SemaOverload.cpp revision d0c653a59cc3428b3f1ffc9c93b0b63c7fd40485
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32  static const ImplicitConversionCategory
33    Category[(int)ICK_Num_Conversion_Kinds] = {
34    ICC_Identity,
35    ICC_Lvalue_Transformation,
36    ICC_Lvalue_Transformation,
37    ICC_Lvalue_Transformation,
38    ICC_Qualification_Adjustment,
39    ICC_Promotion,
40    ICC_Promotion,
41    ICC_Conversion,
42    ICC_Conversion,
43    ICC_Conversion,
44    ICC_Conversion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion
48  };
49  return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55  static const ImplicitConversionRank
56    Rank[(int)ICK_Num_Conversion_Kinds] = {
57    ICR_Exact_Match,
58    ICR_Exact_Match,
59    ICR_Exact_Match,
60    ICR_Exact_Match,
61    ICR_Exact_Match,
62    ICR_Promotion,
63    ICR_Promotion,
64    ICR_Conversion,
65    ICR_Conversion,
66    ICR_Conversion,
67    ICR_Conversion,
68    ICR_Conversion,
69    ICR_Conversion,
70    ICR_Conversion
71  };
72  return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79    "No conversion",
80    "Lvalue-to-rvalue",
81    "Array-to-pointer",
82    "Function-to-pointer",
83    "Qualification",
84    "Integral promotion",
85    "Floating point promotion",
86    "Integral conversion",
87    "Floating conversion",
88    "Floating-integral conversion",
89    "Pointer conversion",
90    "Pointer-to-member conversion",
91    "Boolean conversion",
92    "Derived-to-base conversion"
93  };
94  return Name[Kind];
95}
96
97/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100  First = ICK_Identity;
101  Second = ICK_Identity;
102  Third = ICK_Identity;
103  Deprecated = false;
104  ReferenceBinding = false;
105  DirectBinding = false;
106  CopyConstructor = 0;
107}
108
109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113  ImplicitConversionRank Rank = ICR_Exact_Match;
114  if  (GetConversionRank(First) > Rank)
115    Rank = GetConversionRank(First);
116  if  (GetConversionRank(Second) > Rank)
117    Rank = GetConversionRank(Second);
118  if  (GetConversionRank(Third) > Rank)
119    Rank = GetConversionRank(Third);
120  return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132  // Note that FromType has not necessarily been transformed by the
133  // array-to-pointer or function-to-pointer implicit conversions, so
134  // check for their presence as well as checking whether FromType is
135  // a pointer.
136  if (ToType->isBooleanType() &&
137      (FromType->isPointerType() ||
138       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139    return true;
140
141  return false;
142}
143
144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155  // Note that FromType has not necessarily been transformed by the
156  // array-to-pointer implicit conversion, so check for its presence
157  // and redo the conversion to get a pointer.
158  if (First == ICK_Array_To_Pointer)
159    FromType = Context.getArrayDecayedType(FromType);
160
161  if (Second == ICK_Pointer_Conversion)
162    if (const PointerType* ToPtrType = ToType->getAsPointerType())
163      return ToPtrType->getPointeeType()->isVoidType();
164
165  return false;
166}
167
168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171  bool PrintedSomething = false;
172  if (First != ICK_Identity) {
173    fprintf(stderr, "%s", GetImplicitConversionName(First));
174    PrintedSomething = true;
175  }
176
177  if (Second != ICK_Identity) {
178    if (PrintedSomething) {
179      fprintf(stderr, " -> ");
180    }
181    fprintf(stderr, "%s", GetImplicitConversionName(Second));
182
183    if (CopyConstructor) {
184      fprintf(stderr, " (by copy constructor)");
185    } else if (DirectBinding) {
186      fprintf(stderr, " (direct reference binding)");
187    } else if (ReferenceBinding) {
188      fprintf(stderr, " (reference binding)");
189    }
190    PrintedSomething = true;
191  }
192
193  if (Third != ICK_Identity) {
194    if (PrintedSomething) {
195      fprintf(stderr, " -> ");
196    }
197    fprintf(stderr, "%s", GetImplicitConversionName(Third));
198    PrintedSomething = true;
199  }
200
201  if (!PrintedSomething) {
202    fprintf(stderr, "No conversions required");
203  }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209  if (Before.First || Before.Second || Before.Third) {
210    Before.DebugPrint();
211    fprintf(stderr, " -> ");
212  }
213  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
214  if (After.First || After.Second || After.Third) {
215    fprintf(stderr, " -> ");
216    After.DebugPrint();
217  }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223  switch (ConversionKind) {
224  case StandardConversion:
225    fprintf(stderr, "Standard conversion: ");
226    Standard.DebugPrint();
227    break;
228  case UserDefinedConversion:
229    fprintf(stderr, "User-defined conversion: ");
230    UserDefined.DebugPrint();
231    break;
232  case EllipsisConversion:
233    fprintf(stderr, "Ellipsis conversion");
234    break;
235  case BadConversion:
236    fprintf(stderr, "Bad conversion");
237    break;
238  }
239
240  fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253//   void f(int, float); // #1
254//   void f(int, int); // #2
255//   int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1.  By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276    // Is this new function an overload of every function in the
277    // overload set?
278    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279                                           FuncEnd = Ovl->function_end();
280    for (; Func != FuncEnd; ++Func) {
281      if (!IsOverload(New, *Func, MatchedDecl)) {
282        MatchedDecl = Func;
283        return false;
284      }
285    }
286
287    // This function overloads every function in the overload set.
288    return true;
289  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290    // Is the function New an overload of the function Old?
291    QualType OldQType = Context.getCanonicalType(Old->getType());
292    QualType NewQType = Context.getCanonicalType(New->getType());
293
294    // Compare the signatures (C++ 1.3.10) of the two functions to
295    // determine whether they are overloads. If we find any mismatch
296    // in the signature, they are overloads.
297
298    // If either of these functions is a K&R-style function (no
299    // prototype), then we consider them to have matching signatures.
300    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302      return false;
303
304    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307    // The signature of a function includes the types of its
308    // parameters (C++ 1.3.10), which includes the presence or absence
309    // of the ellipsis; see C++ DR 357).
310    if (OldQType != NewQType &&
311        (OldType->getNumArgs() != NewType->getNumArgs() ||
312         OldType->isVariadic() != NewType->isVariadic() ||
313         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314                     NewType->arg_type_begin())))
315      return true;
316
317    // If the function is a class member, its signature includes the
318    // cv-qualifiers (if any) on the function itself.
319    //
320    // As part of this, also check whether one of the member functions
321    // is static, in which case they are not overloads (C++
322    // 13.1p2). While not part of the definition of the signature,
323    // this check is important to determine whether these functions
324    // can be overloaded.
325    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327    if (OldMethod && NewMethod &&
328        !OldMethod->isStatic() && !NewMethod->isStatic() &&
329        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
330      return true;
331
332    // The signatures match; this is not an overload.
333    return false;
334  } else {
335    // (C++ 13p1):
336    //   Only function declarations can be overloaded; object and type
337    //   declarations cannot be overloaded.
338    return false;
339  }
340}
341
342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
346///
347///   void f(float f);
348///   void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
363ImplicitConversionSequence
364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365                            bool SuppressUserConversions)
366{
367  ImplicitConversionSequence ICS;
368  if (IsStandardConversion(From, ToType, ICS.Standard))
369    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
370  else if (!SuppressUserConversions &&
371           IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
372    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
373    // C++ [over.ics.user]p4:
374    //   A conversion of an expression of class type to the same class
375    //   type is given Exact Match rank, and a conversion of an
376    //   expression of class type to a base class of that type is
377    //   given Conversion rank, in spite of the fact that a copy
378    //   constructor (i.e., a user-defined conversion function) is
379    //   called for those cases.
380    if (CXXConstructorDecl *Constructor
381          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382      if (Constructor->isCopyConstructor(Context)) {
383        // Turn this into a "standard" conversion sequence, so that it
384        // gets ranked with standard conversion sequences.
385        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386        ICS.Standard.setAsIdentityConversion();
387        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
389        ICS.Standard.CopyConstructor = Constructor;
390        if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391                          ToType.getUnqualifiedType()))
392          ICS.Standard.Second = ICK_Derived_To_Base;
393      }
394    }
395  } else
396    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
397
398  return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411                           StandardConversionSequence &SCS)
412{
413  QualType FromType = From->getType();
414
415  // There are no standard conversions for class types, so abort early.
416  if (FromType->isRecordType() || ToType->isRecordType())
417    return false;
418
419  // Standard conversions (C++ [conv])
420  SCS.setAsIdentityConversion();
421  SCS.Deprecated = false;
422  SCS.FromTypePtr = FromType.getAsOpaquePtr();
423  SCS.CopyConstructor = 0;
424
425  // The first conversion can be an lvalue-to-rvalue conversion,
426  // array-to-pointer conversion, or function-to-pointer conversion
427  // (C++ 4p1).
428
429  // Lvalue-to-rvalue conversion (C++ 4.1):
430  //   An lvalue (3.10) of a non-function, non-array type T can be
431  //   converted to an rvalue.
432  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
433  if (argIsLvalue == Expr::LV_Valid &&
434      !FromType->isFunctionType() && !FromType->isArrayType() &&
435      !FromType->isOverloadType()) {
436    SCS.First = ICK_Lvalue_To_Rvalue;
437
438    // If T is a non-class type, the type of the rvalue is the
439    // cv-unqualified version of T. Otherwise, the type of the rvalue
440    // is T (C++ 4.1p1).
441    FromType = FromType.getUnqualifiedType();
442  }
443  // Array-to-pointer conversion (C++ 4.2)
444  else if (FromType->isArrayType()) {
445    SCS.First = ICK_Array_To_Pointer;
446
447    // An lvalue or rvalue of type "array of N T" or "array of unknown
448    // bound of T" can be converted to an rvalue of type "pointer to
449    // T" (C++ 4.2p1).
450    FromType = Context.getArrayDecayedType(FromType);
451
452    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
453      // This conversion is deprecated. (C++ D.4).
454      SCS.Deprecated = true;
455
456      // For the purpose of ranking in overload resolution
457      // (13.3.3.1.1), this conversion is considered an
458      // array-to-pointer conversion followed by a qualification
459      // conversion (4.4). (C++ 4.2p2)
460      SCS.Second = ICK_Identity;
461      SCS.Third = ICK_Qualification;
462      SCS.ToTypePtr = ToType.getAsOpaquePtr();
463      return true;
464    }
465  }
466  // Function-to-pointer conversion (C++ 4.3).
467  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
468    SCS.First = ICK_Function_To_Pointer;
469
470    // An lvalue of function type T can be converted to an rvalue of
471    // type "pointer to T." The result is a pointer to the
472    // function. (C++ 4.3p1).
473    FromType = Context.getPointerType(FromType);
474  }
475  // Address of overloaded function (C++ [over.over]).
476  else if (FunctionDecl *Fn
477             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
478    SCS.First = ICK_Function_To_Pointer;
479
480    // We were able to resolve the address of the overloaded function,
481    // so we can convert to the type of that function.
482    FromType = Fn->getType();
483    if (ToType->isReferenceType())
484      FromType = Context.getReferenceType(FromType);
485    else
486      FromType = Context.getPointerType(FromType);
487  }
488  // We don't require any conversions for the first step.
489  else {
490    SCS.First = ICK_Identity;
491  }
492
493  // The second conversion can be an integral promotion, floating
494  // point promotion, integral conversion, floating point conversion,
495  // floating-integral conversion, pointer conversion,
496  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
497  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
498      Context.getCanonicalType(ToType).getUnqualifiedType()) {
499    // The unqualified versions of the types are the same: there's no
500    // conversion to do.
501    SCS.Second = ICK_Identity;
502  }
503  // Integral promotion (C++ 4.5).
504  else if (IsIntegralPromotion(From, FromType, ToType)) {
505    SCS.Second = ICK_Integral_Promotion;
506    FromType = ToType.getUnqualifiedType();
507  }
508  // Floating point promotion (C++ 4.6).
509  else if (IsFloatingPointPromotion(FromType, ToType)) {
510    SCS.Second = ICK_Floating_Promotion;
511    FromType = ToType.getUnqualifiedType();
512  }
513  // Integral conversions (C++ 4.7).
514  // FIXME: isIntegralType shouldn't be true for enums in C++.
515  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
516           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
517    SCS.Second = ICK_Integral_Conversion;
518    FromType = ToType.getUnqualifiedType();
519  }
520  // Floating point conversions (C++ 4.8).
521  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
522    SCS.Second = ICK_Floating_Conversion;
523    FromType = ToType.getUnqualifiedType();
524  }
525  // Floating-integral conversions (C++ 4.9).
526  // FIXME: isIntegralType shouldn't be true for enums in C++.
527  else if ((FromType->isFloatingType() &&
528            ToType->isIntegralType() && !ToType->isBooleanType() &&
529                                        !ToType->isEnumeralType()) ||
530           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
531            ToType->isFloatingType())) {
532    SCS.Second = ICK_Floating_Integral;
533    FromType = ToType.getUnqualifiedType();
534  }
535  // Pointer conversions (C++ 4.10).
536  else if (IsPointerConversion(From, FromType, ToType, FromType)) {
537    SCS.Second = ICK_Pointer_Conversion;
538  }
539  // FIXME: Pointer to member conversions (4.11).
540  // Boolean conversions (C++ 4.12).
541  // FIXME: pointer-to-member type
542  else if (ToType->isBooleanType() &&
543           (FromType->isArithmeticType() ||
544            FromType->isEnumeralType() ||
545            FromType->isPointerType())) {
546    SCS.Second = ICK_Boolean_Conversion;
547    FromType = Context.BoolTy;
548  } else {
549    // No second conversion required.
550    SCS.Second = ICK_Identity;
551  }
552
553  QualType CanonFrom;
554  QualType CanonTo;
555  // The third conversion can be a qualification conversion (C++ 4p1).
556  if (IsQualificationConversion(FromType, ToType)) {
557    SCS.Third = ICK_Qualification;
558    FromType = ToType;
559    CanonFrom = Context.getCanonicalType(FromType);
560    CanonTo = Context.getCanonicalType(ToType);
561  } else {
562    // No conversion required
563    SCS.Third = ICK_Identity;
564
565    // C++ [over.best.ics]p6:
566    //   [...] Any difference in top-level cv-qualification is
567    //   subsumed by the initialization itself and does not constitute
568    //   a conversion. [...]
569    CanonFrom = Context.getCanonicalType(FromType);
570    CanonTo = Context.getCanonicalType(ToType);
571    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
572        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
573      FromType = ToType;
574      CanonFrom = CanonTo;
575    }
576  }
577
578  // If we have not converted the argument type to the parameter type,
579  // this is a bad conversion sequence.
580  if (CanonFrom != CanonTo)
581    return false;
582
583  SCS.ToTypePtr = FromType.getAsOpaquePtr();
584  return true;
585}
586
587/// IsIntegralPromotion - Determines whether the conversion from the
588/// expression From (whose potentially-adjusted type is FromType) to
589/// ToType is an integral promotion (C++ 4.5). If so, returns true and
590/// sets PromotedType to the promoted type.
591bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
592{
593  const BuiltinType *To = ToType->getAsBuiltinType();
594  // All integers are built-in.
595  if (!To) {
596    return false;
597  }
598
599  // An rvalue of type char, signed char, unsigned char, short int, or
600  // unsigned short int can be converted to an rvalue of type int if
601  // int can represent all the values of the source type; otherwise,
602  // the source rvalue can be converted to an rvalue of type unsigned
603  // int (C++ 4.5p1).
604  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
605    if (// We can promote any signed, promotable integer type to an int
606        (FromType->isSignedIntegerType() ||
607         // We can promote any unsigned integer type whose size is
608         // less than int to an int.
609         (!FromType->isSignedIntegerType() &&
610          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
611      return To->getKind() == BuiltinType::Int;
612    }
613
614    return To->getKind() == BuiltinType::UInt;
615  }
616
617  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
618  // can be converted to an rvalue of the first of the following types
619  // that can represent all the values of its underlying type: int,
620  // unsigned int, long, or unsigned long (C++ 4.5p2).
621  if ((FromType->isEnumeralType() || FromType->isWideCharType())
622      && ToType->isIntegerType()) {
623    // Determine whether the type we're converting from is signed or
624    // unsigned.
625    bool FromIsSigned;
626    uint64_t FromSize = Context.getTypeSize(FromType);
627    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
628      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
629      FromIsSigned = UnderlyingType->isSignedIntegerType();
630    } else {
631      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
632      FromIsSigned = true;
633    }
634
635    // The types we'll try to promote to, in the appropriate
636    // order. Try each of these types.
637    QualType PromoteTypes[6] = {
638      Context.IntTy, Context.UnsignedIntTy,
639      Context.LongTy, Context.UnsignedLongTy ,
640      Context.LongLongTy, Context.UnsignedLongLongTy
641    };
642    for (int Idx = 0; Idx < 6; ++Idx) {
643      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
644      if (FromSize < ToSize ||
645          (FromSize == ToSize &&
646           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
647        // We found the type that we can promote to. If this is the
648        // type we wanted, we have a promotion. Otherwise, no
649        // promotion.
650        return Context.getCanonicalType(ToType).getUnqualifiedType()
651          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
652      }
653    }
654  }
655
656  // An rvalue for an integral bit-field (9.6) can be converted to an
657  // rvalue of type int if int can represent all the values of the
658  // bit-field; otherwise, it can be converted to unsigned int if
659  // unsigned int can represent all the values of the bit-field. If
660  // the bit-field is larger yet, no integral promotion applies to
661  // it. If the bit-field has an enumerated type, it is treated as any
662  // other value of that type for promotion purposes (C++ 4.5p3).
663  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
664    using llvm::APSInt;
665    FieldDecl *MemberDecl = MemRef->getMemberDecl();
666    APSInt BitWidth;
667    if (MemberDecl->isBitField() &&
668        FromType->isIntegralType() && !FromType->isEnumeralType() &&
669        From->isIntegerConstantExpr(BitWidth, Context)) {
670      APSInt ToSize(Context.getTypeSize(ToType));
671
672      // Are we promoting to an int from a bitfield that fits in an int?
673      if (BitWidth < ToSize ||
674          (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
675        return To->getKind() == BuiltinType::Int;
676      }
677
678      // Are we promoting to an unsigned int from an unsigned bitfield
679      // that fits into an unsigned int?
680      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
681        return To->getKind() == BuiltinType::UInt;
682      }
683
684      return false;
685    }
686  }
687
688  // An rvalue of type bool can be converted to an rvalue of type int,
689  // with false becoming zero and true becoming one (C++ 4.5p4).
690  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
691    return true;
692  }
693
694  return false;
695}
696
697/// IsFloatingPointPromotion - Determines whether the conversion from
698/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
699/// returns true and sets PromotedType to the promoted type.
700bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
701{
702  /// An rvalue of type float can be converted to an rvalue of type
703  /// double. (C++ 4.6p1).
704  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
705    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
706      if (FromBuiltin->getKind() == BuiltinType::Float &&
707          ToBuiltin->getKind() == BuiltinType::Double)
708        return true;
709
710  return false;
711}
712
713/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
714/// the pointer type FromPtr to a pointer to type ToPointee, with the
715/// same type qualifiers as FromPtr has on its pointee type. ToType,
716/// if non-empty, will be a pointer to ToType that may or may not have
717/// the right set of qualifiers on its pointee.
718static QualType
719BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
720                                   QualType ToPointee, QualType ToType,
721                                   ASTContext &Context) {
722  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
723  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
724  unsigned Quals = CanonFromPointee.getCVRQualifiers();
725
726  // Exact qualifier match -> return the pointer type we're converting to.
727  if (CanonToPointee.getCVRQualifiers() == Quals) {
728    // ToType is exactly what we need. Return it.
729    if (ToType.getTypePtr())
730      return ToType;
731
732    // Build a pointer to ToPointee. It has the right qualifiers
733    // already.
734    return Context.getPointerType(ToPointee);
735  }
736
737  // Just build a canonical type that has the right qualifiers.
738  return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
739}
740
741/// IsPointerConversion - Determines whether the conversion of the
742/// expression From, which has the (possibly adjusted) type FromType,
743/// can be converted to the type ToType via a pointer conversion (C++
744/// 4.10). If so, returns true and places the converted type (that
745/// might differ from ToType in its cv-qualifiers at some level) into
746/// ConvertedType.
747///
748/// This routine also supports conversions to and from block pointers
749/// and conversions with Objective-C's 'id', 'id<protocols...>', and
750/// pointers to interfaces. FIXME: Once we've determined the
751/// appropriate overloading rules for Objective-C, we may want to
752/// split the Objective-C checks into a different routine; however,
753/// GCC seems to consider all of these conversions to be pointer
754/// conversions, so for now they live here.
755bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
756                               QualType& ConvertedType)
757{
758  // Blocks: Block pointers can be converted to void*.
759  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
760      ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
761    ConvertedType = ToType;
762    return true;
763  }
764  // Blocks: A null pointer constant can be converted to a block
765  // pointer type.
766  if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
767    ConvertedType = ToType;
768    return true;
769  }
770
771  // Conversions with Objective-C's id<...>.
772  if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
773      ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
774    ConvertedType = ToType;
775    return true;
776  }
777
778  const PointerType* ToTypePtr = ToType->getAsPointerType();
779  if (!ToTypePtr)
780    return false;
781
782  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
783  if (From->isNullPointerConstant(Context)) {
784    ConvertedType = ToType;
785    return true;
786  }
787
788  // Beyond this point, both types need to be pointers.
789  const PointerType *FromTypePtr = FromType->getAsPointerType();
790  if (!FromTypePtr)
791    return false;
792
793  QualType FromPointeeType = FromTypePtr->getPointeeType();
794  QualType ToPointeeType = ToTypePtr->getPointeeType();
795
796  // An rvalue of type "pointer to cv T," where T is an object type,
797  // can be converted to an rvalue of type "pointer to cv void" (C++
798  // 4.10p2).
799  if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) {
800    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
801                                                       ToPointeeType,
802                                                       ToType, Context);
803    return true;
804  }
805
806  // C++ [conv.ptr]p3:
807  //
808  //   An rvalue of type "pointer to cv D," where D is a class type,
809  //   can be converted to an rvalue of type "pointer to cv B," where
810  //   B is a base class (clause 10) of D. If B is an inaccessible
811  //   (clause 11) or ambiguous (10.2) base class of D, a program that
812  //   necessitates this conversion is ill-formed. The result of the
813  //   conversion is a pointer to the base class sub-object of the
814  //   derived class object. The null pointer value is converted to
815  //   the null pointer value of the destination type.
816  //
817  // Note that we do not check for ambiguity or inaccessibility
818  // here. That is handled by CheckPointerConversion.
819  if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
820      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
821    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
822                                                       ToPointeeType,
823                                                       ToType, Context);
824    return true;
825  }
826
827  // Objective C++: We're able to convert from a pointer to an
828  // interface to a pointer to a different interface.
829  const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
830  const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
831  if (FromIface && ToIface &&
832      Context.canAssignObjCInterfaces(ToIface, FromIface)) {
833    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
834                                                       ToPointeeType,
835                                                       ToType, Context);
836    return true;
837  }
838
839  // Objective C++: We're able to convert between "id" and a pointer
840  // to any interface (in both directions).
841  if ((FromIface && Context.isObjCIdType(ToPointeeType))
842      || (ToIface && Context.isObjCIdType(FromPointeeType))) {
843    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
844                                                       ToPointeeType,
845                                                       ToType, Context);
846    return true;
847  }
848
849  // Objective C++: Allow conversions between the Objective-C "id" and
850  // "Class", in either direction.
851  if ((Context.isObjCIdType(FromPointeeType) &&
852       Context.isObjCClassType(ToPointeeType)) ||
853      (Context.isObjCClassType(FromPointeeType) &&
854       Context.isObjCIdType(ToPointeeType))) {
855    ConvertedType = ToType;
856    return true;
857  }
858
859  return false;
860}
861
862/// CheckPointerConversion - Check the pointer conversion from the
863/// expression From to the type ToType. This routine checks for
864/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
865/// conversions for which IsPointerConversion has already returned
866/// true. It returns true and produces a diagnostic if there was an
867/// error, or returns false otherwise.
868bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
869  QualType FromType = From->getType();
870
871  if (const PointerType *FromPtrType = FromType->getAsPointerType())
872    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
873      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
874                      /*DetectVirtual=*/false);
875      QualType FromPointeeType = FromPtrType->getPointeeType(),
876               ToPointeeType   = ToPtrType->getPointeeType();
877
878      // Objective-C++ conversions are always okay.
879      // FIXME: We should have a different class of conversions for
880      // the Objective-C++ implicit conversions.
881      if (Context.isObjCIdType(FromPointeeType) ||
882          Context.isObjCIdType(ToPointeeType) ||
883          Context.isObjCClassType(FromPointeeType) ||
884          Context.isObjCClassType(ToPointeeType))
885        return false;
886
887      if (FromPointeeType->isRecordType() &&
888          ToPointeeType->isRecordType()) {
889        // We must have a derived-to-base conversion. Check an
890        // ambiguous or inaccessible conversion.
891        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
892                                            From->getExprLoc(),
893                                            From->getSourceRange());
894      }
895    }
896
897  return false;
898}
899
900/// IsQualificationConversion - Determines whether the conversion from
901/// an rvalue of type FromType to ToType is a qualification conversion
902/// (C++ 4.4).
903bool
904Sema::IsQualificationConversion(QualType FromType, QualType ToType)
905{
906  FromType = Context.getCanonicalType(FromType);
907  ToType = Context.getCanonicalType(ToType);
908
909  // If FromType and ToType are the same type, this is not a
910  // qualification conversion.
911  if (FromType == ToType)
912    return false;
913
914  // (C++ 4.4p4):
915  //   A conversion can add cv-qualifiers at levels other than the first
916  //   in multi-level pointers, subject to the following rules: [...]
917  bool PreviousToQualsIncludeConst = true;
918  bool UnwrappedAnyPointer = false;
919  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
920    // Within each iteration of the loop, we check the qualifiers to
921    // determine if this still looks like a qualification
922    // conversion. Then, if all is well, we unwrap one more level of
923    // pointers or pointers-to-members and do it all again
924    // until there are no more pointers or pointers-to-members left to
925    // unwrap.
926    UnwrappedAnyPointer = true;
927
928    //   -- for every j > 0, if const is in cv 1,j then const is in cv
929    //      2,j, and similarly for volatile.
930    if (!ToType.isAtLeastAsQualifiedAs(FromType))
931      return false;
932
933    //   -- if the cv 1,j and cv 2,j are different, then const is in
934    //      every cv for 0 < k < j.
935    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
936        && !PreviousToQualsIncludeConst)
937      return false;
938
939    // Keep track of whether all prior cv-qualifiers in the "to" type
940    // include const.
941    PreviousToQualsIncludeConst
942      = PreviousToQualsIncludeConst && ToType.isConstQualified();
943  }
944
945  // We are left with FromType and ToType being the pointee types
946  // after unwrapping the original FromType and ToType the same number
947  // of types. If we unwrapped any pointers, and if FromType and
948  // ToType have the same unqualified type (since we checked
949  // qualifiers above), then this is a qualification conversion.
950  return UnwrappedAnyPointer &&
951    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
952}
953
954/// IsUserDefinedConversion - Determines whether there is a
955/// user-defined conversion sequence (C++ [over.ics.user]) that
956/// converts expression From to the type ToType. If such a conversion
957/// exists, User will contain the user-defined conversion sequence
958/// that performs such a conversion and this routine will return
959/// true. Otherwise, this routine returns false and User is
960/// unspecified.
961bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
962                                   UserDefinedConversionSequence& User)
963{
964  OverloadCandidateSet CandidateSet;
965  if (const CXXRecordType *ToRecordType
966        = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
967    // C++ [over.match.ctor]p1:
968    //   When objects of class type are direct-initialized (8.5), or
969    //   copy-initialized from an expression of the same or a
970    //   derived class type (8.5), overload resolution selects the
971    //   constructor. [...] For copy-initialization, the candidate
972    //   functions are all the converting constructors (12.3.1) of
973    //   that class. The argument list is the expression-list within
974    //   the parentheses of the initializer.
975    CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
976    DeclarationName ConstructorName
977      = Context.DeclarationNames.getCXXConstructorName(
978                                             Context.getCanonicalType(ToType));
979    DeclContext::lookup_result Lookup
980      = ToRecordDecl->lookup(Context, ConstructorName);
981    if (Lookup.first == Lookup.second)
982      /* No constructors. FIXME: Implicit copy constructor? */;
983    else if (OverloadedFunctionDecl *Constructors
984               = dyn_cast<OverloadedFunctionDecl>(*Lookup.first)) {
985      for (OverloadedFunctionDecl::function_const_iterator func
986             = Constructors->function_begin();
987           func != Constructors->function_end(); ++func) {
988        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
989        if (Constructor->isConvertingConstructor())
990          AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
991                               /*SuppressUserConversions=*/true);
992      }
993    } else if (CXXConstructorDecl *Constructor
994                 = dyn_cast<CXXConstructorDecl>(*Lookup.first)) {
995      if (Constructor->isConvertingConstructor())
996        AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
997                             /*SuppressUserConversions=*/true);
998    }
999  }
1000
1001  if (const CXXRecordType *FromRecordType
1002        = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
1003    // Add all of the conversion functions as candidates.
1004    // FIXME: Look for conversions in base classes!
1005    CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
1006    OverloadedFunctionDecl *Conversions
1007      = FromRecordDecl->getConversionFunctions();
1008    for (OverloadedFunctionDecl::function_iterator Func
1009           = Conversions->function_begin();
1010         Func != Conversions->function_end(); ++Func) {
1011      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1012      AddConversionCandidate(Conv, From, ToType, CandidateSet);
1013    }
1014  }
1015
1016  OverloadCandidateSet::iterator Best;
1017  switch (BestViableFunction(CandidateSet, Best)) {
1018    case OR_Success:
1019      // Record the standard conversion we used and the conversion function.
1020      if (CXXConstructorDecl *Constructor
1021            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1022        // C++ [over.ics.user]p1:
1023        //   If the user-defined conversion is specified by a
1024        //   constructor (12.3.1), the initial standard conversion
1025        //   sequence converts the source type to the type required by
1026        //   the argument of the constructor.
1027        //
1028        // FIXME: What about ellipsis conversions?
1029        QualType ThisType = Constructor->getThisType(Context);
1030        User.Before = Best->Conversions[0].Standard;
1031        User.ConversionFunction = Constructor;
1032        User.After.setAsIdentityConversion();
1033        User.After.FromTypePtr
1034          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1035        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1036        return true;
1037      } else if (CXXConversionDecl *Conversion
1038                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1039        // C++ [over.ics.user]p1:
1040        //
1041        //   [...] If the user-defined conversion is specified by a
1042        //   conversion function (12.3.2), the initial standard
1043        //   conversion sequence converts the source type to the
1044        //   implicit object parameter of the conversion function.
1045        User.Before = Best->Conversions[0].Standard;
1046        User.ConversionFunction = Conversion;
1047
1048        // C++ [over.ics.user]p2:
1049        //   The second standard conversion sequence converts the
1050        //   result of the user-defined conversion to the target type
1051        //   for the sequence. Since an implicit conversion sequence
1052        //   is an initialization, the special rules for
1053        //   initialization by user-defined conversion apply when
1054        //   selecting the best user-defined conversion for a
1055        //   user-defined conversion sequence (see 13.3.3 and
1056        //   13.3.3.1).
1057        User.After = Best->FinalConversion;
1058        return true;
1059      } else {
1060        assert(false && "Not a constructor or conversion function?");
1061        return false;
1062      }
1063
1064    case OR_No_Viable_Function:
1065      // No conversion here! We're done.
1066      return false;
1067
1068    case OR_Ambiguous:
1069      // FIXME: See C++ [over.best.ics]p10 for the handling of
1070      // ambiguous conversion sequences.
1071      return false;
1072    }
1073
1074  return false;
1075}
1076
1077/// CompareImplicitConversionSequences - Compare two implicit
1078/// conversion sequences to determine whether one is better than the
1079/// other or if they are indistinguishable (C++ 13.3.3.2).
1080ImplicitConversionSequence::CompareKind
1081Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1082                                         const ImplicitConversionSequence& ICS2)
1083{
1084  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1085  // conversion sequences (as defined in 13.3.3.1)
1086  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1087  //      conversion sequence than a user-defined conversion sequence or
1088  //      an ellipsis conversion sequence, and
1089  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1090  //      conversion sequence than an ellipsis conversion sequence
1091  //      (13.3.3.1.3).
1092  //
1093  if (ICS1.ConversionKind < ICS2.ConversionKind)
1094    return ImplicitConversionSequence::Better;
1095  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1096    return ImplicitConversionSequence::Worse;
1097
1098  // Two implicit conversion sequences of the same form are
1099  // indistinguishable conversion sequences unless one of the
1100  // following rules apply: (C++ 13.3.3.2p3):
1101  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1102    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1103  else if (ICS1.ConversionKind ==
1104             ImplicitConversionSequence::UserDefinedConversion) {
1105    // User-defined conversion sequence U1 is a better conversion
1106    // sequence than another user-defined conversion sequence U2 if
1107    // they contain the same user-defined conversion function or
1108    // constructor and if the second standard conversion sequence of
1109    // U1 is better than the second standard conversion sequence of
1110    // U2 (C++ 13.3.3.2p3).
1111    if (ICS1.UserDefined.ConversionFunction ==
1112          ICS2.UserDefined.ConversionFunction)
1113      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1114                                                ICS2.UserDefined.After);
1115  }
1116
1117  return ImplicitConversionSequence::Indistinguishable;
1118}
1119
1120/// CompareStandardConversionSequences - Compare two standard
1121/// conversion sequences to determine whether one is better than the
1122/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1123ImplicitConversionSequence::CompareKind
1124Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1125                                         const StandardConversionSequence& SCS2)
1126{
1127  // Standard conversion sequence S1 is a better conversion sequence
1128  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1129
1130  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1131  //     sequences in the canonical form defined by 13.3.3.1.1,
1132  //     excluding any Lvalue Transformation; the identity conversion
1133  //     sequence is considered to be a subsequence of any
1134  //     non-identity conversion sequence) or, if not that,
1135  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1136    // Neither is a proper subsequence of the other. Do nothing.
1137    ;
1138  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1139           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1140           (SCS1.Second == ICK_Identity &&
1141            SCS1.Third == ICK_Identity))
1142    // SCS1 is a proper subsequence of SCS2.
1143    return ImplicitConversionSequence::Better;
1144  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1145           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1146           (SCS2.Second == ICK_Identity &&
1147            SCS2.Third == ICK_Identity))
1148    // SCS2 is a proper subsequence of SCS1.
1149    return ImplicitConversionSequence::Worse;
1150
1151  //  -- the rank of S1 is better than the rank of S2 (by the rules
1152  //     defined below), or, if not that,
1153  ImplicitConversionRank Rank1 = SCS1.getRank();
1154  ImplicitConversionRank Rank2 = SCS2.getRank();
1155  if (Rank1 < Rank2)
1156    return ImplicitConversionSequence::Better;
1157  else if (Rank2 < Rank1)
1158    return ImplicitConversionSequence::Worse;
1159
1160  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1161  // are indistinguishable unless one of the following rules
1162  // applies:
1163
1164  //   A conversion that is not a conversion of a pointer, or
1165  //   pointer to member, to bool is better than another conversion
1166  //   that is such a conversion.
1167  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1168    return SCS2.isPointerConversionToBool()
1169             ? ImplicitConversionSequence::Better
1170             : ImplicitConversionSequence::Worse;
1171
1172  // C++ [over.ics.rank]p4b2:
1173  //
1174  //   If class B is derived directly or indirectly from class A,
1175  //   conversion of B* to A* is better than conversion of B* to
1176  //   void*, and conversion of A* to void* is better than conversion
1177  //   of B* to void*.
1178  bool SCS1ConvertsToVoid
1179    = SCS1.isPointerConversionToVoidPointer(Context);
1180  bool SCS2ConvertsToVoid
1181    = SCS2.isPointerConversionToVoidPointer(Context);
1182  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1183    // Exactly one of the conversion sequences is a conversion to
1184    // a void pointer; it's the worse conversion.
1185    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1186                              : ImplicitConversionSequence::Worse;
1187  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1188    // Neither conversion sequence converts to a void pointer; compare
1189    // their derived-to-base conversions.
1190    if (ImplicitConversionSequence::CompareKind DerivedCK
1191          = CompareDerivedToBaseConversions(SCS1, SCS2))
1192      return DerivedCK;
1193  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1194    // Both conversion sequences are conversions to void
1195    // pointers. Compare the source types to determine if there's an
1196    // inheritance relationship in their sources.
1197    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1198    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1199
1200    // Adjust the types we're converting from via the array-to-pointer
1201    // conversion, if we need to.
1202    if (SCS1.First == ICK_Array_To_Pointer)
1203      FromType1 = Context.getArrayDecayedType(FromType1);
1204    if (SCS2.First == ICK_Array_To_Pointer)
1205      FromType2 = Context.getArrayDecayedType(FromType2);
1206
1207    QualType FromPointee1
1208      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1209    QualType FromPointee2
1210      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1211
1212    if (IsDerivedFrom(FromPointee2, FromPointee1))
1213      return ImplicitConversionSequence::Better;
1214    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1215      return ImplicitConversionSequence::Worse;
1216
1217    // Objective-C++: If one interface is more specific than the
1218    // other, it is the better one.
1219    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1220    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1221    if (FromIface1 && FromIface1) {
1222      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1223        return ImplicitConversionSequence::Better;
1224      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1225        return ImplicitConversionSequence::Worse;
1226    }
1227  }
1228
1229  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1230  // bullet 3).
1231  if (ImplicitConversionSequence::CompareKind QualCK
1232        = CompareQualificationConversions(SCS1, SCS2))
1233    return QualCK;
1234
1235  // C++ [over.ics.rank]p3b4:
1236  //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1237  //      which the references refer are the same type except for
1238  //      top-level cv-qualifiers, and the type to which the reference
1239  //      initialized by S2 refers is more cv-qualified than the type
1240  //      to which the reference initialized by S1 refers.
1241  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1242    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1243    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1244    T1 = Context.getCanonicalType(T1);
1245    T2 = Context.getCanonicalType(T2);
1246    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1247      if (T2.isMoreQualifiedThan(T1))
1248        return ImplicitConversionSequence::Better;
1249      else if (T1.isMoreQualifiedThan(T2))
1250        return ImplicitConversionSequence::Worse;
1251    }
1252  }
1253
1254  return ImplicitConversionSequence::Indistinguishable;
1255}
1256
1257/// CompareQualificationConversions - Compares two standard conversion
1258/// sequences to determine whether they can be ranked based on their
1259/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1260ImplicitConversionSequence::CompareKind
1261Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1262                                      const StandardConversionSequence& SCS2)
1263{
1264  // C++ 13.3.3.2p3:
1265  //  -- S1 and S2 differ only in their qualification conversion and
1266  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1267  //     cv-qualification signature of type T1 is a proper subset of
1268  //     the cv-qualification signature of type T2, and S1 is not the
1269  //     deprecated string literal array-to-pointer conversion (4.2).
1270  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1271      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1272    return ImplicitConversionSequence::Indistinguishable;
1273
1274  // FIXME: the example in the standard doesn't use a qualification
1275  // conversion (!)
1276  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1277  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1278  T1 = Context.getCanonicalType(T1);
1279  T2 = Context.getCanonicalType(T2);
1280
1281  // If the types are the same, we won't learn anything by unwrapped
1282  // them.
1283  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1284    return ImplicitConversionSequence::Indistinguishable;
1285
1286  ImplicitConversionSequence::CompareKind Result
1287    = ImplicitConversionSequence::Indistinguishable;
1288  while (UnwrapSimilarPointerTypes(T1, T2)) {
1289    // Within each iteration of the loop, we check the qualifiers to
1290    // determine if this still looks like a qualification
1291    // conversion. Then, if all is well, we unwrap one more level of
1292    // pointers or pointers-to-members and do it all again
1293    // until there are no more pointers or pointers-to-members left
1294    // to unwrap. This essentially mimics what
1295    // IsQualificationConversion does, but here we're checking for a
1296    // strict subset of qualifiers.
1297    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1298      // The qualifiers are the same, so this doesn't tell us anything
1299      // about how the sequences rank.
1300      ;
1301    else if (T2.isMoreQualifiedThan(T1)) {
1302      // T1 has fewer qualifiers, so it could be the better sequence.
1303      if (Result == ImplicitConversionSequence::Worse)
1304        // Neither has qualifiers that are a subset of the other's
1305        // qualifiers.
1306        return ImplicitConversionSequence::Indistinguishable;
1307
1308      Result = ImplicitConversionSequence::Better;
1309    } else if (T1.isMoreQualifiedThan(T2)) {
1310      // T2 has fewer qualifiers, so it could be the better sequence.
1311      if (Result == ImplicitConversionSequence::Better)
1312        // Neither has qualifiers that are a subset of the other's
1313        // qualifiers.
1314        return ImplicitConversionSequence::Indistinguishable;
1315
1316      Result = ImplicitConversionSequence::Worse;
1317    } else {
1318      // Qualifiers are disjoint.
1319      return ImplicitConversionSequence::Indistinguishable;
1320    }
1321
1322    // If the types after this point are equivalent, we're done.
1323    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1324      break;
1325  }
1326
1327  // Check that the winning standard conversion sequence isn't using
1328  // the deprecated string literal array to pointer conversion.
1329  switch (Result) {
1330  case ImplicitConversionSequence::Better:
1331    if (SCS1.Deprecated)
1332      Result = ImplicitConversionSequence::Indistinguishable;
1333    break;
1334
1335  case ImplicitConversionSequence::Indistinguishable:
1336    break;
1337
1338  case ImplicitConversionSequence::Worse:
1339    if (SCS2.Deprecated)
1340      Result = ImplicitConversionSequence::Indistinguishable;
1341    break;
1342  }
1343
1344  return Result;
1345}
1346
1347/// CompareDerivedToBaseConversions - Compares two standard conversion
1348/// sequences to determine whether they can be ranked based on their
1349/// various kinds of derived-to-base conversions (C++
1350/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1351/// conversions between Objective-C interface types.
1352ImplicitConversionSequence::CompareKind
1353Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1354                                      const StandardConversionSequence& SCS2) {
1355  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1356  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1357  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1358  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1359
1360  // Adjust the types we're converting from via the array-to-pointer
1361  // conversion, if we need to.
1362  if (SCS1.First == ICK_Array_To_Pointer)
1363    FromType1 = Context.getArrayDecayedType(FromType1);
1364  if (SCS2.First == ICK_Array_To_Pointer)
1365    FromType2 = Context.getArrayDecayedType(FromType2);
1366
1367  // Canonicalize all of the types.
1368  FromType1 = Context.getCanonicalType(FromType1);
1369  ToType1 = Context.getCanonicalType(ToType1);
1370  FromType2 = Context.getCanonicalType(FromType2);
1371  ToType2 = Context.getCanonicalType(ToType2);
1372
1373  // C++ [over.ics.rank]p4b3:
1374  //
1375  //   If class B is derived directly or indirectly from class A and
1376  //   class C is derived directly or indirectly from B,
1377  //
1378  // For Objective-C, we let A, B, and C also be Objective-C
1379  // interfaces.
1380
1381  // Compare based on pointer conversions.
1382  if (SCS1.Second == ICK_Pointer_Conversion &&
1383      SCS2.Second == ICK_Pointer_Conversion &&
1384      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1385      FromType1->isPointerType() && FromType2->isPointerType() &&
1386      ToType1->isPointerType() && ToType2->isPointerType()) {
1387    QualType FromPointee1
1388      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1389    QualType ToPointee1
1390      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1391    QualType FromPointee2
1392      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1393    QualType ToPointee2
1394      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1395
1396    const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1397    const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1398    const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1399    const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1400
1401    //   -- conversion of C* to B* is better than conversion of C* to A*,
1402    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1403      if (IsDerivedFrom(ToPointee1, ToPointee2))
1404        return ImplicitConversionSequence::Better;
1405      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1406        return ImplicitConversionSequence::Worse;
1407
1408      if (ToIface1 && ToIface2) {
1409        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1410          return ImplicitConversionSequence::Better;
1411        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1412          return ImplicitConversionSequence::Worse;
1413      }
1414    }
1415
1416    //   -- conversion of B* to A* is better than conversion of C* to A*,
1417    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1418      if (IsDerivedFrom(FromPointee2, FromPointee1))
1419        return ImplicitConversionSequence::Better;
1420      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1421        return ImplicitConversionSequence::Worse;
1422
1423      if (FromIface1 && FromIface2) {
1424        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1425          return ImplicitConversionSequence::Better;
1426        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1427          return ImplicitConversionSequence::Worse;
1428      }
1429    }
1430  }
1431
1432  // Compare based on reference bindings.
1433  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1434      SCS1.Second == ICK_Derived_To_Base) {
1435    //   -- binding of an expression of type C to a reference of type
1436    //      B& is better than binding an expression of type C to a
1437    //      reference of type A&,
1438    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1439        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1440      if (IsDerivedFrom(ToType1, ToType2))
1441        return ImplicitConversionSequence::Better;
1442      else if (IsDerivedFrom(ToType2, ToType1))
1443        return ImplicitConversionSequence::Worse;
1444    }
1445
1446    //   -- binding of an expression of type B to a reference of type
1447    //      A& is better than binding an expression of type C to a
1448    //      reference of type A&,
1449    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1450        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1451      if (IsDerivedFrom(FromType2, FromType1))
1452        return ImplicitConversionSequence::Better;
1453      else if (IsDerivedFrom(FromType1, FromType2))
1454        return ImplicitConversionSequence::Worse;
1455    }
1456  }
1457
1458
1459  // FIXME: conversion of A::* to B::* is better than conversion of
1460  // A::* to C::*,
1461
1462  // FIXME: conversion of B::* to C::* is better than conversion of
1463  // A::* to C::*, and
1464
1465  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1466      SCS1.Second == ICK_Derived_To_Base) {
1467    //   -- conversion of C to B is better than conversion of C to A,
1468    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1469        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1470      if (IsDerivedFrom(ToType1, ToType2))
1471        return ImplicitConversionSequence::Better;
1472      else if (IsDerivedFrom(ToType2, ToType1))
1473        return ImplicitConversionSequence::Worse;
1474    }
1475
1476    //   -- conversion of B to A is better than conversion of C to A.
1477    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1478        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1479      if (IsDerivedFrom(FromType2, FromType1))
1480        return ImplicitConversionSequence::Better;
1481      else if (IsDerivedFrom(FromType1, FromType2))
1482        return ImplicitConversionSequence::Worse;
1483    }
1484  }
1485
1486  return ImplicitConversionSequence::Indistinguishable;
1487}
1488
1489/// TryCopyInitialization - Try to copy-initialize a value of type
1490/// ToType from the expression From. Return the implicit conversion
1491/// sequence required to pass this argument, which may be a bad
1492/// conversion sequence (meaning that the argument cannot be passed to
1493/// a parameter of this type). If @p SuppressUserConversions, then we
1494/// do not permit any user-defined conversion sequences.
1495ImplicitConversionSequence
1496Sema::TryCopyInitialization(Expr *From, QualType ToType,
1497                            bool SuppressUserConversions) {
1498  if (!getLangOptions().CPlusPlus) {
1499    // In C, copy initialization is the same as performing an assignment.
1500    AssignConvertType ConvTy =
1501      CheckSingleAssignmentConstraints(ToType, From);
1502    ImplicitConversionSequence ICS;
1503    if (getLangOptions().NoExtensions? ConvTy != Compatible
1504                                     : ConvTy == Incompatible)
1505      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1506    else
1507      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1508    return ICS;
1509  } else if (ToType->isReferenceType()) {
1510    ImplicitConversionSequence ICS;
1511    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
1512    return ICS;
1513  } else {
1514    return TryImplicitConversion(From, ToType, SuppressUserConversions);
1515  }
1516}
1517
1518/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1519/// type ToType. Returns true (and emits a diagnostic) if there was
1520/// an error, returns false if the initialization succeeded.
1521bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1522                                     const char* Flavor) {
1523  if (!getLangOptions().CPlusPlus) {
1524    // In C, argument passing is the same as performing an assignment.
1525    QualType FromType = From->getType();
1526    AssignConvertType ConvTy =
1527      CheckSingleAssignmentConstraints(ToType, From);
1528
1529    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1530                                    FromType, From, Flavor);
1531  }
1532
1533  if (ToType->isReferenceType())
1534    return CheckReferenceInit(From, ToType);
1535
1536  if (!PerformImplicitConversion(From, ToType))
1537    return false;
1538
1539  return Diag(From->getSourceRange().getBegin(),
1540              diag::err_typecheck_convert_incompatible)
1541    << ToType << From->getType() << Flavor << From->getSourceRange();
1542}
1543
1544/// TryObjectArgumentInitialization - Try to initialize the object
1545/// parameter of the given member function (@c Method) from the
1546/// expression @p From.
1547ImplicitConversionSequence
1548Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1549  QualType ClassType = Context.getTypeDeclType(Method->getParent());
1550  unsigned MethodQuals = Method->getTypeQualifiers();
1551  QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1552
1553  // Set up the conversion sequence as a "bad" conversion, to allow us
1554  // to exit early.
1555  ImplicitConversionSequence ICS;
1556  ICS.Standard.setAsIdentityConversion();
1557  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1558
1559  // We need to have an object of class type.
1560  QualType FromType = From->getType();
1561  if (!FromType->isRecordType())
1562    return ICS;
1563
1564  // The implicit object parmeter is has the type "reference to cv X",
1565  // where X is the class of which the function is a member
1566  // (C++ [over.match.funcs]p4). However, when finding an implicit
1567  // conversion sequence for the argument, we are not allowed to
1568  // create temporaries or perform user-defined conversions
1569  // (C++ [over.match.funcs]p5). We perform a simplified version of
1570  // reference binding here, that allows class rvalues to bind to
1571  // non-constant references.
1572
1573  // First check the qualifiers. We don't care about lvalue-vs-rvalue
1574  // with the implicit object parameter (C++ [over.match.funcs]p5).
1575  QualType FromTypeCanon = Context.getCanonicalType(FromType);
1576  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1577      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1578    return ICS;
1579
1580  // Check that we have either the same type or a derived type. It
1581  // affects the conversion rank.
1582  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1583  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1584    ICS.Standard.Second = ICK_Identity;
1585  else if (IsDerivedFrom(FromType, ClassType))
1586    ICS.Standard.Second = ICK_Derived_To_Base;
1587  else
1588    return ICS;
1589
1590  // Success. Mark this as a reference binding.
1591  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1592  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1593  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1594  ICS.Standard.ReferenceBinding = true;
1595  ICS.Standard.DirectBinding = true;
1596  return ICS;
1597}
1598
1599/// PerformObjectArgumentInitialization - Perform initialization of
1600/// the implicit object parameter for the given Method with the given
1601/// expression.
1602bool
1603Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1604  QualType ImplicitParamType
1605    = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1606  ImplicitConversionSequence ICS
1607    = TryObjectArgumentInitialization(From, Method);
1608  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1609    return Diag(From->getSourceRange().getBegin(),
1610                diag::err_implicit_object_parameter_init)
1611       << ImplicitParamType << From->getType() << From->getSourceRange();
1612
1613  if (ICS.Standard.Second == ICK_Derived_To_Base &&
1614      CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1615                                   From->getSourceRange().getBegin(),
1616                                   From->getSourceRange()))
1617    return true;
1618
1619  ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1620  return false;
1621}
1622
1623/// AddOverloadCandidate - Adds the given function to the set of
1624/// candidate functions, using the given function call arguments.  If
1625/// @p SuppressUserConversions, then don't allow user-defined
1626/// conversions via constructors or conversion operators.
1627void
1628Sema::AddOverloadCandidate(FunctionDecl *Function,
1629                           Expr **Args, unsigned NumArgs,
1630                           OverloadCandidateSet& CandidateSet,
1631                           bool SuppressUserConversions)
1632{
1633  const FunctionTypeProto* Proto
1634    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1635  assert(Proto && "Functions without a prototype cannot be overloaded");
1636  assert(!isa<CXXConversionDecl>(Function) &&
1637         "Use AddConversionCandidate for conversion functions");
1638
1639  // Add this candidate
1640  CandidateSet.push_back(OverloadCandidate());
1641  OverloadCandidate& Candidate = CandidateSet.back();
1642  Candidate.Function = Function;
1643  Candidate.IsSurrogate = false;
1644
1645  unsigned NumArgsInProto = Proto->getNumArgs();
1646
1647  // (C++ 13.3.2p2): A candidate function having fewer than m
1648  // parameters is viable only if it has an ellipsis in its parameter
1649  // list (8.3.5).
1650  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1651    Candidate.Viable = false;
1652    return;
1653  }
1654
1655  // (C++ 13.3.2p2): A candidate function having more than m parameters
1656  // is viable only if the (m+1)st parameter has a default argument
1657  // (8.3.6). For the purposes of overload resolution, the
1658  // parameter list is truncated on the right, so that there are
1659  // exactly m parameters.
1660  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1661  if (NumArgs < MinRequiredArgs) {
1662    // Not enough arguments.
1663    Candidate.Viable = false;
1664    return;
1665  }
1666
1667  // Determine the implicit conversion sequences for each of the
1668  // arguments.
1669  Candidate.Viable = true;
1670  Candidate.Conversions.resize(NumArgs);
1671  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1672    if (ArgIdx < NumArgsInProto) {
1673      // (C++ 13.3.2p3): for F to be a viable function, there shall
1674      // exist for each argument an implicit conversion sequence
1675      // (13.3.3.1) that converts that argument to the corresponding
1676      // parameter of F.
1677      QualType ParamType = Proto->getArgType(ArgIdx);
1678      Candidate.Conversions[ArgIdx]
1679        = TryCopyInitialization(Args[ArgIdx], ParamType,
1680                                SuppressUserConversions);
1681      if (Candidate.Conversions[ArgIdx].ConversionKind
1682            == ImplicitConversionSequence::BadConversion) {
1683        Candidate.Viable = false;
1684        break;
1685      }
1686    } else {
1687      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1688      // argument for which there is no corresponding parameter is
1689      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1690      Candidate.Conversions[ArgIdx].ConversionKind
1691        = ImplicitConversionSequence::EllipsisConversion;
1692    }
1693  }
1694}
1695
1696/// AddMethodCandidate - Adds the given C++ member function to the set
1697/// of candidate functions, using the given function call arguments
1698/// and the object argument (@c Object). For example, in a call
1699/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1700/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1701/// allow user-defined conversions via constructors or conversion
1702/// operators.
1703void
1704Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1705                         Expr **Args, unsigned NumArgs,
1706                         OverloadCandidateSet& CandidateSet,
1707                         bool SuppressUserConversions)
1708{
1709  const FunctionTypeProto* Proto
1710    = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1711  assert(Proto && "Methods without a prototype cannot be overloaded");
1712  assert(!isa<CXXConversionDecl>(Method) &&
1713         "Use AddConversionCandidate for conversion functions");
1714
1715  // Add this candidate
1716  CandidateSet.push_back(OverloadCandidate());
1717  OverloadCandidate& Candidate = CandidateSet.back();
1718  Candidate.Function = Method;
1719  Candidate.IsSurrogate = false;
1720
1721  unsigned NumArgsInProto = Proto->getNumArgs();
1722
1723  // (C++ 13.3.2p2): A candidate function having fewer than m
1724  // parameters is viable only if it has an ellipsis in its parameter
1725  // list (8.3.5).
1726  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1727    Candidate.Viable = false;
1728    return;
1729  }
1730
1731  // (C++ 13.3.2p2): A candidate function having more than m parameters
1732  // is viable only if the (m+1)st parameter has a default argument
1733  // (8.3.6). For the purposes of overload resolution, the
1734  // parameter list is truncated on the right, so that there are
1735  // exactly m parameters.
1736  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1737  if (NumArgs < MinRequiredArgs) {
1738    // Not enough arguments.
1739    Candidate.Viable = false;
1740    return;
1741  }
1742
1743  Candidate.Viable = true;
1744  Candidate.Conversions.resize(NumArgs + 1);
1745
1746  // Determine the implicit conversion sequence for the object
1747  // parameter.
1748  Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1749  if (Candidate.Conversions[0].ConversionKind
1750        == ImplicitConversionSequence::BadConversion) {
1751    Candidate.Viable = false;
1752    return;
1753  }
1754
1755  // Determine the implicit conversion sequences for each of the
1756  // arguments.
1757  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1758    if (ArgIdx < NumArgsInProto) {
1759      // (C++ 13.3.2p3): for F to be a viable function, there shall
1760      // exist for each argument an implicit conversion sequence
1761      // (13.3.3.1) that converts that argument to the corresponding
1762      // parameter of F.
1763      QualType ParamType = Proto->getArgType(ArgIdx);
1764      Candidate.Conversions[ArgIdx + 1]
1765        = TryCopyInitialization(Args[ArgIdx], ParamType,
1766                                SuppressUserConversions);
1767      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1768            == ImplicitConversionSequence::BadConversion) {
1769        Candidate.Viable = false;
1770        break;
1771      }
1772    } else {
1773      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1774      // argument for which there is no corresponding parameter is
1775      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1776      Candidate.Conversions[ArgIdx + 1].ConversionKind
1777        = ImplicitConversionSequence::EllipsisConversion;
1778    }
1779  }
1780}
1781
1782/// AddConversionCandidate - Add a C++ conversion function as a
1783/// candidate in the candidate set (C++ [over.match.conv],
1784/// C++ [over.match.copy]). From is the expression we're converting from,
1785/// and ToType is the type that we're eventually trying to convert to
1786/// (which may or may not be the same type as the type that the
1787/// conversion function produces).
1788void
1789Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1790                             Expr *From, QualType ToType,
1791                             OverloadCandidateSet& CandidateSet) {
1792  // Add this candidate
1793  CandidateSet.push_back(OverloadCandidate());
1794  OverloadCandidate& Candidate = CandidateSet.back();
1795  Candidate.Function = Conversion;
1796  Candidate.IsSurrogate = false;
1797  Candidate.FinalConversion.setAsIdentityConversion();
1798  Candidate.FinalConversion.FromTypePtr
1799    = Conversion->getConversionType().getAsOpaquePtr();
1800  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1801
1802  // Determine the implicit conversion sequence for the implicit
1803  // object parameter.
1804  Candidate.Viable = true;
1805  Candidate.Conversions.resize(1);
1806  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
1807
1808  if (Candidate.Conversions[0].ConversionKind
1809      == ImplicitConversionSequence::BadConversion) {
1810    Candidate.Viable = false;
1811    return;
1812  }
1813
1814  // To determine what the conversion from the result of calling the
1815  // conversion function to the type we're eventually trying to
1816  // convert to (ToType), we need to synthesize a call to the
1817  // conversion function and attempt copy initialization from it. This
1818  // makes sure that we get the right semantics with respect to
1819  // lvalues/rvalues and the type. Fortunately, we can allocate this
1820  // call on the stack and we don't need its arguments to be
1821  // well-formed.
1822  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1823                            SourceLocation());
1824  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
1825                                &ConversionRef, false);
1826  CallExpr Call(&ConversionFn, 0, 0,
1827                Conversion->getConversionType().getNonReferenceType(),
1828                SourceLocation());
1829  ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1830  switch (ICS.ConversionKind) {
1831  case ImplicitConversionSequence::StandardConversion:
1832    Candidate.FinalConversion = ICS.Standard;
1833    break;
1834
1835  case ImplicitConversionSequence::BadConversion:
1836    Candidate.Viable = false;
1837    break;
1838
1839  default:
1840    assert(false &&
1841           "Can only end up with a standard conversion sequence or failure");
1842  }
1843}
1844
1845/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1846/// converts the given @c Object to a function pointer via the
1847/// conversion function @c Conversion, and then attempts to call it
1848/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1849/// the type of function that we'll eventually be calling.
1850void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1851                                 const FunctionTypeProto *Proto,
1852                                 Expr *Object, Expr **Args, unsigned NumArgs,
1853                                 OverloadCandidateSet& CandidateSet) {
1854  CandidateSet.push_back(OverloadCandidate());
1855  OverloadCandidate& Candidate = CandidateSet.back();
1856  Candidate.Function = 0;
1857  Candidate.Surrogate = Conversion;
1858  Candidate.Viable = true;
1859  Candidate.IsSurrogate = true;
1860  Candidate.Conversions.resize(NumArgs + 1);
1861
1862  // Determine the implicit conversion sequence for the implicit
1863  // object parameter.
1864  ImplicitConversionSequence ObjectInit
1865    = TryObjectArgumentInitialization(Object, Conversion);
1866  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1867    Candidate.Viable = false;
1868    return;
1869  }
1870
1871  // The first conversion is actually a user-defined conversion whose
1872  // first conversion is ObjectInit's standard conversion (which is
1873  // effectively a reference binding). Record it as such.
1874  Candidate.Conversions[0].ConversionKind
1875    = ImplicitConversionSequence::UserDefinedConversion;
1876  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1877  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
1878  Candidate.Conversions[0].UserDefined.After
1879    = Candidate.Conversions[0].UserDefined.Before;
1880  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
1881
1882  // Find the
1883  unsigned NumArgsInProto = Proto->getNumArgs();
1884
1885  // (C++ 13.3.2p2): A candidate function having fewer than m
1886  // parameters is viable only if it has an ellipsis in its parameter
1887  // list (8.3.5).
1888  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1889    Candidate.Viable = false;
1890    return;
1891  }
1892
1893  // Function types don't have any default arguments, so just check if
1894  // we have enough arguments.
1895  if (NumArgs < NumArgsInProto) {
1896    // Not enough arguments.
1897    Candidate.Viable = false;
1898    return;
1899  }
1900
1901  // Determine the implicit conversion sequences for each of the
1902  // arguments.
1903  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1904    if (ArgIdx < NumArgsInProto) {
1905      // (C++ 13.3.2p3): for F to be a viable function, there shall
1906      // exist for each argument an implicit conversion sequence
1907      // (13.3.3.1) that converts that argument to the corresponding
1908      // parameter of F.
1909      QualType ParamType = Proto->getArgType(ArgIdx);
1910      Candidate.Conversions[ArgIdx + 1]
1911        = TryCopyInitialization(Args[ArgIdx], ParamType,
1912                                /*SuppressUserConversions=*/false);
1913      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1914            == ImplicitConversionSequence::BadConversion) {
1915        Candidate.Viable = false;
1916        break;
1917      }
1918    } else {
1919      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1920      // argument for which there is no corresponding parameter is
1921      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1922      Candidate.Conversions[ArgIdx + 1].ConversionKind
1923        = ImplicitConversionSequence::EllipsisConversion;
1924    }
1925  }
1926}
1927
1928/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1929/// an acceptable non-member overloaded operator for a call whose
1930/// arguments have types T1 (and, if non-empty, T2). This routine
1931/// implements the check in C++ [over.match.oper]p3b2 concerning
1932/// enumeration types.
1933static bool
1934IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1935                                       QualType T1, QualType T2,
1936                                       ASTContext &Context) {
1937  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1938    return true;
1939
1940  const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1941  if (Proto->getNumArgs() < 1)
1942    return false;
1943
1944  if (T1->isEnumeralType()) {
1945    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1946    if (Context.getCanonicalType(T1).getUnqualifiedType()
1947          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1948      return true;
1949  }
1950
1951  if (Proto->getNumArgs() < 2)
1952    return false;
1953
1954  if (!T2.isNull() && T2->isEnumeralType()) {
1955    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1956    if (Context.getCanonicalType(T2).getUnqualifiedType()
1957          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1958      return true;
1959  }
1960
1961  return false;
1962}
1963
1964/// AddOperatorCandidates - Add the overloaded operator candidates for
1965/// the operator Op that was used in an operator expression such as "x
1966/// Op y". S is the scope in which the expression occurred (used for
1967/// name lookup of the operator), Args/NumArgs provides the operator
1968/// arguments, and CandidateSet will store the added overload
1969/// candidates. (C++ [over.match.oper]).
1970void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1971                                 Expr **Args, unsigned NumArgs,
1972                                 OverloadCandidateSet& CandidateSet) {
1973  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1974
1975  // C++ [over.match.oper]p3:
1976  //   For a unary operator @ with an operand of a type whose
1977  //   cv-unqualified version is T1, and for a binary operator @ with
1978  //   a left operand of a type whose cv-unqualified version is T1 and
1979  //   a right operand of a type whose cv-unqualified version is T2,
1980  //   three sets of candidate functions, designated member
1981  //   candidates, non-member candidates and built-in candidates, are
1982  //   constructed as follows:
1983  QualType T1 = Args[0]->getType();
1984  QualType T2;
1985  if (NumArgs > 1)
1986    T2 = Args[1]->getType();
1987
1988  //     -- If T1 is a class type, the set of member candidates is the
1989  //        result of the qualified lookup of T1::operator@
1990  //        (13.3.1.1.1); otherwise, the set of member candidates is
1991  //        empty.
1992  if (const RecordType *T1Rec = T1->getAsRecordType()) {
1993    DeclContext::lookup_const_result Lookup
1994      = T1Rec->getDecl()->lookup(Context, OpName);
1995    NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
1996    if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
1997      AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1998                         /*SuppressUserConversions=*/false);
1999    else if (OverloadedFunctionDecl *Ovl
2000               = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
2001      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2002                                                  FEnd = Ovl->function_end();
2003           F != FEnd; ++F) {
2004        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
2005          AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2006                             /*SuppressUserConversions=*/false);
2007      }
2008    }
2009  }
2010
2011  //     -- The set of non-member candidates is the result of the
2012  //        unqualified lookup of operator@ in the context of the
2013  //        expression according to the usual rules for name lookup in
2014  //        unqualified function calls (3.4.2) except that all member
2015  //        functions are ignored. However, if no operand has a class
2016  //        type, only those non-member functions in the lookup set
2017  //        that have a first parameter of type T1 or “reference to
2018  //        (possibly cv-qualified) T1”, when T1 is an enumeration
2019  //        type, or (if there is a right operand) a second parameter
2020  //        of type T2 or “reference to (possibly cv-qualified) T2”,
2021  //        when T2 is an enumeration type, are candidate functions.
2022  {
2023    NamedDecl *NonMemberOps = 0;
2024    for (IdentifierResolver::iterator I
2025           = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
2026         I != IdResolver.end(); ++I) {
2027      // We don't need to check the identifier namespace, because
2028      // operator names can only be ordinary identifiers.
2029
2030      // Ignore member functions.
2031      if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
2032        if (SD->getDeclContext()->isCXXRecord())
2033          continue;
2034      }
2035
2036      // We found something with this name. We're done.
2037      NonMemberOps = *I;
2038      break;
2039    }
2040
2041    if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
2042      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2043        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2044                             /*SuppressUserConversions=*/false);
2045    } else if (OverloadedFunctionDecl *Ovl
2046                 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
2047      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2048                                                  FEnd = Ovl->function_end();
2049           F != FEnd; ++F) {
2050        if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
2051          AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2052                               /*SuppressUserConversions=*/false);
2053      }
2054    }
2055  }
2056
2057  // Add builtin overload candidates (C++ [over.built]).
2058  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2059}
2060
2061/// AddBuiltinCandidate - Add a candidate for a built-in
2062/// operator. ResultTy and ParamTys are the result and parameter types
2063/// of the built-in candidate, respectively. Args and NumArgs are the
2064/// arguments being passed to the candidate.
2065void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2066                               Expr **Args, unsigned NumArgs,
2067                               OverloadCandidateSet& CandidateSet) {
2068  // Add this candidate
2069  CandidateSet.push_back(OverloadCandidate());
2070  OverloadCandidate& Candidate = CandidateSet.back();
2071  Candidate.Function = 0;
2072  Candidate.IsSurrogate = false;
2073  Candidate.BuiltinTypes.ResultTy = ResultTy;
2074  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2075    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2076
2077  // Determine the implicit conversion sequences for each of the
2078  // arguments.
2079  Candidate.Viable = true;
2080  Candidate.Conversions.resize(NumArgs);
2081  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2082    Candidate.Conversions[ArgIdx]
2083      = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2084    if (Candidate.Conversions[ArgIdx].ConversionKind
2085        == ImplicitConversionSequence::BadConversion) {
2086      Candidate.Viable = false;
2087      break;
2088    }
2089  }
2090}
2091
2092/// BuiltinCandidateTypeSet - A set of types that will be used for the
2093/// candidate operator functions for built-in operators (C++
2094/// [over.built]). The types are separated into pointer types and
2095/// enumeration types.
2096class BuiltinCandidateTypeSet  {
2097  /// TypeSet - A set of types.
2098  typedef llvm::SmallPtrSet<void*, 8> TypeSet;
2099
2100  /// PointerTypes - The set of pointer types that will be used in the
2101  /// built-in candidates.
2102  TypeSet PointerTypes;
2103
2104  /// EnumerationTypes - The set of enumeration types that will be
2105  /// used in the built-in candidates.
2106  TypeSet EnumerationTypes;
2107
2108  /// Context - The AST context in which we will build the type sets.
2109  ASTContext &Context;
2110
2111  bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2112
2113public:
2114  /// iterator - Iterates through the types that are part of the set.
2115  class iterator {
2116    TypeSet::iterator Base;
2117
2118  public:
2119    typedef QualType                 value_type;
2120    typedef QualType                 reference;
2121    typedef QualType                 pointer;
2122    typedef std::ptrdiff_t           difference_type;
2123    typedef std::input_iterator_tag  iterator_category;
2124
2125    iterator(TypeSet::iterator B) : Base(B) { }
2126
2127    iterator& operator++() {
2128      ++Base;
2129      return *this;
2130    }
2131
2132    iterator operator++(int) {
2133      iterator tmp(*this);
2134      ++(*this);
2135      return tmp;
2136    }
2137
2138    reference operator*() const {
2139      return QualType::getFromOpaquePtr(*Base);
2140    }
2141
2142    pointer operator->() const {
2143      return **this;
2144    }
2145
2146    friend bool operator==(iterator LHS, iterator RHS) {
2147      return LHS.Base == RHS.Base;
2148    }
2149
2150    friend bool operator!=(iterator LHS, iterator RHS) {
2151      return LHS.Base != RHS.Base;
2152    }
2153  };
2154
2155  BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2156
2157  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2158
2159  /// pointer_begin - First pointer type found;
2160  iterator pointer_begin() { return PointerTypes.begin(); }
2161
2162  /// pointer_end - Last pointer type found;
2163  iterator pointer_end() { return PointerTypes.end(); }
2164
2165  /// enumeration_begin - First enumeration type found;
2166  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2167
2168  /// enumeration_end - Last enumeration type found;
2169  iterator enumeration_end() { return EnumerationTypes.end(); }
2170};
2171
2172/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2173/// the set of pointer types along with any more-qualified variants of
2174/// that type. For example, if @p Ty is "int const *", this routine
2175/// will add "int const *", "int const volatile *", "int const
2176/// restrict *", and "int const volatile restrict *" to the set of
2177/// pointer types. Returns true if the add of @p Ty itself succeeded,
2178/// false otherwise.
2179bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2180  // Insert this type.
2181  if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
2182    return false;
2183
2184  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2185    QualType PointeeTy = PointerTy->getPointeeType();
2186    // FIXME: Optimize this so that we don't keep trying to add the same types.
2187
2188    // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2189    // with all pointer conversions that don't cast away constness?
2190    if (!PointeeTy.isConstQualified())
2191      AddWithMoreQualifiedTypeVariants
2192        (Context.getPointerType(PointeeTy.withConst()));
2193    if (!PointeeTy.isVolatileQualified())
2194      AddWithMoreQualifiedTypeVariants
2195        (Context.getPointerType(PointeeTy.withVolatile()));
2196    if (!PointeeTy.isRestrictQualified())
2197      AddWithMoreQualifiedTypeVariants
2198        (Context.getPointerType(PointeeTy.withRestrict()));
2199  }
2200
2201  return true;
2202}
2203
2204/// AddTypesConvertedFrom - Add each of the types to which the type @p
2205/// Ty can be implicit converted to the given set of @p Types. We're
2206/// primarily interested in pointer types, enumeration types,
2207void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2208                                                    bool AllowUserConversions) {
2209  // Only deal with canonical types.
2210  Ty = Context.getCanonicalType(Ty);
2211
2212  // Look through reference types; they aren't part of the type of an
2213  // expression for the purposes of conversions.
2214  if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2215    Ty = RefTy->getPointeeType();
2216
2217  // We don't care about qualifiers on the type.
2218  Ty = Ty.getUnqualifiedType();
2219
2220  if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2221    QualType PointeeTy = PointerTy->getPointeeType();
2222
2223    // Insert our type, and its more-qualified variants, into the set
2224    // of types.
2225    if (!AddWithMoreQualifiedTypeVariants(Ty))
2226      return;
2227
2228    // Add 'cv void*' to our set of types.
2229    if (!Ty->isVoidType()) {
2230      QualType QualVoid
2231        = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2232      AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2233    }
2234
2235    // If this is a pointer to a class type, add pointers to its bases
2236    // (with the same level of cv-qualification as the original
2237    // derived class, of course).
2238    if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2239      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2240      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2241           Base != ClassDecl->bases_end(); ++Base) {
2242        QualType BaseTy = Context.getCanonicalType(Base->getType());
2243        BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2244
2245        // Add the pointer type, recursively, so that we get all of
2246        // the indirect base classes, too.
2247        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2248      }
2249    }
2250  } else if (Ty->isEnumeralType()) {
2251    EnumerationTypes.insert(Ty.getAsOpaquePtr());
2252  } else if (AllowUserConversions) {
2253    if (const RecordType *TyRec = Ty->getAsRecordType()) {
2254      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2255      // FIXME: Visit conversion functions in the base classes, too.
2256      OverloadedFunctionDecl *Conversions
2257        = ClassDecl->getConversionFunctions();
2258      for (OverloadedFunctionDecl::function_iterator Func
2259             = Conversions->function_begin();
2260           Func != Conversions->function_end(); ++Func) {
2261        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2262        AddTypesConvertedFrom(Conv->getConversionType(), false);
2263      }
2264    }
2265  }
2266}
2267
2268/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2269/// operator overloads to the candidate set (C++ [over.built]), based
2270/// on the operator @p Op and the arguments given. For example, if the
2271/// operator is a binary '+', this routine might add "int
2272/// operator+(int, int)" to cover integer addition.
2273void
2274Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2275                                   Expr **Args, unsigned NumArgs,
2276                                   OverloadCandidateSet& CandidateSet) {
2277  // The set of "promoted arithmetic types", which are the arithmetic
2278  // types are that preserved by promotion (C++ [over.built]p2). Note
2279  // that the first few of these types are the promoted integral
2280  // types; these types need to be first.
2281  // FIXME: What about complex?
2282  const unsigned FirstIntegralType = 0;
2283  const unsigned LastIntegralType = 13;
2284  const unsigned FirstPromotedIntegralType = 7,
2285                 LastPromotedIntegralType = 13;
2286  const unsigned FirstPromotedArithmeticType = 7,
2287                 LastPromotedArithmeticType = 16;
2288  const unsigned NumArithmeticTypes = 16;
2289  QualType ArithmeticTypes[NumArithmeticTypes] = {
2290    Context.BoolTy, Context.CharTy, Context.WCharTy,
2291    Context.SignedCharTy, Context.ShortTy,
2292    Context.UnsignedCharTy, Context.UnsignedShortTy,
2293    Context.IntTy, Context.LongTy, Context.LongLongTy,
2294    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2295    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2296  };
2297
2298  // Find all of the types that the arguments can convert to, but only
2299  // if the operator we're looking at has built-in operator candidates
2300  // that make use of these types.
2301  BuiltinCandidateTypeSet CandidateTypes(Context);
2302  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2303      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
2304      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
2305      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
2306      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2307      (Op == OO_Star && NumArgs == 1)) {
2308    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2309      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2310  }
2311
2312  bool isComparison = false;
2313  switch (Op) {
2314  case OO_None:
2315  case NUM_OVERLOADED_OPERATORS:
2316    assert(false && "Expected an overloaded operator");
2317    break;
2318
2319  case OO_Star: // '*' is either unary or binary
2320    if (NumArgs == 1)
2321      goto UnaryStar;
2322    else
2323      goto BinaryStar;
2324    break;
2325
2326  case OO_Plus: // '+' is either unary or binary
2327    if (NumArgs == 1)
2328      goto UnaryPlus;
2329    else
2330      goto BinaryPlus;
2331    break;
2332
2333  case OO_Minus: // '-' is either unary or binary
2334    if (NumArgs == 1)
2335      goto UnaryMinus;
2336    else
2337      goto BinaryMinus;
2338    break;
2339
2340  case OO_Amp: // '&' is either unary or binary
2341    if (NumArgs == 1)
2342      goto UnaryAmp;
2343    else
2344      goto BinaryAmp;
2345
2346  case OO_PlusPlus:
2347  case OO_MinusMinus:
2348    // C++ [over.built]p3:
2349    //
2350    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
2351    //   is either volatile or empty, there exist candidate operator
2352    //   functions of the form
2353    //
2354    //       VQ T&      operator++(VQ T&);
2355    //       T          operator++(VQ T&, int);
2356    //
2357    // C++ [over.built]p4:
2358    //
2359    //   For every pair (T, VQ), where T is an arithmetic type other
2360    //   than bool, and VQ is either volatile or empty, there exist
2361    //   candidate operator functions of the form
2362    //
2363    //       VQ T&      operator--(VQ T&);
2364    //       T          operator--(VQ T&, int);
2365    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2366         Arith < NumArithmeticTypes; ++Arith) {
2367      QualType ArithTy = ArithmeticTypes[Arith];
2368      QualType ParamTypes[2]
2369        = { Context.getReferenceType(ArithTy), Context.IntTy };
2370
2371      // Non-volatile version.
2372      if (NumArgs == 1)
2373        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2374      else
2375        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2376
2377      // Volatile version
2378      ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2379      if (NumArgs == 1)
2380        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2381      else
2382        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2383    }
2384
2385    // C++ [over.built]p5:
2386    //
2387    //   For every pair (T, VQ), where T is a cv-qualified or
2388    //   cv-unqualified object type, and VQ is either volatile or
2389    //   empty, there exist candidate operator functions of the form
2390    //
2391    //       T*VQ&      operator++(T*VQ&);
2392    //       T*VQ&      operator--(T*VQ&);
2393    //       T*         operator++(T*VQ&, int);
2394    //       T*         operator--(T*VQ&, int);
2395    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2396         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2397      // Skip pointer types that aren't pointers to object types.
2398      if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
2399        continue;
2400
2401      QualType ParamTypes[2] = {
2402        Context.getReferenceType(*Ptr), Context.IntTy
2403      };
2404
2405      // Without volatile
2406      if (NumArgs == 1)
2407        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2408      else
2409        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2410
2411      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2412        // With volatile
2413        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2414        if (NumArgs == 1)
2415          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2416        else
2417          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2418      }
2419    }
2420    break;
2421
2422  UnaryStar:
2423    // C++ [over.built]p6:
2424    //   For every cv-qualified or cv-unqualified object type T, there
2425    //   exist candidate operator functions of the form
2426    //
2427    //       T&         operator*(T*);
2428    //
2429    // C++ [over.built]p7:
2430    //   For every function type T, there exist candidate operator
2431    //   functions of the form
2432    //       T&         operator*(T*);
2433    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2434         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2435      QualType ParamTy = *Ptr;
2436      QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2437      AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2438                          &ParamTy, Args, 1, CandidateSet);
2439    }
2440    break;
2441
2442  UnaryPlus:
2443    // C++ [over.built]p8:
2444    //   For every type T, there exist candidate operator functions of
2445    //   the form
2446    //
2447    //       T*         operator+(T*);
2448    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2449         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2450      QualType ParamTy = *Ptr;
2451      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2452    }
2453
2454    // Fall through
2455
2456  UnaryMinus:
2457    // C++ [over.built]p9:
2458    //  For every promoted arithmetic type T, there exist candidate
2459    //  operator functions of the form
2460    //
2461    //       T         operator+(T);
2462    //       T         operator-(T);
2463    for (unsigned Arith = FirstPromotedArithmeticType;
2464         Arith < LastPromotedArithmeticType; ++Arith) {
2465      QualType ArithTy = ArithmeticTypes[Arith];
2466      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2467    }
2468    break;
2469
2470  case OO_Tilde:
2471    // C++ [over.built]p10:
2472    //   For every promoted integral type T, there exist candidate
2473    //   operator functions of the form
2474    //
2475    //        T         operator~(T);
2476    for (unsigned Int = FirstPromotedIntegralType;
2477         Int < LastPromotedIntegralType; ++Int) {
2478      QualType IntTy = ArithmeticTypes[Int];
2479      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2480    }
2481    break;
2482
2483  case OO_New:
2484  case OO_Delete:
2485  case OO_Array_New:
2486  case OO_Array_Delete:
2487  case OO_Call:
2488    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
2489    break;
2490
2491  case OO_Comma:
2492  UnaryAmp:
2493  case OO_Arrow:
2494    // C++ [over.match.oper]p3:
2495    //   -- For the operator ',', the unary operator '&', or the
2496    //      operator '->', the built-in candidates set is empty.
2497    break;
2498
2499  case OO_Less:
2500  case OO_Greater:
2501  case OO_LessEqual:
2502  case OO_GreaterEqual:
2503  case OO_EqualEqual:
2504  case OO_ExclaimEqual:
2505    // C++ [over.built]p15:
2506    //
2507    //   For every pointer or enumeration type T, there exist
2508    //   candidate operator functions of the form
2509    //
2510    //        bool       operator<(T, T);
2511    //        bool       operator>(T, T);
2512    //        bool       operator<=(T, T);
2513    //        bool       operator>=(T, T);
2514    //        bool       operator==(T, T);
2515    //        bool       operator!=(T, T);
2516    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2517         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2518      QualType ParamTypes[2] = { *Ptr, *Ptr };
2519      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2520    }
2521    for (BuiltinCandidateTypeSet::iterator Enum
2522           = CandidateTypes.enumeration_begin();
2523         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2524      QualType ParamTypes[2] = { *Enum, *Enum };
2525      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2526    }
2527
2528    // Fall through.
2529    isComparison = true;
2530
2531  BinaryPlus:
2532  BinaryMinus:
2533    if (!isComparison) {
2534      // We didn't fall through, so we must have OO_Plus or OO_Minus.
2535
2536      // C++ [over.built]p13:
2537      //
2538      //   For every cv-qualified or cv-unqualified object type T
2539      //   there exist candidate operator functions of the form
2540      //
2541      //      T*         operator+(T*, ptrdiff_t);
2542      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
2543      //      T*         operator-(T*, ptrdiff_t);
2544      //      T*         operator+(ptrdiff_t, T*);
2545      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
2546      //
2547      // C++ [over.built]p14:
2548      //
2549      //   For every T, where T is a pointer to object type, there
2550      //   exist candidate operator functions of the form
2551      //
2552      //      ptrdiff_t  operator-(T, T);
2553      for (BuiltinCandidateTypeSet::iterator Ptr
2554             = CandidateTypes.pointer_begin();
2555           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2556        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2557
2558        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2559        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2560
2561        if (Op == OO_Plus) {
2562          // T* operator+(ptrdiff_t, T*);
2563          ParamTypes[0] = ParamTypes[1];
2564          ParamTypes[1] = *Ptr;
2565          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2566        } else {
2567          // ptrdiff_t operator-(T, T);
2568          ParamTypes[1] = *Ptr;
2569          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2570                              Args, 2, CandidateSet);
2571        }
2572      }
2573    }
2574    // Fall through
2575
2576  case OO_Slash:
2577  BinaryStar:
2578    // C++ [over.built]p12:
2579    //
2580    //   For every pair of promoted arithmetic types L and R, there
2581    //   exist candidate operator functions of the form
2582    //
2583    //        LR         operator*(L, R);
2584    //        LR         operator/(L, R);
2585    //        LR         operator+(L, R);
2586    //        LR         operator-(L, R);
2587    //        bool       operator<(L, R);
2588    //        bool       operator>(L, R);
2589    //        bool       operator<=(L, R);
2590    //        bool       operator>=(L, R);
2591    //        bool       operator==(L, R);
2592    //        bool       operator!=(L, R);
2593    //
2594    //   where LR is the result of the usual arithmetic conversions
2595    //   between types L and R.
2596    for (unsigned Left = FirstPromotedArithmeticType;
2597         Left < LastPromotedArithmeticType; ++Left) {
2598      for (unsigned Right = FirstPromotedArithmeticType;
2599           Right < LastPromotedArithmeticType; ++Right) {
2600        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2601        QualType Result
2602          = isComparison? Context.BoolTy
2603                        : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2604        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2605      }
2606    }
2607    break;
2608
2609  case OO_Percent:
2610  BinaryAmp:
2611  case OO_Caret:
2612  case OO_Pipe:
2613  case OO_LessLess:
2614  case OO_GreaterGreater:
2615    // C++ [over.built]p17:
2616    //
2617    //   For every pair of promoted integral types L and R, there
2618    //   exist candidate operator functions of the form
2619    //
2620    //      LR         operator%(L, R);
2621    //      LR         operator&(L, R);
2622    //      LR         operator^(L, R);
2623    //      LR         operator|(L, R);
2624    //      L          operator<<(L, R);
2625    //      L          operator>>(L, R);
2626    //
2627    //   where LR is the result of the usual arithmetic conversions
2628    //   between types L and R.
2629    for (unsigned Left = FirstPromotedIntegralType;
2630         Left < LastPromotedIntegralType; ++Left) {
2631      for (unsigned Right = FirstPromotedIntegralType;
2632           Right < LastPromotedIntegralType; ++Right) {
2633        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2634        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2635            ? LandR[0]
2636            : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2637        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2638      }
2639    }
2640    break;
2641
2642  case OO_Equal:
2643    // C++ [over.built]p20:
2644    //
2645    //   For every pair (T, VQ), where T is an enumeration or
2646    //   (FIXME:) pointer to member type and VQ is either volatile or
2647    //   empty, there exist candidate operator functions of the form
2648    //
2649    //        VQ T&      operator=(VQ T&, T);
2650    for (BuiltinCandidateTypeSet::iterator Enum
2651           = CandidateTypes.enumeration_begin();
2652         Enum != CandidateTypes.enumeration_end(); ++Enum) {
2653      QualType ParamTypes[2];
2654
2655      // T& operator=(T&, T)
2656      ParamTypes[0] = Context.getReferenceType(*Enum);
2657      ParamTypes[1] = *Enum;
2658      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2659
2660      if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2661        // volatile T& operator=(volatile T&, T)
2662        ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2663        ParamTypes[1] = *Enum;
2664        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2665      }
2666    }
2667    // Fall through.
2668
2669  case OO_PlusEqual:
2670  case OO_MinusEqual:
2671    // C++ [over.built]p19:
2672    //
2673    //   For every pair (T, VQ), where T is any type and VQ is either
2674    //   volatile or empty, there exist candidate operator functions
2675    //   of the form
2676    //
2677    //        T*VQ&      operator=(T*VQ&, T*);
2678    //
2679    // C++ [over.built]p21:
2680    //
2681    //   For every pair (T, VQ), where T is a cv-qualified or
2682    //   cv-unqualified object type and VQ is either volatile or
2683    //   empty, there exist candidate operator functions of the form
2684    //
2685    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
2686    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
2687    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2688         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2689      QualType ParamTypes[2];
2690      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2691
2692      // non-volatile version
2693      ParamTypes[0] = Context.getReferenceType(*Ptr);
2694      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2695
2696      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2697        // volatile version
2698        ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2699        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2700      }
2701    }
2702    // Fall through.
2703
2704  case OO_StarEqual:
2705  case OO_SlashEqual:
2706    // C++ [over.built]p18:
2707    //
2708    //   For every triple (L, VQ, R), where L is an arithmetic type,
2709    //   VQ is either volatile or empty, and R is a promoted
2710    //   arithmetic type, there exist candidate operator functions of
2711    //   the form
2712    //
2713    //        VQ L&      operator=(VQ L&, R);
2714    //        VQ L&      operator*=(VQ L&, R);
2715    //        VQ L&      operator/=(VQ L&, R);
2716    //        VQ L&      operator+=(VQ L&, R);
2717    //        VQ L&      operator-=(VQ L&, R);
2718    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2719      for (unsigned Right = FirstPromotedArithmeticType;
2720           Right < LastPromotedArithmeticType; ++Right) {
2721        QualType ParamTypes[2];
2722        ParamTypes[1] = ArithmeticTypes[Right];
2723
2724        // Add this built-in operator as a candidate (VQ is empty).
2725        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2726        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2727
2728        // Add this built-in operator as a candidate (VQ is 'volatile').
2729        ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2730        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2731        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2732      }
2733    }
2734    break;
2735
2736  case OO_PercentEqual:
2737  case OO_LessLessEqual:
2738  case OO_GreaterGreaterEqual:
2739  case OO_AmpEqual:
2740  case OO_CaretEqual:
2741  case OO_PipeEqual:
2742    // C++ [over.built]p22:
2743    //
2744    //   For every triple (L, VQ, R), where L is an integral type, VQ
2745    //   is either volatile or empty, and R is a promoted integral
2746    //   type, there exist candidate operator functions of the form
2747    //
2748    //        VQ L&       operator%=(VQ L&, R);
2749    //        VQ L&       operator<<=(VQ L&, R);
2750    //        VQ L&       operator>>=(VQ L&, R);
2751    //        VQ L&       operator&=(VQ L&, R);
2752    //        VQ L&       operator^=(VQ L&, R);
2753    //        VQ L&       operator|=(VQ L&, R);
2754    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2755      for (unsigned Right = FirstPromotedIntegralType;
2756           Right < LastPromotedIntegralType; ++Right) {
2757        QualType ParamTypes[2];
2758        ParamTypes[1] = ArithmeticTypes[Right];
2759
2760        // Add this built-in operator as a candidate (VQ is empty).
2761        // FIXME: We should be caching these declarations somewhere,
2762        // rather than re-building them every time.
2763        ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2764        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2765
2766        // Add this built-in operator as a candidate (VQ is 'volatile').
2767        ParamTypes[0] = ArithmeticTypes[Left];
2768        ParamTypes[0].addVolatile();
2769        ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2770        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2771      }
2772    }
2773    break;
2774
2775  case OO_Exclaim: {
2776    // C++ [over.operator]p23:
2777    //
2778    //   There also exist candidate operator functions of the form
2779    //
2780    //        bool        operator!(bool);
2781    //        bool        operator&&(bool, bool);     [BELOW]
2782    //        bool        operator||(bool, bool);     [BELOW]
2783    QualType ParamTy = Context.BoolTy;
2784    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2785    break;
2786  }
2787
2788  case OO_AmpAmp:
2789  case OO_PipePipe: {
2790    // C++ [over.operator]p23:
2791    //
2792    //   There also exist candidate operator functions of the form
2793    //
2794    //        bool        operator!(bool);            [ABOVE]
2795    //        bool        operator&&(bool, bool);
2796    //        bool        operator||(bool, bool);
2797    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2798    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2799    break;
2800  }
2801
2802  case OO_Subscript:
2803    // C++ [over.built]p13:
2804    //
2805    //   For every cv-qualified or cv-unqualified object type T there
2806    //   exist candidate operator functions of the form
2807    //
2808    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
2809    //        T&         operator[](T*, ptrdiff_t);
2810    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
2811    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
2812    //        T&         operator[](ptrdiff_t, T*);
2813    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2814         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2815      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2816      QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2817      QualType ResultTy = Context.getReferenceType(PointeeType);
2818
2819      // T& operator[](T*, ptrdiff_t)
2820      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2821
2822      // T& operator[](ptrdiff_t, T*);
2823      ParamTypes[0] = ParamTypes[1];
2824      ParamTypes[1] = *Ptr;
2825      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2826    }
2827    break;
2828
2829  case OO_ArrowStar:
2830    // FIXME: No support for pointer-to-members yet.
2831    break;
2832  }
2833}
2834
2835/// AddOverloadCandidates - Add all of the function overloads in Ovl
2836/// to the candidate set.
2837void
2838Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
2839                            Expr **Args, unsigned NumArgs,
2840                            OverloadCandidateSet& CandidateSet,
2841                            bool SuppressUserConversions)
2842{
2843  for (OverloadedFunctionDecl::function_const_iterator Func
2844         = Ovl->function_begin();
2845       Func != Ovl->function_end(); ++Func)
2846    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2847                         SuppressUserConversions);
2848}
2849
2850/// isBetterOverloadCandidate - Determines whether the first overload
2851/// candidate is a better candidate than the second (C++ 13.3.3p1).
2852bool
2853Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2854                                const OverloadCandidate& Cand2)
2855{
2856  // Define viable functions to be better candidates than non-viable
2857  // functions.
2858  if (!Cand2.Viable)
2859    return Cand1.Viable;
2860  else if (!Cand1.Viable)
2861    return false;
2862
2863  // FIXME: Deal with the implicit object parameter for static member
2864  // functions. (C++ 13.3.3p1).
2865
2866  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2867  // function than another viable function F2 if for all arguments i,
2868  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2869  // then...
2870  unsigned NumArgs = Cand1.Conversions.size();
2871  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2872  bool HasBetterConversion = false;
2873  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2874    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2875                                               Cand2.Conversions[ArgIdx])) {
2876    case ImplicitConversionSequence::Better:
2877      // Cand1 has a better conversion sequence.
2878      HasBetterConversion = true;
2879      break;
2880
2881    case ImplicitConversionSequence::Worse:
2882      // Cand1 can't be better than Cand2.
2883      return false;
2884
2885    case ImplicitConversionSequence::Indistinguishable:
2886      // Do nothing.
2887      break;
2888    }
2889  }
2890
2891  if (HasBetterConversion)
2892    return true;
2893
2894  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2895  // implemented, but they require template support.
2896
2897  // C++ [over.match.best]p1b4:
2898  //
2899  //   -- the context is an initialization by user-defined conversion
2900  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
2901  //      from the return type of F1 to the destination type (i.e.,
2902  //      the type of the entity being initialized) is a better
2903  //      conversion sequence than the standard conversion sequence
2904  //      from the return type of F2 to the destination type.
2905  if (Cand1.Function && Cand2.Function &&
2906      isa<CXXConversionDecl>(Cand1.Function) &&
2907      isa<CXXConversionDecl>(Cand2.Function)) {
2908    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2909                                               Cand2.FinalConversion)) {
2910    case ImplicitConversionSequence::Better:
2911      // Cand1 has a better conversion sequence.
2912      return true;
2913
2914    case ImplicitConversionSequence::Worse:
2915      // Cand1 can't be better than Cand2.
2916      return false;
2917
2918    case ImplicitConversionSequence::Indistinguishable:
2919      // Do nothing
2920      break;
2921    }
2922  }
2923
2924  return false;
2925}
2926
2927/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2928/// within an overload candidate set. If overloading is successful,
2929/// the result will be OR_Success and Best will be set to point to the
2930/// best viable function within the candidate set. Otherwise, one of
2931/// several kinds of errors will be returned; see
2932/// Sema::OverloadingResult.
2933Sema::OverloadingResult
2934Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2935                         OverloadCandidateSet::iterator& Best)
2936{
2937  // Find the best viable function.
2938  Best = CandidateSet.end();
2939  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2940       Cand != CandidateSet.end(); ++Cand) {
2941    if (Cand->Viable) {
2942      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2943        Best = Cand;
2944    }
2945  }
2946
2947  // If we didn't find any viable functions, abort.
2948  if (Best == CandidateSet.end())
2949    return OR_No_Viable_Function;
2950
2951  // Make sure that this function is better than every other viable
2952  // function. If not, we have an ambiguity.
2953  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2954       Cand != CandidateSet.end(); ++Cand) {
2955    if (Cand->Viable &&
2956        Cand != Best &&
2957        !isBetterOverloadCandidate(*Best, *Cand)) {
2958      Best = CandidateSet.end();
2959      return OR_Ambiguous;
2960    }
2961  }
2962
2963  // Best is the best viable function.
2964  return OR_Success;
2965}
2966
2967/// PrintOverloadCandidates - When overload resolution fails, prints
2968/// diagnostic messages containing the candidates in the candidate
2969/// set. If OnlyViable is true, only viable candidates will be printed.
2970void
2971Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2972                              bool OnlyViable)
2973{
2974  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2975                             LastCand = CandidateSet.end();
2976  for (; Cand != LastCand; ++Cand) {
2977    if (Cand->Viable || !OnlyViable) {
2978      if (Cand->Function) {
2979        // Normal function
2980        Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
2981      } else if (Cand->IsSurrogate) {
2982        // Desugar the type of the surrogate down to a function type,
2983        // retaining as many typedefs as possible while still showing
2984        // the function type (and, therefore, its parameter types).
2985        QualType FnType = Cand->Surrogate->getConversionType();
2986        bool isReference = false;
2987        bool isPointer = false;
2988        if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
2989          FnType = FnTypeRef->getPointeeType();
2990          isReference = true;
2991        }
2992        if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
2993          FnType = FnTypePtr->getPointeeType();
2994          isPointer = true;
2995        }
2996        // Desugar down to a function type.
2997        FnType = QualType(FnType->getAsFunctionType(), 0);
2998        // Reconstruct the pointer/reference as appropriate.
2999        if (isPointer) FnType = Context.getPointerType(FnType);
3000        if (isReference) FnType = Context.getReferenceType(FnType);
3001
3002        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3003          << FnType;
3004      } else {
3005        // FIXME: We need to get the identifier in here
3006        // FIXME: Do we want the error message to point at the
3007        // operator? (built-ins won't have a location)
3008        QualType FnType
3009          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3010                                    Cand->BuiltinTypes.ParamTypes,
3011                                    Cand->Conversions.size(),
3012                                    false, 0);
3013
3014        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3015      }
3016    }
3017  }
3018}
3019
3020/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3021/// an overloaded function (C++ [over.over]), where @p From is an
3022/// expression with overloaded function type and @p ToType is the type
3023/// we're trying to resolve to. For example:
3024///
3025/// @code
3026/// int f(double);
3027/// int f(int);
3028///
3029/// int (*pfd)(double) = f; // selects f(double)
3030/// @endcode
3031///
3032/// This routine returns the resulting FunctionDecl if it could be
3033/// resolved, and NULL otherwise. When @p Complain is true, this
3034/// routine will emit diagnostics if there is an error.
3035FunctionDecl *
3036Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3037                                         bool Complain) {
3038  QualType FunctionType = ToType;
3039  if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3040    FunctionType = ToTypePtr->getPointeeType();
3041
3042  // We only look at pointers or references to functions.
3043  if (!FunctionType->isFunctionType())
3044    return 0;
3045
3046  // Find the actual overloaded function declaration.
3047  OverloadedFunctionDecl *Ovl = 0;
3048
3049  // C++ [over.over]p1:
3050  //   [...] [Note: any redundant set of parentheses surrounding the
3051  //   overloaded function name is ignored (5.1). ]
3052  Expr *OvlExpr = From->IgnoreParens();
3053
3054  // C++ [over.over]p1:
3055  //   [...] The overloaded function name can be preceded by the &
3056  //   operator.
3057  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3058    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3059      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3060  }
3061
3062  // Try to dig out the overloaded function.
3063  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3064    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3065
3066  // If there's no overloaded function declaration, we're done.
3067  if (!Ovl)
3068    return 0;
3069
3070  // Look through all of the overloaded functions, searching for one
3071  // whose type matches exactly.
3072  // FIXME: When templates or using declarations come along, we'll actually
3073  // have to deal with duplicates, partial ordering, etc. For now, we
3074  // can just do a simple search.
3075  FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3076  for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3077       Fun != Ovl->function_end(); ++Fun) {
3078    // C++ [over.over]p3:
3079    //   Non-member functions and static member functions match
3080    //   targets of type “pointer-to-function”or
3081    //   “reference-to-function.”
3082    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3083      if (!Method->isStatic())
3084        continue;
3085
3086    if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3087      return *Fun;
3088  }
3089
3090  return 0;
3091}
3092
3093/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3094/// (which eventually refers to the set of overloaded functions in
3095/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3096/// function call down to a specific function. If overload resolution
3097/// succeeds, returns the function declaration produced by overload
3098/// resolution. Otherwise, emits diagnostics, deletes all of the
3099/// arguments and Fn, and returns NULL.
3100FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3101                                            SourceLocation LParenLoc,
3102                                            Expr **Args, unsigned NumArgs,
3103                                            SourceLocation *CommaLocs,
3104                                            SourceLocation RParenLoc) {
3105  OverloadCandidateSet CandidateSet;
3106  AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3107  OverloadCandidateSet::iterator Best;
3108  switch (BestViableFunction(CandidateSet, Best)) {
3109  case OR_Success:
3110    return Best->Function;
3111
3112  case OR_No_Viable_Function:
3113    Diag(Fn->getSourceRange().getBegin(),
3114         diag::err_ovl_no_viable_function_in_call)
3115      << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3116      << Fn->getSourceRange();
3117    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3118    break;
3119
3120  case OR_Ambiguous:
3121    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3122      << Ovl->getDeclName() << Fn->getSourceRange();
3123    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3124    break;
3125  }
3126
3127  // Overload resolution failed. Destroy all of the subexpressions and
3128  // return NULL.
3129  Fn->Destroy(Context);
3130  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3131    Args[Arg]->Destroy(Context);
3132  return 0;
3133}
3134
3135/// BuildCallToObjectOfClassType - Build a call to an object of class
3136/// type (C++ [over.call.object]), which can end up invoking an
3137/// overloaded function call operator (@c operator()) or performing a
3138/// user-defined conversion on the object argument.
3139Action::ExprResult
3140Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3141                                   SourceLocation LParenLoc,
3142                                   Expr **Args, unsigned NumArgs,
3143                                   SourceLocation *CommaLocs,
3144                                   SourceLocation RParenLoc) {
3145  assert(Object->getType()->isRecordType() && "Requires object type argument");
3146  const RecordType *Record = Object->getType()->getAsRecordType();
3147
3148  // C++ [over.call.object]p1:
3149  //  If the primary-expression E in the function call syntax
3150  //  evaluates to a class object of type “cv T”, then the set of
3151  //  candidate functions includes at least the function call
3152  //  operators of T. The function call operators of T are obtained by
3153  //  ordinary lookup of the name operator() in the context of
3154  //  (E).operator().
3155  OverloadCandidateSet CandidateSet;
3156  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
3157  DeclContext::lookup_const_result Lookup
3158    = Record->getDecl()->lookup(Context, OpName);
3159  NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
3160  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3161    AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3162                       /*SuppressUserConversions=*/false);
3163  else if (OverloadedFunctionDecl *Ovl
3164           = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3165    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3166           FEnd = Ovl->function_end();
3167         F != FEnd; ++F) {
3168      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3169        AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3170                           /*SuppressUserConversions=*/false);
3171    }
3172  }
3173
3174  // C++ [over.call.object]p2:
3175  //   In addition, for each conversion function declared in T of the
3176  //   form
3177  //
3178  //        operator conversion-type-id () cv-qualifier;
3179  //
3180  //   where cv-qualifier is the same cv-qualification as, or a
3181  //   greater cv-qualification than, cv, and where conversion-type-id
3182  //   denotes the type "pointer to function of (P1,...,Pn) returning
3183  //   R", or the type "reference to pointer to function of
3184  //   (P1,...,Pn) returning R", or the type "reference to function
3185  //   of (P1,...,Pn) returning R", a surrogate call function [...]
3186  //   is also considered as a candidate function. Similarly,
3187  //   surrogate call functions are added to the set of candidate
3188  //   functions for each conversion function declared in an
3189  //   accessible base class provided the function is not hidden
3190  //   within T by another intervening declaration.
3191  //
3192  // FIXME: Look in base classes for more conversion operators!
3193  OverloadedFunctionDecl *Conversions
3194    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
3195  for (OverloadedFunctionDecl::function_iterator
3196         Func = Conversions->function_begin(),
3197         FuncEnd = Conversions->function_end();
3198       Func != FuncEnd; ++Func) {
3199    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3200
3201    // Strip the reference type (if any) and then the pointer type (if
3202    // any) to get down to what might be a function type.
3203    QualType ConvType = Conv->getConversionType().getNonReferenceType();
3204    if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3205      ConvType = ConvPtrType->getPointeeType();
3206
3207    if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3208      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3209  }
3210
3211  // Perform overload resolution.
3212  OverloadCandidateSet::iterator Best;
3213  switch (BestViableFunction(CandidateSet, Best)) {
3214  case OR_Success:
3215    // Overload resolution succeeded; we'll build the appropriate call
3216    // below.
3217    break;
3218
3219  case OR_No_Viable_Function:
3220    Diag(Object->getSourceRange().getBegin(),
3221         diag::err_ovl_no_viable_object_call)
3222      << Object->getType() << (unsigned)CandidateSet.size()
3223      << Object->getSourceRange();
3224    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3225    break;
3226
3227  case OR_Ambiguous:
3228    Diag(Object->getSourceRange().getBegin(),
3229         diag::err_ovl_ambiguous_object_call)
3230      << Object->getType() << Object->getSourceRange();
3231    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3232    break;
3233  }
3234
3235  if (Best == CandidateSet.end()) {
3236    // We had an error; delete all of the subexpressions and return
3237    // the error.
3238    delete Object;
3239    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3240      delete Args[ArgIdx];
3241    return true;
3242  }
3243
3244  if (Best->Function == 0) {
3245    // Since there is no function declaration, this is one of the
3246    // surrogate candidates. Dig out the conversion function.
3247    CXXConversionDecl *Conv
3248      = cast<CXXConversionDecl>(
3249                         Best->Conversions[0].UserDefined.ConversionFunction);
3250
3251    // We selected one of the surrogate functions that converts the
3252    // object parameter to a function pointer. Perform the conversion
3253    // on the object argument, then let ActOnCallExpr finish the job.
3254    // FIXME: Represent the user-defined conversion in the AST!
3255    ImpCastExprToType(Object,
3256                      Conv->getConversionType().getNonReferenceType(),
3257                      Conv->getConversionType()->isReferenceType());
3258    return ActOnCallExpr(S, (ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
3259                         CommaLocs, RParenLoc);
3260  }
3261
3262  // We found an overloaded operator(). Build a CXXOperatorCallExpr
3263  // that calls this method, using Object for the implicit object
3264  // parameter and passing along the remaining arguments.
3265  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3266  const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3267
3268  unsigned NumArgsInProto = Proto->getNumArgs();
3269  unsigned NumArgsToCheck = NumArgs;
3270
3271  // Build the full argument list for the method call (the
3272  // implicit object parameter is placed at the beginning of the
3273  // list).
3274  Expr **MethodArgs;
3275  if (NumArgs < NumArgsInProto) {
3276    NumArgsToCheck = NumArgsInProto;
3277    MethodArgs = new Expr*[NumArgsInProto + 1];
3278  } else {
3279    MethodArgs = new Expr*[NumArgs + 1];
3280  }
3281  MethodArgs[0] = Object;
3282  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3283    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3284
3285  Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3286                                SourceLocation());
3287  UsualUnaryConversions(NewFn);
3288
3289  // Once we've built TheCall, all of the expressions are properly
3290  // owned.
3291  QualType ResultTy = Method->getResultType().getNonReferenceType();
3292  llvm::OwningPtr<CXXOperatorCallExpr>
3293    TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3294                                    ResultTy, RParenLoc));
3295  delete [] MethodArgs;
3296
3297  // Initialize the implicit object parameter.
3298  if (!PerformObjectArgumentInitialization(Object, Method))
3299    return true;
3300  TheCall->setArg(0, Object);
3301
3302  // Check the argument types.
3303  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3304    QualType ProtoArgType = Proto->getArgType(i);
3305
3306    Expr *Arg;
3307    if (i < NumArgs)
3308      Arg = Args[i];
3309    else
3310      Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3311    QualType ArgType = Arg->getType();
3312
3313    // Pass the argument.
3314    if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3315      return true;
3316
3317    TheCall->setArg(i + 1, Arg);
3318  }
3319
3320  // If this is a variadic call, handle args passed through "...".
3321  if (Proto->isVariadic()) {
3322    // Promote the arguments (C99 6.5.2.2p7).
3323    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3324      Expr *Arg = Args[i];
3325      DefaultArgumentPromotion(Arg);
3326      TheCall->setArg(i + 1, Arg);
3327    }
3328  }
3329
3330  return CheckFunctionCall(Method, TheCall.take());
3331}
3332
3333/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3334///  (if one exists), where @c Base is an expression of class type and
3335/// @c Member is the name of the member we're trying to find.
3336Action::ExprResult
3337Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3338                               SourceLocation MemberLoc,
3339                               IdentifierInfo &Member) {
3340  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3341
3342  // C++ [over.ref]p1:
3343  //
3344  //   [...] An expression x->m is interpreted as (x.operator->())->m
3345  //   for a class object x of type T if T::operator->() exists and if
3346  //   the operator is selected as the best match function by the
3347  //   overload resolution mechanism (13.3).
3348  // FIXME: look in base classes.
3349  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3350  OverloadCandidateSet CandidateSet;
3351  const RecordType *BaseRecord = Base->getType()->getAsRecordType();
3352  DeclContext::lookup_const_result Lookup
3353    = BaseRecord->getDecl()->lookup(Context, OpName);
3354  NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
3355  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3356    AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3357                       /*SuppressUserConversions=*/false);
3358  else if (OverloadedFunctionDecl *Ovl
3359             = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3360    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3361           FEnd = Ovl->function_end();
3362         F != FEnd; ++F) {
3363      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3364        AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3365                           /*SuppressUserConversions=*/false);
3366    }
3367  }
3368
3369  llvm::OwningPtr<Expr> BasePtr(Base);
3370
3371  // Perform overload resolution.
3372  OverloadCandidateSet::iterator Best;
3373  switch (BestViableFunction(CandidateSet, Best)) {
3374  case OR_Success:
3375    // Overload resolution succeeded; we'll build the call below.
3376    break;
3377
3378  case OR_No_Viable_Function:
3379    if (CandidateSet.empty())
3380      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
3381        << BasePtr->getType() << BasePtr->getSourceRange();
3382    else
3383      Diag(OpLoc, diag::err_ovl_no_viable_oper)
3384        << "operator->" << (unsigned)CandidateSet.size()
3385        << BasePtr->getSourceRange();
3386    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3387    return true;
3388
3389  case OR_Ambiguous:
3390    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
3391      << "operator->" << BasePtr->getSourceRange();
3392    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3393    return true;
3394  }
3395
3396  // Convert the object parameter.
3397  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
3398  if (PerformObjectArgumentInitialization(Base, Method))
3399    return true;
3400
3401  // No concerns about early exits now.
3402  BasePtr.take();
3403
3404  // Build the operator call.
3405  Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3406  UsualUnaryConversions(FnExpr);
3407  Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3408                                 Method->getResultType().getNonReferenceType(),
3409                                 OpLoc);
3410  return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3411}
3412
3413/// FixOverloadedFunctionReference - E is an expression that refers to
3414/// a C++ overloaded function (possibly with some parentheses and
3415/// perhaps a '&' around it). We have resolved the overloaded function
3416/// to the function declaration Fn, so patch up the expression E to
3417/// refer (possibly indirectly) to Fn.
3418void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3419  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3420    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3421    E->setType(PE->getSubExpr()->getType());
3422  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3423    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3424           "Can only take the address of an overloaded function");
3425    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3426    E->setType(Context.getPointerType(E->getType()));
3427  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3428    assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3429           "Expected overloaded function");
3430    DR->setDecl(Fn);
3431    E->setType(Fn->getType());
3432  } else {
3433    assert(false && "Invalid reference to overloaded function");
3434  }
3435}
3436
3437} // end namespace clang
3438