SemaOverload.cpp revision e25a96c0629b6f928d5e8055510789817db827d0
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Complex_Real_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  DeprecatedStringLiteralToCharPtr = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType(1)->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType(1);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << '\'' << ConversionFunction << '\'';
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439ImplicitConversionSequence
440Sema::TryImplicitConversion(Expr* From, QualType ToType,
441                            bool SuppressUserConversions,
442                            bool AllowExplicit,
443                            bool InOverloadResolution) {
444  ImplicitConversionSequence ICS;
445  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
446    ICS.setStandard();
447    return ICS;
448  }
449
450  if (!getLangOptions().CPlusPlus) {
451    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
452    return ICS;
453  }
454
455  if (SuppressUserConversions) {
456    // C++ [over.ics.user]p4:
457    //   A conversion of an expression of class type to the same class
458    //   type is given Exact Match rank, and a conversion of an
459    //   expression of class type to a base class of that type is
460    //   given Conversion rank, in spite of the fact that a copy/move
461    //   constructor (i.e., a user-defined conversion function) is
462    //   called for those cases.
463    QualType FromType = From->getType();
464    if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() ||
465        !(Context.hasSameUnqualifiedType(FromType, ToType) ||
466          IsDerivedFrom(FromType, ToType))) {
467      // We're not in the case above, so there is no conversion that
468      // we can perform.
469      ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
470      return ICS;
471    }
472
473    ICS.setStandard();
474    ICS.Standard.setAsIdentityConversion();
475    ICS.Standard.setFromType(FromType);
476    ICS.Standard.setAllToTypes(ToType);
477
478    // We don't actually check at this point whether there is a valid
479    // copy/move constructor, since overloading just assumes that it
480    // exists. When we actually perform initialization, we'll find the
481    // appropriate constructor to copy the returned object, if needed.
482    ICS.Standard.CopyConstructor = 0;
483
484    // Determine whether this is considered a derived-to-base conversion.
485    if (!Context.hasSameUnqualifiedType(FromType, ToType))
486      ICS.Standard.Second = ICK_Derived_To_Base;
487
488    return ICS;
489  }
490
491  // Attempt user-defined conversion.
492  OverloadCandidateSet Conversions(From->getExprLoc());
493  OverloadingResult UserDefResult
494    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
495                              AllowExplicit);
496
497  if (UserDefResult == OR_Success) {
498    ICS.setUserDefined();
499    // C++ [over.ics.user]p4:
500    //   A conversion of an expression of class type to the same class
501    //   type is given Exact Match rank, and a conversion of an
502    //   expression of class type to a base class of that type is
503    //   given Conversion rank, in spite of the fact that a copy
504    //   constructor (i.e., a user-defined conversion function) is
505    //   called for those cases.
506    if (CXXConstructorDecl *Constructor
507          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
508      QualType FromCanon
509        = Context.getCanonicalType(From->getType().getUnqualifiedType());
510      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
511      if (Constructor->isCopyConstructor() &&
512          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
513        // Turn this into a "standard" conversion sequence, so that it
514        // gets ranked with standard conversion sequences.
515        ICS.setStandard();
516        ICS.Standard.setAsIdentityConversion();
517        ICS.Standard.setFromType(From->getType());
518        ICS.Standard.setAllToTypes(ToType);
519        ICS.Standard.CopyConstructor = Constructor;
520        if (ToCanon != FromCanon)
521          ICS.Standard.Second = ICK_Derived_To_Base;
522      }
523    }
524
525    // C++ [over.best.ics]p4:
526    //   However, when considering the argument of a user-defined
527    //   conversion function that is a candidate by 13.3.1.3 when
528    //   invoked for the copying of the temporary in the second step
529    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
530    //   13.3.1.6 in all cases, only standard conversion sequences and
531    //   ellipsis conversion sequences are allowed.
532    if (SuppressUserConversions && ICS.isUserDefined()) {
533      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
534    }
535  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
536    ICS.setAmbiguous();
537    ICS.Ambiguous.setFromType(From->getType());
538    ICS.Ambiguous.setToType(ToType);
539    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
540         Cand != Conversions.end(); ++Cand)
541      if (Cand->Viable)
542        ICS.Ambiguous.addConversion(Cand->Function);
543  } else {
544    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
545  }
546
547  return ICS;
548}
549
550/// PerformImplicitConversion - Perform an implicit conversion of the
551/// expression From to the type ToType. Returns true if there was an
552/// error, false otherwise. The expression From is replaced with the
553/// converted expression. Flavor is the kind of conversion we're
554/// performing, used in the error message. If @p AllowExplicit,
555/// explicit user-defined conversions are permitted.
556bool
557Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
558                                AssignmentAction Action, bool AllowExplicit) {
559  ImplicitConversionSequence ICS;
560  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
561}
562
563bool
564Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
565                                AssignmentAction Action, bool AllowExplicit,
566                                ImplicitConversionSequence& ICS) {
567  ICS = TryImplicitConversion(From, ToType,
568                              /*SuppressUserConversions=*/false,
569                              AllowExplicit,
570                              /*InOverloadResolution=*/false);
571  return PerformImplicitConversion(From, ToType, ICS, Action);
572}
573
574/// \brief Determine whether the conversion from FromType to ToType is a valid
575/// conversion that strips "noreturn" off the nested function type.
576static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
577                                 QualType ToType, QualType &ResultTy) {
578  if (Context.hasSameUnqualifiedType(FromType, ToType))
579    return false;
580
581  // Strip the noreturn off the type we're converting from; noreturn can
582  // safely be removed.
583  FromType = Context.getNoReturnType(FromType, false);
584  if (!Context.hasSameUnqualifiedType(FromType, ToType))
585    return false;
586
587  ResultTy = FromType;
588  return true;
589}
590
591/// IsStandardConversion - Determines whether there is a standard
592/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
593/// expression From to the type ToType. Standard conversion sequences
594/// only consider non-class types; for conversions that involve class
595/// types, use TryImplicitConversion. If a conversion exists, SCS will
596/// contain the standard conversion sequence required to perform this
597/// conversion and this routine will return true. Otherwise, this
598/// routine will return false and the value of SCS is unspecified.
599bool
600Sema::IsStandardConversion(Expr* From, QualType ToType,
601                           bool InOverloadResolution,
602                           StandardConversionSequence &SCS) {
603  QualType FromType = From->getType();
604
605  // Standard conversions (C++ [conv])
606  SCS.setAsIdentityConversion();
607  SCS.DeprecatedStringLiteralToCharPtr = false;
608  SCS.IncompatibleObjC = false;
609  SCS.setFromType(FromType);
610  SCS.CopyConstructor = 0;
611
612  // There are no standard conversions for class types in C++, so
613  // abort early. When overloading in C, however, we do permit
614  if (FromType->isRecordType() || ToType->isRecordType()) {
615    if (getLangOptions().CPlusPlus)
616      return false;
617
618    // When we're overloading in C, we allow, as standard conversions,
619  }
620
621  // The first conversion can be an lvalue-to-rvalue conversion,
622  // array-to-pointer conversion, or function-to-pointer conversion
623  // (C++ 4p1).
624
625  DeclAccessPair AccessPair;
626
627  // Lvalue-to-rvalue conversion (C++ 4.1):
628  //   An lvalue (3.10) of a non-function, non-array type T can be
629  //   converted to an rvalue.
630  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
631  if (argIsLvalue == Expr::LV_Valid &&
632      !FromType->isFunctionType() && !FromType->isArrayType() &&
633      Context.getCanonicalType(FromType) != Context.OverloadTy) {
634    SCS.First = ICK_Lvalue_To_Rvalue;
635
636    // If T is a non-class type, the type of the rvalue is the
637    // cv-unqualified version of T. Otherwise, the type of the rvalue
638    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
639    // just strip the qualifiers because they don't matter.
640    FromType = FromType.getUnqualifiedType();
641  } else if (FromType->isArrayType()) {
642    // Array-to-pointer conversion (C++ 4.2)
643    SCS.First = ICK_Array_To_Pointer;
644
645    // An lvalue or rvalue of type "array of N T" or "array of unknown
646    // bound of T" can be converted to an rvalue of type "pointer to
647    // T" (C++ 4.2p1).
648    FromType = Context.getArrayDecayedType(FromType);
649
650    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
651      // This conversion is deprecated. (C++ D.4).
652      SCS.DeprecatedStringLiteralToCharPtr = true;
653
654      // For the purpose of ranking in overload resolution
655      // (13.3.3.1.1), this conversion is considered an
656      // array-to-pointer conversion followed by a qualification
657      // conversion (4.4). (C++ 4.2p2)
658      SCS.Second = ICK_Identity;
659      SCS.Third = ICK_Qualification;
660      SCS.setAllToTypes(FromType);
661      return true;
662    }
663  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
664    // Function-to-pointer conversion (C++ 4.3).
665    SCS.First = ICK_Function_To_Pointer;
666
667    // An lvalue of function type T can be converted to an rvalue of
668    // type "pointer to T." The result is a pointer to the
669    // function. (C++ 4.3p1).
670    FromType = Context.getPointerType(FromType);
671  } else if (From->getType() == Context.OverloadTy) {
672    if (FunctionDecl *Fn
673          = ResolveAddressOfOverloadedFunction(From, ToType, false,
674                                               AccessPair)) {
675      // Address of overloaded function (C++ [over.over]).
676      SCS.First = ICK_Function_To_Pointer;
677
678      // We were able to resolve the address of the overloaded function,
679      // so we can convert to the type of that function.
680      FromType = Fn->getType();
681      if (ToType->isLValueReferenceType())
682        FromType = Context.getLValueReferenceType(FromType);
683      else if (ToType->isRValueReferenceType())
684        FromType = Context.getRValueReferenceType(FromType);
685      else if (ToType->isMemberPointerType()) {
686        // Resolve address only succeeds if both sides are member pointers,
687        // but it doesn't have to be the same class. See DR 247.
688        // Note that this means that the type of &Derived::fn can be
689        // Ret (Base::*)(Args) if the fn overload actually found is from the
690        // base class, even if it was brought into the derived class via a
691        // using declaration. The standard isn't clear on this issue at all.
692        CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
693        FromType = Context.getMemberPointerType(FromType,
694                      Context.getTypeDeclType(M->getParent()).getTypePtr());
695      } else {
696        FromType = Context.getPointerType(FromType);
697      }
698    } else {
699      return false;
700    }
701  } else {
702    // We don't require any conversions for the first step.
703    SCS.First = ICK_Identity;
704  }
705  SCS.setToType(0, FromType);
706
707  // The second conversion can be an integral promotion, floating
708  // point promotion, integral conversion, floating point conversion,
709  // floating-integral conversion, pointer conversion,
710  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
711  // For overloading in C, this can also be a "compatible-type"
712  // conversion.
713  bool IncompatibleObjC = false;
714  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
715    // The unqualified versions of the types are the same: there's no
716    // conversion to do.
717    SCS.Second = ICK_Identity;
718  } else if (IsIntegralPromotion(From, FromType, ToType)) {
719    // Integral promotion (C++ 4.5).
720    SCS.Second = ICK_Integral_Promotion;
721    FromType = ToType.getUnqualifiedType();
722  } else if (IsFloatingPointPromotion(FromType, ToType)) {
723    // Floating point promotion (C++ 4.6).
724    SCS.Second = ICK_Floating_Promotion;
725    FromType = ToType.getUnqualifiedType();
726  } else if (IsComplexPromotion(FromType, ToType)) {
727    // Complex promotion (Clang extension)
728    SCS.Second = ICK_Complex_Promotion;
729    FromType = ToType.getUnqualifiedType();
730  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
731           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
732    // Integral conversions (C++ 4.7).
733    SCS.Second = ICK_Integral_Conversion;
734    FromType = ToType.getUnqualifiedType();
735  } else if (FromType->isComplexType() && ToType->isComplexType()) {
736    // Complex conversions (C99 6.3.1.6)
737    SCS.Second = ICK_Complex_Conversion;
738    FromType = ToType.getUnqualifiedType();
739  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
740             (ToType->isComplexType() && FromType->isArithmeticType())) {
741    // Complex-real conversions (C99 6.3.1.7)
742    SCS.Second = ICK_Complex_Real;
743    FromType = ToType.getUnqualifiedType();
744  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
745    // Floating point conversions (C++ 4.8).
746    SCS.Second = ICK_Floating_Conversion;
747    FromType = ToType.getUnqualifiedType();
748  } else if ((FromType->isFloatingType() &&
749              ToType->isIntegralType() && (!ToType->isBooleanType() &&
750                                           !ToType->isEnumeralType())) ||
751             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
752              ToType->isFloatingType())) {
753    // Floating-integral conversions (C++ 4.9).
754    SCS.Second = ICK_Floating_Integral;
755    FromType = ToType.getUnqualifiedType();
756  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
757                                 FromType, IncompatibleObjC)) {
758    // Pointer conversions (C++ 4.10).
759    SCS.Second = ICK_Pointer_Conversion;
760    SCS.IncompatibleObjC = IncompatibleObjC;
761  } else if (IsMemberPointerConversion(From, FromType, ToType,
762                                       InOverloadResolution, FromType)) {
763    // Pointer to member conversions (4.11).
764    SCS.Second = ICK_Pointer_Member;
765  } else if (ToType->isBooleanType() &&
766             (FromType->isArithmeticType() ||
767              FromType->isEnumeralType() ||
768              FromType->isAnyPointerType() ||
769              FromType->isBlockPointerType() ||
770              FromType->isMemberPointerType() ||
771              FromType->isNullPtrType())) {
772    // Boolean conversions (C++ 4.12).
773    SCS.Second = ICK_Boolean_Conversion;
774    FromType = Context.BoolTy;
775  } else if (!getLangOptions().CPlusPlus &&
776             Context.typesAreCompatible(ToType, FromType)) {
777    // Compatible conversions (Clang extension for C function overloading)
778    SCS.Second = ICK_Compatible_Conversion;
779  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
780    // Treat a conversion that strips "noreturn" as an identity conversion.
781    SCS.Second = ICK_NoReturn_Adjustment;
782  } else {
783    // No second conversion required.
784    SCS.Second = ICK_Identity;
785  }
786  SCS.setToType(1, FromType);
787
788  QualType CanonFrom;
789  QualType CanonTo;
790  // The third conversion can be a qualification conversion (C++ 4p1).
791  if (IsQualificationConversion(FromType, ToType)) {
792    SCS.Third = ICK_Qualification;
793    FromType = ToType;
794    CanonFrom = Context.getCanonicalType(FromType);
795    CanonTo = Context.getCanonicalType(ToType);
796  } else {
797    // No conversion required
798    SCS.Third = ICK_Identity;
799
800    // C++ [over.best.ics]p6:
801    //   [...] Any difference in top-level cv-qualification is
802    //   subsumed by the initialization itself and does not constitute
803    //   a conversion. [...]
804    CanonFrom = Context.getCanonicalType(FromType);
805    CanonTo = Context.getCanonicalType(ToType);
806    if (CanonFrom.getLocalUnqualifiedType()
807                                       == CanonTo.getLocalUnqualifiedType() &&
808        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
809      FromType = ToType;
810      CanonFrom = CanonTo;
811    }
812  }
813  SCS.setToType(2, FromType);
814
815  // If we have not converted the argument type to the parameter type,
816  // this is a bad conversion sequence.
817  if (CanonFrom != CanonTo)
818    return false;
819
820  return true;
821}
822
823/// IsIntegralPromotion - Determines whether the conversion from the
824/// expression From (whose potentially-adjusted type is FromType) to
825/// ToType is an integral promotion (C++ 4.5). If so, returns true and
826/// sets PromotedType to the promoted type.
827bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
828  const BuiltinType *To = ToType->getAs<BuiltinType>();
829  // All integers are built-in.
830  if (!To) {
831    return false;
832  }
833
834  // An rvalue of type char, signed char, unsigned char, short int, or
835  // unsigned short int can be converted to an rvalue of type int if
836  // int can represent all the values of the source type; otherwise,
837  // the source rvalue can be converted to an rvalue of type unsigned
838  // int (C++ 4.5p1).
839  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
840      !FromType->isEnumeralType()) {
841    if (// We can promote any signed, promotable integer type to an int
842        (FromType->isSignedIntegerType() ||
843         // We can promote any unsigned integer type whose size is
844         // less than int to an int.
845         (!FromType->isSignedIntegerType() &&
846          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
847      return To->getKind() == BuiltinType::Int;
848    }
849
850    return To->getKind() == BuiltinType::UInt;
851  }
852
853  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
854  // can be converted to an rvalue of the first of the following types
855  // that can represent all the values of its underlying type: int,
856  // unsigned int, long, or unsigned long (C++ 4.5p2).
857
858  // We pre-calculate the promotion type for enum types.
859  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
860    if (ToType->isIntegerType())
861      return Context.hasSameUnqualifiedType(ToType,
862                                FromEnumType->getDecl()->getPromotionType());
863
864  if (FromType->isWideCharType() && ToType->isIntegerType()) {
865    // Determine whether the type we're converting from is signed or
866    // unsigned.
867    bool FromIsSigned;
868    uint64_t FromSize = Context.getTypeSize(FromType);
869
870    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
871    FromIsSigned = true;
872
873    // The types we'll try to promote to, in the appropriate
874    // order. Try each of these types.
875    QualType PromoteTypes[6] = {
876      Context.IntTy, Context.UnsignedIntTy,
877      Context.LongTy, Context.UnsignedLongTy ,
878      Context.LongLongTy, Context.UnsignedLongLongTy
879    };
880    for (int Idx = 0; Idx < 6; ++Idx) {
881      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
882      if (FromSize < ToSize ||
883          (FromSize == ToSize &&
884           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
885        // We found the type that we can promote to. If this is the
886        // type we wanted, we have a promotion. Otherwise, no
887        // promotion.
888        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
889      }
890    }
891  }
892
893  // An rvalue for an integral bit-field (9.6) can be converted to an
894  // rvalue of type int if int can represent all the values of the
895  // bit-field; otherwise, it can be converted to unsigned int if
896  // unsigned int can represent all the values of the bit-field. If
897  // the bit-field is larger yet, no integral promotion applies to
898  // it. If the bit-field has an enumerated type, it is treated as any
899  // other value of that type for promotion purposes (C++ 4.5p3).
900  // FIXME: We should delay checking of bit-fields until we actually perform the
901  // conversion.
902  using llvm::APSInt;
903  if (From)
904    if (FieldDecl *MemberDecl = From->getBitField()) {
905      APSInt BitWidth;
906      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
907          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
908        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
909        ToSize = Context.getTypeSize(ToType);
910
911        // Are we promoting to an int from a bitfield that fits in an int?
912        if (BitWidth < ToSize ||
913            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
914          return To->getKind() == BuiltinType::Int;
915        }
916
917        // Are we promoting to an unsigned int from an unsigned bitfield
918        // that fits into an unsigned int?
919        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
920          return To->getKind() == BuiltinType::UInt;
921        }
922
923        return false;
924      }
925    }
926
927  // An rvalue of type bool can be converted to an rvalue of type int,
928  // with false becoming zero and true becoming one (C++ 4.5p4).
929  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
930    return true;
931  }
932
933  return false;
934}
935
936/// IsFloatingPointPromotion - Determines whether the conversion from
937/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
938/// returns true and sets PromotedType to the promoted type.
939bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
940  /// An rvalue of type float can be converted to an rvalue of type
941  /// double. (C++ 4.6p1).
942  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
943    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
944      if (FromBuiltin->getKind() == BuiltinType::Float &&
945          ToBuiltin->getKind() == BuiltinType::Double)
946        return true;
947
948      // C99 6.3.1.5p1:
949      //   When a float is promoted to double or long double, or a
950      //   double is promoted to long double [...].
951      if (!getLangOptions().CPlusPlus &&
952          (FromBuiltin->getKind() == BuiltinType::Float ||
953           FromBuiltin->getKind() == BuiltinType::Double) &&
954          (ToBuiltin->getKind() == BuiltinType::LongDouble))
955        return true;
956    }
957
958  return false;
959}
960
961/// \brief Determine if a conversion is a complex promotion.
962///
963/// A complex promotion is defined as a complex -> complex conversion
964/// where the conversion between the underlying real types is a
965/// floating-point or integral promotion.
966bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
967  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
968  if (!FromComplex)
969    return false;
970
971  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
972  if (!ToComplex)
973    return false;
974
975  return IsFloatingPointPromotion(FromComplex->getElementType(),
976                                  ToComplex->getElementType()) ||
977    IsIntegralPromotion(0, FromComplex->getElementType(),
978                        ToComplex->getElementType());
979}
980
981/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
982/// the pointer type FromPtr to a pointer to type ToPointee, with the
983/// same type qualifiers as FromPtr has on its pointee type. ToType,
984/// if non-empty, will be a pointer to ToType that may or may not have
985/// the right set of qualifiers on its pointee.
986static QualType
987BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
988                                   QualType ToPointee, QualType ToType,
989                                   ASTContext &Context) {
990  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
991  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
992  Qualifiers Quals = CanonFromPointee.getQualifiers();
993
994  // Exact qualifier match -> return the pointer type we're converting to.
995  if (CanonToPointee.getLocalQualifiers() == Quals) {
996    // ToType is exactly what we need. Return it.
997    if (!ToType.isNull())
998      return ToType;
999
1000    // Build a pointer to ToPointee. It has the right qualifiers
1001    // already.
1002    return Context.getPointerType(ToPointee);
1003  }
1004
1005  // Just build a canonical type that has the right qualifiers.
1006  return Context.getPointerType(
1007         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
1008                                  Quals));
1009}
1010
1011/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
1012/// the FromType, which is an objective-c pointer, to ToType, which may or may
1013/// not have the right set of qualifiers.
1014static QualType
1015BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
1016                                             QualType ToType,
1017                                             ASTContext &Context) {
1018  QualType CanonFromType = Context.getCanonicalType(FromType);
1019  QualType CanonToType = Context.getCanonicalType(ToType);
1020  Qualifiers Quals = CanonFromType.getQualifiers();
1021
1022  // Exact qualifier match -> return the pointer type we're converting to.
1023  if (CanonToType.getLocalQualifiers() == Quals)
1024    return ToType;
1025
1026  // Just build a canonical type that has the right qualifiers.
1027  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
1028}
1029
1030static bool isNullPointerConstantForConversion(Expr *Expr,
1031                                               bool InOverloadResolution,
1032                                               ASTContext &Context) {
1033  // Handle value-dependent integral null pointer constants correctly.
1034  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1035  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1036      Expr->getType()->isIntegralType())
1037    return !InOverloadResolution;
1038
1039  return Expr->isNullPointerConstant(Context,
1040                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1041                                        : Expr::NPC_ValueDependentIsNull);
1042}
1043
1044/// IsPointerConversion - Determines whether the conversion of the
1045/// expression From, which has the (possibly adjusted) type FromType,
1046/// can be converted to the type ToType via a pointer conversion (C++
1047/// 4.10). If so, returns true and places the converted type (that
1048/// might differ from ToType in its cv-qualifiers at some level) into
1049/// ConvertedType.
1050///
1051/// This routine also supports conversions to and from block pointers
1052/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1053/// pointers to interfaces. FIXME: Once we've determined the
1054/// appropriate overloading rules for Objective-C, we may want to
1055/// split the Objective-C checks into a different routine; however,
1056/// GCC seems to consider all of these conversions to be pointer
1057/// conversions, so for now they live here. IncompatibleObjC will be
1058/// set if the conversion is an allowed Objective-C conversion that
1059/// should result in a warning.
1060bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1061                               bool InOverloadResolution,
1062                               QualType& ConvertedType,
1063                               bool &IncompatibleObjC) {
1064  IncompatibleObjC = false;
1065  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1066    return true;
1067
1068  // Conversion from a null pointer constant to any Objective-C pointer type.
1069  if (ToType->isObjCObjectPointerType() &&
1070      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1071    ConvertedType = ToType;
1072    return true;
1073  }
1074
1075  // Blocks: Block pointers can be converted to void*.
1076  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1077      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1078    ConvertedType = ToType;
1079    return true;
1080  }
1081  // Blocks: A null pointer constant can be converted to a block
1082  // pointer type.
1083  if (ToType->isBlockPointerType() &&
1084      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1085    ConvertedType = ToType;
1086    return true;
1087  }
1088
1089  // If the left-hand-side is nullptr_t, the right side can be a null
1090  // pointer constant.
1091  if (ToType->isNullPtrType() &&
1092      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1093    ConvertedType = ToType;
1094    return true;
1095  }
1096
1097  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1098  if (!ToTypePtr)
1099    return false;
1100
1101  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1102  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1103    ConvertedType = ToType;
1104    return true;
1105  }
1106
1107  // Beyond this point, both types need to be pointers
1108  // , including objective-c pointers.
1109  QualType ToPointeeType = ToTypePtr->getPointeeType();
1110  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1111    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1112                                                       ToType, Context);
1113    return true;
1114
1115  }
1116  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1117  if (!FromTypePtr)
1118    return false;
1119
1120  QualType FromPointeeType = FromTypePtr->getPointeeType();
1121
1122  // An rvalue of type "pointer to cv T," where T is an object type,
1123  // can be converted to an rvalue of type "pointer to cv void" (C++
1124  // 4.10p2).
1125  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1126    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1127                                                       ToPointeeType,
1128                                                       ToType, Context);
1129    return true;
1130  }
1131
1132  // When we're overloading in C, we allow a special kind of pointer
1133  // conversion for compatible-but-not-identical pointee types.
1134  if (!getLangOptions().CPlusPlus &&
1135      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1136    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1137                                                       ToPointeeType,
1138                                                       ToType, Context);
1139    return true;
1140  }
1141
1142  // C++ [conv.ptr]p3:
1143  //
1144  //   An rvalue of type "pointer to cv D," where D is a class type,
1145  //   can be converted to an rvalue of type "pointer to cv B," where
1146  //   B is a base class (clause 10) of D. If B is an inaccessible
1147  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1148  //   necessitates this conversion is ill-formed. The result of the
1149  //   conversion is a pointer to the base class sub-object of the
1150  //   derived class object. The null pointer value is converted to
1151  //   the null pointer value of the destination type.
1152  //
1153  // Note that we do not check for ambiguity or inaccessibility
1154  // here. That is handled by CheckPointerConversion.
1155  if (getLangOptions().CPlusPlus &&
1156      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1157      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1158      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1159      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1160    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1161                                                       ToPointeeType,
1162                                                       ToType, Context);
1163    return true;
1164  }
1165
1166  return false;
1167}
1168
1169/// isObjCPointerConversion - Determines whether this is an
1170/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1171/// with the same arguments and return values.
1172bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1173                                   QualType& ConvertedType,
1174                                   bool &IncompatibleObjC) {
1175  if (!getLangOptions().ObjC1)
1176    return false;
1177
1178  // First, we handle all conversions on ObjC object pointer types.
1179  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1180  const ObjCObjectPointerType *FromObjCPtr =
1181    FromType->getAs<ObjCObjectPointerType>();
1182
1183  if (ToObjCPtr && FromObjCPtr) {
1184    // Objective C++: We're able to convert between "id" or "Class" and a
1185    // pointer to any interface (in both directions).
1186    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1187      ConvertedType = ToType;
1188      return true;
1189    }
1190    // Conversions with Objective-C's id<...>.
1191    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1192         ToObjCPtr->isObjCQualifiedIdType()) &&
1193        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1194                                                  /*compare=*/false)) {
1195      ConvertedType = ToType;
1196      return true;
1197    }
1198    // Objective C++: We're able to convert from a pointer to an
1199    // interface to a pointer to a different interface.
1200    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1201      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1202      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1203      if (getLangOptions().CPlusPlus && LHS && RHS &&
1204          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1205                                                FromObjCPtr->getPointeeType()))
1206        return false;
1207      ConvertedType = ToType;
1208      return true;
1209    }
1210
1211    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1212      // Okay: this is some kind of implicit downcast of Objective-C
1213      // interfaces, which is permitted. However, we're going to
1214      // complain about it.
1215      IncompatibleObjC = true;
1216      ConvertedType = FromType;
1217      return true;
1218    }
1219  }
1220  // Beyond this point, both types need to be C pointers or block pointers.
1221  QualType ToPointeeType;
1222  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1223    ToPointeeType = ToCPtr->getPointeeType();
1224  else if (const BlockPointerType *ToBlockPtr =
1225            ToType->getAs<BlockPointerType>()) {
1226    // Objective C++: We're able to convert from a pointer to any object
1227    // to a block pointer type.
1228    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1229      ConvertedType = ToType;
1230      return true;
1231    }
1232    ToPointeeType = ToBlockPtr->getPointeeType();
1233  }
1234  else if (FromType->getAs<BlockPointerType>() &&
1235           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1236    // Objective C++: We're able to convert from a block pointer type to a
1237    // pointer to any object.
1238    ConvertedType = ToType;
1239    return true;
1240  }
1241  else
1242    return false;
1243
1244  QualType FromPointeeType;
1245  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1246    FromPointeeType = FromCPtr->getPointeeType();
1247  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1248    FromPointeeType = FromBlockPtr->getPointeeType();
1249  else
1250    return false;
1251
1252  // If we have pointers to pointers, recursively check whether this
1253  // is an Objective-C conversion.
1254  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1255      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1256                              IncompatibleObjC)) {
1257    // We always complain about this conversion.
1258    IncompatibleObjC = true;
1259    ConvertedType = ToType;
1260    return true;
1261  }
1262  // Allow conversion of pointee being objective-c pointer to another one;
1263  // as in I* to id.
1264  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1265      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1266      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1267                              IncompatibleObjC)) {
1268    ConvertedType = ToType;
1269    return true;
1270  }
1271
1272  // If we have pointers to functions or blocks, check whether the only
1273  // differences in the argument and result types are in Objective-C
1274  // pointer conversions. If so, we permit the conversion (but
1275  // complain about it).
1276  const FunctionProtoType *FromFunctionType
1277    = FromPointeeType->getAs<FunctionProtoType>();
1278  const FunctionProtoType *ToFunctionType
1279    = ToPointeeType->getAs<FunctionProtoType>();
1280  if (FromFunctionType && ToFunctionType) {
1281    // If the function types are exactly the same, this isn't an
1282    // Objective-C pointer conversion.
1283    if (Context.getCanonicalType(FromPointeeType)
1284          == Context.getCanonicalType(ToPointeeType))
1285      return false;
1286
1287    // Perform the quick checks that will tell us whether these
1288    // function types are obviously different.
1289    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1290        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1291        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1292      return false;
1293
1294    bool HasObjCConversion = false;
1295    if (Context.getCanonicalType(FromFunctionType->getResultType())
1296          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1297      // Okay, the types match exactly. Nothing to do.
1298    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1299                                       ToFunctionType->getResultType(),
1300                                       ConvertedType, IncompatibleObjC)) {
1301      // Okay, we have an Objective-C pointer conversion.
1302      HasObjCConversion = true;
1303    } else {
1304      // Function types are too different. Abort.
1305      return false;
1306    }
1307
1308    // Check argument types.
1309    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1310         ArgIdx != NumArgs; ++ArgIdx) {
1311      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1312      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1313      if (Context.getCanonicalType(FromArgType)
1314            == Context.getCanonicalType(ToArgType)) {
1315        // Okay, the types match exactly. Nothing to do.
1316      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1317                                         ConvertedType, IncompatibleObjC)) {
1318        // Okay, we have an Objective-C pointer conversion.
1319        HasObjCConversion = true;
1320      } else {
1321        // Argument types are too different. Abort.
1322        return false;
1323      }
1324    }
1325
1326    if (HasObjCConversion) {
1327      // We had an Objective-C conversion. Allow this pointer
1328      // conversion, but complain about it.
1329      ConvertedType = ToType;
1330      IncompatibleObjC = true;
1331      return true;
1332    }
1333  }
1334
1335  return false;
1336}
1337
1338/// CheckPointerConversion - Check the pointer conversion from the
1339/// expression From to the type ToType. This routine checks for
1340/// ambiguous or inaccessible derived-to-base pointer
1341/// conversions for which IsPointerConversion has already returned
1342/// true. It returns true and produces a diagnostic if there was an
1343/// error, or returns false otherwise.
1344bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1345                                  CastExpr::CastKind &Kind,
1346                                  bool IgnoreBaseAccess) {
1347  QualType FromType = From->getType();
1348
1349  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1350    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1351      QualType FromPointeeType = FromPtrType->getPointeeType(),
1352               ToPointeeType   = ToPtrType->getPointeeType();
1353
1354      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1355          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1356        // We must have a derived-to-base conversion. Check an
1357        // ambiguous or inaccessible conversion.
1358        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1359                                         From->getExprLoc(),
1360                                         From->getSourceRange(), 0,
1361                                         IgnoreBaseAccess))
1362          return true;
1363
1364        // The conversion was successful.
1365        Kind = CastExpr::CK_DerivedToBase;
1366      }
1367    }
1368  if (const ObjCObjectPointerType *FromPtrType =
1369        FromType->getAs<ObjCObjectPointerType>())
1370    if (const ObjCObjectPointerType *ToPtrType =
1371          ToType->getAs<ObjCObjectPointerType>()) {
1372      // Objective-C++ conversions are always okay.
1373      // FIXME: We should have a different class of conversions for the
1374      // Objective-C++ implicit conversions.
1375      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1376        return false;
1377
1378  }
1379  return false;
1380}
1381
1382/// IsMemberPointerConversion - Determines whether the conversion of the
1383/// expression From, which has the (possibly adjusted) type FromType, can be
1384/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1385/// If so, returns true and places the converted type (that might differ from
1386/// ToType in its cv-qualifiers at some level) into ConvertedType.
1387bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1388                                     QualType ToType,
1389                                     bool InOverloadResolution,
1390                                     QualType &ConvertedType) {
1391  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1392  if (!ToTypePtr)
1393    return false;
1394
1395  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1396  if (From->isNullPointerConstant(Context,
1397                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1398                                        : Expr::NPC_ValueDependentIsNull)) {
1399    ConvertedType = ToType;
1400    return true;
1401  }
1402
1403  // Otherwise, both types have to be member pointers.
1404  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1405  if (!FromTypePtr)
1406    return false;
1407
1408  // A pointer to member of B can be converted to a pointer to member of D,
1409  // where D is derived from B (C++ 4.11p2).
1410  QualType FromClass(FromTypePtr->getClass(), 0);
1411  QualType ToClass(ToTypePtr->getClass(), 0);
1412  // FIXME: What happens when these are dependent? Is this function even called?
1413
1414  if (IsDerivedFrom(ToClass, FromClass)) {
1415    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1416                                                 ToClass.getTypePtr());
1417    return true;
1418  }
1419
1420  return false;
1421}
1422
1423/// CheckMemberPointerConversion - Check the member pointer conversion from the
1424/// expression From to the type ToType. This routine checks for ambiguous or
1425/// virtual or inaccessible base-to-derived member pointer conversions
1426/// for which IsMemberPointerConversion has already returned true. It returns
1427/// true and produces a diagnostic if there was an error, or returns false
1428/// otherwise.
1429bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1430                                        CastExpr::CastKind &Kind,
1431                                        bool IgnoreBaseAccess) {
1432  QualType FromType = From->getType();
1433  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1434  if (!FromPtrType) {
1435    // This must be a null pointer to member pointer conversion
1436    assert(From->isNullPointerConstant(Context,
1437                                       Expr::NPC_ValueDependentIsNull) &&
1438           "Expr must be null pointer constant!");
1439    Kind = CastExpr::CK_NullToMemberPointer;
1440    return false;
1441  }
1442
1443  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1444  assert(ToPtrType && "No member pointer cast has a target type "
1445                      "that is not a member pointer.");
1446
1447  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1448  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1449
1450  // FIXME: What about dependent types?
1451  assert(FromClass->isRecordType() && "Pointer into non-class.");
1452  assert(ToClass->isRecordType() && "Pointer into non-class.");
1453
1454  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/ true,
1455                     /*DetectVirtual=*/true);
1456  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1457  assert(DerivationOkay &&
1458         "Should not have been called if derivation isn't OK.");
1459  (void)DerivationOkay;
1460
1461  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1462                                  getUnqualifiedType())) {
1463    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1464    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1465      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1466    return true;
1467  }
1468
1469  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1470    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1471      << FromClass << ToClass << QualType(VBase, 0)
1472      << From->getSourceRange();
1473    return true;
1474  }
1475
1476  if (!IgnoreBaseAccess)
1477    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1478                         Paths.front(),
1479                         diag::err_downcast_from_inaccessible_base);
1480
1481  // Must be a base to derived member conversion.
1482  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1483  return false;
1484}
1485
1486/// IsQualificationConversion - Determines whether the conversion from
1487/// an rvalue of type FromType to ToType is a qualification conversion
1488/// (C++ 4.4).
1489bool
1490Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1491  FromType = Context.getCanonicalType(FromType);
1492  ToType = Context.getCanonicalType(ToType);
1493
1494  // If FromType and ToType are the same type, this is not a
1495  // qualification conversion.
1496  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1497    return false;
1498
1499  // (C++ 4.4p4):
1500  //   A conversion can add cv-qualifiers at levels other than the first
1501  //   in multi-level pointers, subject to the following rules: [...]
1502  bool PreviousToQualsIncludeConst = true;
1503  bool UnwrappedAnyPointer = false;
1504  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1505    // Within each iteration of the loop, we check the qualifiers to
1506    // determine if this still looks like a qualification
1507    // conversion. Then, if all is well, we unwrap one more level of
1508    // pointers or pointers-to-members and do it all again
1509    // until there are no more pointers or pointers-to-members left to
1510    // unwrap.
1511    UnwrappedAnyPointer = true;
1512
1513    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1514    //      2,j, and similarly for volatile.
1515    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1516      return false;
1517
1518    //   -- if the cv 1,j and cv 2,j are different, then const is in
1519    //      every cv for 0 < k < j.
1520    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1521        && !PreviousToQualsIncludeConst)
1522      return false;
1523
1524    // Keep track of whether all prior cv-qualifiers in the "to" type
1525    // include const.
1526    PreviousToQualsIncludeConst
1527      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1528  }
1529
1530  // We are left with FromType and ToType being the pointee types
1531  // after unwrapping the original FromType and ToType the same number
1532  // of types. If we unwrapped any pointers, and if FromType and
1533  // ToType have the same unqualified type (since we checked
1534  // qualifiers above), then this is a qualification conversion.
1535  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1536}
1537
1538/// Determines whether there is a user-defined conversion sequence
1539/// (C++ [over.ics.user]) that converts expression From to the type
1540/// ToType. If such a conversion exists, User will contain the
1541/// user-defined conversion sequence that performs such a conversion
1542/// and this routine will return true. Otherwise, this routine returns
1543/// false and User is unspecified.
1544///
1545/// \param AllowExplicit  true if the conversion should consider C++0x
1546/// "explicit" conversion functions as well as non-explicit conversion
1547/// functions (C++0x [class.conv.fct]p2).
1548OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1549                                          UserDefinedConversionSequence& User,
1550                                           OverloadCandidateSet& CandidateSet,
1551                                                bool AllowExplicit) {
1552  // Whether we will only visit constructors.
1553  bool ConstructorsOnly = false;
1554
1555  // If the type we are conversion to is a class type, enumerate its
1556  // constructors.
1557  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1558    // C++ [over.match.ctor]p1:
1559    //   When objects of class type are direct-initialized (8.5), or
1560    //   copy-initialized from an expression of the same or a
1561    //   derived class type (8.5), overload resolution selects the
1562    //   constructor. [...] For copy-initialization, the candidate
1563    //   functions are all the converting constructors (12.3.1) of
1564    //   that class. The argument list is the expression-list within
1565    //   the parentheses of the initializer.
1566    if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1567        (From->getType()->getAs<RecordType>() &&
1568         IsDerivedFrom(From->getType(), ToType)))
1569      ConstructorsOnly = true;
1570
1571    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1572      // We're not going to find any constructors.
1573    } else if (CXXRecordDecl *ToRecordDecl
1574                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1575      DeclarationName ConstructorName
1576        = Context.DeclarationNames.getCXXConstructorName(
1577                       Context.getCanonicalType(ToType).getUnqualifiedType());
1578      DeclContext::lookup_iterator Con, ConEnd;
1579      for (llvm::tie(Con, ConEnd)
1580             = ToRecordDecl->lookup(ConstructorName);
1581           Con != ConEnd; ++Con) {
1582        NamedDecl *D = *Con;
1583        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1584
1585        // Find the constructor (which may be a template).
1586        CXXConstructorDecl *Constructor = 0;
1587        FunctionTemplateDecl *ConstructorTmpl
1588          = dyn_cast<FunctionTemplateDecl>(D);
1589        if (ConstructorTmpl)
1590          Constructor
1591            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1592        else
1593          Constructor = cast<CXXConstructorDecl>(D);
1594
1595        if (!Constructor->isInvalidDecl() &&
1596            Constructor->isConvertingConstructor(AllowExplicit)) {
1597          if (ConstructorTmpl)
1598            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1599                                         /*ExplicitArgs*/ 0,
1600                                         &From, 1, CandidateSet,
1601                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1602          else
1603            // Allow one user-defined conversion when user specifies a
1604            // From->ToType conversion via an static cast (c-style, etc).
1605            AddOverloadCandidate(Constructor, FoundDecl,
1606                                 &From, 1, CandidateSet,
1607                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1608        }
1609      }
1610    }
1611  }
1612
1613  // Enumerate conversion functions, if we're allowed to.
1614  if (ConstructorsOnly) {
1615  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1616                          PDiag(0) << From->getSourceRange())) {
1617    // No conversion functions from incomplete types.
1618  } else if (const RecordType *FromRecordType
1619                                   = From->getType()->getAs<RecordType>()) {
1620    if (CXXRecordDecl *FromRecordDecl
1621         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1622      // Add all of the conversion functions as candidates.
1623      const UnresolvedSetImpl *Conversions
1624        = FromRecordDecl->getVisibleConversionFunctions();
1625      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1626             E = Conversions->end(); I != E; ++I) {
1627        DeclAccessPair FoundDecl = I.getPair();
1628        NamedDecl *D = FoundDecl.getDecl();
1629        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1630        if (isa<UsingShadowDecl>(D))
1631          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1632
1633        CXXConversionDecl *Conv;
1634        FunctionTemplateDecl *ConvTemplate;
1635        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1636          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1637        else
1638          Conv = cast<CXXConversionDecl>(D);
1639
1640        if (AllowExplicit || !Conv->isExplicit()) {
1641          if (ConvTemplate)
1642            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1643                                           ActingContext, From, ToType,
1644                                           CandidateSet);
1645          else
1646            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1647                                   From, ToType, CandidateSet);
1648        }
1649      }
1650    }
1651  }
1652
1653  OverloadCandidateSet::iterator Best;
1654  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1655    case OR_Success:
1656      // Record the standard conversion we used and the conversion function.
1657      if (CXXConstructorDecl *Constructor
1658            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1659        // C++ [over.ics.user]p1:
1660        //   If the user-defined conversion is specified by a
1661        //   constructor (12.3.1), the initial standard conversion
1662        //   sequence converts the source type to the type required by
1663        //   the argument of the constructor.
1664        //
1665        QualType ThisType = Constructor->getThisType(Context);
1666        if (Best->Conversions[0].isEllipsis())
1667          User.EllipsisConversion = true;
1668        else {
1669          User.Before = Best->Conversions[0].Standard;
1670          User.EllipsisConversion = false;
1671        }
1672        User.ConversionFunction = Constructor;
1673        User.After.setAsIdentityConversion();
1674        User.After.setFromType(
1675          ThisType->getAs<PointerType>()->getPointeeType());
1676        User.After.setAllToTypes(ToType);
1677        return OR_Success;
1678      } else if (CXXConversionDecl *Conversion
1679                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1680        // C++ [over.ics.user]p1:
1681        //
1682        //   [...] If the user-defined conversion is specified by a
1683        //   conversion function (12.3.2), the initial standard
1684        //   conversion sequence converts the source type to the
1685        //   implicit object parameter of the conversion function.
1686        User.Before = Best->Conversions[0].Standard;
1687        User.ConversionFunction = Conversion;
1688        User.EllipsisConversion = false;
1689
1690        // C++ [over.ics.user]p2:
1691        //   The second standard conversion sequence converts the
1692        //   result of the user-defined conversion to the target type
1693        //   for the sequence. Since an implicit conversion sequence
1694        //   is an initialization, the special rules for
1695        //   initialization by user-defined conversion apply when
1696        //   selecting the best user-defined conversion for a
1697        //   user-defined conversion sequence (see 13.3.3 and
1698        //   13.3.3.1).
1699        User.After = Best->FinalConversion;
1700        return OR_Success;
1701      } else {
1702        assert(false && "Not a constructor or conversion function?");
1703        return OR_No_Viable_Function;
1704      }
1705
1706    case OR_No_Viable_Function:
1707      return OR_No_Viable_Function;
1708    case OR_Deleted:
1709      // No conversion here! We're done.
1710      return OR_Deleted;
1711
1712    case OR_Ambiguous:
1713      return OR_Ambiguous;
1714    }
1715
1716  return OR_No_Viable_Function;
1717}
1718
1719bool
1720Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1721  ImplicitConversionSequence ICS;
1722  OverloadCandidateSet CandidateSet(From->getExprLoc());
1723  OverloadingResult OvResult =
1724    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1725                            CandidateSet, false);
1726  if (OvResult == OR_Ambiguous)
1727    Diag(From->getSourceRange().getBegin(),
1728         diag::err_typecheck_ambiguous_condition)
1729          << From->getType() << ToType << From->getSourceRange();
1730  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1731    Diag(From->getSourceRange().getBegin(),
1732         diag::err_typecheck_nonviable_condition)
1733    << From->getType() << ToType << From->getSourceRange();
1734  else
1735    return false;
1736  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1737  return true;
1738}
1739
1740/// CompareImplicitConversionSequences - Compare two implicit
1741/// conversion sequences to determine whether one is better than the
1742/// other or if they are indistinguishable (C++ 13.3.3.2).
1743ImplicitConversionSequence::CompareKind
1744Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1745                                         const ImplicitConversionSequence& ICS2)
1746{
1747  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1748  // conversion sequences (as defined in 13.3.3.1)
1749  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1750  //      conversion sequence than a user-defined conversion sequence or
1751  //      an ellipsis conversion sequence, and
1752  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1753  //      conversion sequence than an ellipsis conversion sequence
1754  //      (13.3.3.1.3).
1755  //
1756  // C++0x [over.best.ics]p10:
1757  //   For the purpose of ranking implicit conversion sequences as
1758  //   described in 13.3.3.2, the ambiguous conversion sequence is
1759  //   treated as a user-defined sequence that is indistinguishable
1760  //   from any other user-defined conversion sequence.
1761  if (ICS1.getKindRank() < ICS2.getKindRank())
1762    return ImplicitConversionSequence::Better;
1763  else if (ICS2.getKindRank() < ICS1.getKindRank())
1764    return ImplicitConversionSequence::Worse;
1765
1766  // The following checks require both conversion sequences to be of
1767  // the same kind.
1768  if (ICS1.getKind() != ICS2.getKind())
1769    return ImplicitConversionSequence::Indistinguishable;
1770
1771  // Two implicit conversion sequences of the same form are
1772  // indistinguishable conversion sequences unless one of the
1773  // following rules apply: (C++ 13.3.3.2p3):
1774  if (ICS1.isStandard())
1775    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1776  else if (ICS1.isUserDefined()) {
1777    // User-defined conversion sequence U1 is a better conversion
1778    // sequence than another user-defined conversion sequence U2 if
1779    // they contain the same user-defined conversion function or
1780    // constructor and if the second standard conversion sequence of
1781    // U1 is better than the second standard conversion sequence of
1782    // U2 (C++ 13.3.3.2p3).
1783    if (ICS1.UserDefined.ConversionFunction ==
1784          ICS2.UserDefined.ConversionFunction)
1785      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1786                                                ICS2.UserDefined.After);
1787  }
1788
1789  return ImplicitConversionSequence::Indistinguishable;
1790}
1791
1792// Per 13.3.3.2p3, compare the given standard conversion sequences to
1793// determine if one is a proper subset of the other.
1794static ImplicitConversionSequence::CompareKind
1795compareStandardConversionSubsets(ASTContext &Context,
1796                                 const StandardConversionSequence& SCS1,
1797                                 const StandardConversionSequence& SCS2) {
1798  ImplicitConversionSequence::CompareKind Result
1799    = ImplicitConversionSequence::Indistinguishable;
1800
1801  if (SCS1.Second != SCS2.Second) {
1802    if (SCS1.Second == ICK_Identity)
1803      Result = ImplicitConversionSequence::Better;
1804    else if (SCS2.Second == ICK_Identity)
1805      Result = ImplicitConversionSequence::Worse;
1806    else
1807      return ImplicitConversionSequence::Indistinguishable;
1808  } else if (!Context.hasSameType(SCS1.getToType(1), SCS2.getToType(1)))
1809    return ImplicitConversionSequence::Indistinguishable;
1810
1811  if (SCS1.Third == SCS2.Third) {
1812    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
1813                             : ImplicitConversionSequence::Indistinguishable;
1814  }
1815
1816  if (SCS1.Third == ICK_Identity)
1817    return Result == ImplicitConversionSequence::Worse
1818             ? ImplicitConversionSequence::Indistinguishable
1819             : ImplicitConversionSequence::Better;
1820
1821  if (SCS2.Third == ICK_Identity)
1822    return Result == ImplicitConversionSequence::Better
1823             ? ImplicitConversionSequence::Indistinguishable
1824             : ImplicitConversionSequence::Worse;
1825
1826  return ImplicitConversionSequence::Indistinguishable;
1827}
1828
1829/// CompareStandardConversionSequences - Compare two standard
1830/// conversion sequences to determine whether one is better than the
1831/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1832ImplicitConversionSequence::CompareKind
1833Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1834                                         const StandardConversionSequence& SCS2)
1835{
1836  // Standard conversion sequence S1 is a better conversion sequence
1837  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1838
1839  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1840  //     sequences in the canonical form defined by 13.3.3.1.1,
1841  //     excluding any Lvalue Transformation; the identity conversion
1842  //     sequence is considered to be a subsequence of any
1843  //     non-identity conversion sequence) or, if not that,
1844  if (ImplicitConversionSequence::CompareKind CK
1845        = compareStandardConversionSubsets(Context, SCS1, SCS2))
1846    return CK;
1847
1848  //  -- the rank of S1 is better than the rank of S2 (by the rules
1849  //     defined below), or, if not that,
1850  ImplicitConversionRank Rank1 = SCS1.getRank();
1851  ImplicitConversionRank Rank2 = SCS2.getRank();
1852  if (Rank1 < Rank2)
1853    return ImplicitConversionSequence::Better;
1854  else if (Rank2 < Rank1)
1855    return ImplicitConversionSequence::Worse;
1856
1857  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1858  // are indistinguishable unless one of the following rules
1859  // applies:
1860
1861  //   A conversion that is not a conversion of a pointer, or
1862  //   pointer to member, to bool is better than another conversion
1863  //   that is such a conversion.
1864  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1865    return SCS2.isPointerConversionToBool()
1866             ? ImplicitConversionSequence::Better
1867             : ImplicitConversionSequence::Worse;
1868
1869  // C++ [over.ics.rank]p4b2:
1870  //
1871  //   If class B is derived directly or indirectly from class A,
1872  //   conversion of B* to A* is better than conversion of B* to
1873  //   void*, and conversion of A* to void* is better than conversion
1874  //   of B* to void*.
1875  bool SCS1ConvertsToVoid
1876    = SCS1.isPointerConversionToVoidPointer(Context);
1877  bool SCS2ConvertsToVoid
1878    = SCS2.isPointerConversionToVoidPointer(Context);
1879  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1880    // Exactly one of the conversion sequences is a conversion to
1881    // a void pointer; it's the worse conversion.
1882    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1883                              : ImplicitConversionSequence::Worse;
1884  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1885    // Neither conversion sequence converts to a void pointer; compare
1886    // their derived-to-base conversions.
1887    if (ImplicitConversionSequence::CompareKind DerivedCK
1888          = CompareDerivedToBaseConversions(SCS1, SCS2))
1889      return DerivedCK;
1890  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1891    // Both conversion sequences are conversions to void
1892    // pointers. Compare the source types to determine if there's an
1893    // inheritance relationship in their sources.
1894    QualType FromType1 = SCS1.getFromType();
1895    QualType FromType2 = SCS2.getFromType();
1896
1897    // Adjust the types we're converting from via the array-to-pointer
1898    // conversion, if we need to.
1899    if (SCS1.First == ICK_Array_To_Pointer)
1900      FromType1 = Context.getArrayDecayedType(FromType1);
1901    if (SCS2.First == ICK_Array_To_Pointer)
1902      FromType2 = Context.getArrayDecayedType(FromType2);
1903
1904    QualType FromPointee1
1905      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1906    QualType FromPointee2
1907      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1908
1909    if (IsDerivedFrom(FromPointee2, FromPointee1))
1910      return ImplicitConversionSequence::Better;
1911    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1912      return ImplicitConversionSequence::Worse;
1913
1914    // Objective-C++: If one interface is more specific than the
1915    // other, it is the better one.
1916    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1917    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1918    if (FromIface1 && FromIface1) {
1919      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1920        return ImplicitConversionSequence::Better;
1921      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1922        return ImplicitConversionSequence::Worse;
1923    }
1924  }
1925
1926  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1927  // bullet 3).
1928  if (ImplicitConversionSequence::CompareKind QualCK
1929        = CompareQualificationConversions(SCS1, SCS2))
1930    return QualCK;
1931
1932  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1933    // C++0x [over.ics.rank]p3b4:
1934    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1935    //      implicit object parameter of a non-static member function declared
1936    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1937    //      rvalue and S2 binds an lvalue reference.
1938    // FIXME: We don't know if we're dealing with the implicit object parameter,
1939    // or if the member function in this case has a ref qualifier.
1940    // (Of course, we don't have ref qualifiers yet.)
1941    if (SCS1.RRefBinding != SCS2.RRefBinding)
1942      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1943                              : ImplicitConversionSequence::Worse;
1944
1945    // C++ [over.ics.rank]p3b4:
1946    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1947    //      which the references refer are the same type except for
1948    //      top-level cv-qualifiers, and the type to which the reference
1949    //      initialized by S2 refers is more cv-qualified than the type
1950    //      to which the reference initialized by S1 refers.
1951    QualType T1 = SCS1.getToType(2);
1952    QualType T2 = SCS2.getToType(2);
1953    T1 = Context.getCanonicalType(T1);
1954    T2 = Context.getCanonicalType(T2);
1955    Qualifiers T1Quals, T2Quals;
1956    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1957    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1958    if (UnqualT1 == UnqualT2) {
1959      // If the type is an array type, promote the element qualifiers to the type
1960      // for comparison.
1961      if (isa<ArrayType>(T1) && T1Quals)
1962        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1963      if (isa<ArrayType>(T2) && T2Quals)
1964        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1965      if (T2.isMoreQualifiedThan(T1))
1966        return ImplicitConversionSequence::Better;
1967      else if (T1.isMoreQualifiedThan(T2))
1968        return ImplicitConversionSequence::Worse;
1969    }
1970  }
1971
1972  return ImplicitConversionSequence::Indistinguishable;
1973}
1974
1975/// CompareQualificationConversions - Compares two standard conversion
1976/// sequences to determine whether they can be ranked based on their
1977/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1978ImplicitConversionSequence::CompareKind
1979Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1980                                      const StandardConversionSequence& SCS2) {
1981  // C++ 13.3.3.2p3:
1982  //  -- S1 and S2 differ only in their qualification conversion and
1983  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1984  //     cv-qualification signature of type T1 is a proper subset of
1985  //     the cv-qualification signature of type T2, and S1 is not the
1986  //     deprecated string literal array-to-pointer conversion (4.2).
1987  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1988      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1989    return ImplicitConversionSequence::Indistinguishable;
1990
1991  // FIXME: the example in the standard doesn't use a qualification
1992  // conversion (!)
1993  QualType T1 = SCS1.getToType(2);
1994  QualType T2 = SCS2.getToType(2);
1995  T1 = Context.getCanonicalType(T1);
1996  T2 = Context.getCanonicalType(T2);
1997  Qualifiers T1Quals, T2Quals;
1998  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1999  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2000
2001  // If the types are the same, we won't learn anything by unwrapped
2002  // them.
2003  if (UnqualT1 == UnqualT2)
2004    return ImplicitConversionSequence::Indistinguishable;
2005
2006  // If the type is an array type, promote the element qualifiers to the type
2007  // for comparison.
2008  if (isa<ArrayType>(T1) && T1Quals)
2009    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2010  if (isa<ArrayType>(T2) && T2Quals)
2011    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2012
2013  ImplicitConversionSequence::CompareKind Result
2014    = ImplicitConversionSequence::Indistinguishable;
2015  while (UnwrapSimilarPointerTypes(T1, T2)) {
2016    // Within each iteration of the loop, we check the qualifiers to
2017    // determine if this still looks like a qualification
2018    // conversion. Then, if all is well, we unwrap one more level of
2019    // pointers or pointers-to-members and do it all again
2020    // until there are no more pointers or pointers-to-members left
2021    // to unwrap. This essentially mimics what
2022    // IsQualificationConversion does, but here we're checking for a
2023    // strict subset of qualifiers.
2024    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2025      // The qualifiers are the same, so this doesn't tell us anything
2026      // about how the sequences rank.
2027      ;
2028    else if (T2.isMoreQualifiedThan(T1)) {
2029      // T1 has fewer qualifiers, so it could be the better sequence.
2030      if (Result == ImplicitConversionSequence::Worse)
2031        // Neither has qualifiers that are a subset of the other's
2032        // qualifiers.
2033        return ImplicitConversionSequence::Indistinguishable;
2034
2035      Result = ImplicitConversionSequence::Better;
2036    } else if (T1.isMoreQualifiedThan(T2)) {
2037      // T2 has fewer qualifiers, so it could be the better sequence.
2038      if (Result == ImplicitConversionSequence::Better)
2039        // Neither has qualifiers that are a subset of the other's
2040        // qualifiers.
2041        return ImplicitConversionSequence::Indistinguishable;
2042
2043      Result = ImplicitConversionSequence::Worse;
2044    } else {
2045      // Qualifiers are disjoint.
2046      return ImplicitConversionSequence::Indistinguishable;
2047    }
2048
2049    // If the types after this point are equivalent, we're done.
2050    if (Context.hasSameUnqualifiedType(T1, T2))
2051      break;
2052  }
2053
2054  // Check that the winning standard conversion sequence isn't using
2055  // the deprecated string literal array to pointer conversion.
2056  switch (Result) {
2057  case ImplicitConversionSequence::Better:
2058    if (SCS1.DeprecatedStringLiteralToCharPtr)
2059      Result = ImplicitConversionSequence::Indistinguishable;
2060    break;
2061
2062  case ImplicitConversionSequence::Indistinguishable:
2063    break;
2064
2065  case ImplicitConversionSequence::Worse:
2066    if (SCS2.DeprecatedStringLiteralToCharPtr)
2067      Result = ImplicitConversionSequence::Indistinguishable;
2068    break;
2069  }
2070
2071  return Result;
2072}
2073
2074/// CompareDerivedToBaseConversions - Compares two standard conversion
2075/// sequences to determine whether they can be ranked based on their
2076/// various kinds of derived-to-base conversions (C++
2077/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2078/// conversions between Objective-C interface types.
2079ImplicitConversionSequence::CompareKind
2080Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2081                                      const StandardConversionSequence& SCS2) {
2082  QualType FromType1 = SCS1.getFromType();
2083  QualType ToType1 = SCS1.getToType(1);
2084  QualType FromType2 = SCS2.getFromType();
2085  QualType ToType2 = SCS2.getToType(1);
2086
2087  // Adjust the types we're converting from via the array-to-pointer
2088  // conversion, if we need to.
2089  if (SCS1.First == ICK_Array_To_Pointer)
2090    FromType1 = Context.getArrayDecayedType(FromType1);
2091  if (SCS2.First == ICK_Array_To_Pointer)
2092    FromType2 = Context.getArrayDecayedType(FromType2);
2093
2094  // Canonicalize all of the types.
2095  FromType1 = Context.getCanonicalType(FromType1);
2096  ToType1 = Context.getCanonicalType(ToType1);
2097  FromType2 = Context.getCanonicalType(FromType2);
2098  ToType2 = Context.getCanonicalType(ToType2);
2099
2100  // C++ [over.ics.rank]p4b3:
2101  //
2102  //   If class B is derived directly or indirectly from class A and
2103  //   class C is derived directly or indirectly from B,
2104  //
2105  // For Objective-C, we let A, B, and C also be Objective-C
2106  // interfaces.
2107
2108  // Compare based on pointer conversions.
2109  if (SCS1.Second == ICK_Pointer_Conversion &&
2110      SCS2.Second == ICK_Pointer_Conversion &&
2111      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2112      FromType1->isPointerType() && FromType2->isPointerType() &&
2113      ToType1->isPointerType() && ToType2->isPointerType()) {
2114    QualType FromPointee1
2115      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2116    QualType ToPointee1
2117      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2118    QualType FromPointee2
2119      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2120    QualType ToPointee2
2121      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2122
2123    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2124    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2125    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2126    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2127
2128    //   -- conversion of C* to B* is better than conversion of C* to A*,
2129    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2130      if (IsDerivedFrom(ToPointee1, ToPointee2))
2131        return ImplicitConversionSequence::Better;
2132      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2133        return ImplicitConversionSequence::Worse;
2134
2135      if (ToIface1 && ToIface2) {
2136        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2137          return ImplicitConversionSequence::Better;
2138        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2139          return ImplicitConversionSequence::Worse;
2140      }
2141    }
2142
2143    //   -- conversion of B* to A* is better than conversion of C* to A*,
2144    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2145      if (IsDerivedFrom(FromPointee2, FromPointee1))
2146        return ImplicitConversionSequence::Better;
2147      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2148        return ImplicitConversionSequence::Worse;
2149
2150      if (FromIface1 && FromIface2) {
2151        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2152          return ImplicitConversionSequence::Better;
2153        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2154          return ImplicitConversionSequence::Worse;
2155      }
2156    }
2157  }
2158
2159  // Ranking of member-pointer types.
2160  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2161      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2162      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2163    const MemberPointerType * FromMemPointer1 =
2164                                        FromType1->getAs<MemberPointerType>();
2165    const MemberPointerType * ToMemPointer1 =
2166                                          ToType1->getAs<MemberPointerType>();
2167    const MemberPointerType * FromMemPointer2 =
2168                                          FromType2->getAs<MemberPointerType>();
2169    const MemberPointerType * ToMemPointer2 =
2170                                          ToType2->getAs<MemberPointerType>();
2171    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2172    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2173    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2174    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2175    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2176    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2177    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2178    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2179    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2180    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2181      if (IsDerivedFrom(ToPointee1, ToPointee2))
2182        return ImplicitConversionSequence::Worse;
2183      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2184        return ImplicitConversionSequence::Better;
2185    }
2186    // conversion of B::* to C::* is better than conversion of A::* to C::*
2187    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2188      if (IsDerivedFrom(FromPointee1, FromPointee2))
2189        return ImplicitConversionSequence::Better;
2190      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2191        return ImplicitConversionSequence::Worse;
2192    }
2193  }
2194
2195  if (SCS1.Second == ICK_Derived_To_Base) {
2196    //   -- conversion of C to B is better than conversion of C to A,
2197    //   -- binding of an expression of type C to a reference of type
2198    //      B& is better than binding an expression of type C to a
2199    //      reference of type A&,
2200    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2201        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2202      if (IsDerivedFrom(ToType1, ToType2))
2203        return ImplicitConversionSequence::Better;
2204      else if (IsDerivedFrom(ToType2, ToType1))
2205        return ImplicitConversionSequence::Worse;
2206    }
2207
2208    //   -- conversion of B to A is better than conversion of C to A.
2209    //   -- binding of an expression of type B to a reference of type
2210    //      A& is better than binding an expression of type C to a
2211    //      reference of type A&,
2212    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2213        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2214      if (IsDerivedFrom(FromType2, FromType1))
2215        return ImplicitConversionSequence::Better;
2216      else if (IsDerivedFrom(FromType1, FromType2))
2217        return ImplicitConversionSequence::Worse;
2218    }
2219  }
2220
2221  return ImplicitConversionSequence::Indistinguishable;
2222}
2223
2224/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2225/// determine whether they are reference-related,
2226/// reference-compatible, reference-compatible with added
2227/// qualification, or incompatible, for use in C++ initialization by
2228/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2229/// type, and the first type (T1) is the pointee type of the reference
2230/// type being initialized.
2231Sema::ReferenceCompareResult
2232Sema::CompareReferenceRelationship(SourceLocation Loc,
2233                                   QualType OrigT1, QualType OrigT2,
2234                                   bool& DerivedToBase) {
2235  assert(!OrigT1->isReferenceType() &&
2236    "T1 must be the pointee type of the reference type");
2237  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2238
2239  QualType T1 = Context.getCanonicalType(OrigT1);
2240  QualType T2 = Context.getCanonicalType(OrigT2);
2241  Qualifiers T1Quals, T2Quals;
2242  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2243  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2244
2245  // C++ [dcl.init.ref]p4:
2246  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2247  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2248  //   T1 is a base class of T2.
2249  if (UnqualT1 == UnqualT2)
2250    DerivedToBase = false;
2251  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
2252           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
2253           IsDerivedFrom(UnqualT2, UnqualT1))
2254    DerivedToBase = true;
2255  else
2256    return Ref_Incompatible;
2257
2258  // At this point, we know that T1 and T2 are reference-related (at
2259  // least).
2260
2261  // If the type is an array type, promote the element qualifiers to the type
2262  // for comparison.
2263  if (isa<ArrayType>(T1) && T1Quals)
2264    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2265  if (isa<ArrayType>(T2) && T2Quals)
2266    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2267
2268  // C++ [dcl.init.ref]p4:
2269  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2270  //   reference-related to T2 and cv1 is the same cv-qualification
2271  //   as, or greater cv-qualification than, cv2. For purposes of
2272  //   overload resolution, cases for which cv1 is greater
2273  //   cv-qualification than cv2 are identified as
2274  //   reference-compatible with added qualification (see 13.3.3.2).
2275  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2276    return Ref_Compatible;
2277  else if (T1.isMoreQualifiedThan(T2))
2278    return Ref_Compatible_With_Added_Qualification;
2279  else
2280    return Ref_Related;
2281}
2282
2283/// \brief Compute an implicit conversion sequence for reference
2284/// initialization.
2285static ImplicitConversionSequence
2286TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2287                 SourceLocation DeclLoc,
2288                 bool SuppressUserConversions,
2289                 bool AllowExplicit) {
2290  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2291
2292  // Most paths end in a failed conversion.
2293  ImplicitConversionSequence ICS;
2294  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2295
2296  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2297  QualType T2 = Init->getType();
2298
2299  // If the initializer is the address of an overloaded function, try
2300  // to resolve the overloaded function. If all goes well, T2 is the
2301  // type of the resulting function.
2302  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2303    DeclAccessPair Found;
2304    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2305                                                                false, Found))
2306      T2 = Fn->getType();
2307  }
2308
2309  // Compute some basic properties of the types and the initializer.
2310  bool isRValRef = DeclType->isRValueReferenceType();
2311  bool DerivedToBase = false;
2312  Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context);
2313  Sema::ReferenceCompareResult RefRelationship
2314    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2315
2316
2317  // C++ [over.ics.ref]p3:
2318  //   Except for an implicit object parameter, for which see 13.3.1,
2319  //   a standard conversion sequence cannot be formed if it requires
2320  //   binding an lvalue reference to non-const to an rvalue or
2321  //   binding an rvalue reference to an lvalue.
2322  //
2323  // FIXME: DPG doesn't trust this code. It seems far too early to
2324  // abort because of a binding of an rvalue reference to an lvalue.
2325  if (isRValRef && InitLvalue == Expr::LV_Valid)
2326    return ICS;
2327
2328  // C++0x [dcl.init.ref]p16:
2329  //   A reference to type "cv1 T1" is initialized by an expression
2330  //   of type "cv2 T2" as follows:
2331
2332  //     -- If the initializer expression
2333  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2334  //          reference-compatible with "cv2 T2," or
2335  //
2336  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2337  if (InitLvalue == Expr::LV_Valid &&
2338      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2339    // C++ [over.ics.ref]p1:
2340    //   When a parameter of reference type binds directly (8.5.3)
2341    //   to an argument expression, the implicit conversion sequence
2342    //   is the identity conversion, unless the argument expression
2343    //   has a type that is a derived class of the parameter type,
2344    //   in which case the implicit conversion sequence is a
2345    //   derived-to-base Conversion (13.3.3.1).
2346    ICS.setStandard();
2347    ICS.Standard.First = ICK_Identity;
2348    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2349    ICS.Standard.Third = ICK_Identity;
2350    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2351    ICS.Standard.setToType(0, T2);
2352    ICS.Standard.setToType(1, T1);
2353    ICS.Standard.setToType(2, T1);
2354    ICS.Standard.ReferenceBinding = true;
2355    ICS.Standard.DirectBinding = true;
2356    ICS.Standard.RRefBinding = false;
2357    ICS.Standard.CopyConstructor = 0;
2358
2359    // Nothing more to do: the inaccessibility/ambiguity check for
2360    // derived-to-base conversions is suppressed when we're
2361    // computing the implicit conversion sequence (C++
2362    // [over.best.ics]p2).
2363    return ICS;
2364  }
2365
2366  //       -- has a class type (i.e., T2 is a class type), where T1 is
2367  //          not reference-related to T2, and can be implicitly
2368  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2369  //          is reference-compatible with "cv3 T3" 92) (this
2370  //          conversion is selected by enumerating the applicable
2371  //          conversion functions (13.3.1.6) and choosing the best
2372  //          one through overload resolution (13.3)),
2373  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2374      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2375      RefRelationship == Sema::Ref_Incompatible) {
2376    CXXRecordDecl *T2RecordDecl
2377      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2378
2379    OverloadCandidateSet CandidateSet(DeclLoc);
2380    const UnresolvedSetImpl *Conversions
2381      = T2RecordDecl->getVisibleConversionFunctions();
2382    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2383           E = Conversions->end(); I != E; ++I) {
2384      NamedDecl *D = *I;
2385      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2386      if (isa<UsingShadowDecl>(D))
2387        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2388
2389      FunctionTemplateDecl *ConvTemplate
2390        = dyn_cast<FunctionTemplateDecl>(D);
2391      CXXConversionDecl *Conv;
2392      if (ConvTemplate)
2393        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2394      else
2395        Conv = cast<CXXConversionDecl>(D);
2396
2397      // If the conversion function doesn't return a reference type,
2398      // it can't be considered for this conversion.
2399      if (Conv->getConversionType()->isLValueReferenceType() &&
2400          (AllowExplicit || !Conv->isExplicit())) {
2401        if (ConvTemplate)
2402          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2403                                         Init, DeclType, CandidateSet);
2404        else
2405          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2406                                 DeclType, CandidateSet);
2407      }
2408    }
2409
2410    OverloadCandidateSet::iterator Best;
2411    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2412    case OR_Success:
2413      // C++ [over.ics.ref]p1:
2414      //
2415      //   [...] If the parameter binds directly to the result of
2416      //   applying a conversion function to the argument
2417      //   expression, the implicit conversion sequence is a
2418      //   user-defined conversion sequence (13.3.3.1.2), with the
2419      //   second standard conversion sequence either an identity
2420      //   conversion or, if the conversion function returns an
2421      //   entity of a type that is a derived class of the parameter
2422      //   type, a derived-to-base Conversion.
2423      if (!Best->FinalConversion.DirectBinding)
2424        break;
2425
2426      ICS.setUserDefined();
2427      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2428      ICS.UserDefined.After = Best->FinalConversion;
2429      ICS.UserDefined.ConversionFunction = Best->Function;
2430      ICS.UserDefined.EllipsisConversion = false;
2431      assert(ICS.UserDefined.After.ReferenceBinding &&
2432             ICS.UserDefined.After.DirectBinding &&
2433             "Expected a direct reference binding!");
2434      return ICS;
2435
2436    case OR_Ambiguous:
2437      ICS.setAmbiguous();
2438      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2439           Cand != CandidateSet.end(); ++Cand)
2440        if (Cand->Viable)
2441          ICS.Ambiguous.addConversion(Cand->Function);
2442      return ICS;
2443
2444    case OR_No_Viable_Function:
2445    case OR_Deleted:
2446      // There was no suitable conversion, or we found a deleted
2447      // conversion; continue with other checks.
2448      break;
2449    }
2450  }
2451
2452  //     -- Otherwise, the reference shall be to a non-volatile const
2453  //        type (i.e., cv1 shall be const), or the reference shall be an
2454  //        rvalue reference and the initializer expression shall be an rvalue.
2455  //
2456  // We actually handle one oddity of C++ [over.ics.ref] at this
2457  // point, which is that, due to p2 (which short-circuits reference
2458  // binding by only attempting a simple conversion for non-direct
2459  // bindings) and p3's strange wording, we allow a const volatile
2460  // reference to bind to an rvalue. Hence the check for the presence
2461  // of "const" rather than checking for "const" being the only
2462  // qualifier.
2463  if (!isRValRef && !T1.isConstQualified())
2464    return ICS;
2465
2466  //       -- if T2 is a class type and
2467  //          -- the initializer expression is an rvalue and "cv1 T1"
2468  //             is reference-compatible with "cv2 T2," or
2469  //
2470  //          -- T1 is not reference-related to T2 and the initializer
2471  //             expression can be implicitly converted to an rvalue
2472  //             of type "cv3 T3" (this conversion is selected by
2473  //             enumerating the applicable conversion functions
2474  //             (13.3.1.6) and choosing the best one through overload
2475  //             resolution (13.3)),
2476  //
2477  //          then the reference is bound to the initializer
2478  //          expression rvalue in the first case and to the object
2479  //          that is the result of the conversion in the second case
2480  //          (or, in either case, to the appropriate base class
2481  //          subobject of the object).
2482  //
2483  // We're only checking the first case here, which is a direct
2484  // binding in C++0x but not in C++03.
2485  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2486      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2487    ICS.setStandard();
2488    ICS.Standard.First = ICK_Identity;
2489    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2490    ICS.Standard.Third = ICK_Identity;
2491    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2492    ICS.Standard.setToType(0, T2);
2493    ICS.Standard.setToType(1, T1);
2494    ICS.Standard.setToType(2, T1);
2495    ICS.Standard.ReferenceBinding = true;
2496    ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
2497    ICS.Standard.RRefBinding = isRValRef;
2498    ICS.Standard.CopyConstructor = 0;
2499    return ICS;
2500  }
2501
2502  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2503  //          initialized from the initializer expression using the
2504  //          rules for a non-reference copy initialization (8.5). The
2505  //          reference is then bound to the temporary. If T1 is
2506  //          reference-related to T2, cv1 must be the same
2507  //          cv-qualification as, or greater cv-qualification than,
2508  //          cv2; otherwise, the program is ill-formed.
2509  if (RefRelationship == Sema::Ref_Related) {
2510    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2511    // we would be reference-compatible or reference-compatible with
2512    // added qualification. But that wasn't the case, so the reference
2513    // initialization fails.
2514    return ICS;
2515  }
2516
2517  // If at least one of the types is a class type, the types are not
2518  // related, and we aren't allowed any user conversions, the
2519  // reference binding fails. This case is important for breaking
2520  // recursion, since TryImplicitConversion below will attempt to
2521  // create a temporary through the use of a copy constructor.
2522  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2523      (T1->isRecordType() || T2->isRecordType()))
2524    return ICS;
2525
2526  // C++ [over.ics.ref]p2:
2527  //   When a parameter of reference type is not bound directly to
2528  //   an argument expression, the conversion sequence is the one
2529  //   required to convert the argument expression to the
2530  //   underlying type of the reference according to
2531  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2532  //   to copy-initializing a temporary of the underlying type with
2533  //   the argument expression. Any difference in top-level
2534  //   cv-qualification is subsumed by the initialization itself
2535  //   and does not constitute a conversion.
2536  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2537                                /*AllowExplicit=*/false,
2538                                /*InOverloadResolution=*/false);
2539
2540  // Of course, that's still a reference binding.
2541  if (ICS.isStandard()) {
2542    ICS.Standard.ReferenceBinding = true;
2543    ICS.Standard.RRefBinding = isRValRef;
2544  } else if (ICS.isUserDefined()) {
2545    ICS.UserDefined.After.ReferenceBinding = true;
2546    ICS.UserDefined.After.RRefBinding = isRValRef;
2547  }
2548  return ICS;
2549}
2550
2551/// TryCopyInitialization - Try to copy-initialize a value of type
2552/// ToType from the expression From. Return the implicit conversion
2553/// sequence required to pass this argument, which may be a bad
2554/// conversion sequence (meaning that the argument cannot be passed to
2555/// a parameter of this type). If @p SuppressUserConversions, then we
2556/// do not permit any user-defined conversion sequences.
2557static ImplicitConversionSequence
2558TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
2559                      bool SuppressUserConversions,
2560                      bool InOverloadResolution) {
2561  if (ToType->isReferenceType())
2562    return TryReferenceInit(S, From, ToType,
2563                            /*FIXME:*/From->getLocStart(),
2564                            SuppressUserConversions,
2565                            /*AllowExplicit=*/false);
2566
2567  return S.TryImplicitConversion(From, ToType,
2568                                 SuppressUserConversions,
2569                                 /*AllowExplicit=*/false,
2570                                 InOverloadResolution);
2571}
2572
2573/// TryObjectArgumentInitialization - Try to initialize the object
2574/// parameter of the given member function (@c Method) from the
2575/// expression @p From.
2576ImplicitConversionSequence
2577Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2578                                      CXXMethodDecl *Method,
2579                                      CXXRecordDecl *ActingContext) {
2580  QualType ClassType = Context.getTypeDeclType(ActingContext);
2581  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2582  //                 const volatile object.
2583  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2584    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2585  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2586
2587  // Set up the conversion sequence as a "bad" conversion, to allow us
2588  // to exit early.
2589  ImplicitConversionSequence ICS;
2590
2591  // We need to have an object of class type.
2592  QualType FromType = OrigFromType;
2593  if (const PointerType *PT = FromType->getAs<PointerType>())
2594    FromType = PT->getPointeeType();
2595
2596  assert(FromType->isRecordType());
2597
2598  // The implicit object parameter is has the type "reference to cv X",
2599  // where X is the class of which the function is a member
2600  // (C++ [over.match.funcs]p4). However, when finding an implicit
2601  // conversion sequence for the argument, we are not allowed to
2602  // create temporaries or perform user-defined conversions
2603  // (C++ [over.match.funcs]p5). We perform a simplified version of
2604  // reference binding here, that allows class rvalues to bind to
2605  // non-constant references.
2606
2607  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2608  // with the implicit object parameter (C++ [over.match.funcs]p5).
2609  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2610  if (ImplicitParamType.getCVRQualifiers()
2611                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2612      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2613    ICS.setBad(BadConversionSequence::bad_qualifiers,
2614               OrigFromType, ImplicitParamType);
2615    return ICS;
2616  }
2617
2618  // Check that we have either the same type or a derived type. It
2619  // affects the conversion rank.
2620  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2621  ImplicitConversionKind SecondKind;
2622  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2623    SecondKind = ICK_Identity;
2624  } else if (IsDerivedFrom(FromType, ClassType))
2625    SecondKind = ICK_Derived_To_Base;
2626  else {
2627    ICS.setBad(BadConversionSequence::unrelated_class,
2628               FromType, ImplicitParamType);
2629    return ICS;
2630  }
2631
2632  // Success. Mark this as a reference binding.
2633  ICS.setStandard();
2634  ICS.Standard.setAsIdentityConversion();
2635  ICS.Standard.Second = SecondKind;
2636  ICS.Standard.setFromType(FromType);
2637  ICS.Standard.setAllToTypes(ImplicitParamType);
2638  ICS.Standard.ReferenceBinding = true;
2639  ICS.Standard.DirectBinding = true;
2640  ICS.Standard.RRefBinding = false;
2641  return ICS;
2642}
2643
2644/// PerformObjectArgumentInitialization - Perform initialization of
2645/// the implicit object parameter for the given Method with the given
2646/// expression.
2647bool
2648Sema::PerformObjectArgumentInitialization(Expr *&From,
2649                                          NestedNameSpecifier *Qualifier,
2650                                          NamedDecl *FoundDecl,
2651                                          CXXMethodDecl *Method) {
2652  QualType FromRecordType, DestType;
2653  QualType ImplicitParamRecordType  =
2654    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2655
2656  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2657    FromRecordType = PT->getPointeeType();
2658    DestType = Method->getThisType(Context);
2659  } else {
2660    FromRecordType = From->getType();
2661    DestType = ImplicitParamRecordType;
2662  }
2663
2664  // Note that we always use the true parent context when performing
2665  // the actual argument initialization.
2666  ImplicitConversionSequence ICS
2667    = TryObjectArgumentInitialization(From->getType(), Method,
2668                                      Method->getParent());
2669  if (ICS.isBad())
2670    return Diag(From->getSourceRange().getBegin(),
2671                diag::err_implicit_object_parameter_init)
2672       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2673
2674  if (ICS.Standard.Second == ICK_Derived_To_Base)
2675    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
2676
2677  if (!Context.hasSameType(From->getType(), DestType))
2678    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
2679                      /*isLvalue=*/!From->getType()->isPointerType());
2680  return false;
2681}
2682
2683/// TryContextuallyConvertToBool - Attempt to contextually convert the
2684/// expression From to bool (C++0x [conv]p3).
2685ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2686  return TryImplicitConversion(From, Context.BoolTy,
2687                               // FIXME: Are these flags correct?
2688                               /*SuppressUserConversions=*/false,
2689                               /*AllowExplicit=*/true,
2690                               /*InOverloadResolution=*/false);
2691}
2692
2693/// PerformContextuallyConvertToBool - Perform a contextual conversion
2694/// of the expression From to bool (C++0x [conv]p3).
2695bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2696  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2697  if (!ICS.isBad())
2698    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2699
2700  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2701    return  Diag(From->getSourceRange().getBegin(),
2702                 diag::err_typecheck_bool_condition)
2703                  << From->getType() << From->getSourceRange();
2704  return true;
2705}
2706
2707/// AddOverloadCandidate - Adds the given function to the set of
2708/// candidate functions, using the given function call arguments.  If
2709/// @p SuppressUserConversions, then don't allow user-defined
2710/// conversions via constructors or conversion operators.
2711///
2712/// \para PartialOverloading true if we are performing "partial" overloading
2713/// based on an incomplete set of function arguments. This feature is used by
2714/// code completion.
2715void
2716Sema::AddOverloadCandidate(FunctionDecl *Function,
2717                           DeclAccessPair FoundDecl,
2718                           Expr **Args, unsigned NumArgs,
2719                           OverloadCandidateSet& CandidateSet,
2720                           bool SuppressUserConversions,
2721                           bool PartialOverloading) {
2722  const FunctionProtoType* Proto
2723    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2724  assert(Proto && "Functions without a prototype cannot be overloaded");
2725  assert(!Function->getDescribedFunctionTemplate() &&
2726         "Use AddTemplateOverloadCandidate for function templates");
2727
2728  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2729    if (!isa<CXXConstructorDecl>(Method)) {
2730      // If we get here, it's because we're calling a member function
2731      // that is named without a member access expression (e.g.,
2732      // "this->f") that was either written explicitly or created
2733      // implicitly. This can happen with a qualified call to a member
2734      // function, e.g., X::f(). We use an empty type for the implied
2735      // object argument (C++ [over.call.func]p3), and the acting context
2736      // is irrelevant.
2737      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
2738                         QualType(), Args, NumArgs, CandidateSet,
2739                         SuppressUserConversions);
2740      return;
2741    }
2742    // We treat a constructor like a non-member function, since its object
2743    // argument doesn't participate in overload resolution.
2744  }
2745
2746  if (!CandidateSet.isNewCandidate(Function))
2747    return;
2748
2749  // Overload resolution is always an unevaluated context.
2750  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2751
2752  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2753    // C++ [class.copy]p3:
2754    //   A member function template is never instantiated to perform the copy
2755    //   of a class object to an object of its class type.
2756    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2757    if (NumArgs == 1 &&
2758        Constructor->isCopyConstructorLikeSpecialization() &&
2759        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
2760         IsDerivedFrom(Args[0]->getType(), ClassType)))
2761      return;
2762  }
2763
2764  // Add this candidate
2765  CandidateSet.push_back(OverloadCandidate());
2766  OverloadCandidate& Candidate = CandidateSet.back();
2767  Candidate.FoundDecl = FoundDecl;
2768  Candidate.Function = Function;
2769  Candidate.Viable = true;
2770  Candidate.IsSurrogate = false;
2771  Candidate.IgnoreObjectArgument = false;
2772
2773  unsigned NumArgsInProto = Proto->getNumArgs();
2774
2775  // (C++ 13.3.2p2): A candidate function having fewer than m
2776  // parameters is viable only if it has an ellipsis in its parameter
2777  // list (8.3.5).
2778  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2779      !Proto->isVariadic()) {
2780    Candidate.Viable = false;
2781    Candidate.FailureKind = ovl_fail_too_many_arguments;
2782    return;
2783  }
2784
2785  // (C++ 13.3.2p2): A candidate function having more than m parameters
2786  // is viable only if the (m+1)st parameter has a default argument
2787  // (8.3.6). For the purposes of overload resolution, the
2788  // parameter list is truncated on the right, so that there are
2789  // exactly m parameters.
2790  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2791  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2792    // Not enough arguments.
2793    Candidate.Viable = false;
2794    Candidate.FailureKind = ovl_fail_too_few_arguments;
2795    return;
2796  }
2797
2798  // Determine the implicit conversion sequences for each of the
2799  // arguments.
2800  Candidate.Conversions.resize(NumArgs);
2801  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2802    if (ArgIdx < NumArgsInProto) {
2803      // (C++ 13.3.2p3): for F to be a viable function, there shall
2804      // exist for each argument an implicit conversion sequence
2805      // (13.3.3.1) that converts that argument to the corresponding
2806      // parameter of F.
2807      QualType ParamType = Proto->getArgType(ArgIdx);
2808      Candidate.Conversions[ArgIdx]
2809        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
2810                                SuppressUserConversions,
2811                                /*InOverloadResolution=*/true);
2812      if (Candidate.Conversions[ArgIdx].isBad()) {
2813        Candidate.Viable = false;
2814        Candidate.FailureKind = ovl_fail_bad_conversion;
2815        break;
2816      }
2817    } else {
2818      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2819      // argument for which there is no corresponding parameter is
2820      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2821      Candidate.Conversions[ArgIdx].setEllipsis();
2822    }
2823  }
2824}
2825
2826/// \brief Add all of the function declarations in the given function set to
2827/// the overload canddiate set.
2828void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
2829                                 Expr **Args, unsigned NumArgs,
2830                                 OverloadCandidateSet& CandidateSet,
2831                                 bool SuppressUserConversions) {
2832  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
2833    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
2834    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2835      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2836        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
2837                           cast<CXXMethodDecl>(FD)->getParent(),
2838                           Args[0]->getType(), Args + 1, NumArgs - 1,
2839                           CandidateSet, SuppressUserConversions);
2840      else
2841        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
2842                             SuppressUserConversions);
2843    } else {
2844      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
2845      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2846          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2847        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
2848                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2849                                   /*FIXME: explicit args */ 0,
2850                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2851                                   CandidateSet,
2852                                   SuppressUserConversions);
2853      else
2854        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
2855                                     /*FIXME: explicit args */ 0,
2856                                     Args, NumArgs, CandidateSet,
2857                                     SuppressUserConversions);
2858    }
2859  }
2860}
2861
2862/// AddMethodCandidate - Adds a named decl (which is some kind of
2863/// method) as a method candidate to the given overload set.
2864void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
2865                              QualType ObjectType,
2866                              Expr **Args, unsigned NumArgs,
2867                              OverloadCandidateSet& CandidateSet,
2868                              bool SuppressUserConversions) {
2869  NamedDecl *Decl = FoundDecl.getDecl();
2870  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2871
2872  if (isa<UsingShadowDecl>(Decl))
2873    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2874
2875  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2876    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2877           "Expected a member function template");
2878    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
2879                               /*ExplicitArgs*/ 0,
2880                               ObjectType, Args, NumArgs,
2881                               CandidateSet,
2882                               SuppressUserConversions);
2883  } else {
2884    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
2885                       ObjectType, Args, NumArgs,
2886                       CandidateSet, SuppressUserConversions);
2887  }
2888}
2889
2890/// AddMethodCandidate - Adds the given C++ member function to the set
2891/// of candidate functions, using the given function call arguments
2892/// and the object argument (@c Object). For example, in a call
2893/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2894/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2895/// allow user-defined conversions via constructors or conversion
2896/// operators.
2897void
2898Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
2899                         CXXRecordDecl *ActingContext, QualType ObjectType,
2900                         Expr **Args, unsigned NumArgs,
2901                         OverloadCandidateSet& CandidateSet,
2902                         bool SuppressUserConversions) {
2903  const FunctionProtoType* Proto
2904    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2905  assert(Proto && "Methods without a prototype cannot be overloaded");
2906  assert(!isa<CXXConstructorDecl>(Method) &&
2907         "Use AddOverloadCandidate for constructors");
2908
2909  if (!CandidateSet.isNewCandidate(Method))
2910    return;
2911
2912  // Overload resolution is always an unevaluated context.
2913  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2914
2915  // Add this candidate
2916  CandidateSet.push_back(OverloadCandidate());
2917  OverloadCandidate& Candidate = CandidateSet.back();
2918  Candidate.FoundDecl = FoundDecl;
2919  Candidate.Function = Method;
2920  Candidate.IsSurrogate = false;
2921  Candidate.IgnoreObjectArgument = false;
2922
2923  unsigned NumArgsInProto = Proto->getNumArgs();
2924
2925  // (C++ 13.3.2p2): A candidate function having fewer than m
2926  // parameters is viable only if it has an ellipsis in its parameter
2927  // list (8.3.5).
2928  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2929    Candidate.Viable = false;
2930    Candidate.FailureKind = ovl_fail_too_many_arguments;
2931    return;
2932  }
2933
2934  // (C++ 13.3.2p2): A candidate function having more than m parameters
2935  // is viable only if the (m+1)st parameter has a default argument
2936  // (8.3.6). For the purposes of overload resolution, the
2937  // parameter list is truncated on the right, so that there are
2938  // exactly m parameters.
2939  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2940  if (NumArgs < MinRequiredArgs) {
2941    // Not enough arguments.
2942    Candidate.Viable = false;
2943    Candidate.FailureKind = ovl_fail_too_few_arguments;
2944    return;
2945  }
2946
2947  Candidate.Viable = true;
2948  Candidate.Conversions.resize(NumArgs + 1);
2949
2950  if (Method->isStatic() || ObjectType.isNull())
2951    // The implicit object argument is ignored.
2952    Candidate.IgnoreObjectArgument = true;
2953  else {
2954    // Determine the implicit conversion sequence for the object
2955    // parameter.
2956    Candidate.Conversions[0]
2957      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2958    if (Candidate.Conversions[0].isBad()) {
2959      Candidate.Viable = false;
2960      Candidate.FailureKind = ovl_fail_bad_conversion;
2961      return;
2962    }
2963  }
2964
2965  // Determine the implicit conversion sequences for each of the
2966  // arguments.
2967  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2968    if (ArgIdx < NumArgsInProto) {
2969      // (C++ 13.3.2p3): for F to be a viable function, there shall
2970      // exist for each argument an implicit conversion sequence
2971      // (13.3.3.1) that converts that argument to the corresponding
2972      // parameter of F.
2973      QualType ParamType = Proto->getArgType(ArgIdx);
2974      Candidate.Conversions[ArgIdx + 1]
2975        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
2976                                SuppressUserConversions,
2977                                /*InOverloadResolution=*/true);
2978      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2979        Candidate.Viable = false;
2980        Candidate.FailureKind = ovl_fail_bad_conversion;
2981        break;
2982      }
2983    } else {
2984      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2985      // argument for which there is no corresponding parameter is
2986      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2987      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2988    }
2989  }
2990}
2991
2992/// \brief Add a C++ member function template as a candidate to the candidate
2993/// set, using template argument deduction to produce an appropriate member
2994/// function template specialization.
2995void
2996Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2997                                 DeclAccessPair FoundDecl,
2998                                 CXXRecordDecl *ActingContext,
2999                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3000                                 QualType ObjectType,
3001                                 Expr **Args, unsigned NumArgs,
3002                                 OverloadCandidateSet& CandidateSet,
3003                                 bool SuppressUserConversions) {
3004  if (!CandidateSet.isNewCandidate(MethodTmpl))
3005    return;
3006
3007  // C++ [over.match.funcs]p7:
3008  //   In each case where a candidate is a function template, candidate
3009  //   function template specializations are generated using template argument
3010  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3011  //   candidate functions in the usual way.113) A given name can refer to one
3012  //   or more function templates and also to a set of overloaded non-template
3013  //   functions. In such a case, the candidate functions generated from each
3014  //   function template are combined with the set of non-template candidate
3015  //   functions.
3016  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3017  FunctionDecl *Specialization = 0;
3018  if (TemplateDeductionResult Result
3019      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3020                                Args, NumArgs, Specialization, Info)) {
3021        // FIXME: Record what happened with template argument deduction, so
3022        // that we can give the user a beautiful diagnostic.
3023        (void)Result;
3024        return;
3025      }
3026
3027  // Add the function template specialization produced by template argument
3028  // deduction as a candidate.
3029  assert(Specialization && "Missing member function template specialization?");
3030  assert(isa<CXXMethodDecl>(Specialization) &&
3031         "Specialization is not a member function?");
3032  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3033                     ActingContext, ObjectType, Args, NumArgs,
3034                     CandidateSet, SuppressUserConversions);
3035}
3036
3037/// \brief Add a C++ function template specialization as a candidate
3038/// in the candidate set, using template argument deduction to produce
3039/// an appropriate function template specialization.
3040void
3041Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3042                                   DeclAccessPair FoundDecl,
3043                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3044                                   Expr **Args, unsigned NumArgs,
3045                                   OverloadCandidateSet& CandidateSet,
3046                                   bool SuppressUserConversions) {
3047  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3048    return;
3049
3050  // C++ [over.match.funcs]p7:
3051  //   In each case where a candidate is a function template, candidate
3052  //   function template specializations are generated using template argument
3053  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3054  //   candidate functions in the usual way.113) A given name can refer to one
3055  //   or more function templates and also to a set of overloaded non-template
3056  //   functions. In such a case, the candidate functions generated from each
3057  //   function template are combined with the set of non-template candidate
3058  //   functions.
3059  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3060  FunctionDecl *Specialization = 0;
3061  if (TemplateDeductionResult Result
3062        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3063                                  Args, NumArgs, Specialization, Info)) {
3064    CandidateSet.push_back(OverloadCandidate());
3065    OverloadCandidate &Candidate = CandidateSet.back();
3066    Candidate.FoundDecl = FoundDecl;
3067    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3068    Candidate.Viable = false;
3069    Candidate.FailureKind = ovl_fail_bad_deduction;
3070    Candidate.IsSurrogate = false;
3071    Candidate.IgnoreObjectArgument = false;
3072
3073    // TODO: record more information about failed template arguments
3074    Candidate.DeductionFailure.Result = Result;
3075    Candidate.DeductionFailure.TemplateParameter = Info.Param.getOpaqueValue();
3076    return;
3077  }
3078
3079  // Add the function template specialization produced by template argument
3080  // deduction as a candidate.
3081  assert(Specialization && "Missing function template specialization?");
3082  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3083                       SuppressUserConversions);
3084}
3085
3086/// AddConversionCandidate - Add a C++ conversion function as a
3087/// candidate in the candidate set (C++ [over.match.conv],
3088/// C++ [over.match.copy]). From is the expression we're converting from,
3089/// and ToType is the type that we're eventually trying to convert to
3090/// (which may or may not be the same type as the type that the
3091/// conversion function produces).
3092void
3093Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3094                             DeclAccessPair FoundDecl,
3095                             CXXRecordDecl *ActingContext,
3096                             Expr *From, QualType ToType,
3097                             OverloadCandidateSet& CandidateSet) {
3098  assert(!Conversion->getDescribedFunctionTemplate() &&
3099         "Conversion function templates use AddTemplateConversionCandidate");
3100  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3101  if (!CandidateSet.isNewCandidate(Conversion))
3102    return;
3103
3104  // Overload resolution is always an unevaluated context.
3105  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3106
3107  // Add this candidate
3108  CandidateSet.push_back(OverloadCandidate());
3109  OverloadCandidate& Candidate = CandidateSet.back();
3110  Candidate.FoundDecl = FoundDecl;
3111  Candidate.Function = Conversion;
3112  Candidate.IsSurrogate = false;
3113  Candidate.IgnoreObjectArgument = false;
3114  Candidate.FinalConversion.setAsIdentityConversion();
3115  Candidate.FinalConversion.setFromType(ConvType);
3116  Candidate.FinalConversion.setAllToTypes(ToType);
3117
3118  // Determine the implicit conversion sequence for the implicit
3119  // object parameter.
3120  Candidate.Viable = true;
3121  Candidate.Conversions.resize(1);
3122  Candidate.Conversions[0]
3123    = TryObjectArgumentInitialization(From->getType(), Conversion,
3124                                      ActingContext);
3125  // Conversion functions to a different type in the base class is visible in
3126  // the derived class.  So, a derived to base conversion should not participate
3127  // in overload resolution.
3128  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3129    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3130  if (Candidate.Conversions[0].isBad()) {
3131    Candidate.Viable = false;
3132    Candidate.FailureKind = ovl_fail_bad_conversion;
3133    return;
3134  }
3135
3136  // We won't go through a user-define type conversion function to convert a
3137  // derived to base as such conversions are given Conversion Rank. They only
3138  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3139  QualType FromCanon
3140    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3141  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3142  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3143    Candidate.Viable = false;
3144    Candidate.FailureKind = ovl_fail_trivial_conversion;
3145    return;
3146  }
3147
3148  // To determine what the conversion from the result of calling the
3149  // conversion function to the type we're eventually trying to
3150  // convert to (ToType), we need to synthesize a call to the
3151  // conversion function and attempt copy initialization from it. This
3152  // makes sure that we get the right semantics with respect to
3153  // lvalues/rvalues and the type. Fortunately, we can allocate this
3154  // call on the stack and we don't need its arguments to be
3155  // well-formed.
3156  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3157                            From->getLocStart());
3158  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3159                                CastExpr::CK_FunctionToPointerDecay,
3160                                &ConversionRef, CXXBaseSpecifierArray(), false);
3161
3162  // Note that it is safe to allocate CallExpr on the stack here because
3163  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3164  // allocator).
3165  CallExpr Call(Context, &ConversionFn, 0, 0,
3166                Conversion->getConversionType().getNonReferenceType(),
3167                From->getLocStart());
3168  ImplicitConversionSequence ICS =
3169    TryCopyInitialization(*this, &Call, ToType,
3170                          /*SuppressUserConversions=*/true,
3171                          /*InOverloadResolution=*/false);
3172
3173  switch (ICS.getKind()) {
3174  case ImplicitConversionSequence::StandardConversion:
3175    Candidate.FinalConversion = ICS.Standard;
3176
3177    // C++ [over.ics.user]p3:
3178    //   If the user-defined conversion is specified by a specialization of a
3179    //   conversion function template, the second standard conversion sequence
3180    //   shall have exact match rank.
3181    if (Conversion->getPrimaryTemplate() &&
3182        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3183      Candidate.Viable = false;
3184      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3185    }
3186
3187    break;
3188
3189  case ImplicitConversionSequence::BadConversion:
3190    Candidate.Viable = false;
3191    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3192    break;
3193
3194  default:
3195    assert(false &&
3196           "Can only end up with a standard conversion sequence or failure");
3197  }
3198}
3199
3200/// \brief Adds a conversion function template specialization
3201/// candidate to the overload set, using template argument deduction
3202/// to deduce the template arguments of the conversion function
3203/// template from the type that we are converting to (C++
3204/// [temp.deduct.conv]).
3205void
3206Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3207                                     DeclAccessPair FoundDecl,
3208                                     CXXRecordDecl *ActingDC,
3209                                     Expr *From, QualType ToType,
3210                                     OverloadCandidateSet &CandidateSet) {
3211  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3212         "Only conversion function templates permitted here");
3213
3214  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3215    return;
3216
3217  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3218  CXXConversionDecl *Specialization = 0;
3219  if (TemplateDeductionResult Result
3220        = DeduceTemplateArguments(FunctionTemplate, ToType,
3221                                  Specialization, Info)) {
3222    // FIXME: Record what happened with template argument deduction, so
3223    // that we can give the user a beautiful diagnostic.
3224    (void)Result;
3225    return;
3226  }
3227
3228  // Add the conversion function template specialization produced by
3229  // template argument deduction as a candidate.
3230  assert(Specialization && "Missing function template specialization?");
3231  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3232                         CandidateSet);
3233}
3234
3235/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3236/// converts the given @c Object to a function pointer via the
3237/// conversion function @c Conversion, and then attempts to call it
3238/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3239/// the type of function that we'll eventually be calling.
3240void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3241                                 DeclAccessPair FoundDecl,
3242                                 CXXRecordDecl *ActingContext,
3243                                 const FunctionProtoType *Proto,
3244                                 QualType ObjectType,
3245                                 Expr **Args, unsigned NumArgs,
3246                                 OverloadCandidateSet& CandidateSet) {
3247  if (!CandidateSet.isNewCandidate(Conversion))
3248    return;
3249
3250  // Overload resolution is always an unevaluated context.
3251  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3252
3253  CandidateSet.push_back(OverloadCandidate());
3254  OverloadCandidate& Candidate = CandidateSet.back();
3255  Candidate.FoundDecl = FoundDecl;
3256  Candidate.Function = 0;
3257  Candidate.Surrogate = Conversion;
3258  Candidate.Viable = true;
3259  Candidate.IsSurrogate = true;
3260  Candidate.IgnoreObjectArgument = false;
3261  Candidate.Conversions.resize(NumArgs + 1);
3262
3263  // Determine the implicit conversion sequence for the implicit
3264  // object parameter.
3265  ImplicitConversionSequence ObjectInit
3266    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3267  if (ObjectInit.isBad()) {
3268    Candidate.Viable = false;
3269    Candidate.FailureKind = ovl_fail_bad_conversion;
3270    Candidate.Conversions[0] = ObjectInit;
3271    return;
3272  }
3273
3274  // The first conversion is actually a user-defined conversion whose
3275  // first conversion is ObjectInit's standard conversion (which is
3276  // effectively a reference binding). Record it as such.
3277  Candidate.Conversions[0].setUserDefined();
3278  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3279  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3280  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3281  Candidate.Conversions[0].UserDefined.After
3282    = Candidate.Conversions[0].UserDefined.Before;
3283  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3284
3285  // Find the
3286  unsigned NumArgsInProto = Proto->getNumArgs();
3287
3288  // (C++ 13.3.2p2): A candidate function having fewer than m
3289  // parameters is viable only if it has an ellipsis in its parameter
3290  // list (8.3.5).
3291  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3292    Candidate.Viable = false;
3293    Candidate.FailureKind = ovl_fail_too_many_arguments;
3294    return;
3295  }
3296
3297  // Function types don't have any default arguments, so just check if
3298  // we have enough arguments.
3299  if (NumArgs < NumArgsInProto) {
3300    // Not enough arguments.
3301    Candidate.Viable = false;
3302    Candidate.FailureKind = ovl_fail_too_few_arguments;
3303    return;
3304  }
3305
3306  // Determine the implicit conversion sequences for each of the
3307  // arguments.
3308  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3309    if (ArgIdx < NumArgsInProto) {
3310      // (C++ 13.3.2p3): for F to be a viable function, there shall
3311      // exist for each argument an implicit conversion sequence
3312      // (13.3.3.1) that converts that argument to the corresponding
3313      // parameter of F.
3314      QualType ParamType = Proto->getArgType(ArgIdx);
3315      Candidate.Conversions[ArgIdx + 1]
3316        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3317                                /*SuppressUserConversions=*/false,
3318                                /*InOverloadResolution=*/false);
3319      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3320        Candidate.Viable = false;
3321        Candidate.FailureKind = ovl_fail_bad_conversion;
3322        break;
3323      }
3324    } else {
3325      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3326      // argument for which there is no corresponding parameter is
3327      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3328      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3329    }
3330  }
3331}
3332
3333/// \brief Add overload candidates for overloaded operators that are
3334/// member functions.
3335///
3336/// Add the overloaded operator candidates that are member functions
3337/// for the operator Op that was used in an operator expression such
3338/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3339/// CandidateSet will store the added overload candidates. (C++
3340/// [over.match.oper]).
3341void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3342                                       SourceLocation OpLoc,
3343                                       Expr **Args, unsigned NumArgs,
3344                                       OverloadCandidateSet& CandidateSet,
3345                                       SourceRange OpRange) {
3346  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3347
3348  // C++ [over.match.oper]p3:
3349  //   For a unary operator @ with an operand of a type whose
3350  //   cv-unqualified version is T1, and for a binary operator @ with
3351  //   a left operand of a type whose cv-unqualified version is T1 and
3352  //   a right operand of a type whose cv-unqualified version is T2,
3353  //   three sets of candidate functions, designated member
3354  //   candidates, non-member candidates and built-in candidates, are
3355  //   constructed as follows:
3356  QualType T1 = Args[0]->getType();
3357  QualType T2;
3358  if (NumArgs > 1)
3359    T2 = Args[1]->getType();
3360
3361  //     -- If T1 is a class type, the set of member candidates is the
3362  //        result of the qualified lookup of T1::operator@
3363  //        (13.3.1.1.1); otherwise, the set of member candidates is
3364  //        empty.
3365  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3366    // Complete the type if it can be completed. Otherwise, we're done.
3367    if (RequireCompleteType(OpLoc, T1, PDiag()))
3368      return;
3369
3370    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3371    LookupQualifiedName(Operators, T1Rec->getDecl());
3372    Operators.suppressDiagnostics();
3373
3374    for (LookupResult::iterator Oper = Operators.begin(),
3375                             OperEnd = Operators.end();
3376         Oper != OperEnd;
3377         ++Oper)
3378      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3379                         Args + 1, NumArgs - 1, CandidateSet,
3380                         /* SuppressUserConversions = */ false);
3381  }
3382}
3383
3384/// AddBuiltinCandidate - Add a candidate for a built-in
3385/// operator. ResultTy and ParamTys are the result and parameter types
3386/// of the built-in candidate, respectively. Args and NumArgs are the
3387/// arguments being passed to the candidate. IsAssignmentOperator
3388/// should be true when this built-in candidate is an assignment
3389/// operator. NumContextualBoolArguments is the number of arguments
3390/// (at the beginning of the argument list) that will be contextually
3391/// converted to bool.
3392void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3393                               Expr **Args, unsigned NumArgs,
3394                               OverloadCandidateSet& CandidateSet,
3395                               bool IsAssignmentOperator,
3396                               unsigned NumContextualBoolArguments) {
3397  // Overload resolution is always an unevaluated context.
3398  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3399
3400  // Add this candidate
3401  CandidateSet.push_back(OverloadCandidate());
3402  OverloadCandidate& Candidate = CandidateSet.back();
3403  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3404  Candidate.Function = 0;
3405  Candidate.IsSurrogate = false;
3406  Candidate.IgnoreObjectArgument = false;
3407  Candidate.BuiltinTypes.ResultTy = ResultTy;
3408  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3409    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3410
3411  // Determine the implicit conversion sequences for each of the
3412  // arguments.
3413  Candidate.Viable = true;
3414  Candidate.Conversions.resize(NumArgs);
3415  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3416    // C++ [over.match.oper]p4:
3417    //   For the built-in assignment operators, conversions of the
3418    //   left operand are restricted as follows:
3419    //     -- no temporaries are introduced to hold the left operand, and
3420    //     -- no user-defined conversions are applied to the left
3421    //        operand to achieve a type match with the left-most
3422    //        parameter of a built-in candidate.
3423    //
3424    // We block these conversions by turning off user-defined
3425    // conversions, since that is the only way that initialization of
3426    // a reference to a non-class type can occur from something that
3427    // is not of the same type.
3428    if (ArgIdx < NumContextualBoolArguments) {
3429      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3430             "Contextual conversion to bool requires bool type");
3431      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3432    } else {
3433      Candidate.Conversions[ArgIdx]
3434        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
3435                                ArgIdx == 0 && IsAssignmentOperator,
3436                                /*InOverloadResolution=*/false);
3437    }
3438    if (Candidate.Conversions[ArgIdx].isBad()) {
3439      Candidate.Viable = false;
3440      Candidate.FailureKind = ovl_fail_bad_conversion;
3441      break;
3442    }
3443  }
3444}
3445
3446/// BuiltinCandidateTypeSet - A set of types that will be used for the
3447/// candidate operator functions for built-in operators (C++
3448/// [over.built]). The types are separated into pointer types and
3449/// enumeration types.
3450class BuiltinCandidateTypeSet  {
3451  /// TypeSet - A set of types.
3452  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3453
3454  /// PointerTypes - The set of pointer types that will be used in the
3455  /// built-in candidates.
3456  TypeSet PointerTypes;
3457
3458  /// MemberPointerTypes - The set of member pointer types that will be
3459  /// used in the built-in candidates.
3460  TypeSet MemberPointerTypes;
3461
3462  /// EnumerationTypes - The set of enumeration types that will be
3463  /// used in the built-in candidates.
3464  TypeSet EnumerationTypes;
3465
3466  /// Sema - The semantic analysis instance where we are building the
3467  /// candidate type set.
3468  Sema &SemaRef;
3469
3470  /// Context - The AST context in which we will build the type sets.
3471  ASTContext &Context;
3472
3473  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3474                                               const Qualifiers &VisibleQuals);
3475  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3476
3477public:
3478  /// iterator - Iterates through the types that are part of the set.
3479  typedef TypeSet::iterator iterator;
3480
3481  BuiltinCandidateTypeSet(Sema &SemaRef)
3482    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3483
3484  void AddTypesConvertedFrom(QualType Ty,
3485                             SourceLocation Loc,
3486                             bool AllowUserConversions,
3487                             bool AllowExplicitConversions,
3488                             const Qualifiers &VisibleTypeConversionsQuals);
3489
3490  /// pointer_begin - First pointer type found;
3491  iterator pointer_begin() { return PointerTypes.begin(); }
3492
3493  /// pointer_end - Past the last pointer type found;
3494  iterator pointer_end() { return PointerTypes.end(); }
3495
3496  /// member_pointer_begin - First member pointer type found;
3497  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3498
3499  /// member_pointer_end - Past the last member pointer type found;
3500  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3501
3502  /// enumeration_begin - First enumeration type found;
3503  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3504
3505  /// enumeration_end - Past the last enumeration type found;
3506  iterator enumeration_end() { return EnumerationTypes.end(); }
3507};
3508
3509/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3510/// the set of pointer types along with any more-qualified variants of
3511/// that type. For example, if @p Ty is "int const *", this routine
3512/// will add "int const *", "int const volatile *", "int const
3513/// restrict *", and "int const volatile restrict *" to the set of
3514/// pointer types. Returns true if the add of @p Ty itself succeeded,
3515/// false otherwise.
3516///
3517/// FIXME: what to do about extended qualifiers?
3518bool
3519BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3520                                             const Qualifiers &VisibleQuals) {
3521
3522  // Insert this type.
3523  if (!PointerTypes.insert(Ty))
3524    return false;
3525
3526  const PointerType *PointerTy = Ty->getAs<PointerType>();
3527  assert(PointerTy && "type was not a pointer type!");
3528
3529  QualType PointeeTy = PointerTy->getPointeeType();
3530  // Don't add qualified variants of arrays. For one, they're not allowed
3531  // (the qualifier would sink to the element type), and for another, the
3532  // only overload situation where it matters is subscript or pointer +- int,
3533  // and those shouldn't have qualifier variants anyway.
3534  if (PointeeTy->isArrayType())
3535    return true;
3536  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3537  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3538    BaseCVR = Array->getElementType().getCVRQualifiers();
3539  bool hasVolatile = VisibleQuals.hasVolatile();
3540  bool hasRestrict = VisibleQuals.hasRestrict();
3541
3542  // Iterate through all strict supersets of BaseCVR.
3543  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3544    if ((CVR | BaseCVR) != CVR) continue;
3545    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3546    // in the types.
3547    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3548    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3549    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3550    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3551  }
3552
3553  return true;
3554}
3555
3556/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3557/// to the set of pointer types along with any more-qualified variants of
3558/// that type. For example, if @p Ty is "int const *", this routine
3559/// will add "int const *", "int const volatile *", "int const
3560/// restrict *", and "int const volatile restrict *" to the set of
3561/// pointer types. Returns true if the add of @p Ty itself succeeded,
3562/// false otherwise.
3563///
3564/// FIXME: what to do about extended qualifiers?
3565bool
3566BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3567    QualType Ty) {
3568  // Insert this type.
3569  if (!MemberPointerTypes.insert(Ty))
3570    return false;
3571
3572  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3573  assert(PointerTy && "type was not a member pointer type!");
3574
3575  QualType PointeeTy = PointerTy->getPointeeType();
3576  // Don't add qualified variants of arrays. For one, they're not allowed
3577  // (the qualifier would sink to the element type), and for another, the
3578  // only overload situation where it matters is subscript or pointer +- int,
3579  // and those shouldn't have qualifier variants anyway.
3580  if (PointeeTy->isArrayType())
3581    return true;
3582  const Type *ClassTy = PointerTy->getClass();
3583
3584  // Iterate through all strict supersets of the pointee type's CVR
3585  // qualifiers.
3586  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3587  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3588    if ((CVR | BaseCVR) != CVR) continue;
3589
3590    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3591    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3592  }
3593
3594  return true;
3595}
3596
3597/// AddTypesConvertedFrom - Add each of the types to which the type @p
3598/// Ty can be implicit converted to the given set of @p Types. We're
3599/// primarily interested in pointer types and enumeration types. We also
3600/// take member pointer types, for the conditional operator.
3601/// AllowUserConversions is true if we should look at the conversion
3602/// functions of a class type, and AllowExplicitConversions if we
3603/// should also include the explicit conversion functions of a class
3604/// type.
3605void
3606BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3607                                               SourceLocation Loc,
3608                                               bool AllowUserConversions,
3609                                               bool AllowExplicitConversions,
3610                                               const Qualifiers &VisibleQuals) {
3611  // Only deal with canonical types.
3612  Ty = Context.getCanonicalType(Ty);
3613
3614  // Look through reference types; they aren't part of the type of an
3615  // expression for the purposes of conversions.
3616  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3617    Ty = RefTy->getPointeeType();
3618
3619  // We don't care about qualifiers on the type.
3620  Ty = Ty.getLocalUnqualifiedType();
3621
3622  // If we're dealing with an array type, decay to the pointer.
3623  if (Ty->isArrayType())
3624    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3625
3626  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3627    QualType PointeeTy = PointerTy->getPointeeType();
3628
3629    // Insert our type, and its more-qualified variants, into the set
3630    // of types.
3631    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3632      return;
3633  } else if (Ty->isMemberPointerType()) {
3634    // Member pointers are far easier, since the pointee can't be converted.
3635    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3636      return;
3637  } else if (Ty->isEnumeralType()) {
3638    EnumerationTypes.insert(Ty);
3639  } else if (AllowUserConversions) {
3640    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3641      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3642        // No conversion functions in incomplete types.
3643        return;
3644      }
3645
3646      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3647      const UnresolvedSetImpl *Conversions
3648        = ClassDecl->getVisibleConversionFunctions();
3649      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3650             E = Conversions->end(); I != E; ++I) {
3651        NamedDecl *D = I.getDecl();
3652        if (isa<UsingShadowDecl>(D))
3653          D = cast<UsingShadowDecl>(D)->getTargetDecl();
3654
3655        // Skip conversion function templates; they don't tell us anything
3656        // about which builtin types we can convert to.
3657        if (isa<FunctionTemplateDecl>(D))
3658          continue;
3659
3660        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
3661        if (AllowExplicitConversions || !Conv->isExplicit()) {
3662          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3663                                VisibleQuals);
3664        }
3665      }
3666    }
3667  }
3668}
3669
3670/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3671/// the volatile- and non-volatile-qualified assignment operators for the
3672/// given type to the candidate set.
3673static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3674                                                   QualType T,
3675                                                   Expr **Args,
3676                                                   unsigned NumArgs,
3677                                    OverloadCandidateSet &CandidateSet) {
3678  QualType ParamTypes[2];
3679
3680  // T& operator=(T&, T)
3681  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3682  ParamTypes[1] = T;
3683  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3684                        /*IsAssignmentOperator=*/true);
3685
3686  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3687    // volatile T& operator=(volatile T&, T)
3688    ParamTypes[0]
3689      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3690    ParamTypes[1] = T;
3691    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3692                          /*IsAssignmentOperator=*/true);
3693  }
3694}
3695
3696/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3697/// if any, found in visible type conversion functions found in ArgExpr's type.
3698static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3699    Qualifiers VRQuals;
3700    const RecordType *TyRec;
3701    if (const MemberPointerType *RHSMPType =
3702        ArgExpr->getType()->getAs<MemberPointerType>())
3703      TyRec = cast<RecordType>(RHSMPType->getClass());
3704    else
3705      TyRec = ArgExpr->getType()->getAs<RecordType>();
3706    if (!TyRec) {
3707      // Just to be safe, assume the worst case.
3708      VRQuals.addVolatile();
3709      VRQuals.addRestrict();
3710      return VRQuals;
3711    }
3712
3713    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3714    if (!ClassDecl->hasDefinition())
3715      return VRQuals;
3716
3717    const UnresolvedSetImpl *Conversions =
3718      ClassDecl->getVisibleConversionFunctions();
3719
3720    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3721           E = Conversions->end(); I != E; ++I) {
3722      NamedDecl *D = I.getDecl();
3723      if (isa<UsingShadowDecl>(D))
3724        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3725      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
3726        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3727        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3728          CanTy = ResTypeRef->getPointeeType();
3729        // Need to go down the pointer/mempointer chain and add qualifiers
3730        // as see them.
3731        bool done = false;
3732        while (!done) {
3733          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3734            CanTy = ResTypePtr->getPointeeType();
3735          else if (const MemberPointerType *ResTypeMPtr =
3736                CanTy->getAs<MemberPointerType>())
3737            CanTy = ResTypeMPtr->getPointeeType();
3738          else
3739            done = true;
3740          if (CanTy.isVolatileQualified())
3741            VRQuals.addVolatile();
3742          if (CanTy.isRestrictQualified())
3743            VRQuals.addRestrict();
3744          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3745            return VRQuals;
3746        }
3747      }
3748    }
3749    return VRQuals;
3750}
3751
3752/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3753/// operator overloads to the candidate set (C++ [over.built]), based
3754/// on the operator @p Op and the arguments given. For example, if the
3755/// operator is a binary '+', this routine might add "int
3756/// operator+(int, int)" to cover integer addition.
3757void
3758Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3759                                   SourceLocation OpLoc,
3760                                   Expr **Args, unsigned NumArgs,
3761                                   OverloadCandidateSet& CandidateSet) {
3762  // The set of "promoted arithmetic types", which are the arithmetic
3763  // types are that preserved by promotion (C++ [over.built]p2). Note
3764  // that the first few of these types are the promoted integral
3765  // types; these types need to be first.
3766  // FIXME: What about complex?
3767  const unsigned FirstIntegralType = 0;
3768  const unsigned LastIntegralType = 13;
3769  const unsigned FirstPromotedIntegralType = 7,
3770                 LastPromotedIntegralType = 13;
3771  const unsigned FirstPromotedArithmeticType = 7,
3772                 LastPromotedArithmeticType = 16;
3773  const unsigned NumArithmeticTypes = 16;
3774  QualType ArithmeticTypes[NumArithmeticTypes] = {
3775    Context.BoolTy, Context.CharTy, Context.WCharTy,
3776// FIXME:   Context.Char16Ty, Context.Char32Ty,
3777    Context.SignedCharTy, Context.ShortTy,
3778    Context.UnsignedCharTy, Context.UnsignedShortTy,
3779    Context.IntTy, Context.LongTy, Context.LongLongTy,
3780    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3781    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3782  };
3783  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3784         "Invalid first promoted integral type");
3785  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3786           == Context.UnsignedLongLongTy &&
3787         "Invalid last promoted integral type");
3788  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3789         "Invalid first promoted arithmetic type");
3790  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3791            == Context.LongDoubleTy &&
3792         "Invalid last promoted arithmetic type");
3793
3794  // Find all of the types that the arguments can convert to, but only
3795  // if the operator we're looking at has built-in operator candidates
3796  // that make use of these types.
3797  Qualifiers VisibleTypeConversionsQuals;
3798  VisibleTypeConversionsQuals.addConst();
3799  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3800    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3801
3802  BuiltinCandidateTypeSet CandidateTypes(*this);
3803  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3804      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3805      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3806      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3807      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3808      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3809    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3810      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3811                                           OpLoc,
3812                                           true,
3813                                           (Op == OO_Exclaim ||
3814                                            Op == OO_AmpAmp ||
3815                                            Op == OO_PipePipe),
3816                                           VisibleTypeConversionsQuals);
3817  }
3818
3819  bool isComparison = false;
3820  switch (Op) {
3821  case OO_None:
3822  case NUM_OVERLOADED_OPERATORS:
3823    assert(false && "Expected an overloaded operator");
3824    break;
3825
3826  case OO_Star: // '*' is either unary or binary
3827    if (NumArgs == 1)
3828      goto UnaryStar;
3829    else
3830      goto BinaryStar;
3831    break;
3832
3833  case OO_Plus: // '+' is either unary or binary
3834    if (NumArgs == 1)
3835      goto UnaryPlus;
3836    else
3837      goto BinaryPlus;
3838    break;
3839
3840  case OO_Minus: // '-' is either unary or binary
3841    if (NumArgs == 1)
3842      goto UnaryMinus;
3843    else
3844      goto BinaryMinus;
3845    break;
3846
3847  case OO_Amp: // '&' is either unary or binary
3848    if (NumArgs == 1)
3849      goto UnaryAmp;
3850    else
3851      goto BinaryAmp;
3852
3853  case OO_PlusPlus:
3854  case OO_MinusMinus:
3855    // C++ [over.built]p3:
3856    //
3857    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3858    //   is either volatile or empty, there exist candidate operator
3859    //   functions of the form
3860    //
3861    //       VQ T&      operator++(VQ T&);
3862    //       T          operator++(VQ T&, int);
3863    //
3864    // C++ [over.built]p4:
3865    //
3866    //   For every pair (T, VQ), where T is an arithmetic type other
3867    //   than bool, and VQ is either volatile or empty, there exist
3868    //   candidate operator functions of the form
3869    //
3870    //       VQ T&      operator--(VQ T&);
3871    //       T          operator--(VQ T&, int);
3872    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3873         Arith < NumArithmeticTypes; ++Arith) {
3874      QualType ArithTy = ArithmeticTypes[Arith];
3875      QualType ParamTypes[2]
3876        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3877
3878      // Non-volatile version.
3879      if (NumArgs == 1)
3880        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3881      else
3882        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3883      // heuristic to reduce number of builtin candidates in the set.
3884      // Add volatile version only if there are conversions to a volatile type.
3885      if (VisibleTypeConversionsQuals.hasVolatile()) {
3886        // Volatile version
3887        ParamTypes[0]
3888          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3889        if (NumArgs == 1)
3890          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3891        else
3892          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3893      }
3894    }
3895
3896    // C++ [over.built]p5:
3897    //
3898    //   For every pair (T, VQ), where T is a cv-qualified or
3899    //   cv-unqualified object type, and VQ is either volatile or
3900    //   empty, there exist candidate operator functions of the form
3901    //
3902    //       T*VQ&      operator++(T*VQ&);
3903    //       T*VQ&      operator--(T*VQ&);
3904    //       T*         operator++(T*VQ&, int);
3905    //       T*         operator--(T*VQ&, int);
3906    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3907         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3908      // Skip pointer types that aren't pointers to object types.
3909      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3910        continue;
3911
3912      QualType ParamTypes[2] = {
3913        Context.getLValueReferenceType(*Ptr), Context.IntTy
3914      };
3915
3916      // Without volatile
3917      if (NumArgs == 1)
3918        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3919      else
3920        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3921
3922      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3923          VisibleTypeConversionsQuals.hasVolatile()) {
3924        // With volatile
3925        ParamTypes[0]
3926          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3927        if (NumArgs == 1)
3928          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3929        else
3930          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3931      }
3932    }
3933    break;
3934
3935  UnaryStar:
3936    // C++ [over.built]p6:
3937    //   For every cv-qualified or cv-unqualified object type T, there
3938    //   exist candidate operator functions of the form
3939    //
3940    //       T&         operator*(T*);
3941    //
3942    // C++ [over.built]p7:
3943    //   For every function type T, there exist candidate operator
3944    //   functions of the form
3945    //       T&         operator*(T*);
3946    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3947         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3948      QualType ParamTy = *Ptr;
3949      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3950      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3951                          &ParamTy, Args, 1, CandidateSet);
3952    }
3953    break;
3954
3955  UnaryPlus:
3956    // C++ [over.built]p8:
3957    //   For every type T, there exist candidate operator functions of
3958    //   the form
3959    //
3960    //       T*         operator+(T*);
3961    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3962         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3963      QualType ParamTy = *Ptr;
3964      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3965    }
3966
3967    // Fall through
3968
3969  UnaryMinus:
3970    // C++ [over.built]p9:
3971    //  For every promoted arithmetic type T, there exist candidate
3972    //  operator functions of the form
3973    //
3974    //       T         operator+(T);
3975    //       T         operator-(T);
3976    for (unsigned Arith = FirstPromotedArithmeticType;
3977         Arith < LastPromotedArithmeticType; ++Arith) {
3978      QualType ArithTy = ArithmeticTypes[Arith];
3979      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3980    }
3981    break;
3982
3983  case OO_Tilde:
3984    // C++ [over.built]p10:
3985    //   For every promoted integral type T, there exist candidate
3986    //   operator functions of the form
3987    //
3988    //        T         operator~(T);
3989    for (unsigned Int = FirstPromotedIntegralType;
3990         Int < LastPromotedIntegralType; ++Int) {
3991      QualType IntTy = ArithmeticTypes[Int];
3992      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3993    }
3994    break;
3995
3996  case OO_New:
3997  case OO_Delete:
3998  case OO_Array_New:
3999  case OO_Array_Delete:
4000  case OO_Call:
4001    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
4002    break;
4003
4004  case OO_Comma:
4005  UnaryAmp:
4006  case OO_Arrow:
4007    // C++ [over.match.oper]p3:
4008    //   -- For the operator ',', the unary operator '&', or the
4009    //      operator '->', the built-in candidates set is empty.
4010    break;
4011
4012  case OO_EqualEqual:
4013  case OO_ExclaimEqual:
4014    // C++ [over.match.oper]p16:
4015    //   For every pointer to member type T, there exist candidate operator
4016    //   functions of the form
4017    //
4018    //        bool operator==(T,T);
4019    //        bool operator!=(T,T);
4020    for (BuiltinCandidateTypeSet::iterator
4021           MemPtr = CandidateTypes.member_pointer_begin(),
4022           MemPtrEnd = CandidateTypes.member_pointer_end();
4023         MemPtr != MemPtrEnd;
4024         ++MemPtr) {
4025      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4026      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4027    }
4028
4029    // Fall through
4030
4031  case OO_Less:
4032  case OO_Greater:
4033  case OO_LessEqual:
4034  case OO_GreaterEqual:
4035    // C++ [over.built]p15:
4036    //
4037    //   For every pointer or enumeration type T, there exist
4038    //   candidate operator functions of the form
4039    //
4040    //        bool       operator<(T, T);
4041    //        bool       operator>(T, T);
4042    //        bool       operator<=(T, T);
4043    //        bool       operator>=(T, T);
4044    //        bool       operator==(T, T);
4045    //        bool       operator!=(T, T);
4046    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4047         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4048      QualType ParamTypes[2] = { *Ptr, *Ptr };
4049      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4050    }
4051    for (BuiltinCandidateTypeSet::iterator Enum
4052           = CandidateTypes.enumeration_begin();
4053         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4054      QualType ParamTypes[2] = { *Enum, *Enum };
4055      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4056    }
4057
4058    // Fall through.
4059    isComparison = true;
4060
4061  BinaryPlus:
4062  BinaryMinus:
4063    if (!isComparison) {
4064      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4065
4066      // C++ [over.built]p13:
4067      //
4068      //   For every cv-qualified or cv-unqualified object type T
4069      //   there exist candidate operator functions of the form
4070      //
4071      //      T*         operator+(T*, ptrdiff_t);
4072      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4073      //      T*         operator-(T*, ptrdiff_t);
4074      //      T*         operator+(ptrdiff_t, T*);
4075      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4076      //
4077      // C++ [over.built]p14:
4078      //
4079      //   For every T, where T is a pointer to object type, there
4080      //   exist candidate operator functions of the form
4081      //
4082      //      ptrdiff_t  operator-(T, T);
4083      for (BuiltinCandidateTypeSet::iterator Ptr
4084             = CandidateTypes.pointer_begin();
4085           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4086        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4087
4088        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4089        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4090
4091        if (Op == OO_Plus) {
4092          // T* operator+(ptrdiff_t, T*);
4093          ParamTypes[0] = ParamTypes[1];
4094          ParamTypes[1] = *Ptr;
4095          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4096        } else {
4097          // ptrdiff_t operator-(T, T);
4098          ParamTypes[1] = *Ptr;
4099          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4100                              Args, 2, CandidateSet);
4101        }
4102      }
4103    }
4104    // Fall through
4105
4106  case OO_Slash:
4107  BinaryStar:
4108  Conditional:
4109    // C++ [over.built]p12:
4110    //
4111    //   For every pair of promoted arithmetic types L and R, there
4112    //   exist candidate operator functions of the form
4113    //
4114    //        LR         operator*(L, R);
4115    //        LR         operator/(L, R);
4116    //        LR         operator+(L, R);
4117    //        LR         operator-(L, R);
4118    //        bool       operator<(L, R);
4119    //        bool       operator>(L, R);
4120    //        bool       operator<=(L, R);
4121    //        bool       operator>=(L, R);
4122    //        bool       operator==(L, R);
4123    //        bool       operator!=(L, R);
4124    //
4125    //   where LR is the result of the usual arithmetic conversions
4126    //   between types L and R.
4127    //
4128    // C++ [over.built]p24:
4129    //
4130    //   For every pair of promoted arithmetic types L and R, there exist
4131    //   candidate operator functions of the form
4132    //
4133    //        LR       operator?(bool, L, R);
4134    //
4135    //   where LR is the result of the usual arithmetic conversions
4136    //   between types L and R.
4137    // Our candidates ignore the first parameter.
4138    for (unsigned Left = FirstPromotedArithmeticType;
4139         Left < LastPromotedArithmeticType; ++Left) {
4140      for (unsigned Right = FirstPromotedArithmeticType;
4141           Right < LastPromotedArithmeticType; ++Right) {
4142        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4143        QualType Result
4144          = isComparison
4145          ? Context.BoolTy
4146          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4147        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4148      }
4149    }
4150    break;
4151
4152  case OO_Percent:
4153  BinaryAmp:
4154  case OO_Caret:
4155  case OO_Pipe:
4156  case OO_LessLess:
4157  case OO_GreaterGreater:
4158    // C++ [over.built]p17:
4159    //
4160    //   For every pair of promoted integral types L and R, there
4161    //   exist candidate operator functions of the form
4162    //
4163    //      LR         operator%(L, R);
4164    //      LR         operator&(L, R);
4165    //      LR         operator^(L, R);
4166    //      LR         operator|(L, R);
4167    //      L          operator<<(L, R);
4168    //      L          operator>>(L, R);
4169    //
4170    //   where LR is the result of the usual arithmetic conversions
4171    //   between types L and R.
4172    for (unsigned Left = FirstPromotedIntegralType;
4173         Left < LastPromotedIntegralType; ++Left) {
4174      for (unsigned Right = FirstPromotedIntegralType;
4175           Right < LastPromotedIntegralType; ++Right) {
4176        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4177        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4178            ? LandR[0]
4179            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4180        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4181      }
4182    }
4183    break;
4184
4185  case OO_Equal:
4186    // C++ [over.built]p20:
4187    //
4188    //   For every pair (T, VQ), where T is an enumeration or
4189    //   pointer to member type and VQ is either volatile or
4190    //   empty, there exist candidate operator functions of the form
4191    //
4192    //        VQ T&      operator=(VQ T&, T);
4193    for (BuiltinCandidateTypeSet::iterator
4194           Enum = CandidateTypes.enumeration_begin(),
4195           EnumEnd = CandidateTypes.enumeration_end();
4196         Enum != EnumEnd; ++Enum)
4197      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4198                                             CandidateSet);
4199    for (BuiltinCandidateTypeSet::iterator
4200           MemPtr = CandidateTypes.member_pointer_begin(),
4201         MemPtrEnd = CandidateTypes.member_pointer_end();
4202         MemPtr != MemPtrEnd; ++MemPtr)
4203      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4204                                             CandidateSet);
4205      // Fall through.
4206
4207  case OO_PlusEqual:
4208  case OO_MinusEqual:
4209    // C++ [over.built]p19:
4210    //
4211    //   For every pair (T, VQ), where T is any type and VQ is either
4212    //   volatile or empty, there exist candidate operator functions
4213    //   of the form
4214    //
4215    //        T*VQ&      operator=(T*VQ&, T*);
4216    //
4217    // C++ [over.built]p21:
4218    //
4219    //   For every pair (T, VQ), where T is a cv-qualified or
4220    //   cv-unqualified object type and VQ is either volatile or
4221    //   empty, there exist candidate operator functions of the form
4222    //
4223    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4224    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4225    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4226         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4227      QualType ParamTypes[2];
4228      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4229
4230      // non-volatile version
4231      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4232      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4233                          /*IsAssigmentOperator=*/Op == OO_Equal);
4234
4235      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4236          VisibleTypeConversionsQuals.hasVolatile()) {
4237        // volatile version
4238        ParamTypes[0]
4239          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4240        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4241                            /*IsAssigmentOperator=*/Op == OO_Equal);
4242      }
4243    }
4244    // Fall through.
4245
4246  case OO_StarEqual:
4247  case OO_SlashEqual:
4248    // C++ [over.built]p18:
4249    //
4250    //   For every triple (L, VQ, R), where L is an arithmetic type,
4251    //   VQ is either volatile or empty, and R is a promoted
4252    //   arithmetic type, there exist candidate operator functions of
4253    //   the form
4254    //
4255    //        VQ L&      operator=(VQ L&, R);
4256    //        VQ L&      operator*=(VQ L&, R);
4257    //        VQ L&      operator/=(VQ L&, R);
4258    //        VQ L&      operator+=(VQ L&, R);
4259    //        VQ L&      operator-=(VQ L&, R);
4260    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4261      for (unsigned Right = FirstPromotedArithmeticType;
4262           Right < LastPromotedArithmeticType; ++Right) {
4263        QualType ParamTypes[2];
4264        ParamTypes[1] = ArithmeticTypes[Right];
4265
4266        // Add this built-in operator as a candidate (VQ is empty).
4267        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4268        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4269                            /*IsAssigmentOperator=*/Op == OO_Equal);
4270
4271        // Add this built-in operator as a candidate (VQ is 'volatile').
4272        if (VisibleTypeConversionsQuals.hasVolatile()) {
4273          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4274          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4275          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4276                              /*IsAssigmentOperator=*/Op == OO_Equal);
4277        }
4278      }
4279    }
4280    break;
4281
4282  case OO_PercentEqual:
4283  case OO_LessLessEqual:
4284  case OO_GreaterGreaterEqual:
4285  case OO_AmpEqual:
4286  case OO_CaretEqual:
4287  case OO_PipeEqual:
4288    // C++ [over.built]p22:
4289    //
4290    //   For every triple (L, VQ, R), where L is an integral type, VQ
4291    //   is either volatile or empty, and R is a promoted integral
4292    //   type, there exist candidate operator functions of the form
4293    //
4294    //        VQ L&       operator%=(VQ L&, R);
4295    //        VQ L&       operator<<=(VQ L&, R);
4296    //        VQ L&       operator>>=(VQ L&, R);
4297    //        VQ L&       operator&=(VQ L&, R);
4298    //        VQ L&       operator^=(VQ L&, R);
4299    //        VQ L&       operator|=(VQ L&, R);
4300    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4301      for (unsigned Right = FirstPromotedIntegralType;
4302           Right < LastPromotedIntegralType; ++Right) {
4303        QualType ParamTypes[2];
4304        ParamTypes[1] = ArithmeticTypes[Right];
4305
4306        // Add this built-in operator as a candidate (VQ is empty).
4307        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4308        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4309        if (VisibleTypeConversionsQuals.hasVolatile()) {
4310          // Add this built-in operator as a candidate (VQ is 'volatile').
4311          ParamTypes[0] = ArithmeticTypes[Left];
4312          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4313          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4314          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4315        }
4316      }
4317    }
4318    break;
4319
4320  case OO_Exclaim: {
4321    // C++ [over.operator]p23:
4322    //
4323    //   There also exist candidate operator functions of the form
4324    //
4325    //        bool        operator!(bool);
4326    //        bool        operator&&(bool, bool);     [BELOW]
4327    //        bool        operator||(bool, bool);     [BELOW]
4328    QualType ParamTy = Context.BoolTy;
4329    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4330                        /*IsAssignmentOperator=*/false,
4331                        /*NumContextualBoolArguments=*/1);
4332    break;
4333  }
4334
4335  case OO_AmpAmp:
4336  case OO_PipePipe: {
4337    // C++ [over.operator]p23:
4338    //
4339    //   There also exist candidate operator functions of the form
4340    //
4341    //        bool        operator!(bool);            [ABOVE]
4342    //        bool        operator&&(bool, bool);
4343    //        bool        operator||(bool, bool);
4344    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4345    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4346                        /*IsAssignmentOperator=*/false,
4347                        /*NumContextualBoolArguments=*/2);
4348    break;
4349  }
4350
4351  case OO_Subscript:
4352    // C++ [over.built]p13:
4353    //
4354    //   For every cv-qualified or cv-unqualified object type T there
4355    //   exist candidate operator functions of the form
4356    //
4357    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4358    //        T&         operator[](T*, ptrdiff_t);
4359    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4360    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4361    //        T&         operator[](ptrdiff_t, T*);
4362    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4363         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4364      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4365      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4366      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4367
4368      // T& operator[](T*, ptrdiff_t)
4369      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4370
4371      // T& operator[](ptrdiff_t, T*);
4372      ParamTypes[0] = ParamTypes[1];
4373      ParamTypes[1] = *Ptr;
4374      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4375    }
4376    break;
4377
4378  case OO_ArrowStar:
4379    // C++ [over.built]p11:
4380    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4381    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4382    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4383    //    there exist candidate operator functions of the form
4384    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4385    //    where CV12 is the union of CV1 and CV2.
4386    {
4387      for (BuiltinCandidateTypeSet::iterator Ptr =
4388             CandidateTypes.pointer_begin();
4389           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4390        QualType C1Ty = (*Ptr);
4391        QualType C1;
4392        QualifierCollector Q1;
4393        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4394          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4395          if (!isa<RecordType>(C1))
4396            continue;
4397          // heuristic to reduce number of builtin candidates in the set.
4398          // Add volatile/restrict version only if there are conversions to a
4399          // volatile/restrict type.
4400          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4401            continue;
4402          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4403            continue;
4404        }
4405        for (BuiltinCandidateTypeSet::iterator
4406             MemPtr = CandidateTypes.member_pointer_begin(),
4407             MemPtrEnd = CandidateTypes.member_pointer_end();
4408             MemPtr != MemPtrEnd; ++MemPtr) {
4409          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4410          QualType C2 = QualType(mptr->getClass(), 0);
4411          C2 = C2.getUnqualifiedType();
4412          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4413            break;
4414          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4415          // build CV12 T&
4416          QualType T = mptr->getPointeeType();
4417          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4418              T.isVolatileQualified())
4419            continue;
4420          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4421              T.isRestrictQualified())
4422            continue;
4423          T = Q1.apply(T);
4424          QualType ResultTy = Context.getLValueReferenceType(T);
4425          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4426        }
4427      }
4428    }
4429    break;
4430
4431  case OO_Conditional:
4432    // Note that we don't consider the first argument, since it has been
4433    // contextually converted to bool long ago. The candidates below are
4434    // therefore added as binary.
4435    //
4436    // C++ [over.built]p24:
4437    //   For every type T, where T is a pointer or pointer-to-member type,
4438    //   there exist candidate operator functions of the form
4439    //
4440    //        T        operator?(bool, T, T);
4441    //
4442    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4443         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4444      QualType ParamTypes[2] = { *Ptr, *Ptr };
4445      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4446    }
4447    for (BuiltinCandidateTypeSet::iterator Ptr =
4448           CandidateTypes.member_pointer_begin(),
4449         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4450      QualType ParamTypes[2] = { *Ptr, *Ptr };
4451      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4452    }
4453    goto Conditional;
4454  }
4455}
4456
4457/// \brief Add function candidates found via argument-dependent lookup
4458/// to the set of overloading candidates.
4459///
4460/// This routine performs argument-dependent name lookup based on the
4461/// given function name (which may also be an operator name) and adds
4462/// all of the overload candidates found by ADL to the overload
4463/// candidate set (C++ [basic.lookup.argdep]).
4464void
4465Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4466                                           bool Operator,
4467                                           Expr **Args, unsigned NumArgs,
4468                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4469                                           OverloadCandidateSet& CandidateSet,
4470                                           bool PartialOverloading) {
4471  ADLResult Fns;
4472
4473  // FIXME: This approach for uniquing ADL results (and removing
4474  // redundant candidates from the set) relies on pointer-equality,
4475  // which means we need to key off the canonical decl.  However,
4476  // always going back to the canonical decl might not get us the
4477  // right set of default arguments.  What default arguments are
4478  // we supposed to consider on ADL candidates, anyway?
4479
4480  // FIXME: Pass in the explicit template arguments?
4481  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4482
4483  // Erase all of the candidates we already knew about.
4484  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4485                                   CandEnd = CandidateSet.end();
4486       Cand != CandEnd; ++Cand)
4487    if (Cand->Function) {
4488      Fns.erase(Cand->Function);
4489      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4490        Fns.erase(FunTmpl);
4491    }
4492
4493  // For each of the ADL candidates we found, add it to the overload
4494  // set.
4495  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4496    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4497    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4498      if (ExplicitTemplateArgs)
4499        continue;
4500
4501      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4502                           false, PartialOverloading);
4503    } else
4504      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4505                                   FoundDecl, ExplicitTemplateArgs,
4506                                   Args, NumArgs, CandidateSet);
4507  }
4508}
4509
4510/// isBetterOverloadCandidate - Determines whether the first overload
4511/// candidate is a better candidate than the second (C++ 13.3.3p1).
4512bool
4513Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4514                                const OverloadCandidate& Cand2,
4515                                SourceLocation Loc) {
4516  // Define viable functions to be better candidates than non-viable
4517  // functions.
4518  if (!Cand2.Viable)
4519    return Cand1.Viable;
4520  else if (!Cand1.Viable)
4521    return false;
4522
4523  // C++ [over.match.best]p1:
4524  //
4525  //   -- if F is a static member function, ICS1(F) is defined such
4526  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4527  //      any function G, and, symmetrically, ICS1(G) is neither
4528  //      better nor worse than ICS1(F).
4529  unsigned StartArg = 0;
4530  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4531    StartArg = 1;
4532
4533  // C++ [over.match.best]p1:
4534  //   A viable function F1 is defined to be a better function than another
4535  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4536  //   conversion sequence than ICSi(F2), and then...
4537  unsigned NumArgs = Cand1.Conversions.size();
4538  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4539  bool HasBetterConversion = false;
4540  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4541    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4542                                               Cand2.Conversions[ArgIdx])) {
4543    case ImplicitConversionSequence::Better:
4544      // Cand1 has a better conversion sequence.
4545      HasBetterConversion = true;
4546      break;
4547
4548    case ImplicitConversionSequence::Worse:
4549      // Cand1 can't be better than Cand2.
4550      return false;
4551
4552    case ImplicitConversionSequence::Indistinguishable:
4553      // Do nothing.
4554      break;
4555    }
4556  }
4557
4558  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4559  //       ICSj(F2), or, if not that,
4560  if (HasBetterConversion)
4561    return true;
4562
4563  //     - F1 is a non-template function and F2 is a function template
4564  //       specialization, or, if not that,
4565  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4566      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4567    return true;
4568
4569  //   -- F1 and F2 are function template specializations, and the function
4570  //      template for F1 is more specialized than the template for F2
4571  //      according to the partial ordering rules described in 14.5.5.2, or,
4572  //      if not that,
4573  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4574      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4575    if (FunctionTemplateDecl *BetterTemplate
4576          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4577                                       Cand2.Function->getPrimaryTemplate(),
4578                                       Loc,
4579                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4580                                                             : TPOC_Call))
4581      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4582
4583  //   -- the context is an initialization by user-defined conversion
4584  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4585  //      from the return type of F1 to the destination type (i.e.,
4586  //      the type of the entity being initialized) is a better
4587  //      conversion sequence than the standard conversion sequence
4588  //      from the return type of F2 to the destination type.
4589  if (Cand1.Function && Cand2.Function &&
4590      isa<CXXConversionDecl>(Cand1.Function) &&
4591      isa<CXXConversionDecl>(Cand2.Function)) {
4592    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4593                                               Cand2.FinalConversion)) {
4594    case ImplicitConversionSequence::Better:
4595      // Cand1 has a better conversion sequence.
4596      return true;
4597
4598    case ImplicitConversionSequence::Worse:
4599      // Cand1 can't be better than Cand2.
4600      return false;
4601
4602    case ImplicitConversionSequence::Indistinguishable:
4603      // Do nothing
4604      break;
4605    }
4606  }
4607
4608  return false;
4609}
4610
4611/// \brief Computes the best viable function (C++ 13.3.3)
4612/// within an overload candidate set.
4613///
4614/// \param CandidateSet the set of candidate functions.
4615///
4616/// \param Loc the location of the function name (or operator symbol) for
4617/// which overload resolution occurs.
4618///
4619/// \param Best f overload resolution was successful or found a deleted
4620/// function, Best points to the candidate function found.
4621///
4622/// \returns The result of overload resolution.
4623OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4624                                           SourceLocation Loc,
4625                                        OverloadCandidateSet::iterator& Best) {
4626  // Find the best viable function.
4627  Best = CandidateSet.end();
4628  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4629       Cand != CandidateSet.end(); ++Cand) {
4630    if (Cand->Viable) {
4631      if (Best == CandidateSet.end() ||
4632          isBetterOverloadCandidate(*Cand, *Best, Loc))
4633        Best = Cand;
4634    }
4635  }
4636
4637  // If we didn't find any viable functions, abort.
4638  if (Best == CandidateSet.end())
4639    return OR_No_Viable_Function;
4640
4641  // Make sure that this function is better than every other viable
4642  // function. If not, we have an ambiguity.
4643  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4644       Cand != CandidateSet.end(); ++Cand) {
4645    if (Cand->Viable &&
4646        Cand != Best &&
4647        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
4648      Best = CandidateSet.end();
4649      return OR_Ambiguous;
4650    }
4651  }
4652
4653  // Best is the best viable function.
4654  if (Best->Function &&
4655      (Best->Function->isDeleted() ||
4656       Best->Function->getAttr<UnavailableAttr>()))
4657    return OR_Deleted;
4658
4659  // C++ [basic.def.odr]p2:
4660  //   An overloaded function is used if it is selected by overload resolution
4661  //   when referred to from a potentially-evaluated expression. [Note: this
4662  //   covers calls to named functions (5.2.2), operator overloading
4663  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4664  //   placement new (5.3.4), as well as non-default initialization (8.5).
4665  if (Best->Function)
4666    MarkDeclarationReferenced(Loc, Best->Function);
4667  return OR_Success;
4668}
4669
4670namespace {
4671
4672enum OverloadCandidateKind {
4673  oc_function,
4674  oc_method,
4675  oc_constructor,
4676  oc_function_template,
4677  oc_method_template,
4678  oc_constructor_template,
4679  oc_implicit_default_constructor,
4680  oc_implicit_copy_constructor,
4681  oc_implicit_copy_assignment
4682};
4683
4684OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4685                                                FunctionDecl *Fn,
4686                                                std::string &Description) {
4687  bool isTemplate = false;
4688
4689  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4690    isTemplate = true;
4691    Description = S.getTemplateArgumentBindingsText(
4692      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4693  }
4694
4695  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4696    if (!Ctor->isImplicit())
4697      return isTemplate ? oc_constructor_template : oc_constructor;
4698
4699    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4700                                     : oc_implicit_default_constructor;
4701  }
4702
4703  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4704    // This actually gets spelled 'candidate function' for now, but
4705    // it doesn't hurt to split it out.
4706    if (!Meth->isImplicit())
4707      return isTemplate ? oc_method_template : oc_method;
4708
4709    assert(Meth->isCopyAssignment()
4710           && "implicit method is not copy assignment operator?");
4711    return oc_implicit_copy_assignment;
4712  }
4713
4714  return isTemplate ? oc_function_template : oc_function;
4715}
4716
4717} // end anonymous namespace
4718
4719// Notes the location of an overload candidate.
4720void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4721  std::string FnDesc;
4722  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4723  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4724    << (unsigned) K << FnDesc;
4725}
4726
4727/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4728/// "lead" diagnostic; it will be given two arguments, the source and
4729/// target types of the conversion.
4730void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4731                                       SourceLocation CaretLoc,
4732                                       const PartialDiagnostic &PDiag) {
4733  Diag(CaretLoc, PDiag)
4734    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4735  for (AmbiguousConversionSequence::const_iterator
4736         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4737    NoteOverloadCandidate(*I);
4738  }
4739}
4740
4741namespace {
4742
4743void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4744  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4745  assert(Conv.isBad());
4746  assert(Cand->Function && "for now, candidate must be a function");
4747  FunctionDecl *Fn = Cand->Function;
4748
4749  // There's a conversion slot for the object argument if this is a
4750  // non-constructor method.  Note that 'I' corresponds the
4751  // conversion-slot index.
4752  bool isObjectArgument = false;
4753  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4754    if (I == 0)
4755      isObjectArgument = true;
4756    else
4757      I--;
4758  }
4759
4760  std::string FnDesc;
4761  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4762
4763  Expr *FromExpr = Conv.Bad.FromExpr;
4764  QualType FromTy = Conv.Bad.getFromType();
4765  QualType ToTy = Conv.Bad.getToType();
4766
4767  if (FromTy == S.Context.OverloadTy) {
4768    assert(FromExpr && "overload set argument came from implicit argument?");
4769    Expr *E = FromExpr->IgnoreParens();
4770    if (isa<UnaryOperator>(E))
4771      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
4772    DeclarationName Name = cast<OverloadExpr>(E)->getName();
4773
4774    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
4775      << (unsigned) FnKind << FnDesc
4776      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4777      << ToTy << Name << I+1;
4778    return;
4779  }
4780
4781  // Do some hand-waving analysis to see if the non-viability is due
4782  // to a qualifier mismatch.
4783  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4784  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4785  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4786    CToTy = RT->getPointeeType();
4787  else {
4788    // TODO: detect and diagnose the full richness of const mismatches.
4789    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4790      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4791        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4792  }
4793
4794  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4795      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4796    // It is dumb that we have to do this here.
4797    while (isa<ArrayType>(CFromTy))
4798      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4799    while (isa<ArrayType>(CToTy))
4800      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4801
4802    Qualifiers FromQs = CFromTy.getQualifiers();
4803    Qualifiers ToQs = CToTy.getQualifiers();
4804
4805    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4806      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4807        << (unsigned) FnKind << FnDesc
4808        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4809        << FromTy
4810        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4811        << (unsigned) isObjectArgument << I+1;
4812      return;
4813    }
4814
4815    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4816    assert(CVR && "unexpected qualifiers mismatch");
4817
4818    if (isObjectArgument) {
4819      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4820        << (unsigned) FnKind << FnDesc
4821        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4822        << FromTy << (CVR - 1);
4823    } else {
4824      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4825        << (unsigned) FnKind << FnDesc
4826        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4827        << FromTy << (CVR - 1) << I+1;
4828    }
4829    return;
4830  }
4831
4832  // Diagnose references or pointers to incomplete types differently,
4833  // since it's far from impossible that the incompleteness triggered
4834  // the failure.
4835  QualType TempFromTy = FromTy.getNonReferenceType();
4836  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
4837    TempFromTy = PTy->getPointeeType();
4838  if (TempFromTy->isIncompleteType()) {
4839    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
4840      << (unsigned) FnKind << FnDesc
4841      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4842      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4843    return;
4844  }
4845
4846  // TODO: specialize more based on the kind of mismatch
4847  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4848    << (unsigned) FnKind << FnDesc
4849    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4850    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4851}
4852
4853void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4854                           unsigned NumFormalArgs) {
4855  // TODO: treat calls to a missing default constructor as a special case
4856
4857  FunctionDecl *Fn = Cand->Function;
4858  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4859
4860  unsigned MinParams = Fn->getMinRequiredArguments();
4861
4862  // at least / at most / exactly
4863  unsigned mode, modeCount;
4864  if (NumFormalArgs < MinParams) {
4865    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4866    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4867      mode = 0; // "at least"
4868    else
4869      mode = 2; // "exactly"
4870    modeCount = MinParams;
4871  } else {
4872    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4873    if (MinParams != FnTy->getNumArgs())
4874      mode = 1; // "at most"
4875    else
4876      mode = 2; // "exactly"
4877    modeCount = FnTy->getNumArgs();
4878  }
4879
4880  std::string Description;
4881  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4882
4883  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4884    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4885}
4886
4887/// Diagnose a failed template-argument deduction.
4888void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
4889                          Expr **Args, unsigned NumArgs) {
4890  FunctionDecl *Fn = Cand->Function; // pattern
4891
4892  TemplateParameter Param = TemplateParameter::getFromOpaqueValue(
4893                                   Cand->DeductionFailure.TemplateParameter);
4894
4895  switch (Cand->DeductionFailure.Result) {
4896  case Sema::TDK_Success:
4897    llvm_unreachable("TDK_success while diagnosing bad deduction");
4898
4899  case Sema::TDK_Incomplete: {
4900    NamedDecl *ParamD;
4901    (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
4902    (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
4903    (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
4904    assert(ParamD && "no parameter found for incomplete deduction result");
4905    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
4906      << ParamD->getDeclName();
4907    return;
4908  }
4909
4910  // TODO: diagnose these individually, then kill off
4911  // note_ovl_candidate_bad_deduction, which is uselessly vague.
4912  case Sema::TDK_InstantiationDepth:
4913  case Sema::TDK_Inconsistent:
4914  case Sema::TDK_InconsistentQuals:
4915  case Sema::TDK_SubstitutionFailure:
4916  case Sema::TDK_NonDeducedMismatch:
4917  case Sema::TDK_TooManyArguments:
4918  case Sema::TDK_TooFewArguments:
4919  case Sema::TDK_InvalidExplicitArguments:
4920  case Sema::TDK_FailedOverloadResolution:
4921    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
4922    return;
4923  }
4924}
4925
4926/// Generates a 'note' diagnostic for an overload candidate.  We've
4927/// already generated a primary error at the call site.
4928///
4929/// It really does need to be a single diagnostic with its caret
4930/// pointed at the candidate declaration.  Yes, this creates some
4931/// major challenges of technical writing.  Yes, this makes pointing
4932/// out problems with specific arguments quite awkward.  It's still
4933/// better than generating twenty screens of text for every failed
4934/// overload.
4935///
4936/// It would be great to be able to express per-candidate problems
4937/// more richly for those diagnostic clients that cared, but we'd
4938/// still have to be just as careful with the default diagnostics.
4939void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4940                           Expr **Args, unsigned NumArgs) {
4941  FunctionDecl *Fn = Cand->Function;
4942
4943  // Note deleted candidates, but only if they're viable.
4944  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4945    std::string FnDesc;
4946    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4947
4948    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4949      << FnKind << FnDesc << Fn->isDeleted();
4950    return;
4951  }
4952
4953  // We don't really have anything else to say about viable candidates.
4954  if (Cand->Viable) {
4955    S.NoteOverloadCandidate(Fn);
4956    return;
4957  }
4958
4959  switch (Cand->FailureKind) {
4960  case ovl_fail_too_many_arguments:
4961  case ovl_fail_too_few_arguments:
4962    return DiagnoseArityMismatch(S, Cand, NumArgs);
4963
4964  case ovl_fail_bad_deduction:
4965    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
4966
4967  case ovl_fail_trivial_conversion:
4968  case ovl_fail_bad_final_conversion:
4969  case ovl_fail_final_conversion_not_exact:
4970    return S.NoteOverloadCandidate(Fn);
4971
4972  case ovl_fail_bad_conversion: {
4973    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
4974    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
4975      if (Cand->Conversions[I].isBad())
4976        return DiagnoseBadConversion(S, Cand, I);
4977
4978    // FIXME: this currently happens when we're called from SemaInit
4979    // when user-conversion overload fails.  Figure out how to handle
4980    // those conditions and diagnose them well.
4981    return S.NoteOverloadCandidate(Fn);
4982  }
4983  }
4984}
4985
4986void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4987  // Desugar the type of the surrogate down to a function type,
4988  // retaining as many typedefs as possible while still showing
4989  // the function type (and, therefore, its parameter types).
4990  QualType FnType = Cand->Surrogate->getConversionType();
4991  bool isLValueReference = false;
4992  bool isRValueReference = false;
4993  bool isPointer = false;
4994  if (const LValueReferenceType *FnTypeRef =
4995        FnType->getAs<LValueReferenceType>()) {
4996    FnType = FnTypeRef->getPointeeType();
4997    isLValueReference = true;
4998  } else if (const RValueReferenceType *FnTypeRef =
4999               FnType->getAs<RValueReferenceType>()) {
5000    FnType = FnTypeRef->getPointeeType();
5001    isRValueReference = true;
5002  }
5003  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
5004    FnType = FnTypePtr->getPointeeType();
5005    isPointer = true;
5006  }
5007  // Desugar down to a function type.
5008  FnType = QualType(FnType->getAs<FunctionType>(), 0);
5009  // Reconstruct the pointer/reference as appropriate.
5010  if (isPointer) FnType = S.Context.getPointerType(FnType);
5011  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5012  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5013
5014  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5015    << FnType;
5016}
5017
5018void NoteBuiltinOperatorCandidate(Sema &S,
5019                                  const char *Opc,
5020                                  SourceLocation OpLoc,
5021                                  OverloadCandidate *Cand) {
5022  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5023  std::string TypeStr("operator");
5024  TypeStr += Opc;
5025  TypeStr += "(";
5026  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5027  if (Cand->Conversions.size() == 1) {
5028    TypeStr += ")";
5029    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5030  } else {
5031    TypeStr += ", ";
5032    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5033    TypeStr += ")";
5034    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5035  }
5036}
5037
5038void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5039                                  OverloadCandidate *Cand) {
5040  unsigned NoOperands = Cand->Conversions.size();
5041  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5042    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5043    if (ICS.isBad()) break; // all meaningless after first invalid
5044    if (!ICS.isAmbiguous()) continue;
5045
5046    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5047                              S.PDiag(diag::note_ambiguous_type_conversion));
5048  }
5049}
5050
5051SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5052  if (Cand->Function)
5053    return Cand->Function->getLocation();
5054  if (Cand->IsSurrogate)
5055    return Cand->Surrogate->getLocation();
5056  return SourceLocation();
5057}
5058
5059struct CompareOverloadCandidatesForDisplay {
5060  Sema &S;
5061  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5062
5063  bool operator()(const OverloadCandidate *L,
5064                  const OverloadCandidate *R) {
5065    // Fast-path this check.
5066    if (L == R) return false;
5067
5068    // Order first by viability.
5069    if (L->Viable) {
5070      if (!R->Viable) return true;
5071
5072      // TODO: introduce a tri-valued comparison for overload
5073      // candidates.  Would be more worthwhile if we had a sort
5074      // that could exploit it.
5075      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5076      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5077    } else if (R->Viable)
5078      return false;
5079
5080    assert(L->Viable == R->Viable);
5081
5082    // Criteria by which we can sort non-viable candidates:
5083    if (!L->Viable) {
5084      // 1. Arity mismatches come after other candidates.
5085      if (L->FailureKind == ovl_fail_too_many_arguments ||
5086          L->FailureKind == ovl_fail_too_few_arguments)
5087        return false;
5088      if (R->FailureKind == ovl_fail_too_many_arguments ||
5089          R->FailureKind == ovl_fail_too_few_arguments)
5090        return true;
5091
5092      // 2. Bad conversions come first and are ordered by the number
5093      // of bad conversions and quality of good conversions.
5094      if (L->FailureKind == ovl_fail_bad_conversion) {
5095        if (R->FailureKind != ovl_fail_bad_conversion)
5096          return true;
5097
5098        // If there's any ordering between the defined conversions...
5099        // FIXME: this might not be transitive.
5100        assert(L->Conversions.size() == R->Conversions.size());
5101
5102        int leftBetter = 0;
5103        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5104        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5105          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5106                                                       R->Conversions[I])) {
5107          case ImplicitConversionSequence::Better:
5108            leftBetter++;
5109            break;
5110
5111          case ImplicitConversionSequence::Worse:
5112            leftBetter--;
5113            break;
5114
5115          case ImplicitConversionSequence::Indistinguishable:
5116            break;
5117          }
5118        }
5119        if (leftBetter > 0) return true;
5120        if (leftBetter < 0) return false;
5121
5122      } else if (R->FailureKind == ovl_fail_bad_conversion)
5123        return false;
5124
5125      // TODO: others?
5126    }
5127
5128    // Sort everything else by location.
5129    SourceLocation LLoc = GetLocationForCandidate(L);
5130    SourceLocation RLoc = GetLocationForCandidate(R);
5131
5132    // Put candidates without locations (e.g. builtins) at the end.
5133    if (LLoc.isInvalid()) return false;
5134    if (RLoc.isInvalid()) return true;
5135
5136    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5137  }
5138};
5139
5140/// CompleteNonViableCandidate - Normally, overload resolution only
5141/// computes up to the first
5142void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5143                                Expr **Args, unsigned NumArgs) {
5144  assert(!Cand->Viable);
5145
5146  // Don't do anything on failures other than bad conversion.
5147  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5148
5149  // Skip forward to the first bad conversion.
5150  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5151  unsigned ConvCount = Cand->Conversions.size();
5152  while (true) {
5153    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5154    ConvIdx++;
5155    if (Cand->Conversions[ConvIdx - 1].isBad())
5156      break;
5157  }
5158
5159  if (ConvIdx == ConvCount)
5160    return;
5161
5162  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5163         "remaining conversion is initialized?");
5164
5165  // FIXME: this should probably be preserved from the overload
5166  // operation somehow.
5167  bool SuppressUserConversions = false;
5168
5169  const FunctionProtoType* Proto;
5170  unsigned ArgIdx = ConvIdx;
5171
5172  if (Cand->IsSurrogate) {
5173    QualType ConvType
5174      = Cand->Surrogate->getConversionType().getNonReferenceType();
5175    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5176      ConvType = ConvPtrType->getPointeeType();
5177    Proto = ConvType->getAs<FunctionProtoType>();
5178    ArgIdx--;
5179  } else if (Cand->Function) {
5180    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5181    if (isa<CXXMethodDecl>(Cand->Function) &&
5182        !isa<CXXConstructorDecl>(Cand->Function))
5183      ArgIdx--;
5184  } else {
5185    // Builtin binary operator with a bad first conversion.
5186    assert(ConvCount <= 3);
5187    for (; ConvIdx != ConvCount; ++ConvIdx)
5188      Cand->Conversions[ConvIdx]
5189        = TryCopyInitialization(S, Args[ConvIdx],
5190                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
5191                                SuppressUserConversions,
5192                                /*InOverloadResolution*/ true);
5193    return;
5194  }
5195
5196  // Fill in the rest of the conversions.
5197  unsigned NumArgsInProto = Proto->getNumArgs();
5198  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5199    if (ArgIdx < NumArgsInProto)
5200      Cand->Conversions[ConvIdx]
5201        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
5202                                SuppressUserConversions,
5203                                /*InOverloadResolution=*/true);
5204    else
5205      Cand->Conversions[ConvIdx].setEllipsis();
5206  }
5207}
5208
5209} // end anonymous namespace
5210
5211/// PrintOverloadCandidates - When overload resolution fails, prints
5212/// diagnostic messages containing the candidates in the candidate
5213/// set.
5214void
5215Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5216                              OverloadCandidateDisplayKind OCD,
5217                              Expr **Args, unsigned NumArgs,
5218                              const char *Opc,
5219                              SourceLocation OpLoc) {
5220  // Sort the candidates by viability and position.  Sorting directly would
5221  // be prohibitive, so we make a set of pointers and sort those.
5222  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5223  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5224  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5225                                  LastCand = CandidateSet.end();
5226       Cand != LastCand; ++Cand) {
5227    if (Cand->Viable)
5228      Cands.push_back(Cand);
5229    else if (OCD == OCD_AllCandidates) {
5230      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5231      Cands.push_back(Cand);
5232    }
5233  }
5234
5235  std::sort(Cands.begin(), Cands.end(),
5236            CompareOverloadCandidatesForDisplay(*this));
5237
5238  bool ReportedAmbiguousConversions = false;
5239
5240  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5241  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5242    OverloadCandidate *Cand = *I;
5243
5244    if (Cand->Function)
5245      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5246    else if (Cand->IsSurrogate)
5247      NoteSurrogateCandidate(*this, Cand);
5248
5249    // This a builtin candidate.  We do not, in general, want to list
5250    // every possible builtin candidate.
5251    else if (Cand->Viable) {
5252      // Generally we only see ambiguities including viable builtin
5253      // operators if overload resolution got screwed up by an
5254      // ambiguous user-defined conversion.
5255      //
5256      // FIXME: It's quite possible for different conversions to see
5257      // different ambiguities, though.
5258      if (!ReportedAmbiguousConversions) {
5259        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5260        ReportedAmbiguousConversions = true;
5261      }
5262
5263      // If this is a viable builtin, print it.
5264      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5265    }
5266  }
5267}
5268
5269static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5270  if (isa<UnresolvedLookupExpr>(E))
5271    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5272
5273  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5274}
5275
5276/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5277/// an overloaded function (C++ [over.over]), where @p From is an
5278/// expression with overloaded function type and @p ToType is the type
5279/// we're trying to resolve to. For example:
5280///
5281/// @code
5282/// int f(double);
5283/// int f(int);
5284///
5285/// int (*pfd)(double) = f; // selects f(double)
5286/// @endcode
5287///
5288/// This routine returns the resulting FunctionDecl if it could be
5289/// resolved, and NULL otherwise. When @p Complain is true, this
5290/// routine will emit diagnostics if there is an error.
5291FunctionDecl *
5292Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5293                                         bool Complain,
5294                                         DeclAccessPair &FoundResult) {
5295  QualType FunctionType = ToType;
5296  bool IsMember = false;
5297  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5298    FunctionType = ToTypePtr->getPointeeType();
5299  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5300    FunctionType = ToTypeRef->getPointeeType();
5301  else if (const MemberPointerType *MemTypePtr =
5302                    ToType->getAs<MemberPointerType>()) {
5303    FunctionType = MemTypePtr->getPointeeType();
5304    IsMember = true;
5305  }
5306
5307  // C++ [over.over]p1:
5308  //   [...] [Note: any redundant set of parentheses surrounding the
5309  //   overloaded function name is ignored (5.1). ]
5310  // C++ [over.over]p1:
5311  //   [...] The overloaded function name can be preceded by the &
5312  //   operator.
5313  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5314  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5315  if (OvlExpr->hasExplicitTemplateArgs()) {
5316    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5317    ExplicitTemplateArgs = &ETABuffer;
5318  }
5319
5320  // We expect a pointer or reference to function, or a function pointer.
5321  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5322  if (!FunctionType->isFunctionType()) {
5323    if (Complain)
5324      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5325        << OvlExpr->getName() << ToType;
5326
5327    return 0;
5328  }
5329
5330  assert(From->getType() == Context.OverloadTy);
5331
5332  // Look through all of the overloaded functions, searching for one
5333  // whose type matches exactly.
5334  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5335  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5336
5337  bool FoundNonTemplateFunction = false;
5338  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5339         E = OvlExpr->decls_end(); I != E; ++I) {
5340    // Look through any using declarations to find the underlying function.
5341    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5342
5343    // C++ [over.over]p3:
5344    //   Non-member functions and static member functions match
5345    //   targets of type "pointer-to-function" or "reference-to-function."
5346    //   Nonstatic member functions match targets of
5347    //   type "pointer-to-member-function."
5348    // Note that according to DR 247, the containing class does not matter.
5349
5350    if (FunctionTemplateDecl *FunctionTemplate
5351          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5352      if (CXXMethodDecl *Method
5353            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5354        // Skip non-static function templates when converting to pointer, and
5355        // static when converting to member pointer.
5356        if (Method->isStatic() == IsMember)
5357          continue;
5358      } else if (IsMember)
5359        continue;
5360
5361      // C++ [over.over]p2:
5362      //   If the name is a function template, template argument deduction is
5363      //   done (14.8.2.2), and if the argument deduction succeeds, the
5364      //   resulting template argument list is used to generate a single
5365      //   function template specialization, which is added to the set of
5366      //   overloaded functions considered.
5367      // FIXME: We don't really want to build the specialization here, do we?
5368      FunctionDecl *Specialization = 0;
5369      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5370      if (TemplateDeductionResult Result
5371            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5372                                      FunctionType, Specialization, Info)) {
5373        // FIXME: make a note of the failed deduction for diagnostics.
5374        (void)Result;
5375      } else {
5376        // FIXME: If the match isn't exact, shouldn't we just drop this as
5377        // a candidate? Find a testcase before changing the code.
5378        assert(FunctionType
5379                 == Context.getCanonicalType(Specialization->getType()));
5380        Matches.push_back(std::make_pair(I.getPair(),
5381                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5382      }
5383
5384      continue;
5385    }
5386
5387    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5388      // Skip non-static functions when converting to pointer, and static
5389      // when converting to member pointer.
5390      if (Method->isStatic() == IsMember)
5391        continue;
5392
5393      // If we have explicit template arguments, skip non-templates.
5394      if (OvlExpr->hasExplicitTemplateArgs())
5395        continue;
5396    } else if (IsMember)
5397      continue;
5398
5399    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5400      QualType ResultTy;
5401      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5402          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5403                               ResultTy)) {
5404        Matches.push_back(std::make_pair(I.getPair(),
5405                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5406        FoundNonTemplateFunction = true;
5407      }
5408    }
5409  }
5410
5411  // If there were 0 or 1 matches, we're done.
5412  if (Matches.empty()) {
5413    if (Complain) {
5414      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5415        << OvlExpr->getName() << FunctionType;
5416      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5417                                 E = OvlExpr->decls_end();
5418           I != E; ++I)
5419        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5420          NoteOverloadCandidate(F);
5421    }
5422
5423    return 0;
5424  } else if (Matches.size() == 1) {
5425    FunctionDecl *Result = Matches[0].second;
5426    FoundResult = Matches[0].first;
5427    MarkDeclarationReferenced(From->getLocStart(), Result);
5428    if (Complain)
5429      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5430    return Result;
5431  }
5432
5433  // C++ [over.over]p4:
5434  //   If more than one function is selected, [...]
5435  if (!FoundNonTemplateFunction) {
5436    //   [...] and any given function template specialization F1 is
5437    //   eliminated if the set contains a second function template
5438    //   specialization whose function template is more specialized
5439    //   than the function template of F1 according to the partial
5440    //   ordering rules of 14.5.5.2.
5441
5442    // The algorithm specified above is quadratic. We instead use a
5443    // two-pass algorithm (similar to the one used to identify the
5444    // best viable function in an overload set) that identifies the
5445    // best function template (if it exists).
5446
5447    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5448    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5449      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5450
5451    UnresolvedSetIterator Result =
5452        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5453                           TPOC_Other, From->getLocStart(),
5454                           PDiag(),
5455                           PDiag(diag::err_addr_ovl_ambiguous)
5456                               << Matches[0].second->getDeclName(),
5457                           PDiag(diag::note_ovl_candidate)
5458                               << (unsigned) oc_function_template);
5459    assert(Result != MatchesCopy.end() && "no most-specialized template");
5460    MarkDeclarationReferenced(From->getLocStart(), *Result);
5461    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5462    if (Complain)
5463      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5464    return cast<FunctionDecl>(*Result);
5465  }
5466
5467  //   [...] any function template specializations in the set are
5468  //   eliminated if the set also contains a non-template function, [...]
5469  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5470    if (Matches[I].second->getPrimaryTemplate() == 0)
5471      ++I;
5472    else {
5473      Matches[I] = Matches[--N];
5474      Matches.set_size(N);
5475    }
5476  }
5477
5478  // [...] After such eliminations, if any, there shall remain exactly one
5479  // selected function.
5480  if (Matches.size() == 1) {
5481    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
5482    FoundResult = Matches[0].first;
5483    if (Complain)
5484      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
5485    return cast<FunctionDecl>(Matches[0].second);
5486  }
5487
5488  // FIXME: We should probably return the same thing that BestViableFunction
5489  // returns (even if we issue the diagnostics here).
5490  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
5491    << Matches[0].second->getDeclName();
5492  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5493    NoteOverloadCandidate(Matches[I].second);
5494  return 0;
5495}
5496
5497/// \brief Given an expression that refers to an overloaded function, try to
5498/// resolve that overloaded function expression down to a single function.
5499///
5500/// This routine can only resolve template-ids that refer to a single function
5501/// template, where that template-id refers to a single template whose template
5502/// arguments are either provided by the template-id or have defaults,
5503/// as described in C++0x [temp.arg.explicit]p3.
5504FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
5505  // C++ [over.over]p1:
5506  //   [...] [Note: any redundant set of parentheses surrounding the
5507  //   overloaded function name is ignored (5.1). ]
5508  // C++ [over.over]p1:
5509  //   [...] The overloaded function name can be preceded by the &
5510  //   operator.
5511
5512  if (From->getType() != Context.OverloadTy)
5513    return 0;
5514
5515  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5516
5517  // If we didn't actually find any template-ids, we're done.
5518  if (!OvlExpr->hasExplicitTemplateArgs())
5519    return 0;
5520
5521  TemplateArgumentListInfo ExplicitTemplateArgs;
5522  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
5523
5524  // Look through all of the overloaded functions, searching for one
5525  // whose type matches exactly.
5526  FunctionDecl *Matched = 0;
5527  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5528         E = OvlExpr->decls_end(); I != E; ++I) {
5529    // C++0x [temp.arg.explicit]p3:
5530    //   [...] In contexts where deduction is done and fails, or in contexts
5531    //   where deduction is not done, if a template argument list is
5532    //   specified and it, along with any default template arguments,
5533    //   identifies a single function template specialization, then the
5534    //   template-id is an lvalue for the function template specialization.
5535    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
5536
5537    // C++ [over.over]p2:
5538    //   If the name is a function template, template argument deduction is
5539    //   done (14.8.2.2), and if the argument deduction succeeds, the
5540    //   resulting template argument list is used to generate a single
5541    //   function template specialization, which is added to the set of
5542    //   overloaded functions considered.
5543    FunctionDecl *Specialization = 0;
5544    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5545    if (TemplateDeductionResult Result
5546          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5547                                    Specialization, Info)) {
5548      // FIXME: make a note of the failed deduction for diagnostics.
5549      (void)Result;
5550      continue;
5551    }
5552
5553    // Multiple matches; we can't resolve to a single declaration.
5554    if (Matched)
5555      return 0;
5556
5557    Matched = Specialization;
5558  }
5559
5560  return Matched;
5561}
5562
5563/// \brief Add a single candidate to the overload set.
5564static void AddOverloadedCallCandidate(Sema &S,
5565                                       DeclAccessPair FoundDecl,
5566                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5567                                       Expr **Args, unsigned NumArgs,
5568                                       OverloadCandidateSet &CandidateSet,
5569                                       bool PartialOverloading) {
5570  NamedDecl *Callee = FoundDecl.getDecl();
5571  if (isa<UsingShadowDecl>(Callee))
5572    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5573
5574  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5575    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5576    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
5577                           false, PartialOverloading);
5578    return;
5579  }
5580
5581  if (FunctionTemplateDecl *FuncTemplate
5582      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5583    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
5584                                   ExplicitTemplateArgs,
5585                                   Args, NumArgs, CandidateSet);
5586    return;
5587  }
5588
5589  assert(false && "unhandled case in overloaded call candidate");
5590
5591  // do nothing?
5592}
5593
5594/// \brief Add the overload candidates named by callee and/or found by argument
5595/// dependent lookup to the given overload set.
5596void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5597                                       Expr **Args, unsigned NumArgs,
5598                                       OverloadCandidateSet &CandidateSet,
5599                                       bool PartialOverloading) {
5600
5601#ifndef NDEBUG
5602  // Verify that ArgumentDependentLookup is consistent with the rules
5603  // in C++0x [basic.lookup.argdep]p3:
5604  //
5605  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5606  //   and let Y be the lookup set produced by argument dependent
5607  //   lookup (defined as follows). If X contains
5608  //
5609  //     -- a declaration of a class member, or
5610  //
5611  //     -- a block-scope function declaration that is not a
5612  //        using-declaration, or
5613  //
5614  //     -- a declaration that is neither a function or a function
5615  //        template
5616  //
5617  //   then Y is empty.
5618
5619  if (ULE->requiresADL()) {
5620    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5621           E = ULE->decls_end(); I != E; ++I) {
5622      assert(!(*I)->getDeclContext()->isRecord());
5623      assert(isa<UsingShadowDecl>(*I) ||
5624             !(*I)->getDeclContext()->isFunctionOrMethod());
5625      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5626    }
5627  }
5628#endif
5629
5630  // It would be nice to avoid this copy.
5631  TemplateArgumentListInfo TABuffer;
5632  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5633  if (ULE->hasExplicitTemplateArgs()) {
5634    ULE->copyTemplateArgumentsInto(TABuffer);
5635    ExplicitTemplateArgs = &TABuffer;
5636  }
5637
5638  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5639         E = ULE->decls_end(); I != E; ++I)
5640    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
5641                               Args, NumArgs, CandidateSet,
5642                               PartialOverloading);
5643
5644  if (ULE->requiresADL())
5645    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
5646                                         Args, NumArgs,
5647                                         ExplicitTemplateArgs,
5648                                         CandidateSet,
5649                                         PartialOverloading);
5650}
5651
5652static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5653                                      Expr **Args, unsigned NumArgs) {
5654  Fn->Destroy(SemaRef.Context);
5655  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5656    Args[Arg]->Destroy(SemaRef.Context);
5657  return SemaRef.ExprError();
5658}
5659
5660/// Attempts to recover from a call where no functions were found.
5661///
5662/// Returns true if new candidates were found.
5663static Sema::OwningExprResult
5664BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
5665                      UnresolvedLookupExpr *ULE,
5666                      SourceLocation LParenLoc,
5667                      Expr **Args, unsigned NumArgs,
5668                      SourceLocation *CommaLocs,
5669                      SourceLocation RParenLoc) {
5670
5671  CXXScopeSpec SS;
5672  if (ULE->getQualifier()) {
5673    SS.setScopeRep(ULE->getQualifier());
5674    SS.setRange(ULE->getQualifierRange());
5675  }
5676
5677  TemplateArgumentListInfo TABuffer;
5678  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5679  if (ULE->hasExplicitTemplateArgs()) {
5680    ULE->copyTemplateArgumentsInto(TABuffer);
5681    ExplicitTemplateArgs = &TABuffer;
5682  }
5683
5684  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5685                 Sema::LookupOrdinaryName);
5686  if (SemaRef.DiagnoseEmptyLookup(S, SS, R))
5687    return Destroy(SemaRef, Fn, Args, NumArgs);
5688
5689  assert(!R.empty() && "lookup results empty despite recovery");
5690
5691  // Build an implicit member call if appropriate.  Just drop the
5692  // casts and such from the call, we don't really care.
5693  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5694  if ((*R.begin())->isCXXClassMember())
5695    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5696  else if (ExplicitTemplateArgs)
5697    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5698  else
5699    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5700
5701  if (NewFn.isInvalid())
5702    return Destroy(SemaRef, Fn, Args, NumArgs);
5703
5704  Fn->Destroy(SemaRef.Context);
5705
5706  // This shouldn't cause an infinite loop because we're giving it
5707  // an expression with non-empty lookup results, which should never
5708  // end up here.
5709  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5710                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5711                               CommaLocs, RParenLoc);
5712}
5713
5714/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5715/// (which eventually refers to the declaration Func) and the call
5716/// arguments Args/NumArgs, attempt to resolve the function call down
5717/// to a specific function. If overload resolution succeeds, returns
5718/// the function declaration produced by overload
5719/// resolution. Otherwise, emits diagnostics, deletes all of the
5720/// arguments and Fn, and returns NULL.
5721Sema::OwningExprResult
5722Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
5723                              SourceLocation LParenLoc,
5724                              Expr **Args, unsigned NumArgs,
5725                              SourceLocation *CommaLocs,
5726                              SourceLocation RParenLoc) {
5727#ifndef NDEBUG
5728  if (ULE->requiresADL()) {
5729    // To do ADL, we must have found an unqualified name.
5730    assert(!ULE->getQualifier() && "qualified name with ADL");
5731
5732    // We don't perform ADL for implicit declarations of builtins.
5733    // Verify that this was correctly set up.
5734    FunctionDecl *F;
5735    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5736        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5737        F->getBuiltinID() && F->isImplicit())
5738      assert(0 && "performing ADL for builtin");
5739
5740    // We don't perform ADL in C.
5741    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5742  }
5743#endif
5744
5745  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
5746
5747  // Add the functions denoted by the callee to the set of candidate
5748  // functions, including those from argument-dependent lookup.
5749  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5750
5751  // If we found nothing, try to recover.
5752  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5753  // bailout out if it fails.
5754  if (CandidateSet.empty())
5755    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
5756                                 CommaLocs, RParenLoc);
5757
5758  OverloadCandidateSet::iterator Best;
5759  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5760  case OR_Success: {
5761    FunctionDecl *FDecl = Best->Function;
5762    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
5763    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
5764    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5765  }
5766
5767  case OR_No_Viable_Function:
5768    Diag(Fn->getSourceRange().getBegin(),
5769         diag::err_ovl_no_viable_function_in_call)
5770      << ULE->getName() << Fn->getSourceRange();
5771    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5772    break;
5773
5774  case OR_Ambiguous:
5775    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5776      << ULE->getName() << Fn->getSourceRange();
5777    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5778    break;
5779
5780  case OR_Deleted:
5781    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5782      << Best->Function->isDeleted()
5783      << ULE->getName()
5784      << Fn->getSourceRange();
5785    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5786    break;
5787  }
5788
5789  // Overload resolution failed. Destroy all of the subexpressions and
5790  // return NULL.
5791  Fn->Destroy(Context);
5792  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5793    Args[Arg]->Destroy(Context);
5794  return ExprError();
5795}
5796
5797static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
5798  return Functions.size() > 1 ||
5799    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5800}
5801
5802/// \brief Create a unary operation that may resolve to an overloaded
5803/// operator.
5804///
5805/// \param OpLoc The location of the operator itself (e.g., '*').
5806///
5807/// \param OpcIn The UnaryOperator::Opcode that describes this
5808/// operator.
5809///
5810/// \param Functions The set of non-member functions that will be
5811/// considered by overload resolution. The caller needs to build this
5812/// set based on the context using, e.g.,
5813/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5814/// set should not contain any member functions; those will be added
5815/// by CreateOverloadedUnaryOp().
5816///
5817/// \param input The input argument.
5818Sema::OwningExprResult
5819Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
5820                              const UnresolvedSetImpl &Fns,
5821                              ExprArg input) {
5822  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5823  Expr *Input = (Expr *)input.get();
5824
5825  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5826  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5827  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5828
5829  Expr *Args[2] = { Input, 0 };
5830  unsigned NumArgs = 1;
5831
5832  // For post-increment and post-decrement, add the implicit '0' as
5833  // the second argument, so that we know this is a post-increment or
5834  // post-decrement.
5835  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5836    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5837    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5838                                           SourceLocation());
5839    NumArgs = 2;
5840  }
5841
5842  if (Input->isTypeDependent()) {
5843    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
5844    UnresolvedLookupExpr *Fn
5845      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
5846                                     0, SourceRange(), OpName, OpLoc,
5847                                     /*ADL*/ true, IsOverloaded(Fns));
5848    Fn->addDecls(Fns.begin(), Fns.end());
5849
5850    input.release();
5851    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5852                                                   &Args[0], NumArgs,
5853                                                   Context.DependentTy,
5854                                                   OpLoc));
5855  }
5856
5857  // Build an empty overload set.
5858  OverloadCandidateSet CandidateSet(OpLoc);
5859
5860  // Add the candidates from the given function set.
5861  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
5862
5863  // Add operator candidates that are member functions.
5864  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5865
5866  // Add candidates from ADL.
5867  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
5868                                       Args, NumArgs,
5869                                       /*ExplicitTemplateArgs*/ 0,
5870                                       CandidateSet);
5871
5872  // Add builtin operator candidates.
5873  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5874
5875  // Perform overload resolution.
5876  OverloadCandidateSet::iterator Best;
5877  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5878  case OR_Success: {
5879    // We found a built-in operator or an overloaded operator.
5880    FunctionDecl *FnDecl = Best->Function;
5881
5882    if (FnDecl) {
5883      // We matched an overloaded operator. Build a call to that
5884      // operator.
5885
5886      // Convert the arguments.
5887      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5888        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
5889
5890        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
5891                                                Best->FoundDecl, Method))
5892          return ExprError();
5893      } else {
5894        // Convert the arguments.
5895        OwningExprResult InputInit
5896          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5897                                                      FnDecl->getParamDecl(0)),
5898                                      SourceLocation(),
5899                                      move(input));
5900        if (InputInit.isInvalid())
5901          return ExprError();
5902
5903        input = move(InputInit);
5904        Input = (Expr *)input.get();
5905      }
5906
5907      // Determine the result type
5908      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5909
5910      // Build the actual expression node.
5911      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5912                                               SourceLocation());
5913      UsualUnaryConversions(FnExpr);
5914
5915      input.release();
5916      Args[0] = Input;
5917      ExprOwningPtr<CallExpr> TheCall(this,
5918        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5919                                          Args, NumArgs, ResultTy, OpLoc));
5920
5921      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5922                              FnDecl))
5923        return ExprError();
5924
5925      return MaybeBindToTemporary(TheCall.release());
5926    } else {
5927      // We matched a built-in operator. Convert the arguments, then
5928      // break out so that we will build the appropriate built-in
5929      // operator node.
5930        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5931                                      Best->Conversions[0], AA_Passing))
5932          return ExprError();
5933
5934        break;
5935      }
5936    }
5937
5938    case OR_No_Viable_Function:
5939      // No viable function; fall through to handling this as a
5940      // built-in operator, which will produce an error message for us.
5941      break;
5942
5943    case OR_Ambiguous:
5944      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5945          << UnaryOperator::getOpcodeStr(Opc)
5946          << Input->getSourceRange();
5947      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5948                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5949      return ExprError();
5950
5951    case OR_Deleted:
5952      Diag(OpLoc, diag::err_ovl_deleted_oper)
5953        << Best->Function->isDeleted()
5954        << UnaryOperator::getOpcodeStr(Opc)
5955        << Input->getSourceRange();
5956      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5957      return ExprError();
5958    }
5959
5960  // Either we found no viable overloaded operator or we matched a
5961  // built-in operator. In either case, fall through to trying to
5962  // build a built-in operation.
5963  input.release();
5964  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5965}
5966
5967/// \brief Create a binary operation that may resolve to an overloaded
5968/// operator.
5969///
5970/// \param OpLoc The location of the operator itself (e.g., '+').
5971///
5972/// \param OpcIn The BinaryOperator::Opcode that describes this
5973/// operator.
5974///
5975/// \param Functions The set of non-member functions that will be
5976/// considered by overload resolution. The caller needs to build this
5977/// set based on the context using, e.g.,
5978/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5979/// set should not contain any member functions; those will be added
5980/// by CreateOverloadedBinOp().
5981///
5982/// \param LHS Left-hand argument.
5983/// \param RHS Right-hand argument.
5984Sema::OwningExprResult
5985Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5986                            unsigned OpcIn,
5987                            const UnresolvedSetImpl &Fns,
5988                            Expr *LHS, Expr *RHS) {
5989  Expr *Args[2] = { LHS, RHS };
5990  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5991
5992  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5993  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5994  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5995
5996  // If either side is type-dependent, create an appropriate dependent
5997  // expression.
5998  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5999    if (Fns.empty()) {
6000      // If there are no functions to store, just build a dependent
6001      // BinaryOperator or CompoundAssignment.
6002      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
6003        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
6004                                                  Context.DependentTy, OpLoc));
6005
6006      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
6007                                                        Context.DependentTy,
6008                                                        Context.DependentTy,
6009                                                        Context.DependentTy,
6010                                                        OpLoc));
6011    }
6012
6013    // FIXME: save results of ADL from here?
6014    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6015    UnresolvedLookupExpr *Fn
6016      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6017                                     0, SourceRange(), OpName, OpLoc,
6018                                     /*ADL*/ true, IsOverloaded(Fns));
6019
6020    Fn->addDecls(Fns.begin(), Fns.end());
6021    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6022                                                   Args, 2,
6023                                                   Context.DependentTy,
6024                                                   OpLoc));
6025  }
6026
6027  // If this is the .* operator, which is not overloadable, just
6028  // create a built-in binary operator.
6029  if (Opc == BinaryOperator::PtrMemD)
6030    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6031
6032  // If this is the assignment operator, we only perform overload resolution
6033  // if the left-hand side is a class or enumeration type. This is actually
6034  // a hack. The standard requires that we do overload resolution between the
6035  // various built-in candidates, but as DR507 points out, this can lead to
6036  // problems. So we do it this way, which pretty much follows what GCC does.
6037  // Note that we go the traditional code path for compound assignment forms.
6038  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6039    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6040
6041  // Build an empty overload set.
6042  OverloadCandidateSet CandidateSet(OpLoc);
6043
6044  // Add the candidates from the given function set.
6045  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6046
6047  // Add operator candidates that are member functions.
6048  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6049
6050  // Add candidates from ADL.
6051  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6052                                       Args, 2,
6053                                       /*ExplicitTemplateArgs*/ 0,
6054                                       CandidateSet);
6055
6056  // Add builtin operator candidates.
6057  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6058
6059  // Perform overload resolution.
6060  OverloadCandidateSet::iterator Best;
6061  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6062    case OR_Success: {
6063      // We found a built-in operator or an overloaded operator.
6064      FunctionDecl *FnDecl = Best->Function;
6065
6066      if (FnDecl) {
6067        // We matched an overloaded operator. Build a call to that
6068        // operator.
6069
6070        // Convert the arguments.
6071        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6072          // Best->Access is only meaningful for class members.
6073          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6074
6075          OwningExprResult Arg1
6076            = PerformCopyInitialization(
6077                                        InitializedEntity::InitializeParameter(
6078                                                        FnDecl->getParamDecl(0)),
6079                                        SourceLocation(),
6080                                        Owned(Args[1]));
6081          if (Arg1.isInvalid())
6082            return ExprError();
6083
6084          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6085                                                  Best->FoundDecl, Method))
6086            return ExprError();
6087
6088          Args[1] = RHS = Arg1.takeAs<Expr>();
6089        } else {
6090          // Convert the arguments.
6091          OwningExprResult Arg0
6092            = PerformCopyInitialization(
6093                                        InitializedEntity::InitializeParameter(
6094                                                        FnDecl->getParamDecl(0)),
6095                                        SourceLocation(),
6096                                        Owned(Args[0]));
6097          if (Arg0.isInvalid())
6098            return ExprError();
6099
6100          OwningExprResult Arg1
6101            = PerformCopyInitialization(
6102                                        InitializedEntity::InitializeParameter(
6103                                                        FnDecl->getParamDecl(1)),
6104                                        SourceLocation(),
6105                                        Owned(Args[1]));
6106          if (Arg1.isInvalid())
6107            return ExprError();
6108          Args[0] = LHS = Arg0.takeAs<Expr>();
6109          Args[1] = RHS = Arg1.takeAs<Expr>();
6110        }
6111
6112        // Determine the result type
6113        QualType ResultTy
6114          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6115        ResultTy = ResultTy.getNonReferenceType();
6116
6117        // Build the actual expression node.
6118        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6119                                                 OpLoc);
6120        UsualUnaryConversions(FnExpr);
6121
6122        ExprOwningPtr<CXXOperatorCallExpr>
6123          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6124                                                          Args, 2, ResultTy,
6125                                                          OpLoc));
6126
6127        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6128                                FnDecl))
6129          return ExprError();
6130
6131        return MaybeBindToTemporary(TheCall.release());
6132      } else {
6133        // We matched a built-in operator. Convert the arguments, then
6134        // break out so that we will build the appropriate built-in
6135        // operator node.
6136        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6137                                      Best->Conversions[0], AA_Passing) ||
6138            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6139                                      Best->Conversions[1], AA_Passing))
6140          return ExprError();
6141
6142        break;
6143      }
6144    }
6145
6146    case OR_No_Viable_Function: {
6147      // C++ [over.match.oper]p9:
6148      //   If the operator is the operator , [...] and there are no
6149      //   viable functions, then the operator is assumed to be the
6150      //   built-in operator and interpreted according to clause 5.
6151      if (Opc == BinaryOperator::Comma)
6152        break;
6153
6154      // For class as left operand for assignment or compound assigment operator
6155      // do not fall through to handling in built-in, but report that no overloaded
6156      // assignment operator found
6157      OwningExprResult Result = ExprError();
6158      if (Args[0]->getType()->isRecordType() &&
6159          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6160        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6161             << BinaryOperator::getOpcodeStr(Opc)
6162             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6163      } else {
6164        // No viable function; try to create a built-in operation, which will
6165        // produce an error. Then, show the non-viable candidates.
6166        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6167      }
6168      assert(Result.isInvalid() &&
6169             "C++ binary operator overloading is missing candidates!");
6170      if (Result.isInvalid())
6171        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6172                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6173      return move(Result);
6174    }
6175
6176    case OR_Ambiguous:
6177      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6178          << BinaryOperator::getOpcodeStr(Opc)
6179          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6180      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6181                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6182      return ExprError();
6183
6184    case OR_Deleted:
6185      Diag(OpLoc, diag::err_ovl_deleted_oper)
6186        << Best->Function->isDeleted()
6187        << BinaryOperator::getOpcodeStr(Opc)
6188        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6189      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6190      return ExprError();
6191  }
6192
6193  // We matched a built-in operator; build it.
6194  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6195}
6196
6197Action::OwningExprResult
6198Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6199                                         SourceLocation RLoc,
6200                                         ExprArg Base, ExprArg Idx) {
6201  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6202                    static_cast<Expr*>(Idx.get()) };
6203  DeclarationName OpName =
6204      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6205
6206  // If either side is type-dependent, create an appropriate dependent
6207  // expression.
6208  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6209
6210    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6211    UnresolvedLookupExpr *Fn
6212      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6213                                     0, SourceRange(), OpName, LLoc,
6214                                     /*ADL*/ true, /*Overloaded*/ false);
6215    // Can't add any actual overloads yet
6216
6217    Base.release();
6218    Idx.release();
6219    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6220                                                   Args, 2,
6221                                                   Context.DependentTy,
6222                                                   RLoc));
6223  }
6224
6225  // Build an empty overload set.
6226  OverloadCandidateSet CandidateSet(LLoc);
6227
6228  // Subscript can only be overloaded as a member function.
6229
6230  // Add operator candidates that are member functions.
6231  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6232
6233  // Add builtin operator candidates.
6234  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6235
6236  // Perform overload resolution.
6237  OverloadCandidateSet::iterator Best;
6238  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6239    case OR_Success: {
6240      // We found a built-in operator or an overloaded operator.
6241      FunctionDecl *FnDecl = Best->Function;
6242
6243      if (FnDecl) {
6244        // We matched an overloaded operator. Build a call to that
6245        // operator.
6246
6247        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6248
6249        // Convert the arguments.
6250        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6251        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6252                                                Best->FoundDecl, Method))
6253          return ExprError();
6254
6255        // Convert the arguments.
6256        OwningExprResult InputInit
6257          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6258                                                      FnDecl->getParamDecl(0)),
6259                                      SourceLocation(),
6260                                      Owned(Args[1]));
6261        if (InputInit.isInvalid())
6262          return ExprError();
6263
6264        Args[1] = InputInit.takeAs<Expr>();
6265
6266        // Determine the result type
6267        QualType ResultTy
6268          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6269        ResultTy = ResultTy.getNonReferenceType();
6270
6271        // Build the actual expression node.
6272        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6273                                                 LLoc);
6274        UsualUnaryConversions(FnExpr);
6275
6276        Base.release();
6277        Idx.release();
6278        ExprOwningPtr<CXXOperatorCallExpr>
6279          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6280                                                          FnExpr, Args, 2,
6281                                                          ResultTy, RLoc));
6282
6283        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6284                                FnDecl))
6285          return ExprError();
6286
6287        return MaybeBindToTemporary(TheCall.release());
6288      } else {
6289        // We matched a built-in operator. Convert the arguments, then
6290        // break out so that we will build the appropriate built-in
6291        // operator node.
6292        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6293                                      Best->Conversions[0], AA_Passing) ||
6294            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6295                                      Best->Conversions[1], AA_Passing))
6296          return ExprError();
6297
6298        break;
6299      }
6300    }
6301
6302    case OR_No_Viable_Function: {
6303      if (CandidateSet.empty())
6304        Diag(LLoc, diag::err_ovl_no_oper)
6305          << Args[0]->getType() << /*subscript*/ 0
6306          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6307      else
6308        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6309          << Args[0]->getType()
6310          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6311      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6312                              "[]", LLoc);
6313      return ExprError();
6314    }
6315
6316    case OR_Ambiguous:
6317      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6318          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6319      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6320                              "[]", LLoc);
6321      return ExprError();
6322
6323    case OR_Deleted:
6324      Diag(LLoc, diag::err_ovl_deleted_oper)
6325        << Best->Function->isDeleted() << "[]"
6326        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6327      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6328                              "[]", LLoc);
6329      return ExprError();
6330    }
6331
6332  // We matched a built-in operator; build it.
6333  Base.release();
6334  Idx.release();
6335  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6336                                         Owned(Args[1]), RLoc);
6337}
6338
6339/// BuildCallToMemberFunction - Build a call to a member
6340/// function. MemExpr is the expression that refers to the member
6341/// function (and includes the object parameter), Args/NumArgs are the
6342/// arguments to the function call (not including the object
6343/// parameter). The caller needs to validate that the member
6344/// expression refers to a member function or an overloaded member
6345/// function.
6346Sema::OwningExprResult
6347Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6348                                SourceLocation LParenLoc, Expr **Args,
6349                                unsigned NumArgs, SourceLocation *CommaLocs,
6350                                SourceLocation RParenLoc) {
6351  // Dig out the member expression. This holds both the object
6352  // argument and the member function we're referring to.
6353  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6354
6355  MemberExpr *MemExpr;
6356  CXXMethodDecl *Method = 0;
6357  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6358  NestedNameSpecifier *Qualifier = 0;
6359  if (isa<MemberExpr>(NakedMemExpr)) {
6360    MemExpr = cast<MemberExpr>(NakedMemExpr);
6361    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6362    FoundDecl = MemExpr->getFoundDecl();
6363    Qualifier = MemExpr->getQualifier();
6364  } else {
6365    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6366    Qualifier = UnresExpr->getQualifier();
6367
6368    QualType ObjectType = UnresExpr->getBaseType();
6369
6370    // Add overload candidates
6371    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6372
6373    // FIXME: avoid copy.
6374    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6375    if (UnresExpr->hasExplicitTemplateArgs()) {
6376      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6377      TemplateArgs = &TemplateArgsBuffer;
6378    }
6379
6380    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6381           E = UnresExpr->decls_end(); I != E; ++I) {
6382
6383      NamedDecl *Func = *I;
6384      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6385      if (isa<UsingShadowDecl>(Func))
6386        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6387
6388      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6389        // If explicit template arguments were provided, we can't call a
6390        // non-template member function.
6391        if (TemplateArgs)
6392          continue;
6393
6394        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6395                           Args, NumArgs,
6396                           CandidateSet, /*SuppressUserConversions=*/false);
6397      } else {
6398        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6399                                   I.getPair(), ActingDC, TemplateArgs,
6400                                   ObjectType, Args, NumArgs,
6401                                   CandidateSet,
6402                                   /*SuppressUsedConversions=*/false);
6403      }
6404    }
6405
6406    DeclarationName DeclName = UnresExpr->getMemberName();
6407
6408    OverloadCandidateSet::iterator Best;
6409    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6410    case OR_Success:
6411      Method = cast<CXXMethodDecl>(Best->Function);
6412      FoundDecl = Best->FoundDecl;
6413      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6414      break;
6415
6416    case OR_No_Viable_Function:
6417      Diag(UnresExpr->getMemberLoc(),
6418           diag::err_ovl_no_viable_member_function_in_call)
6419        << DeclName << MemExprE->getSourceRange();
6420      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6421      // FIXME: Leaking incoming expressions!
6422      return ExprError();
6423
6424    case OR_Ambiguous:
6425      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6426        << DeclName << MemExprE->getSourceRange();
6427      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6428      // FIXME: Leaking incoming expressions!
6429      return ExprError();
6430
6431    case OR_Deleted:
6432      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6433        << Best->Function->isDeleted()
6434        << DeclName << MemExprE->getSourceRange();
6435      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6436      // FIXME: Leaking incoming expressions!
6437      return ExprError();
6438    }
6439
6440    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6441
6442    // If overload resolution picked a static member, build a
6443    // non-member call based on that function.
6444    if (Method->isStatic()) {
6445      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6446                                   Args, NumArgs, RParenLoc);
6447    }
6448
6449    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6450  }
6451
6452  assert(Method && "Member call to something that isn't a method?");
6453  ExprOwningPtr<CXXMemberCallExpr>
6454    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6455                                                  NumArgs,
6456                                  Method->getResultType().getNonReferenceType(),
6457                                  RParenLoc));
6458
6459  // Check for a valid return type.
6460  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6461                          TheCall.get(), Method))
6462    return ExprError();
6463
6464  // Convert the object argument (for a non-static member function call).
6465  // We only need to do this if there was actually an overload; otherwise
6466  // it was done at lookup.
6467  Expr *ObjectArg = MemExpr->getBase();
6468  if (!Method->isStatic() &&
6469      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
6470                                          FoundDecl, Method))
6471    return ExprError();
6472  MemExpr->setBase(ObjectArg);
6473
6474  // Convert the rest of the arguments
6475  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
6476  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
6477                              RParenLoc))
6478    return ExprError();
6479
6480  if (CheckFunctionCall(Method, TheCall.get()))
6481    return ExprError();
6482
6483  return MaybeBindToTemporary(TheCall.release());
6484}
6485
6486/// BuildCallToObjectOfClassType - Build a call to an object of class
6487/// type (C++ [over.call.object]), which can end up invoking an
6488/// overloaded function call operator (@c operator()) or performing a
6489/// user-defined conversion on the object argument.
6490Sema::ExprResult
6491Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
6492                                   SourceLocation LParenLoc,
6493                                   Expr **Args, unsigned NumArgs,
6494                                   SourceLocation *CommaLocs,
6495                                   SourceLocation RParenLoc) {
6496  assert(Object->getType()->isRecordType() && "Requires object type argument");
6497  const RecordType *Record = Object->getType()->getAs<RecordType>();
6498
6499  // C++ [over.call.object]p1:
6500  //  If the primary-expression E in the function call syntax
6501  //  evaluates to a class object of type "cv T", then the set of
6502  //  candidate functions includes at least the function call
6503  //  operators of T. The function call operators of T are obtained by
6504  //  ordinary lookup of the name operator() in the context of
6505  //  (E).operator().
6506  OverloadCandidateSet CandidateSet(LParenLoc);
6507  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
6508
6509  if (RequireCompleteType(LParenLoc, Object->getType(),
6510                          PDiag(diag::err_incomplete_object_call)
6511                          << Object->getSourceRange()))
6512    return true;
6513
6514  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
6515  LookupQualifiedName(R, Record->getDecl());
6516  R.suppressDiagnostics();
6517
6518  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6519       Oper != OperEnd; ++Oper) {
6520    AddMethodCandidate(Oper.getPair(), Object->getType(),
6521                       Args, NumArgs, CandidateSet,
6522                       /*SuppressUserConversions=*/ false);
6523  }
6524
6525  // C++ [over.call.object]p2:
6526  //   In addition, for each conversion function declared in T of the
6527  //   form
6528  //
6529  //        operator conversion-type-id () cv-qualifier;
6530  //
6531  //   where cv-qualifier is the same cv-qualification as, or a
6532  //   greater cv-qualification than, cv, and where conversion-type-id
6533  //   denotes the type "pointer to function of (P1,...,Pn) returning
6534  //   R", or the type "reference to pointer to function of
6535  //   (P1,...,Pn) returning R", or the type "reference to function
6536  //   of (P1,...,Pn) returning R", a surrogate call function [...]
6537  //   is also considered as a candidate function. Similarly,
6538  //   surrogate call functions are added to the set of candidate
6539  //   functions for each conversion function declared in an
6540  //   accessible base class provided the function is not hidden
6541  //   within T by another intervening declaration.
6542  const UnresolvedSetImpl *Conversions
6543    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
6544  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
6545         E = Conversions->end(); I != E; ++I) {
6546    NamedDecl *D = *I;
6547    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6548    if (isa<UsingShadowDecl>(D))
6549      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6550
6551    // Skip over templated conversion functions; they aren't
6552    // surrogates.
6553    if (isa<FunctionTemplateDecl>(D))
6554      continue;
6555
6556    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
6557
6558    // Strip the reference type (if any) and then the pointer type (if
6559    // any) to get down to what might be a function type.
6560    QualType ConvType = Conv->getConversionType().getNonReferenceType();
6561    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
6562      ConvType = ConvPtrType->getPointeeType();
6563
6564    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
6565      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
6566                            Object->getType(), Args, NumArgs,
6567                            CandidateSet);
6568  }
6569
6570  // Perform overload resolution.
6571  OverloadCandidateSet::iterator Best;
6572  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
6573  case OR_Success:
6574    // Overload resolution succeeded; we'll build the appropriate call
6575    // below.
6576    break;
6577
6578  case OR_No_Viable_Function:
6579    if (CandidateSet.empty())
6580      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
6581        << Object->getType() << /*call*/ 1
6582        << Object->getSourceRange();
6583    else
6584      Diag(Object->getSourceRange().getBegin(),
6585           diag::err_ovl_no_viable_object_call)
6586        << Object->getType() << Object->getSourceRange();
6587    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6588    break;
6589
6590  case OR_Ambiguous:
6591    Diag(Object->getSourceRange().getBegin(),
6592         diag::err_ovl_ambiguous_object_call)
6593      << Object->getType() << Object->getSourceRange();
6594    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6595    break;
6596
6597  case OR_Deleted:
6598    Diag(Object->getSourceRange().getBegin(),
6599         diag::err_ovl_deleted_object_call)
6600      << Best->Function->isDeleted()
6601      << Object->getType() << Object->getSourceRange();
6602    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6603    break;
6604  }
6605
6606  if (Best == CandidateSet.end()) {
6607    // We had an error; delete all of the subexpressions and return
6608    // the error.
6609    Object->Destroy(Context);
6610    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6611      Args[ArgIdx]->Destroy(Context);
6612    return true;
6613  }
6614
6615  if (Best->Function == 0) {
6616    // Since there is no function declaration, this is one of the
6617    // surrogate candidates. Dig out the conversion function.
6618    CXXConversionDecl *Conv
6619      = cast<CXXConversionDecl>(
6620                         Best->Conversions[0].UserDefined.ConversionFunction);
6621
6622    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6623
6624    // We selected one of the surrogate functions that converts the
6625    // object parameter to a function pointer. Perform the conversion
6626    // on the object argument, then let ActOnCallExpr finish the job.
6627
6628    // Create an implicit member expr to refer to the conversion operator.
6629    // and then call it.
6630    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
6631                                                   Conv);
6632
6633    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6634                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6635                         CommaLocs, RParenLoc).result();
6636  }
6637
6638  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
6639
6640  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6641  // that calls this method, using Object for the implicit object
6642  // parameter and passing along the remaining arguments.
6643  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6644  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6645
6646  unsigned NumArgsInProto = Proto->getNumArgs();
6647  unsigned NumArgsToCheck = NumArgs;
6648
6649  // Build the full argument list for the method call (the
6650  // implicit object parameter is placed at the beginning of the
6651  // list).
6652  Expr **MethodArgs;
6653  if (NumArgs < NumArgsInProto) {
6654    NumArgsToCheck = NumArgsInProto;
6655    MethodArgs = new Expr*[NumArgsInProto + 1];
6656  } else {
6657    MethodArgs = new Expr*[NumArgs + 1];
6658  }
6659  MethodArgs[0] = Object;
6660  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6661    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6662
6663  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6664                                          SourceLocation());
6665  UsualUnaryConversions(NewFn);
6666
6667  // Once we've built TheCall, all of the expressions are properly
6668  // owned.
6669  QualType ResultTy = Method->getResultType().getNonReferenceType();
6670  ExprOwningPtr<CXXOperatorCallExpr>
6671    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6672                                                    MethodArgs, NumArgs + 1,
6673                                                    ResultTy, RParenLoc));
6674  delete [] MethodArgs;
6675
6676  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6677                          Method))
6678    return true;
6679
6680  // We may have default arguments. If so, we need to allocate more
6681  // slots in the call for them.
6682  if (NumArgs < NumArgsInProto)
6683    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6684  else if (NumArgs > NumArgsInProto)
6685    NumArgsToCheck = NumArgsInProto;
6686
6687  bool IsError = false;
6688
6689  // Initialize the implicit object parameter.
6690  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
6691                                                 Best->FoundDecl, Method);
6692  TheCall->setArg(0, Object);
6693
6694
6695  // Check the argument types.
6696  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6697    Expr *Arg;
6698    if (i < NumArgs) {
6699      Arg = Args[i];
6700
6701      // Pass the argument.
6702
6703      OwningExprResult InputInit
6704        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6705                                                    Method->getParamDecl(i)),
6706                                    SourceLocation(), Owned(Arg));
6707
6708      IsError |= InputInit.isInvalid();
6709      Arg = InputInit.takeAs<Expr>();
6710    } else {
6711      OwningExprResult DefArg
6712        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6713      if (DefArg.isInvalid()) {
6714        IsError = true;
6715        break;
6716      }
6717
6718      Arg = DefArg.takeAs<Expr>();
6719    }
6720
6721    TheCall->setArg(i + 1, Arg);
6722  }
6723
6724  // If this is a variadic call, handle args passed through "...".
6725  if (Proto->isVariadic()) {
6726    // Promote the arguments (C99 6.5.2.2p7).
6727    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6728      Expr *Arg = Args[i];
6729      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6730      TheCall->setArg(i + 1, Arg);
6731    }
6732  }
6733
6734  if (IsError) return true;
6735
6736  if (CheckFunctionCall(Method, TheCall.get()))
6737    return true;
6738
6739  return MaybeBindToTemporary(TheCall.release()).result();
6740}
6741
6742/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6743///  (if one exists), where @c Base is an expression of class type and
6744/// @c Member is the name of the member we're trying to find.
6745Sema::OwningExprResult
6746Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6747  Expr *Base = static_cast<Expr *>(BaseIn.get());
6748  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6749
6750  SourceLocation Loc = Base->getExprLoc();
6751
6752  // C++ [over.ref]p1:
6753  //
6754  //   [...] An expression x->m is interpreted as (x.operator->())->m
6755  //   for a class object x of type T if T::operator->() exists and if
6756  //   the operator is selected as the best match function by the
6757  //   overload resolution mechanism (13.3).
6758  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6759  OverloadCandidateSet CandidateSet(Loc);
6760  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6761
6762  if (RequireCompleteType(Loc, Base->getType(),
6763                          PDiag(diag::err_typecheck_incomplete_tag)
6764                            << Base->getSourceRange()))
6765    return ExprError();
6766
6767  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6768  LookupQualifiedName(R, BaseRecord->getDecl());
6769  R.suppressDiagnostics();
6770
6771  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6772       Oper != OperEnd; ++Oper) {
6773    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
6774                       /*SuppressUserConversions=*/false);
6775  }
6776
6777  // Perform overload resolution.
6778  OverloadCandidateSet::iterator Best;
6779  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6780  case OR_Success:
6781    // Overload resolution succeeded; we'll build the call below.
6782    break;
6783
6784  case OR_No_Viable_Function:
6785    if (CandidateSet.empty())
6786      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6787        << Base->getType() << Base->getSourceRange();
6788    else
6789      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6790        << "operator->" << Base->getSourceRange();
6791    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6792    return ExprError();
6793
6794  case OR_Ambiguous:
6795    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6796      << "->" << Base->getSourceRange();
6797    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6798    return ExprError();
6799
6800  case OR_Deleted:
6801    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6802      << Best->Function->isDeleted()
6803      << "->" << Base->getSourceRange();
6804    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6805    return ExprError();
6806  }
6807
6808  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
6809
6810  // Convert the object parameter.
6811  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6812  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
6813                                          Best->FoundDecl, Method))
6814    return ExprError();
6815
6816  // No concerns about early exits now.
6817  BaseIn.release();
6818
6819  // Build the operator call.
6820  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6821                                           SourceLocation());
6822  UsualUnaryConversions(FnExpr);
6823
6824  QualType ResultTy = Method->getResultType().getNonReferenceType();
6825  ExprOwningPtr<CXXOperatorCallExpr>
6826    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6827                                                    &Base, 1, ResultTy, OpLoc));
6828
6829  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6830                          Method))
6831          return ExprError();
6832  return move(TheCall);
6833}
6834
6835/// FixOverloadedFunctionReference - E is an expression that refers to
6836/// a C++ overloaded function (possibly with some parentheses and
6837/// perhaps a '&' around it). We have resolved the overloaded function
6838/// to the function declaration Fn, so patch up the expression E to
6839/// refer (possibly indirectly) to Fn. Returns the new expr.
6840Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
6841                                           FunctionDecl *Fn) {
6842  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6843    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
6844                                                   Found, Fn);
6845    if (SubExpr == PE->getSubExpr())
6846      return PE->Retain();
6847
6848    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6849  }
6850
6851  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6852    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
6853                                                   Found, Fn);
6854    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6855                               SubExpr->getType()) &&
6856           "Implicit cast type cannot be determined from overload");
6857    if (SubExpr == ICE->getSubExpr())
6858      return ICE->Retain();
6859
6860    return new (Context) ImplicitCastExpr(ICE->getType(),
6861                                          ICE->getCastKind(),
6862                                          SubExpr, CXXBaseSpecifierArray(),
6863                                          ICE->isLvalueCast());
6864  }
6865
6866  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6867    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6868           "Can only take the address of an overloaded function");
6869    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6870      if (Method->isStatic()) {
6871        // Do nothing: static member functions aren't any different
6872        // from non-member functions.
6873      } else {
6874        // Fix the sub expression, which really has to be an
6875        // UnresolvedLookupExpr holding an overloaded member function
6876        // or template.
6877        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6878                                                       Found, Fn);
6879        if (SubExpr == UnOp->getSubExpr())
6880          return UnOp->Retain();
6881
6882        assert(isa<DeclRefExpr>(SubExpr)
6883               && "fixed to something other than a decl ref");
6884        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6885               && "fixed to a member ref with no nested name qualifier");
6886
6887        // We have taken the address of a pointer to member
6888        // function. Perform the computation here so that we get the
6889        // appropriate pointer to member type.
6890        QualType ClassType
6891          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6892        QualType MemPtrType
6893          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6894
6895        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6896                                           MemPtrType, UnOp->getOperatorLoc());
6897      }
6898    }
6899    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
6900                                                   Found, Fn);
6901    if (SubExpr == UnOp->getSubExpr())
6902      return UnOp->Retain();
6903
6904    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6905                                     Context.getPointerType(SubExpr->getType()),
6906                                       UnOp->getOperatorLoc());
6907  }
6908
6909  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6910    // FIXME: avoid copy.
6911    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6912    if (ULE->hasExplicitTemplateArgs()) {
6913      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6914      TemplateArgs = &TemplateArgsBuffer;
6915    }
6916
6917    return DeclRefExpr::Create(Context,
6918                               ULE->getQualifier(),
6919                               ULE->getQualifierRange(),
6920                               Fn,
6921                               ULE->getNameLoc(),
6922                               Fn->getType(),
6923                               TemplateArgs);
6924  }
6925
6926  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6927    // FIXME: avoid copy.
6928    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6929    if (MemExpr->hasExplicitTemplateArgs()) {
6930      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6931      TemplateArgs = &TemplateArgsBuffer;
6932    }
6933
6934    Expr *Base;
6935
6936    // If we're filling in
6937    if (MemExpr->isImplicitAccess()) {
6938      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6939        return DeclRefExpr::Create(Context,
6940                                   MemExpr->getQualifier(),
6941                                   MemExpr->getQualifierRange(),
6942                                   Fn,
6943                                   MemExpr->getMemberLoc(),
6944                                   Fn->getType(),
6945                                   TemplateArgs);
6946      } else {
6947        SourceLocation Loc = MemExpr->getMemberLoc();
6948        if (MemExpr->getQualifier())
6949          Loc = MemExpr->getQualifierRange().getBegin();
6950        Base = new (Context) CXXThisExpr(Loc,
6951                                         MemExpr->getBaseType(),
6952                                         /*isImplicit=*/true);
6953      }
6954    } else
6955      Base = MemExpr->getBase()->Retain();
6956
6957    return MemberExpr::Create(Context, Base,
6958                              MemExpr->isArrow(),
6959                              MemExpr->getQualifier(),
6960                              MemExpr->getQualifierRange(),
6961                              Fn,
6962                              Found,
6963                              MemExpr->getMemberLoc(),
6964                              TemplateArgs,
6965                              Fn->getType());
6966  }
6967
6968  assert(false && "Invalid reference to overloaded function");
6969  return E->Retain();
6970}
6971
6972Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6973                                                          DeclAccessPair Found,
6974                                                            FunctionDecl *Fn) {
6975  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
6976}
6977
6978} // end namespace clang
6979