SemaOverload.cpp revision cdef2b75aa60cde1ca00e0aa3f89139ac89c6ae4
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33  static const ImplicitConversionCategory
34    Category[(int)ICK_Num_Conversion_Kinds] = {
35    ICC_Identity,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Lvalue_Transformation,
39    ICC_Qualification_Adjustment,
40    ICC_Promotion,
41    ICC_Promotion,
42    ICC_Promotion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion
53  };
54  return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60  static const ImplicitConversionRank
61    Rank[(int)ICK_Num_Conversion_Kinds] = {
62    ICR_Exact_Match,
63    ICR_Exact_Match,
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Promotion,
68    ICR_Promotion,
69    ICR_Promotion,
70    ICR_Conversion,
71    ICR_Conversion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion
80  };
81  return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88    "No conversion",
89    "Lvalue-to-rvalue",
90    "Array-to-pointer",
91    "Function-to-pointer",
92    "Qualification",
93    "Integral promotion",
94    "Floating point promotion",
95    "Complex promotion",
96    "Integral conversion",
97    "Floating conversion",
98    "Complex conversion",
99    "Floating-integral conversion",
100    "Complex-real conversion",
101    "Pointer conversion",
102    "Pointer-to-member conversion",
103    "Boolean conversion",
104    "Compatible-types conversion",
105    "Derived-to-base conversion"
106  };
107  return Name[Kind];
108}
109
110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113  First = ICK_Identity;
114  Second = ICK_Identity;
115  Third = ICK_Identity;
116  Deprecated = false;
117  ReferenceBinding = false;
118  DirectBinding = false;
119  RRefBinding = false;
120  CopyConstructor = 0;
121}
122
123/// getRank - Retrieve the rank of this standard conversion sequence
124/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
125/// implicit conversions.
126ImplicitConversionRank StandardConversionSequence::getRank() const {
127  ImplicitConversionRank Rank = ICR_Exact_Match;
128  if  (GetConversionRank(First) > Rank)
129    Rank = GetConversionRank(First);
130  if  (GetConversionRank(Second) > Rank)
131    Rank = GetConversionRank(Second);
132  if  (GetConversionRank(Third) > Rank)
133    Rank = GetConversionRank(Third);
134  return Rank;
135}
136
137/// isPointerConversionToBool - Determines whether this conversion is
138/// a conversion of a pointer or pointer-to-member to bool. This is
139/// used as part of the ranking of standard conversion sequences
140/// (C++ 13.3.3.2p4).
141bool StandardConversionSequence::isPointerConversionToBool() const
142{
143  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
144  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
145
146  // Note that FromType has not necessarily been transformed by the
147  // array-to-pointer or function-to-pointer implicit conversions, so
148  // check for their presence as well as checking whether FromType is
149  // a pointer.
150  if (ToType->isBooleanType() &&
151      (FromType->isPointerType() || FromType->isBlockPointerType() ||
152       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
153    return true;
154
155  return false;
156}
157
158/// isPointerConversionToVoidPointer - Determines whether this
159/// conversion is a conversion of a pointer to a void pointer. This is
160/// used as part of the ranking of standard conversion sequences (C++
161/// 13.3.3.2p4).
162bool
163StandardConversionSequence::
164isPointerConversionToVoidPointer(ASTContext& Context) const
165{
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
288{
289  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
290    // Is this new function an overload of every function in the
291    // overload set?
292    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
293                                           FuncEnd = Ovl->function_end();
294    for (; Func != FuncEnd; ++Func) {
295      if (!IsOverload(New, *Func, MatchedDecl)) {
296        MatchedDecl = Func;
297        return false;
298      }
299    }
300
301    // This function overloads every function in the overload set.
302    return true;
303  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
304    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
305  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
306    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
307    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
308
309    // C++ [temp.fct]p2:
310    //   A function template can be overloaded with other function templates
311    //   and with normal (non-template) functions.
312    if ((OldTemplate == 0) != (NewTemplate == 0))
313      return true;
314
315    // Is the function New an overload of the function Old?
316    QualType OldQType = Context.getCanonicalType(Old->getType());
317    QualType NewQType = Context.getCanonicalType(New->getType());
318
319    // Compare the signatures (C++ 1.3.10) of the two functions to
320    // determine whether they are overloads. If we find any mismatch
321    // in the signature, they are overloads.
322
323    // If either of these functions is a K&R-style function (no
324    // prototype), then we consider them to have matching signatures.
325    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
326        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
327      return false;
328
329    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
330    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
331
332    // The signature of a function includes the types of its
333    // parameters (C++ 1.3.10), which includes the presence or absence
334    // of the ellipsis; see C++ DR 357).
335    if (OldQType != NewQType &&
336        (OldType->getNumArgs() != NewType->getNumArgs() ||
337         OldType->isVariadic() != NewType->isVariadic() ||
338         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
339                     NewType->arg_type_begin())))
340      return true;
341
342    // C++ [temp.over.link]p4:
343    //   The signature of a function template consists of its function
344    //   signature, its return type and its template parameter list. The names
345    //   of the template parameters are significant only for establishing the
346    //   relationship between the template parameters and the rest of the
347    //   signature.
348    //
349    // We check the return type and template parameter lists for function
350    // templates first; the remaining checks follow.
351    if (NewTemplate &&
352        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
353                                         OldTemplate->getTemplateParameters(),
354                                         false, false, SourceLocation()) ||
355         OldType->getResultType() != NewType->getResultType()))
356      return true;
357
358    // If the function is a class member, its signature includes the
359    // cv-qualifiers (if any) on the function itself.
360    //
361    // As part of this, also check whether one of the member functions
362    // is static, in which case they are not overloads (C++
363    // 13.1p2). While not part of the definition of the signature,
364    // this check is important to determine whether these functions
365    // can be overloaded.
366    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
367    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
368    if (OldMethod && NewMethod &&
369        !OldMethod->isStatic() && !NewMethod->isStatic() &&
370        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
371      return true;
372
373    // The signatures match; this is not an overload.
374    return false;
375  } else {
376    // (C++ 13p1):
377    //   Only function declarations can be overloaded; object and type
378    //   declarations cannot be overloaded.
379    return false;
380  }
381}
382
383/// TryImplicitConversion - Attempt to perform an implicit conversion
384/// from the given expression (Expr) to the given type (ToType). This
385/// function returns an implicit conversion sequence that can be used
386/// to perform the initialization. Given
387///
388///   void f(float f);
389///   void g(int i) { f(i); }
390///
391/// this routine would produce an implicit conversion sequence to
392/// describe the initialization of f from i, which will be a standard
393/// conversion sequence containing an lvalue-to-rvalue conversion (C++
394/// 4.1) followed by a floating-integral conversion (C++ 4.9).
395//
396/// Note that this routine only determines how the conversion can be
397/// performed; it does not actually perform the conversion. As such,
398/// it will not produce any diagnostics if no conversion is available,
399/// but will instead return an implicit conversion sequence of kind
400/// "BadConversion".
401///
402/// If @p SuppressUserConversions, then user-defined conversions are
403/// not permitted.
404/// If @p AllowExplicit, then explicit user-defined conversions are
405/// permitted.
406/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
407/// no matter its actual lvalueness.
408ImplicitConversionSequence
409Sema::TryImplicitConversion(Expr* From, QualType ToType,
410                            bool SuppressUserConversions,
411                            bool AllowExplicit, bool ForceRValue)
412{
413  ImplicitConversionSequence ICS;
414  if (IsStandardConversion(From, ToType, ICS.Standard))
415    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
416  else if (getLangOptions().CPlusPlus &&
417           IsUserDefinedConversion(From, ToType, ICS.UserDefined,
418                                   !SuppressUserConversions, AllowExplicit,
419                                   ForceRValue)) {
420    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
421    // C++ [over.ics.user]p4:
422    //   A conversion of an expression of class type to the same class
423    //   type is given Exact Match rank, and a conversion of an
424    //   expression of class type to a base class of that type is
425    //   given Conversion rank, in spite of the fact that a copy
426    //   constructor (i.e., a user-defined conversion function) is
427    //   called for those cases.
428    if (CXXConstructorDecl *Constructor
429          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
430      QualType FromCanon
431        = Context.getCanonicalType(From->getType().getUnqualifiedType());
432      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
433      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
434        // Turn this into a "standard" conversion sequence, so that it
435        // gets ranked with standard conversion sequences.
436        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
437        ICS.Standard.setAsIdentityConversion();
438        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
439        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
440        ICS.Standard.CopyConstructor = Constructor;
441        if (ToCanon != FromCanon)
442          ICS.Standard.Second = ICK_Derived_To_Base;
443      }
444    }
445
446    // C++ [over.best.ics]p4:
447    //   However, when considering the argument of a user-defined
448    //   conversion function that is a candidate by 13.3.1.3 when
449    //   invoked for the copying of the temporary in the second step
450    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
451    //   13.3.1.6 in all cases, only standard conversion sequences and
452    //   ellipsis conversion sequences are allowed.
453    if (SuppressUserConversions &&
454        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
455      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
456  } else
457    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
458
459  return ICS;
460}
461
462/// IsStandardConversion - Determines whether there is a standard
463/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
464/// expression From to the type ToType. Standard conversion sequences
465/// only consider non-class types; for conversions that involve class
466/// types, use TryImplicitConversion. If a conversion exists, SCS will
467/// contain the standard conversion sequence required to perform this
468/// conversion and this routine will return true. Otherwise, this
469/// routine will return false and the value of SCS is unspecified.
470bool
471Sema::IsStandardConversion(Expr* From, QualType ToType,
472                           StandardConversionSequence &SCS)
473{
474  QualType FromType = From->getType();
475
476  // Standard conversions (C++ [conv])
477  SCS.setAsIdentityConversion();
478  SCS.Deprecated = false;
479  SCS.IncompatibleObjC = false;
480  SCS.FromTypePtr = FromType.getAsOpaquePtr();
481  SCS.CopyConstructor = 0;
482
483  // There are no standard conversions for class types in C++, so
484  // abort early. When overloading in C, however, we do permit
485  if (FromType->isRecordType() || ToType->isRecordType()) {
486    if (getLangOptions().CPlusPlus)
487      return false;
488
489    // When we're overloading in C, we allow, as standard conversions,
490  }
491
492  // The first conversion can be an lvalue-to-rvalue conversion,
493  // array-to-pointer conversion, or function-to-pointer conversion
494  // (C++ 4p1).
495
496  // Lvalue-to-rvalue conversion (C++ 4.1):
497  //   An lvalue (3.10) of a non-function, non-array type T can be
498  //   converted to an rvalue.
499  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
500  if (argIsLvalue == Expr::LV_Valid &&
501      !FromType->isFunctionType() && !FromType->isArrayType() &&
502      Context.getCanonicalType(FromType) != Context.OverloadTy) {
503    SCS.First = ICK_Lvalue_To_Rvalue;
504
505    // If T is a non-class type, the type of the rvalue is the
506    // cv-unqualified version of T. Otherwise, the type of the rvalue
507    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
508    // just strip the qualifiers because they don't matter.
509
510    // FIXME: Doesn't see through to qualifiers behind a typedef!
511    FromType = FromType.getUnqualifiedType();
512  }
513  // Array-to-pointer conversion (C++ 4.2)
514  else if (FromType->isArrayType()) {
515    SCS.First = ICK_Array_To_Pointer;
516
517    // An lvalue or rvalue of type "array of N T" or "array of unknown
518    // bound of T" can be converted to an rvalue of type "pointer to
519    // T" (C++ 4.2p1).
520    FromType = Context.getArrayDecayedType(FromType);
521
522    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
523      // This conversion is deprecated. (C++ D.4).
524      SCS.Deprecated = true;
525
526      // For the purpose of ranking in overload resolution
527      // (13.3.3.1.1), this conversion is considered an
528      // array-to-pointer conversion followed by a qualification
529      // conversion (4.4). (C++ 4.2p2)
530      SCS.Second = ICK_Identity;
531      SCS.Third = ICK_Qualification;
532      SCS.ToTypePtr = ToType.getAsOpaquePtr();
533      return true;
534    }
535  }
536  // Function-to-pointer conversion (C++ 4.3).
537  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
538    SCS.First = ICK_Function_To_Pointer;
539
540    // An lvalue of function type T can be converted to an rvalue of
541    // type "pointer to T." The result is a pointer to the
542    // function. (C++ 4.3p1).
543    FromType = Context.getPointerType(FromType);
544  }
545  // Address of overloaded function (C++ [over.over]).
546  else if (FunctionDecl *Fn
547             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
548    SCS.First = ICK_Function_To_Pointer;
549
550    // We were able to resolve the address of the overloaded function,
551    // so we can convert to the type of that function.
552    FromType = Fn->getType();
553    if (ToType->isLValueReferenceType())
554      FromType = Context.getLValueReferenceType(FromType);
555    else if (ToType->isRValueReferenceType())
556      FromType = Context.getRValueReferenceType(FromType);
557    else if (ToType->isMemberPointerType()) {
558      // Resolve address only succeeds if both sides are member pointers,
559      // but it doesn't have to be the same class. See DR 247.
560      // Note that this means that the type of &Derived::fn can be
561      // Ret (Base::*)(Args) if the fn overload actually found is from the
562      // base class, even if it was brought into the derived class via a
563      // using declaration. The standard isn't clear on this issue at all.
564      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
565      FromType = Context.getMemberPointerType(FromType,
566                    Context.getTypeDeclType(M->getParent()).getTypePtr());
567    } else
568      FromType = Context.getPointerType(FromType);
569  }
570  // We don't require any conversions for the first step.
571  else {
572    SCS.First = ICK_Identity;
573  }
574
575  // The second conversion can be an integral promotion, floating
576  // point promotion, integral conversion, floating point conversion,
577  // floating-integral conversion, pointer conversion,
578  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
579  // For overloading in C, this can also be a "compatible-type"
580  // conversion.
581  bool IncompatibleObjC = false;
582  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
583    // The unqualified versions of the types are the same: there's no
584    // conversion to do.
585    SCS.Second = ICK_Identity;
586  }
587  // Integral promotion (C++ 4.5).
588  else if (IsIntegralPromotion(From, FromType, ToType)) {
589    SCS.Second = ICK_Integral_Promotion;
590    FromType = ToType.getUnqualifiedType();
591  }
592  // Floating point promotion (C++ 4.6).
593  else if (IsFloatingPointPromotion(FromType, ToType)) {
594    SCS.Second = ICK_Floating_Promotion;
595    FromType = ToType.getUnqualifiedType();
596  }
597  // Complex promotion (Clang extension)
598  else if (IsComplexPromotion(FromType, ToType)) {
599    SCS.Second = ICK_Complex_Promotion;
600    FromType = ToType.getUnqualifiedType();
601  }
602  // Integral conversions (C++ 4.7).
603  // FIXME: isIntegralType shouldn't be true for enums in C++.
604  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
605           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
606    SCS.Second = ICK_Integral_Conversion;
607    FromType = ToType.getUnqualifiedType();
608  }
609  // Floating point conversions (C++ 4.8).
610  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
611    SCS.Second = ICK_Floating_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  }
614  // Complex conversions (C99 6.3.1.6)
615  else if (FromType->isComplexType() && ToType->isComplexType()) {
616    SCS.Second = ICK_Complex_Conversion;
617    FromType = ToType.getUnqualifiedType();
618  }
619  // Floating-integral conversions (C++ 4.9).
620  // FIXME: isIntegralType shouldn't be true for enums in C++.
621  else if ((FromType->isFloatingType() &&
622            ToType->isIntegralType() && !ToType->isBooleanType() &&
623                                        !ToType->isEnumeralType()) ||
624           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
625            ToType->isFloatingType())) {
626    SCS.Second = ICK_Floating_Integral;
627    FromType = ToType.getUnqualifiedType();
628  }
629  // Complex-real conversions (C99 6.3.1.7)
630  else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
631           (ToType->isComplexType() && FromType->isArithmeticType())) {
632    SCS.Second = ICK_Complex_Real;
633    FromType = ToType.getUnqualifiedType();
634  }
635  // Pointer conversions (C++ 4.10).
636  else if (IsPointerConversion(From, FromType, ToType, FromType,
637                               IncompatibleObjC)) {
638    SCS.Second = ICK_Pointer_Conversion;
639    SCS.IncompatibleObjC = IncompatibleObjC;
640  }
641  // Pointer to member conversions (4.11).
642  else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
643    SCS.Second = ICK_Pointer_Member;
644  }
645  // Boolean conversions (C++ 4.12).
646  else if (ToType->isBooleanType() &&
647           (FromType->isArithmeticType() ||
648            FromType->isEnumeralType() ||
649            FromType->isPointerType() ||
650            FromType->isBlockPointerType() ||
651            FromType->isMemberPointerType() ||
652            FromType->isNullPtrType())) {
653    SCS.Second = ICK_Boolean_Conversion;
654    FromType = Context.BoolTy;
655  }
656  // Compatible conversions (Clang extension for C function overloading)
657  else if (!getLangOptions().CPlusPlus &&
658           Context.typesAreCompatible(ToType, FromType)) {
659    SCS.Second = ICK_Compatible_Conversion;
660  } else {
661    // No second conversion required.
662    SCS.Second = ICK_Identity;
663  }
664
665  QualType CanonFrom;
666  QualType CanonTo;
667  // The third conversion can be a qualification conversion (C++ 4p1).
668  if (IsQualificationConversion(FromType, ToType)) {
669    SCS.Third = ICK_Qualification;
670    FromType = ToType;
671    CanonFrom = Context.getCanonicalType(FromType);
672    CanonTo = Context.getCanonicalType(ToType);
673  } else {
674    // No conversion required
675    SCS.Third = ICK_Identity;
676
677    // C++ [over.best.ics]p6:
678    //   [...] Any difference in top-level cv-qualification is
679    //   subsumed by the initialization itself and does not constitute
680    //   a conversion. [...]
681    CanonFrom = Context.getCanonicalType(FromType);
682    CanonTo = Context.getCanonicalType(ToType);
683    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
684        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
685      FromType = ToType;
686      CanonFrom = CanonTo;
687    }
688  }
689
690  // If we have not converted the argument type to the parameter type,
691  // this is a bad conversion sequence.
692  if (CanonFrom != CanonTo)
693    return false;
694
695  SCS.ToTypePtr = FromType.getAsOpaquePtr();
696  return true;
697}
698
699/// IsIntegralPromotion - Determines whether the conversion from the
700/// expression From (whose potentially-adjusted type is FromType) to
701/// ToType is an integral promotion (C++ 4.5). If so, returns true and
702/// sets PromotedType to the promoted type.
703bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
704{
705  const BuiltinType *To = ToType->getAsBuiltinType();
706  // All integers are built-in.
707  if (!To) {
708    return false;
709  }
710
711  // An rvalue of type char, signed char, unsigned char, short int, or
712  // unsigned short int can be converted to an rvalue of type int if
713  // int can represent all the values of the source type; otherwise,
714  // the source rvalue can be converted to an rvalue of type unsigned
715  // int (C++ 4.5p1).
716  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
717    if (// We can promote any signed, promotable integer type to an int
718        (FromType->isSignedIntegerType() ||
719         // We can promote any unsigned integer type whose size is
720         // less than int to an int.
721         (!FromType->isSignedIntegerType() &&
722          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
723      return To->getKind() == BuiltinType::Int;
724    }
725
726    return To->getKind() == BuiltinType::UInt;
727  }
728
729  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
730  // can be converted to an rvalue of the first of the following types
731  // that can represent all the values of its underlying type: int,
732  // unsigned int, long, or unsigned long (C++ 4.5p2).
733  if ((FromType->isEnumeralType() || FromType->isWideCharType())
734      && ToType->isIntegerType()) {
735    // Determine whether the type we're converting from is signed or
736    // unsigned.
737    bool FromIsSigned;
738    uint64_t FromSize = Context.getTypeSize(FromType);
739    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
740      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
741      FromIsSigned = UnderlyingType->isSignedIntegerType();
742    } else {
743      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
744      FromIsSigned = true;
745    }
746
747    // The types we'll try to promote to, in the appropriate
748    // order. Try each of these types.
749    QualType PromoteTypes[6] = {
750      Context.IntTy, Context.UnsignedIntTy,
751      Context.LongTy, Context.UnsignedLongTy ,
752      Context.LongLongTy, Context.UnsignedLongLongTy
753    };
754    for (int Idx = 0; Idx < 6; ++Idx) {
755      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
756      if (FromSize < ToSize ||
757          (FromSize == ToSize &&
758           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
759        // We found the type that we can promote to. If this is the
760        // type we wanted, we have a promotion. Otherwise, no
761        // promotion.
762        return Context.getCanonicalType(ToType).getUnqualifiedType()
763          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
764      }
765    }
766  }
767
768  // An rvalue for an integral bit-field (9.6) can be converted to an
769  // rvalue of type int if int can represent all the values of the
770  // bit-field; otherwise, it can be converted to unsigned int if
771  // unsigned int can represent all the values of the bit-field. If
772  // the bit-field is larger yet, no integral promotion applies to
773  // it. If the bit-field has an enumerated type, it is treated as any
774  // other value of that type for promotion purposes (C++ 4.5p3).
775  // FIXME: We should delay checking of bit-fields until we actually perform the
776  // conversion.
777  using llvm::APSInt;
778  if (From)
779    if (FieldDecl *MemberDecl = From->getBitField()) {
780      APSInt BitWidth;
781      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
782          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
783        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
784        ToSize = Context.getTypeSize(ToType);
785
786        // Are we promoting to an int from a bitfield that fits in an int?
787        if (BitWidth < ToSize ||
788            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
789          return To->getKind() == BuiltinType::Int;
790        }
791
792        // Are we promoting to an unsigned int from an unsigned bitfield
793        // that fits into an unsigned int?
794        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
795          return To->getKind() == BuiltinType::UInt;
796        }
797
798        return false;
799      }
800    }
801
802  // An rvalue of type bool can be converted to an rvalue of type int,
803  // with false becoming zero and true becoming one (C++ 4.5p4).
804  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
805    return true;
806  }
807
808  return false;
809}
810
811/// IsFloatingPointPromotion - Determines whether the conversion from
812/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
813/// returns true and sets PromotedType to the promoted type.
814bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
815{
816  /// An rvalue of type float can be converted to an rvalue of type
817  /// double. (C++ 4.6p1).
818  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
819    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
820      if (FromBuiltin->getKind() == BuiltinType::Float &&
821          ToBuiltin->getKind() == BuiltinType::Double)
822        return true;
823
824      // C99 6.3.1.5p1:
825      //   When a float is promoted to double or long double, or a
826      //   double is promoted to long double [...].
827      if (!getLangOptions().CPlusPlus &&
828          (FromBuiltin->getKind() == BuiltinType::Float ||
829           FromBuiltin->getKind() == BuiltinType::Double) &&
830          (ToBuiltin->getKind() == BuiltinType::LongDouble))
831        return true;
832    }
833
834  return false;
835}
836
837/// \brief Determine if a conversion is a complex promotion.
838///
839/// A complex promotion is defined as a complex -> complex conversion
840/// where the conversion between the underlying real types is a
841/// floating-point or integral promotion.
842bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
843  const ComplexType *FromComplex = FromType->getAsComplexType();
844  if (!FromComplex)
845    return false;
846
847  const ComplexType *ToComplex = ToType->getAsComplexType();
848  if (!ToComplex)
849    return false;
850
851  return IsFloatingPointPromotion(FromComplex->getElementType(),
852                                  ToComplex->getElementType()) ||
853    IsIntegralPromotion(0, FromComplex->getElementType(),
854                        ToComplex->getElementType());
855}
856
857/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
858/// the pointer type FromPtr to a pointer to type ToPointee, with the
859/// same type qualifiers as FromPtr has on its pointee type. ToType,
860/// if non-empty, will be a pointer to ToType that may or may not have
861/// the right set of qualifiers on its pointee.
862static QualType
863BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
864                                   QualType ToPointee, QualType ToType,
865                                   ASTContext &Context) {
866  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
867  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
868  unsigned Quals = CanonFromPointee.getCVRQualifiers();
869
870  // Exact qualifier match -> return the pointer type we're converting to.
871  if (CanonToPointee.getCVRQualifiers() == Quals) {
872    // ToType is exactly what we need. Return it.
873    if (ToType.getTypePtr())
874      return ToType;
875
876    // Build a pointer to ToPointee. It has the right qualifiers
877    // already.
878    return Context.getPointerType(ToPointee);
879  }
880
881  // Just build a canonical type that has the right qualifiers.
882  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
883}
884
885/// IsPointerConversion - Determines whether the conversion of the
886/// expression From, which has the (possibly adjusted) type FromType,
887/// can be converted to the type ToType via a pointer conversion (C++
888/// 4.10). If so, returns true and places the converted type (that
889/// might differ from ToType in its cv-qualifiers at some level) into
890/// ConvertedType.
891///
892/// This routine also supports conversions to and from block pointers
893/// and conversions with Objective-C's 'id', 'id<protocols...>', and
894/// pointers to interfaces. FIXME: Once we've determined the
895/// appropriate overloading rules for Objective-C, we may want to
896/// split the Objective-C checks into a different routine; however,
897/// GCC seems to consider all of these conversions to be pointer
898/// conversions, so for now they live here. IncompatibleObjC will be
899/// set if the conversion is an allowed Objective-C conversion that
900/// should result in a warning.
901bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
902                               QualType& ConvertedType,
903                               bool &IncompatibleObjC)
904{
905  IncompatibleObjC = false;
906  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
907    return true;
908
909  // Conversion from a null pointer constant to any Objective-C pointer type.
910  if (ToType->isObjCObjectPointerType() &&
911      From->isNullPointerConstant(Context)) {
912    ConvertedType = ToType;
913    return true;
914  }
915
916  // Blocks: Block pointers can be converted to void*.
917  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
918      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
919    ConvertedType = ToType;
920    return true;
921  }
922  // Blocks: A null pointer constant can be converted to a block
923  // pointer type.
924  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
925    ConvertedType = ToType;
926    return true;
927  }
928
929  // If the left-hand-side is nullptr_t, the right side can be a null
930  // pointer constant.
931  if (ToType->isNullPtrType() && From->isNullPointerConstant(Context)) {
932    ConvertedType = ToType;
933    return true;
934  }
935
936  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
937  if (!ToTypePtr)
938    return false;
939
940  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
941  if (From->isNullPointerConstant(Context)) {
942    ConvertedType = ToType;
943    return true;
944  }
945
946  // Beyond this point, both types need to be pointers.
947  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
948  if (!FromTypePtr)
949    return false;
950
951  QualType FromPointeeType = FromTypePtr->getPointeeType();
952  QualType ToPointeeType = ToTypePtr->getPointeeType();
953
954  // An rvalue of type "pointer to cv T," where T is an object type,
955  // can be converted to an rvalue of type "pointer to cv void" (C++
956  // 4.10p2).
957  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
958    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
959                                                       ToPointeeType,
960                                                       ToType, Context);
961    return true;
962  }
963
964  // When we're overloading in C, we allow a special kind of pointer
965  // conversion for compatible-but-not-identical pointee types.
966  if (!getLangOptions().CPlusPlus &&
967      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
968    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
969                                                       ToPointeeType,
970                                                       ToType, Context);
971    return true;
972  }
973
974  // C++ [conv.ptr]p3:
975  //
976  //   An rvalue of type "pointer to cv D," where D is a class type,
977  //   can be converted to an rvalue of type "pointer to cv B," where
978  //   B is a base class (clause 10) of D. If B is an inaccessible
979  //   (clause 11) or ambiguous (10.2) base class of D, a program that
980  //   necessitates this conversion is ill-formed. The result of the
981  //   conversion is a pointer to the base class sub-object of the
982  //   derived class object. The null pointer value is converted to
983  //   the null pointer value of the destination type.
984  //
985  // Note that we do not check for ambiguity or inaccessibility
986  // here. That is handled by CheckPointerConversion.
987  if (getLangOptions().CPlusPlus &&
988      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
989      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
990    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
991                                                       ToPointeeType,
992                                                       ToType, Context);
993    return true;
994  }
995
996  return false;
997}
998
999/// isObjCPointerConversion - Determines whether this is an
1000/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1001/// with the same arguments and return values.
1002bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1003                                   QualType& ConvertedType,
1004                                   bool &IncompatibleObjC) {
1005  if (!getLangOptions().ObjC1)
1006    return false;
1007
1008  // First, we handle all conversions on ObjC object pointer types.
1009  const ObjCObjectPointerType* ToObjCPtr = ToType->getAsObjCObjectPointerType();
1010  const ObjCObjectPointerType *FromObjCPtr =
1011    FromType->getAsObjCObjectPointerType();
1012
1013  if (ToObjCPtr && FromObjCPtr) {
1014    // Objective C++: We're able to convert between "id" or "Class" and a
1015    // pointer to any interface (in both directions).
1016    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1017      ConvertedType = ToType;
1018      return true;
1019    }
1020    // Conversions with Objective-C's id<...>.
1021    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1022         ToObjCPtr->isObjCQualifiedIdType()) &&
1023        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1024                                                  /*compare=*/false)) {
1025      ConvertedType = ToType;
1026      return true;
1027    }
1028    // Objective C++: We're able to convert from a pointer to an
1029    // interface to a pointer to a different interface.
1030    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1031      ConvertedType = ToType;
1032      return true;
1033    }
1034
1035    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1036      // Okay: this is some kind of implicit downcast of Objective-C
1037      // interfaces, which is permitted. However, we're going to
1038      // complain about it.
1039      IncompatibleObjC = true;
1040      ConvertedType = FromType;
1041      return true;
1042    }
1043  }
1044  // Beyond this point, both types need to be C pointers or block pointers.
1045  QualType ToPointeeType;
1046  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1047    ToPointeeType = ToCPtr->getPointeeType();
1048  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1049    ToPointeeType = ToBlockPtr->getPointeeType();
1050  else
1051    return false;
1052
1053  QualType FromPointeeType;
1054  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1055    FromPointeeType = FromCPtr->getPointeeType();
1056  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1057    FromPointeeType = FromBlockPtr->getPointeeType();
1058  else
1059    return false;
1060
1061  // If we have pointers to pointers, recursively check whether this
1062  // is an Objective-C conversion.
1063  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1064      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1065                              IncompatibleObjC)) {
1066    // We always complain about this conversion.
1067    IncompatibleObjC = true;
1068    ConvertedType = ToType;
1069    return true;
1070  }
1071  // If we have pointers to functions or blocks, check whether the only
1072  // differences in the argument and result types are in Objective-C
1073  // pointer conversions. If so, we permit the conversion (but
1074  // complain about it).
1075  const FunctionProtoType *FromFunctionType
1076    = FromPointeeType->getAsFunctionProtoType();
1077  const FunctionProtoType *ToFunctionType
1078    = ToPointeeType->getAsFunctionProtoType();
1079  if (FromFunctionType && ToFunctionType) {
1080    // If the function types are exactly the same, this isn't an
1081    // Objective-C pointer conversion.
1082    if (Context.getCanonicalType(FromPointeeType)
1083          == Context.getCanonicalType(ToPointeeType))
1084      return false;
1085
1086    // Perform the quick checks that will tell us whether these
1087    // function types are obviously different.
1088    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1089        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1090        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1091      return false;
1092
1093    bool HasObjCConversion = false;
1094    if (Context.getCanonicalType(FromFunctionType->getResultType())
1095          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1096      // Okay, the types match exactly. Nothing to do.
1097    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1098                                       ToFunctionType->getResultType(),
1099                                       ConvertedType, IncompatibleObjC)) {
1100      // Okay, we have an Objective-C pointer conversion.
1101      HasObjCConversion = true;
1102    } else {
1103      // Function types are too different. Abort.
1104      return false;
1105    }
1106
1107    // Check argument types.
1108    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1109         ArgIdx != NumArgs; ++ArgIdx) {
1110      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1111      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1112      if (Context.getCanonicalType(FromArgType)
1113            == Context.getCanonicalType(ToArgType)) {
1114        // Okay, the types match exactly. Nothing to do.
1115      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1116                                         ConvertedType, IncompatibleObjC)) {
1117        // Okay, we have an Objective-C pointer conversion.
1118        HasObjCConversion = true;
1119      } else {
1120        // Argument types are too different. Abort.
1121        return false;
1122      }
1123    }
1124
1125    if (HasObjCConversion) {
1126      // We had an Objective-C conversion. Allow this pointer
1127      // conversion, but complain about it.
1128      ConvertedType = ToType;
1129      IncompatibleObjC = true;
1130      return true;
1131    }
1132  }
1133
1134  return false;
1135}
1136
1137/// CheckPointerConversion - Check the pointer conversion from the
1138/// expression From to the type ToType. This routine checks for
1139/// ambiguous or inaccessible derived-to-base pointer
1140/// conversions for which IsPointerConversion has already returned
1141/// true. It returns true and produces a diagnostic if there was an
1142/// error, or returns false otherwise.
1143bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1144  QualType FromType = From->getType();
1145
1146  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1147    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1148      QualType FromPointeeType = FromPtrType->getPointeeType(),
1149               ToPointeeType   = ToPtrType->getPointeeType();
1150
1151      if (FromPointeeType->isRecordType() &&
1152          ToPointeeType->isRecordType()) {
1153        // We must have a derived-to-base conversion. Check an
1154        // ambiguous or inaccessible conversion.
1155        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1156                                            From->getExprLoc(),
1157                                            From->getSourceRange());
1158      }
1159    }
1160  if (const ObjCObjectPointerType *FromPtrType =
1161        FromType->getAsObjCObjectPointerType())
1162    if (const ObjCObjectPointerType *ToPtrType =
1163          ToType->getAsObjCObjectPointerType()) {
1164      // Objective-C++ conversions are always okay.
1165      // FIXME: We should have a different class of conversions for the
1166      // Objective-C++ implicit conversions.
1167      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1168        return false;
1169
1170  }
1171  return false;
1172}
1173
1174/// IsMemberPointerConversion - Determines whether the conversion of the
1175/// expression From, which has the (possibly adjusted) type FromType, can be
1176/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1177/// If so, returns true and places the converted type (that might differ from
1178/// ToType in its cv-qualifiers at some level) into ConvertedType.
1179bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1180                                     QualType ToType, QualType &ConvertedType)
1181{
1182  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1183  if (!ToTypePtr)
1184    return false;
1185
1186  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1187  if (From->isNullPointerConstant(Context)) {
1188    ConvertedType = ToType;
1189    return true;
1190  }
1191
1192  // Otherwise, both types have to be member pointers.
1193  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1194  if (!FromTypePtr)
1195    return false;
1196
1197  // A pointer to member of B can be converted to a pointer to member of D,
1198  // where D is derived from B (C++ 4.11p2).
1199  QualType FromClass(FromTypePtr->getClass(), 0);
1200  QualType ToClass(ToTypePtr->getClass(), 0);
1201  // FIXME: What happens when these are dependent? Is this function even called?
1202
1203  if (IsDerivedFrom(ToClass, FromClass)) {
1204    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1205                                                 ToClass.getTypePtr());
1206    return true;
1207  }
1208
1209  return false;
1210}
1211
1212/// CheckMemberPointerConversion - Check the member pointer conversion from the
1213/// expression From to the type ToType. This routine checks for ambiguous or
1214/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1215/// for which IsMemberPointerConversion has already returned true. It returns
1216/// true and produces a diagnostic if there was an error, or returns false
1217/// otherwise.
1218bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1219  QualType FromType = From->getType();
1220  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1221  if (!FromPtrType)
1222    return false;
1223
1224  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1225  assert(ToPtrType && "No member pointer cast has a target type "
1226                      "that is not a member pointer.");
1227
1228  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1229  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1230
1231  // FIXME: What about dependent types?
1232  assert(FromClass->isRecordType() && "Pointer into non-class.");
1233  assert(ToClass->isRecordType() && "Pointer into non-class.");
1234
1235  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1236                  /*DetectVirtual=*/true);
1237  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1238  assert(DerivationOkay &&
1239         "Should not have been called if derivation isn't OK.");
1240  (void)DerivationOkay;
1241
1242  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1243                                  getUnqualifiedType())) {
1244    // Derivation is ambiguous. Redo the check to find the exact paths.
1245    Paths.clear();
1246    Paths.setRecordingPaths(true);
1247    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1248    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1249    (void)StillOkay;
1250
1251    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1252    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1253      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1254    return true;
1255  }
1256
1257  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1258    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1259      << FromClass << ToClass << QualType(VBase, 0)
1260      << From->getSourceRange();
1261    return true;
1262  }
1263
1264  return false;
1265}
1266
1267/// IsQualificationConversion - Determines whether the conversion from
1268/// an rvalue of type FromType to ToType is a qualification conversion
1269/// (C++ 4.4).
1270bool
1271Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1272{
1273  FromType = Context.getCanonicalType(FromType);
1274  ToType = Context.getCanonicalType(ToType);
1275
1276  // If FromType and ToType are the same type, this is not a
1277  // qualification conversion.
1278  if (FromType == ToType)
1279    return false;
1280
1281  // (C++ 4.4p4):
1282  //   A conversion can add cv-qualifiers at levels other than the first
1283  //   in multi-level pointers, subject to the following rules: [...]
1284  bool PreviousToQualsIncludeConst = true;
1285  bool UnwrappedAnyPointer = false;
1286  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1287    // Within each iteration of the loop, we check the qualifiers to
1288    // determine if this still looks like a qualification
1289    // conversion. Then, if all is well, we unwrap one more level of
1290    // pointers or pointers-to-members and do it all again
1291    // until there are no more pointers or pointers-to-members left to
1292    // unwrap.
1293    UnwrappedAnyPointer = true;
1294
1295    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1296    //      2,j, and similarly for volatile.
1297    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1298      return false;
1299
1300    //   -- if the cv 1,j and cv 2,j are different, then const is in
1301    //      every cv for 0 < k < j.
1302    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1303        && !PreviousToQualsIncludeConst)
1304      return false;
1305
1306    // Keep track of whether all prior cv-qualifiers in the "to" type
1307    // include const.
1308    PreviousToQualsIncludeConst
1309      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1310  }
1311
1312  // We are left with FromType and ToType being the pointee types
1313  // after unwrapping the original FromType and ToType the same number
1314  // of types. If we unwrapped any pointers, and if FromType and
1315  // ToType have the same unqualified type (since we checked
1316  // qualifiers above), then this is a qualification conversion.
1317  return UnwrappedAnyPointer &&
1318    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1319}
1320
1321/// Determines whether there is a user-defined conversion sequence
1322/// (C++ [over.ics.user]) that converts expression From to the type
1323/// ToType. If such a conversion exists, User will contain the
1324/// user-defined conversion sequence that performs such a conversion
1325/// and this routine will return true. Otherwise, this routine returns
1326/// false and User is unspecified.
1327///
1328/// \param AllowConversionFunctions true if the conversion should
1329/// consider conversion functions at all. If false, only constructors
1330/// will be considered.
1331///
1332/// \param AllowExplicit  true if the conversion should consider C++0x
1333/// "explicit" conversion functions as well as non-explicit conversion
1334/// functions (C++0x [class.conv.fct]p2).
1335///
1336/// \param ForceRValue  true if the expression should be treated as an rvalue
1337/// for overload resolution.
1338bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1339                                   UserDefinedConversionSequence& User,
1340                                   bool AllowConversionFunctions,
1341                                   bool AllowExplicit, bool ForceRValue)
1342{
1343  OverloadCandidateSet CandidateSet;
1344  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1345    if (CXXRecordDecl *ToRecordDecl
1346          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1347      // C++ [over.match.ctor]p1:
1348      //   When objects of class type are direct-initialized (8.5), or
1349      //   copy-initialized from an expression of the same or a
1350      //   derived class type (8.5), overload resolution selects the
1351      //   constructor. [...] For copy-initialization, the candidate
1352      //   functions are all the converting constructors (12.3.1) of
1353      //   that class. The argument list is the expression-list within
1354      //   the parentheses of the initializer.
1355      DeclarationName ConstructorName
1356        = Context.DeclarationNames.getCXXConstructorName(
1357                          Context.getCanonicalType(ToType).getUnqualifiedType());
1358      DeclContext::lookup_iterator Con, ConEnd;
1359      for (llvm::tie(Con, ConEnd)
1360             = ToRecordDecl->lookup(ConstructorName);
1361           Con != ConEnd; ++Con) {
1362        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1363        if (Constructor->isConvertingConstructor())
1364          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1365                               /*SuppressUserConversions=*/true, ForceRValue);
1366      }
1367    }
1368  }
1369
1370  if (!AllowConversionFunctions) {
1371    // Don't allow any conversion functions to enter the overload set.
1372  } else if (const RecordType *FromRecordType
1373               = From->getType()->getAs<RecordType>()) {
1374    if (CXXRecordDecl *FromRecordDecl
1375          = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1376      // Add all of the conversion functions as candidates.
1377      // FIXME: Look for conversions in base classes!
1378      OverloadedFunctionDecl *Conversions
1379        = FromRecordDecl->getConversionFunctions();
1380      for (OverloadedFunctionDecl::function_iterator Func
1381             = Conversions->function_begin();
1382           Func != Conversions->function_end(); ++Func) {
1383        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1384        if (AllowExplicit || !Conv->isExplicit())
1385          AddConversionCandidate(Conv, From, ToType, CandidateSet);
1386      }
1387    }
1388  }
1389
1390  OverloadCandidateSet::iterator Best;
1391  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1392    case OR_Success:
1393      // Record the standard conversion we used and the conversion function.
1394      if (CXXConstructorDecl *Constructor
1395            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1396        // C++ [over.ics.user]p1:
1397        //   If the user-defined conversion is specified by a
1398        //   constructor (12.3.1), the initial standard conversion
1399        //   sequence converts the source type to the type required by
1400        //   the argument of the constructor.
1401        //
1402        // FIXME: What about ellipsis conversions?
1403        QualType ThisType = Constructor->getThisType(Context);
1404        User.Before = Best->Conversions[0].Standard;
1405        User.ConversionFunction = Constructor;
1406        User.After.setAsIdentityConversion();
1407        User.After.FromTypePtr
1408          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1409        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1410        return true;
1411      } else if (CXXConversionDecl *Conversion
1412                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1413        // C++ [over.ics.user]p1:
1414        //
1415        //   [...] If the user-defined conversion is specified by a
1416        //   conversion function (12.3.2), the initial standard
1417        //   conversion sequence converts the source type to the
1418        //   implicit object parameter of the conversion function.
1419        User.Before = Best->Conversions[0].Standard;
1420        User.ConversionFunction = Conversion;
1421
1422        // C++ [over.ics.user]p2:
1423        //   The second standard conversion sequence converts the
1424        //   result of the user-defined conversion to the target type
1425        //   for the sequence. Since an implicit conversion sequence
1426        //   is an initialization, the special rules for
1427        //   initialization by user-defined conversion apply when
1428        //   selecting the best user-defined conversion for a
1429        //   user-defined conversion sequence (see 13.3.3 and
1430        //   13.3.3.1).
1431        User.After = Best->FinalConversion;
1432        return true;
1433      } else {
1434        assert(false && "Not a constructor or conversion function?");
1435        return false;
1436      }
1437
1438    case OR_No_Viable_Function:
1439    case OR_Deleted:
1440      // No conversion here! We're done.
1441      return false;
1442
1443    case OR_Ambiguous:
1444      // FIXME: See C++ [over.best.ics]p10 for the handling of
1445      // ambiguous conversion sequences.
1446      return false;
1447    }
1448
1449  return false;
1450}
1451
1452/// CompareImplicitConversionSequences - Compare two implicit
1453/// conversion sequences to determine whether one is better than the
1454/// other or if they are indistinguishable (C++ 13.3.3.2).
1455ImplicitConversionSequence::CompareKind
1456Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1457                                         const ImplicitConversionSequence& ICS2)
1458{
1459  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1460  // conversion sequences (as defined in 13.3.3.1)
1461  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1462  //      conversion sequence than a user-defined conversion sequence or
1463  //      an ellipsis conversion sequence, and
1464  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1465  //      conversion sequence than an ellipsis conversion sequence
1466  //      (13.3.3.1.3).
1467  //
1468  if (ICS1.ConversionKind < ICS2.ConversionKind)
1469    return ImplicitConversionSequence::Better;
1470  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1471    return ImplicitConversionSequence::Worse;
1472
1473  // Two implicit conversion sequences of the same form are
1474  // indistinguishable conversion sequences unless one of the
1475  // following rules apply: (C++ 13.3.3.2p3):
1476  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1477    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1478  else if (ICS1.ConversionKind ==
1479             ImplicitConversionSequence::UserDefinedConversion) {
1480    // User-defined conversion sequence U1 is a better conversion
1481    // sequence than another user-defined conversion sequence U2 if
1482    // they contain the same user-defined conversion function or
1483    // constructor and if the second standard conversion sequence of
1484    // U1 is better than the second standard conversion sequence of
1485    // U2 (C++ 13.3.3.2p3).
1486    if (ICS1.UserDefined.ConversionFunction ==
1487          ICS2.UserDefined.ConversionFunction)
1488      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1489                                                ICS2.UserDefined.After);
1490  }
1491
1492  return ImplicitConversionSequence::Indistinguishable;
1493}
1494
1495/// CompareStandardConversionSequences - Compare two standard
1496/// conversion sequences to determine whether one is better than the
1497/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1498ImplicitConversionSequence::CompareKind
1499Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1500                                         const StandardConversionSequence& SCS2)
1501{
1502  // Standard conversion sequence S1 is a better conversion sequence
1503  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1504
1505  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1506  //     sequences in the canonical form defined by 13.3.3.1.1,
1507  //     excluding any Lvalue Transformation; the identity conversion
1508  //     sequence is considered to be a subsequence of any
1509  //     non-identity conversion sequence) or, if not that,
1510  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1511    // Neither is a proper subsequence of the other. Do nothing.
1512    ;
1513  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1514           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1515           (SCS1.Second == ICK_Identity &&
1516            SCS1.Third == ICK_Identity))
1517    // SCS1 is a proper subsequence of SCS2.
1518    return ImplicitConversionSequence::Better;
1519  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1520           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1521           (SCS2.Second == ICK_Identity &&
1522            SCS2.Third == ICK_Identity))
1523    // SCS2 is a proper subsequence of SCS1.
1524    return ImplicitConversionSequence::Worse;
1525
1526  //  -- the rank of S1 is better than the rank of S2 (by the rules
1527  //     defined below), or, if not that,
1528  ImplicitConversionRank Rank1 = SCS1.getRank();
1529  ImplicitConversionRank Rank2 = SCS2.getRank();
1530  if (Rank1 < Rank2)
1531    return ImplicitConversionSequence::Better;
1532  else if (Rank2 < Rank1)
1533    return ImplicitConversionSequence::Worse;
1534
1535  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1536  // are indistinguishable unless one of the following rules
1537  // applies:
1538
1539  //   A conversion that is not a conversion of a pointer, or
1540  //   pointer to member, to bool is better than another conversion
1541  //   that is such a conversion.
1542  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1543    return SCS2.isPointerConversionToBool()
1544             ? ImplicitConversionSequence::Better
1545             : ImplicitConversionSequence::Worse;
1546
1547  // C++ [over.ics.rank]p4b2:
1548  //
1549  //   If class B is derived directly or indirectly from class A,
1550  //   conversion of B* to A* is better than conversion of B* to
1551  //   void*, and conversion of A* to void* is better than conversion
1552  //   of B* to void*.
1553  bool SCS1ConvertsToVoid
1554    = SCS1.isPointerConversionToVoidPointer(Context);
1555  bool SCS2ConvertsToVoid
1556    = SCS2.isPointerConversionToVoidPointer(Context);
1557  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1558    // Exactly one of the conversion sequences is a conversion to
1559    // a void pointer; it's the worse conversion.
1560    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1561                              : ImplicitConversionSequence::Worse;
1562  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1563    // Neither conversion sequence converts to a void pointer; compare
1564    // their derived-to-base conversions.
1565    if (ImplicitConversionSequence::CompareKind DerivedCK
1566          = CompareDerivedToBaseConversions(SCS1, SCS2))
1567      return DerivedCK;
1568  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1569    // Both conversion sequences are conversions to void
1570    // pointers. Compare the source types to determine if there's an
1571    // inheritance relationship in their sources.
1572    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1573    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1574
1575    // Adjust the types we're converting from via the array-to-pointer
1576    // conversion, if we need to.
1577    if (SCS1.First == ICK_Array_To_Pointer)
1578      FromType1 = Context.getArrayDecayedType(FromType1);
1579    if (SCS2.First == ICK_Array_To_Pointer)
1580      FromType2 = Context.getArrayDecayedType(FromType2);
1581
1582    QualType FromPointee1
1583      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1584    QualType FromPointee2
1585      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1586
1587    if (IsDerivedFrom(FromPointee2, FromPointee1))
1588      return ImplicitConversionSequence::Better;
1589    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1590      return ImplicitConversionSequence::Worse;
1591
1592    // Objective-C++: If one interface is more specific than the
1593    // other, it is the better one.
1594    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1595    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1596    if (FromIface1 && FromIface1) {
1597      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1598        return ImplicitConversionSequence::Better;
1599      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1600        return ImplicitConversionSequence::Worse;
1601    }
1602  }
1603
1604  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1605  // bullet 3).
1606  if (ImplicitConversionSequence::CompareKind QualCK
1607        = CompareQualificationConversions(SCS1, SCS2))
1608    return QualCK;
1609
1610  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1611    // C++0x [over.ics.rank]p3b4:
1612    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1613    //      implicit object parameter of a non-static member function declared
1614    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1615    //      rvalue and S2 binds an lvalue reference.
1616    // FIXME: We don't know if we're dealing with the implicit object parameter,
1617    // or if the member function in this case has a ref qualifier.
1618    // (Of course, we don't have ref qualifiers yet.)
1619    if (SCS1.RRefBinding != SCS2.RRefBinding)
1620      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1621                              : ImplicitConversionSequence::Worse;
1622
1623    // C++ [over.ics.rank]p3b4:
1624    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1625    //      which the references refer are the same type except for
1626    //      top-level cv-qualifiers, and the type to which the reference
1627    //      initialized by S2 refers is more cv-qualified than the type
1628    //      to which the reference initialized by S1 refers.
1629    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1630    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1631    T1 = Context.getCanonicalType(T1);
1632    T2 = Context.getCanonicalType(T2);
1633    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1634      if (T2.isMoreQualifiedThan(T1))
1635        return ImplicitConversionSequence::Better;
1636      else if (T1.isMoreQualifiedThan(T2))
1637        return ImplicitConversionSequence::Worse;
1638    }
1639  }
1640
1641  return ImplicitConversionSequence::Indistinguishable;
1642}
1643
1644/// CompareQualificationConversions - Compares two standard conversion
1645/// sequences to determine whether they can be ranked based on their
1646/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1647ImplicitConversionSequence::CompareKind
1648Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1649                                      const StandardConversionSequence& SCS2)
1650{
1651  // C++ 13.3.3.2p3:
1652  //  -- S1 and S2 differ only in their qualification conversion and
1653  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1654  //     cv-qualification signature of type T1 is a proper subset of
1655  //     the cv-qualification signature of type T2, and S1 is not the
1656  //     deprecated string literal array-to-pointer conversion (4.2).
1657  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1658      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1659    return ImplicitConversionSequence::Indistinguishable;
1660
1661  // FIXME: the example in the standard doesn't use a qualification
1662  // conversion (!)
1663  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1664  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1665  T1 = Context.getCanonicalType(T1);
1666  T2 = Context.getCanonicalType(T2);
1667
1668  // If the types are the same, we won't learn anything by unwrapped
1669  // them.
1670  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1671    return ImplicitConversionSequence::Indistinguishable;
1672
1673  ImplicitConversionSequence::CompareKind Result
1674    = ImplicitConversionSequence::Indistinguishable;
1675  while (UnwrapSimilarPointerTypes(T1, T2)) {
1676    // Within each iteration of the loop, we check the qualifiers to
1677    // determine if this still looks like a qualification
1678    // conversion. Then, if all is well, we unwrap one more level of
1679    // pointers or pointers-to-members and do it all again
1680    // until there are no more pointers or pointers-to-members left
1681    // to unwrap. This essentially mimics what
1682    // IsQualificationConversion does, but here we're checking for a
1683    // strict subset of qualifiers.
1684    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1685      // The qualifiers are the same, so this doesn't tell us anything
1686      // about how the sequences rank.
1687      ;
1688    else if (T2.isMoreQualifiedThan(T1)) {
1689      // T1 has fewer qualifiers, so it could be the better sequence.
1690      if (Result == ImplicitConversionSequence::Worse)
1691        // Neither has qualifiers that are a subset of the other's
1692        // qualifiers.
1693        return ImplicitConversionSequence::Indistinguishable;
1694
1695      Result = ImplicitConversionSequence::Better;
1696    } else if (T1.isMoreQualifiedThan(T2)) {
1697      // T2 has fewer qualifiers, so it could be the better sequence.
1698      if (Result == ImplicitConversionSequence::Better)
1699        // Neither has qualifiers that are a subset of the other's
1700        // qualifiers.
1701        return ImplicitConversionSequence::Indistinguishable;
1702
1703      Result = ImplicitConversionSequence::Worse;
1704    } else {
1705      // Qualifiers are disjoint.
1706      return ImplicitConversionSequence::Indistinguishable;
1707    }
1708
1709    // If the types after this point are equivalent, we're done.
1710    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1711      break;
1712  }
1713
1714  // Check that the winning standard conversion sequence isn't using
1715  // the deprecated string literal array to pointer conversion.
1716  switch (Result) {
1717  case ImplicitConversionSequence::Better:
1718    if (SCS1.Deprecated)
1719      Result = ImplicitConversionSequence::Indistinguishable;
1720    break;
1721
1722  case ImplicitConversionSequence::Indistinguishable:
1723    break;
1724
1725  case ImplicitConversionSequence::Worse:
1726    if (SCS2.Deprecated)
1727      Result = ImplicitConversionSequence::Indistinguishable;
1728    break;
1729  }
1730
1731  return Result;
1732}
1733
1734/// CompareDerivedToBaseConversions - Compares two standard conversion
1735/// sequences to determine whether they can be ranked based on their
1736/// various kinds of derived-to-base conversions (C++
1737/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1738/// conversions between Objective-C interface types.
1739ImplicitConversionSequence::CompareKind
1740Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1741                                      const StandardConversionSequence& SCS2) {
1742  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1743  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1744  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1745  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1746
1747  // Adjust the types we're converting from via the array-to-pointer
1748  // conversion, if we need to.
1749  if (SCS1.First == ICK_Array_To_Pointer)
1750    FromType1 = Context.getArrayDecayedType(FromType1);
1751  if (SCS2.First == ICK_Array_To_Pointer)
1752    FromType2 = Context.getArrayDecayedType(FromType2);
1753
1754  // Canonicalize all of the types.
1755  FromType1 = Context.getCanonicalType(FromType1);
1756  ToType1 = Context.getCanonicalType(ToType1);
1757  FromType2 = Context.getCanonicalType(FromType2);
1758  ToType2 = Context.getCanonicalType(ToType2);
1759
1760  // C++ [over.ics.rank]p4b3:
1761  //
1762  //   If class B is derived directly or indirectly from class A and
1763  //   class C is derived directly or indirectly from B,
1764  //
1765  // For Objective-C, we let A, B, and C also be Objective-C
1766  // interfaces.
1767
1768  // Compare based on pointer conversions.
1769  if (SCS1.Second == ICK_Pointer_Conversion &&
1770      SCS2.Second == ICK_Pointer_Conversion &&
1771      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1772      FromType1->isPointerType() && FromType2->isPointerType() &&
1773      ToType1->isPointerType() && ToType2->isPointerType()) {
1774    QualType FromPointee1
1775      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1776    QualType ToPointee1
1777      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1778    QualType FromPointee2
1779      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1780    QualType ToPointee2
1781      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1782
1783    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1784    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1785    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1786    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1787
1788    //   -- conversion of C* to B* is better than conversion of C* to A*,
1789    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1790      if (IsDerivedFrom(ToPointee1, ToPointee2))
1791        return ImplicitConversionSequence::Better;
1792      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1793        return ImplicitConversionSequence::Worse;
1794
1795      if (ToIface1 && ToIface2) {
1796        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1797          return ImplicitConversionSequence::Better;
1798        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1799          return ImplicitConversionSequence::Worse;
1800      }
1801    }
1802
1803    //   -- conversion of B* to A* is better than conversion of C* to A*,
1804    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1805      if (IsDerivedFrom(FromPointee2, FromPointee1))
1806        return ImplicitConversionSequence::Better;
1807      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1808        return ImplicitConversionSequence::Worse;
1809
1810      if (FromIface1 && FromIface2) {
1811        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1812          return ImplicitConversionSequence::Better;
1813        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1814          return ImplicitConversionSequence::Worse;
1815      }
1816    }
1817  }
1818
1819  // Compare based on reference bindings.
1820  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1821      SCS1.Second == ICK_Derived_To_Base) {
1822    //   -- binding of an expression of type C to a reference of type
1823    //      B& is better than binding an expression of type C to a
1824    //      reference of type A&,
1825    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1826        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1827      if (IsDerivedFrom(ToType1, ToType2))
1828        return ImplicitConversionSequence::Better;
1829      else if (IsDerivedFrom(ToType2, ToType1))
1830        return ImplicitConversionSequence::Worse;
1831    }
1832
1833    //   -- binding of an expression of type B to a reference of type
1834    //      A& is better than binding an expression of type C to a
1835    //      reference of type A&,
1836    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1837        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1838      if (IsDerivedFrom(FromType2, FromType1))
1839        return ImplicitConversionSequence::Better;
1840      else if (IsDerivedFrom(FromType1, FromType2))
1841        return ImplicitConversionSequence::Worse;
1842    }
1843  }
1844
1845
1846  // FIXME: conversion of A::* to B::* is better than conversion of
1847  // A::* to C::*,
1848
1849  // FIXME: conversion of B::* to C::* is better than conversion of
1850  // A::* to C::*, and
1851
1852  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1853      SCS1.Second == ICK_Derived_To_Base) {
1854    //   -- conversion of C to B is better than conversion of C to A,
1855    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1856        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1857      if (IsDerivedFrom(ToType1, ToType2))
1858        return ImplicitConversionSequence::Better;
1859      else if (IsDerivedFrom(ToType2, ToType1))
1860        return ImplicitConversionSequence::Worse;
1861    }
1862
1863    //   -- conversion of B to A is better than conversion of C to A.
1864    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1865        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1866      if (IsDerivedFrom(FromType2, FromType1))
1867        return ImplicitConversionSequence::Better;
1868      else if (IsDerivedFrom(FromType1, FromType2))
1869        return ImplicitConversionSequence::Worse;
1870    }
1871  }
1872
1873  return ImplicitConversionSequence::Indistinguishable;
1874}
1875
1876/// TryCopyInitialization - Try to copy-initialize a value of type
1877/// ToType from the expression From. Return the implicit conversion
1878/// sequence required to pass this argument, which may be a bad
1879/// conversion sequence (meaning that the argument cannot be passed to
1880/// a parameter of this type). If @p SuppressUserConversions, then we
1881/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1882/// then we treat @p From as an rvalue, even if it is an lvalue.
1883ImplicitConversionSequence
1884Sema::TryCopyInitialization(Expr *From, QualType ToType,
1885                            bool SuppressUserConversions, bool ForceRValue) {
1886  if (ToType->isReferenceType()) {
1887    ImplicitConversionSequence ICS;
1888    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions,
1889                       /*AllowExplicit=*/false, ForceRValue);
1890    return ICS;
1891  } else {
1892    return TryImplicitConversion(From, ToType, SuppressUserConversions,
1893                                 ForceRValue);
1894  }
1895}
1896
1897/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1898/// the expression @p From. Returns true (and emits a diagnostic) if there was
1899/// an error, returns false if the initialization succeeded. Elidable should
1900/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1901/// differently in C++0x for this case.
1902bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1903                                     const char* Flavor, bool Elidable) {
1904  if (!getLangOptions().CPlusPlus) {
1905    // In C, argument passing is the same as performing an assignment.
1906    QualType FromType = From->getType();
1907
1908    AssignConvertType ConvTy =
1909      CheckSingleAssignmentConstraints(ToType, From);
1910    if (ConvTy != Compatible &&
1911        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
1912      ConvTy = Compatible;
1913
1914    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1915                                    FromType, From, Flavor);
1916  }
1917
1918  if (ToType->isReferenceType())
1919    return CheckReferenceInit(From, ToType);
1920
1921  if (!PerformImplicitConversion(From, ToType, Flavor,
1922                                 /*AllowExplicit=*/false, Elidable))
1923    return false;
1924
1925  return Diag(From->getSourceRange().getBegin(),
1926              diag::err_typecheck_convert_incompatible)
1927    << ToType << From->getType() << Flavor << From->getSourceRange();
1928}
1929
1930/// TryObjectArgumentInitialization - Try to initialize the object
1931/// parameter of the given member function (@c Method) from the
1932/// expression @p From.
1933ImplicitConversionSequence
1934Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1935  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1936  unsigned MethodQuals = Method->getTypeQualifiers();
1937  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1938
1939  // Set up the conversion sequence as a "bad" conversion, to allow us
1940  // to exit early.
1941  ImplicitConversionSequence ICS;
1942  ICS.Standard.setAsIdentityConversion();
1943  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1944
1945  // We need to have an object of class type.
1946  QualType FromType = From->getType();
1947  if (const PointerType *PT = FromType->getAs<PointerType>())
1948    FromType = PT->getPointeeType();
1949
1950  assert(FromType->isRecordType());
1951
1952  // The implicit object parmeter is has the type "reference to cv X",
1953  // where X is the class of which the function is a member
1954  // (C++ [over.match.funcs]p4). However, when finding an implicit
1955  // conversion sequence for the argument, we are not allowed to
1956  // create temporaries or perform user-defined conversions
1957  // (C++ [over.match.funcs]p5). We perform a simplified version of
1958  // reference binding here, that allows class rvalues to bind to
1959  // non-constant references.
1960
1961  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1962  // with the implicit object parameter (C++ [over.match.funcs]p5).
1963  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1964  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1965      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1966    return ICS;
1967
1968  // Check that we have either the same type or a derived type. It
1969  // affects the conversion rank.
1970  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1971  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1972    ICS.Standard.Second = ICK_Identity;
1973  else if (IsDerivedFrom(FromType, ClassType))
1974    ICS.Standard.Second = ICK_Derived_To_Base;
1975  else
1976    return ICS;
1977
1978  // Success. Mark this as a reference binding.
1979  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1980  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1981  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1982  ICS.Standard.ReferenceBinding = true;
1983  ICS.Standard.DirectBinding = true;
1984  ICS.Standard.RRefBinding = false;
1985  return ICS;
1986}
1987
1988/// PerformObjectArgumentInitialization - Perform initialization of
1989/// the implicit object parameter for the given Method with the given
1990/// expression.
1991bool
1992Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1993  QualType FromRecordType, DestType;
1994  QualType ImplicitParamRecordType  =
1995    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
1996
1997  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
1998    FromRecordType = PT->getPointeeType();
1999    DestType = Method->getThisType(Context);
2000  } else {
2001    FromRecordType = From->getType();
2002    DestType = ImplicitParamRecordType;
2003  }
2004
2005  ImplicitConversionSequence ICS
2006    = TryObjectArgumentInitialization(From, Method);
2007  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2008    return Diag(From->getSourceRange().getBegin(),
2009                diag::err_implicit_object_parameter_init)
2010       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2011
2012  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2013      CheckDerivedToBaseConversion(FromRecordType,
2014                                   ImplicitParamRecordType,
2015                                   From->getSourceRange().getBegin(),
2016                                   From->getSourceRange()))
2017    return true;
2018
2019  ImpCastExprToType(From, DestType, /*isLvalue=*/true);
2020  return false;
2021}
2022
2023/// TryContextuallyConvertToBool - Attempt to contextually convert the
2024/// expression From to bool (C++0x [conv]p3).
2025ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2026  return TryImplicitConversion(From, Context.BoolTy, false, true);
2027}
2028
2029/// PerformContextuallyConvertToBool - Perform a contextual conversion
2030/// of the expression From to bool (C++0x [conv]p3).
2031bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2032  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2033  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2034    return false;
2035
2036  return Diag(From->getSourceRange().getBegin(),
2037              diag::err_typecheck_bool_condition)
2038    << From->getType() << From->getSourceRange();
2039}
2040
2041/// AddOverloadCandidate - Adds the given function to the set of
2042/// candidate functions, using the given function call arguments.  If
2043/// @p SuppressUserConversions, then don't allow user-defined
2044/// conversions via constructors or conversion operators.
2045/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2046/// hacky way to implement the overloading rules for elidable copy
2047/// initialization in C++0x (C++0x 12.8p15).
2048void
2049Sema::AddOverloadCandidate(FunctionDecl *Function,
2050                           Expr **Args, unsigned NumArgs,
2051                           OverloadCandidateSet& CandidateSet,
2052                           bool SuppressUserConversions,
2053                           bool ForceRValue)
2054{
2055  const FunctionProtoType* Proto
2056    = dyn_cast<FunctionProtoType>(Function->getType()->getAsFunctionType());
2057  assert(Proto && "Functions without a prototype cannot be overloaded");
2058  assert(!isa<CXXConversionDecl>(Function) &&
2059         "Use AddConversionCandidate for conversion functions");
2060  assert(!Function->getDescribedFunctionTemplate() &&
2061         "Use AddTemplateOverloadCandidate for function templates");
2062
2063  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2064    if (!isa<CXXConstructorDecl>(Method)) {
2065      // If we get here, it's because we're calling a member function
2066      // that is named without a member access expression (e.g.,
2067      // "this->f") that was either written explicitly or created
2068      // implicitly. This can happen with a qualified call to a member
2069      // function, e.g., X::f(). We use a NULL object as the implied
2070      // object argument (C++ [over.call.func]p3).
2071      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2072                         SuppressUserConversions, ForceRValue);
2073      return;
2074    }
2075    // We treat a constructor like a non-member function, since its object
2076    // argument doesn't participate in overload resolution.
2077  }
2078
2079
2080  // Add this candidate
2081  CandidateSet.push_back(OverloadCandidate());
2082  OverloadCandidate& Candidate = CandidateSet.back();
2083  Candidate.Function = Function;
2084  Candidate.Viable = true;
2085  Candidate.IsSurrogate = false;
2086  Candidate.IgnoreObjectArgument = false;
2087
2088  unsigned NumArgsInProto = Proto->getNumArgs();
2089
2090  // (C++ 13.3.2p2): A candidate function having fewer than m
2091  // parameters is viable only if it has an ellipsis in its parameter
2092  // list (8.3.5).
2093  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2094    Candidate.Viable = false;
2095    return;
2096  }
2097
2098  // (C++ 13.3.2p2): A candidate function having more than m parameters
2099  // is viable only if the (m+1)st parameter has a default argument
2100  // (8.3.6). For the purposes of overload resolution, the
2101  // parameter list is truncated on the right, so that there are
2102  // exactly m parameters.
2103  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2104  if (NumArgs < MinRequiredArgs) {
2105    // Not enough arguments.
2106    Candidate.Viable = false;
2107    return;
2108  }
2109
2110  // Determine the implicit conversion sequences for each of the
2111  // arguments.
2112  Candidate.Conversions.resize(NumArgs);
2113  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2114    if (ArgIdx < NumArgsInProto) {
2115      // (C++ 13.3.2p3): for F to be a viable function, there shall
2116      // exist for each argument an implicit conversion sequence
2117      // (13.3.3.1) that converts that argument to the corresponding
2118      // parameter of F.
2119      QualType ParamType = Proto->getArgType(ArgIdx);
2120      Candidate.Conversions[ArgIdx]
2121        = TryCopyInitialization(Args[ArgIdx], ParamType,
2122                                SuppressUserConversions, ForceRValue);
2123      if (Candidate.Conversions[ArgIdx].ConversionKind
2124            == ImplicitConversionSequence::BadConversion) {
2125        Candidate.Viable = false;
2126        break;
2127      }
2128    } else {
2129      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2130      // argument for which there is no corresponding parameter is
2131      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2132      Candidate.Conversions[ArgIdx].ConversionKind
2133        = ImplicitConversionSequence::EllipsisConversion;
2134    }
2135  }
2136}
2137
2138/// \brief Add all of the function declarations in the given function set to
2139/// the overload canddiate set.
2140void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2141                                 Expr **Args, unsigned NumArgs,
2142                                 OverloadCandidateSet& CandidateSet,
2143                                 bool SuppressUserConversions) {
2144  for (FunctionSet::const_iterator F = Functions.begin(),
2145                                FEnd = Functions.end();
2146       F != FEnd; ++F) {
2147    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2148      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2149                           SuppressUserConversions);
2150    else
2151      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2152                                   /*FIXME: explicit args */false, 0, 0,
2153                                   Args, NumArgs, CandidateSet,
2154                                   SuppressUserConversions);
2155  }
2156}
2157
2158/// AddMethodCandidate - Adds the given C++ member function to the set
2159/// of candidate functions, using the given function call arguments
2160/// and the object argument (@c Object). For example, in a call
2161/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2162/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2163/// allow user-defined conversions via constructors or conversion
2164/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2165/// a slightly hacky way to implement the overloading rules for elidable copy
2166/// initialization in C++0x (C++0x 12.8p15).
2167void
2168Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2169                         Expr **Args, unsigned NumArgs,
2170                         OverloadCandidateSet& CandidateSet,
2171                         bool SuppressUserConversions, bool ForceRValue)
2172{
2173  const FunctionProtoType* Proto
2174    = dyn_cast<FunctionProtoType>(Method->getType()->getAsFunctionType());
2175  assert(Proto && "Methods without a prototype cannot be overloaded");
2176  assert(!isa<CXXConversionDecl>(Method) &&
2177         "Use AddConversionCandidate for conversion functions");
2178  assert(!isa<CXXConstructorDecl>(Method) &&
2179         "Use AddOverloadCandidate for constructors");
2180
2181  // Add this candidate
2182  CandidateSet.push_back(OverloadCandidate());
2183  OverloadCandidate& Candidate = CandidateSet.back();
2184  Candidate.Function = Method;
2185  Candidate.IsSurrogate = false;
2186  Candidate.IgnoreObjectArgument = false;
2187
2188  unsigned NumArgsInProto = Proto->getNumArgs();
2189
2190  // (C++ 13.3.2p2): A candidate function having fewer than m
2191  // parameters is viable only if it has an ellipsis in its parameter
2192  // list (8.3.5).
2193  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2194    Candidate.Viable = false;
2195    return;
2196  }
2197
2198  // (C++ 13.3.2p2): A candidate function having more than m parameters
2199  // is viable only if the (m+1)st parameter has a default argument
2200  // (8.3.6). For the purposes of overload resolution, the
2201  // parameter list is truncated on the right, so that there are
2202  // exactly m parameters.
2203  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2204  if (NumArgs < MinRequiredArgs) {
2205    // Not enough arguments.
2206    Candidate.Viable = false;
2207    return;
2208  }
2209
2210  Candidate.Viable = true;
2211  Candidate.Conversions.resize(NumArgs + 1);
2212
2213  if (Method->isStatic() || !Object)
2214    // The implicit object argument is ignored.
2215    Candidate.IgnoreObjectArgument = true;
2216  else {
2217    // Determine the implicit conversion sequence for the object
2218    // parameter.
2219    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2220    if (Candidate.Conversions[0].ConversionKind
2221          == ImplicitConversionSequence::BadConversion) {
2222      Candidate.Viable = false;
2223      return;
2224    }
2225  }
2226
2227  // Determine the implicit conversion sequences for each of the
2228  // arguments.
2229  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2230    if (ArgIdx < NumArgsInProto) {
2231      // (C++ 13.3.2p3): for F to be a viable function, there shall
2232      // exist for each argument an implicit conversion sequence
2233      // (13.3.3.1) that converts that argument to the corresponding
2234      // parameter of F.
2235      QualType ParamType = Proto->getArgType(ArgIdx);
2236      Candidate.Conversions[ArgIdx + 1]
2237        = TryCopyInitialization(Args[ArgIdx], ParamType,
2238                                SuppressUserConversions, ForceRValue);
2239      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2240            == ImplicitConversionSequence::BadConversion) {
2241        Candidate.Viable = false;
2242        break;
2243      }
2244    } else {
2245      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2246      // argument for which there is no corresponding parameter is
2247      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2248      Candidate.Conversions[ArgIdx + 1].ConversionKind
2249        = ImplicitConversionSequence::EllipsisConversion;
2250    }
2251  }
2252}
2253
2254/// \brief Add a C++ function template as a candidate in the candidate set,
2255/// using template argument deduction to produce an appropriate function
2256/// template specialization.
2257void
2258Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2259                                   bool HasExplicitTemplateArgs,
2260                                 const TemplateArgument *ExplicitTemplateArgs,
2261                                   unsigned NumExplicitTemplateArgs,
2262                                   Expr **Args, unsigned NumArgs,
2263                                   OverloadCandidateSet& CandidateSet,
2264                                   bool SuppressUserConversions,
2265                                   bool ForceRValue) {
2266  // C++ [over.match.funcs]p7:
2267  //   In each case where a candidate is a function template, candidate
2268  //   function template specializations are generated using template argument
2269  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2270  //   candidate functions in the usual way.113) A given name can refer to one
2271  //   or more function templates and also to a set of overloaded non-template
2272  //   functions. In such a case, the candidate functions generated from each
2273  //   function template are combined with the set of non-template candidate
2274  //   functions.
2275  TemplateDeductionInfo Info(Context);
2276  FunctionDecl *Specialization = 0;
2277  if (TemplateDeductionResult Result
2278        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2279                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2280                                  Args, NumArgs, Specialization, Info)) {
2281    // FIXME: Record what happened with template argument deduction, so
2282    // that we can give the user a beautiful diagnostic.
2283    (void)Result;
2284    return;
2285  }
2286
2287  // Add the function template specialization produced by template argument
2288  // deduction as a candidate.
2289  assert(Specialization && "Missing function template specialization?");
2290  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2291                       SuppressUserConversions, ForceRValue);
2292}
2293
2294/// AddConversionCandidate - Add a C++ conversion function as a
2295/// candidate in the candidate set (C++ [over.match.conv],
2296/// C++ [over.match.copy]). From is the expression we're converting from,
2297/// and ToType is the type that we're eventually trying to convert to
2298/// (which may or may not be the same type as the type that the
2299/// conversion function produces).
2300void
2301Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2302                             Expr *From, QualType ToType,
2303                             OverloadCandidateSet& CandidateSet) {
2304  // Add this candidate
2305  CandidateSet.push_back(OverloadCandidate());
2306  OverloadCandidate& Candidate = CandidateSet.back();
2307  Candidate.Function = Conversion;
2308  Candidate.IsSurrogate = false;
2309  Candidate.IgnoreObjectArgument = false;
2310  Candidate.FinalConversion.setAsIdentityConversion();
2311  Candidate.FinalConversion.FromTypePtr
2312    = Conversion->getConversionType().getAsOpaquePtr();
2313  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2314
2315  // Determine the implicit conversion sequence for the implicit
2316  // object parameter.
2317  Candidate.Viable = true;
2318  Candidate.Conversions.resize(1);
2319  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2320
2321  if (Candidate.Conversions[0].ConversionKind
2322      == ImplicitConversionSequence::BadConversion) {
2323    Candidate.Viable = false;
2324    return;
2325  }
2326
2327  // To determine what the conversion from the result of calling the
2328  // conversion function to the type we're eventually trying to
2329  // convert to (ToType), we need to synthesize a call to the
2330  // conversion function and attempt copy initialization from it. This
2331  // makes sure that we get the right semantics with respect to
2332  // lvalues/rvalues and the type. Fortunately, we can allocate this
2333  // call on the stack and we don't need its arguments to be
2334  // well-formed.
2335  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2336                            SourceLocation());
2337  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2338                                CastExpr::CK_Unknown,
2339                                &ConversionRef, false);
2340
2341  // Note that it is safe to allocate CallExpr on the stack here because
2342  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2343  // allocator).
2344  CallExpr Call(Context, &ConversionFn, 0, 0,
2345                Conversion->getConversionType().getNonReferenceType(),
2346                SourceLocation());
2347  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2348  switch (ICS.ConversionKind) {
2349  case ImplicitConversionSequence::StandardConversion:
2350    Candidate.FinalConversion = ICS.Standard;
2351    break;
2352
2353  case ImplicitConversionSequence::BadConversion:
2354    Candidate.Viable = false;
2355    break;
2356
2357  default:
2358    assert(false &&
2359           "Can only end up with a standard conversion sequence or failure");
2360  }
2361}
2362
2363/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2364/// converts the given @c Object to a function pointer via the
2365/// conversion function @c Conversion, and then attempts to call it
2366/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2367/// the type of function that we'll eventually be calling.
2368void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2369                                 const FunctionProtoType *Proto,
2370                                 Expr *Object, Expr **Args, unsigned NumArgs,
2371                                 OverloadCandidateSet& CandidateSet) {
2372  CandidateSet.push_back(OverloadCandidate());
2373  OverloadCandidate& Candidate = CandidateSet.back();
2374  Candidate.Function = 0;
2375  Candidate.Surrogate = Conversion;
2376  Candidate.Viable = true;
2377  Candidate.IsSurrogate = true;
2378  Candidate.IgnoreObjectArgument = false;
2379  Candidate.Conversions.resize(NumArgs + 1);
2380
2381  // Determine the implicit conversion sequence for the implicit
2382  // object parameter.
2383  ImplicitConversionSequence ObjectInit
2384    = TryObjectArgumentInitialization(Object, Conversion);
2385  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2386    Candidate.Viable = false;
2387    return;
2388  }
2389
2390  // The first conversion is actually a user-defined conversion whose
2391  // first conversion is ObjectInit's standard conversion (which is
2392  // effectively a reference binding). Record it as such.
2393  Candidate.Conversions[0].ConversionKind
2394    = ImplicitConversionSequence::UserDefinedConversion;
2395  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2396  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2397  Candidate.Conversions[0].UserDefined.After
2398    = Candidate.Conversions[0].UserDefined.Before;
2399  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2400
2401  // Find the
2402  unsigned NumArgsInProto = Proto->getNumArgs();
2403
2404  // (C++ 13.3.2p2): A candidate function having fewer than m
2405  // parameters is viable only if it has an ellipsis in its parameter
2406  // list (8.3.5).
2407  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2408    Candidate.Viable = false;
2409    return;
2410  }
2411
2412  // Function types don't have any default arguments, so just check if
2413  // we have enough arguments.
2414  if (NumArgs < NumArgsInProto) {
2415    // Not enough arguments.
2416    Candidate.Viable = false;
2417    return;
2418  }
2419
2420  // Determine the implicit conversion sequences for each of the
2421  // arguments.
2422  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2423    if (ArgIdx < NumArgsInProto) {
2424      // (C++ 13.3.2p3): for F to be a viable function, there shall
2425      // exist for each argument an implicit conversion sequence
2426      // (13.3.3.1) that converts that argument to the corresponding
2427      // parameter of F.
2428      QualType ParamType = Proto->getArgType(ArgIdx);
2429      Candidate.Conversions[ArgIdx + 1]
2430        = TryCopyInitialization(Args[ArgIdx], ParamType,
2431                                /*SuppressUserConversions=*/false);
2432      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2433            == ImplicitConversionSequence::BadConversion) {
2434        Candidate.Viable = false;
2435        break;
2436      }
2437    } else {
2438      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2439      // argument for which there is no corresponding parameter is
2440      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2441      Candidate.Conversions[ArgIdx + 1].ConversionKind
2442        = ImplicitConversionSequence::EllipsisConversion;
2443    }
2444  }
2445}
2446
2447// FIXME: This will eventually be removed, once we've migrated all of the
2448// operator overloading logic over to the scheme used by binary operators, which
2449// works for template instantiation.
2450void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2451                                 SourceLocation OpLoc,
2452                                 Expr **Args, unsigned NumArgs,
2453                                 OverloadCandidateSet& CandidateSet,
2454                                 SourceRange OpRange) {
2455
2456  FunctionSet Functions;
2457
2458  QualType T1 = Args[0]->getType();
2459  QualType T2;
2460  if (NumArgs > 1)
2461    T2 = Args[1]->getType();
2462
2463  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2464  if (S)
2465    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2466  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2467  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2468  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2469  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2470}
2471
2472/// \brief Add overload candidates for overloaded operators that are
2473/// member functions.
2474///
2475/// Add the overloaded operator candidates that are member functions
2476/// for the operator Op that was used in an operator expression such
2477/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2478/// CandidateSet will store the added overload candidates. (C++
2479/// [over.match.oper]).
2480void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2481                                       SourceLocation OpLoc,
2482                                       Expr **Args, unsigned NumArgs,
2483                                       OverloadCandidateSet& CandidateSet,
2484                                       SourceRange OpRange) {
2485  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2486
2487  // C++ [over.match.oper]p3:
2488  //   For a unary operator @ with an operand of a type whose
2489  //   cv-unqualified version is T1, and for a binary operator @ with
2490  //   a left operand of a type whose cv-unqualified version is T1 and
2491  //   a right operand of a type whose cv-unqualified version is T2,
2492  //   three sets of candidate functions, designated member
2493  //   candidates, non-member candidates and built-in candidates, are
2494  //   constructed as follows:
2495  QualType T1 = Args[0]->getType();
2496  QualType T2;
2497  if (NumArgs > 1)
2498    T2 = Args[1]->getType();
2499
2500  //     -- If T1 is a class type, the set of member candidates is the
2501  //        result of the qualified lookup of T1::operator@
2502  //        (13.3.1.1.1); otherwise, the set of member candidates is
2503  //        empty.
2504  // FIXME: Lookup in base classes, too!
2505  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2506    DeclContext::lookup_const_iterator Oper, OperEnd;
2507    for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
2508         Oper != OperEnd; ++Oper)
2509      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2510                         Args+1, NumArgs - 1, CandidateSet,
2511                         /*SuppressUserConversions=*/false);
2512  }
2513}
2514
2515/// AddBuiltinCandidate - Add a candidate for a built-in
2516/// operator. ResultTy and ParamTys are the result and parameter types
2517/// of the built-in candidate, respectively. Args and NumArgs are the
2518/// arguments being passed to the candidate. IsAssignmentOperator
2519/// should be true when this built-in candidate is an assignment
2520/// operator. NumContextualBoolArguments is the number of arguments
2521/// (at the beginning of the argument list) that will be contextually
2522/// converted to bool.
2523void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2524                               Expr **Args, unsigned NumArgs,
2525                               OverloadCandidateSet& CandidateSet,
2526                               bool IsAssignmentOperator,
2527                               unsigned NumContextualBoolArguments) {
2528  // Add this candidate
2529  CandidateSet.push_back(OverloadCandidate());
2530  OverloadCandidate& Candidate = CandidateSet.back();
2531  Candidate.Function = 0;
2532  Candidate.IsSurrogate = false;
2533  Candidate.IgnoreObjectArgument = false;
2534  Candidate.BuiltinTypes.ResultTy = ResultTy;
2535  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2536    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2537
2538  // Determine the implicit conversion sequences for each of the
2539  // arguments.
2540  Candidate.Viable = true;
2541  Candidate.Conversions.resize(NumArgs);
2542  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2543    // C++ [over.match.oper]p4:
2544    //   For the built-in assignment operators, conversions of the
2545    //   left operand are restricted as follows:
2546    //     -- no temporaries are introduced to hold the left operand, and
2547    //     -- no user-defined conversions are applied to the left
2548    //        operand to achieve a type match with the left-most
2549    //        parameter of a built-in candidate.
2550    //
2551    // We block these conversions by turning off user-defined
2552    // conversions, since that is the only way that initialization of
2553    // a reference to a non-class type can occur from something that
2554    // is not of the same type.
2555    if (ArgIdx < NumContextualBoolArguments) {
2556      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2557             "Contextual conversion to bool requires bool type");
2558      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2559    } else {
2560      Candidate.Conversions[ArgIdx]
2561        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2562                                ArgIdx == 0 && IsAssignmentOperator);
2563    }
2564    if (Candidate.Conversions[ArgIdx].ConversionKind
2565        == ImplicitConversionSequence::BadConversion) {
2566      Candidate.Viable = false;
2567      break;
2568    }
2569  }
2570}
2571
2572/// BuiltinCandidateTypeSet - A set of types that will be used for the
2573/// candidate operator functions for built-in operators (C++
2574/// [over.built]). The types are separated into pointer types and
2575/// enumeration types.
2576class BuiltinCandidateTypeSet  {
2577  /// TypeSet - A set of types.
2578  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2579
2580  /// PointerTypes - The set of pointer types that will be used in the
2581  /// built-in candidates.
2582  TypeSet PointerTypes;
2583
2584  /// MemberPointerTypes - The set of member pointer types that will be
2585  /// used in the built-in candidates.
2586  TypeSet MemberPointerTypes;
2587
2588  /// EnumerationTypes - The set of enumeration types that will be
2589  /// used in the built-in candidates.
2590  TypeSet EnumerationTypes;
2591
2592  /// Context - The AST context in which we will build the type sets.
2593  ASTContext &Context;
2594
2595  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2596  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2597
2598public:
2599  /// iterator - Iterates through the types that are part of the set.
2600  typedef TypeSet::iterator iterator;
2601
2602  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2603
2604  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2605                             bool AllowExplicitConversions);
2606
2607  /// pointer_begin - First pointer type found;
2608  iterator pointer_begin() { return PointerTypes.begin(); }
2609
2610  /// pointer_end - Past the last pointer type found;
2611  iterator pointer_end() { return PointerTypes.end(); }
2612
2613  /// member_pointer_begin - First member pointer type found;
2614  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2615
2616  /// member_pointer_end - Past the last member pointer type found;
2617  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2618
2619  /// enumeration_begin - First enumeration type found;
2620  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2621
2622  /// enumeration_end - Past the last enumeration type found;
2623  iterator enumeration_end() { return EnumerationTypes.end(); }
2624};
2625
2626/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2627/// the set of pointer types along with any more-qualified variants of
2628/// that type. For example, if @p Ty is "int const *", this routine
2629/// will add "int const *", "int const volatile *", "int const
2630/// restrict *", and "int const volatile restrict *" to the set of
2631/// pointer types. Returns true if the add of @p Ty itself succeeded,
2632/// false otherwise.
2633bool
2634BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2635  // Insert this type.
2636  if (!PointerTypes.insert(Ty))
2637    return false;
2638
2639  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2640    QualType PointeeTy = PointerTy->getPointeeType();
2641    // FIXME: Optimize this so that we don't keep trying to add the same types.
2642
2643    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal with all
2644    // pointer conversions that don't cast away constness?
2645    if (!PointeeTy.isConstQualified())
2646      AddPointerWithMoreQualifiedTypeVariants
2647        (Context.getPointerType(PointeeTy.withConst()));
2648    if (!PointeeTy.isVolatileQualified())
2649      AddPointerWithMoreQualifiedTypeVariants
2650        (Context.getPointerType(PointeeTy.withVolatile()));
2651    if (!PointeeTy.isRestrictQualified())
2652      AddPointerWithMoreQualifiedTypeVariants
2653        (Context.getPointerType(PointeeTy.withRestrict()));
2654  }
2655
2656  return true;
2657}
2658
2659/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2660/// to the set of pointer types along with any more-qualified variants of
2661/// that type. For example, if @p Ty is "int const *", this routine
2662/// will add "int const *", "int const volatile *", "int const
2663/// restrict *", and "int const volatile restrict *" to the set of
2664/// pointer types. Returns true if the add of @p Ty itself succeeded,
2665/// false otherwise.
2666bool
2667BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2668    QualType Ty) {
2669  // Insert this type.
2670  if (!MemberPointerTypes.insert(Ty))
2671    return false;
2672
2673  if (const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>()) {
2674    QualType PointeeTy = PointerTy->getPointeeType();
2675    const Type *ClassTy = PointerTy->getClass();
2676    // FIXME: Optimize this so that we don't keep trying to add the same types.
2677
2678    if (!PointeeTy.isConstQualified())
2679      AddMemberPointerWithMoreQualifiedTypeVariants
2680        (Context.getMemberPointerType(PointeeTy.withConst(), ClassTy));
2681    if (!PointeeTy.isVolatileQualified())
2682      AddMemberPointerWithMoreQualifiedTypeVariants
2683        (Context.getMemberPointerType(PointeeTy.withVolatile(), ClassTy));
2684    if (!PointeeTy.isRestrictQualified())
2685      AddMemberPointerWithMoreQualifiedTypeVariants
2686        (Context.getMemberPointerType(PointeeTy.withRestrict(), ClassTy));
2687  }
2688
2689  return true;
2690}
2691
2692/// AddTypesConvertedFrom - Add each of the types to which the type @p
2693/// Ty can be implicit converted to the given set of @p Types. We're
2694/// primarily interested in pointer types and enumeration types. We also
2695/// take member pointer types, for the conditional operator.
2696/// AllowUserConversions is true if we should look at the conversion
2697/// functions of a class type, and AllowExplicitConversions if we
2698/// should also include the explicit conversion functions of a class
2699/// type.
2700void
2701BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2702                                               bool AllowUserConversions,
2703                                               bool AllowExplicitConversions) {
2704  // Only deal with canonical types.
2705  Ty = Context.getCanonicalType(Ty);
2706
2707  // Look through reference types; they aren't part of the type of an
2708  // expression for the purposes of conversions.
2709  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
2710    Ty = RefTy->getPointeeType();
2711
2712  // We don't care about qualifiers on the type.
2713  Ty = Ty.getUnqualifiedType();
2714
2715  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2716    QualType PointeeTy = PointerTy->getPointeeType();
2717
2718    // Insert our type, and its more-qualified variants, into the set
2719    // of types.
2720    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2721      return;
2722
2723    // Add 'cv void*' to our set of types.
2724    if (!Ty->isVoidType()) {
2725      QualType QualVoid
2726        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2727      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2728    }
2729
2730    // If this is a pointer to a class type, add pointers to its bases
2731    // (with the same level of cv-qualification as the original
2732    // derived class, of course).
2733    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
2734      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2735      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2736           Base != ClassDecl->bases_end(); ++Base) {
2737        QualType BaseTy = Context.getCanonicalType(Base->getType());
2738        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2739
2740        // Add the pointer type, recursively, so that we get all of
2741        // the indirect base classes, too.
2742        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2743      }
2744    }
2745  } else if (Ty->isMemberPointerType()) {
2746    // Member pointers are far easier, since the pointee can't be converted.
2747    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2748      return;
2749  } else if (Ty->isEnumeralType()) {
2750    EnumerationTypes.insert(Ty);
2751  } else if (AllowUserConversions) {
2752    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
2753      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2754      // FIXME: Visit conversion functions in the base classes, too.
2755      OverloadedFunctionDecl *Conversions
2756        = ClassDecl->getConversionFunctions();
2757      for (OverloadedFunctionDecl::function_iterator Func
2758             = Conversions->function_begin();
2759           Func != Conversions->function_end(); ++Func) {
2760        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2761        if (AllowExplicitConversions || !Conv->isExplicit())
2762          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2763      }
2764    }
2765  }
2766}
2767
2768/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2769/// operator overloads to the candidate set (C++ [over.built]), based
2770/// on the operator @p Op and the arguments given. For example, if the
2771/// operator is a binary '+', this routine might add "int
2772/// operator+(int, int)" to cover integer addition.
2773void
2774Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2775                                   Expr **Args, unsigned NumArgs,
2776                                   OverloadCandidateSet& CandidateSet) {
2777  // The set of "promoted arithmetic types", which are the arithmetic
2778  // types are that preserved by promotion (C++ [over.built]p2). Note
2779  // that the first few of these types are the promoted integral
2780  // types; these types need to be first.
2781  // FIXME: What about complex?
2782  const unsigned FirstIntegralType = 0;
2783  const unsigned LastIntegralType = 13;
2784  const unsigned FirstPromotedIntegralType = 7,
2785                 LastPromotedIntegralType = 13;
2786  const unsigned FirstPromotedArithmeticType = 7,
2787                 LastPromotedArithmeticType = 16;
2788  const unsigned NumArithmeticTypes = 16;
2789  QualType ArithmeticTypes[NumArithmeticTypes] = {
2790    Context.BoolTy, Context.CharTy, Context.WCharTy,
2791//    Context.Char16Ty, Context.Char32Ty,
2792    Context.SignedCharTy, Context.ShortTy,
2793    Context.UnsignedCharTy, Context.UnsignedShortTy,
2794    Context.IntTy, Context.LongTy, Context.LongLongTy,
2795    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2796    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2797  };
2798
2799  // Find all of the types that the arguments can convert to, but only
2800  // if the operator we're looking at has built-in operator candidates
2801  // that make use of these types.
2802  BuiltinCandidateTypeSet CandidateTypes(Context);
2803  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2804      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2805      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2806      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2807      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2808      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
2809    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2810      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2811                                           true,
2812                                           (Op == OO_Exclaim ||
2813                                            Op == OO_AmpAmp ||
2814                                            Op == OO_PipePipe));
2815  }
2816
2817  bool isComparison = false;
2818  switch (Op) {
2819  case OO_None:
2820  case NUM_OVERLOADED_OPERATORS:
2821    assert(false && "Expected an overloaded operator");
2822    break;
2823
2824  case OO_Star: // '*' is either unary or binary
2825    if (NumArgs == 1)
2826      goto UnaryStar;
2827    else
2828      goto BinaryStar;
2829    break;
2830
2831  case OO_Plus: // '+' is either unary or binary
2832    if (NumArgs == 1)
2833      goto UnaryPlus;
2834    else
2835      goto BinaryPlus;
2836    break;
2837
2838  case OO_Minus: // '-' is either unary or binary
2839    if (NumArgs == 1)
2840      goto UnaryMinus;
2841    else
2842      goto BinaryMinus;
2843    break;
2844
2845  case OO_Amp: // '&' is either unary or binary
2846    if (NumArgs == 1)
2847      goto UnaryAmp;
2848    else
2849      goto BinaryAmp;
2850
2851  case OO_PlusPlus:
2852  case OO_MinusMinus:
2853    // C++ [over.built]p3:
2854    //
2855    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2856    //   is either volatile or empty, there exist candidate operator
2857    //   functions of the form
2858    //
2859    //       VQ T&      operator++(VQ T&);
2860    //       T          operator++(VQ T&, int);
2861    //
2862    // C++ [over.built]p4:
2863    //
2864    //   For every pair (T, VQ), where T is an arithmetic type other
2865    //   than bool, and VQ is either volatile or empty, there exist
2866    //   candidate operator functions of the form
2867    //
2868    //       VQ T&      operator--(VQ T&);
2869    //       T          operator--(VQ T&, int);
2870    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2871         Arith < NumArithmeticTypes; ++Arith) {
2872      QualType ArithTy = ArithmeticTypes[Arith];
2873      QualType ParamTypes[2]
2874        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
2875
2876      // Non-volatile version.
2877      if (NumArgs == 1)
2878        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2879      else
2880        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2881
2882      // Volatile version
2883      ParamTypes[0] = Context.getLValueReferenceType(ArithTy.withVolatile());
2884      if (NumArgs == 1)
2885        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2886      else
2887        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2888    }
2889
2890    // C++ [over.built]p5:
2891    //
2892    //   For every pair (T, VQ), where T is a cv-qualified or
2893    //   cv-unqualified object type, and VQ is either volatile or
2894    //   empty, there exist candidate operator functions of the form
2895    //
2896    //       T*VQ&      operator++(T*VQ&);
2897    //       T*VQ&      operator--(T*VQ&);
2898    //       T*         operator++(T*VQ&, int);
2899    //       T*         operator--(T*VQ&, int);
2900    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2901         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2902      // Skip pointer types that aren't pointers to object types.
2903      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
2904        continue;
2905
2906      QualType ParamTypes[2] = {
2907        Context.getLValueReferenceType(*Ptr), Context.IntTy
2908      };
2909
2910      // Without volatile
2911      if (NumArgs == 1)
2912        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2913      else
2914        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2915
2916      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2917        // With volatile
2918        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
2919        if (NumArgs == 1)
2920          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2921        else
2922          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2923      }
2924    }
2925    break;
2926
2927  UnaryStar:
2928    // C++ [over.built]p6:
2929    //   For every cv-qualified or cv-unqualified object type T, there
2930    //   exist candidate operator functions of the form
2931    //
2932    //       T&         operator*(T*);
2933    //
2934    // C++ [over.built]p7:
2935    //   For every function type T, there exist candidate operator
2936    //   functions of the form
2937    //       T&         operator*(T*);
2938    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2939         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2940      QualType ParamTy = *Ptr;
2941      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
2942      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
2943                          &ParamTy, Args, 1, CandidateSet);
2944    }
2945    break;
2946
2947  UnaryPlus:
2948    // C++ [over.built]p8:
2949    //   For every type T, there exist candidate operator functions of
2950    //   the form
2951    //
2952    //       T*         operator+(T*);
2953    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2954         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2955      QualType ParamTy = *Ptr;
2956      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2957    }
2958
2959    // Fall through
2960
2961  UnaryMinus:
2962    // C++ [over.built]p9:
2963    //  For every promoted arithmetic type T, there exist candidate
2964    //  operator functions of the form
2965    //
2966    //       T         operator+(T);
2967    //       T         operator-(T);
2968    for (unsigned Arith = FirstPromotedArithmeticType;
2969         Arith < LastPromotedArithmeticType; ++Arith) {
2970      QualType ArithTy = ArithmeticTypes[Arith];
2971      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2972    }
2973    break;
2974
2975  case OO_Tilde:
2976    // C++ [over.built]p10:
2977    //   For every promoted integral type T, there exist candidate
2978    //   operator functions of the form
2979    //
2980    //        T         operator~(T);
2981    for (unsigned Int = FirstPromotedIntegralType;
2982         Int < LastPromotedIntegralType; ++Int) {
2983      QualType IntTy = ArithmeticTypes[Int];
2984      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2985    }
2986    break;
2987
2988  case OO_New:
2989  case OO_Delete:
2990  case OO_Array_New:
2991  case OO_Array_Delete:
2992  case OO_Call:
2993    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2994    break;
2995
2996  case OO_Comma:
2997  UnaryAmp:
2998  case OO_Arrow:
2999    // C++ [over.match.oper]p3:
3000    //   -- For the operator ',', the unary operator '&', or the
3001    //      operator '->', the built-in candidates set is empty.
3002    break;
3003
3004  case OO_Less:
3005  case OO_Greater:
3006  case OO_LessEqual:
3007  case OO_GreaterEqual:
3008  case OO_EqualEqual:
3009  case OO_ExclaimEqual:
3010    // C++ [over.built]p15:
3011    //
3012    //   For every pointer or enumeration type T, there exist
3013    //   candidate operator functions of the form
3014    //
3015    //        bool       operator<(T, T);
3016    //        bool       operator>(T, T);
3017    //        bool       operator<=(T, T);
3018    //        bool       operator>=(T, T);
3019    //        bool       operator==(T, T);
3020    //        bool       operator!=(T, T);
3021    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3022         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3023      QualType ParamTypes[2] = { *Ptr, *Ptr };
3024      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3025    }
3026    for (BuiltinCandidateTypeSet::iterator Enum
3027           = CandidateTypes.enumeration_begin();
3028         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3029      QualType ParamTypes[2] = { *Enum, *Enum };
3030      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3031    }
3032
3033    // Fall through.
3034    isComparison = true;
3035
3036  BinaryPlus:
3037  BinaryMinus:
3038    if (!isComparison) {
3039      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3040
3041      // C++ [over.built]p13:
3042      //
3043      //   For every cv-qualified or cv-unqualified object type T
3044      //   there exist candidate operator functions of the form
3045      //
3046      //      T*         operator+(T*, ptrdiff_t);
3047      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3048      //      T*         operator-(T*, ptrdiff_t);
3049      //      T*         operator+(ptrdiff_t, T*);
3050      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3051      //
3052      // C++ [over.built]p14:
3053      //
3054      //   For every T, where T is a pointer to object type, there
3055      //   exist candidate operator functions of the form
3056      //
3057      //      ptrdiff_t  operator-(T, T);
3058      for (BuiltinCandidateTypeSet::iterator Ptr
3059             = CandidateTypes.pointer_begin();
3060           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3061        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3062
3063        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3064        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3065
3066        if (Op == OO_Plus) {
3067          // T* operator+(ptrdiff_t, T*);
3068          ParamTypes[0] = ParamTypes[1];
3069          ParamTypes[1] = *Ptr;
3070          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3071        } else {
3072          // ptrdiff_t operator-(T, T);
3073          ParamTypes[1] = *Ptr;
3074          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3075                              Args, 2, CandidateSet);
3076        }
3077      }
3078    }
3079    // Fall through
3080
3081  case OO_Slash:
3082  BinaryStar:
3083  Conditional:
3084    // C++ [over.built]p12:
3085    //
3086    //   For every pair of promoted arithmetic types L and R, there
3087    //   exist candidate operator functions of the form
3088    //
3089    //        LR         operator*(L, R);
3090    //        LR         operator/(L, R);
3091    //        LR         operator+(L, R);
3092    //        LR         operator-(L, R);
3093    //        bool       operator<(L, R);
3094    //        bool       operator>(L, R);
3095    //        bool       operator<=(L, R);
3096    //        bool       operator>=(L, R);
3097    //        bool       operator==(L, R);
3098    //        bool       operator!=(L, R);
3099    //
3100    //   where LR is the result of the usual arithmetic conversions
3101    //   between types L and R.
3102    //
3103    // C++ [over.built]p24:
3104    //
3105    //   For every pair of promoted arithmetic types L and R, there exist
3106    //   candidate operator functions of the form
3107    //
3108    //        LR       operator?(bool, L, R);
3109    //
3110    //   where LR is the result of the usual arithmetic conversions
3111    //   between types L and R.
3112    // Our candidates ignore the first parameter.
3113    for (unsigned Left = FirstPromotedArithmeticType;
3114         Left < LastPromotedArithmeticType; ++Left) {
3115      for (unsigned Right = FirstPromotedArithmeticType;
3116           Right < LastPromotedArithmeticType; ++Right) {
3117        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3118        QualType Result
3119          = isComparison? Context.BoolTy
3120                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3121        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3122      }
3123    }
3124    break;
3125
3126  case OO_Percent:
3127  BinaryAmp:
3128  case OO_Caret:
3129  case OO_Pipe:
3130  case OO_LessLess:
3131  case OO_GreaterGreater:
3132    // C++ [over.built]p17:
3133    //
3134    //   For every pair of promoted integral types L and R, there
3135    //   exist candidate operator functions of the form
3136    //
3137    //      LR         operator%(L, R);
3138    //      LR         operator&(L, R);
3139    //      LR         operator^(L, R);
3140    //      LR         operator|(L, R);
3141    //      L          operator<<(L, R);
3142    //      L          operator>>(L, R);
3143    //
3144    //   where LR is the result of the usual arithmetic conversions
3145    //   between types L and R.
3146    for (unsigned Left = FirstPromotedIntegralType;
3147         Left < LastPromotedIntegralType; ++Left) {
3148      for (unsigned Right = FirstPromotedIntegralType;
3149           Right < LastPromotedIntegralType; ++Right) {
3150        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3151        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3152            ? LandR[0]
3153            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3154        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3155      }
3156    }
3157    break;
3158
3159  case OO_Equal:
3160    // C++ [over.built]p20:
3161    //
3162    //   For every pair (T, VQ), where T is an enumeration or
3163    //   (FIXME:) pointer to member type and VQ is either volatile or
3164    //   empty, there exist candidate operator functions of the form
3165    //
3166    //        VQ T&      operator=(VQ T&, T);
3167    for (BuiltinCandidateTypeSet::iterator Enum
3168           = CandidateTypes.enumeration_begin();
3169         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3170      QualType ParamTypes[2];
3171
3172      // T& operator=(T&, T)
3173      ParamTypes[0] = Context.getLValueReferenceType(*Enum);
3174      ParamTypes[1] = *Enum;
3175      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3176                          /*IsAssignmentOperator=*/false);
3177
3178      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3179        // volatile T& operator=(volatile T&, T)
3180        ParamTypes[0] = Context.getLValueReferenceType((*Enum).withVolatile());
3181        ParamTypes[1] = *Enum;
3182        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3183                            /*IsAssignmentOperator=*/false);
3184      }
3185    }
3186    // Fall through.
3187
3188  case OO_PlusEqual:
3189  case OO_MinusEqual:
3190    // C++ [over.built]p19:
3191    //
3192    //   For every pair (T, VQ), where T is any type and VQ is either
3193    //   volatile or empty, there exist candidate operator functions
3194    //   of the form
3195    //
3196    //        T*VQ&      operator=(T*VQ&, T*);
3197    //
3198    // C++ [over.built]p21:
3199    //
3200    //   For every pair (T, VQ), where T is a cv-qualified or
3201    //   cv-unqualified object type and VQ is either volatile or
3202    //   empty, there exist candidate operator functions of the form
3203    //
3204    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3205    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3206    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3207         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3208      QualType ParamTypes[2];
3209      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3210
3211      // non-volatile version
3212      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3213      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3214                          /*IsAssigmentOperator=*/Op == OO_Equal);
3215
3216      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3217        // volatile version
3218        ParamTypes[0] = Context.getLValueReferenceType((*Ptr).withVolatile());
3219        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3220                            /*IsAssigmentOperator=*/Op == OO_Equal);
3221      }
3222    }
3223    // Fall through.
3224
3225  case OO_StarEqual:
3226  case OO_SlashEqual:
3227    // C++ [over.built]p18:
3228    //
3229    //   For every triple (L, VQ, R), where L is an arithmetic type,
3230    //   VQ is either volatile or empty, and R is a promoted
3231    //   arithmetic type, there exist candidate operator functions of
3232    //   the form
3233    //
3234    //        VQ L&      operator=(VQ L&, R);
3235    //        VQ L&      operator*=(VQ L&, R);
3236    //        VQ L&      operator/=(VQ L&, R);
3237    //        VQ L&      operator+=(VQ L&, R);
3238    //        VQ L&      operator-=(VQ L&, R);
3239    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3240      for (unsigned Right = FirstPromotedArithmeticType;
3241           Right < LastPromotedArithmeticType; ++Right) {
3242        QualType ParamTypes[2];
3243        ParamTypes[1] = ArithmeticTypes[Right];
3244
3245        // Add this built-in operator as a candidate (VQ is empty).
3246        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3247        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3248                            /*IsAssigmentOperator=*/Op == OO_Equal);
3249
3250        // Add this built-in operator as a candidate (VQ is 'volatile').
3251        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3252        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3253        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3254                            /*IsAssigmentOperator=*/Op == OO_Equal);
3255      }
3256    }
3257    break;
3258
3259  case OO_PercentEqual:
3260  case OO_LessLessEqual:
3261  case OO_GreaterGreaterEqual:
3262  case OO_AmpEqual:
3263  case OO_CaretEqual:
3264  case OO_PipeEqual:
3265    // C++ [over.built]p22:
3266    //
3267    //   For every triple (L, VQ, R), where L is an integral type, VQ
3268    //   is either volatile or empty, and R is a promoted integral
3269    //   type, there exist candidate operator functions of the form
3270    //
3271    //        VQ L&       operator%=(VQ L&, R);
3272    //        VQ L&       operator<<=(VQ L&, R);
3273    //        VQ L&       operator>>=(VQ L&, R);
3274    //        VQ L&       operator&=(VQ L&, R);
3275    //        VQ L&       operator^=(VQ L&, R);
3276    //        VQ L&       operator|=(VQ L&, R);
3277    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3278      for (unsigned Right = FirstPromotedIntegralType;
3279           Right < LastPromotedIntegralType; ++Right) {
3280        QualType ParamTypes[2];
3281        ParamTypes[1] = ArithmeticTypes[Right];
3282
3283        // Add this built-in operator as a candidate (VQ is empty).
3284        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3285        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3286
3287        // Add this built-in operator as a candidate (VQ is 'volatile').
3288        ParamTypes[0] = ArithmeticTypes[Left];
3289        ParamTypes[0].addVolatile();
3290        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3291        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3292      }
3293    }
3294    break;
3295
3296  case OO_Exclaim: {
3297    // C++ [over.operator]p23:
3298    //
3299    //   There also exist candidate operator functions of the form
3300    //
3301    //        bool        operator!(bool);
3302    //        bool        operator&&(bool, bool);     [BELOW]
3303    //        bool        operator||(bool, bool);     [BELOW]
3304    QualType ParamTy = Context.BoolTy;
3305    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3306                        /*IsAssignmentOperator=*/false,
3307                        /*NumContextualBoolArguments=*/1);
3308    break;
3309  }
3310
3311  case OO_AmpAmp:
3312  case OO_PipePipe: {
3313    // C++ [over.operator]p23:
3314    //
3315    //   There also exist candidate operator functions of the form
3316    //
3317    //        bool        operator!(bool);            [ABOVE]
3318    //        bool        operator&&(bool, bool);
3319    //        bool        operator||(bool, bool);
3320    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3321    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3322                        /*IsAssignmentOperator=*/false,
3323                        /*NumContextualBoolArguments=*/2);
3324    break;
3325  }
3326
3327  case OO_Subscript:
3328    // C++ [over.built]p13:
3329    //
3330    //   For every cv-qualified or cv-unqualified object type T there
3331    //   exist candidate operator functions of the form
3332    //
3333    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3334    //        T&         operator[](T*, ptrdiff_t);
3335    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3336    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3337    //        T&         operator[](ptrdiff_t, T*);
3338    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3339         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3340      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3341      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3342      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3343
3344      // T& operator[](T*, ptrdiff_t)
3345      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3346
3347      // T& operator[](ptrdiff_t, T*);
3348      ParamTypes[0] = ParamTypes[1];
3349      ParamTypes[1] = *Ptr;
3350      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3351    }
3352    break;
3353
3354  case OO_ArrowStar:
3355    // FIXME: No support for pointer-to-members yet.
3356    break;
3357
3358  case OO_Conditional:
3359    // Note that we don't consider the first argument, since it has been
3360    // contextually converted to bool long ago. The candidates below are
3361    // therefore added as binary.
3362    //
3363    // C++ [over.built]p24:
3364    //   For every type T, where T is a pointer or pointer-to-member type,
3365    //   there exist candidate operator functions of the form
3366    //
3367    //        T        operator?(bool, T, T);
3368    //
3369    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3370         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3371      QualType ParamTypes[2] = { *Ptr, *Ptr };
3372      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3373    }
3374    for (BuiltinCandidateTypeSet::iterator Ptr =
3375           CandidateTypes.member_pointer_begin(),
3376         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3377      QualType ParamTypes[2] = { *Ptr, *Ptr };
3378      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3379    }
3380    goto Conditional;
3381  }
3382}
3383
3384/// \brief Add function candidates found via argument-dependent lookup
3385/// to the set of overloading candidates.
3386///
3387/// This routine performs argument-dependent name lookup based on the
3388/// given function name (which may also be an operator name) and adds
3389/// all of the overload candidates found by ADL to the overload
3390/// candidate set (C++ [basic.lookup.argdep]).
3391void
3392Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3393                                           Expr **Args, unsigned NumArgs,
3394                                           OverloadCandidateSet& CandidateSet) {
3395  FunctionSet Functions;
3396
3397  // Record all of the function candidates that we've already
3398  // added to the overload set, so that we don't add those same
3399  // candidates a second time.
3400  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3401                                   CandEnd = CandidateSet.end();
3402       Cand != CandEnd; ++Cand)
3403    if (Cand->Function) {
3404      Functions.insert(Cand->Function);
3405      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3406        Functions.insert(FunTmpl);
3407    }
3408
3409  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3410
3411  // Erase all of the candidates we already knew about.
3412  // FIXME: This is suboptimal. Is there a better way?
3413  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3414                                   CandEnd = CandidateSet.end();
3415       Cand != CandEnd; ++Cand)
3416    if (Cand->Function) {
3417      Functions.erase(Cand->Function);
3418      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3419        Functions.erase(FunTmpl);
3420    }
3421
3422  // For each of the ADL candidates we found, add it to the overload
3423  // set.
3424  for (FunctionSet::iterator Func = Functions.begin(),
3425                          FuncEnd = Functions.end();
3426       Func != FuncEnd; ++Func) {
3427    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
3428      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet);
3429    else
3430      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3431                                   /*FIXME: explicit args */false, 0, 0,
3432                                   Args, NumArgs, CandidateSet);
3433  }
3434}
3435
3436/// isBetterOverloadCandidate - Determines whether the first overload
3437/// candidate is a better candidate than the second (C++ 13.3.3p1).
3438bool
3439Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3440                                const OverloadCandidate& Cand2)
3441{
3442  // Define viable functions to be better candidates than non-viable
3443  // functions.
3444  if (!Cand2.Viable)
3445    return Cand1.Viable;
3446  else if (!Cand1.Viable)
3447    return false;
3448
3449  // C++ [over.match.best]p1:
3450  //
3451  //   -- if F is a static member function, ICS1(F) is defined such
3452  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3453  //      any function G, and, symmetrically, ICS1(G) is neither
3454  //      better nor worse than ICS1(F).
3455  unsigned StartArg = 0;
3456  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3457    StartArg = 1;
3458
3459  // C++ [over.match.best]p1:
3460  //   A viable function F1 is defined to be a better function than another
3461  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3462  //   conversion sequence than ICSi(F2), and then...
3463  unsigned NumArgs = Cand1.Conversions.size();
3464  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3465  bool HasBetterConversion = false;
3466  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3467    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3468                                               Cand2.Conversions[ArgIdx])) {
3469    case ImplicitConversionSequence::Better:
3470      // Cand1 has a better conversion sequence.
3471      HasBetterConversion = true;
3472      break;
3473
3474    case ImplicitConversionSequence::Worse:
3475      // Cand1 can't be better than Cand2.
3476      return false;
3477
3478    case ImplicitConversionSequence::Indistinguishable:
3479      // Do nothing.
3480      break;
3481    }
3482  }
3483
3484  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3485  //       ICSj(F2), or, if not that,
3486  if (HasBetterConversion)
3487    return true;
3488
3489  //     - F1 is a non-template function and F2 is a function template
3490  //       specialization, or, if not that,
3491  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3492      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3493    return true;
3494
3495  //   -- F1 and F2 are function template specializations, and the function
3496  //      template for F1 is more specialized than the template for F2
3497  //      according to the partial ordering rules described in 14.5.5.2, or,
3498  //      if not that,
3499
3500  // FIXME: Implement partial ordering of function templates.
3501
3502  //   -- the context is an initialization by user-defined conversion
3503  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3504  //      from the return type of F1 to the destination type (i.e.,
3505  //      the type of the entity being initialized) is a better
3506  //      conversion sequence than the standard conversion sequence
3507  //      from the return type of F2 to the destination type.
3508  if (Cand1.Function && Cand2.Function &&
3509      isa<CXXConversionDecl>(Cand1.Function) &&
3510      isa<CXXConversionDecl>(Cand2.Function)) {
3511    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3512                                               Cand2.FinalConversion)) {
3513    case ImplicitConversionSequence::Better:
3514      // Cand1 has a better conversion sequence.
3515      return true;
3516
3517    case ImplicitConversionSequence::Worse:
3518      // Cand1 can't be better than Cand2.
3519      return false;
3520
3521    case ImplicitConversionSequence::Indistinguishable:
3522      // Do nothing
3523      break;
3524    }
3525  }
3526
3527  return false;
3528}
3529
3530/// \brief Computes the best viable function (C++ 13.3.3)
3531/// within an overload candidate set.
3532///
3533/// \param CandidateSet the set of candidate functions.
3534///
3535/// \param Loc the location of the function name (or operator symbol) for
3536/// which overload resolution occurs.
3537///
3538/// \param Best f overload resolution was successful or found a deleted
3539/// function, Best points to the candidate function found.
3540///
3541/// \returns The result of overload resolution.
3542Sema::OverloadingResult
3543Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3544                         SourceLocation Loc,
3545                         OverloadCandidateSet::iterator& Best)
3546{
3547  // Find the best viable function.
3548  Best = CandidateSet.end();
3549  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3550       Cand != CandidateSet.end(); ++Cand) {
3551    if (Cand->Viable) {
3552      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3553        Best = Cand;
3554    }
3555  }
3556
3557  // If we didn't find any viable functions, abort.
3558  if (Best == CandidateSet.end())
3559    return OR_No_Viable_Function;
3560
3561  // Make sure that this function is better than every other viable
3562  // function. If not, we have an ambiguity.
3563  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3564       Cand != CandidateSet.end(); ++Cand) {
3565    if (Cand->Viable &&
3566        Cand != Best &&
3567        !isBetterOverloadCandidate(*Best, *Cand)) {
3568      Best = CandidateSet.end();
3569      return OR_Ambiguous;
3570    }
3571  }
3572
3573  // Best is the best viable function.
3574  if (Best->Function &&
3575      (Best->Function->isDeleted() ||
3576       Best->Function->getAttr<UnavailableAttr>()))
3577    return OR_Deleted;
3578
3579  // C++ [basic.def.odr]p2:
3580  //   An overloaded function is used if it is selected by overload resolution
3581  //   when referred to from a potentially-evaluated expression. [Note: this
3582  //   covers calls to named functions (5.2.2), operator overloading
3583  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3584  //   placement new (5.3.4), as well as non-default initialization (8.5).
3585  if (Best->Function)
3586    MarkDeclarationReferenced(Loc, Best->Function);
3587  return OR_Success;
3588}
3589
3590/// PrintOverloadCandidates - When overload resolution fails, prints
3591/// diagnostic messages containing the candidates in the candidate
3592/// set. If OnlyViable is true, only viable candidates will be printed.
3593void
3594Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3595                              bool OnlyViable)
3596{
3597  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3598                             LastCand = CandidateSet.end();
3599  for (; Cand != LastCand; ++Cand) {
3600    if (Cand->Viable || !OnlyViable) {
3601      if (Cand->Function) {
3602        if (Cand->Function->isDeleted() ||
3603            Cand->Function->getAttr<UnavailableAttr>()) {
3604          // Deleted or "unavailable" function.
3605          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3606            << Cand->Function->isDeleted();
3607        } else {
3608          // Normal function
3609          // FIXME: Give a better reason!
3610          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3611        }
3612      } else if (Cand->IsSurrogate) {
3613        // Desugar the type of the surrogate down to a function type,
3614        // retaining as many typedefs as possible while still showing
3615        // the function type (and, therefore, its parameter types).
3616        QualType FnType = Cand->Surrogate->getConversionType();
3617        bool isLValueReference = false;
3618        bool isRValueReference = false;
3619        bool isPointer = false;
3620        if (const LValueReferenceType *FnTypeRef =
3621              FnType->getAs<LValueReferenceType>()) {
3622          FnType = FnTypeRef->getPointeeType();
3623          isLValueReference = true;
3624        } else if (const RValueReferenceType *FnTypeRef =
3625                     FnType->getAs<RValueReferenceType>()) {
3626          FnType = FnTypeRef->getPointeeType();
3627          isRValueReference = true;
3628        }
3629        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
3630          FnType = FnTypePtr->getPointeeType();
3631          isPointer = true;
3632        }
3633        // Desugar down to a function type.
3634        FnType = QualType(FnType->getAsFunctionType(), 0);
3635        // Reconstruct the pointer/reference as appropriate.
3636        if (isPointer) FnType = Context.getPointerType(FnType);
3637        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3638        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3639
3640        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3641          << FnType;
3642      } else {
3643        // FIXME: We need to get the identifier in here
3644        // FIXME: Do we want the error message to point at the operator?
3645        // (built-ins won't have a location)
3646        QualType FnType
3647          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3648                                    Cand->BuiltinTypes.ParamTypes,
3649                                    Cand->Conversions.size(),
3650                                    false, 0);
3651
3652        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3653      }
3654    }
3655  }
3656}
3657
3658/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3659/// an overloaded function (C++ [over.over]), where @p From is an
3660/// expression with overloaded function type and @p ToType is the type
3661/// we're trying to resolve to. For example:
3662///
3663/// @code
3664/// int f(double);
3665/// int f(int);
3666///
3667/// int (*pfd)(double) = f; // selects f(double)
3668/// @endcode
3669///
3670/// This routine returns the resulting FunctionDecl if it could be
3671/// resolved, and NULL otherwise. When @p Complain is true, this
3672/// routine will emit diagnostics if there is an error.
3673FunctionDecl *
3674Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3675                                         bool Complain) {
3676  QualType FunctionType = ToType;
3677  bool IsMember = false;
3678  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
3679    FunctionType = ToTypePtr->getPointeeType();
3680  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
3681    FunctionType = ToTypeRef->getPointeeType();
3682  else if (const MemberPointerType *MemTypePtr =
3683                    ToType->getAs<MemberPointerType>()) {
3684    FunctionType = MemTypePtr->getPointeeType();
3685    IsMember = true;
3686  }
3687
3688  // We only look at pointers or references to functions.
3689  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3690  if (!FunctionType->isFunctionType())
3691    return 0;
3692
3693  // Find the actual overloaded function declaration.
3694  OverloadedFunctionDecl *Ovl = 0;
3695
3696  // C++ [over.over]p1:
3697  //   [...] [Note: any redundant set of parentheses surrounding the
3698  //   overloaded function name is ignored (5.1). ]
3699  Expr *OvlExpr = From->IgnoreParens();
3700
3701  // C++ [over.over]p1:
3702  //   [...] The overloaded function name can be preceded by the &
3703  //   operator.
3704  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3705    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3706      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3707  }
3708
3709  // Try to dig out the overloaded function.
3710  FunctionTemplateDecl *FunctionTemplate = 0;
3711  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
3712    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3713    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
3714  }
3715
3716  // If there's no overloaded function declaration or function template,
3717  // we're done.
3718  if (!Ovl && !FunctionTemplate)
3719    return 0;
3720
3721  OverloadIterator Fun;
3722  if (Ovl)
3723    Fun = Ovl;
3724  else
3725    Fun = FunctionTemplate;
3726
3727  // Look through all of the overloaded functions, searching for one
3728  // whose type matches exactly.
3729  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
3730
3731  bool FoundNonTemplateFunction = false;
3732  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
3733    // C++ [over.over]p3:
3734    //   Non-member functions and static member functions match
3735    //   targets of type "pointer-to-function" or "reference-to-function."
3736    //   Nonstatic member functions match targets of
3737    //   type "pointer-to-member-function."
3738    // Note that according to DR 247, the containing class does not matter.
3739
3740    if (FunctionTemplateDecl *FunctionTemplate
3741          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
3742      if (CXXMethodDecl *Method
3743            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
3744        // Skip non-static function templates when converting to pointer, and
3745        // static when converting to member pointer.
3746        if (Method->isStatic() == IsMember)
3747          continue;
3748      } else if (IsMember)
3749        continue;
3750
3751      // C++ [over.over]p2:
3752      //   If the name is a function template, template argument deduction is
3753      //   done (14.8.2.2), and if the argument deduction succeeds, the
3754      //   resulting template argument list is used to generate a single
3755      //   function template specialization, which is added to the set of
3756      //   overloaded functions considered.
3757      FunctionDecl *Specialization = 0;
3758      TemplateDeductionInfo Info(Context);
3759      if (TemplateDeductionResult Result
3760            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
3761                                      /*FIXME:*/0, /*FIXME:*/0,
3762                                      FunctionType, Specialization, Info)) {
3763        // FIXME: make a note of the failed deduction for diagnostics.
3764        (void)Result;
3765      } else {
3766        assert(FunctionType
3767                 == Context.getCanonicalType(Specialization->getType()));
3768        Matches.insert(
3769                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
3770      }
3771    }
3772
3773    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3774      // Skip non-static functions when converting to pointer, and static
3775      // when converting to member pointer.
3776      if (Method->isStatic() == IsMember)
3777        continue;
3778    } else if (IsMember)
3779      continue;
3780
3781    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
3782      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
3783        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
3784        FoundNonTemplateFunction = true;
3785      }
3786    }
3787  }
3788
3789  // If there were 0 or 1 matches, we're done.
3790  if (Matches.empty())
3791    return 0;
3792  else if (Matches.size() == 1)
3793    return *Matches.begin();
3794
3795  // C++ [over.over]p4:
3796  //   If more than one function is selected, [...]
3797  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
3798  if (FoundNonTemplateFunction) {
3799    // [...] any function template specializations in the set are eliminated
3800    // if the set also contains a non-template function, [...]
3801    for (llvm::SmallPtrSet<FunctionDecl *, 4>::iterator M = Matches.begin(),
3802                                                     MEnd = Matches.end();
3803         M != MEnd; ++M)
3804      if ((*M)->getPrimaryTemplate() == 0)
3805        RemainingMatches.push_back(*M);
3806  } else {
3807    // [...] and any given function template specialization F1 is eliminated
3808    // if the set contains a second function template specialization whose
3809    // function template is more specialized than the function template of F1
3810    // according to the partial ordering rules of 14.5.5.2.
3811    // FIXME: Implement this!
3812    RemainingMatches.append(Matches.begin(), Matches.end());
3813  }
3814
3815  // [...] After such eliminations, if any, there shall remain exactly one
3816  // selected function.
3817  if (RemainingMatches.size() == 1)
3818    return RemainingMatches.front();
3819
3820  // FIXME: We should probably return the same thing that BestViableFunction
3821  // returns (even if we issue the diagnostics here).
3822  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
3823    << RemainingMatches[0]->getDeclName();
3824  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
3825    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
3826  return 0;
3827}
3828
3829/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3830/// (which eventually refers to the declaration Func) and the call
3831/// arguments Args/NumArgs, attempt to resolve the function call down
3832/// to a specific function. If overload resolution succeeds, returns
3833/// the function declaration produced by overload
3834/// resolution. Otherwise, emits diagnostics, deletes all of the
3835/// arguments and Fn, and returns NULL.
3836FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
3837                                            DeclarationName UnqualifiedName,
3838                                            bool HasExplicitTemplateArgs,
3839                                 const TemplateArgument *ExplicitTemplateArgs,
3840                                            unsigned NumExplicitTemplateArgs,
3841                                            SourceLocation LParenLoc,
3842                                            Expr **Args, unsigned NumArgs,
3843                                            SourceLocation *CommaLocs,
3844                                            SourceLocation RParenLoc,
3845                                            bool &ArgumentDependentLookup) {
3846  OverloadCandidateSet CandidateSet;
3847
3848  // Add the functions denoted by Callee to the set of candidate
3849  // functions. While we're doing so, track whether argument-dependent
3850  // lookup still applies, per:
3851  //
3852  // C++0x [basic.lookup.argdep]p3:
3853  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3854  //   and let Y be the lookup set produced by argument dependent
3855  //   lookup (defined as follows). If X contains
3856  //
3857  //     -- a declaration of a class member, or
3858  //
3859  //     -- a block-scope function declaration that is not a
3860  //        using-declaration, or
3861  //
3862  //     -- a declaration that is neither a function or a function
3863  //        template
3864  //
3865  //   then Y is empty.
3866  if (OverloadedFunctionDecl *Ovl
3867        = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3868    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3869                                                FuncEnd = Ovl->function_end();
3870         Func != FuncEnd; ++Func) {
3871      DeclContext *Ctx = 0;
3872      if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Func)) {
3873        if (HasExplicitTemplateArgs)
3874          continue;
3875
3876        AddOverloadCandidate(FunDecl, Args, NumArgs, CandidateSet);
3877        Ctx = FunDecl->getDeclContext();
3878      } else {
3879        FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*Func);
3880        AddTemplateOverloadCandidate(FunTmpl, HasExplicitTemplateArgs,
3881                                     ExplicitTemplateArgs,
3882                                     NumExplicitTemplateArgs,
3883                                     Args, NumArgs, CandidateSet);
3884        Ctx = FunTmpl->getDeclContext();
3885      }
3886
3887
3888      if (Ctx->isRecord() || Ctx->isFunctionOrMethod())
3889        ArgumentDependentLookup = false;
3890    }
3891  } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3892    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
3893    AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3894
3895    if (Func->getDeclContext()->isRecord() ||
3896        Func->getDeclContext()->isFunctionOrMethod())
3897      ArgumentDependentLookup = false;
3898  } else if (FunctionTemplateDecl *FuncTemplate
3899               = dyn_cast_or_null<FunctionTemplateDecl>(Callee)) {
3900    AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
3901                                 ExplicitTemplateArgs,
3902                                 NumExplicitTemplateArgs,
3903                                 Args, NumArgs, CandidateSet);
3904
3905    if (FuncTemplate->getDeclContext()->isRecord())
3906      ArgumentDependentLookup = false;
3907  }
3908
3909  if (Callee)
3910    UnqualifiedName = Callee->getDeclName();
3911
3912  // FIXME: Pass explicit template arguments through for ADL
3913  if (ArgumentDependentLookup)
3914    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
3915                                         CandidateSet);
3916
3917  OverloadCandidateSet::iterator Best;
3918  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
3919  case OR_Success:
3920    return Best->Function;
3921
3922  case OR_No_Viable_Function:
3923    Diag(Fn->getSourceRange().getBegin(),
3924         diag::err_ovl_no_viable_function_in_call)
3925      << UnqualifiedName << Fn->getSourceRange();
3926    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3927    break;
3928
3929  case OR_Ambiguous:
3930    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3931      << UnqualifiedName << Fn->getSourceRange();
3932    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3933    break;
3934
3935  case OR_Deleted:
3936    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3937      << Best->Function->isDeleted()
3938      << UnqualifiedName
3939      << Fn->getSourceRange();
3940    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3941    break;
3942  }
3943
3944  // Overload resolution failed. Destroy all of the subexpressions and
3945  // return NULL.
3946  Fn->Destroy(Context);
3947  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3948    Args[Arg]->Destroy(Context);
3949  return 0;
3950}
3951
3952/// \brief Create a unary operation that may resolve to an overloaded
3953/// operator.
3954///
3955/// \param OpLoc The location of the operator itself (e.g., '*').
3956///
3957/// \param OpcIn The UnaryOperator::Opcode that describes this
3958/// operator.
3959///
3960/// \param Functions The set of non-member functions that will be
3961/// considered by overload resolution. The caller needs to build this
3962/// set based on the context using, e.g.,
3963/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
3964/// set should not contain any member functions; those will be added
3965/// by CreateOverloadedUnaryOp().
3966///
3967/// \param input The input argument.
3968Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
3969                                                     unsigned OpcIn,
3970                                                     FunctionSet &Functions,
3971                                                     ExprArg input) {
3972  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
3973  Expr *Input = (Expr *)input.get();
3974
3975  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
3976  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
3977  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3978
3979  Expr *Args[2] = { Input, 0 };
3980  unsigned NumArgs = 1;
3981
3982  // For post-increment and post-decrement, add the implicit '0' as
3983  // the second argument, so that we know this is a post-increment or
3984  // post-decrement.
3985  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
3986    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
3987    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
3988                                           SourceLocation());
3989    NumArgs = 2;
3990  }
3991
3992  if (Input->isTypeDependent()) {
3993    OverloadedFunctionDecl *Overloads
3994      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
3995    for (FunctionSet::iterator Func = Functions.begin(),
3996                            FuncEnd = Functions.end();
3997         Func != FuncEnd; ++Func)
3998      Overloads->addOverload(*Func);
3999
4000    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4001                                                OpLoc, false, false);
4002
4003    input.release();
4004    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4005                                                   &Args[0], NumArgs,
4006                                                   Context.DependentTy,
4007                                                   OpLoc));
4008  }
4009
4010  // Build an empty overload set.
4011  OverloadCandidateSet CandidateSet;
4012
4013  // Add the candidates from the given function set.
4014  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4015
4016  // Add operator candidates that are member functions.
4017  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4018
4019  // Add builtin operator candidates.
4020  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4021
4022  // Perform overload resolution.
4023  OverloadCandidateSet::iterator Best;
4024  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4025  case OR_Success: {
4026    // We found a built-in operator or an overloaded operator.
4027    FunctionDecl *FnDecl = Best->Function;
4028
4029    if (FnDecl) {
4030      // We matched an overloaded operator. Build a call to that
4031      // operator.
4032
4033      // Convert the arguments.
4034      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4035        if (PerformObjectArgumentInitialization(Input, Method))
4036          return ExprError();
4037      } else {
4038        // Convert the arguments.
4039        if (PerformCopyInitialization(Input,
4040                                      FnDecl->getParamDecl(0)->getType(),
4041                                      "passing"))
4042          return ExprError();
4043      }
4044
4045      // Determine the result type
4046      QualType ResultTy
4047        = FnDecl->getType()->getAsFunctionType()->getResultType();
4048      ResultTy = ResultTy.getNonReferenceType();
4049
4050      // Build the actual expression node.
4051      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4052                                               SourceLocation());
4053      UsualUnaryConversions(FnExpr);
4054
4055      input.release();
4056      return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4057                                                     &Input, 1, ResultTy,
4058                                                     OpLoc));
4059    } else {
4060      // We matched a built-in operator. Convert the arguments, then
4061      // break out so that we will build the appropriate built-in
4062      // operator node.
4063        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4064                                      Best->Conversions[0], "passing"))
4065          return ExprError();
4066
4067        break;
4068      }
4069    }
4070
4071    case OR_No_Viable_Function:
4072      // No viable function; fall through to handling this as a
4073      // built-in operator, which will produce an error message for us.
4074      break;
4075
4076    case OR_Ambiguous:
4077      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4078          << UnaryOperator::getOpcodeStr(Opc)
4079          << Input->getSourceRange();
4080      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4081      return ExprError();
4082
4083    case OR_Deleted:
4084      Diag(OpLoc, diag::err_ovl_deleted_oper)
4085        << Best->Function->isDeleted()
4086        << UnaryOperator::getOpcodeStr(Opc)
4087        << Input->getSourceRange();
4088      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4089      return ExprError();
4090    }
4091
4092  // Either we found no viable overloaded operator or we matched a
4093  // built-in operator. In either case, fall through to trying to
4094  // build a built-in operation.
4095  input.release();
4096  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4097}
4098
4099/// \brief Create a binary operation that may resolve to an overloaded
4100/// operator.
4101///
4102/// \param OpLoc The location of the operator itself (e.g., '+').
4103///
4104/// \param OpcIn The BinaryOperator::Opcode that describes this
4105/// operator.
4106///
4107/// \param Functions The set of non-member functions that will be
4108/// considered by overload resolution. The caller needs to build this
4109/// set based on the context using, e.g.,
4110/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4111/// set should not contain any member functions; those will be added
4112/// by CreateOverloadedBinOp().
4113///
4114/// \param LHS Left-hand argument.
4115/// \param RHS Right-hand argument.
4116Sema::OwningExprResult
4117Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4118                            unsigned OpcIn,
4119                            FunctionSet &Functions,
4120                            Expr *LHS, Expr *RHS) {
4121  Expr *Args[2] = { LHS, RHS };
4122
4123  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4124  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4125  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4126
4127  // If either side is type-dependent, create an appropriate dependent
4128  // expression.
4129  if (LHS->isTypeDependent() || RHS->isTypeDependent()) {
4130    // .* cannot be overloaded.
4131    if (Opc == BinaryOperator::PtrMemD)
4132      return Owned(new (Context) BinaryOperator(LHS, RHS, Opc,
4133                                                Context.DependentTy, OpLoc));
4134
4135    OverloadedFunctionDecl *Overloads
4136      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4137    for (FunctionSet::iterator Func = Functions.begin(),
4138                            FuncEnd = Functions.end();
4139         Func != FuncEnd; ++Func)
4140      Overloads->addOverload(*Func);
4141
4142    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4143                                                OpLoc, false, false);
4144
4145    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4146                                                   Args, 2,
4147                                                   Context.DependentTy,
4148                                                   OpLoc));
4149  }
4150
4151  // If this is the .* operator, which is not overloadable, just
4152  // create a built-in binary operator.
4153  if (Opc == BinaryOperator::PtrMemD)
4154    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4155
4156  // If this is one of the assignment operators, we only perform
4157  // overload resolution if the left-hand side is a class or
4158  // enumeration type (C++ [expr.ass]p3).
4159  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4160      !LHS->getType()->isOverloadableType())
4161    return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4162
4163  // Build an empty overload set.
4164  OverloadCandidateSet CandidateSet;
4165
4166  // Add the candidates from the given function set.
4167  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4168
4169  // Add operator candidates that are member functions.
4170  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4171
4172  // Add builtin operator candidates.
4173  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4174
4175  // Perform overload resolution.
4176  OverloadCandidateSet::iterator Best;
4177  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4178    case OR_Success: {
4179      // We found a built-in operator or an overloaded operator.
4180      FunctionDecl *FnDecl = Best->Function;
4181
4182      if (FnDecl) {
4183        // We matched an overloaded operator. Build a call to that
4184        // operator.
4185
4186        // Convert the arguments.
4187        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4188          if (PerformObjectArgumentInitialization(LHS, Method) ||
4189              PerformCopyInitialization(RHS, FnDecl->getParamDecl(0)->getType(),
4190                                        "passing"))
4191            return ExprError();
4192        } else {
4193          // Convert the arguments.
4194          if (PerformCopyInitialization(LHS, FnDecl->getParamDecl(0)->getType(),
4195                                        "passing") ||
4196              PerformCopyInitialization(RHS, FnDecl->getParamDecl(1)->getType(),
4197                                        "passing"))
4198            return ExprError();
4199        }
4200
4201        // Determine the result type
4202        QualType ResultTy
4203          = FnDecl->getType()->getAsFunctionType()->getResultType();
4204        ResultTy = ResultTy.getNonReferenceType();
4205
4206        // Build the actual expression node.
4207        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4208                                                 OpLoc);
4209        UsualUnaryConversions(FnExpr);
4210
4211        return Owned(new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4212                                                       Args, 2, ResultTy,
4213                                                       OpLoc));
4214      } else {
4215        // We matched a built-in operator. Convert the arguments, then
4216        // break out so that we will build the appropriate built-in
4217        // operator node.
4218        if (PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
4219                                      Best->Conversions[0], "passing") ||
4220            PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
4221                                      Best->Conversions[1], "passing"))
4222          return ExprError();
4223
4224        break;
4225      }
4226    }
4227
4228    case OR_No_Viable_Function:
4229      // For class as left operand for assignment or compound assigment operator
4230      // do not fall through to handling in built-in, but report that no overloaded
4231      // assignment operator found
4232      if (LHS->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4233        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4234             << BinaryOperator::getOpcodeStr(Opc)
4235             << LHS->getSourceRange() << RHS->getSourceRange();
4236        return ExprError();
4237      }
4238      // No viable function; fall through to handling this as a
4239      // built-in operator, which will produce an error message for us.
4240      break;
4241
4242    case OR_Ambiguous:
4243      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4244          << BinaryOperator::getOpcodeStr(Opc)
4245          << LHS->getSourceRange() << RHS->getSourceRange();
4246      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4247      return ExprError();
4248
4249    case OR_Deleted:
4250      Diag(OpLoc, diag::err_ovl_deleted_oper)
4251        << Best->Function->isDeleted()
4252        << BinaryOperator::getOpcodeStr(Opc)
4253        << LHS->getSourceRange() << RHS->getSourceRange();
4254      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4255      return ExprError();
4256    }
4257
4258  // Either we found no viable overloaded operator or we matched a
4259  // built-in operator. In either case, try to build a built-in
4260  // operation.
4261  return CreateBuiltinBinOp(OpLoc, Opc, LHS, RHS);
4262}
4263
4264/// BuildCallToMemberFunction - Build a call to a member
4265/// function. MemExpr is the expression that refers to the member
4266/// function (and includes the object parameter), Args/NumArgs are the
4267/// arguments to the function call (not including the object
4268/// parameter). The caller needs to validate that the member
4269/// expression refers to a member function or an overloaded member
4270/// function.
4271Sema::ExprResult
4272Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4273                                SourceLocation LParenLoc, Expr **Args,
4274                                unsigned NumArgs, SourceLocation *CommaLocs,
4275                                SourceLocation RParenLoc) {
4276  // Dig out the member expression. This holds both the object
4277  // argument and the member function we're referring to.
4278  MemberExpr *MemExpr = 0;
4279  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4280    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4281  else
4282    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4283  assert(MemExpr && "Building member call without member expression");
4284
4285  // Extract the object argument.
4286  Expr *ObjectArg = MemExpr->getBase();
4287
4288  CXXMethodDecl *Method = 0;
4289  if (OverloadedFunctionDecl *Ovl
4290        = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
4291    // Add overload candidates
4292    OverloadCandidateSet CandidateSet;
4293    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4294                                                FuncEnd = Ovl->function_end();
4295         Func != FuncEnd; ++Func) {
4296      assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
4297      Method = cast<CXXMethodDecl>(*Func);
4298      AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4299                         /*SuppressUserConversions=*/false);
4300    }
4301
4302    OverloadCandidateSet::iterator Best;
4303    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4304    case OR_Success:
4305      Method = cast<CXXMethodDecl>(Best->Function);
4306      break;
4307
4308    case OR_No_Viable_Function:
4309      Diag(MemExpr->getSourceRange().getBegin(),
4310           diag::err_ovl_no_viable_member_function_in_call)
4311        << Ovl->getDeclName() << MemExprE->getSourceRange();
4312      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4313      // FIXME: Leaking incoming expressions!
4314      return true;
4315
4316    case OR_Ambiguous:
4317      Diag(MemExpr->getSourceRange().getBegin(),
4318           diag::err_ovl_ambiguous_member_call)
4319        << Ovl->getDeclName() << MemExprE->getSourceRange();
4320      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4321      // FIXME: Leaking incoming expressions!
4322      return true;
4323
4324    case OR_Deleted:
4325      Diag(MemExpr->getSourceRange().getBegin(),
4326           diag::err_ovl_deleted_member_call)
4327        << Best->Function->isDeleted()
4328        << Ovl->getDeclName() << MemExprE->getSourceRange();
4329      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4330      // FIXME: Leaking incoming expressions!
4331      return true;
4332    }
4333
4334    FixOverloadedFunctionReference(MemExpr, Method);
4335  } else {
4336    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4337  }
4338
4339  assert(Method && "Member call to something that isn't a method?");
4340  ExprOwningPtr<CXXMemberCallExpr>
4341    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4342                                                  NumArgs,
4343                                  Method->getResultType().getNonReferenceType(),
4344                                  RParenLoc));
4345
4346  // Convert the object argument (for a non-static member function call).
4347  if (!Method->isStatic() &&
4348      PerformObjectArgumentInitialization(ObjectArg, Method))
4349    return true;
4350  MemExpr->setBase(ObjectArg);
4351
4352  // Convert the rest of the arguments
4353  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4354  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4355                              RParenLoc))
4356    return true;
4357
4358  return CheckFunctionCall(Method, TheCall.take()).release();
4359}
4360
4361/// BuildCallToObjectOfClassType - Build a call to an object of class
4362/// type (C++ [over.call.object]), which can end up invoking an
4363/// overloaded function call operator (@c operator()) or performing a
4364/// user-defined conversion on the object argument.
4365Sema::ExprResult
4366Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4367                                   SourceLocation LParenLoc,
4368                                   Expr **Args, unsigned NumArgs,
4369                                   SourceLocation *CommaLocs,
4370                                   SourceLocation RParenLoc) {
4371  assert(Object->getType()->isRecordType() && "Requires object type argument");
4372  const RecordType *Record = Object->getType()->getAs<RecordType>();
4373
4374  // C++ [over.call.object]p1:
4375  //  If the primary-expression E in the function call syntax
4376  //  evaluates to a class object of type “cv T”, then the set of
4377  //  candidate functions includes at least the function call
4378  //  operators of T. The function call operators of T are obtained by
4379  //  ordinary lookup of the name operator() in the context of
4380  //  (E).operator().
4381  OverloadCandidateSet CandidateSet;
4382  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4383  DeclContext::lookup_const_iterator Oper, OperEnd;
4384  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4385       Oper != OperEnd; ++Oper)
4386    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4387                       CandidateSet, /*SuppressUserConversions=*/false);
4388
4389  // C++ [over.call.object]p2:
4390  //   In addition, for each conversion function declared in T of the
4391  //   form
4392  //
4393  //        operator conversion-type-id () cv-qualifier;
4394  //
4395  //   where cv-qualifier is the same cv-qualification as, or a
4396  //   greater cv-qualification than, cv, and where conversion-type-id
4397  //   denotes the type "pointer to function of (P1,...,Pn) returning
4398  //   R", or the type "reference to pointer to function of
4399  //   (P1,...,Pn) returning R", or the type "reference to function
4400  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4401  //   is also considered as a candidate function. Similarly,
4402  //   surrogate call functions are added to the set of candidate
4403  //   functions for each conversion function declared in an
4404  //   accessible base class provided the function is not hidden
4405  //   within T by another intervening declaration.
4406  //
4407  // FIXME: Look in base classes for more conversion operators!
4408  OverloadedFunctionDecl *Conversions
4409    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4410  for (OverloadedFunctionDecl::function_iterator
4411         Func = Conversions->function_begin(),
4412         FuncEnd = Conversions->function_end();
4413       Func != FuncEnd; ++Func) {
4414    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
4415
4416    // Strip the reference type (if any) and then the pointer type (if
4417    // any) to get down to what might be a function type.
4418    QualType ConvType = Conv->getConversionType().getNonReferenceType();
4419    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4420      ConvType = ConvPtrType->getPointeeType();
4421
4422    if (const FunctionProtoType *Proto = ConvType->getAsFunctionProtoType())
4423      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4424  }
4425
4426  // Perform overload resolution.
4427  OverloadCandidateSet::iterator Best;
4428  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4429  case OR_Success:
4430    // Overload resolution succeeded; we'll build the appropriate call
4431    // below.
4432    break;
4433
4434  case OR_No_Viable_Function:
4435    Diag(Object->getSourceRange().getBegin(),
4436         diag::err_ovl_no_viable_object_call)
4437      << Object->getType() << Object->getSourceRange();
4438    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4439    break;
4440
4441  case OR_Ambiguous:
4442    Diag(Object->getSourceRange().getBegin(),
4443         diag::err_ovl_ambiguous_object_call)
4444      << Object->getType() << Object->getSourceRange();
4445    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4446    break;
4447
4448  case OR_Deleted:
4449    Diag(Object->getSourceRange().getBegin(),
4450         diag::err_ovl_deleted_object_call)
4451      << Best->Function->isDeleted()
4452      << Object->getType() << Object->getSourceRange();
4453    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4454    break;
4455  }
4456
4457  if (Best == CandidateSet.end()) {
4458    // We had an error; delete all of the subexpressions and return
4459    // the error.
4460    Object->Destroy(Context);
4461    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4462      Args[ArgIdx]->Destroy(Context);
4463    return true;
4464  }
4465
4466  if (Best->Function == 0) {
4467    // Since there is no function declaration, this is one of the
4468    // surrogate candidates. Dig out the conversion function.
4469    CXXConversionDecl *Conv
4470      = cast<CXXConversionDecl>(
4471                         Best->Conversions[0].UserDefined.ConversionFunction);
4472
4473    // We selected one of the surrogate functions that converts the
4474    // object parameter to a function pointer. Perform the conversion
4475    // on the object argument, then let ActOnCallExpr finish the job.
4476    // FIXME: Represent the user-defined conversion in the AST!
4477    ImpCastExprToType(Object,
4478                      Conv->getConversionType().getNonReferenceType(),
4479                      Conv->getConversionType()->isLValueReferenceType());
4480    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4481                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4482                         CommaLocs, RParenLoc).release();
4483  }
4484
4485  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4486  // that calls this method, using Object for the implicit object
4487  // parameter and passing along the remaining arguments.
4488  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4489  const FunctionProtoType *Proto = Method->getType()->getAsFunctionProtoType();
4490
4491  unsigned NumArgsInProto = Proto->getNumArgs();
4492  unsigned NumArgsToCheck = NumArgs;
4493
4494  // Build the full argument list for the method call (the
4495  // implicit object parameter is placed at the beginning of the
4496  // list).
4497  Expr **MethodArgs;
4498  if (NumArgs < NumArgsInProto) {
4499    NumArgsToCheck = NumArgsInProto;
4500    MethodArgs = new Expr*[NumArgsInProto + 1];
4501  } else {
4502    MethodArgs = new Expr*[NumArgs + 1];
4503  }
4504  MethodArgs[0] = Object;
4505  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4506    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4507
4508  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4509                                          SourceLocation());
4510  UsualUnaryConversions(NewFn);
4511
4512  // Once we've built TheCall, all of the expressions are properly
4513  // owned.
4514  QualType ResultTy = Method->getResultType().getNonReferenceType();
4515  ExprOwningPtr<CXXOperatorCallExpr>
4516    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4517                                                    MethodArgs, NumArgs + 1,
4518                                                    ResultTy, RParenLoc));
4519  delete [] MethodArgs;
4520
4521  // We may have default arguments. If so, we need to allocate more
4522  // slots in the call for them.
4523  if (NumArgs < NumArgsInProto)
4524    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4525  else if (NumArgs > NumArgsInProto)
4526    NumArgsToCheck = NumArgsInProto;
4527
4528  bool IsError = false;
4529
4530  // Initialize the implicit object parameter.
4531  IsError |= PerformObjectArgumentInitialization(Object, Method);
4532  TheCall->setArg(0, Object);
4533
4534
4535  // Check the argument types.
4536  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4537    Expr *Arg;
4538    if (i < NumArgs) {
4539      Arg = Args[i];
4540
4541      // Pass the argument.
4542      QualType ProtoArgType = Proto->getArgType(i);
4543      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4544    } else {
4545      Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
4546    }
4547
4548    TheCall->setArg(i + 1, Arg);
4549  }
4550
4551  // If this is a variadic call, handle args passed through "...".
4552  if (Proto->isVariadic()) {
4553    // Promote the arguments (C99 6.5.2.2p7).
4554    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4555      Expr *Arg = Args[i];
4556      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4557      TheCall->setArg(i + 1, Arg);
4558    }
4559  }
4560
4561  if (IsError) return true;
4562
4563  return CheckFunctionCall(Method, TheCall.take()).release();
4564}
4565
4566/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4567///  (if one exists), where @c Base is an expression of class type and
4568/// @c Member is the name of the member we're trying to find.
4569Action::ExprResult
4570Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
4571                               SourceLocation MemberLoc,
4572                               IdentifierInfo &Member) {
4573  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4574
4575  // C++ [over.ref]p1:
4576  //
4577  //   [...] An expression x->m is interpreted as (x.operator->())->m
4578  //   for a class object x of type T if T::operator->() exists and if
4579  //   the operator is selected as the best match function by the
4580  //   overload resolution mechanism (13.3).
4581  // FIXME: look in base classes.
4582  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4583  OverloadCandidateSet CandidateSet;
4584  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
4585
4586  DeclContext::lookup_const_iterator Oper, OperEnd;
4587  for (llvm::tie(Oper, OperEnd)
4588         = BaseRecord->getDecl()->lookup(OpName); Oper != OperEnd; ++Oper)
4589    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
4590                       /*SuppressUserConversions=*/false);
4591
4592  ExprOwningPtr<Expr> BasePtr(this, Base);
4593
4594  // Perform overload resolution.
4595  OverloadCandidateSet::iterator Best;
4596  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4597  case OR_Success:
4598    // Overload resolution succeeded; we'll build the call below.
4599    break;
4600
4601  case OR_No_Viable_Function:
4602    if (CandidateSet.empty())
4603      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
4604        << BasePtr->getType() << BasePtr->getSourceRange();
4605    else
4606      Diag(OpLoc, diag::err_ovl_no_viable_oper)
4607        << "operator->" << BasePtr->getSourceRange();
4608    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4609    return true;
4610
4611  case OR_Ambiguous:
4612    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4613      << "operator->" << BasePtr->getSourceRange();
4614    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4615    return true;
4616
4617  case OR_Deleted:
4618    Diag(OpLoc,  diag::err_ovl_deleted_oper)
4619      << Best->Function->isDeleted()
4620      << "operator->" << BasePtr->getSourceRange();
4621    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4622    return true;
4623  }
4624
4625  // Convert the object parameter.
4626  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4627  if (PerformObjectArgumentInitialization(Base, Method))
4628    return true;
4629
4630  // No concerns about early exits now.
4631  BasePtr.take();
4632
4633  // Build the operator call.
4634  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4635                                           SourceLocation());
4636  UsualUnaryConversions(FnExpr);
4637  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
4638                                 Method->getResultType().getNonReferenceType(),
4639                                 OpLoc);
4640  return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
4641                                  MemberLoc, Member, DeclPtrTy()).release();
4642}
4643
4644/// FixOverloadedFunctionReference - E is an expression that refers to
4645/// a C++ overloaded function (possibly with some parentheses and
4646/// perhaps a '&' around it). We have resolved the overloaded function
4647/// to the function declaration Fn, so patch up the expression E to
4648/// refer (possibly indirectly) to Fn.
4649void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4650  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4651    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4652    E->setType(PE->getSubExpr()->getType());
4653  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4654    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4655           "Can only take the address of an overloaded function");
4656    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4657      if (Method->isStatic()) {
4658        // Do nothing: static member functions aren't any different
4659        // from non-member functions.
4660      }
4661      else if (QualifiedDeclRefExpr *DRE
4662                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4663        // We have taken the address of a pointer to member
4664        // function. Perform the computation here so that we get the
4665        // appropriate pointer to member type.
4666        DRE->setDecl(Fn);
4667        DRE->setType(Fn->getType());
4668        QualType ClassType
4669          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4670        E->setType(Context.getMemberPointerType(Fn->getType(),
4671                                                ClassType.getTypePtr()));
4672        return;
4673      }
4674    }
4675    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
4676    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
4677  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4678    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
4679            isa<FunctionTemplateDecl>(DR->getDecl())) &&
4680           "Expected overloaded function or function template");
4681    DR->setDecl(Fn);
4682    E->setType(Fn->getType());
4683  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4684    MemExpr->setMemberDecl(Fn);
4685    E->setType(Fn->getType());
4686  } else {
4687    assert(false && "Invalid reference to overloaded function");
4688  }
4689}
4690
4691} // end namespace clang
4692