SemaOverload.cpp revision e4a621552c52b7733af4b8c684abc54769ff0ec6
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion,
56    ICC_Conversion,
57    ICC_Conversion
58  };
59  return Category[(int)Kind];
60}
61
62/// GetConversionRank - Retrieve the implicit conversion rank
63/// corresponding to the given implicit conversion kind.
64ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
65  static const ImplicitConversionRank
66    Rank[(int)ICK_Num_Conversion_Kinds] = {
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Exact_Match,
72    ICR_Exact_Match,
73    ICR_Promotion,
74    ICR_Promotion,
75    ICR_Promotion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion,
84    ICR_Conversion,
85    ICR_Conversion,
86    ICR_Conversion,
87    ICR_Complex_Real_Conversion
88  };
89  return Rank[(int)Kind];
90}
91
92/// GetImplicitConversionName - Return the name of this kind of
93/// implicit conversion.
94const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
95  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
96    "No conversion",
97    "Lvalue-to-rvalue",
98    "Array-to-pointer",
99    "Function-to-pointer",
100    "Noreturn adjustment",
101    "Qualification",
102    "Integral promotion",
103    "Floating point promotion",
104    "Complex promotion",
105    "Integral conversion",
106    "Floating conversion",
107    "Complex conversion",
108    "Floating-integral conversion",
109    "Pointer conversion",
110    "Pointer-to-member conversion",
111    "Boolean conversion",
112    "Compatible-types conversion",
113    "Derived-to-base conversion",
114    "Vector conversion",
115    "Vector splat",
116    "Complex-real conversion"
117  };
118  return Name[Kind];
119}
120
121/// StandardConversionSequence - Set the standard conversion
122/// sequence to the identity conversion.
123void StandardConversionSequence::setAsIdentityConversion() {
124  First = ICK_Identity;
125  Second = ICK_Identity;
126  Third = ICK_Identity;
127  DeprecatedStringLiteralToCharPtr = false;
128  ReferenceBinding = false;
129  DirectBinding = false;
130  RRefBinding = false;
131  CopyConstructor = 0;
132}
133
134/// getRank - Retrieve the rank of this standard conversion sequence
135/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
136/// implicit conversions.
137ImplicitConversionRank StandardConversionSequence::getRank() const {
138  ImplicitConversionRank Rank = ICR_Exact_Match;
139  if  (GetConversionRank(First) > Rank)
140    Rank = GetConversionRank(First);
141  if  (GetConversionRank(Second) > Rank)
142    Rank = GetConversionRank(Second);
143  if  (GetConversionRank(Third) > Rank)
144    Rank = GetConversionRank(Third);
145  return Rank;
146}
147
148/// isPointerConversionToBool - Determines whether this conversion is
149/// a conversion of a pointer or pointer-to-member to bool. This is
150/// used as part of the ranking of standard conversion sequences
151/// (C++ 13.3.3.2p4).
152bool StandardConversionSequence::isPointerConversionToBool() const {
153  // Note that FromType has not necessarily been transformed by the
154  // array-to-pointer or function-to-pointer implicit conversions, so
155  // check for their presence as well as checking whether FromType is
156  // a pointer.
157  if (getToType(1)->isBooleanType() &&
158      (getFromType()->isPointerType() ||
159       getFromType()->isObjCObjectPointerType() ||
160       getFromType()->isBlockPointerType() ||
161       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
162    return true;
163
164  return false;
165}
166
167/// isPointerConversionToVoidPointer - Determines whether this
168/// conversion is a conversion of a pointer to a void pointer. This is
169/// used as part of the ranking of standard conversion sequences (C++
170/// 13.3.3.2p4).
171bool
172StandardConversionSequence::
173isPointerConversionToVoidPointer(ASTContext& Context) const {
174  QualType FromType = getFromType();
175  QualType ToType = getToType(1);
176
177  // Note that FromType has not necessarily been transformed by the
178  // array-to-pointer implicit conversion, so check for its presence
179  // and redo the conversion to get a pointer.
180  if (First == ICK_Array_To_Pointer)
181    FromType = Context.getArrayDecayedType(FromType);
182
183  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
184    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
185      return ToPtrType->getPointeeType()->isVoidType();
186
187  return false;
188}
189
190/// DebugPrint - Print this standard conversion sequence to standard
191/// error. Useful for debugging overloading issues.
192void StandardConversionSequence::DebugPrint() const {
193  llvm::raw_ostream &OS = llvm::errs();
194  bool PrintedSomething = false;
195  if (First != ICK_Identity) {
196    OS << GetImplicitConversionName(First);
197    PrintedSomething = true;
198  }
199
200  if (Second != ICK_Identity) {
201    if (PrintedSomething) {
202      OS << " -> ";
203    }
204    OS << GetImplicitConversionName(Second);
205
206    if (CopyConstructor) {
207      OS << " (by copy constructor)";
208    } else if (DirectBinding) {
209      OS << " (direct reference binding)";
210    } else if (ReferenceBinding) {
211      OS << " (reference binding)";
212    }
213    PrintedSomething = true;
214  }
215
216  if (Third != ICK_Identity) {
217    if (PrintedSomething) {
218      OS << " -> ";
219    }
220    OS << GetImplicitConversionName(Third);
221    PrintedSomething = true;
222  }
223
224  if (!PrintedSomething) {
225    OS << "No conversions required";
226  }
227}
228
229/// DebugPrint - Print this user-defined conversion sequence to standard
230/// error. Useful for debugging overloading issues.
231void UserDefinedConversionSequence::DebugPrint() const {
232  llvm::raw_ostream &OS = llvm::errs();
233  if (Before.First || Before.Second || Before.Third) {
234    Before.DebugPrint();
235    OS << " -> ";
236  }
237  OS << '\'' << ConversionFunction << '\'';
238  if (After.First || After.Second || After.Third) {
239    OS << " -> ";
240    After.DebugPrint();
241  }
242}
243
244/// DebugPrint - Print this implicit conversion sequence to standard
245/// error. Useful for debugging overloading issues.
246void ImplicitConversionSequence::DebugPrint() const {
247  llvm::raw_ostream &OS = llvm::errs();
248  switch (ConversionKind) {
249  case StandardConversion:
250    OS << "Standard conversion: ";
251    Standard.DebugPrint();
252    break;
253  case UserDefinedConversion:
254    OS << "User-defined conversion: ";
255    UserDefined.DebugPrint();
256    break;
257  case EllipsisConversion:
258    OS << "Ellipsis conversion";
259    break;
260  case AmbiguousConversion:
261    OS << "Ambiguous conversion";
262    break;
263  case BadConversion:
264    OS << "Bad conversion";
265    break;
266  }
267
268  OS << "\n";
269}
270
271void AmbiguousConversionSequence::construct() {
272  new (&conversions()) ConversionSet();
273}
274
275void AmbiguousConversionSequence::destruct() {
276  conversions().~ConversionSet();
277}
278
279void
280AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
281  FromTypePtr = O.FromTypePtr;
282  ToTypePtr = O.ToTypePtr;
283  new (&conversions()) ConversionSet(O.conversions());
284}
285
286namespace {
287  // Structure used by OverloadCandidate::DeductionFailureInfo to store
288  // template parameter and template argument information.
289  struct DFIParamWithArguments {
290    TemplateParameter Param;
291    TemplateArgument FirstArg;
292    TemplateArgument SecondArg;
293  };
294}
295
296/// \brief Convert from Sema's representation of template deduction information
297/// to the form used in overload-candidate information.
298OverloadCandidate::DeductionFailureInfo
299static MakeDeductionFailureInfo(ASTContext &Context,
300                                Sema::TemplateDeductionResult TDK,
301                                Sema::TemplateDeductionInfo &Info) {
302  OverloadCandidate::DeductionFailureInfo Result;
303  Result.Result = static_cast<unsigned>(TDK);
304  Result.Data = 0;
305  switch (TDK) {
306  case Sema::TDK_Success:
307  case Sema::TDK_InstantiationDepth:
308  case Sema::TDK_TooManyArguments:
309  case Sema::TDK_TooFewArguments:
310    break;
311
312  case Sema::TDK_Incomplete:
313  case Sema::TDK_InvalidExplicitArguments:
314    Result.Data = Info.Param.getOpaqueValue();
315    break;
316
317  case Sema::TDK_Inconsistent:
318  case Sema::TDK_InconsistentQuals: {
319    // FIXME: Should allocate from normal heap so that we can free this later.
320    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
321    Saved->Param = Info.Param;
322    Saved->FirstArg = Info.FirstArg;
323    Saved->SecondArg = Info.SecondArg;
324    Result.Data = Saved;
325    break;
326  }
327
328  case Sema::TDK_SubstitutionFailure:
329    Result.Data = Info.take();
330    break;
331
332  case Sema::TDK_NonDeducedMismatch:
333  case Sema::TDK_FailedOverloadResolution:
334    break;
335  }
336
337  return Result;
338}
339
340void OverloadCandidate::DeductionFailureInfo::Destroy() {
341  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
342  case Sema::TDK_Success:
343  case Sema::TDK_InstantiationDepth:
344  case Sema::TDK_Incomplete:
345  case Sema::TDK_TooManyArguments:
346  case Sema::TDK_TooFewArguments:
347  case Sema::TDK_InvalidExplicitArguments:
348    break;
349
350  case Sema::TDK_Inconsistent:
351  case Sema::TDK_InconsistentQuals:
352    // FIXME: Destroy the data?
353    Data = 0;
354    break;
355
356  case Sema::TDK_SubstitutionFailure:
357    // FIXME: Destroy the template arugment list?
358    Data = 0;
359    break;
360
361  // Unhandled
362  case Sema::TDK_NonDeducedMismatch:
363  case Sema::TDK_FailedOverloadResolution:
364    break;
365  }
366}
367
368TemplateParameter
369OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
370  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
371  case Sema::TDK_Success:
372  case Sema::TDK_InstantiationDepth:
373  case Sema::TDK_TooManyArguments:
374  case Sema::TDK_TooFewArguments:
375  case Sema::TDK_SubstitutionFailure:
376    return TemplateParameter();
377
378  case Sema::TDK_Incomplete:
379  case Sema::TDK_InvalidExplicitArguments:
380    return TemplateParameter::getFromOpaqueValue(Data);
381
382  case Sema::TDK_Inconsistent:
383  case Sema::TDK_InconsistentQuals:
384    return static_cast<DFIParamWithArguments*>(Data)->Param;
385
386  // Unhandled
387  case Sema::TDK_NonDeducedMismatch:
388  case Sema::TDK_FailedOverloadResolution:
389    break;
390  }
391
392  return TemplateParameter();
393}
394
395TemplateArgumentList *
396OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
397  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
398    case Sema::TDK_Success:
399    case Sema::TDK_InstantiationDepth:
400    case Sema::TDK_TooManyArguments:
401    case Sema::TDK_TooFewArguments:
402    case Sema::TDK_Incomplete:
403    case Sema::TDK_InvalidExplicitArguments:
404    case Sema::TDK_Inconsistent:
405    case Sema::TDK_InconsistentQuals:
406      return 0;
407
408    case Sema::TDK_SubstitutionFailure:
409      return static_cast<TemplateArgumentList*>(Data);
410
411    // Unhandled
412    case Sema::TDK_NonDeducedMismatch:
413    case Sema::TDK_FailedOverloadResolution:
414      break;
415  }
416
417  return 0;
418}
419
420const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
421  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
422  case Sema::TDK_Success:
423  case Sema::TDK_InstantiationDepth:
424  case Sema::TDK_Incomplete:
425  case Sema::TDK_TooManyArguments:
426  case Sema::TDK_TooFewArguments:
427  case Sema::TDK_InvalidExplicitArguments:
428  case Sema::TDK_SubstitutionFailure:
429    return 0;
430
431  case Sema::TDK_Inconsistent:
432  case Sema::TDK_InconsistentQuals:
433    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
434
435  // Unhandled
436  case Sema::TDK_NonDeducedMismatch:
437  case Sema::TDK_FailedOverloadResolution:
438    break;
439  }
440
441  return 0;
442}
443
444const TemplateArgument *
445OverloadCandidate::DeductionFailureInfo::getSecondArg() {
446  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
447  case Sema::TDK_Success:
448  case Sema::TDK_InstantiationDepth:
449  case Sema::TDK_Incomplete:
450  case Sema::TDK_TooManyArguments:
451  case Sema::TDK_TooFewArguments:
452  case Sema::TDK_InvalidExplicitArguments:
453  case Sema::TDK_SubstitutionFailure:
454    return 0;
455
456  case Sema::TDK_Inconsistent:
457  case Sema::TDK_InconsistentQuals:
458    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
459
460  // Unhandled
461  case Sema::TDK_NonDeducedMismatch:
462  case Sema::TDK_FailedOverloadResolution:
463    break;
464  }
465
466  return 0;
467}
468
469void OverloadCandidateSet::clear() {
470  inherited::clear();
471  Functions.clear();
472}
473
474// IsOverload - Determine whether the given New declaration is an
475// overload of the declarations in Old. This routine returns false if
476// New and Old cannot be overloaded, e.g., if New has the same
477// signature as some function in Old (C++ 1.3.10) or if the Old
478// declarations aren't functions (or function templates) at all. When
479// it does return false, MatchedDecl will point to the decl that New
480// cannot be overloaded with.  This decl may be a UsingShadowDecl on
481// top of the underlying declaration.
482//
483// Example: Given the following input:
484//
485//   void f(int, float); // #1
486//   void f(int, int); // #2
487//   int f(int, int); // #3
488//
489// When we process #1, there is no previous declaration of "f",
490// so IsOverload will not be used.
491//
492// When we process #2, Old contains only the FunctionDecl for #1.  By
493// comparing the parameter types, we see that #1 and #2 are overloaded
494// (since they have different signatures), so this routine returns
495// false; MatchedDecl is unchanged.
496//
497// When we process #3, Old is an overload set containing #1 and #2. We
498// compare the signatures of #3 to #1 (they're overloaded, so we do
499// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
500// identical (return types of functions are not part of the
501// signature), IsOverload returns false and MatchedDecl will be set to
502// point to the FunctionDecl for #2.
503//
504// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
505// into a class by a using declaration.  The rules for whether to hide
506// shadow declarations ignore some properties which otherwise figure
507// into a function template's signature.
508Sema::OverloadKind
509Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
510                    NamedDecl *&Match, bool NewIsUsingDecl) {
511  for (LookupResult::iterator I = Old.begin(), E = Old.end();
512         I != E; ++I) {
513    NamedDecl *OldD = *I;
514
515    bool OldIsUsingDecl = false;
516    if (isa<UsingShadowDecl>(OldD)) {
517      OldIsUsingDecl = true;
518
519      // We can always introduce two using declarations into the same
520      // context, even if they have identical signatures.
521      if (NewIsUsingDecl) continue;
522
523      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
524    }
525
526    // If either declaration was introduced by a using declaration,
527    // we'll need to use slightly different rules for matching.
528    // Essentially, these rules are the normal rules, except that
529    // function templates hide function templates with different
530    // return types or template parameter lists.
531    bool UseMemberUsingDeclRules =
532      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
533
534    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
535      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
536        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
537          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
538          continue;
539        }
540
541        Match = *I;
542        return Ovl_Match;
543      }
544    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
545      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
546        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
547          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
548          continue;
549        }
550
551        Match = *I;
552        return Ovl_Match;
553      }
554    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
555      // We can overload with these, which can show up when doing
556      // redeclaration checks for UsingDecls.
557      assert(Old.getLookupKind() == LookupUsingDeclName);
558    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
559      // Optimistically assume that an unresolved using decl will
560      // overload; if it doesn't, we'll have to diagnose during
561      // template instantiation.
562    } else {
563      // (C++ 13p1):
564      //   Only function declarations can be overloaded; object and type
565      //   declarations cannot be overloaded.
566      Match = *I;
567      return Ovl_NonFunction;
568    }
569  }
570
571  return Ovl_Overload;
572}
573
574bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
575                      bool UseUsingDeclRules) {
576  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
577  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
578
579  // C++ [temp.fct]p2:
580  //   A function template can be overloaded with other function templates
581  //   and with normal (non-template) functions.
582  if ((OldTemplate == 0) != (NewTemplate == 0))
583    return true;
584
585  // Is the function New an overload of the function Old?
586  QualType OldQType = Context.getCanonicalType(Old->getType());
587  QualType NewQType = Context.getCanonicalType(New->getType());
588
589  // Compare the signatures (C++ 1.3.10) of the two functions to
590  // determine whether they are overloads. If we find any mismatch
591  // in the signature, they are overloads.
592
593  // If either of these functions is a K&R-style function (no
594  // prototype), then we consider them to have matching signatures.
595  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
596      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
597    return false;
598
599  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
600  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
601
602  // The signature of a function includes the types of its
603  // parameters (C++ 1.3.10), which includes the presence or absence
604  // of the ellipsis; see C++ DR 357).
605  if (OldQType != NewQType &&
606      (OldType->getNumArgs() != NewType->getNumArgs() ||
607       OldType->isVariadic() != NewType->isVariadic() ||
608       !FunctionArgTypesAreEqual(OldType, NewType)))
609    return true;
610
611  // C++ [temp.over.link]p4:
612  //   The signature of a function template consists of its function
613  //   signature, its return type and its template parameter list. The names
614  //   of the template parameters are significant only for establishing the
615  //   relationship between the template parameters and the rest of the
616  //   signature.
617  //
618  // We check the return type and template parameter lists for function
619  // templates first; the remaining checks follow.
620  //
621  // However, we don't consider either of these when deciding whether
622  // a member introduced by a shadow declaration is hidden.
623  if (!UseUsingDeclRules && NewTemplate &&
624      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
625                                       OldTemplate->getTemplateParameters(),
626                                       false, TPL_TemplateMatch) ||
627       OldType->getResultType() != NewType->getResultType()))
628    return true;
629
630  // If the function is a class member, its signature includes the
631  // cv-qualifiers (if any) on the function itself.
632  //
633  // As part of this, also check whether one of the member functions
634  // is static, in which case they are not overloads (C++
635  // 13.1p2). While not part of the definition of the signature,
636  // this check is important to determine whether these functions
637  // can be overloaded.
638  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
639  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
640  if (OldMethod && NewMethod &&
641      !OldMethod->isStatic() && !NewMethod->isStatic() &&
642      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
643    return true;
644
645  // The signatures match; this is not an overload.
646  return false;
647}
648
649/// TryImplicitConversion - Attempt to perform an implicit conversion
650/// from the given expression (Expr) to the given type (ToType). This
651/// function returns an implicit conversion sequence that can be used
652/// to perform the initialization. Given
653///
654///   void f(float f);
655///   void g(int i) { f(i); }
656///
657/// this routine would produce an implicit conversion sequence to
658/// describe the initialization of f from i, which will be a standard
659/// conversion sequence containing an lvalue-to-rvalue conversion (C++
660/// 4.1) followed by a floating-integral conversion (C++ 4.9).
661//
662/// Note that this routine only determines how the conversion can be
663/// performed; it does not actually perform the conversion. As such,
664/// it will not produce any diagnostics if no conversion is available,
665/// but will instead return an implicit conversion sequence of kind
666/// "BadConversion".
667///
668/// If @p SuppressUserConversions, then user-defined conversions are
669/// not permitted.
670/// If @p AllowExplicit, then explicit user-defined conversions are
671/// permitted.
672ImplicitConversionSequence
673Sema::TryImplicitConversion(Expr* From, QualType ToType,
674                            bool SuppressUserConversions,
675                            bool AllowExplicit,
676                            bool InOverloadResolution) {
677  ImplicitConversionSequence ICS;
678  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard)) {
679    ICS.setStandard();
680    return ICS;
681  }
682
683  if (!getLangOptions().CPlusPlus) {
684    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
685    return ICS;
686  }
687
688  if (SuppressUserConversions) {
689    // C++ [over.ics.user]p4:
690    //   A conversion of an expression of class type to the same class
691    //   type is given Exact Match rank, and a conversion of an
692    //   expression of class type to a base class of that type is
693    //   given Conversion rank, in spite of the fact that a copy/move
694    //   constructor (i.e., a user-defined conversion function) is
695    //   called for those cases.
696    QualType FromType = From->getType();
697    if (!ToType->getAs<RecordType>() || !FromType->getAs<RecordType>() ||
698        !(Context.hasSameUnqualifiedType(FromType, ToType) ||
699          IsDerivedFrom(FromType, ToType))) {
700      // We're not in the case above, so there is no conversion that
701      // we can perform.
702      ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
703      return ICS;
704    }
705
706    ICS.setStandard();
707    ICS.Standard.setAsIdentityConversion();
708    ICS.Standard.setFromType(FromType);
709    ICS.Standard.setAllToTypes(ToType);
710
711    // We don't actually check at this point whether there is a valid
712    // copy/move constructor, since overloading just assumes that it
713    // exists. When we actually perform initialization, we'll find the
714    // appropriate constructor to copy the returned object, if needed.
715    ICS.Standard.CopyConstructor = 0;
716
717    // Determine whether this is considered a derived-to-base conversion.
718    if (!Context.hasSameUnqualifiedType(FromType, ToType))
719      ICS.Standard.Second = ICK_Derived_To_Base;
720
721    return ICS;
722  }
723
724  // Attempt user-defined conversion.
725  OverloadCandidateSet Conversions(From->getExprLoc());
726  OverloadingResult UserDefResult
727    = IsUserDefinedConversion(From, ToType, ICS.UserDefined, Conversions,
728                              AllowExplicit);
729
730  if (UserDefResult == OR_Success) {
731    ICS.setUserDefined();
732    // C++ [over.ics.user]p4:
733    //   A conversion of an expression of class type to the same class
734    //   type is given Exact Match rank, and a conversion of an
735    //   expression of class type to a base class of that type is
736    //   given Conversion rank, in spite of the fact that a copy
737    //   constructor (i.e., a user-defined conversion function) is
738    //   called for those cases.
739    if (CXXConstructorDecl *Constructor
740          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
741      QualType FromCanon
742        = Context.getCanonicalType(From->getType().getUnqualifiedType());
743      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
744      if (Constructor->isCopyConstructor() &&
745          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
746        // Turn this into a "standard" conversion sequence, so that it
747        // gets ranked with standard conversion sequences.
748        ICS.setStandard();
749        ICS.Standard.setAsIdentityConversion();
750        ICS.Standard.setFromType(From->getType());
751        ICS.Standard.setAllToTypes(ToType);
752        ICS.Standard.CopyConstructor = Constructor;
753        if (ToCanon != FromCanon)
754          ICS.Standard.Second = ICK_Derived_To_Base;
755      }
756    }
757
758    // C++ [over.best.ics]p4:
759    //   However, when considering the argument of a user-defined
760    //   conversion function that is a candidate by 13.3.1.3 when
761    //   invoked for the copying of the temporary in the second step
762    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
763    //   13.3.1.6 in all cases, only standard conversion sequences and
764    //   ellipsis conversion sequences are allowed.
765    if (SuppressUserConversions && ICS.isUserDefined()) {
766      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
767    }
768  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
769    ICS.setAmbiguous();
770    ICS.Ambiguous.setFromType(From->getType());
771    ICS.Ambiguous.setToType(ToType);
772    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
773         Cand != Conversions.end(); ++Cand)
774      if (Cand->Viable)
775        ICS.Ambiguous.addConversion(Cand->Function);
776  } else {
777    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
778  }
779
780  return ICS;
781}
782
783/// PerformImplicitConversion - Perform an implicit conversion of the
784/// expression From to the type ToType. Returns true if there was an
785/// error, false otherwise. The expression From is replaced with the
786/// converted expression. Flavor is the kind of conversion we're
787/// performing, used in the error message. If @p AllowExplicit,
788/// explicit user-defined conversions are permitted.
789bool
790Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
791                                AssignmentAction Action, bool AllowExplicit) {
792  ImplicitConversionSequence ICS;
793  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
794}
795
796bool
797Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
798                                AssignmentAction Action, bool AllowExplicit,
799                                ImplicitConversionSequence& ICS) {
800  ICS = TryImplicitConversion(From, ToType,
801                              /*SuppressUserConversions=*/false,
802                              AllowExplicit,
803                              /*InOverloadResolution=*/false);
804  return PerformImplicitConversion(From, ToType, ICS, Action);
805}
806
807/// \brief Determine whether the conversion from FromType to ToType is a valid
808/// conversion that strips "noreturn" off the nested function type.
809static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
810                                 QualType ToType, QualType &ResultTy) {
811  if (Context.hasSameUnqualifiedType(FromType, ToType))
812    return false;
813
814  // Strip the noreturn off the type we're converting from; noreturn can
815  // safely be removed.
816  FromType = Context.getNoReturnType(FromType, false);
817  if (!Context.hasSameUnqualifiedType(FromType, ToType))
818    return false;
819
820  ResultTy = FromType;
821  return true;
822}
823
824/// \brief Determine whether the conversion from FromType to ToType is a valid
825/// vector conversion.
826///
827/// \param ICK Will be set to the vector conversion kind, if this is a vector
828/// conversion.
829static bool IsVectorConversion(ASTContext &Context, QualType FromType,
830                               QualType ToType, ImplicitConversionKind &ICK) {
831  // We need at least one of these types to be a vector type to have a vector
832  // conversion.
833  if (!ToType->isVectorType() && !FromType->isVectorType())
834    return false;
835
836  // Identical types require no conversions.
837  if (Context.hasSameUnqualifiedType(FromType, ToType))
838    return false;
839
840  // There are no conversions between extended vector types, only identity.
841  if (ToType->isExtVectorType()) {
842    // There are no conversions between extended vector types other than the
843    // identity conversion.
844    if (FromType->isExtVectorType())
845      return false;
846
847    // Vector splat from any arithmetic type to a vector.
848    if (!FromType->isVectorType() && FromType->isArithmeticType()) {
849      ICK = ICK_Vector_Splat;
850      return true;
851    }
852  }
853
854  // If lax vector conversions are permitted and the vector types are of the
855  // same size, we can perform the conversion.
856  if (Context.getLangOptions().LaxVectorConversions &&
857      FromType->isVectorType() && ToType->isVectorType() &&
858      Context.getTypeSize(FromType) == Context.getTypeSize(ToType)) {
859    ICK = ICK_Vector_Conversion;
860    return true;
861  }
862
863  return false;
864}
865
866/// IsStandardConversion - Determines whether there is a standard
867/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
868/// expression From to the type ToType. Standard conversion sequences
869/// only consider non-class types; for conversions that involve class
870/// types, use TryImplicitConversion. If a conversion exists, SCS will
871/// contain the standard conversion sequence required to perform this
872/// conversion and this routine will return true. Otherwise, this
873/// routine will return false and the value of SCS is unspecified.
874bool
875Sema::IsStandardConversion(Expr* From, QualType ToType,
876                           bool InOverloadResolution,
877                           StandardConversionSequence &SCS) {
878  QualType FromType = From->getType();
879
880  // Standard conversions (C++ [conv])
881  SCS.setAsIdentityConversion();
882  SCS.DeprecatedStringLiteralToCharPtr = false;
883  SCS.IncompatibleObjC = false;
884  SCS.setFromType(FromType);
885  SCS.CopyConstructor = 0;
886
887  // There are no standard conversions for class types in C++, so
888  // abort early. When overloading in C, however, we do permit
889  if (FromType->isRecordType() || ToType->isRecordType()) {
890    if (getLangOptions().CPlusPlus)
891      return false;
892
893    // When we're overloading in C, we allow, as standard conversions,
894  }
895
896  // The first conversion can be an lvalue-to-rvalue conversion,
897  // array-to-pointer conversion, or function-to-pointer conversion
898  // (C++ 4p1).
899
900  if (FromType == Context.OverloadTy) {
901    DeclAccessPair AccessPair;
902    if (FunctionDecl *Fn
903          = ResolveAddressOfOverloadedFunction(From, ToType, false,
904                                               AccessPair)) {
905      // We were able to resolve the address of the overloaded function,
906      // so we can convert to the type of that function.
907      FromType = Fn->getType();
908      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
909        if (!Method->isStatic()) {
910          Type *ClassType
911            = Context.getTypeDeclType(Method->getParent()).getTypePtr();
912          FromType = Context.getMemberPointerType(FromType, ClassType);
913        }
914      }
915
916      // If the "from" expression takes the address of the overloaded
917      // function, update the type of the resulting expression accordingly.
918      if (FromType->getAs<FunctionType>())
919        if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(From->IgnoreParens()))
920          if (UnOp->getOpcode() == UnaryOperator::AddrOf)
921            FromType = Context.getPointerType(FromType);
922
923      // Check that we've computed the proper type after overload resolution.
924      assert(Context.hasSameType(FromType,
925              FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
926    } else {
927      return false;
928    }
929  }
930  // Lvalue-to-rvalue conversion (C++ 4.1):
931  //   An lvalue (3.10) of a non-function, non-array type T can be
932  //   converted to an rvalue.
933  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
934  if (argIsLvalue == Expr::LV_Valid &&
935      !FromType->isFunctionType() && !FromType->isArrayType() &&
936      Context.getCanonicalType(FromType) != Context.OverloadTy) {
937    SCS.First = ICK_Lvalue_To_Rvalue;
938
939    // If T is a non-class type, the type of the rvalue is the
940    // cv-unqualified version of T. Otherwise, the type of the rvalue
941    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
942    // just strip the qualifiers because they don't matter.
943    FromType = FromType.getUnqualifiedType();
944  } else if (FromType->isArrayType()) {
945    // Array-to-pointer conversion (C++ 4.2)
946    SCS.First = ICK_Array_To_Pointer;
947
948    // An lvalue or rvalue of type "array of N T" or "array of unknown
949    // bound of T" can be converted to an rvalue of type "pointer to
950    // T" (C++ 4.2p1).
951    FromType = Context.getArrayDecayedType(FromType);
952
953    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
954      // This conversion is deprecated. (C++ D.4).
955      SCS.DeprecatedStringLiteralToCharPtr = true;
956
957      // For the purpose of ranking in overload resolution
958      // (13.3.3.1.1), this conversion is considered an
959      // array-to-pointer conversion followed by a qualification
960      // conversion (4.4). (C++ 4.2p2)
961      SCS.Second = ICK_Identity;
962      SCS.Third = ICK_Qualification;
963      SCS.setAllToTypes(FromType);
964      return true;
965    }
966  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
967    // Function-to-pointer conversion (C++ 4.3).
968    SCS.First = ICK_Function_To_Pointer;
969
970    // An lvalue of function type T can be converted to an rvalue of
971    // type "pointer to T." The result is a pointer to the
972    // function. (C++ 4.3p1).
973    FromType = Context.getPointerType(FromType);
974  } else {
975    // We don't require any conversions for the first step.
976    SCS.First = ICK_Identity;
977  }
978  SCS.setToType(0, FromType);
979
980  // The second conversion can be an integral promotion, floating
981  // point promotion, integral conversion, floating point conversion,
982  // floating-integral conversion, pointer conversion,
983  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
984  // For overloading in C, this can also be a "compatible-type"
985  // conversion.
986  bool IncompatibleObjC = false;
987  ImplicitConversionKind SecondICK = ICK_Identity;
988  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
989    // The unqualified versions of the types are the same: there's no
990    // conversion to do.
991    SCS.Second = ICK_Identity;
992  } else if (IsIntegralPromotion(From, FromType, ToType)) {
993    // Integral promotion (C++ 4.5).
994    SCS.Second = ICK_Integral_Promotion;
995    FromType = ToType.getUnqualifiedType();
996  } else if (IsFloatingPointPromotion(FromType, ToType)) {
997    // Floating point promotion (C++ 4.6).
998    SCS.Second = ICK_Floating_Promotion;
999    FromType = ToType.getUnqualifiedType();
1000  } else if (IsComplexPromotion(FromType, ToType)) {
1001    // Complex promotion (Clang extension)
1002    SCS.Second = ICK_Complex_Promotion;
1003    FromType = ToType.getUnqualifiedType();
1004  } else if (FromType->isIntegralOrEnumerationType() &&
1005             ToType->isIntegralType(Context)) {
1006    // Integral conversions (C++ 4.7).
1007    SCS.Second = ICK_Integral_Conversion;
1008    FromType = ToType.getUnqualifiedType();
1009  } else if (FromType->isComplexType() && ToType->isComplexType()) {
1010    // Complex conversions (C99 6.3.1.6)
1011    SCS.Second = ICK_Complex_Conversion;
1012    FromType = ToType.getUnqualifiedType();
1013  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
1014             (ToType->isComplexType() && FromType->isArithmeticType())) {
1015    // Complex-real conversions (C99 6.3.1.7)
1016    SCS.Second = ICK_Complex_Real;
1017    FromType = ToType.getUnqualifiedType();
1018  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1019    // Floating point conversions (C++ 4.8).
1020    SCS.Second = ICK_Floating_Conversion;
1021    FromType = ToType.getUnqualifiedType();
1022  } else if ((FromType->isRealFloatingType() &&
1023              ToType->isIntegralType(Context) && !ToType->isBooleanType()) ||
1024             (FromType->isIntegralOrEnumerationType() &&
1025              ToType->isRealFloatingType())) {
1026    // Floating-integral conversions (C++ 4.9).
1027    SCS.Second = ICK_Floating_Integral;
1028    FromType = ToType.getUnqualifiedType();
1029  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1030                                 FromType, IncompatibleObjC)) {
1031    // Pointer conversions (C++ 4.10).
1032    SCS.Second = ICK_Pointer_Conversion;
1033    SCS.IncompatibleObjC = IncompatibleObjC;
1034  } else if (IsMemberPointerConversion(From, FromType, ToType,
1035                                       InOverloadResolution, FromType)) {
1036    // Pointer to member conversions (4.11).
1037    SCS.Second = ICK_Pointer_Member;
1038  } else if (ToType->isBooleanType() &&
1039             (FromType->isArithmeticType() ||
1040              FromType->isEnumeralType() ||
1041              FromType->isAnyPointerType() ||
1042              FromType->isBlockPointerType() ||
1043              FromType->isMemberPointerType() ||
1044              FromType->isNullPtrType()) &&
1045             /*FIXME*/!FromType->isVectorType()) {
1046    // Boolean conversions (C++ 4.12).
1047    SCS.Second = ICK_Boolean_Conversion;
1048    FromType = Context.BoolTy;
1049  } else if (IsVectorConversion(Context, FromType, ToType, SecondICK)) {
1050    SCS.Second = SecondICK;
1051    FromType = ToType.getUnqualifiedType();
1052  } else if (!getLangOptions().CPlusPlus &&
1053             Context.typesAreCompatible(ToType, FromType)) {
1054    // Compatible conversions (Clang extension for C function overloading)
1055    SCS.Second = ICK_Compatible_Conversion;
1056    FromType = ToType.getUnqualifiedType();
1057  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
1058    // Treat a conversion that strips "noreturn" as an identity conversion.
1059    SCS.Second = ICK_NoReturn_Adjustment;
1060  } else {
1061    // No second conversion required.
1062    SCS.Second = ICK_Identity;
1063  }
1064  SCS.setToType(1, FromType);
1065
1066  QualType CanonFrom;
1067  QualType CanonTo;
1068  // The third conversion can be a qualification conversion (C++ 4p1).
1069  if (IsQualificationConversion(FromType, ToType)) {
1070    SCS.Third = ICK_Qualification;
1071    FromType = ToType;
1072    CanonFrom = Context.getCanonicalType(FromType);
1073    CanonTo = Context.getCanonicalType(ToType);
1074  } else {
1075    // No conversion required
1076    SCS.Third = ICK_Identity;
1077
1078    // C++ [over.best.ics]p6:
1079    //   [...] Any difference in top-level cv-qualification is
1080    //   subsumed by the initialization itself and does not constitute
1081    //   a conversion. [...]
1082    CanonFrom = Context.getCanonicalType(FromType);
1083    CanonTo = Context.getCanonicalType(ToType);
1084    if (CanonFrom.getLocalUnqualifiedType()
1085                                       == CanonTo.getLocalUnqualifiedType() &&
1086        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1087         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr())) {
1088      FromType = ToType;
1089      CanonFrom = CanonTo;
1090    }
1091  }
1092  SCS.setToType(2, FromType);
1093
1094  // If we have not converted the argument type to the parameter type,
1095  // this is a bad conversion sequence.
1096  if (CanonFrom != CanonTo)
1097    return false;
1098
1099  return true;
1100}
1101
1102/// IsIntegralPromotion - Determines whether the conversion from the
1103/// expression From (whose potentially-adjusted type is FromType) to
1104/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1105/// sets PromotedType to the promoted type.
1106bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1107  const BuiltinType *To = ToType->getAs<BuiltinType>();
1108  // All integers are built-in.
1109  if (!To) {
1110    return false;
1111  }
1112
1113  // An rvalue of type char, signed char, unsigned char, short int, or
1114  // unsigned short int can be converted to an rvalue of type int if
1115  // int can represent all the values of the source type; otherwise,
1116  // the source rvalue can be converted to an rvalue of type unsigned
1117  // int (C++ 4.5p1).
1118  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1119      !FromType->isEnumeralType()) {
1120    if (// We can promote any signed, promotable integer type to an int
1121        (FromType->isSignedIntegerType() ||
1122         // We can promote any unsigned integer type whose size is
1123         // less than int to an int.
1124         (!FromType->isSignedIntegerType() &&
1125          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1126      return To->getKind() == BuiltinType::Int;
1127    }
1128
1129    return To->getKind() == BuiltinType::UInt;
1130  }
1131
1132  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
1133  // can be converted to an rvalue of the first of the following types
1134  // that can represent all the values of its underlying type: int,
1135  // unsigned int, long, or unsigned long (C++ 4.5p2).
1136
1137  // We pre-calculate the promotion type for enum types.
1138  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
1139    if (ToType->isIntegerType())
1140      return Context.hasSameUnqualifiedType(ToType,
1141                                FromEnumType->getDecl()->getPromotionType());
1142
1143  if (FromType->isWideCharType() && ToType->isIntegerType()) {
1144    // Determine whether the type we're converting from is signed or
1145    // unsigned.
1146    bool FromIsSigned;
1147    uint64_t FromSize = Context.getTypeSize(FromType);
1148
1149    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
1150    FromIsSigned = true;
1151
1152    // The types we'll try to promote to, in the appropriate
1153    // order. Try each of these types.
1154    QualType PromoteTypes[6] = {
1155      Context.IntTy, Context.UnsignedIntTy,
1156      Context.LongTy, Context.UnsignedLongTy ,
1157      Context.LongLongTy, Context.UnsignedLongLongTy
1158    };
1159    for (int Idx = 0; Idx < 6; ++Idx) {
1160      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1161      if (FromSize < ToSize ||
1162          (FromSize == ToSize &&
1163           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1164        // We found the type that we can promote to. If this is the
1165        // type we wanted, we have a promotion. Otherwise, no
1166        // promotion.
1167        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1168      }
1169    }
1170  }
1171
1172  // An rvalue for an integral bit-field (9.6) can be converted to an
1173  // rvalue of type int if int can represent all the values of the
1174  // bit-field; otherwise, it can be converted to unsigned int if
1175  // unsigned int can represent all the values of the bit-field. If
1176  // the bit-field is larger yet, no integral promotion applies to
1177  // it. If the bit-field has an enumerated type, it is treated as any
1178  // other value of that type for promotion purposes (C++ 4.5p3).
1179  // FIXME: We should delay checking of bit-fields until we actually perform the
1180  // conversion.
1181  using llvm::APSInt;
1182  if (From)
1183    if (FieldDecl *MemberDecl = From->getBitField()) {
1184      APSInt BitWidth;
1185      if (FromType->isIntegralType(Context) &&
1186          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1187        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1188        ToSize = Context.getTypeSize(ToType);
1189
1190        // Are we promoting to an int from a bitfield that fits in an int?
1191        if (BitWidth < ToSize ||
1192            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1193          return To->getKind() == BuiltinType::Int;
1194        }
1195
1196        // Are we promoting to an unsigned int from an unsigned bitfield
1197        // that fits into an unsigned int?
1198        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1199          return To->getKind() == BuiltinType::UInt;
1200        }
1201
1202        return false;
1203      }
1204    }
1205
1206  // An rvalue of type bool can be converted to an rvalue of type int,
1207  // with false becoming zero and true becoming one (C++ 4.5p4).
1208  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1209    return true;
1210  }
1211
1212  return false;
1213}
1214
1215/// IsFloatingPointPromotion - Determines whether the conversion from
1216/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1217/// returns true and sets PromotedType to the promoted type.
1218bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1219  /// An rvalue of type float can be converted to an rvalue of type
1220  /// double. (C++ 4.6p1).
1221  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1222    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1223      if (FromBuiltin->getKind() == BuiltinType::Float &&
1224          ToBuiltin->getKind() == BuiltinType::Double)
1225        return true;
1226
1227      // C99 6.3.1.5p1:
1228      //   When a float is promoted to double or long double, or a
1229      //   double is promoted to long double [...].
1230      if (!getLangOptions().CPlusPlus &&
1231          (FromBuiltin->getKind() == BuiltinType::Float ||
1232           FromBuiltin->getKind() == BuiltinType::Double) &&
1233          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1234        return true;
1235    }
1236
1237  return false;
1238}
1239
1240/// \brief Determine if a conversion is a complex promotion.
1241///
1242/// A complex promotion is defined as a complex -> complex conversion
1243/// where the conversion between the underlying real types is a
1244/// floating-point or integral promotion.
1245bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1246  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1247  if (!FromComplex)
1248    return false;
1249
1250  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1251  if (!ToComplex)
1252    return false;
1253
1254  return IsFloatingPointPromotion(FromComplex->getElementType(),
1255                                  ToComplex->getElementType()) ||
1256    IsIntegralPromotion(0, FromComplex->getElementType(),
1257                        ToComplex->getElementType());
1258}
1259
1260/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1261/// the pointer type FromPtr to a pointer to type ToPointee, with the
1262/// same type qualifiers as FromPtr has on its pointee type. ToType,
1263/// if non-empty, will be a pointer to ToType that may or may not have
1264/// the right set of qualifiers on its pointee.
1265static QualType
1266BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
1267                                   QualType ToPointee, QualType ToType,
1268                                   ASTContext &Context) {
1269  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
1270  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1271  Qualifiers Quals = CanonFromPointee.getQualifiers();
1272
1273  // Exact qualifier match -> return the pointer type we're converting to.
1274  if (CanonToPointee.getLocalQualifiers() == Quals) {
1275    // ToType is exactly what we need. Return it.
1276    if (!ToType.isNull())
1277      return ToType.getUnqualifiedType();
1278
1279    // Build a pointer to ToPointee. It has the right qualifiers
1280    // already.
1281    return Context.getPointerType(ToPointee);
1282  }
1283
1284  // Just build a canonical type that has the right qualifiers.
1285  return Context.getPointerType(
1286         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
1287                                  Quals));
1288}
1289
1290/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
1291/// the FromType, which is an objective-c pointer, to ToType, which may or may
1292/// not have the right set of qualifiers.
1293static QualType
1294BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
1295                                             QualType ToType,
1296                                             ASTContext &Context) {
1297  QualType CanonFromType = Context.getCanonicalType(FromType);
1298  QualType CanonToType = Context.getCanonicalType(ToType);
1299  Qualifiers Quals = CanonFromType.getQualifiers();
1300
1301  // Exact qualifier match -> return the pointer type we're converting to.
1302  if (CanonToType.getLocalQualifiers() == Quals)
1303    return ToType;
1304
1305  // Just build a canonical type that has the right qualifiers.
1306  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
1307}
1308
1309static bool isNullPointerConstantForConversion(Expr *Expr,
1310                                               bool InOverloadResolution,
1311                                               ASTContext &Context) {
1312  // Handle value-dependent integral null pointer constants correctly.
1313  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1314  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1315      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1316    return !InOverloadResolution;
1317
1318  return Expr->isNullPointerConstant(Context,
1319                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1320                                        : Expr::NPC_ValueDependentIsNull);
1321}
1322
1323/// IsPointerConversion - Determines whether the conversion of the
1324/// expression From, which has the (possibly adjusted) type FromType,
1325/// can be converted to the type ToType via a pointer conversion (C++
1326/// 4.10). If so, returns true and places the converted type (that
1327/// might differ from ToType in its cv-qualifiers at some level) into
1328/// ConvertedType.
1329///
1330/// This routine also supports conversions to and from block pointers
1331/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1332/// pointers to interfaces. FIXME: Once we've determined the
1333/// appropriate overloading rules for Objective-C, we may want to
1334/// split the Objective-C checks into a different routine; however,
1335/// GCC seems to consider all of these conversions to be pointer
1336/// conversions, so for now they live here. IncompatibleObjC will be
1337/// set if the conversion is an allowed Objective-C conversion that
1338/// should result in a warning.
1339bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1340                               bool InOverloadResolution,
1341                               QualType& ConvertedType,
1342                               bool &IncompatibleObjC) {
1343  IncompatibleObjC = false;
1344  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
1345    return true;
1346
1347  // Conversion from a null pointer constant to any Objective-C pointer type.
1348  if (ToType->isObjCObjectPointerType() &&
1349      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1350    ConvertedType = ToType;
1351    return true;
1352  }
1353
1354  // Blocks: Block pointers can be converted to void*.
1355  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1356      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1357    ConvertedType = ToType;
1358    return true;
1359  }
1360  // Blocks: A null pointer constant can be converted to a block
1361  // pointer type.
1362  if (ToType->isBlockPointerType() &&
1363      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1364    ConvertedType = ToType;
1365    return true;
1366  }
1367
1368  // If the left-hand-side is nullptr_t, the right side can be a null
1369  // pointer constant.
1370  if (ToType->isNullPtrType() &&
1371      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1372    ConvertedType = ToType;
1373    return true;
1374  }
1375
1376  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1377  if (!ToTypePtr)
1378    return false;
1379
1380  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1381  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1382    ConvertedType = ToType;
1383    return true;
1384  }
1385
1386  // Beyond this point, both types need to be pointers
1387  // , including objective-c pointers.
1388  QualType ToPointeeType = ToTypePtr->getPointeeType();
1389  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1390    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1391                                                       ToType, Context);
1392    return true;
1393
1394  }
1395  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1396  if (!FromTypePtr)
1397    return false;
1398
1399  QualType FromPointeeType = FromTypePtr->getPointeeType();
1400
1401  // An rvalue of type "pointer to cv T," where T is an object type,
1402  // can be converted to an rvalue of type "pointer to cv void" (C++
1403  // 4.10p2).
1404  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1405    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1406                                                       ToPointeeType,
1407                                                       ToType, Context);
1408    return true;
1409  }
1410
1411  // When we're overloading in C, we allow a special kind of pointer
1412  // conversion for compatible-but-not-identical pointee types.
1413  if (!getLangOptions().CPlusPlus &&
1414      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1415    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1416                                                       ToPointeeType,
1417                                                       ToType, Context);
1418    return true;
1419  }
1420
1421  // C++ [conv.ptr]p3:
1422  //
1423  //   An rvalue of type "pointer to cv D," where D is a class type,
1424  //   can be converted to an rvalue of type "pointer to cv B," where
1425  //   B is a base class (clause 10) of D. If B is an inaccessible
1426  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1427  //   necessitates this conversion is ill-formed. The result of the
1428  //   conversion is a pointer to the base class sub-object of the
1429  //   derived class object. The null pointer value is converted to
1430  //   the null pointer value of the destination type.
1431  //
1432  // Note that we do not check for ambiguity or inaccessibility
1433  // here. That is handled by CheckPointerConversion.
1434  if (getLangOptions().CPlusPlus &&
1435      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1436      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1437      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1438      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1439    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1440                                                       ToPointeeType,
1441                                                       ToType, Context);
1442    return true;
1443  }
1444
1445  return false;
1446}
1447
1448/// isObjCPointerConversion - Determines whether this is an
1449/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1450/// with the same arguments and return values.
1451bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1452                                   QualType& ConvertedType,
1453                                   bool &IncompatibleObjC) {
1454  if (!getLangOptions().ObjC1)
1455    return false;
1456
1457  // First, we handle all conversions on ObjC object pointer types.
1458  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1459  const ObjCObjectPointerType *FromObjCPtr =
1460    FromType->getAs<ObjCObjectPointerType>();
1461
1462  if (ToObjCPtr && FromObjCPtr) {
1463    // Objective C++: We're able to convert between "id" or "Class" and a
1464    // pointer to any interface (in both directions).
1465    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1466      ConvertedType = ToType;
1467      return true;
1468    }
1469    // Conversions with Objective-C's id<...>.
1470    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1471         ToObjCPtr->isObjCQualifiedIdType()) &&
1472        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1473                                                  /*compare=*/false)) {
1474      ConvertedType = ToType;
1475      return true;
1476    }
1477    // Objective C++: We're able to convert from a pointer to an
1478    // interface to a pointer to a different interface.
1479    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1480      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1481      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1482      if (getLangOptions().CPlusPlus && LHS && RHS &&
1483          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1484                                                FromObjCPtr->getPointeeType()))
1485        return false;
1486      ConvertedType = ToType;
1487      return true;
1488    }
1489
1490    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1491      // Okay: this is some kind of implicit downcast of Objective-C
1492      // interfaces, which is permitted. However, we're going to
1493      // complain about it.
1494      IncompatibleObjC = true;
1495      ConvertedType = FromType;
1496      return true;
1497    }
1498  }
1499  // Beyond this point, both types need to be C pointers or block pointers.
1500  QualType ToPointeeType;
1501  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1502    ToPointeeType = ToCPtr->getPointeeType();
1503  else if (const BlockPointerType *ToBlockPtr =
1504            ToType->getAs<BlockPointerType>()) {
1505    // Objective C++: We're able to convert from a pointer to any object
1506    // to a block pointer type.
1507    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1508      ConvertedType = ToType;
1509      return true;
1510    }
1511    ToPointeeType = ToBlockPtr->getPointeeType();
1512  }
1513  else if (FromType->getAs<BlockPointerType>() &&
1514           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1515    // Objective C++: We're able to convert from a block pointer type to a
1516    // pointer to any object.
1517    ConvertedType = ToType;
1518    return true;
1519  }
1520  else
1521    return false;
1522
1523  QualType FromPointeeType;
1524  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1525    FromPointeeType = FromCPtr->getPointeeType();
1526  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1527    FromPointeeType = FromBlockPtr->getPointeeType();
1528  else
1529    return false;
1530
1531  // If we have pointers to pointers, recursively check whether this
1532  // is an Objective-C conversion.
1533  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1534      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1535                              IncompatibleObjC)) {
1536    // We always complain about this conversion.
1537    IncompatibleObjC = true;
1538    ConvertedType = ToType;
1539    return true;
1540  }
1541  // Allow conversion of pointee being objective-c pointer to another one;
1542  // as in I* to id.
1543  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1544      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1545      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1546                              IncompatibleObjC)) {
1547    ConvertedType = ToType;
1548    return true;
1549  }
1550
1551  // If we have pointers to functions or blocks, check whether the only
1552  // differences in the argument and result types are in Objective-C
1553  // pointer conversions. If so, we permit the conversion (but
1554  // complain about it).
1555  const FunctionProtoType *FromFunctionType
1556    = FromPointeeType->getAs<FunctionProtoType>();
1557  const FunctionProtoType *ToFunctionType
1558    = ToPointeeType->getAs<FunctionProtoType>();
1559  if (FromFunctionType && ToFunctionType) {
1560    // If the function types are exactly the same, this isn't an
1561    // Objective-C pointer conversion.
1562    if (Context.getCanonicalType(FromPointeeType)
1563          == Context.getCanonicalType(ToPointeeType))
1564      return false;
1565
1566    // Perform the quick checks that will tell us whether these
1567    // function types are obviously different.
1568    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1569        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1570        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1571      return false;
1572
1573    bool HasObjCConversion = false;
1574    if (Context.getCanonicalType(FromFunctionType->getResultType())
1575          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1576      // Okay, the types match exactly. Nothing to do.
1577    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1578                                       ToFunctionType->getResultType(),
1579                                       ConvertedType, IncompatibleObjC)) {
1580      // Okay, we have an Objective-C pointer conversion.
1581      HasObjCConversion = true;
1582    } else {
1583      // Function types are too different. Abort.
1584      return false;
1585    }
1586
1587    // Check argument types.
1588    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1589         ArgIdx != NumArgs; ++ArgIdx) {
1590      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1591      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1592      if (Context.getCanonicalType(FromArgType)
1593            == Context.getCanonicalType(ToArgType)) {
1594        // Okay, the types match exactly. Nothing to do.
1595      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1596                                         ConvertedType, IncompatibleObjC)) {
1597        // Okay, we have an Objective-C pointer conversion.
1598        HasObjCConversion = true;
1599      } else {
1600        // Argument types are too different. Abort.
1601        return false;
1602      }
1603    }
1604
1605    if (HasObjCConversion) {
1606      // We had an Objective-C conversion. Allow this pointer
1607      // conversion, but complain about it.
1608      ConvertedType = ToType;
1609      IncompatibleObjC = true;
1610      return true;
1611    }
1612  }
1613
1614  return false;
1615}
1616
1617/// FunctionArgTypesAreEqual - This routine checks two function proto types
1618/// for equlity of their argument types. Caller has already checked that
1619/// they have same number of arguments. This routine assumes that Objective-C
1620/// pointer types which only differ in their protocol qualifiers are equal.
1621bool Sema::FunctionArgTypesAreEqual(FunctionProtoType*  OldType,
1622                            FunctionProtoType*  NewType){
1623  if (!getLangOptions().ObjC1)
1624    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
1625                      NewType->arg_type_begin());
1626
1627  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
1628       N = NewType->arg_type_begin(),
1629       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
1630    QualType ToType = (*O);
1631    QualType FromType = (*N);
1632    if (ToType != FromType) {
1633      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
1634        if (const PointerType *PTFr = FromType->getAs<PointerType>())
1635          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
1636               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
1637              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
1638               PTFr->getPointeeType()->isObjCQualifiedClassType()))
1639            continue;
1640      }
1641      else if (const ObjCObjectPointerType *PTTo =
1642                 ToType->getAs<ObjCObjectPointerType>()) {
1643        if (const ObjCObjectPointerType *PTFr =
1644              FromType->getAs<ObjCObjectPointerType>())
1645          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
1646            continue;
1647      }
1648      return false;
1649    }
1650  }
1651  return true;
1652}
1653
1654/// CheckPointerConversion - Check the pointer conversion from the
1655/// expression From to the type ToType. This routine checks for
1656/// ambiguous or inaccessible derived-to-base pointer
1657/// conversions for which IsPointerConversion has already returned
1658/// true. It returns true and produces a diagnostic if there was an
1659/// error, or returns false otherwise.
1660bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1661                                  CastExpr::CastKind &Kind,
1662                                  CXXBaseSpecifierArray& BasePath,
1663                                  bool IgnoreBaseAccess) {
1664  QualType FromType = From->getType();
1665
1666  if (CXXBoolLiteralExpr* LitBool
1667                          = dyn_cast<CXXBoolLiteralExpr>(From->IgnoreParens()))
1668    if (LitBool->getValue() == false)
1669      Diag(LitBool->getExprLoc(), diag::warn_init_pointer_from_false)
1670        << ToType;
1671
1672  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1673    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1674      QualType FromPointeeType = FromPtrType->getPointeeType(),
1675               ToPointeeType   = ToPtrType->getPointeeType();
1676
1677      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1678          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
1679        // We must have a derived-to-base conversion. Check an
1680        // ambiguous or inaccessible conversion.
1681        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1682                                         From->getExprLoc(),
1683                                         From->getSourceRange(), &BasePath,
1684                                         IgnoreBaseAccess))
1685          return true;
1686
1687        // The conversion was successful.
1688        Kind = CastExpr::CK_DerivedToBase;
1689      }
1690    }
1691  if (const ObjCObjectPointerType *FromPtrType =
1692        FromType->getAs<ObjCObjectPointerType>())
1693    if (const ObjCObjectPointerType *ToPtrType =
1694          ToType->getAs<ObjCObjectPointerType>()) {
1695      // Objective-C++ conversions are always okay.
1696      // FIXME: We should have a different class of conversions for the
1697      // Objective-C++ implicit conversions.
1698      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1699        return false;
1700
1701  }
1702  return false;
1703}
1704
1705/// IsMemberPointerConversion - Determines whether the conversion of the
1706/// expression From, which has the (possibly adjusted) type FromType, can be
1707/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1708/// If so, returns true and places the converted type (that might differ from
1709/// ToType in its cv-qualifiers at some level) into ConvertedType.
1710bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1711                                     QualType ToType,
1712                                     bool InOverloadResolution,
1713                                     QualType &ConvertedType) {
1714  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1715  if (!ToTypePtr)
1716    return false;
1717
1718  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1719  if (From->isNullPointerConstant(Context,
1720                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1721                                        : Expr::NPC_ValueDependentIsNull)) {
1722    ConvertedType = ToType;
1723    return true;
1724  }
1725
1726  // Otherwise, both types have to be member pointers.
1727  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1728  if (!FromTypePtr)
1729    return false;
1730
1731  // A pointer to member of B can be converted to a pointer to member of D,
1732  // where D is derived from B (C++ 4.11p2).
1733  QualType FromClass(FromTypePtr->getClass(), 0);
1734  QualType ToClass(ToTypePtr->getClass(), 0);
1735  // FIXME: What happens when these are dependent? Is this function even called?
1736
1737  if (IsDerivedFrom(ToClass, FromClass)) {
1738    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1739                                                 ToClass.getTypePtr());
1740    return true;
1741  }
1742
1743  return false;
1744}
1745
1746/// CheckMemberPointerConversion - Check the member pointer conversion from the
1747/// expression From to the type ToType. This routine checks for ambiguous or
1748/// virtual or inaccessible base-to-derived member pointer conversions
1749/// for which IsMemberPointerConversion has already returned true. It returns
1750/// true and produces a diagnostic if there was an error, or returns false
1751/// otherwise.
1752bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1753                                        CastExpr::CastKind &Kind,
1754                                        CXXBaseSpecifierArray &BasePath,
1755                                        bool IgnoreBaseAccess) {
1756  QualType FromType = From->getType();
1757  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1758  if (!FromPtrType) {
1759    // This must be a null pointer to member pointer conversion
1760    assert(From->isNullPointerConstant(Context,
1761                                       Expr::NPC_ValueDependentIsNull) &&
1762           "Expr must be null pointer constant!");
1763    Kind = CastExpr::CK_NullToMemberPointer;
1764    return false;
1765  }
1766
1767  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1768  assert(ToPtrType && "No member pointer cast has a target type "
1769                      "that is not a member pointer.");
1770
1771  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1772  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1773
1774  // FIXME: What about dependent types?
1775  assert(FromClass->isRecordType() && "Pointer into non-class.");
1776  assert(ToClass->isRecordType() && "Pointer into non-class.");
1777
1778  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1779                     /*DetectVirtual=*/true);
1780  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1781  assert(DerivationOkay &&
1782         "Should not have been called if derivation isn't OK.");
1783  (void)DerivationOkay;
1784
1785  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1786                                  getUnqualifiedType())) {
1787    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1788    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1789      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1790    return true;
1791  }
1792
1793  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1794    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1795      << FromClass << ToClass << QualType(VBase, 0)
1796      << From->getSourceRange();
1797    return true;
1798  }
1799
1800  if (!IgnoreBaseAccess)
1801    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
1802                         Paths.front(),
1803                         diag::err_downcast_from_inaccessible_base);
1804
1805  // Must be a base to derived member conversion.
1806  BuildBasePathArray(Paths, BasePath);
1807  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1808  return false;
1809}
1810
1811/// IsQualificationConversion - Determines whether the conversion from
1812/// an rvalue of type FromType to ToType is a qualification conversion
1813/// (C++ 4.4).
1814bool
1815Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1816  FromType = Context.getCanonicalType(FromType);
1817  ToType = Context.getCanonicalType(ToType);
1818
1819  // If FromType and ToType are the same type, this is not a
1820  // qualification conversion.
1821  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
1822    return false;
1823
1824  // (C++ 4.4p4):
1825  //   A conversion can add cv-qualifiers at levels other than the first
1826  //   in multi-level pointers, subject to the following rules: [...]
1827  bool PreviousToQualsIncludeConst = true;
1828  bool UnwrappedAnyPointer = false;
1829  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
1830    // Within each iteration of the loop, we check the qualifiers to
1831    // determine if this still looks like a qualification
1832    // conversion. Then, if all is well, we unwrap one more level of
1833    // pointers or pointers-to-members and do it all again
1834    // until there are no more pointers or pointers-to-members left to
1835    // unwrap.
1836    UnwrappedAnyPointer = true;
1837
1838    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1839    //      2,j, and similarly for volatile.
1840    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1841      return false;
1842
1843    //   -- if the cv 1,j and cv 2,j are different, then const is in
1844    //      every cv for 0 < k < j.
1845    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1846        && !PreviousToQualsIncludeConst)
1847      return false;
1848
1849    // Keep track of whether all prior cv-qualifiers in the "to" type
1850    // include const.
1851    PreviousToQualsIncludeConst
1852      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1853  }
1854
1855  // We are left with FromType and ToType being the pointee types
1856  // after unwrapping the original FromType and ToType the same number
1857  // of types. If we unwrapped any pointers, and if FromType and
1858  // ToType have the same unqualified type (since we checked
1859  // qualifiers above), then this is a qualification conversion.
1860  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1861}
1862
1863/// Determines whether there is a user-defined conversion sequence
1864/// (C++ [over.ics.user]) that converts expression From to the type
1865/// ToType. If such a conversion exists, User will contain the
1866/// user-defined conversion sequence that performs such a conversion
1867/// and this routine will return true. Otherwise, this routine returns
1868/// false and User is unspecified.
1869///
1870/// \param AllowExplicit  true if the conversion should consider C++0x
1871/// "explicit" conversion functions as well as non-explicit conversion
1872/// functions (C++0x [class.conv.fct]p2).
1873OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1874                                          UserDefinedConversionSequence& User,
1875                                           OverloadCandidateSet& CandidateSet,
1876                                                bool AllowExplicit) {
1877  // Whether we will only visit constructors.
1878  bool ConstructorsOnly = false;
1879
1880  // If the type we are conversion to is a class type, enumerate its
1881  // constructors.
1882  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1883    // C++ [over.match.ctor]p1:
1884    //   When objects of class type are direct-initialized (8.5), or
1885    //   copy-initialized from an expression of the same or a
1886    //   derived class type (8.5), overload resolution selects the
1887    //   constructor. [...] For copy-initialization, the candidate
1888    //   functions are all the converting constructors (12.3.1) of
1889    //   that class. The argument list is the expression-list within
1890    //   the parentheses of the initializer.
1891    if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1892        (From->getType()->getAs<RecordType>() &&
1893         IsDerivedFrom(From->getType(), ToType)))
1894      ConstructorsOnly = true;
1895
1896    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1897      // We're not going to find any constructors.
1898    } else if (CXXRecordDecl *ToRecordDecl
1899                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1900      DeclarationName ConstructorName
1901        = Context.DeclarationNames.getCXXConstructorName(
1902                       Context.getCanonicalType(ToType).getUnqualifiedType());
1903      DeclContext::lookup_iterator Con, ConEnd;
1904      for (llvm::tie(Con, ConEnd)
1905             = ToRecordDecl->lookup(ConstructorName);
1906           Con != ConEnd; ++Con) {
1907        NamedDecl *D = *Con;
1908        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
1909
1910        // Find the constructor (which may be a template).
1911        CXXConstructorDecl *Constructor = 0;
1912        FunctionTemplateDecl *ConstructorTmpl
1913          = dyn_cast<FunctionTemplateDecl>(D);
1914        if (ConstructorTmpl)
1915          Constructor
1916            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1917        else
1918          Constructor = cast<CXXConstructorDecl>(D);
1919
1920        if (!Constructor->isInvalidDecl() &&
1921            Constructor->isConvertingConstructor(AllowExplicit)) {
1922          if (ConstructorTmpl)
1923            AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
1924                                         /*ExplicitArgs*/ 0,
1925                                         &From, 1, CandidateSet,
1926                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1927          else
1928            // Allow one user-defined conversion when user specifies a
1929            // From->ToType conversion via an static cast (c-style, etc).
1930            AddOverloadCandidate(Constructor, FoundDecl,
1931                                 &From, 1, CandidateSet,
1932                                 /*SuppressUserConversions=*/!ConstructorsOnly);
1933        }
1934      }
1935    }
1936  }
1937
1938  // Enumerate conversion functions, if we're allowed to.
1939  if (ConstructorsOnly) {
1940  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1941                          PDiag(0) << From->getSourceRange())) {
1942    // No conversion functions from incomplete types.
1943  } else if (const RecordType *FromRecordType
1944                                   = From->getType()->getAs<RecordType>()) {
1945    if (CXXRecordDecl *FromRecordDecl
1946         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1947      // Add all of the conversion functions as candidates.
1948      const UnresolvedSetImpl *Conversions
1949        = FromRecordDecl->getVisibleConversionFunctions();
1950      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1951             E = Conversions->end(); I != E; ++I) {
1952        DeclAccessPair FoundDecl = I.getPair();
1953        NamedDecl *D = FoundDecl.getDecl();
1954        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1955        if (isa<UsingShadowDecl>(D))
1956          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1957
1958        CXXConversionDecl *Conv;
1959        FunctionTemplateDecl *ConvTemplate;
1960        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
1961          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1962        else
1963          Conv = cast<CXXConversionDecl>(D);
1964
1965        if (AllowExplicit || !Conv->isExplicit()) {
1966          if (ConvTemplate)
1967            AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
1968                                           ActingContext, From, ToType,
1969                                           CandidateSet);
1970          else
1971            AddConversionCandidate(Conv, FoundDecl, ActingContext,
1972                                   From, ToType, CandidateSet);
1973        }
1974      }
1975    }
1976  }
1977
1978  OverloadCandidateSet::iterator Best;
1979  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1980    case OR_Success:
1981      // Record the standard conversion we used and the conversion function.
1982      if (CXXConstructorDecl *Constructor
1983            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1984        // C++ [over.ics.user]p1:
1985        //   If the user-defined conversion is specified by a
1986        //   constructor (12.3.1), the initial standard conversion
1987        //   sequence converts the source type to the type required by
1988        //   the argument of the constructor.
1989        //
1990        QualType ThisType = Constructor->getThisType(Context);
1991        if (Best->Conversions[0].isEllipsis())
1992          User.EllipsisConversion = true;
1993        else {
1994          User.Before = Best->Conversions[0].Standard;
1995          User.EllipsisConversion = false;
1996        }
1997        User.ConversionFunction = Constructor;
1998        User.After.setAsIdentityConversion();
1999        User.After.setFromType(
2000          ThisType->getAs<PointerType>()->getPointeeType());
2001        User.After.setAllToTypes(ToType);
2002        return OR_Success;
2003      } else if (CXXConversionDecl *Conversion
2004                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
2005        // C++ [over.ics.user]p1:
2006        //
2007        //   [...] If the user-defined conversion is specified by a
2008        //   conversion function (12.3.2), the initial standard
2009        //   conversion sequence converts the source type to the
2010        //   implicit object parameter of the conversion function.
2011        User.Before = Best->Conversions[0].Standard;
2012        User.ConversionFunction = Conversion;
2013        User.EllipsisConversion = false;
2014
2015        // C++ [over.ics.user]p2:
2016        //   The second standard conversion sequence converts the
2017        //   result of the user-defined conversion to the target type
2018        //   for the sequence. Since an implicit conversion sequence
2019        //   is an initialization, the special rules for
2020        //   initialization by user-defined conversion apply when
2021        //   selecting the best user-defined conversion for a
2022        //   user-defined conversion sequence (see 13.3.3 and
2023        //   13.3.3.1).
2024        User.After = Best->FinalConversion;
2025        return OR_Success;
2026      } else {
2027        assert(false && "Not a constructor or conversion function?");
2028        return OR_No_Viable_Function;
2029      }
2030
2031    case OR_No_Viable_Function:
2032      return OR_No_Viable_Function;
2033    case OR_Deleted:
2034      // No conversion here! We're done.
2035      return OR_Deleted;
2036
2037    case OR_Ambiguous:
2038      return OR_Ambiguous;
2039    }
2040
2041  return OR_No_Viable_Function;
2042}
2043
2044bool
2045Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2046  ImplicitConversionSequence ICS;
2047  OverloadCandidateSet CandidateSet(From->getExprLoc());
2048  OverloadingResult OvResult =
2049    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
2050                            CandidateSet, false);
2051  if (OvResult == OR_Ambiguous)
2052    Diag(From->getSourceRange().getBegin(),
2053         diag::err_typecheck_ambiguous_condition)
2054          << From->getType() << ToType << From->getSourceRange();
2055  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2056    Diag(From->getSourceRange().getBegin(),
2057         diag::err_typecheck_nonviable_condition)
2058    << From->getType() << ToType << From->getSourceRange();
2059  else
2060    return false;
2061  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
2062  return true;
2063}
2064
2065/// CompareImplicitConversionSequences - Compare two implicit
2066/// conversion sequences to determine whether one is better than the
2067/// other or if they are indistinguishable (C++ 13.3.3.2).
2068ImplicitConversionSequence::CompareKind
2069Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
2070                                         const ImplicitConversionSequence& ICS2)
2071{
2072  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2073  // conversion sequences (as defined in 13.3.3.1)
2074  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2075  //      conversion sequence than a user-defined conversion sequence or
2076  //      an ellipsis conversion sequence, and
2077  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2078  //      conversion sequence than an ellipsis conversion sequence
2079  //      (13.3.3.1.3).
2080  //
2081  // C++0x [over.best.ics]p10:
2082  //   For the purpose of ranking implicit conversion sequences as
2083  //   described in 13.3.3.2, the ambiguous conversion sequence is
2084  //   treated as a user-defined sequence that is indistinguishable
2085  //   from any other user-defined conversion sequence.
2086  if (ICS1.getKindRank() < ICS2.getKindRank())
2087    return ImplicitConversionSequence::Better;
2088  else if (ICS2.getKindRank() < ICS1.getKindRank())
2089    return ImplicitConversionSequence::Worse;
2090
2091  // The following checks require both conversion sequences to be of
2092  // the same kind.
2093  if (ICS1.getKind() != ICS2.getKind())
2094    return ImplicitConversionSequence::Indistinguishable;
2095
2096  // Two implicit conversion sequences of the same form are
2097  // indistinguishable conversion sequences unless one of the
2098  // following rules apply: (C++ 13.3.3.2p3):
2099  if (ICS1.isStandard())
2100    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
2101  else if (ICS1.isUserDefined()) {
2102    // User-defined conversion sequence U1 is a better conversion
2103    // sequence than another user-defined conversion sequence U2 if
2104    // they contain the same user-defined conversion function or
2105    // constructor and if the second standard conversion sequence of
2106    // U1 is better than the second standard conversion sequence of
2107    // U2 (C++ 13.3.3.2p3).
2108    if (ICS1.UserDefined.ConversionFunction ==
2109          ICS2.UserDefined.ConversionFunction)
2110      return CompareStandardConversionSequences(ICS1.UserDefined.After,
2111                                                ICS2.UserDefined.After);
2112  }
2113
2114  return ImplicitConversionSequence::Indistinguishable;
2115}
2116
2117static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2118  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2119    Qualifiers Quals;
2120    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2121    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2122  }
2123
2124  return Context.hasSameUnqualifiedType(T1, T2);
2125}
2126
2127// Per 13.3.3.2p3, compare the given standard conversion sequences to
2128// determine if one is a proper subset of the other.
2129static ImplicitConversionSequence::CompareKind
2130compareStandardConversionSubsets(ASTContext &Context,
2131                                 const StandardConversionSequence& SCS1,
2132                                 const StandardConversionSequence& SCS2) {
2133  ImplicitConversionSequence::CompareKind Result
2134    = ImplicitConversionSequence::Indistinguishable;
2135
2136  // the identity conversion sequence is considered to be a subsequence of
2137  // any non-identity conversion sequence
2138  if (SCS1.ReferenceBinding == SCS2.ReferenceBinding) {
2139    if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2140      return ImplicitConversionSequence::Better;
2141    else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2142      return ImplicitConversionSequence::Worse;
2143  }
2144
2145  if (SCS1.Second != SCS2.Second) {
2146    if (SCS1.Second == ICK_Identity)
2147      Result = ImplicitConversionSequence::Better;
2148    else if (SCS2.Second == ICK_Identity)
2149      Result = ImplicitConversionSequence::Worse;
2150    else
2151      return ImplicitConversionSequence::Indistinguishable;
2152  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2153    return ImplicitConversionSequence::Indistinguishable;
2154
2155  if (SCS1.Third == SCS2.Third) {
2156    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2157                             : ImplicitConversionSequence::Indistinguishable;
2158  }
2159
2160  if (SCS1.Third == ICK_Identity)
2161    return Result == ImplicitConversionSequence::Worse
2162             ? ImplicitConversionSequence::Indistinguishable
2163             : ImplicitConversionSequence::Better;
2164
2165  if (SCS2.Third == ICK_Identity)
2166    return Result == ImplicitConversionSequence::Better
2167             ? ImplicitConversionSequence::Indistinguishable
2168             : ImplicitConversionSequence::Worse;
2169
2170  return ImplicitConversionSequence::Indistinguishable;
2171}
2172
2173/// CompareStandardConversionSequences - Compare two standard
2174/// conversion sequences to determine whether one is better than the
2175/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2176ImplicitConversionSequence::CompareKind
2177Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
2178                                         const StandardConversionSequence& SCS2)
2179{
2180  // Standard conversion sequence S1 is a better conversion sequence
2181  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2182
2183  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2184  //     sequences in the canonical form defined by 13.3.3.1.1,
2185  //     excluding any Lvalue Transformation; the identity conversion
2186  //     sequence is considered to be a subsequence of any
2187  //     non-identity conversion sequence) or, if not that,
2188  if (ImplicitConversionSequence::CompareKind CK
2189        = compareStandardConversionSubsets(Context, SCS1, SCS2))
2190    return CK;
2191
2192  //  -- the rank of S1 is better than the rank of S2 (by the rules
2193  //     defined below), or, if not that,
2194  ImplicitConversionRank Rank1 = SCS1.getRank();
2195  ImplicitConversionRank Rank2 = SCS2.getRank();
2196  if (Rank1 < Rank2)
2197    return ImplicitConversionSequence::Better;
2198  else if (Rank2 < Rank1)
2199    return ImplicitConversionSequence::Worse;
2200
2201  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2202  // are indistinguishable unless one of the following rules
2203  // applies:
2204
2205  //   A conversion that is not a conversion of a pointer, or
2206  //   pointer to member, to bool is better than another conversion
2207  //   that is such a conversion.
2208  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2209    return SCS2.isPointerConversionToBool()
2210             ? ImplicitConversionSequence::Better
2211             : ImplicitConversionSequence::Worse;
2212
2213  // C++ [over.ics.rank]p4b2:
2214  //
2215  //   If class B is derived directly or indirectly from class A,
2216  //   conversion of B* to A* is better than conversion of B* to
2217  //   void*, and conversion of A* to void* is better than conversion
2218  //   of B* to void*.
2219  bool SCS1ConvertsToVoid
2220    = SCS1.isPointerConversionToVoidPointer(Context);
2221  bool SCS2ConvertsToVoid
2222    = SCS2.isPointerConversionToVoidPointer(Context);
2223  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2224    // Exactly one of the conversion sequences is a conversion to
2225    // a void pointer; it's the worse conversion.
2226    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2227                              : ImplicitConversionSequence::Worse;
2228  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2229    // Neither conversion sequence converts to a void pointer; compare
2230    // their derived-to-base conversions.
2231    if (ImplicitConversionSequence::CompareKind DerivedCK
2232          = CompareDerivedToBaseConversions(SCS1, SCS2))
2233      return DerivedCK;
2234  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
2235    // Both conversion sequences are conversions to void
2236    // pointers. Compare the source types to determine if there's an
2237    // inheritance relationship in their sources.
2238    QualType FromType1 = SCS1.getFromType();
2239    QualType FromType2 = SCS2.getFromType();
2240
2241    // Adjust the types we're converting from via the array-to-pointer
2242    // conversion, if we need to.
2243    if (SCS1.First == ICK_Array_To_Pointer)
2244      FromType1 = Context.getArrayDecayedType(FromType1);
2245    if (SCS2.First == ICK_Array_To_Pointer)
2246      FromType2 = Context.getArrayDecayedType(FromType2);
2247
2248    QualType FromPointee1
2249      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2250    QualType FromPointee2
2251      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2252
2253    if (IsDerivedFrom(FromPointee2, FromPointee1))
2254      return ImplicitConversionSequence::Better;
2255    else if (IsDerivedFrom(FromPointee1, FromPointee2))
2256      return ImplicitConversionSequence::Worse;
2257
2258    // Objective-C++: If one interface is more specific than the
2259    // other, it is the better one.
2260    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2261    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2262    if (FromIface1 && FromIface1) {
2263      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2264        return ImplicitConversionSequence::Better;
2265      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2266        return ImplicitConversionSequence::Worse;
2267    }
2268  }
2269
2270  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2271  // bullet 3).
2272  if (ImplicitConversionSequence::CompareKind QualCK
2273        = CompareQualificationConversions(SCS1, SCS2))
2274    return QualCK;
2275
2276  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2277    // C++0x [over.ics.rank]p3b4:
2278    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2279    //      implicit object parameter of a non-static member function declared
2280    //      without a ref-qualifier, and S1 binds an rvalue reference to an
2281    //      rvalue and S2 binds an lvalue reference.
2282    // FIXME: We don't know if we're dealing with the implicit object parameter,
2283    // or if the member function in this case has a ref qualifier.
2284    // (Of course, we don't have ref qualifiers yet.)
2285    if (SCS1.RRefBinding != SCS2.RRefBinding)
2286      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
2287                              : ImplicitConversionSequence::Worse;
2288
2289    // C++ [over.ics.rank]p3b4:
2290    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2291    //      which the references refer are the same type except for
2292    //      top-level cv-qualifiers, and the type to which the reference
2293    //      initialized by S2 refers is more cv-qualified than the type
2294    //      to which the reference initialized by S1 refers.
2295    QualType T1 = SCS1.getToType(2);
2296    QualType T2 = SCS2.getToType(2);
2297    T1 = Context.getCanonicalType(T1);
2298    T2 = Context.getCanonicalType(T2);
2299    Qualifiers T1Quals, T2Quals;
2300    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2301    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2302    if (UnqualT1 == UnqualT2) {
2303      // If the type is an array type, promote the element qualifiers to the type
2304      // for comparison.
2305      if (isa<ArrayType>(T1) && T1Quals)
2306        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2307      if (isa<ArrayType>(T2) && T2Quals)
2308        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2309      if (T2.isMoreQualifiedThan(T1))
2310        return ImplicitConversionSequence::Better;
2311      else if (T1.isMoreQualifiedThan(T2))
2312        return ImplicitConversionSequence::Worse;
2313    }
2314  }
2315
2316  return ImplicitConversionSequence::Indistinguishable;
2317}
2318
2319/// CompareQualificationConversions - Compares two standard conversion
2320/// sequences to determine whether they can be ranked based on their
2321/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
2322ImplicitConversionSequence::CompareKind
2323Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
2324                                      const StandardConversionSequence& SCS2) {
2325  // C++ 13.3.3.2p3:
2326  //  -- S1 and S2 differ only in their qualification conversion and
2327  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
2328  //     cv-qualification signature of type T1 is a proper subset of
2329  //     the cv-qualification signature of type T2, and S1 is not the
2330  //     deprecated string literal array-to-pointer conversion (4.2).
2331  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
2332      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
2333    return ImplicitConversionSequence::Indistinguishable;
2334
2335  // FIXME: the example in the standard doesn't use a qualification
2336  // conversion (!)
2337  QualType T1 = SCS1.getToType(2);
2338  QualType T2 = SCS2.getToType(2);
2339  T1 = Context.getCanonicalType(T1);
2340  T2 = Context.getCanonicalType(T2);
2341  Qualifiers T1Quals, T2Quals;
2342  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2343  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2344
2345  // If the types are the same, we won't learn anything by unwrapped
2346  // them.
2347  if (UnqualT1 == UnqualT2)
2348    return ImplicitConversionSequence::Indistinguishable;
2349
2350  // If the type is an array type, promote the element qualifiers to the type
2351  // for comparison.
2352  if (isa<ArrayType>(T1) && T1Quals)
2353    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2354  if (isa<ArrayType>(T2) && T2Quals)
2355    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2356
2357  ImplicitConversionSequence::CompareKind Result
2358    = ImplicitConversionSequence::Indistinguishable;
2359  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2360    // Within each iteration of the loop, we check the qualifiers to
2361    // determine if this still looks like a qualification
2362    // conversion. Then, if all is well, we unwrap one more level of
2363    // pointers or pointers-to-members and do it all again
2364    // until there are no more pointers or pointers-to-members left
2365    // to unwrap. This essentially mimics what
2366    // IsQualificationConversion does, but here we're checking for a
2367    // strict subset of qualifiers.
2368    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2369      // The qualifiers are the same, so this doesn't tell us anything
2370      // about how the sequences rank.
2371      ;
2372    else if (T2.isMoreQualifiedThan(T1)) {
2373      // T1 has fewer qualifiers, so it could be the better sequence.
2374      if (Result == ImplicitConversionSequence::Worse)
2375        // Neither has qualifiers that are a subset of the other's
2376        // qualifiers.
2377        return ImplicitConversionSequence::Indistinguishable;
2378
2379      Result = ImplicitConversionSequence::Better;
2380    } else if (T1.isMoreQualifiedThan(T2)) {
2381      // T2 has fewer qualifiers, so it could be the better sequence.
2382      if (Result == ImplicitConversionSequence::Better)
2383        // Neither has qualifiers that are a subset of the other's
2384        // qualifiers.
2385        return ImplicitConversionSequence::Indistinguishable;
2386
2387      Result = ImplicitConversionSequence::Worse;
2388    } else {
2389      // Qualifiers are disjoint.
2390      return ImplicitConversionSequence::Indistinguishable;
2391    }
2392
2393    // If the types after this point are equivalent, we're done.
2394    if (Context.hasSameUnqualifiedType(T1, T2))
2395      break;
2396  }
2397
2398  // Check that the winning standard conversion sequence isn't using
2399  // the deprecated string literal array to pointer conversion.
2400  switch (Result) {
2401  case ImplicitConversionSequence::Better:
2402    if (SCS1.DeprecatedStringLiteralToCharPtr)
2403      Result = ImplicitConversionSequence::Indistinguishable;
2404    break;
2405
2406  case ImplicitConversionSequence::Indistinguishable:
2407    break;
2408
2409  case ImplicitConversionSequence::Worse:
2410    if (SCS2.DeprecatedStringLiteralToCharPtr)
2411      Result = ImplicitConversionSequence::Indistinguishable;
2412    break;
2413  }
2414
2415  return Result;
2416}
2417
2418/// CompareDerivedToBaseConversions - Compares two standard conversion
2419/// sequences to determine whether they can be ranked based on their
2420/// various kinds of derived-to-base conversions (C++
2421/// [over.ics.rank]p4b3).  As part of these checks, we also look at
2422/// conversions between Objective-C interface types.
2423ImplicitConversionSequence::CompareKind
2424Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
2425                                      const StandardConversionSequence& SCS2) {
2426  QualType FromType1 = SCS1.getFromType();
2427  QualType ToType1 = SCS1.getToType(1);
2428  QualType FromType2 = SCS2.getFromType();
2429  QualType ToType2 = SCS2.getToType(1);
2430
2431  // Adjust the types we're converting from via the array-to-pointer
2432  // conversion, if we need to.
2433  if (SCS1.First == ICK_Array_To_Pointer)
2434    FromType1 = Context.getArrayDecayedType(FromType1);
2435  if (SCS2.First == ICK_Array_To_Pointer)
2436    FromType2 = Context.getArrayDecayedType(FromType2);
2437
2438  // Canonicalize all of the types.
2439  FromType1 = Context.getCanonicalType(FromType1);
2440  ToType1 = Context.getCanonicalType(ToType1);
2441  FromType2 = Context.getCanonicalType(FromType2);
2442  ToType2 = Context.getCanonicalType(ToType2);
2443
2444  // C++ [over.ics.rank]p4b3:
2445  //
2446  //   If class B is derived directly or indirectly from class A and
2447  //   class C is derived directly or indirectly from B,
2448  //
2449  // For Objective-C, we let A, B, and C also be Objective-C
2450  // interfaces.
2451
2452  // Compare based on pointer conversions.
2453  if (SCS1.Second == ICK_Pointer_Conversion &&
2454      SCS2.Second == ICK_Pointer_Conversion &&
2455      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2456      FromType1->isPointerType() && FromType2->isPointerType() &&
2457      ToType1->isPointerType() && ToType2->isPointerType()) {
2458    QualType FromPointee1
2459      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2460    QualType ToPointee1
2461      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2462    QualType FromPointee2
2463      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2464    QualType ToPointee2
2465      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2466
2467    const ObjCObjectType* FromIface1 = FromPointee1->getAs<ObjCObjectType>();
2468    const ObjCObjectType* FromIface2 = FromPointee2->getAs<ObjCObjectType>();
2469    const ObjCObjectType* ToIface1 = ToPointee1->getAs<ObjCObjectType>();
2470    const ObjCObjectType* ToIface2 = ToPointee2->getAs<ObjCObjectType>();
2471
2472    //   -- conversion of C* to B* is better than conversion of C* to A*,
2473    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2474      if (IsDerivedFrom(ToPointee1, ToPointee2))
2475        return ImplicitConversionSequence::Better;
2476      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2477        return ImplicitConversionSequence::Worse;
2478
2479      if (ToIface1 && ToIface2) {
2480        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2481          return ImplicitConversionSequence::Better;
2482        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2483          return ImplicitConversionSequence::Worse;
2484      }
2485    }
2486
2487    //   -- conversion of B* to A* is better than conversion of C* to A*,
2488    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2489      if (IsDerivedFrom(FromPointee2, FromPointee1))
2490        return ImplicitConversionSequence::Better;
2491      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2492        return ImplicitConversionSequence::Worse;
2493
2494      if (FromIface1 && FromIface2) {
2495        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2496          return ImplicitConversionSequence::Better;
2497        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2498          return ImplicitConversionSequence::Worse;
2499      }
2500    }
2501  }
2502
2503  // Ranking of member-pointer types.
2504  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2505      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2506      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2507    const MemberPointerType * FromMemPointer1 =
2508                                        FromType1->getAs<MemberPointerType>();
2509    const MemberPointerType * ToMemPointer1 =
2510                                          ToType1->getAs<MemberPointerType>();
2511    const MemberPointerType * FromMemPointer2 =
2512                                          FromType2->getAs<MemberPointerType>();
2513    const MemberPointerType * ToMemPointer2 =
2514                                          ToType2->getAs<MemberPointerType>();
2515    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2516    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2517    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2518    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2519    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2520    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2521    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2522    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2523    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2524    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2525      if (IsDerivedFrom(ToPointee1, ToPointee2))
2526        return ImplicitConversionSequence::Worse;
2527      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2528        return ImplicitConversionSequence::Better;
2529    }
2530    // conversion of B::* to C::* is better than conversion of A::* to C::*
2531    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2532      if (IsDerivedFrom(FromPointee1, FromPointee2))
2533        return ImplicitConversionSequence::Better;
2534      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2535        return ImplicitConversionSequence::Worse;
2536    }
2537  }
2538
2539  if (SCS1.Second == ICK_Derived_To_Base) {
2540    //   -- conversion of C to B is better than conversion of C to A,
2541    //   -- binding of an expression of type C to a reference of type
2542    //      B& is better than binding an expression of type C to a
2543    //      reference of type A&,
2544    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2545        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2546      if (IsDerivedFrom(ToType1, ToType2))
2547        return ImplicitConversionSequence::Better;
2548      else if (IsDerivedFrom(ToType2, ToType1))
2549        return ImplicitConversionSequence::Worse;
2550    }
2551
2552    //   -- conversion of B to A is better than conversion of C to A.
2553    //   -- binding of an expression of type B to a reference of type
2554    //      A& is better than binding an expression of type C to a
2555    //      reference of type A&,
2556    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2557        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2558      if (IsDerivedFrom(FromType2, FromType1))
2559        return ImplicitConversionSequence::Better;
2560      else if (IsDerivedFrom(FromType1, FromType2))
2561        return ImplicitConversionSequence::Worse;
2562    }
2563  }
2564
2565  return ImplicitConversionSequence::Indistinguishable;
2566}
2567
2568/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2569/// determine whether they are reference-related,
2570/// reference-compatible, reference-compatible with added
2571/// qualification, or incompatible, for use in C++ initialization by
2572/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2573/// type, and the first type (T1) is the pointee type of the reference
2574/// type being initialized.
2575Sema::ReferenceCompareResult
2576Sema::CompareReferenceRelationship(SourceLocation Loc,
2577                                   QualType OrigT1, QualType OrigT2,
2578                                   bool& DerivedToBase) {
2579  assert(!OrigT1->isReferenceType() &&
2580    "T1 must be the pointee type of the reference type");
2581  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
2582
2583  QualType T1 = Context.getCanonicalType(OrigT1);
2584  QualType T2 = Context.getCanonicalType(OrigT2);
2585  Qualifiers T1Quals, T2Quals;
2586  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
2587  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
2588
2589  // C++ [dcl.init.ref]p4:
2590  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2591  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2592  //   T1 is a base class of T2.
2593  if (UnqualT1 == UnqualT2)
2594    DerivedToBase = false;
2595  else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
2596           IsDerivedFrom(UnqualT2, UnqualT1))
2597    DerivedToBase = true;
2598  else
2599    return Ref_Incompatible;
2600
2601  // At this point, we know that T1 and T2 are reference-related (at
2602  // least).
2603
2604  // If the type is an array type, promote the element qualifiers to the type
2605  // for comparison.
2606  if (isa<ArrayType>(T1) && T1Quals)
2607    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
2608  if (isa<ArrayType>(T2) && T2Quals)
2609    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
2610
2611  // C++ [dcl.init.ref]p4:
2612  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2613  //   reference-related to T2 and cv1 is the same cv-qualification
2614  //   as, or greater cv-qualification than, cv2. For purposes of
2615  //   overload resolution, cases for which cv1 is greater
2616  //   cv-qualification than cv2 are identified as
2617  //   reference-compatible with added qualification (see 13.3.3.2).
2618  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
2619    return Ref_Compatible;
2620  else if (T1.isMoreQualifiedThan(T2))
2621    return Ref_Compatible_With_Added_Qualification;
2622  else
2623    return Ref_Related;
2624}
2625
2626/// \brief Compute an implicit conversion sequence for reference
2627/// initialization.
2628static ImplicitConversionSequence
2629TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
2630                 SourceLocation DeclLoc,
2631                 bool SuppressUserConversions,
2632                 bool AllowExplicit) {
2633  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2634
2635  // Most paths end in a failed conversion.
2636  ImplicitConversionSequence ICS;
2637  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
2638
2639  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2640  QualType T2 = Init->getType();
2641
2642  // If the initializer is the address of an overloaded function, try
2643  // to resolve the overloaded function. If all goes well, T2 is the
2644  // type of the resulting function.
2645  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
2646    DeclAccessPair Found;
2647    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
2648                                                                false, Found))
2649      T2 = Fn->getType();
2650  }
2651
2652  // Compute some basic properties of the types and the initializer.
2653  bool isRValRef = DeclType->isRValueReferenceType();
2654  bool DerivedToBase = false;
2655  Expr::isLvalueResult InitLvalue = Init->isLvalue(S.Context);
2656  Sema::ReferenceCompareResult RefRelationship
2657    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
2658
2659
2660  // C++ [over.ics.ref]p3:
2661  //   Except for an implicit object parameter, for which see 13.3.1,
2662  //   a standard conversion sequence cannot be formed if it requires
2663  //   binding an lvalue reference to non-const to an rvalue or
2664  //   binding an rvalue reference to an lvalue.
2665  //
2666  // FIXME: DPG doesn't trust this code. It seems far too early to
2667  // abort because of a binding of an rvalue reference to an lvalue.
2668  if (isRValRef && InitLvalue == Expr::LV_Valid)
2669    return ICS;
2670
2671  // C++0x [dcl.init.ref]p16:
2672  //   A reference to type "cv1 T1" is initialized by an expression
2673  //   of type "cv2 T2" as follows:
2674
2675  //     -- If the initializer expression
2676  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2677  //          reference-compatible with "cv2 T2," or
2678  //
2679  // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
2680  if (InitLvalue == Expr::LV_Valid &&
2681      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2682    // C++ [over.ics.ref]p1:
2683    //   When a parameter of reference type binds directly (8.5.3)
2684    //   to an argument expression, the implicit conversion sequence
2685    //   is the identity conversion, unless the argument expression
2686    //   has a type that is a derived class of the parameter type,
2687    //   in which case the implicit conversion sequence is a
2688    //   derived-to-base Conversion (13.3.3.1).
2689    ICS.setStandard();
2690    ICS.Standard.First = ICK_Identity;
2691    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2692    ICS.Standard.Third = ICK_Identity;
2693    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2694    ICS.Standard.setToType(0, T2);
2695    ICS.Standard.setToType(1, T1);
2696    ICS.Standard.setToType(2, T1);
2697    ICS.Standard.ReferenceBinding = true;
2698    ICS.Standard.DirectBinding = true;
2699    ICS.Standard.RRefBinding = false;
2700    ICS.Standard.CopyConstructor = 0;
2701
2702    // Nothing more to do: the inaccessibility/ambiguity check for
2703    // derived-to-base conversions is suppressed when we're
2704    // computing the implicit conversion sequence (C++
2705    // [over.best.ics]p2).
2706    return ICS;
2707  }
2708
2709  //       -- has a class type (i.e., T2 is a class type), where T1 is
2710  //          not reference-related to T2, and can be implicitly
2711  //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
2712  //          is reference-compatible with "cv3 T3" 92) (this
2713  //          conversion is selected by enumerating the applicable
2714  //          conversion functions (13.3.1.6) and choosing the best
2715  //          one through overload resolution (13.3)),
2716  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
2717      !S.RequireCompleteType(DeclLoc, T2, 0) &&
2718      RefRelationship == Sema::Ref_Incompatible) {
2719    CXXRecordDecl *T2RecordDecl
2720      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2721
2722    OverloadCandidateSet CandidateSet(DeclLoc);
2723    const UnresolvedSetImpl *Conversions
2724      = T2RecordDecl->getVisibleConversionFunctions();
2725    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2726           E = Conversions->end(); I != E; ++I) {
2727      NamedDecl *D = *I;
2728      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2729      if (isa<UsingShadowDecl>(D))
2730        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2731
2732      FunctionTemplateDecl *ConvTemplate
2733        = dyn_cast<FunctionTemplateDecl>(D);
2734      CXXConversionDecl *Conv;
2735      if (ConvTemplate)
2736        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2737      else
2738        Conv = cast<CXXConversionDecl>(D);
2739
2740      // If the conversion function doesn't return a reference type,
2741      // it can't be considered for this conversion.
2742      if (Conv->getConversionType()->isLValueReferenceType() &&
2743          (AllowExplicit || !Conv->isExplicit())) {
2744        if (ConvTemplate)
2745          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
2746                                         Init, DeclType, CandidateSet);
2747        else
2748          S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
2749                                 DeclType, CandidateSet);
2750      }
2751    }
2752
2753    OverloadCandidateSet::iterator Best;
2754    switch (S.BestViableFunction(CandidateSet, DeclLoc, Best)) {
2755    case OR_Success:
2756      // C++ [over.ics.ref]p1:
2757      //
2758      //   [...] If the parameter binds directly to the result of
2759      //   applying a conversion function to the argument
2760      //   expression, the implicit conversion sequence is a
2761      //   user-defined conversion sequence (13.3.3.1.2), with the
2762      //   second standard conversion sequence either an identity
2763      //   conversion or, if the conversion function returns an
2764      //   entity of a type that is a derived class of the parameter
2765      //   type, a derived-to-base Conversion.
2766      if (!Best->FinalConversion.DirectBinding)
2767        break;
2768
2769      ICS.setUserDefined();
2770      ICS.UserDefined.Before = Best->Conversions[0].Standard;
2771      ICS.UserDefined.After = Best->FinalConversion;
2772      ICS.UserDefined.ConversionFunction = Best->Function;
2773      ICS.UserDefined.EllipsisConversion = false;
2774      assert(ICS.UserDefined.After.ReferenceBinding &&
2775             ICS.UserDefined.After.DirectBinding &&
2776             "Expected a direct reference binding!");
2777      return ICS;
2778
2779    case OR_Ambiguous:
2780      ICS.setAmbiguous();
2781      for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2782           Cand != CandidateSet.end(); ++Cand)
2783        if (Cand->Viable)
2784          ICS.Ambiguous.addConversion(Cand->Function);
2785      return ICS;
2786
2787    case OR_No_Viable_Function:
2788    case OR_Deleted:
2789      // There was no suitable conversion, or we found a deleted
2790      // conversion; continue with other checks.
2791      break;
2792    }
2793  }
2794
2795  //     -- Otherwise, the reference shall be to a non-volatile const
2796  //        type (i.e., cv1 shall be const), or the reference shall be an
2797  //        rvalue reference and the initializer expression shall be an rvalue.
2798  //
2799  // We actually handle one oddity of C++ [over.ics.ref] at this
2800  // point, which is that, due to p2 (which short-circuits reference
2801  // binding by only attempting a simple conversion for non-direct
2802  // bindings) and p3's strange wording, we allow a const volatile
2803  // reference to bind to an rvalue. Hence the check for the presence
2804  // of "const" rather than checking for "const" being the only
2805  // qualifier.
2806  if (!isRValRef && !T1.isConstQualified())
2807    return ICS;
2808
2809  //       -- if T2 is a class type and
2810  //          -- the initializer expression is an rvalue and "cv1 T1"
2811  //             is reference-compatible with "cv2 T2," or
2812  //
2813  //          -- T1 is not reference-related to T2 and the initializer
2814  //             expression can be implicitly converted to an rvalue
2815  //             of type "cv3 T3" (this conversion is selected by
2816  //             enumerating the applicable conversion functions
2817  //             (13.3.1.6) and choosing the best one through overload
2818  //             resolution (13.3)),
2819  //
2820  //          then the reference is bound to the initializer
2821  //          expression rvalue in the first case and to the object
2822  //          that is the result of the conversion in the second case
2823  //          (or, in either case, to the appropriate base class
2824  //          subobject of the object).
2825  //
2826  // We're only checking the first case here, which is a direct
2827  // binding in C++0x but not in C++03.
2828  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2829      RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
2830    ICS.setStandard();
2831    ICS.Standard.First = ICK_Identity;
2832    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2833    ICS.Standard.Third = ICK_Identity;
2834    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
2835    ICS.Standard.setToType(0, T2);
2836    ICS.Standard.setToType(1, T1);
2837    ICS.Standard.setToType(2, T1);
2838    ICS.Standard.ReferenceBinding = true;
2839    ICS.Standard.DirectBinding = S.getLangOptions().CPlusPlus0x;
2840    ICS.Standard.RRefBinding = isRValRef;
2841    ICS.Standard.CopyConstructor = 0;
2842    return ICS;
2843  }
2844
2845  //       -- Otherwise, a temporary of type "cv1 T1" is created and
2846  //          initialized from the initializer expression using the
2847  //          rules for a non-reference copy initialization (8.5). The
2848  //          reference is then bound to the temporary. If T1 is
2849  //          reference-related to T2, cv1 must be the same
2850  //          cv-qualification as, or greater cv-qualification than,
2851  //          cv2; otherwise, the program is ill-formed.
2852  if (RefRelationship == Sema::Ref_Related) {
2853    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2854    // we would be reference-compatible or reference-compatible with
2855    // added qualification. But that wasn't the case, so the reference
2856    // initialization fails.
2857    return ICS;
2858  }
2859
2860  // If at least one of the types is a class type, the types are not
2861  // related, and we aren't allowed any user conversions, the
2862  // reference binding fails. This case is important for breaking
2863  // recursion, since TryImplicitConversion below will attempt to
2864  // create a temporary through the use of a copy constructor.
2865  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
2866      (T1->isRecordType() || T2->isRecordType()))
2867    return ICS;
2868
2869  // C++ [over.ics.ref]p2:
2870  //   When a parameter of reference type is not bound directly to
2871  //   an argument expression, the conversion sequence is the one
2872  //   required to convert the argument expression to the
2873  //   underlying type of the reference according to
2874  //   13.3.3.1. Conceptually, this conversion sequence corresponds
2875  //   to copy-initializing a temporary of the underlying type with
2876  //   the argument expression. Any difference in top-level
2877  //   cv-qualification is subsumed by the initialization itself
2878  //   and does not constitute a conversion.
2879  ICS = S.TryImplicitConversion(Init, T1, SuppressUserConversions,
2880                                /*AllowExplicit=*/false,
2881                                /*InOverloadResolution=*/false);
2882
2883  // Of course, that's still a reference binding.
2884  if (ICS.isStandard()) {
2885    ICS.Standard.ReferenceBinding = true;
2886    ICS.Standard.RRefBinding = isRValRef;
2887  } else if (ICS.isUserDefined()) {
2888    ICS.UserDefined.After.ReferenceBinding = true;
2889    ICS.UserDefined.After.RRefBinding = isRValRef;
2890  }
2891  return ICS;
2892}
2893
2894/// TryCopyInitialization - Try to copy-initialize a value of type
2895/// ToType from the expression From. Return the implicit conversion
2896/// sequence required to pass this argument, which may be a bad
2897/// conversion sequence (meaning that the argument cannot be passed to
2898/// a parameter of this type). If @p SuppressUserConversions, then we
2899/// do not permit any user-defined conversion sequences.
2900static ImplicitConversionSequence
2901TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
2902                      bool SuppressUserConversions,
2903                      bool InOverloadResolution) {
2904  if (ToType->isReferenceType())
2905    return TryReferenceInit(S, From, ToType,
2906                            /*FIXME:*/From->getLocStart(),
2907                            SuppressUserConversions,
2908                            /*AllowExplicit=*/false);
2909
2910  return S.TryImplicitConversion(From, ToType,
2911                                 SuppressUserConversions,
2912                                 /*AllowExplicit=*/false,
2913                                 InOverloadResolution);
2914}
2915
2916/// TryObjectArgumentInitialization - Try to initialize the object
2917/// parameter of the given member function (@c Method) from the
2918/// expression @p From.
2919ImplicitConversionSequence
2920Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2921                                      CXXMethodDecl *Method,
2922                                      CXXRecordDecl *ActingContext) {
2923  QualType ClassType = Context.getTypeDeclType(ActingContext);
2924  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2925  //                 const volatile object.
2926  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2927    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2928  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2929
2930  // Set up the conversion sequence as a "bad" conversion, to allow us
2931  // to exit early.
2932  ImplicitConversionSequence ICS;
2933
2934  // We need to have an object of class type.
2935  QualType FromType = OrigFromType;
2936  if (const PointerType *PT = FromType->getAs<PointerType>())
2937    FromType = PT->getPointeeType();
2938
2939  assert(FromType->isRecordType());
2940
2941  // The implicit object parameter is has the type "reference to cv X",
2942  // where X is the class of which the function is a member
2943  // (C++ [over.match.funcs]p4). However, when finding an implicit
2944  // conversion sequence for the argument, we are not allowed to
2945  // create temporaries or perform user-defined conversions
2946  // (C++ [over.match.funcs]p5). We perform a simplified version of
2947  // reference binding here, that allows class rvalues to bind to
2948  // non-constant references.
2949
2950  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2951  // with the implicit object parameter (C++ [over.match.funcs]p5).
2952  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2953  if (ImplicitParamType.getCVRQualifiers()
2954                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2955      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2956    ICS.setBad(BadConversionSequence::bad_qualifiers,
2957               OrigFromType, ImplicitParamType);
2958    return ICS;
2959  }
2960
2961  // Check that we have either the same type or a derived type. It
2962  // affects the conversion rank.
2963  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2964  ImplicitConversionKind SecondKind;
2965  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
2966    SecondKind = ICK_Identity;
2967  } else if (IsDerivedFrom(FromType, ClassType))
2968    SecondKind = ICK_Derived_To_Base;
2969  else {
2970    ICS.setBad(BadConversionSequence::unrelated_class,
2971               FromType, ImplicitParamType);
2972    return ICS;
2973  }
2974
2975  // Success. Mark this as a reference binding.
2976  ICS.setStandard();
2977  ICS.Standard.setAsIdentityConversion();
2978  ICS.Standard.Second = SecondKind;
2979  ICS.Standard.setFromType(FromType);
2980  ICS.Standard.setAllToTypes(ImplicitParamType);
2981  ICS.Standard.ReferenceBinding = true;
2982  ICS.Standard.DirectBinding = true;
2983  ICS.Standard.RRefBinding = false;
2984  return ICS;
2985}
2986
2987/// PerformObjectArgumentInitialization - Perform initialization of
2988/// the implicit object parameter for the given Method with the given
2989/// expression.
2990bool
2991Sema::PerformObjectArgumentInitialization(Expr *&From,
2992                                          NestedNameSpecifier *Qualifier,
2993                                          NamedDecl *FoundDecl,
2994                                          CXXMethodDecl *Method) {
2995  QualType FromRecordType, DestType;
2996  QualType ImplicitParamRecordType  =
2997    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2998
2999  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
3000    FromRecordType = PT->getPointeeType();
3001    DestType = Method->getThisType(Context);
3002  } else {
3003    FromRecordType = From->getType();
3004    DestType = ImplicitParamRecordType;
3005  }
3006
3007  // Note that we always use the true parent context when performing
3008  // the actual argument initialization.
3009  ImplicitConversionSequence ICS
3010    = TryObjectArgumentInitialization(From->getType(), Method,
3011                                      Method->getParent());
3012  if (ICS.isBad())
3013    return Diag(From->getSourceRange().getBegin(),
3014                diag::err_implicit_object_parameter_init)
3015       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
3016
3017  if (ICS.Standard.Second == ICK_Derived_To_Base)
3018    return PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
3019
3020  if (!Context.hasSameType(From->getType(), DestType))
3021    ImpCastExprToType(From, DestType, CastExpr::CK_NoOp,
3022                      /*isLvalue=*/!From->getType()->isPointerType());
3023  return false;
3024}
3025
3026/// TryContextuallyConvertToBool - Attempt to contextually convert the
3027/// expression From to bool (C++0x [conv]p3).
3028ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
3029  // FIXME: This is pretty broken.
3030  return TryImplicitConversion(From, Context.BoolTy,
3031                               // FIXME: Are these flags correct?
3032                               /*SuppressUserConversions=*/false,
3033                               /*AllowExplicit=*/true,
3034                               /*InOverloadResolution=*/false);
3035}
3036
3037/// PerformContextuallyConvertToBool - Perform a contextual conversion
3038/// of the expression From to bool (C++0x [conv]p3).
3039bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
3040  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
3041  if (!ICS.isBad())
3042    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
3043
3044  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
3045    return  Diag(From->getSourceRange().getBegin(),
3046                 diag::err_typecheck_bool_condition)
3047                  << From->getType() << From->getSourceRange();
3048  return true;
3049}
3050
3051/// TryContextuallyConvertToObjCId - Attempt to contextually convert the
3052/// expression From to 'id'.
3053ImplicitConversionSequence Sema::TryContextuallyConvertToObjCId(Expr *From) {
3054  QualType Ty = Context.getObjCIdType();
3055  return TryImplicitConversion(From, Ty,
3056                                 // FIXME: Are these flags correct?
3057                                 /*SuppressUserConversions=*/false,
3058                                 /*AllowExplicit=*/true,
3059                                 /*InOverloadResolution=*/false);
3060}
3061
3062/// PerformContextuallyConvertToObjCId - Perform a contextual conversion
3063/// of the expression From to 'id'.
3064bool Sema::PerformContextuallyConvertToObjCId(Expr *&From) {
3065  QualType Ty = Context.getObjCIdType();
3066  ImplicitConversionSequence ICS = TryContextuallyConvertToObjCId(From);
3067  if (!ICS.isBad())
3068    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
3069  return true;
3070}
3071
3072/// AddOverloadCandidate - Adds the given function to the set of
3073/// candidate functions, using the given function call arguments.  If
3074/// @p SuppressUserConversions, then don't allow user-defined
3075/// conversions via constructors or conversion operators.
3076///
3077/// \para PartialOverloading true if we are performing "partial" overloading
3078/// based on an incomplete set of function arguments. This feature is used by
3079/// code completion.
3080void
3081Sema::AddOverloadCandidate(FunctionDecl *Function,
3082                           DeclAccessPair FoundDecl,
3083                           Expr **Args, unsigned NumArgs,
3084                           OverloadCandidateSet& CandidateSet,
3085                           bool SuppressUserConversions,
3086                           bool PartialOverloading) {
3087  const FunctionProtoType* Proto
3088    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
3089  assert(Proto && "Functions without a prototype cannot be overloaded");
3090  assert(!Function->getDescribedFunctionTemplate() &&
3091         "Use AddTemplateOverloadCandidate for function templates");
3092
3093  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
3094    if (!isa<CXXConstructorDecl>(Method)) {
3095      // If we get here, it's because we're calling a member function
3096      // that is named without a member access expression (e.g.,
3097      // "this->f") that was either written explicitly or created
3098      // implicitly. This can happen with a qualified call to a member
3099      // function, e.g., X::f(). We use an empty type for the implied
3100      // object argument (C++ [over.call.func]p3), and the acting context
3101      // is irrelevant.
3102      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
3103                         QualType(), Args, NumArgs, CandidateSet,
3104                         SuppressUserConversions);
3105      return;
3106    }
3107    // We treat a constructor like a non-member function, since its object
3108    // argument doesn't participate in overload resolution.
3109  }
3110
3111  if (!CandidateSet.isNewCandidate(Function))
3112    return;
3113
3114  // Overload resolution is always an unevaluated context.
3115  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3116
3117  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
3118    // C++ [class.copy]p3:
3119    //   A member function template is never instantiated to perform the copy
3120    //   of a class object to an object of its class type.
3121    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
3122    if (NumArgs == 1 &&
3123        Constructor->isCopyConstructorLikeSpecialization() &&
3124        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
3125         IsDerivedFrom(Args[0]->getType(), ClassType)))
3126      return;
3127  }
3128
3129  // Add this candidate
3130  CandidateSet.push_back(OverloadCandidate());
3131  OverloadCandidate& Candidate = CandidateSet.back();
3132  Candidate.FoundDecl = FoundDecl;
3133  Candidate.Function = Function;
3134  Candidate.Viable = true;
3135  Candidate.IsSurrogate = false;
3136  Candidate.IgnoreObjectArgument = false;
3137
3138  unsigned NumArgsInProto = Proto->getNumArgs();
3139
3140  // (C++ 13.3.2p2): A candidate function having fewer than m
3141  // parameters is viable only if it has an ellipsis in its parameter
3142  // list (8.3.5).
3143  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
3144      !Proto->isVariadic()) {
3145    Candidate.Viable = false;
3146    Candidate.FailureKind = ovl_fail_too_many_arguments;
3147    return;
3148  }
3149
3150  // (C++ 13.3.2p2): A candidate function having more than m parameters
3151  // is viable only if the (m+1)st parameter has a default argument
3152  // (8.3.6). For the purposes of overload resolution, the
3153  // parameter list is truncated on the right, so that there are
3154  // exactly m parameters.
3155  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
3156  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
3157    // Not enough arguments.
3158    Candidate.Viable = false;
3159    Candidate.FailureKind = ovl_fail_too_few_arguments;
3160    return;
3161  }
3162
3163  // Determine the implicit conversion sequences for each of the
3164  // arguments.
3165  Candidate.Conversions.resize(NumArgs);
3166  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3167    if (ArgIdx < NumArgsInProto) {
3168      // (C++ 13.3.2p3): for F to be a viable function, there shall
3169      // exist for each argument an implicit conversion sequence
3170      // (13.3.3.1) that converts that argument to the corresponding
3171      // parameter of F.
3172      QualType ParamType = Proto->getArgType(ArgIdx);
3173      Candidate.Conversions[ArgIdx]
3174        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3175                                SuppressUserConversions,
3176                                /*InOverloadResolution=*/true);
3177      if (Candidate.Conversions[ArgIdx].isBad()) {
3178        Candidate.Viable = false;
3179        Candidate.FailureKind = ovl_fail_bad_conversion;
3180        break;
3181      }
3182    } else {
3183      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3184      // argument for which there is no corresponding parameter is
3185      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3186      Candidate.Conversions[ArgIdx].setEllipsis();
3187    }
3188  }
3189}
3190
3191/// \brief Add all of the function declarations in the given function set to
3192/// the overload canddiate set.
3193void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
3194                                 Expr **Args, unsigned NumArgs,
3195                                 OverloadCandidateSet& CandidateSet,
3196                                 bool SuppressUserConversions) {
3197  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
3198    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
3199    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3200      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
3201        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
3202                           cast<CXXMethodDecl>(FD)->getParent(),
3203                           Args[0]->getType(), Args + 1, NumArgs - 1,
3204                           CandidateSet, SuppressUserConversions);
3205      else
3206        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
3207                             SuppressUserConversions);
3208    } else {
3209      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
3210      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
3211          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
3212        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
3213                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
3214                                   /*FIXME: explicit args */ 0,
3215                                   Args[0]->getType(), Args + 1, NumArgs - 1,
3216                                   CandidateSet,
3217                                   SuppressUserConversions);
3218      else
3219        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
3220                                     /*FIXME: explicit args */ 0,
3221                                     Args, NumArgs, CandidateSet,
3222                                     SuppressUserConversions);
3223    }
3224  }
3225}
3226
3227/// AddMethodCandidate - Adds a named decl (which is some kind of
3228/// method) as a method candidate to the given overload set.
3229void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
3230                              QualType ObjectType,
3231                              Expr **Args, unsigned NumArgs,
3232                              OverloadCandidateSet& CandidateSet,
3233                              bool SuppressUserConversions) {
3234  NamedDecl *Decl = FoundDecl.getDecl();
3235  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
3236
3237  if (isa<UsingShadowDecl>(Decl))
3238    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
3239
3240  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
3241    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
3242           "Expected a member function template");
3243    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
3244                               /*ExplicitArgs*/ 0,
3245                               ObjectType, Args, NumArgs,
3246                               CandidateSet,
3247                               SuppressUserConversions);
3248  } else {
3249    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
3250                       ObjectType, Args, NumArgs,
3251                       CandidateSet, SuppressUserConversions);
3252  }
3253}
3254
3255/// AddMethodCandidate - Adds the given C++ member function to the set
3256/// of candidate functions, using the given function call arguments
3257/// and the object argument (@c Object). For example, in a call
3258/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
3259/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
3260/// allow user-defined conversions via constructors or conversion
3261/// operators.
3262void
3263Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
3264                         CXXRecordDecl *ActingContext, QualType ObjectType,
3265                         Expr **Args, unsigned NumArgs,
3266                         OverloadCandidateSet& CandidateSet,
3267                         bool SuppressUserConversions) {
3268  const FunctionProtoType* Proto
3269    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
3270  assert(Proto && "Methods without a prototype cannot be overloaded");
3271  assert(!isa<CXXConstructorDecl>(Method) &&
3272         "Use AddOverloadCandidate for constructors");
3273
3274  if (!CandidateSet.isNewCandidate(Method))
3275    return;
3276
3277  // Overload resolution is always an unevaluated context.
3278  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3279
3280  // Add this candidate
3281  CandidateSet.push_back(OverloadCandidate());
3282  OverloadCandidate& Candidate = CandidateSet.back();
3283  Candidate.FoundDecl = FoundDecl;
3284  Candidate.Function = Method;
3285  Candidate.IsSurrogate = false;
3286  Candidate.IgnoreObjectArgument = false;
3287
3288  unsigned NumArgsInProto = Proto->getNumArgs();
3289
3290  // (C++ 13.3.2p2): A candidate function having fewer than m
3291  // parameters is viable only if it has an ellipsis in its parameter
3292  // list (8.3.5).
3293  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3294    Candidate.Viable = false;
3295    Candidate.FailureKind = ovl_fail_too_many_arguments;
3296    return;
3297  }
3298
3299  // (C++ 13.3.2p2): A candidate function having more than m parameters
3300  // is viable only if the (m+1)st parameter has a default argument
3301  // (8.3.6). For the purposes of overload resolution, the
3302  // parameter list is truncated on the right, so that there are
3303  // exactly m parameters.
3304  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
3305  if (NumArgs < MinRequiredArgs) {
3306    // Not enough arguments.
3307    Candidate.Viable = false;
3308    Candidate.FailureKind = ovl_fail_too_few_arguments;
3309    return;
3310  }
3311
3312  Candidate.Viable = true;
3313  Candidate.Conversions.resize(NumArgs + 1);
3314
3315  if (Method->isStatic() || ObjectType.isNull())
3316    // The implicit object argument is ignored.
3317    Candidate.IgnoreObjectArgument = true;
3318  else {
3319    // Determine the implicit conversion sequence for the object
3320    // parameter.
3321    Candidate.Conversions[0]
3322      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
3323    if (Candidate.Conversions[0].isBad()) {
3324      Candidate.Viable = false;
3325      Candidate.FailureKind = ovl_fail_bad_conversion;
3326      return;
3327    }
3328  }
3329
3330  // Determine the implicit conversion sequences for each of the
3331  // arguments.
3332  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3333    if (ArgIdx < NumArgsInProto) {
3334      // (C++ 13.3.2p3): for F to be a viable function, there shall
3335      // exist for each argument an implicit conversion sequence
3336      // (13.3.3.1) that converts that argument to the corresponding
3337      // parameter of F.
3338      QualType ParamType = Proto->getArgType(ArgIdx);
3339      Candidate.Conversions[ArgIdx + 1]
3340        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3341                                SuppressUserConversions,
3342                                /*InOverloadResolution=*/true);
3343      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3344        Candidate.Viable = false;
3345        Candidate.FailureKind = ovl_fail_bad_conversion;
3346        break;
3347      }
3348    } else {
3349      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3350      // argument for which there is no corresponding parameter is
3351      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3352      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3353    }
3354  }
3355}
3356
3357/// \brief Add a C++ member function template as a candidate to the candidate
3358/// set, using template argument deduction to produce an appropriate member
3359/// function template specialization.
3360void
3361Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3362                                 DeclAccessPair FoundDecl,
3363                                 CXXRecordDecl *ActingContext,
3364                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3365                                 QualType ObjectType,
3366                                 Expr **Args, unsigned NumArgs,
3367                                 OverloadCandidateSet& CandidateSet,
3368                                 bool SuppressUserConversions) {
3369  if (!CandidateSet.isNewCandidate(MethodTmpl))
3370    return;
3371
3372  // C++ [over.match.funcs]p7:
3373  //   In each case where a candidate is a function template, candidate
3374  //   function template specializations are generated using template argument
3375  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3376  //   candidate functions in the usual way.113) A given name can refer to one
3377  //   or more function templates and also to a set of overloaded non-template
3378  //   functions. In such a case, the candidate functions generated from each
3379  //   function template are combined with the set of non-template candidate
3380  //   functions.
3381  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3382  FunctionDecl *Specialization = 0;
3383  if (TemplateDeductionResult Result
3384      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
3385                                Args, NumArgs, Specialization, Info)) {
3386    CandidateSet.push_back(OverloadCandidate());
3387    OverloadCandidate &Candidate = CandidateSet.back();
3388    Candidate.FoundDecl = FoundDecl;
3389    Candidate.Function = MethodTmpl->getTemplatedDecl();
3390    Candidate.Viable = false;
3391    Candidate.FailureKind = ovl_fail_bad_deduction;
3392    Candidate.IsSurrogate = false;
3393    Candidate.IgnoreObjectArgument = false;
3394    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3395                                                          Info);
3396    return;
3397  }
3398
3399  // Add the function template specialization produced by template argument
3400  // deduction as a candidate.
3401  assert(Specialization && "Missing member function template specialization?");
3402  assert(isa<CXXMethodDecl>(Specialization) &&
3403         "Specialization is not a member function?");
3404  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
3405                     ActingContext, ObjectType, Args, NumArgs,
3406                     CandidateSet, SuppressUserConversions);
3407}
3408
3409/// \brief Add a C++ function template specialization as a candidate
3410/// in the candidate set, using template argument deduction to produce
3411/// an appropriate function template specialization.
3412void
3413Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
3414                                   DeclAccessPair FoundDecl,
3415                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3416                                   Expr **Args, unsigned NumArgs,
3417                                   OverloadCandidateSet& CandidateSet,
3418                                   bool SuppressUserConversions) {
3419  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3420    return;
3421
3422  // C++ [over.match.funcs]p7:
3423  //   In each case where a candidate is a function template, candidate
3424  //   function template specializations are generated using template argument
3425  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
3426  //   candidate functions in the usual way.113) A given name can refer to one
3427  //   or more function templates and also to a set of overloaded non-template
3428  //   functions. In such a case, the candidate functions generated from each
3429  //   function template are combined with the set of non-template candidate
3430  //   functions.
3431  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3432  FunctionDecl *Specialization = 0;
3433  if (TemplateDeductionResult Result
3434        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
3435                                  Args, NumArgs, Specialization, Info)) {
3436    CandidateSet.push_back(OverloadCandidate());
3437    OverloadCandidate &Candidate = CandidateSet.back();
3438    Candidate.FoundDecl = FoundDecl;
3439    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3440    Candidate.Viable = false;
3441    Candidate.FailureKind = ovl_fail_bad_deduction;
3442    Candidate.IsSurrogate = false;
3443    Candidate.IgnoreObjectArgument = false;
3444    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3445                                                          Info);
3446    return;
3447  }
3448
3449  // Add the function template specialization produced by template argument
3450  // deduction as a candidate.
3451  assert(Specialization && "Missing function template specialization?");
3452  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
3453                       SuppressUserConversions);
3454}
3455
3456/// AddConversionCandidate - Add a C++ conversion function as a
3457/// candidate in the candidate set (C++ [over.match.conv],
3458/// C++ [over.match.copy]). From is the expression we're converting from,
3459/// and ToType is the type that we're eventually trying to convert to
3460/// (which may or may not be the same type as the type that the
3461/// conversion function produces).
3462void
3463Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
3464                             DeclAccessPair FoundDecl,
3465                             CXXRecordDecl *ActingContext,
3466                             Expr *From, QualType ToType,
3467                             OverloadCandidateSet& CandidateSet) {
3468  assert(!Conversion->getDescribedFunctionTemplate() &&
3469         "Conversion function templates use AddTemplateConversionCandidate");
3470  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
3471  if (!CandidateSet.isNewCandidate(Conversion))
3472    return;
3473
3474  // Overload resolution is always an unevaluated context.
3475  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3476
3477  // Add this candidate
3478  CandidateSet.push_back(OverloadCandidate());
3479  OverloadCandidate& Candidate = CandidateSet.back();
3480  Candidate.FoundDecl = FoundDecl;
3481  Candidate.Function = Conversion;
3482  Candidate.IsSurrogate = false;
3483  Candidate.IgnoreObjectArgument = false;
3484  Candidate.FinalConversion.setAsIdentityConversion();
3485  Candidate.FinalConversion.setFromType(ConvType);
3486  Candidate.FinalConversion.setAllToTypes(ToType);
3487
3488  // Determine the implicit conversion sequence for the implicit
3489  // object parameter.
3490  Candidate.Viable = true;
3491  Candidate.Conversions.resize(1);
3492  Candidate.Conversions[0]
3493    = TryObjectArgumentInitialization(From->getType(), Conversion,
3494                                      ActingContext);
3495  // Conversion functions to a different type in the base class is visible in
3496  // the derived class.  So, a derived to base conversion should not participate
3497  // in overload resolution.
3498  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
3499    Candidate.Conversions[0].Standard.Second = ICK_Identity;
3500  if (Candidate.Conversions[0].isBad()) {
3501    Candidate.Viable = false;
3502    Candidate.FailureKind = ovl_fail_bad_conversion;
3503    return;
3504  }
3505
3506  // We won't go through a user-define type conversion function to convert a
3507  // derived to base as such conversions are given Conversion Rank. They only
3508  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
3509  QualType FromCanon
3510    = Context.getCanonicalType(From->getType().getUnqualifiedType());
3511  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
3512  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
3513    Candidate.Viable = false;
3514    Candidate.FailureKind = ovl_fail_trivial_conversion;
3515    return;
3516  }
3517
3518  // To determine what the conversion from the result of calling the
3519  // conversion function to the type we're eventually trying to
3520  // convert to (ToType), we need to synthesize a call to the
3521  // conversion function and attempt copy initialization from it. This
3522  // makes sure that we get the right semantics with respect to
3523  // lvalues/rvalues and the type. Fortunately, we can allocate this
3524  // call on the stack and we don't need its arguments to be
3525  // well-formed.
3526  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
3527                            From->getLocStart());
3528  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
3529                                CastExpr::CK_FunctionToPointerDecay,
3530                                &ConversionRef, CXXBaseSpecifierArray(), false);
3531
3532  // Note that it is safe to allocate CallExpr on the stack here because
3533  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
3534  // allocator).
3535  CallExpr Call(Context, &ConversionFn, 0, 0,
3536                Conversion->getConversionType().getNonReferenceType(),
3537                From->getLocStart());
3538  ImplicitConversionSequence ICS =
3539    TryCopyInitialization(*this, &Call, ToType,
3540                          /*SuppressUserConversions=*/true,
3541                          /*InOverloadResolution=*/false);
3542
3543  switch (ICS.getKind()) {
3544  case ImplicitConversionSequence::StandardConversion:
3545    Candidate.FinalConversion = ICS.Standard;
3546
3547    // C++ [over.ics.user]p3:
3548    //   If the user-defined conversion is specified by a specialization of a
3549    //   conversion function template, the second standard conversion sequence
3550    //   shall have exact match rank.
3551    if (Conversion->getPrimaryTemplate() &&
3552        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
3553      Candidate.Viable = false;
3554      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
3555    }
3556
3557    break;
3558
3559  case ImplicitConversionSequence::BadConversion:
3560    Candidate.Viable = false;
3561    Candidate.FailureKind = ovl_fail_bad_final_conversion;
3562    break;
3563
3564  default:
3565    assert(false &&
3566           "Can only end up with a standard conversion sequence or failure");
3567  }
3568}
3569
3570/// \brief Adds a conversion function template specialization
3571/// candidate to the overload set, using template argument deduction
3572/// to deduce the template arguments of the conversion function
3573/// template from the type that we are converting to (C++
3574/// [temp.deduct.conv]).
3575void
3576Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
3577                                     DeclAccessPair FoundDecl,
3578                                     CXXRecordDecl *ActingDC,
3579                                     Expr *From, QualType ToType,
3580                                     OverloadCandidateSet &CandidateSet) {
3581  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
3582         "Only conversion function templates permitted here");
3583
3584  if (!CandidateSet.isNewCandidate(FunctionTemplate))
3585    return;
3586
3587  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
3588  CXXConversionDecl *Specialization = 0;
3589  if (TemplateDeductionResult Result
3590        = DeduceTemplateArguments(FunctionTemplate, ToType,
3591                                  Specialization, Info)) {
3592    CandidateSet.push_back(OverloadCandidate());
3593    OverloadCandidate &Candidate = CandidateSet.back();
3594    Candidate.FoundDecl = FoundDecl;
3595    Candidate.Function = FunctionTemplate->getTemplatedDecl();
3596    Candidate.Viable = false;
3597    Candidate.FailureKind = ovl_fail_bad_deduction;
3598    Candidate.IsSurrogate = false;
3599    Candidate.IgnoreObjectArgument = false;
3600    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
3601                                                          Info);
3602    return;
3603  }
3604
3605  // Add the conversion function template specialization produced by
3606  // template argument deduction as a candidate.
3607  assert(Specialization && "Missing function template specialization?");
3608  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
3609                         CandidateSet);
3610}
3611
3612/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
3613/// converts the given @c Object to a function pointer via the
3614/// conversion function @c Conversion, and then attempts to call it
3615/// with the given arguments (C++ [over.call.object]p2-4). Proto is
3616/// the type of function that we'll eventually be calling.
3617void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
3618                                 DeclAccessPair FoundDecl,
3619                                 CXXRecordDecl *ActingContext,
3620                                 const FunctionProtoType *Proto,
3621                                 QualType ObjectType,
3622                                 Expr **Args, unsigned NumArgs,
3623                                 OverloadCandidateSet& CandidateSet) {
3624  if (!CandidateSet.isNewCandidate(Conversion))
3625    return;
3626
3627  // Overload resolution is always an unevaluated context.
3628  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3629
3630  CandidateSet.push_back(OverloadCandidate());
3631  OverloadCandidate& Candidate = CandidateSet.back();
3632  Candidate.FoundDecl = FoundDecl;
3633  Candidate.Function = 0;
3634  Candidate.Surrogate = Conversion;
3635  Candidate.Viable = true;
3636  Candidate.IsSurrogate = true;
3637  Candidate.IgnoreObjectArgument = false;
3638  Candidate.Conversions.resize(NumArgs + 1);
3639
3640  // Determine the implicit conversion sequence for the implicit
3641  // object parameter.
3642  ImplicitConversionSequence ObjectInit
3643    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
3644  if (ObjectInit.isBad()) {
3645    Candidate.Viable = false;
3646    Candidate.FailureKind = ovl_fail_bad_conversion;
3647    Candidate.Conversions[0] = ObjectInit;
3648    return;
3649  }
3650
3651  // The first conversion is actually a user-defined conversion whose
3652  // first conversion is ObjectInit's standard conversion (which is
3653  // effectively a reference binding). Record it as such.
3654  Candidate.Conversions[0].setUserDefined();
3655  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
3656  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
3657  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
3658  Candidate.Conversions[0].UserDefined.After
3659    = Candidate.Conversions[0].UserDefined.Before;
3660  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
3661
3662  // Find the
3663  unsigned NumArgsInProto = Proto->getNumArgs();
3664
3665  // (C++ 13.3.2p2): A candidate function having fewer than m
3666  // parameters is viable only if it has an ellipsis in its parameter
3667  // list (8.3.5).
3668  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
3669    Candidate.Viable = false;
3670    Candidate.FailureKind = ovl_fail_too_many_arguments;
3671    return;
3672  }
3673
3674  // Function types don't have any default arguments, so just check if
3675  // we have enough arguments.
3676  if (NumArgs < NumArgsInProto) {
3677    // Not enough arguments.
3678    Candidate.Viable = false;
3679    Candidate.FailureKind = ovl_fail_too_few_arguments;
3680    return;
3681  }
3682
3683  // Determine the implicit conversion sequences for each of the
3684  // arguments.
3685  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3686    if (ArgIdx < NumArgsInProto) {
3687      // (C++ 13.3.2p3): for F to be a viable function, there shall
3688      // exist for each argument an implicit conversion sequence
3689      // (13.3.3.1) that converts that argument to the corresponding
3690      // parameter of F.
3691      QualType ParamType = Proto->getArgType(ArgIdx);
3692      Candidate.Conversions[ArgIdx + 1]
3693        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
3694                                /*SuppressUserConversions=*/false,
3695                                /*InOverloadResolution=*/false);
3696      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
3697        Candidate.Viable = false;
3698        Candidate.FailureKind = ovl_fail_bad_conversion;
3699        break;
3700      }
3701    } else {
3702      // (C++ 13.3.2p2): For the purposes of overload resolution, any
3703      // argument for which there is no corresponding parameter is
3704      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
3705      Candidate.Conversions[ArgIdx + 1].setEllipsis();
3706    }
3707  }
3708}
3709
3710/// \brief Add overload candidates for overloaded operators that are
3711/// member functions.
3712///
3713/// Add the overloaded operator candidates that are member functions
3714/// for the operator Op that was used in an operator expression such
3715/// as "x Op y". , Args/NumArgs provides the operator arguments, and
3716/// CandidateSet will store the added overload candidates. (C++
3717/// [over.match.oper]).
3718void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3719                                       SourceLocation OpLoc,
3720                                       Expr **Args, unsigned NumArgs,
3721                                       OverloadCandidateSet& CandidateSet,
3722                                       SourceRange OpRange) {
3723  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3724
3725  // C++ [over.match.oper]p3:
3726  //   For a unary operator @ with an operand of a type whose
3727  //   cv-unqualified version is T1, and for a binary operator @ with
3728  //   a left operand of a type whose cv-unqualified version is T1 and
3729  //   a right operand of a type whose cv-unqualified version is T2,
3730  //   three sets of candidate functions, designated member
3731  //   candidates, non-member candidates and built-in candidates, are
3732  //   constructed as follows:
3733  QualType T1 = Args[0]->getType();
3734  QualType T2;
3735  if (NumArgs > 1)
3736    T2 = Args[1]->getType();
3737
3738  //     -- If T1 is a class type, the set of member candidates is the
3739  //        result of the qualified lookup of T1::operator@
3740  //        (13.3.1.1.1); otherwise, the set of member candidates is
3741  //        empty.
3742  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3743    // Complete the type if it can be completed. Otherwise, we're done.
3744    if (RequireCompleteType(OpLoc, T1, PDiag()))
3745      return;
3746
3747    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3748    LookupQualifiedName(Operators, T1Rec->getDecl());
3749    Operators.suppressDiagnostics();
3750
3751    for (LookupResult::iterator Oper = Operators.begin(),
3752                             OperEnd = Operators.end();
3753         Oper != OperEnd;
3754         ++Oper)
3755      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
3756                         Args + 1, NumArgs - 1, CandidateSet,
3757                         /* SuppressUserConversions = */ false);
3758  }
3759}
3760
3761/// AddBuiltinCandidate - Add a candidate for a built-in
3762/// operator. ResultTy and ParamTys are the result and parameter types
3763/// of the built-in candidate, respectively. Args and NumArgs are the
3764/// arguments being passed to the candidate. IsAssignmentOperator
3765/// should be true when this built-in candidate is an assignment
3766/// operator. NumContextualBoolArguments is the number of arguments
3767/// (at the beginning of the argument list) that will be contextually
3768/// converted to bool.
3769void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3770                               Expr **Args, unsigned NumArgs,
3771                               OverloadCandidateSet& CandidateSet,
3772                               bool IsAssignmentOperator,
3773                               unsigned NumContextualBoolArguments) {
3774  // Overload resolution is always an unevaluated context.
3775  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3776
3777  // Add this candidate
3778  CandidateSet.push_back(OverloadCandidate());
3779  OverloadCandidate& Candidate = CandidateSet.back();
3780  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
3781  Candidate.Function = 0;
3782  Candidate.IsSurrogate = false;
3783  Candidate.IgnoreObjectArgument = false;
3784  Candidate.BuiltinTypes.ResultTy = ResultTy;
3785  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3786    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3787
3788  // Determine the implicit conversion sequences for each of the
3789  // arguments.
3790  Candidate.Viable = true;
3791  Candidate.Conversions.resize(NumArgs);
3792  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3793    // C++ [over.match.oper]p4:
3794    //   For the built-in assignment operators, conversions of the
3795    //   left operand are restricted as follows:
3796    //     -- no temporaries are introduced to hold the left operand, and
3797    //     -- no user-defined conversions are applied to the left
3798    //        operand to achieve a type match with the left-most
3799    //        parameter of a built-in candidate.
3800    //
3801    // We block these conversions by turning off user-defined
3802    // conversions, since that is the only way that initialization of
3803    // a reference to a non-class type can occur from something that
3804    // is not of the same type.
3805    if (ArgIdx < NumContextualBoolArguments) {
3806      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3807             "Contextual conversion to bool requires bool type");
3808      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3809    } else {
3810      Candidate.Conversions[ArgIdx]
3811        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
3812                                ArgIdx == 0 && IsAssignmentOperator,
3813                                /*InOverloadResolution=*/false);
3814    }
3815    if (Candidate.Conversions[ArgIdx].isBad()) {
3816      Candidate.Viable = false;
3817      Candidate.FailureKind = ovl_fail_bad_conversion;
3818      break;
3819    }
3820  }
3821}
3822
3823/// BuiltinCandidateTypeSet - A set of types that will be used for the
3824/// candidate operator functions for built-in operators (C++
3825/// [over.built]). The types are separated into pointer types and
3826/// enumeration types.
3827class BuiltinCandidateTypeSet  {
3828  /// TypeSet - A set of types.
3829  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3830
3831  /// PointerTypes - The set of pointer types that will be used in the
3832  /// built-in candidates.
3833  TypeSet PointerTypes;
3834
3835  /// MemberPointerTypes - The set of member pointer types that will be
3836  /// used in the built-in candidates.
3837  TypeSet MemberPointerTypes;
3838
3839  /// EnumerationTypes - The set of enumeration types that will be
3840  /// used in the built-in candidates.
3841  TypeSet EnumerationTypes;
3842
3843  /// \brief The set of vector types that will be used in the built-in
3844  /// candidates.
3845  TypeSet VectorTypes;
3846
3847  /// Sema - The semantic analysis instance where we are building the
3848  /// candidate type set.
3849  Sema &SemaRef;
3850
3851  /// Context - The AST context in which we will build the type sets.
3852  ASTContext &Context;
3853
3854  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3855                                               const Qualifiers &VisibleQuals);
3856  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3857
3858public:
3859  /// iterator - Iterates through the types that are part of the set.
3860  typedef TypeSet::iterator iterator;
3861
3862  BuiltinCandidateTypeSet(Sema &SemaRef)
3863    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3864
3865  void AddTypesConvertedFrom(QualType Ty,
3866                             SourceLocation Loc,
3867                             bool AllowUserConversions,
3868                             bool AllowExplicitConversions,
3869                             const Qualifiers &VisibleTypeConversionsQuals);
3870
3871  /// pointer_begin - First pointer type found;
3872  iterator pointer_begin() { return PointerTypes.begin(); }
3873
3874  /// pointer_end - Past the last pointer type found;
3875  iterator pointer_end() { return PointerTypes.end(); }
3876
3877  /// member_pointer_begin - First member pointer type found;
3878  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3879
3880  /// member_pointer_end - Past the last member pointer type found;
3881  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3882
3883  /// enumeration_begin - First enumeration type found;
3884  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3885
3886  /// enumeration_end - Past the last enumeration type found;
3887  iterator enumeration_end() { return EnumerationTypes.end(); }
3888
3889  iterator vector_begin() { return VectorTypes.begin(); }
3890  iterator vector_end() { return VectorTypes.end(); }
3891};
3892
3893/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3894/// the set of pointer types along with any more-qualified variants of
3895/// that type. For example, if @p Ty is "int const *", this routine
3896/// will add "int const *", "int const volatile *", "int const
3897/// restrict *", and "int const volatile restrict *" to the set of
3898/// pointer types. Returns true if the add of @p Ty itself succeeded,
3899/// false otherwise.
3900///
3901/// FIXME: what to do about extended qualifiers?
3902bool
3903BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3904                                             const Qualifiers &VisibleQuals) {
3905
3906  // Insert this type.
3907  if (!PointerTypes.insert(Ty))
3908    return false;
3909
3910  const PointerType *PointerTy = Ty->getAs<PointerType>();
3911  assert(PointerTy && "type was not a pointer type!");
3912
3913  QualType PointeeTy = PointerTy->getPointeeType();
3914  // Don't add qualified variants of arrays. For one, they're not allowed
3915  // (the qualifier would sink to the element type), and for another, the
3916  // only overload situation where it matters is subscript or pointer +- int,
3917  // and those shouldn't have qualifier variants anyway.
3918  if (PointeeTy->isArrayType())
3919    return true;
3920  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3921  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3922    BaseCVR = Array->getElementType().getCVRQualifiers();
3923  bool hasVolatile = VisibleQuals.hasVolatile();
3924  bool hasRestrict = VisibleQuals.hasRestrict();
3925
3926  // Iterate through all strict supersets of BaseCVR.
3927  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3928    if ((CVR | BaseCVR) != CVR) continue;
3929    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3930    // in the types.
3931    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3932    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3933    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3934    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3935  }
3936
3937  return true;
3938}
3939
3940/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3941/// to the set of pointer types along with any more-qualified variants of
3942/// that type. For example, if @p Ty is "int const *", this routine
3943/// will add "int const *", "int const volatile *", "int const
3944/// restrict *", and "int const volatile restrict *" to the set of
3945/// pointer types. Returns true if the add of @p Ty itself succeeded,
3946/// false otherwise.
3947///
3948/// FIXME: what to do about extended qualifiers?
3949bool
3950BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3951    QualType Ty) {
3952  // Insert this type.
3953  if (!MemberPointerTypes.insert(Ty))
3954    return false;
3955
3956  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3957  assert(PointerTy && "type was not a member pointer type!");
3958
3959  QualType PointeeTy = PointerTy->getPointeeType();
3960  // Don't add qualified variants of arrays. For one, they're not allowed
3961  // (the qualifier would sink to the element type), and for another, the
3962  // only overload situation where it matters is subscript or pointer +- int,
3963  // and those shouldn't have qualifier variants anyway.
3964  if (PointeeTy->isArrayType())
3965    return true;
3966  const Type *ClassTy = PointerTy->getClass();
3967
3968  // Iterate through all strict supersets of the pointee type's CVR
3969  // qualifiers.
3970  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3971  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3972    if ((CVR | BaseCVR) != CVR) continue;
3973
3974    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3975    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3976  }
3977
3978  return true;
3979}
3980
3981/// AddTypesConvertedFrom - Add each of the types to which the type @p
3982/// Ty can be implicit converted to the given set of @p Types. We're
3983/// primarily interested in pointer types and enumeration types. We also
3984/// take member pointer types, for the conditional operator.
3985/// AllowUserConversions is true if we should look at the conversion
3986/// functions of a class type, and AllowExplicitConversions if we
3987/// should also include the explicit conversion functions of a class
3988/// type.
3989void
3990BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3991                                               SourceLocation Loc,
3992                                               bool AllowUserConversions,
3993                                               bool AllowExplicitConversions,
3994                                               const Qualifiers &VisibleQuals) {
3995  // Only deal with canonical types.
3996  Ty = Context.getCanonicalType(Ty);
3997
3998  // Look through reference types; they aren't part of the type of an
3999  // expression for the purposes of conversions.
4000  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
4001    Ty = RefTy->getPointeeType();
4002
4003  // We don't care about qualifiers on the type.
4004  Ty = Ty.getLocalUnqualifiedType();
4005
4006  // If we're dealing with an array type, decay to the pointer.
4007  if (Ty->isArrayType())
4008    Ty = SemaRef.Context.getArrayDecayedType(Ty);
4009
4010  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
4011    QualType PointeeTy = PointerTy->getPointeeType();
4012
4013    // Insert our type, and its more-qualified variants, into the set
4014    // of types.
4015    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
4016      return;
4017  } else if (Ty->isMemberPointerType()) {
4018    // Member pointers are far easier, since the pointee can't be converted.
4019    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
4020      return;
4021  } else if (Ty->isEnumeralType()) {
4022    EnumerationTypes.insert(Ty);
4023  } else if (Ty->isVectorType()) {
4024    VectorTypes.insert(Ty);
4025  } else if (AllowUserConversions) {
4026    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
4027      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
4028        // No conversion functions in incomplete types.
4029        return;
4030      }
4031
4032      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4033      const UnresolvedSetImpl *Conversions
4034        = ClassDecl->getVisibleConversionFunctions();
4035      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4036             E = Conversions->end(); I != E; ++I) {
4037        NamedDecl *D = I.getDecl();
4038        if (isa<UsingShadowDecl>(D))
4039          D = cast<UsingShadowDecl>(D)->getTargetDecl();
4040
4041        // Skip conversion function templates; they don't tell us anything
4042        // about which builtin types we can convert to.
4043        if (isa<FunctionTemplateDecl>(D))
4044          continue;
4045
4046        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
4047        if (AllowExplicitConversions || !Conv->isExplicit()) {
4048          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
4049                                VisibleQuals);
4050        }
4051      }
4052    }
4053  }
4054}
4055
4056/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
4057/// the volatile- and non-volatile-qualified assignment operators for the
4058/// given type to the candidate set.
4059static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
4060                                                   QualType T,
4061                                                   Expr **Args,
4062                                                   unsigned NumArgs,
4063                                    OverloadCandidateSet &CandidateSet) {
4064  QualType ParamTypes[2];
4065
4066  // T& operator=(T&, T)
4067  ParamTypes[0] = S.Context.getLValueReferenceType(T);
4068  ParamTypes[1] = T;
4069  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4070                        /*IsAssignmentOperator=*/true);
4071
4072  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
4073    // volatile T& operator=(volatile T&, T)
4074    ParamTypes[0]
4075      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
4076    ParamTypes[1] = T;
4077    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4078                          /*IsAssignmentOperator=*/true);
4079  }
4080}
4081
4082/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
4083/// if any, found in visible type conversion functions found in ArgExpr's type.
4084static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
4085    Qualifiers VRQuals;
4086    const RecordType *TyRec;
4087    if (const MemberPointerType *RHSMPType =
4088        ArgExpr->getType()->getAs<MemberPointerType>())
4089      TyRec = RHSMPType->getClass()->getAs<RecordType>();
4090    else
4091      TyRec = ArgExpr->getType()->getAs<RecordType>();
4092    if (!TyRec) {
4093      // Just to be safe, assume the worst case.
4094      VRQuals.addVolatile();
4095      VRQuals.addRestrict();
4096      return VRQuals;
4097    }
4098
4099    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
4100    if (!ClassDecl->hasDefinition())
4101      return VRQuals;
4102
4103    const UnresolvedSetImpl *Conversions =
4104      ClassDecl->getVisibleConversionFunctions();
4105
4106    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4107           E = Conversions->end(); I != E; ++I) {
4108      NamedDecl *D = I.getDecl();
4109      if (isa<UsingShadowDecl>(D))
4110        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4111      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
4112        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
4113        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
4114          CanTy = ResTypeRef->getPointeeType();
4115        // Need to go down the pointer/mempointer chain and add qualifiers
4116        // as see them.
4117        bool done = false;
4118        while (!done) {
4119          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
4120            CanTy = ResTypePtr->getPointeeType();
4121          else if (const MemberPointerType *ResTypeMPtr =
4122                CanTy->getAs<MemberPointerType>())
4123            CanTy = ResTypeMPtr->getPointeeType();
4124          else
4125            done = true;
4126          if (CanTy.isVolatileQualified())
4127            VRQuals.addVolatile();
4128          if (CanTy.isRestrictQualified())
4129            VRQuals.addRestrict();
4130          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
4131            return VRQuals;
4132        }
4133      }
4134    }
4135    return VRQuals;
4136}
4137
4138/// AddBuiltinOperatorCandidates - Add the appropriate built-in
4139/// operator overloads to the candidate set (C++ [over.built]), based
4140/// on the operator @p Op and the arguments given. For example, if the
4141/// operator is a binary '+', this routine might add "int
4142/// operator+(int, int)" to cover integer addition.
4143void
4144Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
4145                                   SourceLocation OpLoc,
4146                                   Expr **Args, unsigned NumArgs,
4147                                   OverloadCandidateSet& CandidateSet) {
4148  // The set of "promoted arithmetic types", which are the arithmetic
4149  // types are that preserved by promotion (C++ [over.built]p2). Note
4150  // that the first few of these types are the promoted integral
4151  // types; these types need to be first.
4152  // FIXME: What about complex?
4153  const unsigned FirstIntegralType = 0;
4154  const unsigned LastIntegralType = 13;
4155  const unsigned FirstPromotedIntegralType = 7,
4156                 LastPromotedIntegralType = 13;
4157  const unsigned FirstPromotedArithmeticType = 7,
4158                 LastPromotedArithmeticType = 16;
4159  const unsigned NumArithmeticTypes = 16;
4160  QualType ArithmeticTypes[NumArithmeticTypes] = {
4161    Context.BoolTy, Context.CharTy, Context.WCharTy,
4162// FIXME:   Context.Char16Ty, Context.Char32Ty,
4163    Context.SignedCharTy, Context.ShortTy,
4164    Context.UnsignedCharTy, Context.UnsignedShortTy,
4165    Context.IntTy, Context.LongTy, Context.LongLongTy,
4166    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
4167    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
4168  };
4169  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
4170         "Invalid first promoted integral type");
4171  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
4172           == Context.UnsignedLongLongTy &&
4173         "Invalid last promoted integral type");
4174  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
4175         "Invalid first promoted arithmetic type");
4176  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
4177            == Context.LongDoubleTy &&
4178         "Invalid last promoted arithmetic type");
4179
4180  // Find all of the types that the arguments can convert to, but only
4181  // if the operator we're looking at has built-in operator candidates
4182  // that make use of these types.
4183  Qualifiers VisibleTypeConversionsQuals;
4184  VisibleTypeConversionsQuals.addConst();
4185  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4186    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
4187
4188  BuiltinCandidateTypeSet CandidateTypes(*this);
4189  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4190    CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
4191                                         OpLoc,
4192                                         true,
4193                                         (Op == OO_Exclaim ||
4194                                          Op == OO_AmpAmp ||
4195                                          Op == OO_PipePipe),
4196                                         VisibleTypeConversionsQuals);
4197
4198  bool isComparison = false;
4199  switch (Op) {
4200  case OO_None:
4201  case NUM_OVERLOADED_OPERATORS:
4202    assert(false && "Expected an overloaded operator");
4203    break;
4204
4205  case OO_Star: // '*' is either unary or binary
4206    if (NumArgs == 1)
4207      goto UnaryStar;
4208    else
4209      goto BinaryStar;
4210    break;
4211
4212  case OO_Plus: // '+' is either unary or binary
4213    if (NumArgs == 1)
4214      goto UnaryPlus;
4215    else
4216      goto BinaryPlus;
4217    break;
4218
4219  case OO_Minus: // '-' is either unary or binary
4220    if (NumArgs == 1)
4221      goto UnaryMinus;
4222    else
4223      goto BinaryMinus;
4224    break;
4225
4226  case OO_Amp: // '&' is either unary or binary
4227    if (NumArgs == 1)
4228      goto UnaryAmp;
4229    else
4230      goto BinaryAmp;
4231
4232  case OO_PlusPlus:
4233  case OO_MinusMinus:
4234    // C++ [over.built]p3:
4235    //
4236    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
4237    //   is either volatile or empty, there exist candidate operator
4238    //   functions of the form
4239    //
4240    //       VQ T&      operator++(VQ T&);
4241    //       T          operator++(VQ T&, int);
4242    //
4243    // C++ [over.built]p4:
4244    //
4245    //   For every pair (T, VQ), where T is an arithmetic type other
4246    //   than bool, and VQ is either volatile or empty, there exist
4247    //   candidate operator functions of the form
4248    //
4249    //       VQ T&      operator--(VQ T&);
4250    //       T          operator--(VQ T&, int);
4251    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
4252         Arith < NumArithmeticTypes; ++Arith) {
4253      QualType ArithTy = ArithmeticTypes[Arith];
4254      QualType ParamTypes[2]
4255        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
4256
4257      // Non-volatile version.
4258      if (NumArgs == 1)
4259        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4260      else
4261        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4262      // heuristic to reduce number of builtin candidates in the set.
4263      // Add volatile version only if there are conversions to a volatile type.
4264      if (VisibleTypeConversionsQuals.hasVolatile()) {
4265        // Volatile version
4266        ParamTypes[0]
4267          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
4268        if (NumArgs == 1)
4269          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4270        else
4271          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
4272      }
4273    }
4274
4275    // C++ [over.built]p5:
4276    //
4277    //   For every pair (T, VQ), where T is a cv-qualified or
4278    //   cv-unqualified object type, and VQ is either volatile or
4279    //   empty, there exist candidate operator functions of the form
4280    //
4281    //       T*VQ&      operator++(T*VQ&);
4282    //       T*VQ&      operator--(T*VQ&);
4283    //       T*         operator++(T*VQ&, int);
4284    //       T*         operator--(T*VQ&, int);
4285    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4286         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4287      // Skip pointer types that aren't pointers to object types.
4288      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
4289        continue;
4290
4291      QualType ParamTypes[2] = {
4292        Context.getLValueReferenceType(*Ptr), Context.IntTy
4293      };
4294
4295      // Without volatile
4296      if (NumArgs == 1)
4297        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4298      else
4299        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4300
4301      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4302          VisibleTypeConversionsQuals.hasVolatile()) {
4303        // With volatile
4304        ParamTypes[0]
4305          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4306        if (NumArgs == 1)
4307          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
4308        else
4309          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4310      }
4311    }
4312    break;
4313
4314  UnaryStar:
4315    // C++ [over.built]p6:
4316    //   For every cv-qualified or cv-unqualified object type T, there
4317    //   exist candidate operator functions of the form
4318    //
4319    //       T&         operator*(T*);
4320    //
4321    // C++ [over.built]p7:
4322    //   For every function type T, there exist candidate operator
4323    //   functions of the form
4324    //       T&         operator*(T*);
4325    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4326         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4327      QualType ParamTy = *Ptr;
4328      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
4329      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
4330                          &ParamTy, Args, 1, CandidateSet);
4331    }
4332    break;
4333
4334  UnaryPlus:
4335    // C++ [over.built]p8:
4336    //   For every type T, there exist candidate operator functions of
4337    //   the form
4338    //
4339    //       T*         operator+(T*);
4340    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4341         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4342      QualType ParamTy = *Ptr;
4343      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
4344    }
4345
4346    // Fall through
4347
4348  UnaryMinus:
4349    // C++ [over.built]p9:
4350    //  For every promoted arithmetic type T, there exist candidate
4351    //  operator functions of the form
4352    //
4353    //       T         operator+(T);
4354    //       T         operator-(T);
4355    for (unsigned Arith = FirstPromotedArithmeticType;
4356         Arith < LastPromotedArithmeticType; ++Arith) {
4357      QualType ArithTy = ArithmeticTypes[Arith];
4358      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
4359    }
4360
4361    // Extension: We also add these operators for vector types.
4362    for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(),
4363                                        VecEnd = CandidateTypes.vector_end();
4364         Vec != VecEnd; ++Vec) {
4365      QualType VecTy = *Vec;
4366      AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
4367    }
4368    break;
4369
4370  case OO_Tilde:
4371    // C++ [over.built]p10:
4372    //   For every promoted integral type T, there exist candidate
4373    //   operator functions of the form
4374    //
4375    //        T         operator~(T);
4376    for (unsigned Int = FirstPromotedIntegralType;
4377         Int < LastPromotedIntegralType; ++Int) {
4378      QualType IntTy = ArithmeticTypes[Int];
4379      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
4380    }
4381
4382    // Extension: We also add this operator for vector types.
4383    for (BuiltinCandidateTypeSet::iterator Vec = CandidateTypes.vector_begin(),
4384                                        VecEnd = CandidateTypes.vector_end();
4385         Vec != VecEnd; ++Vec) {
4386      QualType VecTy = *Vec;
4387      AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
4388    }
4389    break;
4390
4391  case OO_New:
4392  case OO_Delete:
4393  case OO_Array_New:
4394  case OO_Array_Delete:
4395  case OO_Call:
4396    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
4397    break;
4398
4399  case OO_Comma:
4400  UnaryAmp:
4401  case OO_Arrow:
4402    // C++ [over.match.oper]p3:
4403    //   -- For the operator ',', the unary operator '&', or the
4404    //      operator '->', the built-in candidates set is empty.
4405    break;
4406
4407  case OO_EqualEqual:
4408  case OO_ExclaimEqual:
4409    // C++ [over.match.oper]p16:
4410    //   For every pointer to member type T, there exist candidate operator
4411    //   functions of the form
4412    //
4413    //        bool operator==(T,T);
4414    //        bool operator!=(T,T);
4415    for (BuiltinCandidateTypeSet::iterator
4416           MemPtr = CandidateTypes.member_pointer_begin(),
4417           MemPtrEnd = CandidateTypes.member_pointer_end();
4418         MemPtr != MemPtrEnd;
4419         ++MemPtr) {
4420      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
4421      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4422    }
4423
4424    // Fall through
4425
4426  case OO_Less:
4427  case OO_Greater:
4428  case OO_LessEqual:
4429  case OO_GreaterEqual:
4430    // C++ [over.built]p15:
4431    //
4432    //   For every pointer or enumeration type T, there exist
4433    //   candidate operator functions of the form
4434    //
4435    //        bool       operator<(T, T);
4436    //        bool       operator>(T, T);
4437    //        bool       operator<=(T, T);
4438    //        bool       operator>=(T, T);
4439    //        bool       operator==(T, T);
4440    //        bool       operator!=(T, T);
4441    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4442         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4443      QualType ParamTypes[2] = { *Ptr, *Ptr };
4444      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4445    }
4446    for (BuiltinCandidateTypeSet::iterator Enum
4447           = CandidateTypes.enumeration_begin();
4448         Enum != CandidateTypes.enumeration_end(); ++Enum) {
4449      QualType ParamTypes[2] = { *Enum, *Enum };
4450      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
4451    }
4452
4453    // Fall through.
4454    isComparison = true;
4455
4456  BinaryPlus:
4457  BinaryMinus:
4458    if (!isComparison) {
4459      // We didn't fall through, so we must have OO_Plus or OO_Minus.
4460
4461      // C++ [over.built]p13:
4462      //
4463      //   For every cv-qualified or cv-unqualified object type T
4464      //   there exist candidate operator functions of the form
4465      //
4466      //      T*         operator+(T*, ptrdiff_t);
4467      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
4468      //      T*         operator-(T*, ptrdiff_t);
4469      //      T*         operator+(ptrdiff_t, T*);
4470      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
4471      //
4472      // C++ [over.built]p14:
4473      //
4474      //   For every T, where T is a pointer to object type, there
4475      //   exist candidate operator functions of the form
4476      //
4477      //      ptrdiff_t  operator-(T, T);
4478      for (BuiltinCandidateTypeSet::iterator Ptr
4479             = CandidateTypes.pointer_begin();
4480           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4481        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4482
4483        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
4484        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4485
4486        if (Op == OO_Plus) {
4487          // T* operator+(ptrdiff_t, T*);
4488          ParamTypes[0] = ParamTypes[1];
4489          ParamTypes[1] = *Ptr;
4490          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4491        } else {
4492          // ptrdiff_t operator-(T, T);
4493          ParamTypes[1] = *Ptr;
4494          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
4495                              Args, 2, CandidateSet);
4496        }
4497      }
4498    }
4499    // Fall through
4500
4501  case OO_Slash:
4502  BinaryStar:
4503  Conditional:
4504    // C++ [over.built]p12:
4505    //
4506    //   For every pair of promoted arithmetic types L and R, there
4507    //   exist candidate operator functions of the form
4508    //
4509    //        LR         operator*(L, R);
4510    //        LR         operator/(L, R);
4511    //        LR         operator+(L, R);
4512    //        LR         operator-(L, R);
4513    //        bool       operator<(L, R);
4514    //        bool       operator>(L, R);
4515    //        bool       operator<=(L, R);
4516    //        bool       operator>=(L, R);
4517    //        bool       operator==(L, R);
4518    //        bool       operator!=(L, R);
4519    //
4520    //   where LR is the result of the usual arithmetic conversions
4521    //   between types L and R.
4522    //
4523    // C++ [over.built]p24:
4524    //
4525    //   For every pair of promoted arithmetic types L and R, there exist
4526    //   candidate operator functions of the form
4527    //
4528    //        LR       operator?(bool, L, R);
4529    //
4530    //   where LR is the result of the usual arithmetic conversions
4531    //   between types L and R.
4532    // Our candidates ignore the first parameter.
4533    for (unsigned Left = FirstPromotedArithmeticType;
4534         Left < LastPromotedArithmeticType; ++Left) {
4535      for (unsigned Right = FirstPromotedArithmeticType;
4536           Right < LastPromotedArithmeticType; ++Right) {
4537        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4538        QualType Result
4539          = isComparison
4540          ? Context.BoolTy
4541          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4542        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4543      }
4544    }
4545
4546    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
4547    // conditional operator for vector types.
4548    for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(),
4549         Vec1End = CandidateTypes.vector_end();
4550         Vec1 != Vec1End; ++Vec1)
4551      for (BuiltinCandidateTypeSet::iterator
4552           Vec2 = CandidateTypes.vector_begin(),
4553           Vec2End = CandidateTypes.vector_end();
4554           Vec2 != Vec2End; ++Vec2) {
4555        QualType LandR[2] = { *Vec1, *Vec2 };
4556        QualType Result;
4557        if (isComparison)
4558          Result = Context.BoolTy;
4559        else {
4560          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
4561            Result = *Vec1;
4562          else
4563            Result = *Vec2;
4564        }
4565
4566        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4567      }
4568
4569    break;
4570
4571  case OO_Percent:
4572  BinaryAmp:
4573  case OO_Caret:
4574  case OO_Pipe:
4575  case OO_LessLess:
4576  case OO_GreaterGreater:
4577    // C++ [over.built]p17:
4578    //
4579    //   For every pair of promoted integral types L and R, there
4580    //   exist candidate operator functions of the form
4581    //
4582    //      LR         operator%(L, R);
4583    //      LR         operator&(L, R);
4584    //      LR         operator^(L, R);
4585    //      LR         operator|(L, R);
4586    //      L          operator<<(L, R);
4587    //      L          operator>>(L, R);
4588    //
4589    //   where LR is the result of the usual arithmetic conversions
4590    //   between types L and R.
4591    for (unsigned Left = FirstPromotedIntegralType;
4592         Left < LastPromotedIntegralType; ++Left) {
4593      for (unsigned Right = FirstPromotedIntegralType;
4594           Right < LastPromotedIntegralType; ++Right) {
4595        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
4596        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
4597            ? LandR[0]
4598            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
4599        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
4600      }
4601    }
4602    break;
4603
4604  case OO_Equal:
4605    // C++ [over.built]p20:
4606    //
4607    //   For every pair (T, VQ), where T is an enumeration or
4608    //   pointer to member type and VQ is either volatile or
4609    //   empty, there exist candidate operator functions of the form
4610    //
4611    //        VQ T&      operator=(VQ T&, T);
4612    for (BuiltinCandidateTypeSet::iterator
4613           Enum = CandidateTypes.enumeration_begin(),
4614           EnumEnd = CandidateTypes.enumeration_end();
4615         Enum != EnumEnd; ++Enum)
4616      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
4617                                             CandidateSet);
4618    for (BuiltinCandidateTypeSet::iterator
4619           MemPtr = CandidateTypes.member_pointer_begin(),
4620         MemPtrEnd = CandidateTypes.member_pointer_end();
4621         MemPtr != MemPtrEnd; ++MemPtr)
4622      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
4623                                             CandidateSet);
4624
4625    // Fall through.
4626
4627  case OO_PlusEqual:
4628  case OO_MinusEqual:
4629    // C++ [over.built]p19:
4630    //
4631    //   For every pair (T, VQ), where T is any type and VQ is either
4632    //   volatile or empty, there exist candidate operator functions
4633    //   of the form
4634    //
4635    //        T*VQ&      operator=(T*VQ&, T*);
4636    //
4637    // C++ [over.built]p21:
4638    //
4639    //   For every pair (T, VQ), where T is a cv-qualified or
4640    //   cv-unqualified object type and VQ is either volatile or
4641    //   empty, there exist candidate operator functions of the form
4642    //
4643    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
4644    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
4645    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4646         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4647      QualType ParamTypes[2];
4648      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
4649
4650      // non-volatile version
4651      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
4652      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4653                          /*IsAssigmentOperator=*/Op == OO_Equal);
4654
4655      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
4656          VisibleTypeConversionsQuals.hasVolatile()) {
4657        // volatile version
4658        ParamTypes[0]
4659          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
4660        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4661                            /*IsAssigmentOperator=*/Op == OO_Equal);
4662      }
4663    }
4664    // Fall through.
4665
4666  case OO_StarEqual:
4667  case OO_SlashEqual:
4668    // C++ [over.built]p18:
4669    //
4670    //   For every triple (L, VQ, R), where L is an arithmetic type,
4671    //   VQ is either volatile or empty, and R is a promoted
4672    //   arithmetic type, there exist candidate operator functions of
4673    //   the form
4674    //
4675    //        VQ L&      operator=(VQ L&, R);
4676    //        VQ L&      operator*=(VQ L&, R);
4677    //        VQ L&      operator/=(VQ L&, R);
4678    //        VQ L&      operator+=(VQ L&, R);
4679    //        VQ L&      operator-=(VQ L&, R);
4680    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
4681      for (unsigned Right = FirstPromotedArithmeticType;
4682           Right < LastPromotedArithmeticType; ++Right) {
4683        QualType ParamTypes[2];
4684        ParamTypes[1] = ArithmeticTypes[Right];
4685
4686        // Add this built-in operator as a candidate (VQ is empty).
4687        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4688        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4689                            /*IsAssigmentOperator=*/Op == OO_Equal);
4690
4691        // Add this built-in operator as a candidate (VQ is 'volatile').
4692        if (VisibleTypeConversionsQuals.hasVolatile()) {
4693          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
4694          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4695          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4696                              /*IsAssigmentOperator=*/Op == OO_Equal);
4697        }
4698      }
4699    }
4700
4701    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
4702    for (BuiltinCandidateTypeSet::iterator Vec1 = CandidateTypes.vector_begin(),
4703                                        Vec1End = CandidateTypes.vector_end();
4704         Vec1 != Vec1End; ++Vec1)
4705      for (BuiltinCandidateTypeSet::iterator
4706                Vec2 = CandidateTypes.vector_begin(),
4707             Vec2End = CandidateTypes.vector_end();
4708           Vec2 != Vec2End; ++Vec2) {
4709        QualType ParamTypes[2];
4710        ParamTypes[1] = *Vec2;
4711        // Add this built-in operator as a candidate (VQ is empty).
4712        ParamTypes[0] = Context.getLValueReferenceType(*Vec1);
4713        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4714                            /*IsAssigmentOperator=*/Op == OO_Equal);
4715
4716        // Add this built-in operator as a candidate (VQ is 'volatile').
4717        if (VisibleTypeConversionsQuals.hasVolatile()) {
4718          ParamTypes[0] = Context.getVolatileType(*Vec1);
4719          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4720          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
4721                              /*IsAssigmentOperator=*/Op == OO_Equal);
4722        }
4723      }
4724    break;
4725
4726  case OO_PercentEqual:
4727  case OO_LessLessEqual:
4728  case OO_GreaterGreaterEqual:
4729  case OO_AmpEqual:
4730  case OO_CaretEqual:
4731  case OO_PipeEqual:
4732    // C++ [over.built]p22:
4733    //
4734    //   For every triple (L, VQ, R), where L is an integral type, VQ
4735    //   is either volatile or empty, and R is a promoted integral
4736    //   type, there exist candidate operator functions of the form
4737    //
4738    //        VQ L&       operator%=(VQ L&, R);
4739    //        VQ L&       operator<<=(VQ L&, R);
4740    //        VQ L&       operator>>=(VQ L&, R);
4741    //        VQ L&       operator&=(VQ L&, R);
4742    //        VQ L&       operator^=(VQ L&, R);
4743    //        VQ L&       operator|=(VQ L&, R);
4744    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
4745      for (unsigned Right = FirstPromotedIntegralType;
4746           Right < LastPromotedIntegralType; ++Right) {
4747        QualType ParamTypes[2];
4748        ParamTypes[1] = ArithmeticTypes[Right];
4749
4750        // Add this built-in operator as a candidate (VQ is empty).
4751        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
4752        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4753        if (VisibleTypeConversionsQuals.hasVolatile()) {
4754          // Add this built-in operator as a candidate (VQ is 'volatile').
4755          ParamTypes[0] = ArithmeticTypes[Left];
4756          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
4757          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
4758          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
4759        }
4760      }
4761    }
4762    break;
4763
4764  case OO_Exclaim: {
4765    // C++ [over.operator]p23:
4766    //
4767    //   There also exist candidate operator functions of the form
4768    //
4769    //        bool        operator!(bool);
4770    //        bool        operator&&(bool, bool);     [BELOW]
4771    //        bool        operator||(bool, bool);     [BELOW]
4772    QualType ParamTy = Context.BoolTy;
4773    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
4774                        /*IsAssignmentOperator=*/false,
4775                        /*NumContextualBoolArguments=*/1);
4776    break;
4777  }
4778
4779  case OO_AmpAmp:
4780  case OO_PipePipe: {
4781    // C++ [over.operator]p23:
4782    //
4783    //   There also exist candidate operator functions of the form
4784    //
4785    //        bool        operator!(bool);            [ABOVE]
4786    //        bool        operator&&(bool, bool);
4787    //        bool        operator||(bool, bool);
4788    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
4789    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
4790                        /*IsAssignmentOperator=*/false,
4791                        /*NumContextualBoolArguments=*/2);
4792    break;
4793  }
4794
4795  case OO_Subscript:
4796    // C++ [over.built]p13:
4797    //
4798    //   For every cv-qualified or cv-unqualified object type T there
4799    //   exist candidate operator functions of the form
4800    //
4801    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4802    //        T&         operator[](T*, ptrdiff_t);
4803    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4804    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4805    //        T&         operator[](ptrdiff_t, T*);
4806    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4807         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4808      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4809      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4810      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4811
4812      // T& operator[](T*, ptrdiff_t)
4813      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4814
4815      // T& operator[](ptrdiff_t, T*);
4816      ParamTypes[0] = ParamTypes[1];
4817      ParamTypes[1] = *Ptr;
4818      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4819    }
4820    break;
4821
4822  case OO_ArrowStar:
4823    // C++ [over.built]p11:
4824    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4825    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4826    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4827    //    there exist candidate operator functions of the form
4828    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4829    //    where CV12 is the union of CV1 and CV2.
4830    {
4831      for (BuiltinCandidateTypeSet::iterator Ptr =
4832             CandidateTypes.pointer_begin();
4833           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4834        QualType C1Ty = (*Ptr);
4835        QualType C1;
4836        QualifierCollector Q1;
4837        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4838          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4839          if (!isa<RecordType>(C1))
4840            continue;
4841          // heuristic to reduce number of builtin candidates in the set.
4842          // Add volatile/restrict version only if there are conversions to a
4843          // volatile/restrict type.
4844          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4845            continue;
4846          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4847            continue;
4848        }
4849        for (BuiltinCandidateTypeSet::iterator
4850             MemPtr = CandidateTypes.member_pointer_begin(),
4851             MemPtrEnd = CandidateTypes.member_pointer_end();
4852             MemPtr != MemPtrEnd; ++MemPtr) {
4853          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4854          QualType C2 = QualType(mptr->getClass(), 0);
4855          C2 = C2.getUnqualifiedType();
4856          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4857            break;
4858          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4859          // build CV12 T&
4860          QualType T = mptr->getPointeeType();
4861          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4862              T.isVolatileQualified())
4863            continue;
4864          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4865              T.isRestrictQualified())
4866            continue;
4867          T = Q1.apply(T);
4868          QualType ResultTy = Context.getLValueReferenceType(T);
4869          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4870        }
4871      }
4872    }
4873    break;
4874
4875  case OO_Conditional:
4876    // Note that we don't consider the first argument, since it has been
4877    // contextually converted to bool long ago. The candidates below are
4878    // therefore added as binary.
4879    //
4880    // C++ [over.built]p24:
4881    //   For every type T, where T is a pointer or pointer-to-member type,
4882    //   there exist candidate operator functions of the form
4883    //
4884    //        T        operator?(bool, T, T);
4885    //
4886    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4887         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4888      QualType ParamTypes[2] = { *Ptr, *Ptr };
4889      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4890    }
4891    for (BuiltinCandidateTypeSet::iterator Ptr =
4892           CandidateTypes.member_pointer_begin(),
4893         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4894      QualType ParamTypes[2] = { *Ptr, *Ptr };
4895      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4896    }
4897    goto Conditional;
4898  }
4899}
4900
4901/// \brief Add function candidates found via argument-dependent lookup
4902/// to the set of overloading candidates.
4903///
4904/// This routine performs argument-dependent name lookup based on the
4905/// given function name (which may also be an operator name) and adds
4906/// all of the overload candidates found by ADL to the overload
4907/// candidate set (C++ [basic.lookup.argdep]).
4908void
4909Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4910                                           bool Operator,
4911                                           Expr **Args, unsigned NumArgs,
4912                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4913                                           OverloadCandidateSet& CandidateSet,
4914                                           bool PartialOverloading) {
4915  ADLResult Fns;
4916
4917  // FIXME: This approach for uniquing ADL results (and removing
4918  // redundant candidates from the set) relies on pointer-equality,
4919  // which means we need to key off the canonical decl.  However,
4920  // always going back to the canonical decl might not get us the
4921  // right set of default arguments.  What default arguments are
4922  // we supposed to consider on ADL candidates, anyway?
4923
4924  // FIXME: Pass in the explicit template arguments?
4925  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns);
4926
4927  // Erase all of the candidates we already knew about.
4928  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4929                                   CandEnd = CandidateSet.end();
4930       Cand != CandEnd; ++Cand)
4931    if (Cand->Function) {
4932      Fns.erase(Cand->Function);
4933      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4934        Fns.erase(FunTmpl);
4935    }
4936
4937  // For each of the ADL candidates we found, add it to the overload
4938  // set.
4939  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
4940    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
4941    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
4942      if (ExplicitTemplateArgs)
4943        continue;
4944
4945      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
4946                           false, PartialOverloading);
4947    } else
4948      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
4949                                   FoundDecl, ExplicitTemplateArgs,
4950                                   Args, NumArgs, CandidateSet);
4951  }
4952}
4953
4954/// isBetterOverloadCandidate - Determines whether the first overload
4955/// candidate is a better candidate than the second (C++ 13.3.3p1).
4956bool
4957Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4958                                const OverloadCandidate& Cand2,
4959                                SourceLocation Loc) {
4960  // Define viable functions to be better candidates than non-viable
4961  // functions.
4962  if (!Cand2.Viable)
4963    return Cand1.Viable;
4964  else if (!Cand1.Viable)
4965    return false;
4966
4967  // C++ [over.match.best]p1:
4968  //
4969  //   -- if F is a static member function, ICS1(F) is defined such
4970  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4971  //      any function G, and, symmetrically, ICS1(G) is neither
4972  //      better nor worse than ICS1(F).
4973  unsigned StartArg = 0;
4974  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4975    StartArg = 1;
4976
4977  // C++ [over.match.best]p1:
4978  //   A viable function F1 is defined to be a better function than another
4979  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4980  //   conversion sequence than ICSi(F2), and then...
4981  unsigned NumArgs = Cand1.Conversions.size();
4982  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4983  bool HasBetterConversion = false;
4984  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4985    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4986                                               Cand2.Conversions[ArgIdx])) {
4987    case ImplicitConversionSequence::Better:
4988      // Cand1 has a better conversion sequence.
4989      HasBetterConversion = true;
4990      break;
4991
4992    case ImplicitConversionSequence::Worse:
4993      // Cand1 can't be better than Cand2.
4994      return false;
4995
4996    case ImplicitConversionSequence::Indistinguishable:
4997      // Do nothing.
4998      break;
4999    }
5000  }
5001
5002  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
5003  //       ICSj(F2), or, if not that,
5004  if (HasBetterConversion)
5005    return true;
5006
5007  //     - F1 is a non-template function and F2 is a function template
5008  //       specialization, or, if not that,
5009  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
5010      Cand2.Function && Cand2.Function->getPrimaryTemplate())
5011    return true;
5012
5013  //   -- F1 and F2 are function template specializations, and the function
5014  //      template for F1 is more specialized than the template for F2
5015  //      according to the partial ordering rules described in 14.5.5.2, or,
5016  //      if not that,
5017  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
5018      Cand2.Function && Cand2.Function->getPrimaryTemplate())
5019    if (FunctionTemplateDecl *BetterTemplate
5020          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
5021                                       Cand2.Function->getPrimaryTemplate(),
5022                                       Loc,
5023                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
5024                                                             : TPOC_Call))
5025      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
5026
5027  //   -- the context is an initialization by user-defined conversion
5028  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
5029  //      from the return type of F1 to the destination type (i.e.,
5030  //      the type of the entity being initialized) is a better
5031  //      conversion sequence than the standard conversion sequence
5032  //      from the return type of F2 to the destination type.
5033  if (Cand1.Function && Cand2.Function &&
5034      isa<CXXConversionDecl>(Cand1.Function) &&
5035      isa<CXXConversionDecl>(Cand2.Function)) {
5036    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
5037                                               Cand2.FinalConversion)) {
5038    case ImplicitConversionSequence::Better:
5039      // Cand1 has a better conversion sequence.
5040      return true;
5041
5042    case ImplicitConversionSequence::Worse:
5043      // Cand1 can't be better than Cand2.
5044      return false;
5045
5046    case ImplicitConversionSequence::Indistinguishable:
5047      // Do nothing
5048      break;
5049    }
5050  }
5051
5052  return false;
5053}
5054
5055/// \brief Computes the best viable function (C++ 13.3.3)
5056/// within an overload candidate set.
5057///
5058/// \param CandidateSet the set of candidate functions.
5059///
5060/// \param Loc the location of the function name (or operator symbol) for
5061/// which overload resolution occurs.
5062///
5063/// \param Best f overload resolution was successful or found a deleted
5064/// function, Best points to the candidate function found.
5065///
5066/// \returns The result of overload resolution.
5067OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
5068                                           SourceLocation Loc,
5069                                        OverloadCandidateSet::iterator& Best) {
5070  // Find the best viable function.
5071  Best = CandidateSet.end();
5072  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
5073       Cand != CandidateSet.end(); ++Cand) {
5074    if (Cand->Viable) {
5075      if (Best == CandidateSet.end() ||
5076          isBetterOverloadCandidate(*Cand, *Best, Loc))
5077        Best = Cand;
5078    }
5079  }
5080
5081  // If we didn't find any viable functions, abort.
5082  if (Best == CandidateSet.end())
5083    return OR_No_Viable_Function;
5084
5085  // Make sure that this function is better than every other viable
5086  // function. If not, we have an ambiguity.
5087  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
5088       Cand != CandidateSet.end(); ++Cand) {
5089    if (Cand->Viable &&
5090        Cand != Best &&
5091        !isBetterOverloadCandidate(*Best, *Cand, Loc)) {
5092      Best = CandidateSet.end();
5093      return OR_Ambiguous;
5094    }
5095  }
5096
5097  // Best is the best viable function.
5098  if (Best->Function &&
5099      (Best->Function->isDeleted() ||
5100       Best->Function->getAttr<UnavailableAttr>()))
5101    return OR_Deleted;
5102
5103  // C++ [basic.def.odr]p2:
5104  //   An overloaded function is used if it is selected by overload resolution
5105  //   when referred to from a potentially-evaluated expression. [Note: this
5106  //   covers calls to named functions (5.2.2), operator overloading
5107  //   (clause 13), user-defined conversions (12.3.2), allocation function for
5108  //   placement new (5.3.4), as well as non-default initialization (8.5).
5109  if (Best->Function)
5110    MarkDeclarationReferenced(Loc, Best->Function);
5111  return OR_Success;
5112}
5113
5114namespace {
5115
5116enum OverloadCandidateKind {
5117  oc_function,
5118  oc_method,
5119  oc_constructor,
5120  oc_function_template,
5121  oc_method_template,
5122  oc_constructor_template,
5123  oc_implicit_default_constructor,
5124  oc_implicit_copy_constructor,
5125  oc_implicit_copy_assignment
5126};
5127
5128OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
5129                                                FunctionDecl *Fn,
5130                                                std::string &Description) {
5131  bool isTemplate = false;
5132
5133  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
5134    isTemplate = true;
5135    Description = S.getTemplateArgumentBindingsText(
5136      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
5137  }
5138
5139  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
5140    if (!Ctor->isImplicit())
5141      return isTemplate ? oc_constructor_template : oc_constructor;
5142
5143    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
5144                                     : oc_implicit_default_constructor;
5145  }
5146
5147  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
5148    // This actually gets spelled 'candidate function' for now, but
5149    // it doesn't hurt to split it out.
5150    if (!Meth->isImplicit())
5151      return isTemplate ? oc_method_template : oc_method;
5152
5153    assert(Meth->isCopyAssignment()
5154           && "implicit method is not copy assignment operator?");
5155    return oc_implicit_copy_assignment;
5156  }
5157
5158  return isTemplate ? oc_function_template : oc_function;
5159}
5160
5161} // end anonymous namespace
5162
5163// Notes the location of an overload candidate.
5164void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
5165  std::string FnDesc;
5166  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
5167  Diag(Fn->getLocation(), diag::note_ovl_candidate)
5168    << (unsigned) K << FnDesc;
5169}
5170
5171/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
5172/// "lead" diagnostic; it will be given two arguments, the source and
5173/// target types of the conversion.
5174void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
5175                                       SourceLocation CaretLoc,
5176                                       const PartialDiagnostic &PDiag) {
5177  Diag(CaretLoc, PDiag)
5178    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
5179  for (AmbiguousConversionSequence::const_iterator
5180         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
5181    NoteOverloadCandidate(*I);
5182  }
5183}
5184
5185namespace {
5186
5187void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
5188  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
5189  assert(Conv.isBad());
5190  assert(Cand->Function && "for now, candidate must be a function");
5191  FunctionDecl *Fn = Cand->Function;
5192
5193  // There's a conversion slot for the object argument if this is a
5194  // non-constructor method.  Note that 'I' corresponds the
5195  // conversion-slot index.
5196  bool isObjectArgument = false;
5197  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
5198    if (I == 0)
5199      isObjectArgument = true;
5200    else
5201      I--;
5202  }
5203
5204  std::string FnDesc;
5205  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5206
5207  Expr *FromExpr = Conv.Bad.FromExpr;
5208  QualType FromTy = Conv.Bad.getFromType();
5209  QualType ToTy = Conv.Bad.getToType();
5210
5211  if (FromTy == S.Context.OverloadTy) {
5212    assert(FromExpr && "overload set argument came from implicit argument?");
5213    Expr *E = FromExpr->IgnoreParens();
5214    if (isa<UnaryOperator>(E))
5215      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
5216    DeclarationName Name = cast<OverloadExpr>(E)->getName();
5217
5218    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
5219      << (unsigned) FnKind << FnDesc
5220      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5221      << ToTy << Name << I+1;
5222    return;
5223  }
5224
5225  // Do some hand-waving analysis to see if the non-viability is due
5226  // to a qualifier mismatch.
5227  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
5228  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
5229  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
5230    CToTy = RT->getPointeeType();
5231  else {
5232    // TODO: detect and diagnose the full richness of const mismatches.
5233    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
5234      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
5235        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
5236  }
5237
5238  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
5239      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
5240    // It is dumb that we have to do this here.
5241    while (isa<ArrayType>(CFromTy))
5242      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
5243    while (isa<ArrayType>(CToTy))
5244      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
5245
5246    Qualifiers FromQs = CFromTy.getQualifiers();
5247    Qualifiers ToQs = CToTy.getQualifiers();
5248
5249    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
5250      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
5251        << (unsigned) FnKind << FnDesc
5252        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5253        << FromTy
5254        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
5255        << (unsigned) isObjectArgument << I+1;
5256      return;
5257    }
5258
5259    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
5260    assert(CVR && "unexpected qualifiers mismatch");
5261
5262    if (isObjectArgument) {
5263      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
5264        << (unsigned) FnKind << FnDesc
5265        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5266        << FromTy << (CVR - 1);
5267    } else {
5268      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
5269        << (unsigned) FnKind << FnDesc
5270        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5271        << FromTy << (CVR - 1) << I+1;
5272    }
5273    return;
5274  }
5275
5276  // Diagnose references or pointers to incomplete types differently,
5277  // since it's far from impossible that the incompleteness triggered
5278  // the failure.
5279  QualType TempFromTy = FromTy.getNonReferenceType();
5280  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
5281    TempFromTy = PTy->getPointeeType();
5282  if (TempFromTy->isIncompleteType()) {
5283    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
5284      << (unsigned) FnKind << FnDesc
5285      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5286      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5287    return;
5288  }
5289
5290  // TODO: specialize more based on the kind of mismatch
5291  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
5292    << (unsigned) FnKind << FnDesc
5293    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
5294    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
5295}
5296
5297void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
5298                           unsigned NumFormalArgs) {
5299  // TODO: treat calls to a missing default constructor as a special case
5300
5301  FunctionDecl *Fn = Cand->Function;
5302  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
5303
5304  unsigned MinParams = Fn->getMinRequiredArguments();
5305
5306  // at least / at most / exactly
5307  // FIXME: variadic templates "at most" should account for parameter packs
5308  unsigned mode, modeCount;
5309  if (NumFormalArgs < MinParams) {
5310    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
5311           (Cand->FailureKind == ovl_fail_bad_deduction &&
5312            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
5313    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
5314      mode = 0; // "at least"
5315    else
5316      mode = 2; // "exactly"
5317    modeCount = MinParams;
5318  } else {
5319    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
5320           (Cand->FailureKind == ovl_fail_bad_deduction &&
5321            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
5322    if (MinParams != FnTy->getNumArgs())
5323      mode = 1; // "at most"
5324    else
5325      mode = 2; // "exactly"
5326    modeCount = FnTy->getNumArgs();
5327  }
5328
5329  std::string Description;
5330  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
5331
5332  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
5333    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
5334    << modeCount << NumFormalArgs;
5335}
5336
5337/// Diagnose a failed template-argument deduction.
5338void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
5339                          Expr **Args, unsigned NumArgs) {
5340  FunctionDecl *Fn = Cand->Function; // pattern
5341
5342  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
5343  NamedDecl *ParamD;
5344  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
5345  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
5346  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
5347  switch (Cand->DeductionFailure.Result) {
5348  case Sema::TDK_Success:
5349    llvm_unreachable("TDK_success while diagnosing bad deduction");
5350
5351  case Sema::TDK_Incomplete: {
5352    assert(ParamD && "no parameter found for incomplete deduction result");
5353    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
5354      << ParamD->getDeclName();
5355    return;
5356  }
5357
5358  case Sema::TDK_Inconsistent:
5359  case Sema::TDK_InconsistentQuals: {
5360    assert(ParamD && "no parameter found for inconsistent deduction result");
5361    int which = 0;
5362    if (isa<TemplateTypeParmDecl>(ParamD))
5363      which = 0;
5364    else if (isa<NonTypeTemplateParmDecl>(ParamD))
5365      which = 1;
5366    else {
5367      which = 2;
5368    }
5369
5370    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
5371      << which << ParamD->getDeclName()
5372      << *Cand->DeductionFailure.getFirstArg()
5373      << *Cand->DeductionFailure.getSecondArg();
5374    return;
5375  }
5376
5377  case Sema::TDK_InvalidExplicitArguments:
5378    assert(ParamD && "no parameter found for invalid explicit arguments");
5379    if (ParamD->getDeclName())
5380      S.Diag(Fn->getLocation(),
5381             diag::note_ovl_candidate_explicit_arg_mismatch_named)
5382        << ParamD->getDeclName();
5383    else {
5384      int index = 0;
5385      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
5386        index = TTP->getIndex();
5387      else if (NonTypeTemplateParmDecl *NTTP
5388                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
5389        index = NTTP->getIndex();
5390      else
5391        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
5392      S.Diag(Fn->getLocation(),
5393             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
5394        << (index + 1);
5395    }
5396    return;
5397
5398  case Sema::TDK_TooManyArguments:
5399  case Sema::TDK_TooFewArguments:
5400    DiagnoseArityMismatch(S, Cand, NumArgs);
5401    return;
5402
5403  case Sema::TDK_InstantiationDepth:
5404    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
5405    return;
5406
5407  case Sema::TDK_SubstitutionFailure: {
5408    std::string ArgString;
5409    if (TemplateArgumentList *Args
5410                            = Cand->DeductionFailure.getTemplateArgumentList())
5411      ArgString = S.getTemplateArgumentBindingsText(
5412                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
5413                                                    *Args);
5414    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
5415      << ArgString;
5416    return;
5417  }
5418
5419  // TODO: diagnose these individually, then kill off
5420  // note_ovl_candidate_bad_deduction, which is uselessly vague.
5421  case Sema::TDK_NonDeducedMismatch:
5422  case Sema::TDK_FailedOverloadResolution:
5423    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
5424    return;
5425  }
5426}
5427
5428/// Generates a 'note' diagnostic for an overload candidate.  We've
5429/// already generated a primary error at the call site.
5430///
5431/// It really does need to be a single diagnostic with its caret
5432/// pointed at the candidate declaration.  Yes, this creates some
5433/// major challenges of technical writing.  Yes, this makes pointing
5434/// out problems with specific arguments quite awkward.  It's still
5435/// better than generating twenty screens of text for every failed
5436/// overload.
5437///
5438/// It would be great to be able to express per-candidate problems
5439/// more richly for those diagnostic clients that cared, but we'd
5440/// still have to be just as careful with the default diagnostics.
5441void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
5442                           Expr **Args, unsigned NumArgs) {
5443  FunctionDecl *Fn = Cand->Function;
5444
5445  // Note deleted candidates, but only if they're viable.
5446  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
5447    std::string FnDesc;
5448    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
5449
5450    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
5451      << FnKind << FnDesc << Fn->isDeleted();
5452    return;
5453  }
5454
5455  // We don't really have anything else to say about viable candidates.
5456  if (Cand->Viable) {
5457    S.NoteOverloadCandidate(Fn);
5458    return;
5459  }
5460
5461  switch (Cand->FailureKind) {
5462  case ovl_fail_too_many_arguments:
5463  case ovl_fail_too_few_arguments:
5464    return DiagnoseArityMismatch(S, Cand, NumArgs);
5465
5466  case ovl_fail_bad_deduction:
5467    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
5468
5469  case ovl_fail_trivial_conversion:
5470  case ovl_fail_bad_final_conversion:
5471  case ovl_fail_final_conversion_not_exact:
5472    return S.NoteOverloadCandidate(Fn);
5473
5474  case ovl_fail_bad_conversion: {
5475    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
5476    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
5477      if (Cand->Conversions[I].isBad())
5478        return DiagnoseBadConversion(S, Cand, I);
5479
5480    // FIXME: this currently happens when we're called from SemaInit
5481    // when user-conversion overload fails.  Figure out how to handle
5482    // those conditions and diagnose them well.
5483    return S.NoteOverloadCandidate(Fn);
5484  }
5485  }
5486}
5487
5488void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
5489  // Desugar the type of the surrogate down to a function type,
5490  // retaining as many typedefs as possible while still showing
5491  // the function type (and, therefore, its parameter types).
5492  QualType FnType = Cand->Surrogate->getConversionType();
5493  bool isLValueReference = false;
5494  bool isRValueReference = false;
5495  bool isPointer = false;
5496  if (const LValueReferenceType *FnTypeRef =
5497        FnType->getAs<LValueReferenceType>()) {
5498    FnType = FnTypeRef->getPointeeType();
5499    isLValueReference = true;
5500  } else if (const RValueReferenceType *FnTypeRef =
5501               FnType->getAs<RValueReferenceType>()) {
5502    FnType = FnTypeRef->getPointeeType();
5503    isRValueReference = true;
5504  }
5505  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
5506    FnType = FnTypePtr->getPointeeType();
5507    isPointer = true;
5508  }
5509  // Desugar down to a function type.
5510  FnType = QualType(FnType->getAs<FunctionType>(), 0);
5511  // Reconstruct the pointer/reference as appropriate.
5512  if (isPointer) FnType = S.Context.getPointerType(FnType);
5513  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
5514  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
5515
5516  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
5517    << FnType;
5518}
5519
5520void NoteBuiltinOperatorCandidate(Sema &S,
5521                                  const char *Opc,
5522                                  SourceLocation OpLoc,
5523                                  OverloadCandidate *Cand) {
5524  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
5525  std::string TypeStr("operator");
5526  TypeStr += Opc;
5527  TypeStr += "(";
5528  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
5529  if (Cand->Conversions.size() == 1) {
5530    TypeStr += ")";
5531    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
5532  } else {
5533    TypeStr += ", ";
5534    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
5535    TypeStr += ")";
5536    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
5537  }
5538}
5539
5540void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
5541                                  OverloadCandidate *Cand) {
5542  unsigned NoOperands = Cand->Conversions.size();
5543  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
5544    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
5545    if (ICS.isBad()) break; // all meaningless after first invalid
5546    if (!ICS.isAmbiguous()) continue;
5547
5548    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
5549                              S.PDiag(diag::note_ambiguous_type_conversion));
5550  }
5551}
5552
5553SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
5554  if (Cand->Function)
5555    return Cand->Function->getLocation();
5556  if (Cand->IsSurrogate)
5557    return Cand->Surrogate->getLocation();
5558  return SourceLocation();
5559}
5560
5561struct CompareOverloadCandidatesForDisplay {
5562  Sema &S;
5563  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
5564
5565  bool operator()(const OverloadCandidate *L,
5566                  const OverloadCandidate *R) {
5567    // Fast-path this check.
5568    if (L == R) return false;
5569
5570    // Order first by viability.
5571    if (L->Viable) {
5572      if (!R->Viable) return true;
5573
5574      // TODO: introduce a tri-valued comparison for overload
5575      // candidates.  Would be more worthwhile if we had a sort
5576      // that could exploit it.
5577      if (S.isBetterOverloadCandidate(*L, *R, SourceLocation())) return true;
5578      if (S.isBetterOverloadCandidate(*R, *L, SourceLocation())) return false;
5579    } else if (R->Viable)
5580      return false;
5581
5582    assert(L->Viable == R->Viable);
5583
5584    // Criteria by which we can sort non-viable candidates:
5585    if (!L->Viable) {
5586      // 1. Arity mismatches come after other candidates.
5587      if (L->FailureKind == ovl_fail_too_many_arguments ||
5588          L->FailureKind == ovl_fail_too_few_arguments)
5589        return false;
5590      if (R->FailureKind == ovl_fail_too_many_arguments ||
5591          R->FailureKind == ovl_fail_too_few_arguments)
5592        return true;
5593
5594      // 2. Bad conversions come first and are ordered by the number
5595      // of bad conversions and quality of good conversions.
5596      if (L->FailureKind == ovl_fail_bad_conversion) {
5597        if (R->FailureKind != ovl_fail_bad_conversion)
5598          return true;
5599
5600        // If there's any ordering between the defined conversions...
5601        // FIXME: this might not be transitive.
5602        assert(L->Conversions.size() == R->Conversions.size());
5603
5604        int leftBetter = 0;
5605        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
5606        for (unsigned E = L->Conversions.size(); I != E; ++I) {
5607          switch (S.CompareImplicitConversionSequences(L->Conversions[I],
5608                                                       R->Conversions[I])) {
5609          case ImplicitConversionSequence::Better:
5610            leftBetter++;
5611            break;
5612
5613          case ImplicitConversionSequence::Worse:
5614            leftBetter--;
5615            break;
5616
5617          case ImplicitConversionSequence::Indistinguishable:
5618            break;
5619          }
5620        }
5621        if (leftBetter > 0) return true;
5622        if (leftBetter < 0) return false;
5623
5624      } else if (R->FailureKind == ovl_fail_bad_conversion)
5625        return false;
5626
5627      // TODO: others?
5628    }
5629
5630    // Sort everything else by location.
5631    SourceLocation LLoc = GetLocationForCandidate(L);
5632    SourceLocation RLoc = GetLocationForCandidate(R);
5633
5634    // Put candidates without locations (e.g. builtins) at the end.
5635    if (LLoc.isInvalid()) return false;
5636    if (RLoc.isInvalid()) return true;
5637
5638    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
5639  }
5640};
5641
5642/// CompleteNonViableCandidate - Normally, overload resolution only
5643/// computes up to the first
5644void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
5645                                Expr **Args, unsigned NumArgs) {
5646  assert(!Cand->Viable);
5647
5648  // Don't do anything on failures other than bad conversion.
5649  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
5650
5651  // Skip forward to the first bad conversion.
5652  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
5653  unsigned ConvCount = Cand->Conversions.size();
5654  while (true) {
5655    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
5656    ConvIdx++;
5657    if (Cand->Conversions[ConvIdx - 1].isBad())
5658      break;
5659  }
5660
5661  if (ConvIdx == ConvCount)
5662    return;
5663
5664  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
5665         "remaining conversion is initialized?");
5666
5667  // FIXME: this should probably be preserved from the overload
5668  // operation somehow.
5669  bool SuppressUserConversions = false;
5670
5671  const FunctionProtoType* Proto;
5672  unsigned ArgIdx = ConvIdx;
5673
5674  if (Cand->IsSurrogate) {
5675    QualType ConvType
5676      = Cand->Surrogate->getConversionType().getNonReferenceType();
5677    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5678      ConvType = ConvPtrType->getPointeeType();
5679    Proto = ConvType->getAs<FunctionProtoType>();
5680    ArgIdx--;
5681  } else if (Cand->Function) {
5682    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
5683    if (isa<CXXMethodDecl>(Cand->Function) &&
5684        !isa<CXXConstructorDecl>(Cand->Function))
5685      ArgIdx--;
5686  } else {
5687    // Builtin binary operator with a bad first conversion.
5688    assert(ConvCount <= 3);
5689    for (; ConvIdx != ConvCount; ++ConvIdx)
5690      Cand->Conversions[ConvIdx]
5691        = TryCopyInitialization(S, Args[ConvIdx],
5692                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
5693                                SuppressUserConversions,
5694                                /*InOverloadResolution*/ true);
5695    return;
5696  }
5697
5698  // Fill in the rest of the conversions.
5699  unsigned NumArgsInProto = Proto->getNumArgs();
5700  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
5701    if (ArgIdx < NumArgsInProto)
5702      Cand->Conversions[ConvIdx]
5703        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
5704                                SuppressUserConversions,
5705                                /*InOverloadResolution=*/true);
5706    else
5707      Cand->Conversions[ConvIdx].setEllipsis();
5708  }
5709}
5710
5711} // end anonymous namespace
5712
5713/// PrintOverloadCandidates - When overload resolution fails, prints
5714/// diagnostic messages containing the candidates in the candidate
5715/// set.
5716void
5717Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
5718                              OverloadCandidateDisplayKind OCD,
5719                              Expr **Args, unsigned NumArgs,
5720                              const char *Opc,
5721                              SourceLocation OpLoc) {
5722  // Sort the candidates by viability and position.  Sorting directly would
5723  // be prohibitive, so we make a set of pointers and sort those.
5724  llvm::SmallVector<OverloadCandidate*, 32> Cands;
5725  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
5726  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
5727                                  LastCand = CandidateSet.end();
5728       Cand != LastCand; ++Cand) {
5729    if (Cand->Viable)
5730      Cands.push_back(Cand);
5731    else if (OCD == OCD_AllCandidates) {
5732      CompleteNonViableCandidate(*this, Cand, Args, NumArgs);
5733      if (Cand->Function || Cand->IsSurrogate)
5734        Cands.push_back(Cand);
5735      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
5736      // want to list every possible builtin candidate.
5737    }
5738  }
5739
5740  std::sort(Cands.begin(), Cands.end(),
5741            CompareOverloadCandidatesForDisplay(*this));
5742
5743  bool ReportedAmbiguousConversions = false;
5744
5745  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
5746  const Diagnostic::OverloadsShown ShowOverloads = Diags.getShowOverloads();
5747  unsigned CandsShown = 0;
5748  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
5749    OverloadCandidate *Cand = *I;
5750
5751    // Set an arbitrary limit on the number of candidate functions we'll spam
5752    // the user with.  FIXME: This limit should depend on details of the
5753    // candidate list.
5754    if (CandsShown >= 4 && ShowOverloads == Diagnostic::Ovl_Best) {
5755      break;
5756    }
5757    ++CandsShown;
5758
5759    if (Cand->Function)
5760      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
5761    else if (Cand->IsSurrogate)
5762      NoteSurrogateCandidate(*this, Cand);
5763    else {
5764      assert(Cand->Viable &&
5765             "Non-viable built-in candidates are not added to Cands.");
5766      // Generally we only see ambiguities including viable builtin
5767      // operators if overload resolution got screwed up by an
5768      // ambiguous user-defined conversion.
5769      //
5770      // FIXME: It's quite possible for different conversions to see
5771      // different ambiguities, though.
5772      if (!ReportedAmbiguousConversions) {
5773        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
5774        ReportedAmbiguousConversions = true;
5775      }
5776
5777      // If this is a viable builtin, print it.
5778      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
5779    }
5780  }
5781
5782  if (I != E)
5783    Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
5784}
5785
5786static bool CheckUnresolvedAccess(Sema &S, OverloadExpr *E, DeclAccessPair D) {
5787  if (isa<UnresolvedLookupExpr>(E))
5788    return S.CheckUnresolvedLookupAccess(cast<UnresolvedLookupExpr>(E), D);
5789
5790  return S.CheckUnresolvedMemberAccess(cast<UnresolvedMemberExpr>(E), D);
5791}
5792
5793/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
5794/// an overloaded function (C++ [over.over]), where @p From is an
5795/// expression with overloaded function type and @p ToType is the type
5796/// we're trying to resolve to. For example:
5797///
5798/// @code
5799/// int f(double);
5800/// int f(int);
5801///
5802/// int (*pfd)(double) = f; // selects f(double)
5803/// @endcode
5804///
5805/// This routine returns the resulting FunctionDecl if it could be
5806/// resolved, and NULL otherwise. When @p Complain is true, this
5807/// routine will emit diagnostics if there is an error.
5808FunctionDecl *
5809Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
5810                                         bool Complain,
5811                                         DeclAccessPair &FoundResult) {
5812  QualType FunctionType = ToType;
5813  bool IsMember = false;
5814  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
5815    FunctionType = ToTypePtr->getPointeeType();
5816  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
5817    FunctionType = ToTypeRef->getPointeeType();
5818  else if (const MemberPointerType *MemTypePtr =
5819                    ToType->getAs<MemberPointerType>()) {
5820    FunctionType = MemTypePtr->getPointeeType();
5821    IsMember = true;
5822  }
5823
5824  // C++ [over.over]p1:
5825  //   [...] [Note: any redundant set of parentheses surrounding the
5826  //   overloaded function name is ignored (5.1). ]
5827  // C++ [over.over]p1:
5828  //   [...] The overloaded function name can be preceded by the &
5829  //   operator.
5830  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
5831  TemplateArgumentListInfo ETABuffer, *ExplicitTemplateArgs = 0;
5832  if (OvlExpr->hasExplicitTemplateArgs()) {
5833    OvlExpr->getExplicitTemplateArgs().copyInto(ETABuffer);
5834    ExplicitTemplateArgs = &ETABuffer;
5835  }
5836
5837  // We expect a pointer or reference to function, or a function pointer.
5838  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
5839  if (!FunctionType->isFunctionType()) {
5840    if (Complain)
5841      Diag(From->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
5842        << OvlExpr->getName() << ToType;
5843
5844    return 0;
5845  }
5846
5847  assert(From->getType() == Context.OverloadTy);
5848
5849  // Look through all of the overloaded functions, searching for one
5850  // whose type matches exactly.
5851  llvm::SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
5852  llvm::SmallVector<FunctionDecl *, 4> NonMatches;
5853
5854  bool FoundNonTemplateFunction = false;
5855  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5856         E = OvlExpr->decls_end(); I != E; ++I) {
5857    // Look through any using declarations to find the underlying function.
5858    NamedDecl *Fn = (*I)->getUnderlyingDecl();
5859
5860    // C++ [over.over]p3:
5861    //   Non-member functions and static member functions match
5862    //   targets of type "pointer-to-function" or "reference-to-function."
5863    //   Nonstatic member functions match targets of
5864    //   type "pointer-to-member-function."
5865    // Note that according to DR 247, the containing class does not matter.
5866
5867    if (FunctionTemplateDecl *FunctionTemplate
5868          = dyn_cast<FunctionTemplateDecl>(Fn)) {
5869      if (CXXMethodDecl *Method
5870            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
5871        // Skip non-static function templates when converting to pointer, and
5872        // static when converting to member pointer.
5873        if (Method->isStatic() == IsMember)
5874          continue;
5875      } else if (IsMember)
5876        continue;
5877
5878      // C++ [over.over]p2:
5879      //   If the name is a function template, template argument deduction is
5880      //   done (14.8.2.2), and if the argument deduction succeeds, the
5881      //   resulting template argument list is used to generate a single
5882      //   function template specialization, which is added to the set of
5883      //   overloaded functions considered.
5884      // FIXME: We don't really want to build the specialization here, do we?
5885      FunctionDecl *Specialization = 0;
5886      TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
5887      if (TemplateDeductionResult Result
5888            = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
5889                                      FunctionType, Specialization, Info)) {
5890        // FIXME: make a note of the failed deduction for diagnostics.
5891        (void)Result;
5892      } else {
5893        // FIXME: If the match isn't exact, shouldn't we just drop this as
5894        // a candidate? Find a testcase before changing the code.
5895        assert(FunctionType
5896                 == Context.getCanonicalType(Specialization->getType()));
5897        Matches.push_back(std::make_pair(I.getPair(),
5898                    cast<FunctionDecl>(Specialization->getCanonicalDecl())));
5899      }
5900
5901      continue;
5902    }
5903
5904    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5905      // Skip non-static functions when converting to pointer, and static
5906      // when converting to member pointer.
5907      if (Method->isStatic() == IsMember)
5908        continue;
5909
5910      // If we have explicit template arguments, skip non-templates.
5911      if (OvlExpr->hasExplicitTemplateArgs())
5912        continue;
5913    } else if (IsMember)
5914      continue;
5915
5916    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
5917      QualType ResultTy;
5918      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
5919          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
5920                               ResultTy)) {
5921        Matches.push_back(std::make_pair(I.getPair(),
5922                           cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
5923        FoundNonTemplateFunction = true;
5924      }
5925    }
5926  }
5927
5928  // If there were 0 or 1 matches, we're done.
5929  if (Matches.empty()) {
5930    if (Complain) {
5931      Diag(From->getLocStart(), diag::err_addr_ovl_no_viable)
5932        << OvlExpr->getName() << FunctionType;
5933      for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
5934                                 E = OvlExpr->decls_end();
5935           I != E; ++I)
5936        if (FunctionDecl *F = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
5937          NoteOverloadCandidate(F);
5938    }
5939
5940    return 0;
5941  } else if (Matches.size() == 1) {
5942    FunctionDecl *Result = Matches[0].second;
5943    FoundResult = Matches[0].first;
5944    MarkDeclarationReferenced(From->getLocStart(), Result);
5945    if (Complain)
5946      CheckAddressOfMemberAccess(OvlExpr, Matches[0].first);
5947    return Result;
5948  }
5949
5950  // C++ [over.over]p4:
5951  //   If more than one function is selected, [...]
5952  if (!FoundNonTemplateFunction) {
5953    //   [...] and any given function template specialization F1 is
5954    //   eliminated if the set contains a second function template
5955    //   specialization whose function template is more specialized
5956    //   than the function template of F1 according to the partial
5957    //   ordering rules of 14.5.5.2.
5958
5959    // The algorithm specified above is quadratic. We instead use a
5960    // two-pass algorithm (similar to the one used to identify the
5961    // best viable function in an overload set) that identifies the
5962    // best function template (if it exists).
5963
5964    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
5965    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
5966      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
5967
5968    UnresolvedSetIterator Result =
5969        getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
5970                           TPOC_Other, From->getLocStart(),
5971                           PDiag(),
5972                           PDiag(diag::err_addr_ovl_ambiguous)
5973                               << Matches[0].second->getDeclName(),
5974                           PDiag(diag::note_ovl_candidate)
5975                               << (unsigned) oc_function_template);
5976    assert(Result != MatchesCopy.end() && "no most-specialized template");
5977    MarkDeclarationReferenced(From->getLocStart(), *Result);
5978    FoundResult = Matches[Result - MatchesCopy.begin()].first;
5979    if (Complain) {
5980      CheckUnresolvedAccess(*this, OvlExpr, FoundResult);
5981      DiagnoseUseOfDecl(FoundResult, OvlExpr->getNameLoc());
5982    }
5983    return cast<FunctionDecl>(*Result);
5984  }
5985
5986  //   [...] any function template specializations in the set are
5987  //   eliminated if the set also contains a non-template function, [...]
5988  for (unsigned I = 0, N = Matches.size(); I != N; ) {
5989    if (Matches[I].second->getPrimaryTemplate() == 0)
5990      ++I;
5991    else {
5992      Matches[I] = Matches[--N];
5993      Matches.set_size(N);
5994    }
5995  }
5996
5997  // [...] After such eliminations, if any, there shall remain exactly one
5998  // selected function.
5999  if (Matches.size() == 1) {
6000    MarkDeclarationReferenced(From->getLocStart(), Matches[0].second);
6001    FoundResult = Matches[0].first;
6002    if (Complain) {
6003      CheckUnresolvedAccess(*this, OvlExpr, Matches[0].first);
6004      DiagnoseUseOfDecl(Matches[0].first, OvlExpr->getNameLoc());
6005    }
6006    return cast<FunctionDecl>(Matches[0].second);
6007  }
6008
6009  // FIXME: We should probably return the same thing that BestViableFunction
6010  // returns (even if we issue the diagnostics here).
6011  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
6012    << Matches[0].second->getDeclName();
6013  for (unsigned I = 0, E = Matches.size(); I != E; ++I)
6014    NoteOverloadCandidate(Matches[I].second);
6015  return 0;
6016}
6017
6018/// \brief Given an expression that refers to an overloaded function, try to
6019/// resolve that overloaded function expression down to a single function.
6020///
6021/// This routine can only resolve template-ids that refer to a single function
6022/// template, where that template-id refers to a single template whose template
6023/// arguments are either provided by the template-id or have defaults,
6024/// as described in C++0x [temp.arg.explicit]p3.
6025FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
6026  // C++ [over.over]p1:
6027  //   [...] [Note: any redundant set of parentheses surrounding the
6028  //   overloaded function name is ignored (5.1). ]
6029  // C++ [over.over]p1:
6030  //   [...] The overloaded function name can be preceded by the &
6031  //   operator.
6032
6033  if (From->getType() != Context.OverloadTy)
6034    return 0;
6035
6036  OverloadExpr *OvlExpr = OverloadExpr::find(From).getPointer();
6037
6038  // If we didn't actually find any template-ids, we're done.
6039  if (!OvlExpr->hasExplicitTemplateArgs())
6040    return 0;
6041
6042  TemplateArgumentListInfo ExplicitTemplateArgs;
6043  OvlExpr->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
6044
6045  // Look through all of the overloaded functions, searching for one
6046  // whose type matches exactly.
6047  FunctionDecl *Matched = 0;
6048  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
6049         E = OvlExpr->decls_end(); I != E; ++I) {
6050    // C++0x [temp.arg.explicit]p3:
6051    //   [...] In contexts where deduction is done and fails, or in contexts
6052    //   where deduction is not done, if a template argument list is
6053    //   specified and it, along with any default template arguments,
6054    //   identifies a single function template specialization, then the
6055    //   template-id is an lvalue for the function template specialization.
6056    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
6057
6058    // C++ [over.over]p2:
6059    //   If the name is a function template, template argument deduction is
6060    //   done (14.8.2.2), and if the argument deduction succeeds, the
6061    //   resulting template argument list is used to generate a single
6062    //   function template specialization, which is added to the set of
6063    //   overloaded functions considered.
6064    FunctionDecl *Specialization = 0;
6065    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
6066    if (TemplateDeductionResult Result
6067          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
6068                                    Specialization, Info)) {
6069      // FIXME: make a note of the failed deduction for diagnostics.
6070      (void)Result;
6071      continue;
6072    }
6073
6074    // Multiple matches; we can't resolve to a single declaration.
6075    if (Matched)
6076      return 0;
6077
6078    Matched = Specialization;
6079  }
6080
6081  return Matched;
6082}
6083
6084/// \brief Add a single candidate to the overload set.
6085static void AddOverloadedCallCandidate(Sema &S,
6086                                       DeclAccessPair FoundDecl,
6087                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
6088                                       Expr **Args, unsigned NumArgs,
6089                                       OverloadCandidateSet &CandidateSet,
6090                                       bool PartialOverloading) {
6091  NamedDecl *Callee = FoundDecl.getDecl();
6092  if (isa<UsingShadowDecl>(Callee))
6093    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
6094
6095  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
6096    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
6097    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
6098                           false, PartialOverloading);
6099    return;
6100  }
6101
6102  if (FunctionTemplateDecl *FuncTemplate
6103      = dyn_cast<FunctionTemplateDecl>(Callee)) {
6104    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
6105                                   ExplicitTemplateArgs,
6106                                   Args, NumArgs, CandidateSet);
6107    return;
6108  }
6109
6110  assert(false && "unhandled case in overloaded call candidate");
6111
6112  // do nothing?
6113}
6114
6115/// \brief Add the overload candidates named by callee and/or found by argument
6116/// dependent lookup to the given overload set.
6117void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
6118                                       Expr **Args, unsigned NumArgs,
6119                                       OverloadCandidateSet &CandidateSet,
6120                                       bool PartialOverloading) {
6121
6122#ifndef NDEBUG
6123  // Verify that ArgumentDependentLookup is consistent with the rules
6124  // in C++0x [basic.lookup.argdep]p3:
6125  //
6126  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
6127  //   and let Y be the lookup set produced by argument dependent
6128  //   lookup (defined as follows). If X contains
6129  //
6130  //     -- a declaration of a class member, or
6131  //
6132  //     -- a block-scope function declaration that is not a
6133  //        using-declaration, or
6134  //
6135  //     -- a declaration that is neither a function or a function
6136  //        template
6137  //
6138  //   then Y is empty.
6139
6140  if (ULE->requiresADL()) {
6141    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
6142           E = ULE->decls_end(); I != E; ++I) {
6143      assert(!(*I)->getDeclContext()->isRecord());
6144      assert(isa<UsingShadowDecl>(*I) ||
6145             !(*I)->getDeclContext()->isFunctionOrMethod());
6146      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
6147    }
6148  }
6149#endif
6150
6151  // It would be nice to avoid this copy.
6152  TemplateArgumentListInfo TABuffer;
6153  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
6154  if (ULE->hasExplicitTemplateArgs()) {
6155    ULE->copyTemplateArgumentsInto(TABuffer);
6156    ExplicitTemplateArgs = &TABuffer;
6157  }
6158
6159  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
6160         E = ULE->decls_end(); I != E; ++I)
6161    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
6162                               Args, NumArgs, CandidateSet,
6163                               PartialOverloading);
6164
6165  if (ULE->requiresADL())
6166    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
6167                                         Args, NumArgs,
6168                                         ExplicitTemplateArgs,
6169                                         CandidateSet,
6170                                         PartialOverloading);
6171}
6172
6173static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
6174                                      Expr **Args, unsigned NumArgs) {
6175  Fn->Destroy(SemaRef.Context);
6176  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
6177    Args[Arg]->Destroy(SemaRef.Context);
6178  return SemaRef.ExprError();
6179}
6180
6181/// Attempts to recover from a call where no functions were found.
6182///
6183/// Returns true if new candidates were found.
6184static Sema::OwningExprResult
6185BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
6186                      UnresolvedLookupExpr *ULE,
6187                      SourceLocation LParenLoc,
6188                      Expr **Args, unsigned NumArgs,
6189                      SourceLocation *CommaLocs,
6190                      SourceLocation RParenLoc) {
6191
6192  CXXScopeSpec SS;
6193  if (ULE->getQualifier()) {
6194    SS.setScopeRep(ULE->getQualifier());
6195    SS.setRange(ULE->getQualifierRange());
6196  }
6197
6198  TemplateArgumentListInfo TABuffer;
6199  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
6200  if (ULE->hasExplicitTemplateArgs()) {
6201    ULE->copyTemplateArgumentsInto(TABuffer);
6202    ExplicitTemplateArgs = &TABuffer;
6203  }
6204
6205  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
6206                 Sema::LookupOrdinaryName);
6207  if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression))
6208    return Destroy(SemaRef, Fn, Args, NumArgs);
6209
6210  assert(!R.empty() && "lookup results empty despite recovery");
6211
6212  // Build an implicit member call if appropriate.  Just drop the
6213  // casts and such from the call, we don't really care.
6214  Sema::OwningExprResult NewFn = SemaRef.ExprError();
6215  if ((*R.begin())->isCXXClassMember())
6216    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
6217  else if (ExplicitTemplateArgs)
6218    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
6219  else
6220    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
6221
6222  if (NewFn.isInvalid())
6223    return Destroy(SemaRef, Fn, Args, NumArgs);
6224
6225  Fn->Destroy(SemaRef.Context);
6226
6227  // This shouldn't cause an infinite loop because we're giving it
6228  // an expression with non-empty lookup results, which should never
6229  // end up here.
6230  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
6231                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
6232                               CommaLocs, RParenLoc);
6233}
6234
6235/// ResolveOverloadedCallFn - Given the call expression that calls Fn
6236/// (which eventually refers to the declaration Func) and the call
6237/// arguments Args/NumArgs, attempt to resolve the function call down
6238/// to a specific function. If overload resolution succeeds, returns
6239/// the function declaration produced by overload
6240/// resolution. Otherwise, emits diagnostics, deletes all of the
6241/// arguments and Fn, and returns NULL.
6242Sema::OwningExprResult
6243Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
6244                              SourceLocation LParenLoc,
6245                              Expr **Args, unsigned NumArgs,
6246                              SourceLocation *CommaLocs,
6247                              SourceLocation RParenLoc) {
6248#ifndef NDEBUG
6249  if (ULE->requiresADL()) {
6250    // To do ADL, we must have found an unqualified name.
6251    assert(!ULE->getQualifier() && "qualified name with ADL");
6252
6253    // We don't perform ADL for implicit declarations of builtins.
6254    // Verify that this was correctly set up.
6255    FunctionDecl *F;
6256    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
6257        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
6258        F->getBuiltinID() && F->isImplicit())
6259      assert(0 && "performing ADL for builtin");
6260
6261    // We don't perform ADL in C.
6262    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
6263  }
6264#endif
6265
6266  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
6267
6268  // Add the functions denoted by the callee to the set of candidate
6269  // functions, including those from argument-dependent lookup.
6270  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
6271
6272  // If we found nothing, try to recover.
6273  // AddRecoveryCallCandidates diagnoses the error itself, so we just
6274  // bailout out if it fails.
6275  if (CandidateSet.empty())
6276    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
6277                                 CommaLocs, RParenLoc);
6278
6279  OverloadCandidateSet::iterator Best;
6280  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
6281  case OR_Success: {
6282    FunctionDecl *FDecl = Best->Function;
6283    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
6284    DiagnoseUseOfDecl(Best->FoundDecl, ULE->getNameLoc());
6285    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
6286    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
6287  }
6288
6289  case OR_No_Viable_Function:
6290    Diag(Fn->getSourceRange().getBegin(),
6291         diag::err_ovl_no_viable_function_in_call)
6292      << ULE->getName() << Fn->getSourceRange();
6293    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6294    break;
6295
6296  case OR_Ambiguous:
6297    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
6298      << ULE->getName() << Fn->getSourceRange();
6299    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6300    break;
6301
6302  case OR_Deleted:
6303    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
6304      << Best->Function->isDeleted()
6305      << ULE->getName()
6306      << Fn->getSourceRange();
6307    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6308    break;
6309  }
6310
6311  // Overload resolution failed. Destroy all of the subexpressions and
6312  // return NULL.
6313  Fn->Destroy(Context);
6314  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
6315    Args[Arg]->Destroy(Context);
6316  return ExprError();
6317}
6318
6319static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
6320  return Functions.size() > 1 ||
6321    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
6322}
6323
6324/// \brief Create a unary operation that may resolve to an overloaded
6325/// operator.
6326///
6327/// \param OpLoc The location of the operator itself (e.g., '*').
6328///
6329/// \param OpcIn The UnaryOperator::Opcode that describes this
6330/// operator.
6331///
6332/// \param Functions The set of non-member functions that will be
6333/// considered by overload resolution. The caller needs to build this
6334/// set based on the context using, e.g.,
6335/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6336/// set should not contain any member functions; those will be added
6337/// by CreateOverloadedUnaryOp().
6338///
6339/// \param input The input argument.
6340Sema::OwningExprResult
6341Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
6342                              const UnresolvedSetImpl &Fns,
6343                              ExprArg input) {
6344  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
6345  Expr *Input = (Expr *)input.get();
6346
6347  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
6348  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
6349  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6350
6351  Expr *Args[2] = { Input, 0 };
6352  unsigned NumArgs = 1;
6353
6354  // For post-increment and post-decrement, add the implicit '0' as
6355  // the second argument, so that we know this is a post-increment or
6356  // post-decrement.
6357  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
6358    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
6359    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
6360                                           SourceLocation());
6361    NumArgs = 2;
6362  }
6363
6364  if (Input->isTypeDependent()) {
6365    if (Fns.empty())
6366      return Owned(new (Context) UnaryOperator(input.takeAs<Expr>(),
6367                                               Opc,
6368                                               Context.DependentTy,
6369                                               OpLoc));
6370
6371    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6372    UnresolvedLookupExpr *Fn
6373      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6374                                     0, SourceRange(), OpName, OpLoc,
6375                                     /*ADL*/ true, IsOverloaded(Fns),
6376                                     Fns.begin(), Fns.end());
6377    input.release();
6378    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6379                                                   &Args[0], NumArgs,
6380                                                   Context.DependentTy,
6381                                                   OpLoc));
6382  }
6383
6384  // Build an empty overload set.
6385  OverloadCandidateSet CandidateSet(OpLoc);
6386
6387  // Add the candidates from the given function set.
6388  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
6389
6390  // Add operator candidates that are member functions.
6391  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6392
6393  // Add candidates from ADL.
6394  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6395                                       Args, NumArgs,
6396                                       /*ExplicitTemplateArgs*/ 0,
6397                                       CandidateSet);
6398
6399  // Add builtin operator candidates.
6400  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
6401
6402  // Perform overload resolution.
6403  OverloadCandidateSet::iterator Best;
6404  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6405  case OR_Success: {
6406    // We found a built-in operator or an overloaded operator.
6407    FunctionDecl *FnDecl = Best->Function;
6408
6409    if (FnDecl) {
6410      // We matched an overloaded operator. Build a call to that
6411      // operator.
6412
6413      // Convert the arguments.
6414      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6415        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
6416
6417        if (PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
6418                                                Best->FoundDecl, Method))
6419          return ExprError();
6420      } else {
6421        // Convert the arguments.
6422        OwningExprResult InputInit
6423          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6424                                                      FnDecl->getParamDecl(0)),
6425                                      SourceLocation(),
6426                                      move(input));
6427        if (InputInit.isInvalid())
6428          return ExprError();
6429
6430        input = move(InputInit);
6431        Input = (Expr *)input.get();
6432      }
6433
6434      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6435
6436      // Determine the result type
6437      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
6438
6439      // Build the actual expression node.
6440      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6441                                               SourceLocation());
6442      UsualUnaryConversions(FnExpr);
6443
6444      input.release();
6445      Args[0] = Input;
6446      ExprOwningPtr<CallExpr> TheCall(this,
6447        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6448                                          Args, NumArgs, ResultTy, OpLoc));
6449
6450      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6451                              FnDecl))
6452        return ExprError();
6453
6454      return MaybeBindToTemporary(TheCall.release());
6455    } else {
6456      // We matched a built-in operator. Convert the arguments, then
6457      // break out so that we will build the appropriate built-in
6458      // operator node.
6459        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
6460                                      Best->Conversions[0], AA_Passing))
6461          return ExprError();
6462
6463        break;
6464      }
6465    }
6466
6467    case OR_No_Viable_Function:
6468      // No viable function; fall through to handling this as a
6469      // built-in operator, which will produce an error message for us.
6470      break;
6471
6472    case OR_Ambiguous:
6473      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6474          << UnaryOperator::getOpcodeStr(Opc)
6475          << Input->getSourceRange();
6476      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
6477                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
6478      return ExprError();
6479
6480    case OR_Deleted:
6481      Diag(OpLoc, diag::err_ovl_deleted_oper)
6482        << Best->Function->isDeleted()
6483        << UnaryOperator::getOpcodeStr(Opc)
6484        << Input->getSourceRange();
6485      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6486      return ExprError();
6487    }
6488
6489  // Either we found no viable overloaded operator or we matched a
6490  // built-in operator. In either case, fall through to trying to
6491  // build a built-in operation.
6492  input.release();
6493  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
6494}
6495
6496/// \brief Create a binary operation that may resolve to an overloaded
6497/// operator.
6498///
6499/// \param OpLoc The location of the operator itself (e.g., '+').
6500///
6501/// \param OpcIn The BinaryOperator::Opcode that describes this
6502/// operator.
6503///
6504/// \param Functions The set of non-member functions that will be
6505/// considered by overload resolution. The caller needs to build this
6506/// set based on the context using, e.g.,
6507/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
6508/// set should not contain any member functions; those will be added
6509/// by CreateOverloadedBinOp().
6510///
6511/// \param LHS Left-hand argument.
6512/// \param RHS Right-hand argument.
6513Sema::OwningExprResult
6514Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
6515                            unsigned OpcIn,
6516                            const UnresolvedSetImpl &Fns,
6517                            Expr *LHS, Expr *RHS) {
6518  Expr *Args[2] = { LHS, RHS };
6519  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
6520
6521  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
6522  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
6523  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
6524
6525  // If either side is type-dependent, create an appropriate dependent
6526  // expression.
6527  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6528    if (Fns.empty()) {
6529      // If there are no functions to store, just build a dependent
6530      // BinaryOperator or CompoundAssignment.
6531      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
6532        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
6533                                                  Context.DependentTy, OpLoc));
6534
6535      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
6536                                                        Context.DependentTy,
6537                                                        Context.DependentTy,
6538                                                        Context.DependentTy,
6539                                                        OpLoc));
6540    }
6541
6542    // FIXME: save results of ADL from here?
6543    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6544    UnresolvedLookupExpr *Fn
6545      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6546                                     0, SourceRange(), OpName, OpLoc,
6547                                     /*ADL*/ true, IsOverloaded(Fns),
6548                                     Fns.begin(), Fns.end());
6549    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
6550                                                   Args, 2,
6551                                                   Context.DependentTy,
6552                                                   OpLoc));
6553  }
6554
6555  // If this is the .* operator, which is not overloadable, just
6556  // create a built-in binary operator.
6557  if (Opc == BinaryOperator::PtrMemD)
6558    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6559
6560  // If this is the assignment operator, we only perform overload resolution
6561  // if the left-hand side is a class or enumeration type. This is actually
6562  // a hack. The standard requires that we do overload resolution between the
6563  // various built-in candidates, but as DR507 points out, this can lead to
6564  // problems. So we do it this way, which pretty much follows what GCC does.
6565  // Note that we go the traditional code path for compound assignment forms.
6566  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
6567    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6568
6569  // Build an empty overload set.
6570  OverloadCandidateSet CandidateSet(OpLoc);
6571
6572  // Add the candidates from the given function set.
6573  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
6574
6575  // Add operator candidates that are member functions.
6576  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6577
6578  // Add candidates from ADL.
6579  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
6580                                       Args, 2,
6581                                       /*ExplicitTemplateArgs*/ 0,
6582                                       CandidateSet);
6583
6584  // Add builtin operator candidates.
6585  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
6586
6587  // Perform overload resolution.
6588  OverloadCandidateSet::iterator Best;
6589  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6590    case OR_Success: {
6591      // We found a built-in operator or an overloaded operator.
6592      FunctionDecl *FnDecl = Best->Function;
6593
6594      if (FnDecl) {
6595        // We matched an overloaded operator. Build a call to that
6596        // operator.
6597
6598        // Convert the arguments.
6599        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
6600          // Best->Access is only meaningful for class members.
6601          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
6602
6603          OwningExprResult Arg1
6604            = PerformCopyInitialization(
6605                                        InitializedEntity::InitializeParameter(
6606                                                        FnDecl->getParamDecl(0)),
6607                                        SourceLocation(),
6608                                        Owned(Args[1]));
6609          if (Arg1.isInvalid())
6610            return ExprError();
6611
6612          if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6613                                                  Best->FoundDecl, Method))
6614            return ExprError();
6615
6616          Args[1] = RHS = Arg1.takeAs<Expr>();
6617        } else {
6618          // Convert the arguments.
6619          OwningExprResult Arg0
6620            = PerformCopyInitialization(
6621                                        InitializedEntity::InitializeParameter(
6622                                                        FnDecl->getParamDecl(0)),
6623                                        SourceLocation(),
6624                                        Owned(Args[0]));
6625          if (Arg0.isInvalid())
6626            return ExprError();
6627
6628          OwningExprResult Arg1
6629            = PerformCopyInitialization(
6630                                        InitializedEntity::InitializeParameter(
6631                                                        FnDecl->getParamDecl(1)),
6632                                        SourceLocation(),
6633                                        Owned(Args[1]));
6634          if (Arg1.isInvalid())
6635            return ExprError();
6636          Args[0] = LHS = Arg0.takeAs<Expr>();
6637          Args[1] = RHS = Arg1.takeAs<Expr>();
6638        }
6639
6640        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
6641
6642        // Determine the result type
6643        QualType ResultTy
6644          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6645        ResultTy = ResultTy.getNonReferenceType();
6646
6647        // Build the actual expression node.
6648        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6649                                                 OpLoc);
6650        UsualUnaryConversions(FnExpr);
6651
6652        ExprOwningPtr<CXXOperatorCallExpr>
6653          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
6654                                                          Args, 2, ResultTy,
6655                                                          OpLoc));
6656
6657        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
6658                                FnDecl))
6659          return ExprError();
6660
6661        return MaybeBindToTemporary(TheCall.release());
6662      } else {
6663        // We matched a built-in operator. Convert the arguments, then
6664        // break out so that we will build the appropriate built-in
6665        // operator node.
6666        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6667                                      Best->Conversions[0], AA_Passing) ||
6668            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6669                                      Best->Conversions[1], AA_Passing))
6670          return ExprError();
6671
6672        break;
6673      }
6674    }
6675
6676    case OR_No_Viable_Function: {
6677      // C++ [over.match.oper]p9:
6678      //   If the operator is the operator , [...] and there are no
6679      //   viable functions, then the operator is assumed to be the
6680      //   built-in operator and interpreted according to clause 5.
6681      if (Opc == BinaryOperator::Comma)
6682        break;
6683
6684      // For class as left operand for assignment or compound assigment operator
6685      // do not fall through to handling in built-in, but report that no overloaded
6686      // assignment operator found
6687      OwningExprResult Result = ExprError();
6688      if (Args[0]->getType()->isRecordType() &&
6689          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
6690        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
6691             << BinaryOperator::getOpcodeStr(Opc)
6692             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6693      } else {
6694        // No viable function; try to create a built-in operation, which will
6695        // produce an error. Then, show the non-viable candidates.
6696        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6697      }
6698      assert(Result.isInvalid() &&
6699             "C++ binary operator overloading is missing candidates!");
6700      if (Result.isInvalid())
6701        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6702                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
6703      return move(Result);
6704    }
6705
6706    case OR_Ambiguous:
6707      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6708          << BinaryOperator::getOpcodeStr(Opc)
6709          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6710      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6711                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
6712      return ExprError();
6713
6714    case OR_Deleted:
6715      Diag(OpLoc, diag::err_ovl_deleted_oper)
6716        << Best->Function->isDeleted()
6717        << BinaryOperator::getOpcodeStr(Opc)
6718        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6719      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
6720      return ExprError();
6721  }
6722
6723  // We matched a built-in operator; build it.
6724  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
6725}
6726
6727Action::OwningExprResult
6728Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
6729                                         SourceLocation RLoc,
6730                                         ExprArg Base, ExprArg Idx) {
6731  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
6732                    static_cast<Expr*>(Idx.get()) };
6733  DeclarationName OpName =
6734      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
6735
6736  // If either side is type-dependent, create an appropriate dependent
6737  // expression.
6738  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
6739
6740    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
6741    UnresolvedLookupExpr *Fn
6742      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true, NamingClass,
6743                                     0, SourceRange(), OpName, LLoc,
6744                                     /*ADL*/ true, /*Overloaded*/ false,
6745                                     UnresolvedSetIterator(),
6746                                     UnresolvedSetIterator());
6747    // Can't add any actual overloads yet
6748
6749    Base.release();
6750    Idx.release();
6751    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
6752                                                   Args, 2,
6753                                                   Context.DependentTy,
6754                                                   RLoc));
6755  }
6756
6757  // Build an empty overload set.
6758  OverloadCandidateSet CandidateSet(LLoc);
6759
6760  // Subscript can only be overloaded as a member function.
6761
6762  // Add operator candidates that are member functions.
6763  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6764
6765  // Add builtin operator candidates.
6766  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
6767
6768  // Perform overload resolution.
6769  OverloadCandidateSet::iterator Best;
6770  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
6771    case OR_Success: {
6772      // We found a built-in operator or an overloaded operator.
6773      FunctionDecl *FnDecl = Best->Function;
6774
6775      if (FnDecl) {
6776        // We matched an overloaded operator. Build a call to that
6777        // operator.
6778
6779        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
6780        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
6781
6782        // Convert the arguments.
6783        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
6784        if (PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
6785                                                Best->FoundDecl, Method))
6786          return ExprError();
6787
6788        // Convert the arguments.
6789        OwningExprResult InputInit
6790          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
6791                                                      FnDecl->getParamDecl(0)),
6792                                      SourceLocation(),
6793                                      Owned(Args[1]));
6794        if (InputInit.isInvalid())
6795          return ExprError();
6796
6797        Args[1] = InputInit.takeAs<Expr>();
6798
6799        // Determine the result type
6800        QualType ResultTy
6801          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
6802        ResultTy = ResultTy.getNonReferenceType();
6803
6804        // Build the actual expression node.
6805        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
6806                                                 LLoc);
6807        UsualUnaryConversions(FnExpr);
6808
6809        Base.release();
6810        Idx.release();
6811        ExprOwningPtr<CXXOperatorCallExpr>
6812          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
6813                                                          FnExpr, Args, 2,
6814                                                          ResultTy, RLoc));
6815
6816        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
6817                                FnDecl))
6818          return ExprError();
6819
6820        return MaybeBindToTemporary(TheCall.release());
6821      } else {
6822        // We matched a built-in operator. Convert the arguments, then
6823        // break out so that we will build the appropriate built-in
6824        // operator node.
6825        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
6826                                      Best->Conversions[0], AA_Passing) ||
6827            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
6828                                      Best->Conversions[1], AA_Passing))
6829          return ExprError();
6830
6831        break;
6832      }
6833    }
6834
6835    case OR_No_Viable_Function: {
6836      if (CandidateSet.empty())
6837        Diag(LLoc, diag::err_ovl_no_oper)
6838          << Args[0]->getType() << /*subscript*/ 0
6839          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6840      else
6841        Diag(LLoc, diag::err_ovl_no_viable_subscript)
6842          << Args[0]->getType()
6843          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6844      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6845                              "[]", LLoc);
6846      return ExprError();
6847    }
6848
6849    case OR_Ambiguous:
6850      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
6851          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6852      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
6853                              "[]", LLoc);
6854      return ExprError();
6855
6856    case OR_Deleted:
6857      Diag(LLoc, diag::err_ovl_deleted_oper)
6858        << Best->Function->isDeleted() << "[]"
6859        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
6860      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
6861                              "[]", LLoc);
6862      return ExprError();
6863    }
6864
6865  // We matched a built-in operator; build it.
6866  Base.release();
6867  Idx.release();
6868  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
6869                                         Owned(Args[1]), RLoc);
6870}
6871
6872/// BuildCallToMemberFunction - Build a call to a member
6873/// function. MemExpr is the expression that refers to the member
6874/// function (and includes the object parameter), Args/NumArgs are the
6875/// arguments to the function call (not including the object
6876/// parameter). The caller needs to validate that the member
6877/// expression refers to a member function or an overloaded member
6878/// function.
6879Sema::OwningExprResult
6880Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
6881                                SourceLocation LParenLoc, Expr **Args,
6882                                unsigned NumArgs, SourceLocation *CommaLocs,
6883                                SourceLocation RParenLoc) {
6884  // Dig out the member expression. This holds both the object
6885  // argument and the member function we're referring to.
6886  Expr *NakedMemExpr = MemExprE->IgnoreParens();
6887
6888  MemberExpr *MemExpr;
6889  CXXMethodDecl *Method = 0;
6890  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
6891  NestedNameSpecifier *Qualifier = 0;
6892  if (isa<MemberExpr>(NakedMemExpr)) {
6893    MemExpr = cast<MemberExpr>(NakedMemExpr);
6894    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
6895    FoundDecl = MemExpr->getFoundDecl();
6896    Qualifier = MemExpr->getQualifier();
6897  } else {
6898    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
6899    Qualifier = UnresExpr->getQualifier();
6900
6901    QualType ObjectType = UnresExpr->getBaseType();
6902
6903    // Add overload candidates
6904    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
6905
6906    // FIXME: avoid copy.
6907    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6908    if (UnresExpr->hasExplicitTemplateArgs()) {
6909      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6910      TemplateArgs = &TemplateArgsBuffer;
6911    }
6912
6913    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
6914           E = UnresExpr->decls_end(); I != E; ++I) {
6915
6916      NamedDecl *Func = *I;
6917      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
6918      if (isa<UsingShadowDecl>(Func))
6919        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
6920
6921      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
6922        // If explicit template arguments were provided, we can't call a
6923        // non-template member function.
6924        if (TemplateArgs)
6925          continue;
6926
6927        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
6928                           Args, NumArgs,
6929                           CandidateSet, /*SuppressUserConversions=*/false);
6930      } else {
6931        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
6932                                   I.getPair(), ActingDC, TemplateArgs,
6933                                   ObjectType, Args, NumArgs,
6934                                   CandidateSet,
6935                                   /*SuppressUsedConversions=*/false);
6936      }
6937    }
6938
6939    DeclarationName DeclName = UnresExpr->getMemberName();
6940
6941    OverloadCandidateSet::iterator Best;
6942    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
6943    case OR_Success:
6944      Method = cast<CXXMethodDecl>(Best->Function);
6945      FoundDecl = Best->FoundDecl;
6946      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
6947      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
6948      break;
6949
6950    case OR_No_Viable_Function:
6951      Diag(UnresExpr->getMemberLoc(),
6952           diag::err_ovl_no_viable_member_function_in_call)
6953        << DeclName << MemExprE->getSourceRange();
6954      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6955      // FIXME: Leaking incoming expressions!
6956      return ExprError();
6957
6958    case OR_Ambiguous:
6959      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
6960        << DeclName << MemExprE->getSourceRange();
6961      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6962      // FIXME: Leaking incoming expressions!
6963      return ExprError();
6964
6965    case OR_Deleted:
6966      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
6967        << Best->Function->isDeleted()
6968        << DeclName << MemExprE->getSourceRange();
6969      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6970      // FIXME: Leaking incoming expressions!
6971      return ExprError();
6972    }
6973
6974    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
6975
6976    // If overload resolution picked a static member, build a
6977    // non-member call based on that function.
6978    if (Method->isStatic()) {
6979      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
6980                                   Args, NumArgs, RParenLoc);
6981    }
6982
6983    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
6984  }
6985
6986  assert(Method && "Member call to something that isn't a method?");
6987  ExprOwningPtr<CXXMemberCallExpr>
6988    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
6989                                                  NumArgs,
6990                                  Method->getResultType().getNonReferenceType(),
6991                                  RParenLoc));
6992
6993  // Check for a valid return type.
6994  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
6995                          TheCall.get(), Method))
6996    return ExprError();
6997
6998  // Convert the object argument (for a non-static member function call).
6999  // We only need to do this if there was actually an overload; otherwise
7000  // it was done at lookup.
7001  Expr *ObjectArg = MemExpr->getBase();
7002  if (!Method->isStatic() &&
7003      PerformObjectArgumentInitialization(ObjectArg, Qualifier,
7004                                          FoundDecl, Method))
7005    return ExprError();
7006  MemExpr->setBase(ObjectArg);
7007
7008  // Convert the rest of the arguments
7009  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
7010  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
7011                              RParenLoc))
7012    return ExprError();
7013
7014  if (CheckFunctionCall(Method, TheCall.get()))
7015    return ExprError();
7016
7017  return MaybeBindToTemporary(TheCall.release());
7018}
7019
7020/// BuildCallToObjectOfClassType - Build a call to an object of class
7021/// type (C++ [over.call.object]), which can end up invoking an
7022/// overloaded function call operator (@c operator()) or performing a
7023/// user-defined conversion on the object argument.
7024Sema::ExprResult
7025Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
7026                                   SourceLocation LParenLoc,
7027                                   Expr **Args, unsigned NumArgs,
7028                                   SourceLocation *CommaLocs,
7029                                   SourceLocation RParenLoc) {
7030  assert(Object->getType()->isRecordType() && "Requires object type argument");
7031  const RecordType *Record = Object->getType()->getAs<RecordType>();
7032
7033  // C++ [over.call.object]p1:
7034  //  If the primary-expression E in the function call syntax
7035  //  evaluates to a class object of type "cv T", then the set of
7036  //  candidate functions includes at least the function call
7037  //  operators of T. The function call operators of T are obtained by
7038  //  ordinary lookup of the name operator() in the context of
7039  //  (E).operator().
7040  OverloadCandidateSet CandidateSet(LParenLoc);
7041  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
7042
7043  if (RequireCompleteType(LParenLoc, Object->getType(),
7044                          PDiag(diag::err_incomplete_object_call)
7045                          << Object->getSourceRange()))
7046    return true;
7047
7048  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
7049  LookupQualifiedName(R, Record->getDecl());
7050  R.suppressDiagnostics();
7051
7052  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
7053       Oper != OperEnd; ++Oper) {
7054    AddMethodCandidate(Oper.getPair(), Object->getType(),
7055                       Args, NumArgs, CandidateSet,
7056                       /*SuppressUserConversions=*/ false);
7057  }
7058
7059  // C++ [over.call.object]p2:
7060  //   In addition, for each conversion function declared in T of the
7061  //   form
7062  //
7063  //        operator conversion-type-id () cv-qualifier;
7064  //
7065  //   where cv-qualifier is the same cv-qualification as, or a
7066  //   greater cv-qualification than, cv, and where conversion-type-id
7067  //   denotes the type "pointer to function of (P1,...,Pn) returning
7068  //   R", or the type "reference to pointer to function of
7069  //   (P1,...,Pn) returning R", or the type "reference to function
7070  //   of (P1,...,Pn) returning R", a surrogate call function [...]
7071  //   is also considered as a candidate function. Similarly,
7072  //   surrogate call functions are added to the set of candidate
7073  //   functions for each conversion function declared in an
7074  //   accessible base class provided the function is not hidden
7075  //   within T by another intervening declaration.
7076  const UnresolvedSetImpl *Conversions
7077    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
7078  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
7079         E = Conversions->end(); I != E; ++I) {
7080    NamedDecl *D = *I;
7081    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
7082    if (isa<UsingShadowDecl>(D))
7083      D = cast<UsingShadowDecl>(D)->getTargetDecl();
7084
7085    // Skip over templated conversion functions; they aren't
7086    // surrogates.
7087    if (isa<FunctionTemplateDecl>(D))
7088      continue;
7089
7090    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
7091
7092    // Strip the reference type (if any) and then the pointer type (if
7093    // any) to get down to what might be a function type.
7094    QualType ConvType = Conv->getConversionType().getNonReferenceType();
7095    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
7096      ConvType = ConvPtrType->getPointeeType();
7097
7098    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
7099      AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
7100                            Object->getType(), Args, NumArgs,
7101                            CandidateSet);
7102  }
7103
7104  // Perform overload resolution.
7105  OverloadCandidateSet::iterator Best;
7106  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
7107  case OR_Success:
7108    // Overload resolution succeeded; we'll build the appropriate call
7109    // below.
7110    break;
7111
7112  case OR_No_Viable_Function:
7113    if (CandidateSet.empty())
7114      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
7115        << Object->getType() << /*call*/ 1
7116        << Object->getSourceRange();
7117    else
7118      Diag(Object->getSourceRange().getBegin(),
7119           diag::err_ovl_no_viable_object_call)
7120        << Object->getType() << Object->getSourceRange();
7121    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7122    break;
7123
7124  case OR_Ambiguous:
7125    Diag(Object->getSourceRange().getBegin(),
7126         diag::err_ovl_ambiguous_object_call)
7127      << Object->getType() << Object->getSourceRange();
7128    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
7129    break;
7130
7131  case OR_Deleted:
7132    Diag(Object->getSourceRange().getBegin(),
7133         diag::err_ovl_deleted_object_call)
7134      << Best->Function->isDeleted()
7135      << Object->getType() << Object->getSourceRange();
7136    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
7137    break;
7138  }
7139
7140  if (Best == CandidateSet.end()) {
7141    // We had an error; delete all of the subexpressions and return
7142    // the error.
7143    Object->Destroy(Context);
7144    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7145      Args[ArgIdx]->Destroy(Context);
7146    return true;
7147  }
7148
7149  if (Best->Function == 0) {
7150    // Since there is no function declaration, this is one of the
7151    // surrogate candidates. Dig out the conversion function.
7152    CXXConversionDecl *Conv
7153      = cast<CXXConversionDecl>(
7154                         Best->Conversions[0].UserDefined.ConversionFunction);
7155
7156    CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
7157    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
7158
7159    // We selected one of the surrogate functions that converts the
7160    // object parameter to a function pointer. Perform the conversion
7161    // on the object argument, then let ActOnCallExpr finish the job.
7162
7163    // Create an implicit member expr to refer to the conversion operator.
7164    // and then call it.
7165    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Best->FoundDecl,
7166                                                   Conv);
7167
7168    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
7169                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
7170                         CommaLocs, RParenLoc).result();
7171  }
7172
7173  CheckMemberOperatorAccess(LParenLoc, Object, 0, Best->FoundDecl);
7174  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
7175
7176  // We found an overloaded operator(). Build a CXXOperatorCallExpr
7177  // that calls this method, using Object for the implicit object
7178  // parameter and passing along the remaining arguments.
7179  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
7180  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
7181
7182  unsigned NumArgsInProto = Proto->getNumArgs();
7183  unsigned NumArgsToCheck = NumArgs;
7184
7185  // Build the full argument list for the method call (the
7186  // implicit object parameter is placed at the beginning of the
7187  // list).
7188  Expr **MethodArgs;
7189  if (NumArgs < NumArgsInProto) {
7190    NumArgsToCheck = NumArgsInProto;
7191    MethodArgs = new Expr*[NumArgsInProto + 1];
7192  } else {
7193    MethodArgs = new Expr*[NumArgs + 1];
7194  }
7195  MethodArgs[0] = Object;
7196  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
7197    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
7198
7199  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
7200                                          SourceLocation());
7201  UsualUnaryConversions(NewFn);
7202
7203  // Once we've built TheCall, all of the expressions are properly
7204  // owned.
7205  QualType ResultTy = Method->getResultType().getNonReferenceType();
7206  ExprOwningPtr<CXXOperatorCallExpr>
7207    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
7208                                                    MethodArgs, NumArgs + 1,
7209                                                    ResultTy, RParenLoc));
7210  delete [] MethodArgs;
7211
7212  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
7213                          Method))
7214    return true;
7215
7216  // We may have default arguments. If so, we need to allocate more
7217  // slots in the call for them.
7218  if (NumArgs < NumArgsInProto)
7219    TheCall->setNumArgs(Context, NumArgsInProto + 1);
7220  else if (NumArgs > NumArgsInProto)
7221    NumArgsToCheck = NumArgsInProto;
7222
7223  bool IsError = false;
7224
7225  // Initialize the implicit object parameter.
7226  IsError |= PerformObjectArgumentInitialization(Object, /*Qualifier=*/0,
7227                                                 Best->FoundDecl, Method);
7228  TheCall->setArg(0, Object);
7229
7230
7231  // Check the argument types.
7232  for (unsigned i = 0; i != NumArgsToCheck; i++) {
7233    Expr *Arg;
7234    if (i < NumArgs) {
7235      Arg = Args[i];
7236
7237      // Pass the argument.
7238
7239      OwningExprResult InputInit
7240        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
7241                                                    Method->getParamDecl(i)),
7242                                    SourceLocation(), Owned(Arg));
7243
7244      IsError |= InputInit.isInvalid();
7245      Arg = InputInit.takeAs<Expr>();
7246    } else {
7247      OwningExprResult DefArg
7248        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
7249      if (DefArg.isInvalid()) {
7250        IsError = true;
7251        break;
7252      }
7253
7254      Arg = DefArg.takeAs<Expr>();
7255    }
7256
7257    TheCall->setArg(i + 1, Arg);
7258  }
7259
7260  // If this is a variadic call, handle args passed through "...".
7261  if (Proto->isVariadic()) {
7262    // Promote the arguments (C99 6.5.2.2p7).
7263    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
7264      Expr *Arg = Args[i];
7265      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod, 0);
7266      TheCall->setArg(i + 1, Arg);
7267    }
7268  }
7269
7270  if (IsError) return true;
7271
7272  if (CheckFunctionCall(Method, TheCall.get()))
7273    return true;
7274
7275  return MaybeBindToTemporary(TheCall.release()).result();
7276}
7277
7278/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
7279///  (if one exists), where @c Base is an expression of class type and
7280/// @c Member is the name of the member we're trying to find.
7281Sema::OwningExprResult
7282Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
7283  Expr *Base = static_cast<Expr *>(BaseIn.get());
7284  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
7285
7286  SourceLocation Loc = Base->getExprLoc();
7287
7288  // C++ [over.ref]p1:
7289  //
7290  //   [...] An expression x->m is interpreted as (x.operator->())->m
7291  //   for a class object x of type T if T::operator->() exists and if
7292  //   the operator is selected as the best match function by the
7293  //   overload resolution mechanism (13.3).
7294  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
7295  OverloadCandidateSet CandidateSet(Loc);
7296  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
7297
7298  if (RequireCompleteType(Loc, Base->getType(),
7299                          PDiag(diag::err_typecheck_incomplete_tag)
7300                            << Base->getSourceRange()))
7301    return ExprError();
7302
7303  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
7304  LookupQualifiedName(R, BaseRecord->getDecl());
7305  R.suppressDiagnostics();
7306
7307  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
7308       Oper != OperEnd; ++Oper) {
7309    AddMethodCandidate(Oper.getPair(), Base->getType(), 0, 0, CandidateSet,
7310                       /*SuppressUserConversions=*/false);
7311  }
7312
7313  // Perform overload resolution.
7314  OverloadCandidateSet::iterator Best;
7315  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
7316  case OR_Success:
7317    // Overload resolution succeeded; we'll build the call below.
7318    break;
7319
7320  case OR_No_Viable_Function:
7321    if (CandidateSet.empty())
7322      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7323        << Base->getType() << Base->getSourceRange();
7324    else
7325      Diag(OpLoc, diag::err_ovl_no_viable_oper)
7326        << "operator->" << Base->getSourceRange();
7327    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7328    return ExprError();
7329
7330  case OR_Ambiguous:
7331    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
7332      << "->" << Base->getSourceRange();
7333    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
7334    return ExprError();
7335
7336  case OR_Deleted:
7337    Diag(OpLoc,  diag::err_ovl_deleted_oper)
7338      << Best->Function->isDeleted()
7339      << "->" << Base->getSourceRange();
7340    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
7341    return ExprError();
7342  }
7343
7344  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
7345  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
7346
7347  // Convert the object parameter.
7348  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
7349  if (PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
7350                                          Best->FoundDecl, Method))
7351    return ExprError();
7352
7353  // No concerns about early exits now.
7354  BaseIn.release();
7355
7356  // Build the operator call.
7357  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
7358                                           SourceLocation());
7359  UsualUnaryConversions(FnExpr);
7360
7361  QualType ResultTy = Method->getResultType().getNonReferenceType();
7362  ExprOwningPtr<CXXOperatorCallExpr>
7363    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
7364                                                    &Base, 1, ResultTy, OpLoc));
7365
7366  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
7367                          Method))
7368          return ExprError();
7369  return move(TheCall);
7370}
7371
7372/// FixOverloadedFunctionReference - E is an expression that refers to
7373/// a C++ overloaded function (possibly with some parentheses and
7374/// perhaps a '&' around it). We have resolved the overloaded function
7375/// to the function declaration Fn, so patch up the expression E to
7376/// refer (possibly indirectly) to Fn. Returns the new expr.
7377Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
7378                                           FunctionDecl *Fn) {
7379  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7380    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
7381                                                   Found, Fn);
7382    if (SubExpr == PE->getSubExpr())
7383      return PE->Retain();
7384
7385    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
7386  }
7387
7388  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
7389    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
7390                                                   Found, Fn);
7391    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
7392                               SubExpr->getType()) &&
7393           "Implicit cast type cannot be determined from overload");
7394    if (SubExpr == ICE->getSubExpr())
7395      return ICE->Retain();
7396
7397    return new (Context) ImplicitCastExpr(ICE->getType(),
7398                                          ICE->getCastKind(),
7399                                          SubExpr, CXXBaseSpecifierArray(),
7400                                          ICE->isLvalueCast());
7401  }
7402
7403  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
7404    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
7405           "Can only take the address of an overloaded function");
7406    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7407      if (Method->isStatic()) {
7408        // Do nothing: static member functions aren't any different
7409        // from non-member functions.
7410      } else {
7411        // Fix the sub expression, which really has to be an
7412        // UnresolvedLookupExpr holding an overloaded member function
7413        // or template.
7414        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7415                                                       Found, Fn);
7416        if (SubExpr == UnOp->getSubExpr())
7417          return UnOp->Retain();
7418
7419        assert(isa<DeclRefExpr>(SubExpr)
7420               && "fixed to something other than a decl ref");
7421        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
7422               && "fixed to a member ref with no nested name qualifier");
7423
7424        // We have taken the address of a pointer to member
7425        // function. Perform the computation here so that we get the
7426        // appropriate pointer to member type.
7427        QualType ClassType
7428          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
7429        QualType MemPtrType
7430          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
7431
7432        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7433                                           MemPtrType, UnOp->getOperatorLoc());
7434      }
7435    }
7436    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
7437                                                   Found, Fn);
7438    if (SubExpr == UnOp->getSubExpr())
7439      return UnOp->Retain();
7440
7441    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
7442                                     Context.getPointerType(SubExpr->getType()),
7443                                       UnOp->getOperatorLoc());
7444  }
7445
7446  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
7447    // FIXME: avoid copy.
7448    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7449    if (ULE->hasExplicitTemplateArgs()) {
7450      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
7451      TemplateArgs = &TemplateArgsBuffer;
7452    }
7453
7454    return DeclRefExpr::Create(Context,
7455                               ULE->getQualifier(),
7456                               ULE->getQualifierRange(),
7457                               Fn,
7458                               ULE->getNameLoc(),
7459                               Fn->getType(),
7460                               TemplateArgs);
7461  }
7462
7463  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
7464    // FIXME: avoid copy.
7465    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
7466    if (MemExpr->hasExplicitTemplateArgs()) {
7467      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
7468      TemplateArgs = &TemplateArgsBuffer;
7469    }
7470
7471    Expr *Base;
7472
7473    // If we're filling in
7474    if (MemExpr->isImplicitAccess()) {
7475      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
7476        return DeclRefExpr::Create(Context,
7477                                   MemExpr->getQualifier(),
7478                                   MemExpr->getQualifierRange(),
7479                                   Fn,
7480                                   MemExpr->getMemberLoc(),
7481                                   Fn->getType(),
7482                                   TemplateArgs);
7483      } else {
7484        SourceLocation Loc = MemExpr->getMemberLoc();
7485        if (MemExpr->getQualifier())
7486          Loc = MemExpr->getQualifierRange().getBegin();
7487        Base = new (Context) CXXThisExpr(Loc,
7488                                         MemExpr->getBaseType(),
7489                                         /*isImplicit=*/true);
7490      }
7491    } else
7492      Base = MemExpr->getBase()->Retain();
7493
7494    return MemberExpr::Create(Context, Base,
7495                              MemExpr->isArrow(),
7496                              MemExpr->getQualifier(),
7497                              MemExpr->getQualifierRange(),
7498                              Fn,
7499                              Found,
7500                              MemExpr->getMemberLoc(),
7501                              TemplateArgs,
7502                              Fn->getType());
7503  }
7504
7505  assert(false && "Invalid reference to overloaded function");
7506  return E->Retain();
7507}
7508
7509Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
7510                                                          DeclAccessPair Found,
7511                                                            FunctionDecl *Fn) {
7512  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
7513}
7514
7515} // end namespace clang
7516