.
449    if (CXXConstructorDecl *Constructor
450          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
451      QualType FromCanon
452        = Context.getCanonicalType(From->getType().getUnqualifiedType());
453      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
454      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
455        // Turn this into a "standard" conversion sequence, so that it
456        // gets ranked with standard conversion sequences.
457        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
458        ICS.Standard.setAsIdentityConversion();
459        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
460        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
461        ICS.Standard.CopyConstructor = Constructor;
462        if (ToCanon != FromCanon)
463          ICS.Standard.Second = ICK_Derived_To_Base;
464      }
465    }
466
467    // C++ [over.best.ics]p4:
468    //   However, when considering the argument of a user-defined
469    //   conversion function that is a candidate by 13.3.1.3 when
470    //   invoked for the copying of the temporary in the second step
471    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
472    //   13.3.1.6 in all cases, only standard conversion sequences and
473    //   ellipsis conversion sequences are allowed.
474    if (SuppressUserConversions &&
475        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
476      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
477  } else {
478    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
479    if (UserDefResult == OR_Ambiguous) {
480      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
481           Cand != Conversions.end(); ++Cand)
482        if (Cand->Viable)
483          ICS.ConversionFunctionSet.push_back(Cand->Function);
484    }
485  }
486
487  return ICS;
488}
489
490/// \brief Determine whether the conversion from FromType to ToType is a valid
491/// conversion that strips "noreturn" off the nested function type.
492static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
493                                 QualType ToType, QualType &ResultTy) {
494  if (Context.hasSameUnqualifiedType(FromType, ToType))
495    return false;
496
497  // Strip the noreturn off the type we're converting from; noreturn can
498  // safely be removed.
499  FromType = Context.getNoReturnType(FromType, false);
500  if (!Context.hasSameUnqualifiedType(FromType, ToType))
501    return false;
502
503  ResultTy = FromType;
504  return true;
505}
506
507/// IsStandardConversion - Determines whether there is a standard
508/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
509/// expression From to the type ToType. Standard conversion sequences
510/// only consider non-class types; for conversions that involve class
511/// types, use TryImplicitConversion. If a conversion exists, SCS will
512/// contain the standard conversion sequence required to perform this
513/// conversion and this routine will return true. Otherwise, this
514/// routine will return false and the value of SCS is unspecified.
515bool
516Sema::IsStandardConversion(Expr* From, QualType ToType,
517                           bool InOverloadResolution,
518                           StandardConversionSequence &SCS) {
519  QualType FromType = From->getType();
520
521  // Standard conversions (C++ [conv])
522  SCS.setAsIdentityConversion();
523  SCS.Deprecated = false;
524  SCS.IncompatibleObjC = false;
525  SCS.FromTypePtr = FromType.getAsOpaquePtr();
526  SCS.CopyConstructor = 0;
527
528  // There are no standard conversions for class types in C++, so
529  // abort early. When overloading in C, however, we do permit
530  if (FromType->isRecordType() || ToType->isRecordType()) {
531    if (getLangOptions().CPlusPlus)
532      return false;
533
534    // When we're overloading in C, we allow, as standard conversions,
535  }
536
537  // The first conversion can be an lvalue-to-rvalue conversion,
538  // array-to-pointer conversion, or function-to-pointer conversion
539  // (C++ 4p1).
540
541  // Lvalue-to-rvalue conversion (C++ 4.1):
542  //   An lvalue (3.10) of a non-function, non-array type T can be
543  //   converted to an rvalue.
544  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
545  if (argIsLvalue == Expr::LV_Valid &&
546      !FromType->isFunctionType() && !FromType->isArrayType() &&
547      Context.getCanonicalType(FromType) != Context.OverloadTy) {
548    SCS.First = ICK_Lvalue_To_Rvalue;
549
550    // If T is a non-class type, the type of the rvalue is the
551    // cv-unqualified version of T. Otherwise, the type of the rvalue
552    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
553    // just strip the qualifiers because they don't matter.
554    FromType = FromType.getUnqualifiedType();
555  } else if (FromType->isArrayType()) {
556    // Array-to-pointer conversion (C++ 4.2)
557    SCS.First = ICK_Array_To_Pointer;
558
559    // An lvalue or rvalue of type "array of N T" or "array of unknown
560    // bound of T" can be converted to an rvalue of type "pointer to
561    // T" (C++ 4.2p1).
562    FromType = Context.getArrayDecayedType(FromType);
563
564    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
565      // This conversion is deprecated. (C++ D.4).
566      SCS.Deprecated = true;
567
568      // For the purpose of ranking in overload resolution
569      // (13.3.3.1.1), this conversion is considered an
570      // array-to-pointer conversion followed by a qualification
571      // conversion (4.4). (C++ 4.2p2)
572      SCS.Second = ICK_Identity;
573      SCS.Third = ICK_Qualification;
574      SCS.ToTypePtr = ToType.getAsOpaquePtr();
575      return true;
576    }
577  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
578    // Function-to-pointer conversion (C++ 4.3).
579    SCS.First = ICK_Function_To_Pointer;
580
581    // An lvalue of function type T can be converted to an rvalue of
582    // type "pointer to T." The result is a pointer to the
583    // function. (C++ 4.3p1).
584    FromType = Context.getPointerType(FromType);
585  } else if (FunctionDecl *Fn
586               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
587    // Address of overloaded function (C++ [over.over]).
588    SCS.First = ICK_Function_To_Pointer;
589
590    // We were able to resolve the address of the overloaded function,
591    // so we can convert to the type of that function.
592    FromType = Fn->getType();
593    if (ToType->isLValueReferenceType())
594      FromType = Context.getLValueReferenceType(FromType);
595    else if (ToType->isRValueReferenceType())
596      FromType = Context.getRValueReferenceType(FromType);
597    else if (ToType->isMemberPointerType()) {
598      // Resolve address only succeeds if both sides are member pointers,
599      // but it doesn't have to be the same class. See DR 247.
600      // Note that this means that the type of &Derived::fn can be
601      // Ret (Base::*)(Args) if the fn overload actually found is from the
602      // base class, even if it was brought into the derived class via a
603      // using declaration. The standard isn't clear on this issue at all.
604      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
605      FromType = Context.getMemberPointerType(FromType,
606                    Context.getTypeDeclType(M->getParent()).getTypePtr());
607    } else
608      FromType = Context.getPointerType(FromType);
609  } else {
610    // We don't require any conversions for the first step.
611    SCS.First = ICK_Identity;
612  }
613
614  // The second conversion can be an integral promotion, floating
615  // point promotion, integral conversion, floating point conversion,
616  // floating-integral conversion, pointer conversion,
617  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
618  // For overloading in C, this can also be a "compatible-type"
619  // conversion.
620  bool IncompatibleObjC = false;
621  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
622    // The unqualified versions of the types are the same: there's no
623    // conversion to do.
624    SCS.Second = ICK_Identity;
625  } else if (IsIntegralPromotion(From, FromType, ToType)) {
626    // Integral promotion (C++ 4.5).
627    SCS.Second = ICK_Integral_Promotion;
628    FromType = ToType.getUnqualifiedType();
629  } else if (IsFloatingPointPromotion(FromType, ToType)) {
630    // Floating point promotion (C++ 4.6).
631    SCS.Second = ICK_Floating_Promotion;
632    FromType = ToType.getUnqualifiedType();
633  } else if (IsComplexPromotion(FromType, ToType)) {
634    // Complex promotion (Clang extension)
635    SCS.Second = ICK_Complex_Promotion;
636    FromType = ToType.getUnqualifiedType();
637  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
638           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
639    // Integral conversions (C++ 4.7).
640    // FIXME: isIntegralType shouldn't be true for enums in C++.
641    SCS.Second = ICK_Integral_Conversion;
642    FromType = ToType.getUnqualifiedType();
643  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
644    // Floating point conversions (C++ 4.8).
645    SCS.Second = ICK_Floating_Conversion;
646    FromType = ToType.getUnqualifiedType();
647  } else if (FromType->isComplexType() && ToType->isComplexType()) {
648    // Complex conversions (C99 6.3.1.6)
649    SCS.Second = ICK_Complex_Conversion;
650    FromType = ToType.getUnqualifiedType();
651  } else if ((FromType->isFloatingType() &&
652              ToType->isIntegralType() && (!ToType->isBooleanType() &&
653                                           !ToType->isEnumeralType())) ||
654             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
655              ToType->isFloatingType())) {
656    // Floating-integral conversions (C++ 4.9).
657    // FIXME: isIntegralType shouldn't be true for enums in C++.
658    SCS.Second = ICK_Floating_Integral;
659    FromType = ToType.getUnqualifiedType();
660  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
661             (ToType->isComplexType() && FromType->isArithmeticType())) {
662    // Complex-real conversions (C99 6.3.1.7)
663    SCS.Second = ICK_Complex_Real;
664    FromType = ToType.getUnqualifiedType();
665  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
666                                 FromType, IncompatibleObjC)) {
667    // Pointer conversions (C++ 4.10).
668    SCS.Second = ICK_Pointer_Conversion;
669    SCS.IncompatibleObjC = IncompatibleObjC;
670  } else if (IsMemberPointerConversion(From, FromType, ToType,
671                                       InOverloadResolution, FromType)) {
672    // Pointer to member conversions (4.11).
673    SCS.Second = ICK_Pointer_Member;
674  } else if (ToType->isBooleanType() &&
675             (FromType->isArithmeticType() ||
676              FromType->isEnumeralType() ||
677              FromType->isAnyPointerType() ||
678              FromType->isBlockPointerType() ||
679              FromType->isMemberPointerType() ||
680              FromType->isNullPtrType())) {
681    // Boolean conversions (C++ 4.12).
682    SCS.Second = ICK_Boolean_Conversion;
683    FromType = Context.BoolTy;
684  } else if (!getLangOptions().CPlusPlus &&
685             Context.typesAreCompatible(ToType, FromType)) {
686    // Compatible conversions (Clang extension for C function overloading)
687    SCS.Second = ICK_Compatible_Conversion;
688  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
689    // Treat a conversion that strips "noreturn" as an identity conversion.
690    SCS.Second = ICK_NoReturn_Adjustment;
691  } else {
692    // No second conversion required.
693    SCS.Second = ICK_Identity;
694  }
695
696  QualType CanonFrom;
697  QualType CanonTo;
698  // The third conversion can be a qualification conversion (C++ 4p1).
699  if (IsQualificationConversion(FromType, ToType)) {
700    SCS.Third = ICK_Qualification;
701    FromType = ToType;
702    CanonFrom = Context.getCanonicalType(FromType);
703    CanonTo = Context.getCanonicalType(ToType);
704  } else {
705    // No conversion required
706    SCS.Third = ICK_Identity;
707
708    // C++ [over.best.ics]p6:
709    //   [...] Any difference in top-level cv-qualification is
710    //   subsumed by the initialization itself and does not constitute
711    //   a conversion. [...]
712    CanonFrom = Context.getCanonicalType(FromType);
713    CanonTo = Context.getCanonicalType(ToType);
714    if (CanonFrom.getLocalUnqualifiedType()
715                                       == CanonTo.getLocalUnqualifiedType() &&
716        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
717      FromType = ToType;
718      CanonFrom = CanonTo;
719    }
720  }
721
722  // If we have not converted the argument type to the parameter type,
723  // this is a bad conversion sequence.
724  if (CanonFrom != CanonTo)
725    return false;
726
727  SCS.ToTypePtr = FromType.getAsOpaquePtr();
728  return true;
729}
730
731/// IsIntegralPromotion - Determines whether the conversion from the
732/// expression From (whose potentially-adjusted type is FromType) to
733/// ToType is an integral promotion (C++ 4.5). If so, returns true and
734/// sets PromotedType to the promoted type.
735bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
736  const BuiltinType *To = ToType->getAs<BuiltinType>();
737  // All integers are built-in.
738  if (!To) {
739    return false;
740  }
741
742  // An rvalue of type char, signed char, unsigned char, short int, or
743  // unsigned short int can be converted to an rvalue of type int if
744  // int can represent all the values of the source type; otherwise,
745  // the source rvalue can be converted to an rvalue of type unsigned
746  // int (C++ 4.5p1).
747  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
748    if (// We can promote any signed, promotable integer type to an int
749        (FromType->isSignedIntegerType() ||
750         // We can promote any unsigned integer type whose size is
751         // less than int to an int.
752         (!FromType->isSignedIntegerType() &&
753          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
754      return To->getKind() == BuiltinType::Int;
755    }
756
757    return To->getKind() == BuiltinType::UInt;
758  }
759
760  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
761  // can be converted to an rvalue of the first of the following types
762  // that can represent all the values of its underlying type: int,
763  // unsigned int, long, or unsigned long (C++ 4.5p2).
764
765  // We pre-calculate the promotion type for enum types.
766  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
767    if (ToType->isIntegerType())
768      return Context.hasSameUnqualifiedType(ToType,
769                                FromEnumType->getDecl()->getPromotionType());
770
771  if (FromType->isWideCharType() && ToType->isIntegerType()) {
772    // Determine whether the type we're converting from is signed or
773    // unsigned.
774    bool FromIsSigned;
775    uint64_t FromSize = Context.getTypeSize(FromType);
776
777    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
778    FromIsSigned = true;
779
780    // The types we'll try to promote to, in the appropriate
781    // order. Try each of these types.
782    QualType PromoteTypes[6] = {
783      Context.IntTy, Context.UnsignedIntTy,
784      Context.LongTy, Context.UnsignedLongTy ,
785      Context.LongLongTy, Context.UnsignedLongLongTy
786    };
787    for (int Idx = 0; Idx < 6; ++Idx) {
788      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
789      if (FromSize < ToSize ||
790          (FromSize == ToSize &&
791           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
792        // We found the type that we can promote to. If this is the
793        // type we wanted, we have a promotion. Otherwise, no
794        // promotion.
795        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
796      }
797    }
798  }
799
800  // An rvalue for an integral bit-field (9.6) can be converted to an
801  // rvalue of type int if int can represent all the values of the
802  // bit-field; otherwise, it can be converted to unsigned int if
803  // unsigned int can represent all the values of the bit-field. If
804  // the bit-field is larger yet, no integral promotion applies to
805  // it. If the bit-field has an enumerated type, it is treated as any
806  // other value of that type for promotion purposes (C++ 4.5p3).
807  // FIXME: We should delay checking of bit-fields until we actually perform the
808  // conversion.
809  using llvm::APSInt;
810  if (From)
811    if (FieldDecl *MemberDecl = From->getBitField()) {
812      APSInt BitWidth;
813      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
814          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
815        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
816        ToSize = Context.getTypeSize(ToType);
817
818        // Are we promoting to an int from a bitfield that fits in an int?
819        if (BitWidth < ToSize ||
820            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
821          return To->getKind() == BuiltinType::Int;
822        }
823
824        // Are we promoting to an unsigned int from an unsigned bitfield
825        // that fits into an unsigned int?
826        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
827          return To->getKind() == BuiltinType::UInt;
828        }
829
830        return false;
831      }
832    }
833
834  // An rvalue of type bool can be converted to an rvalue of type int,
835  // with false becoming zero and true becoming one (C++ 4.5p4).
836  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
837    return true;
838  }
839
840  return false;
841}
842
843/// IsFloatingPointPromotion - Determines whether the conversion from
844/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
845/// returns true and sets PromotedType to the promoted type.
846bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
847  /// An rvalue of type float can be converted to an rvalue of type
848  /// double. (C++ 4.6p1).
849  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
850    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
851      if (FromBuiltin->getKind() == BuiltinType::Float &&
852          ToBuiltin->getKind() == BuiltinType::Double)
853        return true;
854
855      // C99 6.3.1.5p1:
856      //   When a float is promoted to double or long double, or a
857      //   double is promoted to long double [...].
858      if (!getLangOptions().CPlusPlus &&
859          (FromBuiltin->getKind() == BuiltinType::Float ||
860           FromBuiltin->getKind() == BuiltinType::Double) &&
861          (ToBuiltin->getKind() == BuiltinType::LongDouble))
862        return true;
863    }
864
865  return false;
866}
867
868/// \brief Determine if a conversion is a complex promotion.
869///
870/// A complex promotion is defined as a complex -> complex conversion
871/// where the conversion between the underlying real types is a
872/// floating-point or integral promotion.
873bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
874  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
875  if (!FromComplex)
876    return false;
877
878  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
879  if (!ToComplex)
880    return false;
881
882  return IsFloatingPointPromotion(FromComplex->getElementType(),
883                                  ToComplex->getElementType()) ||
884    IsIntegralPromotion(0, FromComplex->getElementType(),
885                        ToComplex->getElementType());
886}
887
888/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
889/// the pointer type FromPtr to a pointer to type ToPointee, with the
890/// same type qualifiers as FromPtr has on its pointee type. ToType,
891/// if non-empty, will be a pointer to ToType that may or may not have
892/// the right set of qualifiers on its pointee.
893static QualType
894BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
895                                   QualType ToPointee, QualType ToType,
896                                   ASTContext &Context) {
897  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
898  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
899  Qualifiers Quals = CanonFromPointee.getQualifiers();
900
901  // Exact qualifier match -> return the pointer type we're converting to.
902  if (CanonToPointee.getLocalQualifiers() == Quals) {
903    // ToType is exactly what we need. Return it.
904    if (!ToType.isNull())
905      return ToType;
906
907    // Build a pointer to ToPointee. It has the right qualifiers
908    // already.
909    return Context.getPointerType(ToPointee);
910  }
911
912  // Just build a canonical type that has the right qualifiers.
913  return Context.getPointerType(
914         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
915                                  Quals));
916}
917
918/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
919/// the FromType, which is an objective-c pointer, to ToType, which may or may
920/// not have the right set of qualifiers.
921static QualType
922BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
923                                             QualType ToType,
924                                             ASTContext &Context) {
925  QualType CanonFromType = Context.getCanonicalType(FromType);
926  QualType CanonToType = Context.getCanonicalType(ToType);
927  Qualifiers Quals = CanonFromType.getQualifiers();
928
929  // Exact qualifier match -> return the pointer type we're converting to.
930  if (CanonToType.getLocalQualifiers() == Quals)
931    return ToType;
932
933  // Just build a canonical type that has the right qualifiers.
934  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
935}
936
937static bool isNullPointerConstantForConversion(Expr *Expr,
938                                               bool InOverloadResolution,
939                                               ASTContext &Context) {
940  // Handle value-dependent integral null pointer constants correctly.
941  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
942  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
943      Expr->getType()->isIntegralType())
944    return !InOverloadResolution;
945
946  return Expr->isNullPointerConstant(Context,
947                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
948                                        : Expr::NPC_ValueDependentIsNull);
949}
950
951/// IsPointerConversion - Determines whether the conversion of the
952/// expression From, which has the (possibly adjusted) type FromType,
953/// can be converted to the type ToType via a pointer conversion (C++
954/// 4.10). If so, returns true and places the converted type (that
955/// might differ from ToType in its cv-qualifiers at some level) into
956/// ConvertedType.
957///
958/// This routine also supports conversions to and from block pointers
959/// and conversions with Objective-C's 'id', 'id<protocols...>', and
960/// pointers to interfaces. FIXME: Once we've determined the
961/// appropriate overloading rules for Objective-C, we may want to
962/// split the Objective-C checks into a different routine; however,
963/// GCC seems to consider all of these conversions to be pointer
964/// conversions, so for now they live here. IncompatibleObjC will be
965/// set if the conversion is an allowed Objective-C conversion that
966/// should result in a warning.
967bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
968                               bool InOverloadResolution,
969                               QualType& ConvertedType,
970                               bool &IncompatibleObjC) {
971  IncompatibleObjC = false;
972  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
973    return true;
974
975  // Conversion from a null pointer constant to any Objective-C pointer type.
976  if (ToType->isObjCObjectPointerType() &&
977      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
978    ConvertedType = ToType;
979    return true;
980  }
981
982  // Blocks: Block pointers can be converted to void*.
983  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
984      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
985    ConvertedType = ToType;
986    return true;
987  }
988  // Blocks: A null pointer constant can be converted to a block
989  // pointer type.
990  if (ToType->isBlockPointerType() &&
991      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
992    ConvertedType = ToType;
993    return true;
994  }
995
996  // If the left-hand-side is nullptr_t, the right side can be a null
997  // pointer constant.
998  if (ToType->isNullPtrType() &&
999      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1000    ConvertedType = ToType;
1001    return true;
1002  }
1003
1004  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1005  if (!ToTypePtr)
1006    return false;
1007
1008  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1009  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1010    ConvertedType = ToType;
1011    return true;
1012  }
1013
1014  // Beyond this point, both types need to be pointers
1015  // , including objective-c pointers.
1016  QualType ToPointeeType = ToTypePtr->getPointeeType();
1017  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1018    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1019                                                       ToType, Context);
1020    return true;
1021
1022  }
1023  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1024  if (!FromTypePtr)
1025    return false;
1026
1027  QualType FromPointeeType = FromTypePtr->getPointeeType();
1028
1029  // An rvalue of type "pointer to cv T," where T is an object type,
1030  // can be converted to an rvalue of type "pointer to cv void" (C++
1031  // 4.10p2).
1032  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1033    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1034                                                       ToPointeeType,
1035                                                       ToType, Context);
1036    return true;
1037  }
1038
1039  // When we're overloading in C, we allow a special kind of pointer
1040  // conversion for compatible-but-not-identical pointee types.
1041  if (!getLangOptions().CPlusPlus &&
1042      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1043    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1044                                                       ToPointeeType,
1045                                                       ToType, Context);
1046    return true;
1047  }
1048
1049  // C++ [conv.ptr]p3:
1050  //
1051  //   An rvalue of type "pointer to cv D," where D is a class type,
1052  //   can be converted to an rvalue of type "pointer to cv B," where
1053  //   B is a base class (clause 10) of D. If B is an inaccessible
1054  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1055  //   necessitates this conversion is ill-formed. The result of the
1056  //   conversion is a pointer to the base class sub-object of the
1057  //   derived class object. The null pointer value is converted to
1058  //   the null pointer value of the destination type.
1059  //
1060  // Note that we do not check for ambiguity or inaccessibility
1061  // here. That is handled by CheckPointerConversion.
1062  if (getLangOptions().CPlusPlus &&
1063      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1064      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1065      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1066    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1067                                                       ToPointeeType,
1068                                                       ToType, Context);
1069    return true;
1070  }
1071
1072  return false;
1073}
1074
1075/// isObjCPointerConversion - Determines whether this is an
1076/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1077/// with the same arguments and return values.
1078bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1079                                   QualType& ConvertedType,
1080                                   bool &IncompatibleObjC) {
1081  if (!getLangOptions().ObjC1)
1082    return false;
1083
1084  // First, we handle all conversions on ObjC object pointer types.
1085  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1086  const ObjCObjectPointerType *FromObjCPtr =
1087    FromType->getAs<ObjCObjectPointerType>();
1088
1089  if (ToObjCPtr && FromObjCPtr) {
1090    // Objective C++: We're able to convert between "id" or "Class" and a
1091    // pointer to any interface (in both directions).
1092    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1093      ConvertedType = ToType;
1094      return true;
1095    }
1096    // Conversions with Objective-C's id<...>.
1097    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1098         ToObjCPtr->isObjCQualifiedIdType()) &&
1099        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1100                                                  /*compare=*/false)) {
1101      ConvertedType = ToType;
1102      return true;
1103    }
1104    // Objective C++: We're able to convert from a pointer to an
1105    // interface to a pointer to a different interface.
1106    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1107      ConvertedType = ToType;
1108      return true;
1109    }
1110
1111    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1112      // Okay: this is some kind of implicit downcast of Objective-C
1113      // interfaces, which is permitted. However, we're going to
1114      // complain about it.
1115      IncompatibleObjC = true;
1116      ConvertedType = FromType;
1117      return true;
1118    }
1119  }
1120  // Beyond this point, both types need to be C pointers or block pointers.
1121  QualType ToPointeeType;
1122  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1123    ToPointeeType = ToCPtr->getPointeeType();
1124  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1125    ToPointeeType = ToBlockPtr->getPointeeType();
1126  else
1127    return false;
1128
1129  QualType FromPointeeType;
1130  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1131    FromPointeeType = FromCPtr->getPointeeType();
1132  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1133    FromPointeeType = FromBlockPtr->getPointeeType();
1134  else
1135    return false;
1136
1137  // If we have pointers to pointers, recursively check whether this
1138  // is an Objective-C conversion.
1139  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1140      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1141                              IncompatibleObjC)) {
1142    // We always complain about this conversion.
1143    IncompatibleObjC = true;
1144    ConvertedType = ToType;
1145    return true;
1146  }
1147  // If we have pointers to functions or blocks, check whether the only
1148  // differences in the argument and result types are in Objective-C
1149  // pointer conversions. If so, we permit the conversion (but
1150  // complain about it).
1151  const FunctionProtoType *FromFunctionType
1152    = FromPointeeType->getAs<FunctionProtoType>();
1153  const FunctionProtoType *ToFunctionType
1154    = ToPointeeType->getAs<FunctionProtoType>();
1155  if (FromFunctionType && ToFunctionType) {
1156    // If the function types are exactly the same, this isn't an
1157    // Objective-C pointer conversion.
1158    if (Context.getCanonicalType(FromPointeeType)
1159          == Context.getCanonicalType(ToPointeeType))
1160      return false;
1161
1162    // Perform the quick checks that will tell us whether these
1163    // function types are obviously different.
1164    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1165        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1166        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1167      return false;
1168
1169    bool HasObjCConversion = false;
1170    if (Context.getCanonicalType(FromFunctionType->getResultType())
1171          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1172      // Okay, the types match exactly. Nothing to do.
1173    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1174                                       ToFunctionType->getResultType(),
1175                                       ConvertedType, IncompatibleObjC)) {
1176      // Okay, we have an Objective-C pointer conversion.
1177      HasObjCConversion = true;
1178    } else {
1179      // Function types are too different. Abort.
1180      return false;
1181    }
1182
1183    // Check argument types.
1184    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1185         ArgIdx != NumArgs; ++ArgIdx) {
1186      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1187      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1188      if (Context.getCanonicalType(FromArgType)
1189            == Context.getCanonicalType(ToArgType)) {
1190        // Okay, the types match exactly. Nothing to do.
1191      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1192                                         ConvertedType, IncompatibleObjC)) {
1193        // Okay, we have an Objective-C pointer conversion.
1194        HasObjCConversion = true;
1195      } else {
1196        // Argument types are too different. Abort.
1197        return false;
1198      }
1199    }
1200
1201    if (HasObjCConversion) {
1202      // We had an Objective-C conversion. Allow this pointer
1203      // conversion, but complain about it.
1204      ConvertedType = ToType;
1205      IncompatibleObjC = true;
1206      return true;
1207    }
1208  }
1209
1210  return false;
1211}
1212
1213/// CheckPointerConversion - Check the pointer conversion from the
1214/// expression From to the type ToType. This routine checks for
1215/// ambiguous or inaccessible derived-to-base pointer
1216/// conversions for which IsPointerConversion has already returned
1217/// true. It returns true and produces a diagnostic if there was an
1218/// error, or returns false otherwise.
1219bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1220                                  CastExpr::CastKind &Kind,
1221                                  bool IgnoreBaseAccess) {
1222  QualType FromType = From->getType();
1223
1224  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1225    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1226      QualType FromPointeeType = FromPtrType->getPointeeType(),
1227               ToPointeeType   = ToPtrType->getPointeeType();
1228
1229      if (FromPointeeType->isRecordType() &&
1230          ToPointeeType->isRecordType()) {
1231        // We must have a derived-to-base conversion. Check an
1232        // ambiguous or inaccessible conversion.
1233        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1234                                         From->getExprLoc(),
1235                                         From->getSourceRange(),
1236                                         IgnoreBaseAccess))
1237          return true;
1238
1239        // The conversion was successful.
1240        Kind = CastExpr::CK_DerivedToBase;
1241      }
1242    }
1243  if (const ObjCObjectPointerType *FromPtrType =
1244        FromType->getAs<ObjCObjectPointerType>())
1245    if (const ObjCObjectPointerType *ToPtrType =
1246          ToType->getAs<ObjCObjectPointerType>()) {
1247      // Objective-C++ conversions are always okay.
1248      // FIXME: We should have a different class of conversions for the
1249      // Objective-C++ implicit conversions.
1250      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1251        return false;
1252
1253  }
1254  return false;
1255}
1256
1257/// IsMemberPointerConversion - Determines whether the conversion of the
1258/// expression From, which has the (possibly adjusted) type FromType, can be
1259/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1260/// If so, returns true and places the converted type (that might differ from
1261/// ToType in its cv-qualifiers at some level) into ConvertedType.
1262bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1263                                     QualType ToType,
1264                                     bool InOverloadResolution,
1265                                     QualType &ConvertedType) {
1266  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1267  if (!ToTypePtr)
1268    return false;
1269
1270  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1271  if (From->isNullPointerConstant(Context,
1272                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1273                                        : Expr::NPC_ValueDependentIsNull)) {
1274    ConvertedType = ToType;
1275    return true;
1276  }
1277
1278  // Otherwise, both types have to be member pointers.
1279  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1280  if (!FromTypePtr)
1281    return false;
1282
1283  // A pointer to member of B can be converted to a pointer to member of D,
1284  // where D is derived from B (C++ 4.11p2).
1285  QualType FromClass(FromTypePtr->getClass(), 0);
1286  QualType ToClass(ToTypePtr->getClass(), 0);
1287  // FIXME: What happens when these are dependent? Is this function even called?
1288
1289  if (IsDerivedFrom(ToClass, FromClass)) {
1290    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1291                                                 ToClass.getTypePtr());
1292    return true;
1293  }
1294
1295  return false;
1296}
1297
1298/// CheckMemberPointerConversion - Check the member pointer conversion from the
1299/// expression From to the type ToType. This routine checks for ambiguous or
1300/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1301/// for which IsMemberPointerConversion has already returned true. It returns
1302/// true and produces a diagnostic if there was an error, or returns false
1303/// otherwise.
1304bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1305                                        CastExpr::CastKind &Kind,
1306                                        bool IgnoreBaseAccess) {
1307  (void)IgnoreBaseAccess;
1308  QualType FromType = From->getType();
1309  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1310  if (!FromPtrType) {
1311    // This must be a null pointer to member pointer conversion
1312    assert(From->isNullPointerConstant(Context,
1313                                       Expr::NPC_ValueDependentIsNull) &&
1314           "Expr must be null pointer constant!");
1315    Kind = CastExpr::CK_NullToMemberPointer;
1316    return false;
1317  }
1318
1319  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1320  assert(ToPtrType && "No member pointer cast has a target type "
1321                      "that is not a member pointer.");
1322
1323  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1324  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1325
1326  // FIXME: What about dependent types?
1327  assert(FromClass->isRecordType() && "Pointer into non-class.");
1328  assert(ToClass->isRecordType() && "Pointer into non-class.");
1329
1330  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1331                     /*DetectVirtual=*/true);
1332  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1333  assert(DerivationOkay &&
1334         "Should not have been called if derivation isn't OK.");
1335  (void)DerivationOkay;
1336
1337  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1338                                  getUnqualifiedType())) {
1339    // Derivation is ambiguous. Redo the check to find the exact paths.
1340    Paths.clear();
1341    Paths.setRecordingPaths(true);
1342    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1343    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1344    (void)StillOkay;
1345
1346    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1347    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1348      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1349    return true;
1350  }
1351
1352  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1353    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1354      << FromClass << ToClass << QualType(VBase, 0)
1355      << From->getSourceRange();
1356    return true;
1357  }
1358
1359  // Must be a base to derived member conversion.
1360  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1361  return false;
1362}
1363
1364/// IsQualificationConversion - Determines whether the conversion from
1365/// an rvalue of type FromType to ToType is a qualification conversion
1366/// (C++ 4.4).
1367bool
1368Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1369  FromType = Context.getCanonicalType(FromType);
1370  ToType = Context.getCanonicalType(ToType);
1371
1372  // If FromType and ToType are the same type, this is not a
1373  // qualification conversion.
1374  if (FromType == ToType)
1375    return false;
1376
1377  // (C++ 4.4p4):
1378  //   A conversion can add cv-qualifiers at levels other than the first
1379  //   in multi-level pointers, subject to the following rules: [...]
1380  bool PreviousToQualsIncludeConst = true;
1381  bool UnwrappedAnyPointer = false;
1382  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1383    // Within each iteration of the loop, we check the qualifiers to
1384    // determine if this still looks like a qualification
1385    // conversion. Then, if all is well, we unwrap one more level of
1386    // pointers or pointers-to-members and do it all again
1387    // until there are no more pointers or pointers-to-members left to
1388    // unwrap.
1389    UnwrappedAnyPointer = true;
1390
1391    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1392    //      2,j, and similarly for volatile.
1393    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1394      return false;
1395
1396    //   -- if the cv 1,j and cv 2,j are different, then const is in
1397    //      every cv for 0 < k < j.
1398    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1399        && !PreviousToQualsIncludeConst)
1400      return false;
1401
1402    // Keep track of whether all prior cv-qualifiers in the "to" type
1403    // include const.
1404    PreviousToQualsIncludeConst
1405      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1406  }
1407
1408  // We are left with FromType and ToType being the pointee types
1409  // after unwrapping the original FromType and ToType the same number
1410  // of types. If we unwrapped any pointers, and if FromType and
1411  // ToType have the same unqualified type (since we checked
1412  // qualifiers above), then this is a qualification conversion.
1413  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1414}
1415
1416/// Determines whether there is a user-defined conversion sequence
1417/// (C++ [over.ics.user]) that converts expression From to the type
1418/// ToType. If such a conversion exists, User will contain the
1419/// user-defined conversion sequence that performs such a conversion
1420/// and this routine will return true. Otherwise, this routine returns
1421/// false and User is unspecified.
1422///
1423/// \param AllowConversionFunctions true if the conversion should
1424/// consider conversion functions at all. If false, only constructors
1425/// will be considered.
1426///
1427/// \param AllowExplicit  true if the conversion should consider C++0x
1428/// "explicit" conversion functions as well as non-explicit conversion
1429/// functions (C++0x [class.conv.fct]p2).
1430///
1431/// \param ForceRValue  true if the expression should be treated as an rvalue
1432/// for overload resolution.
1433/// \param UserCast true if looking for user defined conversion for a static
1434/// cast.
1435OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1436                                          UserDefinedConversionSequence& User,
1437                                            OverloadCandidateSet& CandidateSet,
1438                                                bool AllowConversionFunctions,
1439                                                bool AllowExplicit,
1440                                                bool ForceRValue,
1441                                                bool UserCast) {
1442  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1443    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1444      // We're not going to find any constructors.
1445    } else if (CXXRecordDecl *ToRecordDecl
1446                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1447      // C++ [over.match.ctor]p1:
1448      //   When objects of class type are direct-initialized (8.5), or
1449      //   copy-initialized from an expression of the same or a
1450      //   derived class type (8.5), overload resolution selects the
1451      //   constructor. [...] For copy-initialization, the candidate
1452      //   functions are all the converting constructors (12.3.1) of
1453      //   that class. The argument list is the expression-list within
1454      //   the parentheses of the initializer.
1455      bool SuppressUserConversions = !UserCast;
1456      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1457          IsDerivedFrom(From->getType(), ToType)) {
1458        SuppressUserConversions = false;
1459        AllowConversionFunctions = false;
1460      }
1461
1462      DeclarationName ConstructorName
1463        = Context.DeclarationNames.getCXXConstructorName(
1464                          Context.getCanonicalType(ToType).getUnqualifiedType());
1465      DeclContext::lookup_iterator Con, ConEnd;
1466      for (llvm::tie(Con, ConEnd)
1467             = ToRecordDecl->lookup(ConstructorName);
1468           Con != ConEnd; ++Con) {
1469        // Find the constructor (which may be a template).
1470        CXXConstructorDecl *Constructor = 0;
1471        FunctionTemplateDecl *ConstructorTmpl
1472          = dyn_cast<FunctionTemplateDecl>(*Con);
1473        if (ConstructorTmpl)
1474          Constructor
1475            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1476        else
1477          Constructor = cast<CXXConstructorDecl>(*Con);
1478
1479        if (!Constructor->isInvalidDecl() &&
1480            Constructor->isConvertingConstructor(AllowExplicit)) {
1481          if (ConstructorTmpl)
1482            AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0,
1483                                         &From, 1, CandidateSet,
1484                                         SuppressUserConversions, ForceRValue);
1485          else
1486            // Allow one user-defined conversion when user specifies a
1487            // From->ToType conversion via an static cast (c-style, etc).
1488            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1489                                 SuppressUserConversions, ForceRValue);
1490        }
1491      }
1492    }
1493  }
1494
1495  if (!AllowConversionFunctions) {
1496    // Don't allow any conversion functions to enter the overload set.
1497  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1498                                 PDiag(0)
1499                                   << From->getSourceRange())) {
1500    // No conversion functions from incomplete types.
1501  } else if (const RecordType *FromRecordType
1502               = From->getType()->getAs<RecordType>()) {
1503    if (CXXRecordDecl *FromRecordDecl
1504         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1505      // Add all of the conversion functions as candidates.
1506      const UnresolvedSet *Conversions
1507        = FromRecordDecl->getVisibleConversionFunctions();
1508      for (UnresolvedSet::iterator I = Conversions->begin(),
1509             E = Conversions->end(); I != E; ++I) {
1510        NamedDecl *D = *I;
1511        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1512        if (isa<UsingShadowDecl>(D))
1513          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1514
1515        CXXConversionDecl *Conv;
1516        FunctionTemplateDecl *ConvTemplate;
1517        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1518          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1519        else
1520          Conv = dyn_cast<CXXConversionDecl>(*I);
1521
1522        if (AllowExplicit || !Conv->isExplicit()) {
1523          if (ConvTemplate)
1524            AddTemplateConversionCandidate(ConvTemplate, ActingContext,
1525                                           From, ToType, CandidateSet);
1526          else
1527            AddConversionCandidate(Conv, ActingContext, From, ToType,
1528                                   CandidateSet);
1529        }
1530      }
1531    }
1532  }
1533
1534  OverloadCandidateSet::iterator Best;
1535  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1536    case OR_Success:
1537      // Record the standard conversion we used and the conversion function.
1538      if (CXXConstructorDecl *Constructor
1539            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1540        // C++ [over.ics.user]p1:
1541        //   If the user-defined conversion is specified by a
1542        //   constructor (12.3.1), the initial standard conversion
1543        //   sequence converts the source type to the type required by
1544        //   the argument of the constructor.
1545        //
1546        QualType ThisType = Constructor->getThisType(Context);
1547        if (Best->Conversions[0].ConversionKind ==
1548            ImplicitConversionSequence::EllipsisConversion)
1549          User.EllipsisConversion = true;
1550        else {
1551          User.Before = Best->Conversions[0].Standard;
1552          User.EllipsisConversion = false;
1553        }
1554        User.ConversionFunction = Constructor;
1555        User.After.setAsIdentityConversion();
1556        User.After.FromTypePtr
1557          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1558        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1559        return OR_Success;
1560      } else if (CXXConversionDecl *Conversion
1561                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1562        // C++ [over.ics.user]p1:
1563        //
1564        //   [...] If the user-defined conversion is specified by a
1565        //   conversion function (12.3.2), the initial standard
1566        //   conversion sequence converts the source type to the
1567        //   implicit object parameter of the conversion function.
1568        User.Before = Best->Conversions[0].Standard;
1569        User.ConversionFunction = Conversion;
1570        User.EllipsisConversion = false;
1571
1572        // C++ [over.ics.user]p2:
1573        //   The second standard conversion sequence converts the
1574        //   result of the user-defined conversion to the target type
1575        //   for the sequence. Since an implicit conversion sequence
1576        //   is an initialization, the special rules for
1577        //   initialization by user-defined conversion apply when
1578        //   selecting the best user-defined conversion for a
1579        //   user-defined conversion sequence (see 13.3.3 and
1580        //   13.3.3.1).
1581        User.After = Best->FinalConversion;
1582        return OR_Success;
1583      } else {
1584        assert(false && "Not a constructor or conversion function?");
1585        return OR_No_Viable_Function;
1586      }
1587
1588    case OR_No_Viable_Function:
1589      return OR_No_Viable_Function;
1590    case OR_Deleted:
1591      // No conversion here! We're done.
1592      return OR_Deleted;
1593
1594    case OR_Ambiguous:
1595      return OR_Ambiguous;
1596    }
1597
1598  return OR_No_Viable_Function;
1599}
1600
1601bool
1602Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1603  ImplicitConversionSequence ICS;
1604  OverloadCandidateSet CandidateSet;
1605  OverloadingResult OvResult =
1606    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1607                            CandidateSet, true, false, false);
1608  if (OvResult == OR_Ambiguous)
1609    Diag(From->getSourceRange().getBegin(),
1610         diag::err_typecheck_ambiguous_condition)
1611          << From->getType() << ToType << From->getSourceRange();
1612  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1613    Diag(From->getSourceRange().getBegin(),
1614         diag::err_typecheck_nonviable_condition)
1615    << From->getType() << ToType << From->getSourceRange();
1616  else
1617    return false;
1618  PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1619  return true;
1620}
1621
1622/// CompareImplicitConversionSequences - Compare two implicit
1623/// conversion sequences to determine whether one is better than the
1624/// other or if they are indistinguishable (C++ 13.3.3.2).
1625ImplicitConversionSequence::CompareKind
1626Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1627                                         const ImplicitConversionSequence& ICS2)
1628{
1629  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1630  // conversion sequences (as defined in 13.3.3.1)
1631  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1632  //      conversion sequence than a user-defined conversion sequence or
1633  //      an ellipsis conversion sequence, and
1634  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1635  //      conversion sequence than an ellipsis conversion sequence
1636  //      (13.3.3.1.3).
1637  //
1638  if (ICS1.ConversionKind < ICS2.ConversionKind)
1639    return ImplicitConversionSequence::Better;
1640  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1641    return ImplicitConversionSequence::Worse;
1642
1643  // Two implicit conversion sequences of the same form are
1644  // indistinguishable conversion sequences unless one of the
1645  // following rules apply: (C++ 13.3.3.2p3):
1646  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1647    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1648  else if (ICS1.ConversionKind ==
1649             ImplicitConversionSequence::UserDefinedConversion) {
1650    // User-defined conversion sequence U1 is a better conversion
1651    // sequence than another user-defined conversion sequence U2 if
1652    // they contain the same user-defined conversion function or
1653    // constructor and if the second standard conversion sequence of
1654    // U1 is better than the second standard conversion sequence of
1655    // U2 (C++ 13.3.3.2p3).
1656    if (ICS1.UserDefined.ConversionFunction ==
1657          ICS2.UserDefined.ConversionFunction)
1658      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1659                                                ICS2.UserDefined.After);
1660  }
1661
1662  return ImplicitConversionSequence::Indistinguishable;
1663}
1664
1665/// CompareStandardConversionSequences - Compare two standard
1666/// conversion sequences to determine whether one is better than the
1667/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1668ImplicitConversionSequence::CompareKind
1669Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1670                                         const StandardConversionSequence& SCS2)
1671{
1672  // Standard conversion sequence S1 is a better conversion sequence
1673  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1674
1675  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1676  //     sequences in the canonical form defined by 13.3.3.1.1,
1677  //     excluding any Lvalue Transformation; the identity conversion
1678  //     sequence is considered to be a subsequence of any
1679  //     non-identity conversion sequence) or, if not that,
1680  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1681    // Neither is a proper subsequence of the other. Do nothing.
1682    ;
1683  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1684           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1685           (SCS1.Second == ICK_Identity &&
1686            SCS1.Third == ICK_Identity))
1687    // SCS1 is a proper subsequence of SCS2.
1688    return ImplicitConversionSequence::Better;
1689  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1690           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1691           (SCS2.Second == ICK_Identity &&
1692            SCS2.Third == ICK_Identity))
1693    // SCS2 is a proper subsequence of SCS1.
1694    return ImplicitConversionSequence::Worse;
1695
1696  //  -- the rank of S1 is better than the rank of S2 (by the rules
1697  //     defined below), or, if not that,
1698  ImplicitConversionRank Rank1 = SCS1.getRank();
1699  ImplicitConversionRank Rank2 = SCS2.getRank();
1700  if (Rank1 < Rank2)
1701    return ImplicitConversionSequence::Better;
1702  else if (Rank2 < Rank1)
1703    return ImplicitConversionSequence::Worse;
1704
1705  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1706  // are indistinguishable unless one of the following rules
1707  // applies:
1708
1709  //   A conversion that is not a conversion of a pointer, or
1710  //   pointer to member, to bool is better than another conversion
1711  //   that is such a conversion.
1712  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1713    return SCS2.isPointerConversionToBool()
1714             ? ImplicitConversionSequence::Better
1715             : ImplicitConversionSequence::Worse;
1716
1717  // C++ [over.ics.rank]p4b2:
1718  //
1719  //   If class B is derived directly or indirectly from class A,
1720  //   conversion of B* to A* is better than conversion of B* to
1721  //   void*, and conversion of A* to void* is better than conversion
1722  //   of B* to void*.
1723  bool SCS1ConvertsToVoid
1724    = SCS1.isPointerConversionToVoidPointer(Context);
1725  bool SCS2ConvertsToVoid
1726    = SCS2.isPointerConversionToVoidPointer(Context);
1727  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1728    // Exactly one of the conversion sequences is a conversion to
1729    // a void pointer; it's the worse conversion.
1730    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1731                              : ImplicitConversionSequence::Worse;
1732  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1733    // Neither conversion sequence converts to a void pointer; compare
1734    // their derived-to-base conversions.
1735    if (ImplicitConversionSequence::CompareKind DerivedCK
1736          = CompareDerivedToBaseConversions(SCS1, SCS2))
1737      return DerivedCK;
1738  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1739    // Both conversion sequences are conversions to void
1740    // pointers. Compare the source types to determine if there's an
1741    // inheritance relationship in their sources.
1742    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1743    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1744
1745    // Adjust the types we're converting from via the array-to-pointer
1746    // conversion, if we need to.
1747    if (SCS1.First == ICK_Array_To_Pointer)
1748      FromType1 = Context.getArrayDecayedType(FromType1);
1749    if (SCS2.First == ICK_Array_To_Pointer)
1750      FromType2 = Context.getArrayDecayedType(FromType2);
1751
1752    QualType FromPointee1
1753      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1754    QualType FromPointee2
1755      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1756
1757    if (IsDerivedFrom(FromPointee2, FromPointee1))
1758      return ImplicitConversionSequence::Better;
1759    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1760      return ImplicitConversionSequence::Worse;
1761
1762    // Objective-C++: If one interface is more specific than the
1763    // other, it is the better one.
1764    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1765    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1766    if (FromIface1 && FromIface1) {
1767      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1768        return ImplicitConversionSequence::Better;
1769      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1770        return ImplicitConversionSequence::Worse;
1771    }
1772  }
1773
1774  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1775  // bullet 3).
1776  if (ImplicitConversionSequence::CompareKind QualCK
1777        = CompareQualificationConversions(SCS1, SCS2))
1778    return QualCK;
1779
1780  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1781    // C++0x [over.ics.rank]p3b4:
1782    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1783    //      implicit object parameter of a non-static member function declared
1784    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1785    //      rvalue and S2 binds an lvalue reference.
1786    // FIXME: We don't know if we're dealing with the implicit object parameter,
1787    // or if the member function in this case has a ref qualifier.
1788    // (Of course, we don't have ref qualifiers yet.)
1789    if (SCS1.RRefBinding != SCS2.RRefBinding)
1790      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1791                              : ImplicitConversionSequence::Worse;
1792
1793    // C++ [over.ics.rank]p3b4:
1794    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1795    //      which the references refer are the same type except for
1796    //      top-level cv-qualifiers, and the type to which the reference
1797    //      initialized by S2 refers is more cv-qualified than the type
1798    //      to which the reference initialized by S1 refers.
1799    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1800    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1801    T1 = Context.getCanonicalType(T1);
1802    T2 = Context.getCanonicalType(T2);
1803    if (Context.hasSameUnqualifiedType(T1, T2)) {
1804      if (T2.isMoreQualifiedThan(T1))
1805        return ImplicitConversionSequence::Better;
1806      else if (T1.isMoreQualifiedThan(T2))
1807        return ImplicitConversionSequence::Worse;
1808    }
1809  }
1810
1811  return ImplicitConversionSequence::Indistinguishable;
1812}
1813
1814/// CompareQualificationConversions - Compares two standard conversion
1815/// sequences to determine whether they can be ranked based on their
1816/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1817ImplicitConversionSequence::CompareKind
1818Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1819                                      const StandardConversionSequence& SCS2) {
1820  // C++ 13.3.3.2p3:
1821  //  -- S1 and S2 differ only in their qualification conversion and
1822  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1823  //     cv-qualification signature of type T1 is a proper subset of
1824  //     the cv-qualification signature of type T2, and S1 is not the
1825  //     deprecated string literal array-to-pointer conversion (4.2).
1826  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1827      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1828    return ImplicitConversionSequence::Indistinguishable;
1829
1830  // FIXME: the example in the standard doesn't use a qualification
1831  // conversion (!)
1832  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1833  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1834  T1 = Context.getCanonicalType(T1);
1835  T2 = Context.getCanonicalType(T2);
1836
1837  // If the types are the same, we won't learn anything by unwrapped
1838  // them.
1839  if (Context.hasSameUnqualifiedType(T1, T2))
1840    return ImplicitConversionSequence::Indistinguishable;
1841
1842  ImplicitConversionSequence::CompareKind Result
1843    = ImplicitConversionSequence::Indistinguishable;
1844  while (UnwrapSimilarPointerTypes(T1, T2)) {
1845    // Within each iteration of the loop, we check the qualifiers to
1846    // determine if this still looks like a qualification
1847    // conversion. Then, if all is well, we unwrap one more level of
1848    // pointers or pointers-to-members and do it all again
1849    // until there are no more pointers or pointers-to-members left
1850    // to unwrap. This essentially mimics what
1851    // IsQualificationConversion does, but here we're checking for a
1852    // strict subset of qualifiers.
1853    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1854      // The qualifiers are the same, so this doesn't tell us anything
1855      // about how the sequences rank.
1856      ;
1857    else if (T2.isMoreQualifiedThan(T1)) {
1858      // T1 has fewer qualifiers, so it could be the better sequence.
1859      if (Result == ImplicitConversionSequence::Worse)
1860        // Neither has qualifiers that are a subset of the other's
1861        // qualifiers.
1862        return ImplicitConversionSequence::Indistinguishable;
1863
1864      Result = ImplicitConversionSequence::Better;
1865    } else if (T1.isMoreQualifiedThan(T2)) {
1866      // T2 has fewer qualifiers, so it could be the better sequence.
1867      if (Result == ImplicitConversionSequence::Better)
1868        // Neither has qualifiers that are a subset of the other's
1869        // qualifiers.
1870        return ImplicitConversionSequence::Indistinguishable;
1871
1872      Result = ImplicitConversionSequence::Worse;
1873    } else {
1874      // Qualifiers are disjoint.
1875      return ImplicitConversionSequence::Indistinguishable;
1876    }
1877
1878    // If the types after this point are equivalent, we're done.
1879    if (Context.hasSameUnqualifiedType(T1, T2))
1880      break;
1881  }
1882
1883  // Check that the winning standard conversion sequence isn't using
1884  // the deprecated string literal array to pointer conversion.
1885  switch (Result) {
1886  case ImplicitConversionSequence::Better:
1887    if (SCS1.Deprecated)
1888      Result = ImplicitConversionSequence::Indistinguishable;
1889    break;
1890
1891  case ImplicitConversionSequence::Indistinguishable:
1892    break;
1893
1894  case ImplicitConversionSequence::Worse:
1895    if (SCS2.Deprecated)
1896      Result = ImplicitConversionSequence::Indistinguishable;
1897    break;
1898  }
1899
1900  return Result;
1901}
1902
1903/// CompareDerivedToBaseConversions - Compares two standard conversion
1904/// sequences to determine whether they can be ranked based on their
1905/// various kinds of derived-to-base conversions (C++
1906/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1907/// conversions between Objective-C interface types.
1908ImplicitConversionSequence::CompareKind
1909Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1910                                      const StandardConversionSequence& SCS2) {
1911  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1912  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1913  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1914  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1915
1916  // Adjust the types we're converting from via the array-to-pointer
1917  // conversion, if we need to.
1918  if (SCS1.First == ICK_Array_To_Pointer)
1919    FromType1 = Context.getArrayDecayedType(FromType1);
1920  if (SCS2.First == ICK_Array_To_Pointer)
1921    FromType2 = Context.getArrayDecayedType(FromType2);
1922
1923  // Canonicalize all of the types.
1924  FromType1 = Context.getCanonicalType(FromType1);
1925  ToType1 = Context.getCanonicalType(ToType1);
1926  FromType2 = Context.getCanonicalType(FromType2);
1927  ToType2 = Context.getCanonicalType(ToType2);
1928
1929  // C++ [over.ics.rank]p4b3:
1930  //
1931  //   If class B is derived directly or indirectly from class A and
1932  //   class C is derived directly or indirectly from B,
1933  //
1934  // For Objective-C, we let A, B, and C also be Objective-C
1935  // interfaces.
1936
1937  // Compare based on pointer conversions.
1938  if (SCS1.Second == ICK_Pointer_Conversion &&
1939      SCS2.Second == ICK_Pointer_Conversion &&
1940      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1941      FromType1->isPointerType() && FromType2->isPointerType() &&
1942      ToType1->isPointerType() && ToType2->isPointerType()) {
1943    QualType FromPointee1
1944      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1945    QualType ToPointee1
1946      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1947    QualType FromPointee2
1948      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1949    QualType ToPointee2
1950      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1951
1952    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1953    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1954    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1955    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1956
1957    //   -- conversion of C* to B* is better than conversion of C* to A*,
1958    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1959      if (IsDerivedFrom(ToPointee1, ToPointee2))
1960        return ImplicitConversionSequence::Better;
1961      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1962        return ImplicitConversionSequence::Worse;
1963
1964      if (ToIface1 && ToIface2) {
1965        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1966          return ImplicitConversionSequence::Better;
1967        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1968          return ImplicitConversionSequence::Worse;
1969      }
1970    }
1971
1972    //   -- conversion of B* to A* is better than conversion of C* to A*,
1973    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1974      if (IsDerivedFrom(FromPointee2, FromPointee1))
1975        return ImplicitConversionSequence::Better;
1976      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1977        return ImplicitConversionSequence::Worse;
1978
1979      if (FromIface1 && FromIface2) {
1980        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1981          return ImplicitConversionSequence::Better;
1982        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1983          return ImplicitConversionSequence::Worse;
1984      }
1985    }
1986  }
1987
1988  // Compare based on reference bindings.
1989  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1990      SCS1.Second == ICK_Derived_To_Base) {
1991    //   -- binding of an expression of type C to a reference of type
1992    //      B& is better than binding an expression of type C to a
1993    //      reference of type A&,
1994    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1995        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1996      if (IsDerivedFrom(ToType1, ToType2))
1997        return ImplicitConversionSequence::Better;
1998      else if (IsDerivedFrom(ToType2, ToType1))
1999        return ImplicitConversionSequence::Worse;
2000    }
2001
2002    //   -- binding of an expression of type B to a reference of type
2003    //      A& is better than binding an expression of type C to a
2004    //      reference of type A&,
2005    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2006        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2007      if (IsDerivedFrom(FromType2, FromType1))
2008        return ImplicitConversionSequence::Better;
2009      else if (IsDerivedFrom(FromType1, FromType2))
2010        return ImplicitConversionSequence::Worse;
2011    }
2012  }
2013
2014  // Ranking of member-pointer types.
2015  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2016      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2017      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2018    const MemberPointerType * FromMemPointer1 =
2019                                        FromType1->getAs<MemberPointerType>();
2020    const MemberPointerType * ToMemPointer1 =
2021                                          ToType1->getAs<MemberPointerType>();
2022    const MemberPointerType * FromMemPointer2 =
2023                                          FromType2->getAs<MemberPointerType>();
2024    const MemberPointerType * ToMemPointer2 =
2025                                          ToType2->getAs<MemberPointerType>();
2026    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2027    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2028    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2029    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2030    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2031    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2032    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2033    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2034    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2035    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2036      if (IsDerivedFrom(ToPointee1, ToPointee2))
2037        return ImplicitConversionSequence::Worse;
2038      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2039        return ImplicitConversionSequence::Better;
2040    }
2041    // conversion of B::* to C::* is better than conversion of A::* to C::*
2042    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2043      if (IsDerivedFrom(FromPointee1, FromPointee2))
2044        return ImplicitConversionSequence::Better;
2045      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2046        return ImplicitConversionSequence::Worse;
2047    }
2048  }
2049
2050  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
2051      SCS1.Second == ICK_Derived_To_Base) {
2052    //   -- conversion of C to B is better than conversion of C to A,
2053    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2054        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2055      if (IsDerivedFrom(ToType1, ToType2))
2056        return ImplicitConversionSequence::Better;
2057      else if (IsDerivedFrom(ToType2, ToType1))
2058        return ImplicitConversionSequence::Worse;
2059    }
2060
2061    //   -- conversion of B to A is better than conversion of C to A.
2062    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2063        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2064      if (IsDerivedFrom(FromType2, FromType1))
2065        return ImplicitConversionSequence::Better;
2066      else if (IsDerivedFrom(FromType1, FromType2))
2067        return ImplicitConversionSequence::Worse;
2068    }
2069  }
2070
2071  return ImplicitConversionSequence::Indistinguishable;
2072}
2073
2074/// TryCopyInitialization - Try to copy-initialize a value of type
2075/// ToType from the expression From. Return the implicit conversion
2076/// sequence required to pass this argument, which may be a bad
2077/// conversion sequence (meaning that the argument cannot be passed to
2078/// a parameter of this type). If @p SuppressUserConversions, then we
2079/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2080/// then we treat @p From as an rvalue, even if it is an lvalue.
2081ImplicitConversionSequence
2082Sema::TryCopyInitialization(Expr *From, QualType ToType,
2083                            bool SuppressUserConversions, bool ForceRValue,
2084                            bool InOverloadResolution) {
2085  if (ToType->isReferenceType()) {
2086    ImplicitConversionSequence ICS;
2087    CheckReferenceInit(From, ToType,
2088                       /*FIXME:*/From->getLocStart(),
2089                       SuppressUserConversions,
2090                       /*AllowExplicit=*/false,
2091                       ForceRValue,
2092                       &ICS);
2093    return ICS;
2094  } else {
2095    return TryImplicitConversion(From, ToType,
2096                                 SuppressUserConversions,
2097                                 /*AllowExplicit=*/false,
2098                                 ForceRValue,
2099                                 InOverloadResolution);
2100  }
2101}
2102
2103/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2104/// the expression @p From. Returns true (and emits a diagnostic) if there was
2105/// an error, returns false if the initialization succeeded. Elidable should
2106/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2107/// differently in C++0x for this case.
2108bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2109                                     AssignmentAction Action, bool Elidable) {
2110  if (!getLangOptions().CPlusPlus) {
2111    // In C, argument passing is the same as performing an assignment.
2112    QualType FromType = From->getType();
2113
2114    AssignConvertType ConvTy =
2115      CheckSingleAssignmentConstraints(ToType, From);
2116    if (ConvTy != Compatible &&
2117        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2118      ConvTy = Compatible;
2119
2120    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2121                                    FromType, From, Action);
2122  }
2123
2124  if (ToType->isReferenceType())
2125    return CheckReferenceInit(From, ToType,
2126                              /*FIXME:*/From->getLocStart(),
2127                              /*SuppressUserConversions=*/false,
2128                              /*AllowExplicit=*/false,
2129                              /*ForceRValue=*/false);
2130
2131  if (!PerformImplicitConversion(From, ToType, Action,
2132                                 /*AllowExplicit=*/false, Elidable))
2133    return false;
2134  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2135    return Diag(From->getSourceRange().getBegin(),
2136                diag::err_typecheck_convert_incompatible)
2137      << ToType << From->getType() << Action << From->getSourceRange();
2138  return true;
2139}
2140
2141/// TryObjectArgumentInitialization - Try to initialize the object
2142/// parameter of the given member function (@c Method) from the
2143/// expression @p From.
2144ImplicitConversionSequence
2145Sema::TryObjectArgumentInitialization(QualType FromType,
2146                                      CXXMethodDecl *Method,
2147                                      CXXRecordDecl *ActingContext) {
2148  QualType ClassType = Context.getTypeDeclType(ActingContext);
2149  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2150  //                 const volatile object.
2151  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2152    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2153  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2154
2155  // Set up the conversion sequence as a "bad" conversion, to allow us
2156  // to exit early.
2157  ImplicitConversionSequence ICS;
2158  ICS.Standard.setAsIdentityConversion();
2159  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2160
2161  // We need to have an object of class type.
2162  if (const PointerType *PT = FromType->getAs<PointerType>())
2163    FromType = PT->getPointeeType();
2164
2165  assert(FromType->isRecordType());
2166
2167  // The implicit object parameter is has the type "reference to cv X",
2168  // where X is the class of which the function is a member
2169  // (C++ [over.match.funcs]p4). However, when finding an implicit
2170  // conversion sequence for the argument, we are not allowed to
2171  // create temporaries or perform user-defined conversions
2172  // (C++ [over.match.funcs]p5). We perform a simplified version of
2173  // reference binding here, that allows class rvalues to bind to
2174  // non-constant references.
2175
2176  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2177  // with the implicit object parameter (C++ [over.match.funcs]p5).
2178  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2179  if (ImplicitParamType.getCVRQualifiers()
2180                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2181      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon))
2182    return ICS;
2183
2184  // Check that we have either the same type or a derived type. It
2185  // affects the conversion rank.
2186  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2187  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType())
2188    ICS.Standard.Second = ICK_Identity;
2189  else if (IsDerivedFrom(FromType, ClassType))
2190    ICS.Standard.Second = ICK_Derived_To_Base;
2191  else
2192    return ICS;
2193
2194  // Success. Mark this as a reference binding.
2195  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2196  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2197  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2198  ICS.Standard.ReferenceBinding = true;
2199  ICS.Standard.DirectBinding = true;
2200  ICS.Standard.RRefBinding = false;
2201  return ICS;
2202}
2203
2204/// PerformObjectArgumentInitialization - Perform initialization of
2205/// the implicit object parameter for the given Method with the given
2206/// expression.
2207bool
2208Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2209  QualType FromRecordType, DestType;
2210  QualType ImplicitParamRecordType  =
2211    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2212
2213  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2214    FromRecordType = PT->getPointeeType();
2215    DestType = Method->getThisType(Context);
2216  } else {
2217    FromRecordType = From->getType();
2218    DestType = ImplicitParamRecordType;
2219  }
2220
2221  // Note that we always use the true parent context when performing
2222  // the actual argument initialization.
2223  ImplicitConversionSequence ICS
2224    = TryObjectArgumentInitialization(From->getType(), Method,
2225                                      Method->getParent());
2226  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2227    return Diag(From->getSourceRange().getBegin(),
2228                diag::err_implicit_object_parameter_init)
2229       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2230
2231  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2232      CheckDerivedToBaseConversion(FromRecordType,
2233                                   ImplicitParamRecordType,
2234                                   From->getSourceRange().getBegin(),
2235                                   From->getSourceRange()))
2236    return true;
2237
2238  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2239                    /*isLvalue=*/true);
2240  return false;
2241}
2242
2243/// TryContextuallyConvertToBool - Attempt to contextually convert the
2244/// expression From to bool (C++0x [conv]p3).
2245ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2246  return TryImplicitConversion(From, Context.BoolTy,
2247                               // FIXME: Are these flags correct?
2248                               /*SuppressUserConversions=*/false,
2249                               /*AllowExplicit=*/true,
2250                               /*ForceRValue=*/false,
2251                               /*InOverloadResolution=*/false);
2252}
2253
2254/// PerformContextuallyConvertToBool - Perform a contextual conversion
2255/// of the expression From to bool (C++0x [conv]p3).
2256bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2257  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2258  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting))
2259    return false;
2260
2261  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2262    return  Diag(From->getSourceRange().getBegin(),
2263                 diag::err_typecheck_bool_condition)
2264                  << From->getType() << From->getSourceRange();
2265  return true;
2266}
2267
2268/// AddOverloadCandidate - Adds the given function to the set of
2269/// candidate functions, using the given function call arguments.  If
2270/// @p SuppressUserConversions, then don't allow user-defined
2271/// conversions via constructors or conversion operators.
2272/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2273/// hacky way to implement the overloading rules for elidable copy
2274/// initialization in C++0x (C++0x 12.8p15).
2275///
2276/// \para PartialOverloading true if we are performing "partial" overloading
2277/// based on an incomplete set of function arguments. This feature is used by
2278/// code completion.
2279void
2280Sema::AddOverloadCandidate(FunctionDecl *Function,
2281                           Expr **Args, unsigned NumArgs,
2282                           OverloadCandidateSet& CandidateSet,
2283                           bool SuppressUserConversions,
2284                           bool ForceRValue,
2285                           bool PartialOverloading) {
2286  const FunctionProtoType* Proto
2287    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2288  assert(Proto && "Functions without a prototype cannot be overloaded");
2289  assert(!isa<CXXConversionDecl>(Function) &&
2290         "Use AddConversionCandidate for conversion functions");
2291  assert(!Function->getDescribedFunctionTemplate() &&
2292         "Use AddTemplateOverloadCandidate for function templates");
2293
2294  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2295    if (!isa<CXXConstructorDecl>(Method)) {
2296      // If we get here, it's because we're calling a member function
2297      // that is named without a member access expression (e.g.,
2298      // "this->f") that was either written explicitly or created
2299      // implicitly. This can happen with a qualified call to a member
2300      // function, e.g., X::f(). We use an empty type for the implied
2301      // object argument (C++ [over.call.func]p3), and the acting context
2302      // is irrelevant.
2303      AddMethodCandidate(Method, Method->getParent(),
2304                         QualType(), Args, NumArgs, CandidateSet,
2305                         SuppressUserConversions, ForceRValue);
2306      return;
2307    }
2308    // We treat a constructor like a non-member function, since its object
2309    // argument doesn't participate in overload resolution.
2310  }
2311
2312  if (!CandidateSet.isNewCandidate(Function))
2313    return;
2314
2315  // Overload resolution is always an unevaluated context.
2316  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2317
2318  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2319    // C++ [class.copy]p3:
2320    //   A member function template is never instantiated to perform the copy
2321    //   of a class object to an object of its class type.
2322    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2323    if (NumArgs == 1 &&
2324        Constructor->isCopyConstructorLikeSpecialization() &&
2325        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2326      return;
2327  }
2328
2329  // Add this candidate
2330  CandidateSet.push_back(OverloadCandidate());
2331  OverloadCandidate& Candidate = CandidateSet.back();
2332  Candidate.Function = Function;
2333  Candidate.Viable = true;
2334  Candidate.IsSurrogate = false;
2335  Candidate.IgnoreObjectArgument = false;
2336
2337  unsigned NumArgsInProto = Proto->getNumArgs();
2338
2339  // (C++ 13.3.2p2): A candidate function having fewer than m
2340  // parameters is viable only if it has an ellipsis in its parameter
2341  // list (8.3.5).
2342  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2343      !Proto->isVariadic()) {
2344    Candidate.Viable = false;
2345    return;
2346  }
2347
2348  // (C++ 13.3.2p2): A candidate function having more than m parameters
2349  // is viable only if the (m+1)st parameter has a default argument
2350  // (8.3.6). For the purposes of overload resolution, the
2351  // parameter list is truncated on the right, so that there are
2352  // exactly m parameters.
2353  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2354  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2355    // Not enough arguments.
2356    Candidate.Viable = false;
2357    return;
2358  }
2359
2360  // Determine the implicit conversion sequences for each of the
2361  // arguments.
2362  Candidate.Conversions.resize(NumArgs);
2363  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2364    if (ArgIdx < NumArgsInProto) {
2365      // (C++ 13.3.2p3): for F to be a viable function, there shall
2366      // exist for each argument an implicit conversion sequence
2367      // (13.3.3.1) that converts that argument to the corresponding
2368      // parameter of F.
2369      QualType ParamType = Proto->getArgType(ArgIdx);
2370      Candidate.Conversions[ArgIdx]
2371        = TryCopyInitialization(Args[ArgIdx], ParamType,
2372                                SuppressUserConversions, ForceRValue,
2373                                /*InOverloadResolution=*/true);
2374      if (Candidate.Conversions[ArgIdx].ConversionKind
2375            == ImplicitConversionSequence::BadConversion) {
2376      // 13.3.3.1-p10 If several different sequences of conversions exist that
2377      // each convert the argument to the parameter type, the implicit conversion
2378      // sequence associated with the parameter is defined to be the unique conversion
2379      // sequence designated the ambiguous conversion sequence. For the purpose of
2380      // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous
2381      // conversion sequence is treated as a user-defined sequence that is
2382      // indistinguishable from any other user-defined conversion sequence
2383        if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) {
2384          Candidate.Conversions[ArgIdx].ConversionKind =
2385            ImplicitConversionSequence::UserDefinedConversion;
2386          // Set the conversion function to one of them. As due to ambiguity,
2387          // they carry the same weight and is needed for overload resolution
2388          // later.
2389          Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction =
2390            Candidate.Conversions[ArgIdx].ConversionFunctionSet[0];
2391        }
2392        else {
2393          Candidate.Viable = false;
2394          break;
2395        }
2396      }
2397    } else {
2398      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2399      // argument for which there is no corresponding parameter is
2400      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2401      Candidate.Conversions[ArgIdx].ConversionKind
2402        = ImplicitConversionSequence::EllipsisConversion;
2403    }
2404  }
2405}
2406
2407/// \brief Add all of the function declarations in the given function set to
2408/// the overload canddiate set.
2409void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2410                                 Expr **Args, unsigned NumArgs,
2411                                 OverloadCandidateSet& CandidateSet,
2412                                 bool SuppressUserConversions) {
2413  for (FunctionSet::const_iterator F = Functions.begin(),
2414                                FEnd = Functions.end();
2415       F != FEnd; ++F) {
2416    // FIXME: using declarations
2417    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2418      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2419        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2420                           cast<CXXMethodDecl>(FD)->getParent(),
2421                           Args[0]->getType(), Args + 1, NumArgs - 1,
2422                           CandidateSet, SuppressUserConversions);
2423      else
2424        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2425                             SuppressUserConversions);
2426    } else {
2427      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2428      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2429          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2430        AddMethodTemplateCandidate(FunTmpl,
2431                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2432                                   /*FIXME: explicit args */ 0,
2433                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2434                                   CandidateSet,
2435                                   SuppressUserConversions);
2436      else
2437        AddTemplateOverloadCandidate(FunTmpl,
2438                                     /*FIXME: explicit args */ 0,
2439                                     Args, NumArgs, CandidateSet,
2440                                     SuppressUserConversions);
2441    }
2442  }
2443}
2444
2445/// AddMethodCandidate - Adds a named decl (which is some kind of
2446/// method) as a method candidate to the given overload set.
2447void Sema::AddMethodCandidate(NamedDecl *Decl,
2448                              QualType ObjectType,
2449                              Expr **Args, unsigned NumArgs,
2450                              OverloadCandidateSet& CandidateSet,
2451                              bool SuppressUserConversions, bool ForceRValue) {
2452
2453  // FIXME: use this
2454  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2455
2456  if (isa<UsingShadowDecl>(Decl))
2457    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2458
2459  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2460    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2461           "Expected a member function template");
2462    AddMethodTemplateCandidate(TD, ActingContext, /*ExplicitArgs*/ 0,
2463                               ObjectType, Args, NumArgs,
2464                               CandidateSet,
2465                               SuppressUserConversions,
2466                               ForceRValue);
2467  } else {
2468    AddMethodCandidate(cast<CXXMethodDecl>(Decl), ActingContext,
2469                       ObjectType, Args, NumArgs,
2470                       CandidateSet, SuppressUserConversions, ForceRValue);
2471  }
2472}
2473
2474/// AddMethodCandidate - Adds the given C++ member function to the set
2475/// of candidate functions, using the given function call arguments
2476/// and the object argument (@c Object). For example, in a call
2477/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2478/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2479/// allow user-defined conversions via constructors or conversion
2480/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2481/// a slightly hacky way to implement the overloading rules for elidable copy
2482/// initialization in C++0x (C++0x 12.8p15).
2483void
2484Sema::AddMethodCandidate(CXXMethodDecl *Method, CXXRecordDecl *ActingContext,
2485                         QualType ObjectType, Expr **Args, unsigned NumArgs,
2486                         OverloadCandidateSet& CandidateSet,
2487                         bool SuppressUserConversions, bool ForceRValue) {
2488  const FunctionProtoType* Proto
2489    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2490  assert(Proto && "Methods without a prototype cannot be overloaded");
2491  assert(!isa<CXXConversionDecl>(Method) &&
2492         "Use AddConversionCandidate for conversion functions");
2493  assert(!isa<CXXConstructorDecl>(Method) &&
2494         "Use AddOverloadCandidate for constructors");
2495
2496  if (!CandidateSet.isNewCandidate(Method))
2497    return;
2498
2499  // Overload resolution is always an unevaluated context.
2500  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2501
2502  // Add this candidate
2503  CandidateSet.push_back(OverloadCandidate());
2504  OverloadCandidate& Candidate = CandidateSet.back();
2505  Candidate.Function = Method;
2506  Candidate.IsSurrogate = false;
2507  Candidate.IgnoreObjectArgument = false;
2508
2509  unsigned NumArgsInProto = Proto->getNumArgs();
2510
2511  // (C++ 13.3.2p2): A candidate function having fewer than m
2512  // parameters is viable only if it has an ellipsis in its parameter
2513  // list (8.3.5).
2514  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2515    Candidate.Viable = false;
2516    return;
2517  }
2518
2519  // (C++ 13.3.2p2): A candidate function having more than m parameters
2520  // is viable only if the (m+1)st parameter has a default argument
2521  // (8.3.6). For the purposes of overload resolution, the
2522  // parameter list is truncated on the right, so that there are
2523  // exactly m parameters.
2524  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2525  if (NumArgs < MinRequiredArgs) {
2526    // Not enough arguments.
2527    Candidate.Viable = false;
2528    return;
2529  }
2530
2531  Candidate.Viable = true;
2532  Candidate.Conversions.resize(NumArgs + 1);
2533
2534  if (Method->isStatic() || ObjectType.isNull())
2535    // The implicit object argument is ignored.
2536    Candidate.IgnoreObjectArgument = true;
2537  else {
2538    // Determine the implicit conversion sequence for the object
2539    // parameter.
2540    Candidate.Conversions[0]
2541      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2542    if (Candidate.Conversions[0].ConversionKind
2543          == ImplicitConversionSequence::BadConversion) {
2544      Candidate.Viable = false;
2545      return;
2546    }
2547  }
2548
2549  // Determine the implicit conversion sequences for each of the
2550  // arguments.
2551  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2552    if (ArgIdx < NumArgsInProto) {
2553      // (C++ 13.3.2p3): for F to be a viable function, there shall
2554      // exist for each argument an implicit conversion sequence
2555      // (13.3.3.1) that converts that argument to the corresponding
2556      // parameter of F.
2557      QualType ParamType = Proto->getArgType(ArgIdx);
2558      Candidate.Conversions[ArgIdx + 1]
2559        = TryCopyInitialization(Args[ArgIdx], ParamType,
2560                                SuppressUserConversions, ForceRValue,
2561                                /*InOverloadResolution=*/true);
2562      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2563            == ImplicitConversionSequence::BadConversion) {
2564        Candidate.Viable = false;
2565        break;
2566      }
2567    } else {
2568      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2569      // argument for which there is no corresponding parameter is
2570      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2571      Candidate.Conversions[ArgIdx + 1].ConversionKind
2572        = ImplicitConversionSequence::EllipsisConversion;
2573    }
2574  }
2575}
2576
2577/// \brief Add a C++ member function template as a candidate to the candidate
2578/// set, using template argument deduction to produce an appropriate member
2579/// function template specialization.
2580void
2581Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2582                                 CXXRecordDecl *ActingContext,
2583                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2584                                 QualType ObjectType,
2585                                 Expr **Args, unsigned NumArgs,
2586                                 OverloadCandidateSet& CandidateSet,
2587                                 bool SuppressUserConversions,
2588                                 bool ForceRValue) {
2589  if (!CandidateSet.isNewCandidate(MethodTmpl))
2590    return;
2591
2592  // C++ [over.match.funcs]p7:
2593  //   In each case where a candidate is a function template, candidate
2594  //   function template specializations are generated using template argument
2595  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2596  //   candidate functions in the usual way.113) A given name can refer to one
2597  //   or more function templates and also to a set of overloaded non-template
2598  //   functions. In such a case, the candidate functions generated from each
2599  //   function template are combined with the set of non-template candidate
2600  //   functions.
2601  TemplateDeductionInfo Info(Context);
2602  FunctionDecl *Specialization = 0;
2603  if (TemplateDeductionResult Result
2604      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2605                                Args, NumArgs, Specialization, Info)) {
2606        // FIXME: Record what happened with template argument deduction, so
2607        // that we can give the user a beautiful diagnostic.
2608        (void)Result;
2609        return;
2610      }
2611
2612  // Add the function template specialization produced by template argument
2613  // deduction as a candidate.
2614  assert(Specialization && "Missing member function template specialization?");
2615  assert(isa<CXXMethodDecl>(Specialization) &&
2616         "Specialization is not a member function?");
2617  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), ActingContext,
2618                     ObjectType, Args, NumArgs,
2619                     CandidateSet, SuppressUserConversions, ForceRValue);
2620}
2621
2622/// \brief Add a C++ function template specialization as a candidate
2623/// in the candidate set, using template argument deduction to produce
2624/// an appropriate function template specialization.
2625void
2626Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2627                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2628                                   Expr **Args, unsigned NumArgs,
2629                                   OverloadCandidateSet& CandidateSet,
2630                                   bool SuppressUserConversions,
2631                                   bool ForceRValue) {
2632  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2633    return;
2634
2635  // C++ [over.match.funcs]p7:
2636  //   In each case where a candidate is a function template, candidate
2637  //   function template specializations are generated using template argument
2638  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2639  //   candidate functions in the usual way.113) A given name can refer to one
2640  //   or more function templates and also to a set of overloaded non-template
2641  //   functions. In such a case, the candidate functions generated from each
2642  //   function template are combined with the set of non-template candidate
2643  //   functions.
2644  TemplateDeductionInfo Info(Context);
2645  FunctionDecl *Specialization = 0;
2646  if (TemplateDeductionResult Result
2647        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2648                                  Args, NumArgs, Specialization, Info)) {
2649    // FIXME: Record what happened with template argument deduction, so
2650    // that we can give the user a beautiful diagnostic.
2651    (void) Result;
2652
2653    CandidateSet.push_back(OverloadCandidate());
2654    OverloadCandidate &Candidate = CandidateSet.back();
2655    Candidate.Function = FunctionTemplate->getTemplatedDecl();
2656    Candidate.Viable = false;
2657    Candidate.IsSurrogate = false;
2658    Candidate.IgnoreObjectArgument = false;
2659    return;
2660  }
2661
2662  // Add the function template specialization produced by template argument
2663  // deduction as a candidate.
2664  assert(Specialization && "Missing function template specialization?");
2665  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2666                       SuppressUserConversions, ForceRValue);
2667}
2668
2669/// AddConversionCandidate - Add a C++ conversion function as a
2670/// candidate in the candidate set (C++ [over.match.conv],
2671/// C++ [over.match.copy]). From is the expression we're converting from,
2672/// and ToType is the type that we're eventually trying to convert to
2673/// (which may or may not be the same type as the type that the
2674/// conversion function produces).
2675void
2676Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2677                             CXXRecordDecl *ActingContext,
2678                             Expr *From, QualType ToType,
2679                             OverloadCandidateSet& CandidateSet) {
2680  assert(!Conversion->getDescribedFunctionTemplate() &&
2681         "Conversion function templates use AddTemplateConversionCandidate");
2682
2683  if (!CandidateSet.isNewCandidate(Conversion))
2684    return;
2685
2686  // Overload resolution is always an unevaluated context.
2687  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2688
2689  // Add this candidate
2690  CandidateSet.push_back(OverloadCandidate());
2691  OverloadCandidate& Candidate = CandidateSet.back();
2692  Candidate.Function = Conversion;
2693  Candidate.IsSurrogate = false;
2694  Candidate.IgnoreObjectArgument = false;
2695  Candidate.FinalConversion.setAsIdentityConversion();
2696  Candidate.FinalConversion.FromTypePtr
2697    = Conversion->getConversionType().getAsOpaquePtr();
2698  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2699
2700  // Determine the implicit conversion sequence for the implicit
2701  // object parameter.
2702  Candidate.Viable = true;
2703  Candidate.Conversions.resize(1);
2704  Candidate.Conversions[0]
2705    = TryObjectArgumentInitialization(From->getType(), Conversion,
2706                                      ActingContext);
2707  // Conversion functions to a different type in the base class is visible in
2708  // the derived class.  So, a derived to base conversion should not participate
2709  // in overload resolution.
2710  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2711    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2712  if (Candidate.Conversions[0].ConversionKind
2713      == ImplicitConversionSequence::BadConversion) {
2714    Candidate.Viable = false;
2715    return;
2716  }
2717
2718  // We won't go through a user-define type conversion function to convert a
2719  // derived to base as such conversions are given Conversion Rank. They only
2720  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2721  QualType FromCanon
2722    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2723  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2724  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2725    Candidate.Viable = false;
2726    return;
2727  }
2728
2729
2730  // To determine what the conversion from the result of calling the
2731  // conversion function to the type we're eventually trying to
2732  // convert to (ToType), we need to synthesize a call to the
2733  // conversion function and attempt copy initialization from it. This
2734  // makes sure that we get the right semantics with respect to
2735  // lvalues/rvalues and the type. Fortunately, we can allocate this
2736  // call on the stack and we don't need its arguments to be
2737  // well-formed.
2738  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2739                            From->getLocStart());
2740  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2741                                CastExpr::CK_FunctionToPointerDecay,
2742                                &ConversionRef, false);
2743
2744  // Note that it is safe to allocate CallExpr on the stack here because
2745  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2746  // allocator).
2747  CallExpr Call(Context, &ConversionFn, 0, 0,
2748                Conversion->getConversionType().getNonReferenceType(),
2749                From->getLocStart());
2750  ImplicitConversionSequence ICS =
2751    TryCopyInitialization(&Call, ToType,
2752                          /*SuppressUserConversions=*/true,
2753                          /*ForceRValue=*/false,
2754                          /*InOverloadResolution=*/false);
2755
2756  switch (ICS.ConversionKind) {
2757  case ImplicitConversionSequence::StandardConversion:
2758    Candidate.FinalConversion = ICS.Standard;
2759    break;
2760
2761  case ImplicitConversionSequence::BadConversion:
2762    Candidate.Viable = false;
2763    break;
2764
2765  default:
2766    assert(false &&
2767           "Can only end up with a standard conversion sequence or failure");
2768  }
2769}
2770
2771/// \brief Adds a conversion function template specialization
2772/// candidate to the overload set, using template argument deduction
2773/// to deduce the template arguments of the conversion function
2774/// template from the type that we are converting to (C++
2775/// [temp.deduct.conv]).
2776void
2777Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2778                                     CXXRecordDecl *ActingDC,
2779                                     Expr *From, QualType ToType,
2780                                     OverloadCandidateSet &CandidateSet) {
2781  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2782         "Only conversion function templates permitted here");
2783
2784  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2785    return;
2786
2787  TemplateDeductionInfo Info(Context);
2788  CXXConversionDecl *Specialization = 0;
2789  if (TemplateDeductionResult Result
2790        = DeduceTemplateArguments(FunctionTemplate, ToType,
2791                                  Specialization, Info)) {
2792    // FIXME: Record what happened with template argument deduction, so
2793    // that we can give the user a beautiful diagnostic.
2794    (void)Result;
2795    return;
2796  }
2797
2798  // Add the conversion function template specialization produced by
2799  // template argument deduction as a candidate.
2800  assert(Specialization && "Missing function template specialization?");
2801  AddConversionCandidate(Specialization, ActingDC, From, ToType, CandidateSet);
2802}
2803
2804/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2805/// converts the given @c Object to a function pointer via the
2806/// conversion function @c Conversion, and then attempts to call it
2807/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2808/// the type of function that we'll eventually be calling.
2809void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2810                                 CXXRecordDecl *ActingContext,
2811                                 const FunctionProtoType *Proto,
2812                                 QualType ObjectType,
2813                                 Expr **Args, unsigned NumArgs,
2814                                 OverloadCandidateSet& CandidateSet) {
2815  if (!CandidateSet.isNewCandidate(Conversion))
2816    return;
2817
2818  // Overload resolution is always an unevaluated context.
2819  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2820
2821  CandidateSet.push_back(OverloadCandidate());
2822  OverloadCandidate& Candidate = CandidateSet.back();
2823  Candidate.Function = 0;
2824  Candidate.Surrogate = Conversion;
2825  Candidate.Viable = true;
2826  Candidate.IsSurrogate = true;
2827  Candidate.IgnoreObjectArgument = false;
2828  Candidate.Conversions.resize(NumArgs + 1);
2829
2830  // Determine the implicit conversion sequence for the implicit
2831  // object parameter.
2832  ImplicitConversionSequence ObjectInit
2833    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2834  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2835    Candidate.Viable = false;
2836    return;
2837  }
2838
2839  // The first conversion is actually a user-defined conversion whose
2840  // first conversion is ObjectInit's standard conversion (which is
2841  // effectively a reference binding). Record it as such.
2842  Candidate.Conversions[0].ConversionKind
2843    = ImplicitConversionSequence::UserDefinedConversion;
2844  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2845  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2846  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2847  Candidate.Conversions[0].UserDefined.After
2848    = Candidate.Conversions[0].UserDefined.Before;
2849  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2850
2851  // Find the
2852  unsigned NumArgsInProto = Proto->getNumArgs();
2853
2854  // (C++ 13.3.2p2): A candidate function having fewer than m
2855  // parameters is viable only if it has an ellipsis in its parameter
2856  // list (8.3.5).
2857  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2858    Candidate.Viable = false;
2859    return;
2860  }
2861
2862  // Function types don't have any default arguments, so just check if
2863  // we have enough arguments.
2864  if (NumArgs < NumArgsInProto) {
2865    // Not enough arguments.
2866    Candidate.Viable = false;
2867    return;
2868  }
2869
2870  // Determine the implicit conversion sequences for each of the
2871  // arguments.
2872  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2873    if (ArgIdx < NumArgsInProto) {
2874      // (C++ 13.3.2p3): for F to be a viable function, there shall
2875      // exist for each argument an implicit conversion sequence
2876      // (13.3.3.1) that converts that argument to the corresponding
2877      // parameter of F.
2878      QualType ParamType = Proto->getArgType(ArgIdx);
2879      Candidate.Conversions[ArgIdx + 1]
2880        = TryCopyInitialization(Args[ArgIdx], ParamType,
2881                                /*SuppressUserConversions=*/false,
2882                                /*ForceRValue=*/false,
2883                                /*InOverloadResolution=*/false);
2884      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2885            == ImplicitConversionSequence::BadConversion) {
2886        Candidate.Viable = false;
2887        break;
2888      }
2889    } else {
2890      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2891      // argument for which there is no corresponding parameter is
2892      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2893      Candidate.Conversions[ArgIdx + 1].ConversionKind
2894        = ImplicitConversionSequence::EllipsisConversion;
2895    }
2896  }
2897}
2898
2899// FIXME: This will eventually be removed, once we've migrated all of the
2900// operator overloading logic over to the scheme used by binary operators, which
2901// works for template instantiation.
2902void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2903                                 SourceLocation OpLoc,
2904                                 Expr **Args, unsigned NumArgs,
2905                                 OverloadCandidateSet& CandidateSet,
2906                                 SourceRange OpRange) {
2907  FunctionSet Functions;
2908
2909  QualType T1 = Args[0]->getType();
2910  QualType T2;
2911  if (NumArgs > 1)
2912    T2 = Args[1]->getType();
2913
2914  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2915  if (S)
2916    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2917  ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions);
2918  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2919  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2920  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2921}
2922
2923/// \brief Add overload candidates for overloaded operators that are
2924/// member functions.
2925///
2926/// Add the overloaded operator candidates that are member functions
2927/// for the operator Op that was used in an operator expression such
2928/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2929/// CandidateSet will store the added overload candidates. (C++
2930/// [over.match.oper]).
2931void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2932                                       SourceLocation OpLoc,
2933                                       Expr **Args, unsigned NumArgs,
2934                                       OverloadCandidateSet& CandidateSet,
2935                                       SourceRange OpRange) {
2936  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2937
2938  // C++ [over.match.oper]p3:
2939  //   For a unary operator @ with an operand of a type whose
2940  //   cv-unqualified version is T1, and for a binary operator @ with
2941  //   a left operand of a type whose cv-unqualified version is T1 and
2942  //   a right operand of a type whose cv-unqualified version is T2,
2943  //   three sets of candidate functions, designated member
2944  //   candidates, non-member candidates and built-in candidates, are
2945  //   constructed as follows:
2946  QualType T1 = Args[0]->getType();
2947  QualType T2;
2948  if (NumArgs > 1)
2949    T2 = Args[1]->getType();
2950
2951  //     -- If T1 is a class type, the set of member candidates is the
2952  //        result of the qualified lookup of T1::operator@
2953  //        (13.3.1.1.1); otherwise, the set of member candidates is
2954  //        empty.
2955  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2956    // Complete the type if it can be completed. Otherwise, we're done.
2957    if (RequireCompleteType(OpLoc, T1, PDiag()))
2958      return;
2959
2960    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
2961    LookupQualifiedName(Operators, T1Rec->getDecl());
2962    Operators.suppressDiagnostics();
2963
2964    for (LookupResult::iterator Oper = Operators.begin(),
2965                             OperEnd = Operators.end();
2966         Oper != OperEnd;
2967         ++Oper)
2968      AddMethodCandidate(*Oper, Args[0]->getType(),
2969                         Args + 1, NumArgs - 1, CandidateSet,
2970                         /* SuppressUserConversions = */ false);
2971  }
2972}
2973
2974/// AddBuiltinCandidate - Add a candidate for a built-in
2975/// operator. ResultTy and ParamTys are the result and parameter types
2976/// of the built-in candidate, respectively. Args and NumArgs are the
2977/// arguments being passed to the candidate. IsAssignmentOperator
2978/// should be true when this built-in candidate is an assignment
2979/// operator. NumContextualBoolArguments is the number of arguments
2980/// (at the beginning of the argument list) that will be contextually
2981/// converted to bool.
2982void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2983                               Expr **Args, unsigned NumArgs,
2984                               OverloadCandidateSet& CandidateSet,
2985                               bool IsAssignmentOperator,
2986                               unsigned NumContextualBoolArguments) {
2987  // Overload resolution is always an unevaluated context.
2988  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2989
2990  // Add this candidate
2991  CandidateSet.push_back(OverloadCandidate());
2992  OverloadCandidate& Candidate = CandidateSet.back();
2993  Candidate.Function = 0;
2994  Candidate.IsSurrogate = false;
2995  Candidate.IgnoreObjectArgument = false;
2996  Candidate.BuiltinTypes.ResultTy = ResultTy;
2997  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2998    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2999
3000  // Determine the implicit conversion sequences for each of the
3001  // arguments.
3002  Candidate.Viable = true;
3003  Candidate.Conversions.resize(NumArgs);
3004  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3005    // C++ [over.match.oper]p4:
3006    //   For the built-in assignment operators, conversions of the
3007    //   left operand are restricted as follows:
3008    //     -- no temporaries are introduced to hold the left operand, and
3009    //     -- no user-defined conversions are applied to the left
3010    //        operand to achieve a type match with the left-most
3011    //        parameter of a built-in candidate.
3012    //
3013    // We block these conversions by turning off user-defined
3014    // conversions, since that is the only way that initialization of
3015    // a reference to a non-class type can occur from something that
3016    // is not of the same type.
3017    if (ArgIdx < NumContextualBoolArguments) {
3018      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3019             "Contextual conversion to bool requires bool type");
3020      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3021    } else {
3022      Candidate.Conversions[ArgIdx]
3023        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3024                                ArgIdx == 0 && IsAssignmentOperator,
3025                                /*ForceRValue=*/false,
3026                                /*InOverloadResolution=*/false);
3027    }
3028    if (Candidate.Conversions[ArgIdx].ConversionKind
3029        == ImplicitConversionSequence::BadConversion) {
3030      Candidate.Viable = false;
3031      break;
3032    }
3033  }
3034}
3035
3036/// BuiltinCandidateTypeSet - A set of types that will be used for the
3037/// candidate operator functions for built-in operators (C++
3038/// [over.built]). The types are separated into pointer types and
3039/// enumeration types.
3040class BuiltinCandidateTypeSet  {
3041  /// TypeSet - A set of types.
3042  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3043
3044  /// PointerTypes - The set of pointer types that will be used in the
3045  /// built-in candidates.
3046  TypeSet PointerTypes;
3047
3048  /// MemberPointerTypes - The set of member pointer types that will be
3049  /// used in the built-in candidates.
3050  TypeSet MemberPointerTypes;
3051
3052  /// EnumerationTypes - The set of enumeration types that will be
3053  /// used in the built-in candidates.
3054  TypeSet EnumerationTypes;
3055
3056  /// Sema - The semantic analysis instance where we are building the
3057  /// candidate type set.
3058  Sema &SemaRef;
3059
3060  /// Context - The AST context in which we will build the type sets.
3061  ASTContext &Context;
3062
3063  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3064                                               const Qualifiers &VisibleQuals);
3065  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3066
3067public:
3068  /// iterator - Iterates through the types that are part of the set.
3069  typedef TypeSet::iterator iterator;
3070
3071  BuiltinCandidateTypeSet(Sema &SemaRef)
3072    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3073
3074  void AddTypesConvertedFrom(QualType Ty,
3075                             SourceLocation Loc,
3076                             bool AllowUserConversions,
3077                             bool AllowExplicitConversions,
3078                             const Qualifiers &VisibleTypeConversionsQuals);
3079
3080  /// pointer_begin - First pointer type found;
3081  iterator pointer_begin() { return PointerTypes.begin(); }
3082
3083  /// pointer_end - Past the last pointer type found;
3084  iterator pointer_end() { return PointerTypes.end(); }
3085
3086  /// member_pointer_begin - First member pointer type found;
3087  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3088
3089  /// member_pointer_end - Past the last member pointer type found;
3090  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3091
3092  /// enumeration_begin - First enumeration type found;
3093  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3094
3095  /// enumeration_end - Past the last enumeration type found;
3096  iterator enumeration_end() { return EnumerationTypes.end(); }
3097};
3098
3099/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3100/// the set of pointer types along with any more-qualified variants of
3101/// that type. For example, if @p Ty is "int const *", this routine
3102/// will add "int const *", "int const volatile *", "int const
3103/// restrict *", and "int const volatile restrict *" to the set of
3104/// pointer types. Returns true if the add of @p Ty itself succeeded,
3105/// false otherwise.
3106///
3107/// FIXME: what to do about extended qualifiers?
3108bool
3109BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3110                                             const Qualifiers &VisibleQuals) {
3111
3112  // Insert this type.
3113  if (!PointerTypes.insert(Ty))
3114    return false;
3115
3116  const PointerType *PointerTy = Ty->getAs<PointerType>();
3117  assert(PointerTy && "type was not a pointer type!");
3118
3119  QualType PointeeTy = PointerTy->getPointeeType();
3120  // Don't add qualified variants of arrays. For one, they're not allowed
3121  // (the qualifier would sink to the element type), and for another, the
3122  // only overload situation where it matters is subscript or pointer +- int,
3123  // and those shouldn't have qualifier variants anyway.
3124  if (PointeeTy->isArrayType())
3125    return true;
3126  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3127  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3128    BaseCVR = Array->getElementType().getCVRQualifiers();
3129  bool hasVolatile = VisibleQuals.hasVolatile();
3130  bool hasRestrict = VisibleQuals.hasRestrict();
3131
3132  // Iterate through all strict supersets of BaseCVR.
3133  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3134    if ((CVR | BaseCVR) != CVR) continue;
3135    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3136    // in the types.
3137    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3138    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3139    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3140    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3141  }
3142
3143  return true;
3144}
3145
3146/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3147/// to the set of pointer types along with any more-qualified variants of
3148/// that type. For example, if @p Ty is "int const *", this routine
3149/// will add "int const *", "int const volatile *", "int const
3150/// restrict *", and "int const volatile restrict *" to the set of
3151/// pointer types. Returns true if the add of @p Ty itself succeeded,
3152/// false otherwise.
3153///
3154/// FIXME: what to do about extended qualifiers?
3155bool
3156BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3157    QualType Ty) {
3158  // Insert this type.
3159  if (!MemberPointerTypes.insert(Ty))
3160    return false;
3161
3162  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3163  assert(PointerTy && "type was not a member pointer type!");
3164
3165  QualType PointeeTy = PointerTy->getPointeeType();
3166  // Don't add qualified variants of arrays. For one, they're not allowed
3167  // (the qualifier would sink to the element type), and for another, the
3168  // only overload situation where it matters is subscript or pointer +- int,
3169  // and those shouldn't have qualifier variants anyway.
3170  if (PointeeTy->isArrayType())
3171    return true;
3172  const Type *ClassTy = PointerTy->getClass();
3173
3174  // Iterate through all strict supersets of the pointee type's CVR
3175  // qualifiers.
3176  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3177  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3178    if ((CVR | BaseCVR) != CVR) continue;
3179
3180    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3181    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3182  }
3183
3184  return true;
3185}
3186
3187/// AddTypesConvertedFrom - Add each of the types to which the type @p
3188/// Ty can be implicit converted to the given set of @p Types. We're
3189/// primarily interested in pointer types and enumeration types. We also
3190/// take member pointer types, for the conditional operator.
3191/// AllowUserConversions is true if we should look at the conversion
3192/// functions of a class type, and AllowExplicitConversions if we
3193/// should also include the explicit conversion functions of a class
3194/// type.
3195void
3196BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3197                                               SourceLocation Loc,
3198                                               bool AllowUserConversions,
3199                                               bool AllowExplicitConversions,
3200                                               const Qualifiers &VisibleQuals) {
3201  // Only deal with canonical types.
3202  Ty = Context.getCanonicalType(Ty);
3203
3204  // Look through reference types; they aren't part of the type of an
3205  // expression for the purposes of conversions.
3206  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3207    Ty = RefTy->getPointeeType();
3208
3209  // We don't care about qualifiers on the type.
3210  Ty = Ty.getLocalUnqualifiedType();
3211
3212  // If we're dealing with an array type, decay to the pointer.
3213  if (Ty->isArrayType())
3214    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3215
3216  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3217    QualType PointeeTy = PointerTy->getPointeeType();
3218
3219    // Insert our type, and its more-qualified variants, into the set
3220    // of types.
3221    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3222      return;
3223  } else if (Ty->isMemberPointerType()) {
3224    // Member pointers are far easier, since the pointee can't be converted.
3225    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3226      return;
3227  } else if (Ty->isEnumeralType()) {
3228    EnumerationTypes.insert(Ty);
3229  } else if (AllowUserConversions) {
3230    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3231      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3232        // No conversion functions in incomplete types.
3233        return;
3234      }
3235
3236      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3237      const UnresolvedSet *Conversions
3238        = ClassDecl->getVisibleConversionFunctions();
3239      for (UnresolvedSet::iterator I = Conversions->begin(),
3240             E = Conversions->end(); I != E; ++I) {
3241
3242        // Skip conversion function templates; they don't tell us anything
3243        // about which builtin types we can convert to.
3244        if (isa<FunctionTemplateDecl>(*I))
3245          continue;
3246
3247        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3248        if (AllowExplicitConversions || !Conv->isExplicit()) {
3249          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3250                                VisibleQuals);
3251        }
3252      }
3253    }
3254  }
3255}
3256
3257/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3258/// the volatile- and non-volatile-qualified assignment operators for the
3259/// given type to the candidate set.
3260static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3261                                                   QualType T,
3262                                                   Expr **Args,
3263                                                   unsigned NumArgs,
3264                                    OverloadCandidateSet &CandidateSet) {
3265  QualType ParamTypes[2];
3266
3267  // T& operator=(T&, T)
3268  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3269  ParamTypes[1] = T;
3270  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3271                        /*IsAssignmentOperator=*/true);
3272
3273  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3274    // volatile T& operator=(volatile T&, T)
3275    ParamTypes[0]
3276      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3277    ParamTypes[1] = T;
3278    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3279                          /*IsAssignmentOperator=*/true);
3280  }
3281}
3282
3283/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3284/// if any, found in visible type conversion functions found in ArgExpr's type.
3285static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3286    Qualifiers VRQuals;
3287    const RecordType *TyRec;
3288    if (const MemberPointerType *RHSMPType =
3289        ArgExpr->getType()->getAs<MemberPointerType>())
3290      TyRec = cast<RecordType>(RHSMPType->getClass());
3291    else
3292      TyRec = ArgExpr->getType()->getAs<RecordType>();
3293    if (!TyRec) {
3294      // Just to be safe, assume the worst case.
3295      VRQuals.addVolatile();
3296      VRQuals.addRestrict();
3297      return VRQuals;
3298    }
3299
3300    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3301    const UnresolvedSet *Conversions =
3302      ClassDecl->getVisibleConversionFunctions();
3303
3304    for (UnresolvedSet::iterator I = Conversions->begin(),
3305           E = Conversions->end(); I != E; ++I) {
3306      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3307        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3308        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3309          CanTy = ResTypeRef->getPointeeType();
3310        // Need to go down the pointer/mempointer chain and add qualifiers
3311        // as see them.
3312        bool done = false;
3313        while (!done) {
3314          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3315            CanTy = ResTypePtr->getPointeeType();
3316          else if (const MemberPointerType *ResTypeMPtr =
3317                CanTy->getAs<MemberPointerType>())
3318            CanTy = ResTypeMPtr->getPointeeType();
3319          else
3320            done = true;
3321          if (CanTy.isVolatileQualified())
3322            VRQuals.addVolatile();
3323          if (CanTy.isRestrictQualified())
3324            VRQuals.addRestrict();
3325          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3326            return VRQuals;
3327        }
3328      }
3329    }
3330    return VRQuals;
3331}
3332
3333/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3334/// operator overloads to the candidate set (C++ [over.built]), based
3335/// on the operator @p Op and the arguments given. For example, if the
3336/// operator is a binary '+', this routine might add "int
3337/// operator+(int, int)" to cover integer addition.
3338void
3339Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3340                                   SourceLocation OpLoc,
3341                                   Expr **Args, unsigned NumArgs,
3342                                   OverloadCandidateSet& CandidateSet) {
3343  // The set of "promoted arithmetic types", which are the arithmetic
3344  // types are that preserved by promotion (C++ [over.built]p2). Note
3345  // that the first few of these types are the promoted integral
3346  // types; these types need to be first.
3347  // FIXME: What about complex?
3348  const unsigned FirstIntegralType = 0;
3349  const unsigned LastIntegralType = 13;
3350  const unsigned FirstPromotedIntegralType = 7,
3351                 LastPromotedIntegralType = 13;
3352  const unsigned FirstPromotedArithmeticType = 7,
3353                 LastPromotedArithmeticType = 16;
3354  const unsigned NumArithmeticTypes = 16;
3355  QualType ArithmeticTypes[NumArithmeticTypes] = {
3356    Context.BoolTy, Context.CharTy, Context.WCharTy,
3357// FIXME:   Context.Char16Ty, Context.Char32Ty,
3358    Context.SignedCharTy, Context.ShortTy,
3359    Context.UnsignedCharTy, Context.UnsignedShortTy,
3360    Context.IntTy, Context.LongTy, Context.LongLongTy,
3361    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3362    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3363  };
3364  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3365         "Invalid first promoted integral type");
3366  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3367           == Context.UnsignedLongLongTy &&
3368         "Invalid last promoted integral type");
3369  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3370         "Invalid first promoted arithmetic type");
3371  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3372            == Context.LongDoubleTy &&
3373         "Invalid last promoted arithmetic type");
3374
3375  // Find all of the types that the arguments can convert to, but only
3376  // if the operator we're looking at has built-in operator candidates
3377  // that make use of these types.
3378  Qualifiers VisibleTypeConversionsQuals;
3379  VisibleTypeConversionsQuals.addConst();
3380  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3381    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3382
3383  BuiltinCandidateTypeSet CandidateTypes(*this);
3384  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3385      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3386      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3387      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3388      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3389      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3390    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3391      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3392                                           OpLoc,
3393                                           true,
3394                                           (Op == OO_Exclaim ||
3395                                            Op == OO_AmpAmp ||
3396                                            Op == OO_PipePipe),
3397                                           VisibleTypeConversionsQuals);
3398  }
3399
3400  bool isComparison = false;
3401  switch (Op) {
3402  case OO_None:
3403  case NUM_OVERLOADED_OPERATORS:
3404    assert(false && "Expected an overloaded operator");
3405    break;
3406
3407  case OO_Star: // '*' is either unary or binary
3408    if (NumArgs == 1)
3409      goto UnaryStar;
3410    else
3411      goto BinaryStar;
3412    break;
3413
3414  case OO_Plus: // '+' is either unary or binary
3415    if (NumArgs == 1)
3416      goto UnaryPlus;
3417    else
3418      goto BinaryPlus;
3419    break;
3420
3421  case OO_Minus: // '-' is either unary or binary
3422    if (NumArgs == 1)
3423      goto UnaryMinus;
3424    else
3425      goto BinaryMinus;
3426    break;
3427
3428  case OO_Amp: // '&' is either unary or binary
3429    if (NumArgs == 1)
3430      goto UnaryAmp;
3431    else
3432      goto BinaryAmp;
3433
3434  case OO_PlusPlus:
3435  case OO_MinusMinus:
3436    // C++ [over.built]p3:
3437    //
3438    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3439    //   is either volatile or empty, there exist candidate operator
3440    //   functions of the form
3441    //
3442    //       VQ T&      operator++(VQ T&);
3443    //       T          operator++(VQ T&, int);
3444    //
3445    // C++ [over.built]p4:
3446    //
3447    //   For every pair (T, VQ), where T is an arithmetic type other
3448    //   than bool, and VQ is either volatile or empty, there exist
3449    //   candidate operator functions of the form
3450    //
3451    //       VQ T&      operator--(VQ T&);
3452    //       T          operator--(VQ T&, int);
3453    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3454         Arith < NumArithmeticTypes; ++Arith) {
3455      QualType ArithTy = ArithmeticTypes[Arith];
3456      QualType ParamTypes[2]
3457        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3458
3459      // Non-volatile version.
3460      if (NumArgs == 1)
3461        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3462      else
3463        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3464      // heuristic to reduce number of builtin candidates in the set.
3465      // Add volatile version only if there are conversions to a volatile type.
3466      if (VisibleTypeConversionsQuals.hasVolatile()) {
3467        // Volatile version
3468        ParamTypes[0]
3469          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3470        if (NumArgs == 1)
3471          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3472        else
3473          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3474      }
3475    }
3476
3477    // C++ [over.built]p5:
3478    //
3479    //   For every pair (T, VQ), where T is a cv-qualified or
3480    //   cv-unqualified object type, and VQ is either volatile or
3481    //   empty, there exist candidate operator functions of the form
3482    //
3483    //       T*VQ&      operator++(T*VQ&);
3484    //       T*VQ&      operator--(T*VQ&);
3485    //       T*         operator++(T*VQ&, int);
3486    //       T*         operator--(T*VQ&, int);
3487    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3488         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3489      // Skip pointer types that aren't pointers to object types.
3490      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3491        continue;
3492
3493      QualType ParamTypes[2] = {
3494        Context.getLValueReferenceType(*Ptr), Context.IntTy
3495      };
3496
3497      // Without volatile
3498      if (NumArgs == 1)
3499        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3500      else
3501        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3502
3503      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3504          VisibleTypeConversionsQuals.hasVolatile()) {
3505        // With volatile
3506        ParamTypes[0]
3507          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3508        if (NumArgs == 1)
3509          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3510        else
3511          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3512      }
3513    }
3514    break;
3515
3516  UnaryStar:
3517    // C++ [over.built]p6:
3518    //   For every cv-qualified or cv-unqualified object type T, there
3519    //   exist candidate operator functions of the form
3520    //
3521    //       T&         operator*(T*);
3522    //
3523    // C++ [over.built]p7:
3524    //   For every function type T, there exist candidate operator
3525    //   functions of the form
3526    //       T&         operator*(T*);
3527    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3528         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3529      QualType ParamTy = *Ptr;
3530      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3531      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3532                          &ParamTy, Args, 1, CandidateSet);
3533    }
3534    break;
3535
3536  UnaryPlus:
3537    // C++ [over.built]p8:
3538    //   For every type T, there exist candidate operator functions of
3539    //   the form
3540    //
3541    //       T*         operator+(T*);
3542    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3543         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3544      QualType ParamTy = *Ptr;
3545      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3546    }
3547
3548    // Fall through
3549
3550  UnaryMinus:
3551    // C++ [over.built]p9:
3552    //  For every promoted arithmetic type T, there exist candidate
3553    //  operator functions of the form
3554    //
3555    //       T         operator+(T);
3556    //       T         operator-(T);
3557    for (unsigned Arith = FirstPromotedArithmeticType;
3558         Arith < LastPromotedArithmeticType; ++Arith) {
3559      QualType ArithTy = ArithmeticTypes[Arith];
3560      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3561    }
3562    break;
3563
3564  case OO_Tilde:
3565    // C++ [over.built]p10:
3566    //   For every promoted integral type T, there exist candidate
3567    //   operator functions of the form
3568    //
3569    //        T         operator~(T);
3570    for (unsigned Int = FirstPromotedIntegralType;
3571         Int < LastPromotedIntegralType; ++Int) {
3572      QualType IntTy = ArithmeticTypes[Int];
3573      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3574    }
3575    break;
3576
3577  case OO_New:
3578  case OO_Delete:
3579  case OO_Array_New:
3580  case OO_Array_Delete:
3581  case OO_Call:
3582    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3583    break;
3584
3585  case OO_Comma:
3586  UnaryAmp:
3587  case OO_Arrow:
3588    // C++ [over.match.oper]p3:
3589    //   -- For the operator ',', the unary operator '&', or the
3590    //      operator '->', the built-in candidates set is empty.
3591    break;
3592
3593  case OO_EqualEqual:
3594  case OO_ExclaimEqual:
3595    // C++ [over.match.oper]p16:
3596    //   For every pointer to member type T, there exist candidate operator
3597    //   functions of the form
3598    //
3599    //        bool operator==(T,T);
3600    //        bool operator!=(T,T);
3601    for (BuiltinCandidateTypeSet::iterator
3602           MemPtr = CandidateTypes.member_pointer_begin(),
3603           MemPtrEnd = CandidateTypes.member_pointer_end();
3604         MemPtr != MemPtrEnd;
3605         ++MemPtr) {
3606      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3607      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3608    }
3609
3610    // Fall through
3611
3612  case OO_Less:
3613  case OO_Greater:
3614  case OO_LessEqual:
3615  case OO_GreaterEqual:
3616    // C++ [over.built]p15:
3617    //
3618    //   For every pointer or enumeration type T, there exist
3619    //   candidate operator functions of the form
3620    //
3621    //        bool       operator<(T, T);
3622    //        bool       operator>(T, T);
3623    //        bool       operator<=(T, T);
3624    //        bool       operator>=(T, T);
3625    //        bool       operator==(T, T);
3626    //        bool       operator!=(T, T);
3627    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3628         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3629      QualType ParamTypes[2] = { *Ptr, *Ptr };
3630      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3631    }
3632    for (BuiltinCandidateTypeSet::iterator Enum
3633           = CandidateTypes.enumeration_begin();
3634         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3635      QualType ParamTypes[2] = { *Enum, *Enum };
3636      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3637    }
3638
3639    // Fall through.
3640    isComparison = true;
3641
3642  BinaryPlus:
3643  BinaryMinus:
3644    if (!isComparison) {
3645      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3646
3647      // C++ [over.built]p13:
3648      //
3649      //   For every cv-qualified or cv-unqualified object type T
3650      //   there exist candidate operator functions of the form
3651      //
3652      //      T*         operator+(T*, ptrdiff_t);
3653      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3654      //      T*         operator-(T*, ptrdiff_t);
3655      //      T*         operator+(ptrdiff_t, T*);
3656      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3657      //
3658      // C++ [over.built]p14:
3659      //
3660      //   For every T, where T is a pointer to object type, there
3661      //   exist candidate operator functions of the form
3662      //
3663      //      ptrdiff_t  operator-(T, T);
3664      for (BuiltinCandidateTypeSet::iterator Ptr
3665             = CandidateTypes.pointer_begin();
3666           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3667        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3668
3669        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3670        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3671
3672        if (Op == OO_Plus) {
3673          // T* operator+(ptrdiff_t, T*);
3674          ParamTypes[0] = ParamTypes[1];
3675          ParamTypes[1] = *Ptr;
3676          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3677        } else {
3678          // ptrdiff_t operator-(T, T);
3679          ParamTypes[1] = *Ptr;
3680          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3681                              Args, 2, CandidateSet);
3682        }
3683      }
3684    }
3685    // Fall through
3686
3687  case OO_Slash:
3688  BinaryStar:
3689  Conditional:
3690    // C++ [over.built]p12:
3691    //
3692    //   For every pair of promoted arithmetic types L and R, there
3693    //   exist candidate operator functions of the form
3694    //
3695    //        LR         operator*(L, R);
3696    //        LR         operator/(L, R);
3697    //        LR         operator+(L, R);
3698    //        LR         operator-(L, R);
3699    //        bool       operator<(L, R);
3700    //        bool       operator>(L, R);
3701    //        bool       operator<=(L, R);
3702    //        bool       operator>=(L, R);
3703    //        bool       operator==(L, R);
3704    //        bool       operator!=(L, R);
3705    //
3706    //   where LR is the result of the usual arithmetic conversions
3707    //   between types L and R.
3708    //
3709    // C++ [over.built]p24:
3710    //
3711    //   For every pair of promoted arithmetic types L and R, there exist
3712    //   candidate operator functions of the form
3713    //
3714    //        LR       operator?(bool, L, R);
3715    //
3716    //   where LR is the result of the usual arithmetic conversions
3717    //   between types L and R.
3718    // Our candidates ignore the first parameter.
3719    for (unsigned Left = FirstPromotedArithmeticType;
3720         Left < LastPromotedArithmeticType; ++Left) {
3721      for (unsigned Right = FirstPromotedArithmeticType;
3722           Right < LastPromotedArithmeticType; ++Right) {
3723        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3724        QualType Result
3725          = isComparison
3726          ? Context.BoolTy
3727          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3728        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3729      }
3730    }
3731    break;
3732
3733  case OO_Percent:
3734  BinaryAmp:
3735  case OO_Caret:
3736  case OO_Pipe:
3737  case OO_LessLess:
3738  case OO_GreaterGreater:
3739    // C++ [over.built]p17:
3740    //
3741    //   For every pair of promoted integral types L and R, there
3742    //   exist candidate operator functions of the form
3743    //
3744    //      LR         operator%(L, R);
3745    //      LR         operator&(L, R);
3746    //      LR         operator^(L, R);
3747    //      LR         operator|(L, R);
3748    //      L          operator<<(L, R);
3749    //      L          operator>>(L, R);
3750    //
3751    //   where LR is the result of the usual arithmetic conversions
3752    //   between types L and R.
3753    for (unsigned Left = FirstPromotedIntegralType;
3754         Left < LastPromotedIntegralType; ++Left) {
3755      for (unsigned Right = FirstPromotedIntegralType;
3756           Right < LastPromotedIntegralType; ++Right) {
3757        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3758        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3759            ? LandR[0]
3760            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3761        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3762      }
3763    }
3764    break;
3765
3766  case OO_Equal:
3767    // C++ [over.built]p20:
3768    //
3769    //   For every pair (T, VQ), where T is an enumeration or
3770    //   pointer to member type and VQ is either volatile or
3771    //   empty, there exist candidate operator functions of the form
3772    //
3773    //        VQ T&      operator=(VQ T&, T);
3774    for (BuiltinCandidateTypeSet::iterator
3775           Enum = CandidateTypes.enumeration_begin(),
3776           EnumEnd = CandidateTypes.enumeration_end();
3777         Enum != EnumEnd; ++Enum)
3778      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3779                                             CandidateSet);
3780    for (BuiltinCandidateTypeSet::iterator
3781           MemPtr = CandidateTypes.member_pointer_begin(),
3782         MemPtrEnd = CandidateTypes.member_pointer_end();
3783         MemPtr != MemPtrEnd; ++MemPtr)
3784      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3785                                             CandidateSet);
3786      // Fall through.
3787
3788  case OO_PlusEqual:
3789  case OO_MinusEqual:
3790    // C++ [over.built]p19:
3791    //
3792    //   For every pair (T, VQ), where T is any type and VQ is either
3793    //   volatile or empty, there exist candidate operator functions
3794    //   of the form
3795    //
3796    //        T*VQ&      operator=(T*VQ&, T*);
3797    //
3798    // C++ [over.built]p21:
3799    //
3800    //   For every pair (T, VQ), where T is a cv-qualified or
3801    //   cv-unqualified object type and VQ is either volatile or
3802    //   empty, there exist candidate operator functions of the form
3803    //
3804    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3805    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3806    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3807         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3808      QualType ParamTypes[2];
3809      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3810
3811      // non-volatile version
3812      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3813      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3814                          /*IsAssigmentOperator=*/Op == OO_Equal);
3815
3816      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3817          VisibleTypeConversionsQuals.hasVolatile()) {
3818        // volatile version
3819        ParamTypes[0]
3820          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3821        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3822                            /*IsAssigmentOperator=*/Op == OO_Equal);
3823      }
3824    }
3825    // Fall through.
3826
3827  case OO_StarEqual:
3828  case OO_SlashEqual:
3829    // C++ [over.built]p18:
3830    //
3831    //   For every triple (L, VQ, R), where L is an arithmetic type,
3832    //   VQ is either volatile or empty, and R is a promoted
3833    //   arithmetic type, there exist candidate operator functions of
3834    //   the form
3835    //
3836    //        VQ L&      operator=(VQ L&, R);
3837    //        VQ L&      operator*=(VQ L&, R);
3838    //        VQ L&      operator/=(VQ L&, R);
3839    //        VQ L&      operator+=(VQ L&, R);
3840    //        VQ L&      operator-=(VQ L&, R);
3841    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3842      for (unsigned Right = FirstPromotedArithmeticType;
3843           Right < LastPromotedArithmeticType; ++Right) {
3844        QualType ParamTypes[2];
3845        ParamTypes[1] = ArithmeticTypes[Right];
3846
3847        // Add this built-in operator as a candidate (VQ is empty).
3848        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3849        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3850                            /*IsAssigmentOperator=*/Op == OO_Equal);
3851
3852        // Add this built-in operator as a candidate (VQ is 'volatile').
3853        if (VisibleTypeConversionsQuals.hasVolatile()) {
3854          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3855          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3856          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3857                              /*IsAssigmentOperator=*/Op == OO_Equal);
3858        }
3859      }
3860    }
3861    break;
3862
3863  case OO_PercentEqual:
3864  case OO_LessLessEqual:
3865  case OO_GreaterGreaterEqual:
3866  case OO_AmpEqual:
3867  case OO_CaretEqual:
3868  case OO_PipeEqual:
3869    // C++ [over.built]p22:
3870    //
3871    //   For every triple (L, VQ, R), where L is an integral type, VQ
3872    //   is either volatile or empty, and R is a promoted integral
3873    //   type, there exist candidate operator functions of the form
3874    //
3875    //        VQ L&       operator%=(VQ L&, R);
3876    //        VQ L&       operator<<=(VQ L&, R);
3877    //        VQ L&       operator>>=(VQ L&, R);
3878    //        VQ L&       operator&=(VQ L&, R);
3879    //        VQ L&       operator^=(VQ L&, R);
3880    //        VQ L&       operator|=(VQ L&, R);
3881    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3882      for (unsigned Right = FirstPromotedIntegralType;
3883           Right < LastPromotedIntegralType; ++Right) {
3884        QualType ParamTypes[2];
3885        ParamTypes[1] = ArithmeticTypes[Right];
3886
3887        // Add this built-in operator as a candidate (VQ is empty).
3888        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3889        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3890        if (VisibleTypeConversionsQuals.hasVolatile()) {
3891          // Add this built-in operator as a candidate (VQ is 'volatile').
3892          ParamTypes[0] = ArithmeticTypes[Left];
3893          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3894          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3895          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3896        }
3897      }
3898    }
3899    break;
3900
3901  case OO_Exclaim: {
3902    // C++ [over.operator]p23:
3903    //
3904    //   There also exist candidate operator functions of the form
3905    //
3906    //        bool        operator!(bool);
3907    //        bool        operator&&(bool, bool);     [BELOW]
3908    //        bool        operator||(bool, bool);     [BELOW]
3909    QualType ParamTy = Context.BoolTy;
3910    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3911                        /*IsAssignmentOperator=*/false,
3912                        /*NumContextualBoolArguments=*/1);
3913    break;
3914  }
3915
3916  case OO_AmpAmp:
3917  case OO_PipePipe: {
3918    // C++ [over.operator]p23:
3919    //
3920    //   There also exist candidate operator functions of the form
3921    //
3922    //        bool        operator!(bool);            [ABOVE]
3923    //        bool        operator&&(bool, bool);
3924    //        bool        operator||(bool, bool);
3925    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3926    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3927                        /*IsAssignmentOperator=*/false,
3928                        /*NumContextualBoolArguments=*/2);
3929    break;
3930  }
3931
3932  case OO_Subscript:
3933    // C++ [over.built]p13:
3934    //
3935    //   For every cv-qualified or cv-unqualified object type T there
3936    //   exist candidate operator functions of the form
3937    //
3938    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3939    //        T&         operator[](T*, ptrdiff_t);
3940    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3941    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3942    //        T&         operator[](ptrdiff_t, T*);
3943    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3944         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3945      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3946      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3947      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3948
3949      // T& operator[](T*, ptrdiff_t)
3950      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3951
3952      // T& operator[](ptrdiff_t, T*);
3953      ParamTypes[0] = ParamTypes[1];
3954      ParamTypes[1] = *Ptr;
3955      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3956    }
3957    break;
3958
3959  case OO_ArrowStar:
3960    // C++ [over.built]p11:
3961    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
3962    //    C1 is the same type as C2 or is a derived class of C2, T is an object
3963    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
3964    //    there exist candidate operator functions of the form
3965    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
3966    //    where CV12 is the union of CV1 and CV2.
3967    {
3968      for (BuiltinCandidateTypeSet::iterator Ptr =
3969             CandidateTypes.pointer_begin();
3970           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3971        QualType C1Ty = (*Ptr);
3972        QualType C1;
3973        QualifierCollector Q1;
3974        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
3975          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
3976          if (!isa<RecordType>(C1))
3977            continue;
3978          // heuristic to reduce number of builtin candidates in the set.
3979          // Add volatile/restrict version only if there are conversions to a
3980          // volatile/restrict type.
3981          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
3982            continue;
3983          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
3984            continue;
3985        }
3986        for (BuiltinCandidateTypeSet::iterator
3987             MemPtr = CandidateTypes.member_pointer_begin(),
3988             MemPtrEnd = CandidateTypes.member_pointer_end();
3989             MemPtr != MemPtrEnd; ++MemPtr) {
3990          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
3991          QualType C2 = QualType(mptr->getClass(), 0);
3992          C2 = C2.getUnqualifiedType();
3993          if (C1 != C2 && !IsDerivedFrom(C1, C2))
3994            break;
3995          QualType ParamTypes[2] = { *Ptr, *MemPtr };
3996          // build CV12 T&
3997          QualType T = mptr->getPointeeType();
3998          if (!VisibleTypeConversionsQuals.hasVolatile() &&
3999              T.isVolatileQualified())
4000            continue;
4001          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4002              T.isRestrictQualified())
4003            continue;
4004          T = Q1.apply(T);
4005          QualType ResultTy = Context.getLValueReferenceType(T);
4006          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4007        }
4008      }
4009    }
4010    break;
4011
4012  case OO_Conditional:
4013    // Note that we don't consider the first argument, since it has been
4014    // contextually converted to bool long ago. The candidates below are
4015    // therefore added as binary.
4016    //
4017    // C++ [over.built]p24:
4018    //   For every type T, where T is a pointer or pointer-to-member type,
4019    //   there exist candidate operator functions of the form
4020    //
4021    //        T        operator?(bool, T, T);
4022    //
4023    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4024         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4025      QualType ParamTypes[2] = { *Ptr, *Ptr };
4026      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4027    }
4028    for (BuiltinCandidateTypeSet::iterator Ptr =
4029           CandidateTypes.member_pointer_begin(),
4030         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4031      QualType ParamTypes[2] = { *Ptr, *Ptr };
4032      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4033    }
4034    goto Conditional;
4035  }
4036}
4037
4038/// \brief Add function candidates found via argument-dependent lookup
4039/// to the set of overloading candidates.
4040///
4041/// This routine performs argument-dependent name lookup based on the
4042/// given function name (which may also be an operator name) and adds
4043/// all of the overload candidates found by ADL to the overload
4044/// candidate set (C++ [basic.lookup.argdep]).
4045void
4046Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4047                                           Expr **Args, unsigned NumArgs,
4048                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4049                                           OverloadCandidateSet& CandidateSet,
4050                                           bool PartialOverloading) {
4051  FunctionSet Functions;
4052
4053  // FIXME: Should we be trafficking in canonical function decls throughout?
4054
4055  // Record all of the function candidates that we've already
4056  // added to the overload set, so that we don't add those same
4057  // candidates a second time.
4058  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4059                                   CandEnd = CandidateSet.end();
4060       Cand != CandEnd; ++Cand)
4061    if (Cand->Function) {
4062      Functions.insert(Cand->Function);
4063      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4064        Functions.insert(FunTmpl);
4065    }
4066
4067  // FIXME: Pass in the explicit template arguments?
4068  ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions);
4069
4070  // Erase all of the candidates we already knew about.
4071  // FIXME: This is suboptimal. Is there a better way?
4072  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4073                                   CandEnd = CandidateSet.end();
4074       Cand != CandEnd; ++Cand)
4075    if (Cand->Function) {
4076      Functions.erase(Cand->Function);
4077      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4078        Functions.erase(FunTmpl);
4079    }
4080
4081  // For each of the ADL candidates we found, add it to the overload
4082  // set.
4083  for (FunctionSet::iterator Func = Functions.begin(),
4084                          FuncEnd = Functions.end();
4085       Func != FuncEnd; ++Func) {
4086    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
4087      if (ExplicitTemplateArgs)
4088        continue;
4089
4090      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
4091                           false, false, PartialOverloading);
4092    } else
4093      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
4094                                   ExplicitTemplateArgs,
4095                                   Args, NumArgs, CandidateSet);
4096  }
4097}
4098
4099/// isBetterOverloadCandidate - Determines whether the first overload
4100/// candidate is a better candidate than the second (C++ 13.3.3p1).
4101bool
4102Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4103                                const OverloadCandidate& Cand2) {
4104  // Define viable functions to be better candidates than non-viable
4105  // functions.
4106  if (!Cand2.Viable)
4107    return Cand1.Viable;
4108  else if (!Cand1.Viable)
4109    return false;
4110
4111  // C++ [over.match.best]p1:
4112  //
4113  //   -- if F is a static member function, ICS1(F) is defined such
4114  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4115  //      any function G, and, symmetrically, ICS1(G) is neither
4116  //      better nor worse than ICS1(F).
4117  unsigned StartArg = 0;
4118  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4119    StartArg = 1;
4120
4121  // C++ [over.match.best]p1:
4122  //   A viable function F1 is defined to be a better function than another
4123  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4124  //   conversion sequence than ICSi(F2), and then...
4125  unsigned NumArgs = Cand1.Conversions.size();
4126  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4127  bool HasBetterConversion = false;
4128  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4129    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4130                                               Cand2.Conversions[ArgIdx])) {
4131    case ImplicitConversionSequence::Better:
4132      // Cand1 has a better conversion sequence.
4133      HasBetterConversion = true;
4134      break;
4135
4136    case ImplicitConversionSequence::Worse:
4137      // Cand1 can't be better than Cand2.
4138      return false;
4139
4140    case ImplicitConversionSequence::Indistinguishable:
4141      // Do nothing.
4142      break;
4143    }
4144  }
4145
4146  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4147  //       ICSj(F2), or, if not that,
4148  if (HasBetterConversion)
4149    return true;
4150
4151  //     - F1 is a non-template function and F2 is a function template
4152  //       specialization, or, if not that,
4153  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4154      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4155    return true;
4156
4157  //   -- F1 and F2 are function template specializations, and the function
4158  //      template for F1 is more specialized than the template for F2
4159  //      according to the partial ordering rules described in 14.5.5.2, or,
4160  //      if not that,
4161  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4162      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4163    if (FunctionTemplateDecl *BetterTemplate
4164          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4165                                       Cand2.Function->getPrimaryTemplate(),
4166                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4167                                                             : TPOC_Call))
4168      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4169
4170  //   -- the context is an initialization by user-defined conversion
4171  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4172  //      from the return type of F1 to the destination type (i.e.,
4173  //      the type of the entity being initialized) is a better
4174  //      conversion sequence than the standard conversion sequence
4175  //      from the return type of F2 to the destination type.
4176  if (Cand1.Function && Cand2.Function &&
4177      isa<CXXConversionDecl>(Cand1.Function) &&
4178      isa<CXXConversionDecl>(Cand2.Function)) {
4179    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4180                                               Cand2.FinalConversion)) {
4181    case ImplicitConversionSequence::Better:
4182      // Cand1 has a better conversion sequence.
4183      return true;
4184
4185    case ImplicitConversionSequence::Worse:
4186      // Cand1 can't be better than Cand2.
4187      return false;
4188
4189    case ImplicitConversionSequence::Indistinguishable:
4190      // Do nothing
4191      break;
4192    }
4193  }
4194
4195  return false;
4196}
4197
4198/// \brief Computes the best viable function (C++ 13.3.3)
4199/// within an overload candidate set.
4200///
4201/// \param CandidateSet the set of candidate functions.
4202///
4203/// \param Loc the location of the function name (or operator symbol) for
4204/// which overload resolution occurs.
4205///
4206/// \param Best f overload resolution was successful or found a deleted
4207/// function, Best points to the candidate function found.
4208///
4209/// \returns The result of overload resolution.
4210OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4211                                           SourceLocation Loc,
4212                                        OverloadCandidateSet::iterator& Best) {
4213  // Find the best viable function.
4214  Best = CandidateSet.end();
4215  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4216       Cand != CandidateSet.end(); ++Cand) {
4217    if (Cand->Viable) {
4218      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4219        Best = Cand;
4220    }
4221  }
4222
4223  // If we didn't find any viable functions, abort.
4224  if (Best == CandidateSet.end())
4225    return OR_No_Viable_Function;
4226
4227  // Make sure that this function is better than every other viable
4228  // function. If not, we have an ambiguity.
4229  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4230       Cand != CandidateSet.end(); ++Cand) {
4231    if (Cand->Viable &&
4232        Cand != Best &&
4233        !isBetterOverloadCandidate(*Best, *Cand)) {
4234      Best = CandidateSet.end();
4235      return OR_Ambiguous;
4236    }
4237  }
4238
4239  // Best is the best viable function.
4240  if (Best->Function &&
4241      (Best->Function->isDeleted() ||
4242       Best->Function->getAttr<UnavailableAttr>()))
4243    return OR_Deleted;
4244
4245  // C++ [basic.def.odr]p2:
4246  //   An overloaded function is used if it is selected by overload resolution
4247  //   when referred to from a potentially-evaluated expression. [Note: this
4248  //   covers calls to named functions (5.2.2), operator overloading
4249  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4250  //   placement new (5.3.4), as well as non-default initialization (8.5).
4251  if (Best->Function)
4252    MarkDeclarationReferenced(Loc, Best->Function);
4253  return OR_Success;
4254}
4255
4256/// PrintOverloadCandidates - When overload resolution fails, prints
4257/// diagnostic messages containing the candidates in the candidate
4258/// set. If OnlyViable is true, only viable candidates will be printed.
4259void
4260Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4261                              bool OnlyViable,
4262                              const char *Opc,
4263                              SourceLocation OpLoc) {
4264  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4265                             LastCand = CandidateSet.end();
4266  bool Reported = false;
4267  for (; Cand != LastCand; ++Cand) {
4268    if (Cand->Viable || !OnlyViable) {
4269      if (Cand->Function) {
4270        if (Cand->Function->isDeleted() ||
4271            Cand->Function->getAttr<UnavailableAttr>()) {
4272          // Deleted or "unavailable" function.
4273          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
4274            << Cand->Function->isDeleted();
4275        } else if (FunctionTemplateDecl *FunTmpl
4276                     = Cand->Function->getPrimaryTemplate()) {
4277          // Function template specialization
4278          // FIXME: Give a better reason!
4279          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
4280            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
4281                              *Cand->Function->getTemplateSpecializationArgs());
4282        } else {
4283          // Normal function
4284          bool errReported = false;
4285          if (!Cand->Viable && Cand->Conversions.size() > 0) {
4286            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
4287              const ImplicitConversionSequence &Conversion =
4288                                                        Cand->Conversions[i];
4289              if ((Conversion.ConversionKind !=
4290                   ImplicitConversionSequence::BadConversion) ||
4291                  Conversion.ConversionFunctionSet.size() == 0)
4292                continue;
4293              Diag(Cand->Function->getLocation(),
4294                   diag::err_ovl_candidate_not_viable) << (i+1);
4295              errReported = true;
4296              for (int j = Conversion.ConversionFunctionSet.size()-1;
4297                   j >= 0; j--) {
4298                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
4299                Diag(Func->getLocation(), diag::err_ovl_candidate);
4300              }
4301            }
4302          }
4303          if (!errReported)
4304            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
4305        }
4306      } else if (Cand->IsSurrogate) {
4307        // Desugar the type of the surrogate down to a function type,
4308        // retaining as many typedefs as possible while still showing
4309        // the function type (and, therefore, its parameter types).
4310        QualType FnType = Cand->Surrogate->getConversionType();
4311        bool isLValueReference = false;
4312        bool isRValueReference = false;
4313        bool isPointer = false;
4314        if (const LValueReferenceType *FnTypeRef =
4315              FnType->getAs<LValueReferenceType>()) {
4316          FnType = FnTypeRef->getPointeeType();
4317          isLValueReference = true;
4318        } else if (const RValueReferenceType *FnTypeRef =
4319                     FnType->getAs<RValueReferenceType>()) {
4320          FnType = FnTypeRef->getPointeeType();
4321          isRValueReference = true;
4322        }
4323        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4324          FnType = FnTypePtr->getPointeeType();
4325          isPointer = true;
4326        }
4327        // Desugar down to a function type.
4328        FnType = QualType(FnType->getAs<FunctionType>(), 0);
4329        // Reconstruct the pointer/reference as appropriate.
4330        if (isPointer) FnType = Context.getPointerType(FnType);
4331        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
4332        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
4333
4334        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
4335          << FnType;
4336      } else if (OnlyViable) {
4337        assert(Cand->Conversions.size() <= 2 &&
4338               "builtin-binary-operator-not-binary");
4339        std::string TypeStr("operator");
4340        TypeStr += Opc;
4341        TypeStr += "(";
4342        TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4343        if (Cand->Conversions.size() == 1) {
4344          TypeStr += ")";
4345          Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr;
4346        }
4347        else {
4348          TypeStr += ", ";
4349          TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4350          TypeStr += ")";
4351          Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr;
4352        }
4353      }
4354      else if (!Cand->Viable && !Reported) {
4355        // Non-viability might be due to ambiguous user-defined conversions,
4356        // needed for built-in operators. Report them as well, but only once
4357        // as we have typically many built-in candidates.
4358        unsigned NoOperands = Cand->Conversions.size();
4359        for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4360          const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4361          if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion ||
4362              ICS.ConversionFunctionSet.empty())
4363            continue;
4364          if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>(
4365                         Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) {
4366            QualType FromTy =
4367              QualType(
4368                     static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0);
4369            Diag(OpLoc,diag::note_ambiguous_type_conversion)
4370                  << FromTy << Func->getConversionType();
4371          }
4372          for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) {
4373            FunctionDecl *Func =
4374              Cand->Conversions[ArgIdx].ConversionFunctionSet[j];
4375            Diag(Func->getLocation(),diag::err_ovl_candidate);
4376          }
4377        }
4378        Reported = true;
4379      }
4380    }
4381  }
4382}
4383
4384/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4385/// an overloaded function (C++ [over.over]), where @p From is an
4386/// expression with overloaded function type and @p ToType is the type
4387/// we're trying to resolve to. For example:
4388///
4389/// @code
4390/// int f(double);
4391/// int f(int);
4392///
4393/// int (*pfd)(double) = f; // selects f(double)
4394/// @endcode
4395///
4396/// This routine returns the resulting FunctionDecl if it could be
4397/// resolved, and NULL otherwise. When @p Complain is true, this
4398/// routine will emit diagnostics if there is an error.
4399FunctionDecl *
4400Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4401                                         bool Complain) {
4402  QualType FunctionType = ToType;
4403  bool IsMember = false;
4404  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4405    FunctionType = ToTypePtr->getPointeeType();
4406  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4407    FunctionType = ToTypeRef->getPointeeType();
4408  else if (const MemberPointerType *MemTypePtr =
4409                    ToType->getAs<MemberPointerType>()) {
4410    FunctionType = MemTypePtr->getPointeeType();
4411    IsMember = true;
4412  }
4413
4414  // We only look at pointers or references to functions.
4415  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4416  if (!FunctionType->isFunctionType())
4417    return 0;
4418
4419  // Find the actual overloaded function declaration.
4420
4421  // C++ [over.over]p1:
4422  //   [...] [Note: any redundant set of parentheses surrounding the
4423  //   overloaded function name is ignored (5.1). ]
4424  Expr *OvlExpr = From->IgnoreParens();
4425
4426  // C++ [over.over]p1:
4427  //   [...] The overloaded function name can be preceded by the &
4428  //   operator.
4429  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4430    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4431      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4432  }
4433
4434  bool HasExplicitTemplateArgs = false;
4435  TemplateArgumentListInfo ExplicitTemplateArgs;
4436
4437  llvm::SmallVector<NamedDecl*,8> Fns;
4438
4439  // Look into the overloaded expression.
4440  if (UnresolvedLookupExpr *UL
4441               = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) {
4442    Fns.append(UL->decls_begin(), UL->decls_end());
4443    if (UL->hasExplicitTemplateArgs()) {
4444      HasExplicitTemplateArgs = true;
4445      UL->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4446    }
4447  } else if (UnresolvedMemberExpr *ME
4448               = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) {
4449    Fns.append(ME->decls_begin(), ME->decls_end());
4450    if (ME->hasExplicitTemplateArgs()) {
4451      HasExplicitTemplateArgs = true;
4452      ME->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4453    }
4454  }
4455
4456  // If we didn't actually find anything, we're done.
4457  if (Fns.empty())
4458    return 0;
4459
4460  // Look through all of the overloaded functions, searching for one
4461  // whose type matches exactly.
4462  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4463  bool FoundNonTemplateFunction = false;
4464  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
4465         E = Fns.end(); I != E; ++I) {
4466    // C++ [over.over]p3:
4467    //   Non-member functions and static member functions match
4468    //   targets of type "pointer-to-function" or "reference-to-function."
4469    //   Nonstatic member functions match targets of
4470    //   type "pointer-to-member-function."
4471    // Note that according to DR 247, the containing class does not matter.
4472
4473    if (FunctionTemplateDecl *FunctionTemplate
4474          = dyn_cast<FunctionTemplateDecl>(*I)) {
4475      if (CXXMethodDecl *Method
4476            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4477        // Skip non-static function templates when converting to pointer, and
4478        // static when converting to member pointer.
4479        if (Method->isStatic() == IsMember)
4480          continue;
4481      } else if (IsMember)
4482        continue;
4483
4484      // C++ [over.over]p2:
4485      //   If the name is a function template, template argument deduction is
4486      //   done (14.8.2.2), and if the argument deduction succeeds, the
4487      //   resulting template argument list is used to generate a single
4488      //   function template specialization, which is added to the set of
4489      //   overloaded functions considered.
4490      // FIXME: We don't really want to build the specialization here, do we?
4491      FunctionDecl *Specialization = 0;
4492      TemplateDeductionInfo Info(Context);
4493      if (TemplateDeductionResult Result
4494            = DeduceTemplateArguments(FunctionTemplate,
4495                       (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0),
4496                                      FunctionType, Specialization, Info)) {
4497        // FIXME: make a note of the failed deduction for diagnostics.
4498        (void)Result;
4499      } else {
4500        // FIXME: If the match isn't exact, shouldn't we just drop this as
4501        // a candidate? Find a testcase before changing the code.
4502        assert(FunctionType
4503                 == Context.getCanonicalType(Specialization->getType()));
4504        Matches.insert(
4505                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4506      }
4507
4508      continue;
4509    }
4510
4511    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*I)) {
4512      // Skip non-static functions when converting to pointer, and static
4513      // when converting to member pointer.
4514      if (Method->isStatic() == IsMember)
4515        continue;
4516
4517      // If we have explicit template arguments, skip non-templates.
4518      if (HasExplicitTemplateArgs)
4519        continue;
4520    } else if (IsMember)
4521      continue;
4522
4523    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*I)) {
4524      QualType ResultTy;
4525      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
4526          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
4527                               ResultTy)) {
4528        Matches.insert(cast<FunctionDecl>(FunDecl->getCanonicalDecl()));
4529        FoundNonTemplateFunction = true;
4530      }
4531    }
4532  }
4533
4534  // If there were 0 or 1 matches, we're done.
4535  if (Matches.empty())
4536    return 0;
4537  else if (Matches.size() == 1) {
4538    FunctionDecl *Result = *Matches.begin();
4539    MarkDeclarationReferenced(From->getLocStart(), Result);
4540    return Result;
4541  }
4542
4543  // C++ [over.over]p4:
4544  //   If more than one function is selected, [...]
4545  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4546  if (!FoundNonTemplateFunction) {
4547    //   [...] and any given function template specialization F1 is
4548    //   eliminated if the set contains a second function template
4549    //   specialization whose function template is more specialized
4550    //   than the function template of F1 according to the partial
4551    //   ordering rules of 14.5.5.2.
4552
4553    // The algorithm specified above is quadratic. We instead use a
4554    // two-pass algorithm (similar to the one used to identify the
4555    // best viable function in an overload set) that identifies the
4556    // best function template (if it exists).
4557    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4558                                                         Matches.end());
4559    FunctionDecl *Result =
4560        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4561                           TPOC_Other, From->getLocStart(),
4562                           PDiag(),
4563                           PDiag(diag::err_addr_ovl_ambiguous)
4564                               << TemplateMatches[0]->getDeclName(),
4565                           PDiag(diag::err_ovl_template_candidate));
4566    MarkDeclarationReferenced(From->getLocStart(), Result);
4567    return Result;
4568  }
4569
4570  //   [...] any function template specializations in the set are
4571  //   eliminated if the set also contains a non-template function, [...]
4572  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4573  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4574    if ((*M)->getPrimaryTemplate() == 0)
4575      RemainingMatches.push_back(*M);
4576
4577  // [...] After such eliminations, if any, there shall remain exactly one
4578  // selected function.
4579  if (RemainingMatches.size() == 1) {
4580    FunctionDecl *Result = RemainingMatches.front();
4581    MarkDeclarationReferenced(From->getLocStart(), Result);
4582    return Result;
4583  }
4584
4585  // FIXME: We should probably return the same thing that BestViableFunction
4586  // returns (even if we issue the diagnostics here).
4587  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4588    << RemainingMatches[0]->getDeclName();
4589  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4590    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4591  return 0;
4592}
4593
4594/// \brief Add a single candidate to the overload set.
4595static void AddOverloadedCallCandidate(Sema &S,
4596                                       NamedDecl *Callee,
4597                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4598                                       Expr **Args, unsigned NumArgs,
4599                                       OverloadCandidateSet &CandidateSet,
4600                                       bool PartialOverloading) {
4601  if (isa<UsingShadowDecl>(Callee))
4602    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
4603
4604  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4605    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
4606    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4607                           PartialOverloading);
4608    return;
4609  }
4610
4611  if (FunctionTemplateDecl *FuncTemplate
4612      = dyn_cast<FunctionTemplateDecl>(Callee)) {
4613    S.AddTemplateOverloadCandidate(FuncTemplate, ExplicitTemplateArgs,
4614                                   Args, NumArgs, CandidateSet);
4615    return;
4616  }
4617
4618  assert(false && "unhandled case in overloaded call candidate");
4619
4620  // do nothing?
4621}
4622
4623/// \brief Add the overload candidates named by callee and/or found by argument
4624/// dependent lookup to the given overload set.
4625void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
4626                                       Expr **Args, unsigned NumArgs,
4627                                       OverloadCandidateSet &CandidateSet,
4628                                       bool PartialOverloading) {
4629
4630#ifndef NDEBUG
4631  // Verify that ArgumentDependentLookup is consistent with the rules
4632  // in C++0x [basic.lookup.argdep]p3:
4633  //
4634  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4635  //   and let Y be the lookup set produced by argument dependent
4636  //   lookup (defined as follows). If X contains
4637  //
4638  //     -- a declaration of a class member, or
4639  //
4640  //     -- a block-scope function declaration that is not a
4641  //        using-declaration, or
4642  //
4643  //     -- a declaration that is neither a function or a function
4644  //        template
4645  //
4646  //   then Y is empty.
4647
4648  if (ULE->requiresADL()) {
4649    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
4650           E = ULE->decls_end(); I != E; ++I) {
4651      assert(!(*I)->getDeclContext()->isRecord());
4652      assert(isa<UsingShadowDecl>(*I) ||
4653             !(*I)->getDeclContext()->isFunctionOrMethod());
4654      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
4655    }
4656  }
4657#endif
4658
4659  // It would be nice to avoid this copy.
4660  TemplateArgumentListInfo TABuffer;
4661  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
4662  if (ULE->hasExplicitTemplateArgs()) {
4663    ULE->copyTemplateArgumentsInto(TABuffer);
4664    ExplicitTemplateArgs = &TABuffer;
4665  }
4666
4667  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
4668         E = ULE->decls_end(); I != E; ++I)
4669    AddOverloadedCallCandidate(*this, *I, ExplicitTemplateArgs,
4670                               Args, NumArgs, CandidateSet,
4671                               PartialOverloading);
4672
4673  if (ULE->requiresADL())
4674    AddArgumentDependentLookupCandidates(ULE->getName(), Args, NumArgs,
4675                                         ExplicitTemplateArgs,
4676                                         CandidateSet,
4677                                         PartialOverloading);
4678}
4679
4680static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
4681                                      Expr **Args, unsigned NumArgs) {
4682  Fn->Destroy(SemaRef.Context);
4683  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4684    Args[Arg]->Destroy(SemaRef.Context);
4685  return SemaRef.ExprError();
4686}
4687
4688/// Attempts to recover from a call where no functions were found.
4689///
4690/// Returns true if new candidates were found.
4691static Sema::OwningExprResult
4692BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
4693                      UnresolvedLookupExpr *ULE,
4694                      SourceLocation LParenLoc,
4695                      Expr **Args, unsigned NumArgs,
4696                      SourceLocation *CommaLocs,
4697                      SourceLocation RParenLoc) {
4698
4699  CXXScopeSpec SS;
4700  if (ULE->getQualifier()) {
4701    SS.setScopeRep(ULE->getQualifier());
4702    SS.setRange(ULE->getQualifierRange());
4703  }
4704
4705  TemplateArgumentListInfo TABuffer;
4706  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
4707  if (ULE->hasExplicitTemplateArgs()) {
4708    ULE->copyTemplateArgumentsInto(TABuffer);
4709    ExplicitTemplateArgs = &TABuffer;
4710  }
4711
4712  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
4713                 Sema::LookupOrdinaryName);
4714  if (SemaRef.DiagnoseEmptyLookup(SS, R))
4715    return Destroy(SemaRef, Fn, Args, NumArgs);
4716
4717  assert(!R.empty() && "lookup results empty despite recovery");
4718
4719  // Build an implicit member call if appropriate.  Just drop the
4720  // casts and such from the call, we don't really care.
4721  Sema::OwningExprResult NewFn = SemaRef.ExprError();
4722  if ((*R.begin())->isCXXClassMember())
4723    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
4724  else if (ExplicitTemplateArgs)
4725    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
4726  else
4727    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
4728
4729  if (NewFn.isInvalid())
4730    return Destroy(SemaRef, Fn, Args, NumArgs);
4731
4732  Fn->Destroy(SemaRef.Context);
4733
4734  // This shouldn't cause an infinite loop because we're giving it
4735  // an expression with non-empty lookup results, which should never
4736  // end up here.
4737  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
4738                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
4739                               CommaLocs, RParenLoc);
4740}
4741
4742/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4743/// (which eventually refers to the declaration Func) and the call
4744/// arguments Args/NumArgs, attempt to resolve the function call down
4745/// to a specific function. If overload resolution succeeds, returns
4746/// the function declaration produced by overload
4747/// resolution. Otherwise, emits diagnostics, deletes all of the
4748/// arguments and Fn, and returns NULL.
4749Sema::OwningExprResult
4750Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
4751                              SourceLocation LParenLoc,
4752                              Expr **Args, unsigned NumArgs,
4753                              SourceLocation *CommaLocs,
4754                              SourceLocation RParenLoc) {
4755#ifndef NDEBUG
4756  if (ULE->requiresADL()) {
4757    // To do ADL, we must have found an unqualified name.
4758    assert(!ULE->getQualifier() && "qualified name with ADL");
4759
4760    // We don't perform ADL for implicit declarations of builtins.
4761    // Verify that this was correctly set up.
4762    FunctionDecl *F;
4763    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
4764        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
4765        F->getBuiltinID() && F->isImplicit())
4766      assert(0 && "performing ADL for builtin");
4767
4768    // We don't perform ADL in C.
4769    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
4770  }
4771#endif
4772
4773  OverloadCandidateSet CandidateSet;
4774
4775  // Add the functions denoted by the callee to the set of candidate
4776  // functions, including those from argument-dependent lookup.
4777  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
4778
4779  // If we found nothing, try to recover.
4780  // AddRecoveryCallCandidates diagnoses the error itself, so we just
4781  // bailout out if it fails.
4782  if (CandidateSet.empty())
4783    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
4784                                 CommaLocs, RParenLoc);
4785
4786  OverloadCandidateSet::iterator Best;
4787  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4788  case OR_Success: {
4789    FunctionDecl *FDecl = Best->Function;
4790    Fn = FixOverloadedFunctionReference(Fn, FDecl);
4791    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
4792  }
4793
4794  case OR_No_Viable_Function:
4795    Diag(Fn->getSourceRange().getBegin(),
4796         diag::err_ovl_no_viable_function_in_call)
4797      << ULE->getName() << Fn->getSourceRange();
4798    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4799    break;
4800
4801  case OR_Ambiguous:
4802    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4803      << ULE->getName() << Fn->getSourceRange();
4804    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4805    break;
4806
4807  case OR_Deleted:
4808    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4809      << Best->Function->isDeleted()
4810      << ULE->getName()
4811      << Fn->getSourceRange();
4812    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4813    break;
4814  }
4815
4816  // Overload resolution failed. Destroy all of the subexpressions and
4817  // return NULL.
4818  Fn->Destroy(Context);
4819  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4820    Args[Arg]->Destroy(Context);
4821  return ExprError();
4822}
4823
4824static bool IsOverloaded(const Sema::FunctionSet &Functions) {
4825  return Functions.size() > 1 ||
4826    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
4827}
4828
4829/// \brief Create a unary operation that may resolve to an overloaded
4830/// operator.
4831///
4832/// \param OpLoc The location of the operator itself (e.g., '*').
4833///
4834/// \param OpcIn The UnaryOperator::Opcode that describes this
4835/// operator.
4836///
4837/// \param Functions The set of non-member functions that will be
4838/// considered by overload resolution. The caller needs to build this
4839/// set based on the context using, e.g.,
4840/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4841/// set should not contain any member functions; those will be added
4842/// by CreateOverloadedUnaryOp().
4843///
4844/// \param input The input argument.
4845Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4846                                                     unsigned OpcIn,
4847                                                     FunctionSet &Functions,
4848                                                     ExprArg input) {
4849  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4850  Expr *Input = (Expr *)input.get();
4851
4852  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4853  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4854  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4855
4856  Expr *Args[2] = { Input, 0 };
4857  unsigned NumArgs = 1;
4858
4859  // For post-increment and post-decrement, add the implicit '0' as
4860  // the second argument, so that we know this is a post-increment or
4861  // post-decrement.
4862  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4863    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4864    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4865                                           SourceLocation());
4866    NumArgs = 2;
4867  }
4868
4869  if (Input->isTypeDependent()) {
4870    UnresolvedLookupExpr *Fn
4871      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
4872                                     0, SourceRange(), OpName, OpLoc,
4873                                     /*ADL*/ true, IsOverloaded(Functions));
4874    for (FunctionSet::iterator Func = Functions.begin(),
4875                            FuncEnd = Functions.end();
4876         Func != FuncEnd; ++Func)
4877      Fn->addDecl(*Func);
4878
4879    input.release();
4880    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4881                                                   &Args[0], NumArgs,
4882                                                   Context.DependentTy,
4883                                                   OpLoc));
4884  }
4885
4886  // Build an empty overload set.
4887  OverloadCandidateSet CandidateSet;
4888
4889  // Add the candidates from the given function set.
4890  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4891
4892  // Add operator candidates that are member functions.
4893  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4894
4895  // Add builtin operator candidates.
4896  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4897
4898  // Perform overload resolution.
4899  OverloadCandidateSet::iterator Best;
4900  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4901  case OR_Success: {
4902    // We found a built-in operator or an overloaded operator.
4903    FunctionDecl *FnDecl = Best->Function;
4904
4905    if (FnDecl) {
4906      // We matched an overloaded operator. Build a call to that
4907      // operator.
4908
4909      // Convert the arguments.
4910      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4911        if (PerformObjectArgumentInitialization(Input, Method))
4912          return ExprError();
4913      } else {
4914        // Convert the arguments.
4915        if (PerformCopyInitialization(Input,
4916                                      FnDecl->getParamDecl(0)->getType(),
4917                                      AA_Passing))
4918          return ExprError();
4919      }
4920
4921      // Determine the result type
4922      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
4923
4924      // Build the actual expression node.
4925      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4926                                               SourceLocation());
4927      UsualUnaryConversions(FnExpr);
4928
4929      input.release();
4930      Args[0] = Input;
4931      ExprOwningPtr<CallExpr> TheCall(this,
4932        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4933                                          Args, NumArgs, ResultTy, OpLoc));
4934
4935      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4936                              FnDecl))
4937        return ExprError();
4938
4939      return MaybeBindToTemporary(TheCall.release());
4940    } else {
4941      // We matched a built-in operator. Convert the arguments, then
4942      // break out so that we will build the appropriate built-in
4943      // operator node.
4944        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4945                                      Best->Conversions[0], AA_Passing))
4946          return ExprError();
4947
4948        break;
4949      }
4950    }
4951
4952    case OR_No_Viable_Function:
4953      // No viable function; fall through to handling this as a
4954      // built-in operator, which will produce an error message for us.
4955      break;
4956
4957    case OR_Ambiguous:
4958      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4959          << UnaryOperator::getOpcodeStr(Opc)
4960          << Input->getSourceRange();
4961      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4962                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
4963      return ExprError();
4964
4965    case OR_Deleted:
4966      Diag(OpLoc, diag::err_ovl_deleted_oper)
4967        << Best->Function->isDeleted()
4968        << UnaryOperator::getOpcodeStr(Opc)
4969        << Input->getSourceRange();
4970      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4971      return ExprError();
4972    }
4973
4974  // Either we found no viable overloaded operator or we matched a
4975  // built-in operator. In either case, fall through to trying to
4976  // build a built-in operation.
4977  input.release();
4978  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4979}
4980
4981/// \brief Create a binary operation that may resolve to an overloaded
4982/// operator.
4983///
4984/// \param OpLoc The location of the operator itself (e.g., '+').
4985///
4986/// \param OpcIn The BinaryOperator::Opcode that describes this
4987/// operator.
4988///
4989/// \param Functions The set of non-member functions that will be
4990/// considered by overload resolution. The caller needs to build this
4991/// set based on the context using, e.g.,
4992/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4993/// set should not contain any member functions; those will be added
4994/// by CreateOverloadedBinOp().
4995///
4996/// \param LHS Left-hand argument.
4997/// \param RHS Right-hand argument.
4998Sema::OwningExprResult
4999Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5000                            unsigned OpcIn,
5001                            FunctionSet &Functions,
5002                            Expr *LHS, Expr *RHS) {
5003  Expr *Args[2] = { LHS, RHS };
5004  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5005
5006  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5007  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5008  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5009
5010  // If either side is type-dependent, create an appropriate dependent
5011  // expression.
5012  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5013    if (Functions.empty()) {
5014      // If there are no functions to store, just build a dependent
5015      // BinaryOperator or CompoundAssignment.
5016      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5017        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5018                                                  Context.DependentTy, OpLoc));
5019
5020      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5021                                                        Context.DependentTy,
5022                                                        Context.DependentTy,
5023                                                        Context.DependentTy,
5024                                                        OpLoc));
5025    }
5026
5027    UnresolvedLookupExpr *Fn
5028      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
5029                                     0, SourceRange(), OpName, OpLoc,
5030                                     /* ADL */ true, IsOverloaded(Functions));
5031
5032    for (FunctionSet::iterator Func = Functions.begin(),
5033                            FuncEnd = Functions.end();
5034         Func != FuncEnd; ++Func)
5035      Fn->addDecl(*Func);
5036
5037    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5038                                                   Args, 2,
5039                                                   Context.DependentTy,
5040                                                   OpLoc));
5041  }
5042
5043  // If this is the .* operator, which is not overloadable, just
5044  // create a built-in binary operator.
5045  if (Opc == BinaryOperator::PtrMemD)
5046    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5047
5048  // If this is the assignment operator, we only perform overload resolution
5049  // if the left-hand side is a class or enumeration type. This is actually
5050  // a hack. The standard requires that we do overload resolution between the
5051  // various built-in candidates, but as DR507 points out, this can lead to
5052  // problems. So we do it this way, which pretty much follows what GCC does.
5053  // Note that we go the traditional code path for compound assignment forms.
5054  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5055    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5056
5057  // Build an empty overload set.
5058  OverloadCandidateSet CandidateSet;
5059
5060  // Add the candidates from the given function set.
5061  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
5062
5063  // Add operator candidates that are member functions.
5064  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5065
5066  // Add builtin operator candidates.
5067  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5068
5069  // Perform overload resolution.
5070  OverloadCandidateSet::iterator Best;
5071  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5072    case OR_Success: {
5073      // We found a built-in operator or an overloaded operator.
5074      FunctionDecl *FnDecl = Best->Function;
5075
5076      if (FnDecl) {
5077        // We matched an overloaded operator. Build a call to that
5078        // operator.
5079
5080        // Convert the arguments.
5081        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5082          if (PerformObjectArgumentInitialization(Args[0], Method) ||
5083              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
5084                                        AA_Passing))
5085            return ExprError();
5086        } else {
5087          // Convert the arguments.
5088          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
5089                                        AA_Passing) ||
5090              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
5091                                        AA_Passing))
5092            return ExprError();
5093        }
5094
5095        // Determine the result type
5096        QualType ResultTy
5097          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5098        ResultTy = ResultTy.getNonReferenceType();
5099
5100        // Build the actual expression node.
5101        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5102                                                 OpLoc);
5103        UsualUnaryConversions(FnExpr);
5104
5105        ExprOwningPtr<CXXOperatorCallExpr>
5106          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5107                                                          Args, 2, ResultTy,
5108                                                          OpLoc));
5109
5110        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5111                                FnDecl))
5112          return ExprError();
5113
5114        return MaybeBindToTemporary(TheCall.release());
5115      } else {
5116        // We matched a built-in operator. Convert the arguments, then
5117        // break out so that we will build the appropriate built-in
5118        // operator node.
5119        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5120                                      Best->Conversions[0], AA_Passing) ||
5121            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5122                                      Best->Conversions[1], AA_Passing))
5123          return ExprError();
5124
5125        break;
5126      }
5127    }
5128
5129    case OR_No_Viable_Function: {
5130      // C++ [over.match.oper]p9:
5131      //   If the operator is the operator , [...] and there are no
5132      //   viable functions, then the operator is assumed to be the
5133      //   built-in operator and interpreted according to clause 5.
5134      if (Opc == BinaryOperator::Comma)
5135        break;
5136
5137      // For class as left operand for assignment or compound assigment operator
5138      // do not fall through to handling in built-in, but report that no overloaded
5139      // assignment operator found
5140      OwningExprResult Result = ExprError();
5141      if (Args[0]->getType()->isRecordType() &&
5142          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5143        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5144             << BinaryOperator::getOpcodeStr(Opc)
5145             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5146      } else {
5147        // No viable function; try to create a built-in operation, which will
5148        // produce an error. Then, show the non-viable candidates.
5149        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5150      }
5151      assert(Result.isInvalid() &&
5152             "C++ binary operator overloading is missing candidates!");
5153      if (Result.isInvalid())
5154        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
5155                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5156      return move(Result);
5157    }
5158
5159    case OR_Ambiguous:
5160      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5161          << BinaryOperator::getOpcodeStr(Opc)
5162          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5163      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
5164                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5165      return ExprError();
5166
5167    case OR_Deleted:
5168      Diag(OpLoc, diag::err_ovl_deleted_oper)
5169        << Best->Function->isDeleted()
5170        << BinaryOperator::getOpcodeStr(Opc)
5171        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5172      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5173      return ExprError();
5174    }
5175
5176  // We matched a built-in operator; build it.
5177  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5178}
5179
5180Action::OwningExprResult
5181Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5182                                         SourceLocation RLoc,
5183                                         ExprArg Base, ExprArg Idx) {
5184  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5185                    static_cast<Expr*>(Idx.get()) };
5186  DeclarationName OpName =
5187      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5188
5189  // If either side is type-dependent, create an appropriate dependent
5190  // expression.
5191  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5192
5193    UnresolvedLookupExpr *Fn
5194      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
5195                                     0, SourceRange(), OpName, LLoc,
5196                                     /*ADL*/ true, /*Overloaded*/ false);
5197    // Can't add any actual overloads yet
5198
5199    Base.release();
5200    Idx.release();
5201    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5202                                                   Args, 2,
5203                                                   Context.DependentTy,
5204                                                   RLoc));
5205  }
5206
5207  // Build an empty overload set.
5208  OverloadCandidateSet CandidateSet;
5209
5210  // Subscript can only be overloaded as a member function.
5211
5212  // Add operator candidates that are member functions.
5213  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5214
5215  // Add builtin operator candidates.
5216  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5217
5218  // Perform overload resolution.
5219  OverloadCandidateSet::iterator Best;
5220  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5221    case OR_Success: {
5222      // We found a built-in operator or an overloaded operator.
5223      FunctionDecl *FnDecl = Best->Function;
5224
5225      if (FnDecl) {
5226        // We matched an overloaded operator. Build a call to that
5227        // operator.
5228
5229        // Convert the arguments.
5230        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5231        if (PerformObjectArgumentInitialization(Args[0], Method) ||
5232            PerformCopyInitialization(Args[1],
5233                                      FnDecl->getParamDecl(0)->getType(),
5234                                      AA_Passing))
5235          return ExprError();
5236
5237        // Determine the result type
5238        QualType ResultTy
5239          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5240        ResultTy = ResultTy.getNonReferenceType();
5241
5242        // Build the actual expression node.
5243        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5244                                                 LLoc);
5245        UsualUnaryConversions(FnExpr);
5246
5247        Base.release();
5248        Idx.release();
5249        ExprOwningPtr<CXXOperatorCallExpr>
5250          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5251                                                          FnExpr, Args, 2,
5252                                                          ResultTy, RLoc));
5253
5254        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5255                                FnDecl))
5256          return ExprError();
5257
5258        return MaybeBindToTemporary(TheCall.release());
5259      } else {
5260        // We matched a built-in operator. Convert the arguments, then
5261        // break out so that we will build the appropriate built-in
5262        // operator node.
5263        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5264                                      Best->Conversions[0], AA_Passing) ||
5265            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5266                                      Best->Conversions[1], AA_Passing))
5267          return ExprError();
5268
5269        break;
5270      }
5271    }
5272
5273    case OR_No_Viable_Function: {
5274      // No viable function; try to create a built-in operation, which will
5275      // produce an error. Then, show the non-viable candidates.
5276      OwningExprResult Result =
5277          CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
5278      assert(Result.isInvalid() &&
5279             "C++ subscript operator overloading is missing candidates!");
5280      if (Result.isInvalid())
5281        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
5282                                "[]", LLoc);
5283      return move(Result);
5284    }
5285
5286    case OR_Ambiguous:
5287      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5288          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5289      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
5290                              "[]", LLoc);
5291      return ExprError();
5292
5293    case OR_Deleted:
5294      Diag(LLoc, diag::err_ovl_deleted_oper)
5295        << Best->Function->isDeleted() << "[]"
5296        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5297      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5298      return ExprError();
5299    }
5300
5301  // We matched a built-in operator; build it.
5302  Base.release();
5303  Idx.release();
5304  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5305                                         Owned(Args[1]), RLoc);
5306}
5307
5308/// BuildCallToMemberFunction - Build a call to a member
5309/// function. MemExpr is the expression that refers to the member
5310/// function (and includes the object parameter), Args/NumArgs are the
5311/// arguments to the function call (not including the object
5312/// parameter). The caller needs to validate that the member
5313/// expression refers to a member function or an overloaded member
5314/// function.
5315Sema::OwningExprResult
5316Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5317                                SourceLocation LParenLoc, Expr **Args,
5318                                unsigned NumArgs, SourceLocation *CommaLocs,
5319                                SourceLocation RParenLoc) {
5320  // Dig out the member expression. This holds both the object
5321  // argument and the member function we're referring to.
5322  Expr *NakedMemExpr = MemExprE->IgnoreParens();
5323
5324  MemberExpr *MemExpr;
5325  CXXMethodDecl *Method = 0;
5326  if (isa<MemberExpr>(NakedMemExpr)) {
5327    MemExpr = cast<MemberExpr>(NakedMemExpr);
5328    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5329  } else {
5330    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
5331
5332    QualType ObjectType = UnresExpr->getBaseType();
5333
5334    // Add overload candidates
5335    OverloadCandidateSet CandidateSet;
5336
5337    // FIXME: avoid copy.
5338    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
5339    if (UnresExpr->hasExplicitTemplateArgs()) {
5340      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
5341      TemplateArgs = &TemplateArgsBuffer;
5342    }
5343
5344    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
5345           E = UnresExpr->decls_end(); I != E; ++I) {
5346
5347      NamedDecl *Func = *I;
5348      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
5349      if (isa<UsingShadowDecl>(Func))
5350        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
5351
5352      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
5353        // If explicit template arguments were provided, we can't call a
5354        // non-template member function.
5355        if (TemplateArgs)
5356          continue;
5357
5358        AddMethodCandidate(Method, ActingDC, ObjectType, Args, NumArgs,
5359                           CandidateSet, /*SuppressUserConversions=*/false);
5360      } else {
5361        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
5362                                   ActingDC, TemplateArgs,
5363                                   ObjectType, Args, NumArgs,
5364                                   CandidateSet,
5365                                   /*SuppressUsedConversions=*/false);
5366      }
5367    }
5368
5369    DeclarationName DeclName = UnresExpr->getMemberName();
5370
5371    OverloadCandidateSet::iterator Best;
5372    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
5373    case OR_Success:
5374      Method = cast<CXXMethodDecl>(Best->Function);
5375      break;
5376
5377    case OR_No_Viable_Function:
5378      Diag(UnresExpr->getMemberLoc(),
5379           diag::err_ovl_no_viable_member_function_in_call)
5380        << DeclName << MemExprE->getSourceRange();
5381      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5382      // FIXME: Leaking incoming expressions!
5383      return ExprError();
5384
5385    case OR_Ambiguous:
5386      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
5387        << DeclName << MemExprE->getSourceRange();
5388      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5389      // FIXME: Leaking incoming expressions!
5390      return ExprError();
5391
5392    case OR_Deleted:
5393      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
5394        << Best->Function->isDeleted()
5395        << DeclName << MemExprE->getSourceRange();
5396      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5397      // FIXME: Leaking incoming expressions!
5398      return ExprError();
5399    }
5400
5401    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
5402
5403    // If overload resolution picked a static member, build a
5404    // non-member call based on that function.
5405    if (Method->isStatic()) {
5406      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
5407                                   Args, NumArgs, RParenLoc);
5408    }
5409
5410    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
5411  }
5412
5413  assert(Method && "Member call to something that isn't a method?");
5414  ExprOwningPtr<CXXMemberCallExpr>
5415    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
5416                                                  NumArgs,
5417                                  Method->getResultType().getNonReferenceType(),
5418                                  RParenLoc));
5419
5420  // Check for a valid return type.
5421  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5422                          TheCall.get(), Method))
5423    return ExprError();
5424
5425  // Convert the object argument (for a non-static member function call).
5426  Expr *ObjectArg = MemExpr->getBase();
5427  if (!Method->isStatic() &&
5428      PerformObjectArgumentInitialization(ObjectArg, Method))
5429    return ExprError();
5430  MemExpr->setBase(ObjectArg);
5431
5432  // Convert the rest of the arguments
5433  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5434  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5435                              RParenLoc))
5436    return ExprError();
5437
5438  if (CheckFunctionCall(Method, TheCall.get()))
5439    return ExprError();
5440
5441  return MaybeBindToTemporary(TheCall.release());
5442}
5443
5444/// BuildCallToObjectOfClassType - Build a call to an object of class
5445/// type (C++ [over.call.object]), which can end up invoking an
5446/// overloaded function call operator (@c operator()) or performing a
5447/// user-defined conversion on the object argument.
5448Sema::ExprResult
5449Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5450                                   SourceLocation LParenLoc,
5451                                   Expr **Args, unsigned NumArgs,
5452                                   SourceLocation *CommaLocs,
5453                                   SourceLocation RParenLoc) {
5454  assert(Object->getType()->isRecordType() && "Requires object type argument");
5455  const RecordType *Record = Object->getType()->getAs<RecordType>();
5456
5457  // C++ [over.call.object]p1:
5458  //  If the primary-expression E in the function call syntax
5459  //  evaluates to a class object of type "cv T", then the set of
5460  //  candidate functions includes at least the function call
5461  //  operators of T. The function call operators of T are obtained by
5462  //  ordinary lookup of the name operator() in the context of
5463  //  (E).operator().
5464  OverloadCandidateSet CandidateSet;
5465  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5466
5467  if (RequireCompleteType(LParenLoc, Object->getType(),
5468                          PartialDiagnostic(diag::err_incomplete_object_call)
5469                          << Object->getSourceRange()))
5470    return true;
5471
5472  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
5473  LookupQualifiedName(R, Record->getDecl());
5474  R.suppressDiagnostics();
5475
5476  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5477       Oper != OperEnd; ++Oper) {
5478    AddMethodCandidate(*Oper, Object->getType(), Args, NumArgs, CandidateSet,
5479                       /*SuppressUserConversions=*/ false);
5480  }
5481
5482  // C++ [over.call.object]p2:
5483  //   In addition, for each conversion function declared in T of the
5484  //   form
5485  //
5486  //        operator conversion-type-id () cv-qualifier;
5487  //
5488  //   where cv-qualifier is the same cv-qualification as, or a
5489  //   greater cv-qualification than, cv, and where conversion-type-id
5490  //   denotes the type "pointer to function of (P1,...,Pn) returning
5491  //   R", or the type "reference to pointer to function of
5492  //   (P1,...,Pn) returning R", or the type "reference to function
5493  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5494  //   is also considered as a candidate function. Similarly,
5495  //   surrogate call functions are added to the set of candidate
5496  //   functions for each conversion function declared in an
5497  //   accessible base class provided the function is not hidden
5498  //   within T by another intervening declaration.
5499  // FIXME: Look in base classes for more conversion operators!
5500  const UnresolvedSet *Conversions
5501    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
5502  for (UnresolvedSet::iterator I = Conversions->begin(),
5503         E = Conversions->end(); I != E; ++I) {
5504    NamedDecl *D = *I;
5505    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5506    if (isa<UsingShadowDecl>(D))
5507      D = cast<UsingShadowDecl>(D)->getTargetDecl();
5508
5509    // Skip over templated conversion functions; they aren't
5510    // surrogates.
5511    if (isa<FunctionTemplateDecl>(D))
5512      continue;
5513
5514    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
5515
5516    // Strip the reference type (if any) and then the pointer type (if
5517    // any) to get down to what might be a function type.
5518    QualType ConvType = Conv->getConversionType().getNonReferenceType();
5519    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5520      ConvType = ConvPtrType->getPointeeType();
5521
5522    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5523      AddSurrogateCandidate(Conv, ActingContext, Proto,
5524                            Object->getType(), Args, NumArgs,
5525                            CandidateSet);
5526  }
5527
5528  // Perform overload resolution.
5529  OverloadCandidateSet::iterator Best;
5530  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5531  case OR_Success:
5532    // Overload resolution succeeded; we'll build the appropriate call
5533    // below.
5534    break;
5535
5536  case OR_No_Viable_Function:
5537    Diag(Object->getSourceRange().getBegin(),
5538         diag::err_ovl_no_viable_object_call)
5539      << Object->getType() << Object->getSourceRange();
5540    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5541    break;
5542
5543  case OR_Ambiguous:
5544    Diag(Object->getSourceRange().getBegin(),
5545         diag::err_ovl_ambiguous_object_call)
5546      << Object->getType() << Object->getSourceRange();
5547    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5548    break;
5549
5550  case OR_Deleted:
5551    Diag(Object->getSourceRange().getBegin(),
5552         diag::err_ovl_deleted_object_call)
5553      << Best->Function->isDeleted()
5554      << Object->getType() << Object->getSourceRange();
5555    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5556    break;
5557  }
5558
5559  if (Best == CandidateSet.end()) {
5560    // We had an error; delete all of the subexpressions and return
5561    // the error.
5562    Object->Destroy(Context);
5563    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5564      Args[ArgIdx]->Destroy(Context);
5565    return true;
5566  }
5567
5568  if (Best->Function == 0) {
5569    // Since there is no function declaration, this is one of the
5570    // surrogate candidates. Dig out the conversion function.
5571    CXXConversionDecl *Conv
5572      = cast<CXXConversionDecl>(
5573                         Best->Conversions[0].UserDefined.ConversionFunction);
5574
5575    // We selected one of the surrogate functions that converts the
5576    // object parameter to a function pointer. Perform the conversion
5577    // on the object argument, then let ActOnCallExpr finish the job.
5578
5579    // Create an implicit member expr to refer to the conversion operator.
5580    // and then call it.
5581    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
5582
5583    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
5584                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
5585                         CommaLocs, RParenLoc).release();
5586  }
5587
5588  // We found an overloaded operator(). Build a CXXOperatorCallExpr
5589  // that calls this method, using Object for the implicit object
5590  // parameter and passing along the remaining arguments.
5591  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5592  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
5593
5594  unsigned NumArgsInProto = Proto->getNumArgs();
5595  unsigned NumArgsToCheck = NumArgs;
5596
5597  // Build the full argument list for the method call (the
5598  // implicit object parameter is placed at the beginning of the
5599  // list).
5600  Expr **MethodArgs;
5601  if (NumArgs < NumArgsInProto) {
5602    NumArgsToCheck = NumArgsInProto;
5603    MethodArgs = new Expr*[NumArgsInProto + 1];
5604  } else {
5605    MethodArgs = new Expr*[NumArgs + 1];
5606  }
5607  MethodArgs[0] = Object;
5608  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5609    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
5610
5611  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
5612                                          SourceLocation());
5613  UsualUnaryConversions(NewFn);
5614
5615  // Once we've built TheCall, all of the expressions are properly
5616  // owned.
5617  QualType ResultTy = Method->getResultType().getNonReferenceType();
5618  ExprOwningPtr<CXXOperatorCallExpr>
5619    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
5620                                                    MethodArgs, NumArgs + 1,
5621                                                    ResultTy, RParenLoc));
5622  delete [] MethodArgs;
5623
5624  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
5625                          Method))
5626    return true;
5627
5628  // We may have default arguments. If so, we need to allocate more
5629  // slots in the call for them.
5630  if (NumArgs < NumArgsInProto)
5631    TheCall->setNumArgs(Context, NumArgsInProto + 1);
5632  else if (NumArgs > NumArgsInProto)
5633    NumArgsToCheck = NumArgsInProto;
5634
5635  bool IsError = false;
5636
5637  // Initialize the implicit object parameter.
5638  IsError |= PerformObjectArgumentInitialization(Object, Method);
5639  TheCall->setArg(0, Object);
5640
5641
5642  // Check the argument types.
5643  for (unsigned i = 0; i != NumArgsToCheck; i++) {
5644    Expr *Arg;
5645    if (i < NumArgs) {
5646      Arg = Args[i];
5647
5648      // Pass the argument.
5649      QualType ProtoArgType = Proto->getArgType(i);
5650      IsError |= PerformCopyInitialization(Arg, ProtoArgType, AA_Passing);
5651    } else {
5652      OwningExprResult DefArg
5653        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
5654      if (DefArg.isInvalid()) {
5655        IsError = true;
5656        break;
5657      }
5658
5659      Arg = DefArg.takeAs<Expr>();
5660    }
5661
5662    TheCall->setArg(i + 1, Arg);
5663  }
5664
5665  // If this is a variadic call, handle args passed through "...".
5666  if (Proto->isVariadic()) {
5667    // Promote the arguments (C99 6.5.2.2p7).
5668    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
5669      Expr *Arg = Args[i];
5670      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
5671      TheCall->setArg(i + 1, Arg);
5672    }
5673  }
5674
5675  if (IsError) return true;
5676
5677  if (CheckFunctionCall(Method, TheCall.get()))
5678    return true;
5679
5680  return MaybeBindToTemporary(TheCall.release()).release();
5681}
5682
5683/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
5684///  (if one exists), where @c Base is an expression of class type and
5685/// @c Member is the name of the member we're trying to find.
5686Sema::OwningExprResult
5687Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
5688  Expr *Base = static_cast<Expr *>(BaseIn.get());
5689  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
5690
5691  // C++ [over.ref]p1:
5692  //
5693  //   [...] An expression x->m is interpreted as (x.operator->())->m
5694  //   for a class object x of type T if T::operator->() exists and if
5695  //   the operator is selected as the best match function by the
5696  //   overload resolution mechanism (13.3).
5697  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
5698  OverloadCandidateSet CandidateSet;
5699  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
5700
5701  if (RequireCompleteType(Base->getLocStart(), Base->getType(),
5702                          PDiag(diag::err_typecheck_incomplete_tag)
5703                            << Base->getSourceRange()))
5704    return ExprError();
5705
5706  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
5707  LookupQualifiedName(R, BaseRecord->getDecl());
5708  R.suppressDiagnostics();
5709
5710  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5711       Oper != OperEnd; ++Oper) {
5712    NamedDecl *D = *Oper;
5713    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5714    if (isa<UsingShadowDecl>(D))
5715      D = cast<UsingShadowDecl>(D)->getTargetDecl();
5716
5717    AddMethodCandidate(cast<CXXMethodDecl>(D), ActingContext,
5718                       Base->getType(), 0, 0, CandidateSet,
5719                       /*SuppressUserConversions=*/false);
5720  }
5721
5722  // Perform overload resolution.
5723  OverloadCandidateSet::iterator Best;
5724  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5725  case OR_Success:
5726    // Overload resolution succeeded; we'll build the call below.
5727    break;
5728
5729  case OR_No_Viable_Function:
5730    if (CandidateSet.empty())
5731      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5732        << Base->getType() << Base->getSourceRange();
5733    else
5734      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5735        << "operator->" << Base->getSourceRange();
5736    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5737    return ExprError();
5738
5739  case OR_Ambiguous:
5740    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5741      << "->" << Base->getSourceRange();
5742    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5743    return ExprError();
5744
5745  case OR_Deleted:
5746    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5747      << Best->Function->isDeleted()
5748      << "->" << Base->getSourceRange();
5749    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5750    return ExprError();
5751  }
5752
5753  // Convert the object parameter.
5754  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5755  if (PerformObjectArgumentInitialization(Base, Method))
5756    return ExprError();
5757
5758  // No concerns about early exits now.
5759  BaseIn.release();
5760
5761  // Build the operator call.
5762  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5763                                           SourceLocation());
5764  UsualUnaryConversions(FnExpr);
5765
5766  QualType ResultTy = Method->getResultType().getNonReferenceType();
5767  ExprOwningPtr<CXXOperatorCallExpr>
5768    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
5769                                                    &Base, 1, ResultTy, OpLoc));
5770
5771  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
5772                          Method))
5773          return ExprError();
5774  return move(TheCall);
5775}
5776
5777/// FixOverloadedFunctionReference - E is an expression that refers to
5778/// a C++ overloaded function (possibly with some parentheses and
5779/// perhaps a '&' around it). We have resolved the overloaded function
5780/// to the function declaration Fn, so patch up the expression E to
5781/// refer (possibly indirectly) to Fn. Returns the new expr.
5782Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5783  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5784    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5785    if (SubExpr == PE->getSubExpr())
5786      return PE->Retain();
5787
5788    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
5789  }
5790
5791  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5792    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
5793    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
5794                               SubExpr->getType()) &&
5795           "Implicit cast type cannot be determined from overload");
5796    if (SubExpr == ICE->getSubExpr())
5797      return ICE->Retain();
5798
5799    return new (Context) ImplicitCastExpr(ICE->getType(),
5800                                          ICE->getCastKind(),
5801                                          SubExpr,
5802                                          ICE->isLvalueCast());
5803  }
5804
5805  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5806    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5807           "Can only take the address of an overloaded function");
5808    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5809      if (Method->isStatic()) {
5810        // Do nothing: static member functions aren't any different
5811        // from non-member functions.
5812      } else {
5813        // Fix the sub expression, which really has to be an
5814        // UnresolvedLookupExpr holding an overloaded member function
5815        // or template.
5816        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5817        if (SubExpr == UnOp->getSubExpr())
5818          return UnOp->Retain();
5819
5820        assert(isa<DeclRefExpr>(SubExpr)
5821               && "fixed to something other than a decl ref");
5822        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
5823               && "fixed to a member ref with no nested name qualifier");
5824
5825        // We have taken the address of a pointer to member
5826        // function. Perform the computation here so that we get the
5827        // appropriate pointer to member type.
5828        QualType ClassType
5829          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5830        QualType MemPtrType
5831          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
5832
5833        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
5834                                           MemPtrType, UnOp->getOperatorLoc());
5835      }
5836    }
5837    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5838    if (SubExpr == UnOp->getSubExpr())
5839      return UnOp->Retain();
5840
5841    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
5842                                     Context.getPointerType(SubExpr->getType()),
5843                                       UnOp->getOperatorLoc());
5844  }
5845
5846  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
5847    // FIXME: avoid copy.
5848    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
5849    if (ULE->hasExplicitTemplateArgs()) {
5850      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
5851      TemplateArgs = &TemplateArgsBuffer;
5852    }
5853
5854    return DeclRefExpr::Create(Context,
5855                               ULE->getQualifier(),
5856                               ULE->getQualifierRange(),
5857                               Fn,
5858                               ULE->getNameLoc(),
5859                               Fn->getType(),
5860                               TemplateArgs);
5861  }
5862
5863  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
5864    // FIXME: avoid copy.
5865    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
5866    if (MemExpr->hasExplicitTemplateArgs()) {
5867      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
5868      TemplateArgs = &TemplateArgsBuffer;
5869    }
5870
5871    Expr *Base;
5872
5873    // If we're filling in
5874    if (MemExpr->isImplicitAccess()) {
5875      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
5876        return DeclRefExpr::Create(Context,
5877                                   MemExpr->getQualifier(),
5878                                   MemExpr->getQualifierRange(),
5879                                   Fn,
5880                                   MemExpr->getMemberLoc(),
5881                                   Fn->getType(),
5882                                   TemplateArgs);
5883      } else
5884        Base = new (Context) CXXThisExpr(SourceLocation(),
5885                                         MemExpr->getBaseType());
5886    } else
5887      Base = MemExpr->getBase()->Retain();
5888
5889    return MemberExpr::Create(Context, Base,
5890                              MemExpr->isArrow(),
5891                              MemExpr->getQualifier(),
5892                              MemExpr->getQualifierRange(),
5893                              Fn,
5894                              MemExpr->getMemberLoc(),
5895                              TemplateArgs,
5896                              Fn->getType());
5897  }
5898
5899  assert(false && "Invalid reference to overloaded function");
5900  return E->Retain();
5901}
5902
5903Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
5904                                                            FunctionDecl *Fn) {
5905  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
5906}
5907
5908} // end namespace clang
5909