SemaOverload.cpp revision eadb1e8ff5a7d778576df4c4d7ce0eadc3fd867e
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/TypeOrdering.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm>
27#include <cstdio>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Qualification_Adjustment,
42    ICC_Promotion,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Conversion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion
55  };
56  return Category[(int)Kind];
57}
58
59/// GetConversionRank - Retrieve the implicit conversion rank
60/// corresponding to the given implicit conversion kind.
61ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
62  static const ImplicitConversionRank
63    Rank[(int)ICK_Num_Conversion_Kinds] = {
64    ICR_Exact_Match,
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Promotion,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Conversion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion
82  };
83  return Rank[(int)Kind];
84}
85
86/// GetImplicitConversionName - Return the name of this kind of
87/// implicit conversion.
88const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
89  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
90    "No conversion",
91    "Lvalue-to-rvalue",
92    "Array-to-pointer",
93    "Function-to-pointer",
94    "Qualification",
95    "Integral promotion",
96    "Floating point promotion",
97    "Complex promotion",
98    "Integral conversion",
99    "Floating conversion",
100    "Complex conversion",
101    "Floating-integral conversion",
102    "Complex-real conversion",
103    "Pointer conversion",
104    "Pointer-to-member conversion",
105    "Boolean conversion",
106    "Compatible-types conversion",
107    "Derived-to-base conversion"
108  };
109  return Name[Kind];
110}
111
112/// StandardConversionSequence - Set the standard conversion
113/// sequence to the identity conversion.
114void StandardConversionSequence::setAsIdentityConversion() {
115  First = ICK_Identity;
116  Second = ICK_Identity;
117  Third = ICK_Identity;
118  Deprecated = false;
119  ReferenceBinding = false;
120  DirectBinding = false;
121  RRefBinding = false;
122  CopyConstructor = 0;
123}
124
125/// getRank - Retrieve the rank of this standard conversion sequence
126/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
127/// implicit conversions.
128ImplicitConversionRank StandardConversionSequence::getRank() const {
129  ImplicitConversionRank Rank = ICR_Exact_Match;
130  if  (GetConversionRank(First) > Rank)
131    Rank = GetConversionRank(First);
132  if  (GetConversionRank(Second) > Rank)
133    Rank = GetConversionRank(Second);
134  if  (GetConversionRank(Third) > Rank)
135    Rank = GetConversionRank(Third);
136  return Rank;
137}
138
139/// isPointerConversionToBool - Determines whether this conversion is
140/// a conversion of a pointer or pointer-to-member to bool. This is
141/// used as part of the ranking of standard conversion sequences
142/// (C++ 13.3.3.2p4).
143bool StandardConversionSequence::isPointerConversionToBool() const {
144  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
145  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
146
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (ToType->isBooleanType() &&
152      (FromType->isPointerType() || FromType->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
167  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion)
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  bool PrintedSomething = false;
186  if (First != ICK_Identity) {
187    fprintf(stderr, "%s", GetImplicitConversionName(First));
188    PrintedSomething = true;
189  }
190
191  if (Second != ICK_Identity) {
192    if (PrintedSomething) {
193      fprintf(stderr, " -> ");
194    }
195    fprintf(stderr, "%s", GetImplicitConversionName(Second));
196
197    if (CopyConstructor) {
198      fprintf(stderr, " (by copy constructor)");
199    } else if (DirectBinding) {
200      fprintf(stderr, " (direct reference binding)");
201    } else if (ReferenceBinding) {
202      fprintf(stderr, " (reference binding)");
203    }
204    PrintedSomething = true;
205  }
206
207  if (Third != ICK_Identity) {
208    if (PrintedSomething) {
209      fprintf(stderr, " -> ");
210    }
211    fprintf(stderr, "%s", GetImplicitConversionName(Third));
212    PrintedSomething = true;
213  }
214
215  if (!PrintedSomething) {
216    fprintf(stderr, "No conversions required");
217  }
218}
219
220/// DebugPrint - Print this user-defined conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void UserDefinedConversionSequence::DebugPrint() const {
223  if (Before.First || Before.Second || Before.Third) {
224    Before.DebugPrint();
225    fprintf(stderr, " -> ");
226  }
227  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
228  if (After.First || After.Second || After.Third) {
229    fprintf(stderr, " -> ");
230    After.DebugPrint();
231  }
232}
233
234/// DebugPrint - Print this implicit conversion sequence to standard
235/// error. Useful for debugging overloading issues.
236void ImplicitConversionSequence::DebugPrint() const {
237  switch (ConversionKind) {
238  case StandardConversion:
239    fprintf(stderr, "Standard conversion: ");
240    Standard.DebugPrint();
241    break;
242  case UserDefinedConversion:
243    fprintf(stderr, "User-defined conversion: ");
244    UserDefined.DebugPrint();
245    break;
246  case EllipsisConversion:
247    fprintf(stderr, "Ellipsis conversion");
248    break;
249  case BadConversion:
250    fprintf(stderr, "Bad conversion");
251    break;
252  }
253
254  fprintf(stderr, "\n");
255}
256
257// IsOverload - Determine whether the given New declaration is an
258// overload of the Old declaration. This routine returns false if New
259// and Old cannot be overloaded, e.g., if they are functions with the
260// same signature (C++ 1.3.10) or if the Old declaration isn't a
261// function (or overload set). When it does return false and Old is an
262// OverloadedFunctionDecl, MatchedDecl will be set to point to the
263// FunctionDecl that New cannot be overloaded with.
264//
265// Example: Given the following input:
266//
267//   void f(int, float); // #1
268//   void f(int, int); // #2
269//   int f(int, int); // #3
270//
271// When we process #1, there is no previous declaration of "f",
272// so IsOverload will not be used.
273//
274// When we process #2, Old is a FunctionDecl for #1.  By comparing the
275// parameter types, we see that #1 and #2 are overloaded (since they
276// have different signatures), so this routine returns false;
277// MatchedDecl is unchanged.
278//
279// When we process #3, Old is an OverloadedFunctionDecl containing #1
280// and #2. We compare the signatures of #3 to #1 (they're overloaded,
281// so we do nothing) and then #3 to #2. Since the signatures of #3 and
282// #2 are identical (return types of functions are not part of the
283// signature), IsOverload returns false and MatchedDecl will be set to
284// point to the FunctionDecl for #2.
285bool
286Sema::IsOverload(FunctionDecl *New, Decl* OldD,
287                 OverloadedFunctionDecl::function_iterator& MatchedDecl) {
288  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289    // Is this new function an overload of every function in the
290    // overload set?
291    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292                                           FuncEnd = Ovl->function_end();
293    for (; Func != FuncEnd; ++Func) {
294      if (!IsOverload(New, *Func, MatchedDecl)) {
295        MatchedDecl = Func;
296        return false;
297      }
298    }
299
300    // This function overloads every function in the overload set.
301    return true;
302  } else if (FunctionTemplateDecl *Old = dyn_cast<FunctionTemplateDecl>(OldD))
303    return IsOverload(New, Old->getTemplatedDecl(), MatchedDecl);
304  else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
305    FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
306    FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
307
308    // C++ [temp.fct]p2:
309    //   A function template can be overloaded with other function templates
310    //   and with normal (non-template) functions.
311    if ((OldTemplate == 0) != (NewTemplate == 0))
312      return true;
313
314    // Is the function New an overload of the function Old?
315    QualType OldQType = Context.getCanonicalType(Old->getType());
316    QualType NewQType = Context.getCanonicalType(New->getType());
317
318    // Compare the signatures (C++ 1.3.10) of the two functions to
319    // determine whether they are overloads. If we find any mismatch
320    // in the signature, they are overloads.
321
322    // If either of these functions is a K&R-style function (no
323    // prototype), then we consider them to have matching signatures.
324    if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
325        isa<FunctionNoProtoType>(NewQType.getTypePtr()))
326      return false;
327
328    FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
329    FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
330
331    // The signature of a function includes the types of its
332    // parameters (C++ 1.3.10), which includes the presence or absence
333    // of the ellipsis; see C++ DR 357).
334    if (OldQType != NewQType &&
335        (OldType->getNumArgs() != NewType->getNumArgs() ||
336         OldType->isVariadic() != NewType->isVariadic() ||
337         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
338                     NewType->arg_type_begin())))
339      return true;
340
341    // C++ [temp.over.link]p4:
342    //   The signature of a function template consists of its function
343    //   signature, its return type and its template parameter list. The names
344    //   of the template parameters are significant only for establishing the
345    //   relationship between the template parameters and the rest of the
346    //   signature.
347    //
348    // We check the return type and template parameter lists for function
349    // templates first; the remaining checks follow.
350    if (NewTemplate &&
351        (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
352                                         OldTemplate->getTemplateParameters(),
353                                         false, false, SourceLocation()) ||
354         OldType->getResultType() != NewType->getResultType()))
355      return true;
356
357    // If the function is a class member, its signature includes the
358    // cv-qualifiers (if any) on the function itself.
359    //
360    // As part of this, also check whether one of the member functions
361    // is static, in which case they are not overloads (C++
362    // 13.1p2). While not part of the definition of the signature,
363    // this check is important to determine whether these functions
364    // can be overloaded.
365    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
366    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
367    if (OldMethod && NewMethod &&
368        !OldMethod->isStatic() && !NewMethod->isStatic() &&
369        OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
370      return true;
371
372    // The signatures match; this is not an overload.
373    return false;
374  } else {
375    // (C++ 13p1):
376    //   Only function declarations can be overloaded; object and type
377    //   declarations cannot be overloaded.
378    return false;
379  }
380}
381
382/// TryImplicitConversion - Attempt to perform an implicit conversion
383/// from the given expression (Expr) to the given type (ToType). This
384/// function returns an implicit conversion sequence that can be used
385/// to perform the initialization. Given
386///
387///   void f(float f);
388///   void g(int i) { f(i); }
389///
390/// this routine would produce an implicit conversion sequence to
391/// describe the initialization of f from i, which will be a standard
392/// conversion sequence containing an lvalue-to-rvalue conversion (C++
393/// 4.1) followed by a floating-integral conversion (C++ 4.9).
394//
395/// Note that this routine only determines how the conversion can be
396/// performed; it does not actually perform the conversion. As such,
397/// it will not produce any diagnostics if no conversion is available,
398/// but will instead return an implicit conversion sequence of kind
399/// "BadConversion".
400///
401/// If @p SuppressUserConversions, then user-defined conversions are
402/// not permitted.
403/// If @p AllowExplicit, then explicit user-defined conversions are
404/// permitted.
405/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
406/// no matter its actual lvalueness.
407ImplicitConversionSequence
408Sema::TryImplicitConversion(Expr* From, QualType ToType,
409                            bool SuppressUserConversions,
410                            bool AllowExplicit, bool ForceRValue,
411                            bool InOverloadResolution) {
412  ImplicitConversionSequence ICS;
413  OverloadCandidateSet Conversions;
414  OverloadingResult UserDefResult = OR_Success;
415  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
416    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
417  else if (getLangOptions().CPlusPlus &&
418           (UserDefResult = IsUserDefinedConversion(From, ToType,
419                                   ICS.UserDefined,
420                                   Conversions,
421                                   !SuppressUserConversions, AllowExplicit,
422                                   ForceRValue)) == OR_Success) {
423    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
424    // C++ [over.ics.user]p4:
425    //   A conversion of an expression of class type to the same class
426    //   type is given Exact Match rank, and a conversion of an
427    //   expression of class type to a base class of that type is
428    //   given Conversion rank, in spite of the fact that a copy
429    //   constructor (i.e., a user-defined conversion function) is
430    //   called for those cases.
431    if (CXXConstructorDecl *Constructor
432          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
433      QualType FromCanon
434        = Context.getCanonicalType(From->getType().getUnqualifiedType());
435      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
436      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
437        // Turn this into a "standard" conversion sequence, so that it
438        // gets ranked with standard conversion sequences.
439        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
440        ICS.Standard.setAsIdentityConversion();
441        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
442        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
443        ICS.Standard.CopyConstructor = Constructor;
444        if (ToCanon != FromCanon)
445          ICS.Standard.Second = ICK_Derived_To_Base;
446      }
447    }
448
449    // C++ [over.best.ics]p4:
450    //   However, when considering the argument of a user-defined
451    //   conversion function that is a candidate by 13.3.1.3 when
452    //   invoked for the copying of the temporary in the second step
453    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
454    //   13.3.1.6 in all cases, only standard conversion sequences and
455    //   ellipsis conversion sequences are allowed.
456    if (SuppressUserConversions &&
457        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
458      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
459  } else {
460    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
461    if (UserDefResult == OR_Ambiguous) {
462      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
463           Cand != Conversions.end(); ++Cand)
464        ICS.ConversionFunctionSet.push_back(Cand->Function);
465    }
466  }
467
468  return ICS;
469}
470
471/// IsStandardConversion - Determines whether there is a standard
472/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
473/// expression From to the type ToType. Standard conversion sequences
474/// only consider non-class types; for conversions that involve class
475/// types, use TryImplicitConversion. If a conversion exists, SCS will
476/// contain the standard conversion sequence required to perform this
477/// conversion and this routine will return true. Otherwise, this
478/// routine will return false and the value of SCS is unspecified.
479bool
480Sema::IsStandardConversion(Expr* From, QualType ToType,
481                           bool InOverloadResolution,
482                           StandardConversionSequence &SCS) {
483  QualType FromType = From->getType();
484
485  // Standard conversions (C++ [conv])
486  SCS.setAsIdentityConversion();
487  SCS.Deprecated = false;
488  SCS.IncompatibleObjC = false;
489  SCS.FromTypePtr = FromType.getAsOpaquePtr();
490  SCS.CopyConstructor = 0;
491
492  // There are no standard conversions for class types in C++, so
493  // abort early. When overloading in C, however, we do permit
494  if (FromType->isRecordType() || ToType->isRecordType()) {
495    if (getLangOptions().CPlusPlus)
496      return false;
497
498    // When we're overloading in C, we allow, as standard conversions,
499  }
500
501  // The first conversion can be an lvalue-to-rvalue conversion,
502  // array-to-pointer conversion, or function-to-pointer conversion
503  // (C++ 4p1).
504
505  // Lvalue-to-rvalue conversion (C++ 4.1):
506  //   An lvalue (3.10) of a non-function, non-array type T can be
507  //   converted to an rvalue.
508  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
509  if (argIsLvalue == Expr::LV_Valid &&
510      !FromType->isFunctionType() && !FromType->isArrayType() &&
511      Context.getCanonicalType(FromType) != Context.OverloadTy) {
512    SCS.First = ICK_Lvalue_To_Rvalue;
513
514    // If T is a non-class type, the type of the rvalue is the
515    // cv-unqualified version of T. Otherwise, the type of the rvalue
516    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
517    // just strip the qualifiers because they don't matter.
518
519    // FIXME: Doesn't see through to qualifiers behind a typedef!
520    FromType = FromType.getUnqualifiedType();
521  } else if (FromType->isArrayType()) {
522    // Array-to-pointer conversion (C++ 4.2)
523    SCS.First = ICK_Array_To_Pointer;
524
525    // An lvalue or rvalue of type "array of N T" or "array of unknown
526    // bound of T" can be converted to an rvalue of type "pointer to
527    // T" (C++ 4.2p1).
528    FromType = Context.getArrayDecayedType(FromType);
529
530    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
531      // This conversion is deprecated. (C++ D.4).
532      SCS.Deprecated = true;
533
534      // For the purpose of ranking in overload resolution
535      // (13.3.3.1.1), this conversion is considered an
536      // array-to-pointer conversion followed by a qualification
537      // conversion (4.4). (C++ 4.2p2)
538      SCS.Second = ICK_Identity;
539      SCS.Third = ICK_Qualification;
540      SCS.ToTypePtr = ToType.getAsOpaquePtr();
541      return true;
542    }
543  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
544    // Function-to-pointer conversion (C++ 4.3).
545    SCS.First = ICK_Function_To_Pointer;
546
547    // An lvalue of function type T can be converted to an rvalue of
548    // type "pointer to T." The result is a pointer to the
549    // function. (C++ 4.3p1).
550    FromType = Context.getPointerType(FromType);
551  } else if (FunctionDecl *Fn
552             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
553    // Address of overloaded function (C++ [over.over]).
554    SCS.First = ICK_Function_To_Pointer;
555
556    // We were able to resolve the address of the overloaded function,
557    // so we can convert to the type of that function.
558    FromType = Fn->getType();
559    if (ToType->isLValueReferenceType())
560      FromType = Context.getLValueReferenceType(FromType);
561    else if (ToType->isRValueReferenceType())
562      FromType = Context.getRValueReferenceType(FromType);
563    else if (ToType->isMemberPointerType()) {
564      // Resolve address only succeeds if both sides are member pointers,
565      // but it doesn't have to be the same class. See DR 247.
566      // Note that this means that the type of &Derived::fn can be
567      // Ret (Base::*)(Args) if the fn overload actually found is from the
568      // base class, even if it was brought into the derived class via a
569      // using declaration. The standard isn't clear on this issue at all.
570      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
571      FromType = Context.getMemberPointerType(FromType,
572                    Context.getTypeDeclType(M->getParent()).getTypePtr());
573    } else
574      FromType = Context.getPointerType(FromType);
575  } else {
576    // We don't require any conversions for the first step.
577    SCS.First = ICK_Identity;
578  }
579
580  // The second conversion can be an integral promotion, floating
581  // point promotion, integral conversion, floating point conversion,
582  // floating-integral conversion, pointer conversion,
583  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
584  // For overloading in C, this can also be a "compatible-type"
585  // conversion.
586  bool IncompatibleObjC = false;
587  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
588    // The unqualified versions of the types are the same: there's no
589    // conversion to do.
590    SCS.Second = ICK_Identity;
591  } else if (IsIntegralPromotion(From, FromType, ToType)) {
592    // Integral promotion (C++ 4.5).
593    SCS.Second = ICK_Integral_Promotion;
594    FromType = ToType.getUnqualifiedType();
595  } else if (IsFloatingPointPromotion(FromType, ToType)) {
596    // Floating point promotion (C++ 4.6).
597    SCS.Second = ICK_Floating_Promotion;
598    FromType = ToType.getUnqualifiedType();
599  } else if (IsComplexPromotion(FromType, ToType)) {
600    // Complex promotion (Clang extension)
601    SCS.Second = ICK_Complex_Promotion;
602    FromType = ToType.getUnqualifiedType();
603  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
604           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
605    // Integral conversions (C++ 4.7).
606    // FIXME: isIntegralType shouldn't be true for enums in C++.
607    SCS.Second = ICK_Integral_Conversion;
608    FromType = ToType.getUnqualifiedType();
609  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
610    // Floating point conversions (C++ 4.8).
611    SCS.Second = ICK_Floating_Conversion;
612    FromType = ToType.getUnqualifiedType();
613  } else if (FromType->isComplexType() && ToType->isComplexType()) {
614    // Complex conversions (C99 6.3.1.6)
615    SCS.Second = ICK_Complex_Conversion;
616    FromType = ToType.getUnqualifiedType();
617  } else if ((FromType->isFloatingType() &&
618              ToType->isIntegralType() && (!ToType->isBooleanType() &&
619                                           !ToType->isEnumeralType())) ||
620             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
621              ToType->isFloatingType())) {
622    // Floating-integral conversions (C++ 4.9).
623    // FIXME: isIntegralType shouldn't be true for enums in C++.
624    SCS.Second = ICK_Floating_Integral;
625    FromType = ToType.getUnqualifiedType();
626  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
627             (ToType->isComplexType() && FromType->isArithmeticType())) {
628    // Complex-real conversions (C99 6.3.1.7)
629    SCS.Second = ICK_Complex_Real;
630    FromType = ToType.getUnqualifiedType();
631  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
632                                 FromType, IncompatibleObjC)) {
633    // Pointer conversions (C++ 4.10).
634    SCS.Second = ICK_Pointer_Conversion;
635    SCS.IncompatibleObjC = IncompatibleObjC;
636  } else if (IsMemberPointerConversion(From, FromType, ToType,
637                                       InOverloadResolution, FromType)) {
638    // Pointer to member conversions (4.11).
639    SCS.Second = ICK_Pointer_Member;
640  } else if (ToType->isBooleanType() &&
641             (FromType->isArithmeticType() ||
642              FromType->isEnumeralType() ||
643              FromType->isPointerType() ||
644              FromType->isBlockPointerType() ||
645              FromType->isMemberPointerType() ||
646              FromType->isNullPtrType())) {
647    // Boolean conversions (C++ 4.12).
648    SCS.Second = ICK_Boolean_Conversion;
649    FromType = Context.BoolTy;
650  } else if (!getLangOptions().CPlusPlus &&
651             Context.typesAreCompatible(ToType, FromType)) {
652    // Compatible conversions (Clang extension for C function overloading)
653    SCS.Second = ICK_Compatible_Conversion;
654  } else {
655    // No second conversion required.
656    SCS.Second = ICK_Identity;
657  }
658
659  QualType CanonFrom;
660  QualType CanonTo;
661  // The third conversion can be a qualification conversion (C++ 4p1).
662  if (IsQualificationConversion(FromType, ToType)) {
663    SCS.Third = ICK_Qualification;
664    FromType = ToType;
665    CanonFrom = Context.getCanonicalType(FromType);
666    CanonTo = Context.getCanonicalType(ToType);
667  } else {
668    // No conversion required
669    SCS.Third = ICK_Identity;
670
671    // C++ [over.best.ics]p6:
672    //   [...] Any difference in top-level cv-qualification is
673    //   subsumed by the initialization itself and does not constitute
674    //   a conversion. [...]
675    CanonFrom = Context.getCanonicalType(FromType);
676    CanonTo = Context.getCanonicalType(ToType);
677    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
678        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
679      FromType = ToType;
680      CanonFrom = CanonTo;
681    }
682  }
683
684  // If we have not converted the argument type to the parameter type,
685  // this is a bad conversion sequence.
686  if (CanonFrom != CanonTo)
687    return false;
688
689  SCS.ToTypePtr = FromType.getAsOpaquePtr();
690  return true;
691}
692
693/// IsIntegralPromotion - Determines whether the conversion from the
694/// expression From (whose potentially-adjusted type is FromType) to
695/// ToType is an integral promotion (C++ 4.5). If so, returns true and
696/// sets PromotedType to the promoted type.
697bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
698  const BuiltinType *To = ToType->getAs<BuiltinType>();
699  // All integers are built-in.
700  if (!To) {
701    return false;
702  }
703
704  // An rvalue of type char, signed char, unsigned char, short int, or
705  // unsigned short int can be converted to an rvalue of type int if
706  // int can represent all the values of the source type; otherwise,
707  // the source rvalue can be converted to an rvalue of type unsigned
708  // int (C++ 4.5p1).
709  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
710    if (// We can promote any signed, promotable integer type to an int
711        (FromType->isSignedIntegerType() ||
712         // We can promote any unsigned integer type whose size is
713         // less than int to an int.
714         (!FromType->isSignedIntegerType() &&
715          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
716      return To->getKind() == BuiltinType::Int;
717    }
718
719    return To->getKind() == BuiltinType::UInt;
720  }
721
722  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
723  // can be converted to an rvalue of the first of the following types
724  // that can represent all the values of its underlying type: int,
725  // unsigned int, long, or unsigned long (C++ 4.5p2).
726  if ((FromType->isEnumeralType() || FromType->isWideCharType())
727      && ToType->isIntegerType()) {
728    // Determine whether the type we're converting from is signed or
729    // unsigned.
730    bool FromIsSigned;
731    uint64_t FromSize = Context.getTypeSize(FromType);
732    if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
733      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
734      FromIsSigned = UnderlyingType->isSignedIntegerType();
735    } else {
736      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
737      FromIsSigned = true;
738    }
739
740    // The types we'll try to promote to, in the appropriate
741    // order. Try each of these types.
742    QualType PromoteTypes[6] = {
743      Context.IntTy, Context.UnsignedIntTy,
744      Context.LongTy, Context.UnsignedLongTy ,
745      Context.LongLongTy, Context.UnsignedLongLongTy
746    };
747    for (int Idx = 0; Idx < 6; ++Idx) {
748      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
749      if (FromSize < ToSize ||
750          (FromSize == ToSize &&
751           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
752        // We found the type that we can promote to. If this is the
753        // type we wanted, we have a promotion. Otherwise, no
754        // promotion.
755        return Context.getCanonicalType(ToType).getUnqualifiedType()
756          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
757      }
758    }
759  }
760
761  // An rvalue for an integral bit-field (9.6) can be converted to an
762  // rvalue of type int if int can represent all the values of the
763  // bit-field; otherwise, it can be converted to unsigned int if
764  // unsigned int can represent all the values of the bit-field. If
765  // the bit-field is larger yet, no integral promotion applies to
766  // it. If the bit-field has an enumerated type, it is treated as any
767  // other value of that type for promotion purposes (C++ 4.5p3).
768  // FIXME: We should delay checking of bit-fields until we actually perform the
769  // conversion.
770  using llvm::APSInt;
771  if (From)
772    if (FieldDecl *MemberDecl = From->getBitField()) {
773      APSInt BitWidth;
774      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
775          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
776        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
777        ToSize = Context.getTypeSize(ToType);
778
779        // Are we promoting to an int from a bitfield that fits in an int?
780        if (BitWidth < ToSize ||
781            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
782          return To->getKind() == BuiltinType::Int;
783        }
784
785        // Are we promoting to an unsigned int from an unsigned bitfield
786        // that fits into an unsigned int?
787        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
788          return To->getKind() == BuiltinType::UInt;
789        }
790
791        return false;
792      }
793    }
794
795  // An rvalue of type bool can be converted to an rvalue of type int,
796  // with false becoming zero and true becoming one (C++ 4.5p4).
797  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
798    return true;
799  }
800
801  return false;
802}
803
804/// IsFloatingPointPromotion - Determines whether the conversion from
805/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
806/// returns true and sets PromotedType to the promoted type.
807bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
808  /// An rvalue of type float can be converted to an rvalue of type
809  /// double. (C++ 4.6p1).
810  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
811    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
812      if (FromBuiltin->getKind() == BuiltinType::Float &&
813          ToBuiltin->getKind() == BuiltinType::Double)
814        return true;
815
816      // C99 6.3.1.5p1:
817      //   When a float is promoted to double or long double, or a
818      //   double is promoted to long double [...].
819      if (!getLangOptions().CPlusPlus &&
820          (FromBuiltin->getKind() == BuiltinType::Float ||
821           FromBuiltin->getKind() == BuiltinType::Double) &&
822          (ToBuiltin->getKind() == BuiltinType::LongDouble))
823        return true;
824    }
825
826  return false;
827}
828
829/// \brief Determine if a conversion is a complex promotion.
830///
831/// A complex promotion is defined as a complex -> complex conversion
832/// where the conversion between the underlying real types is a
833/// floating-point or integral promotion.
834bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
835  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
836  if (!FromComplex)
837    return false;
838
839  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
840  if (!ToComplex)
841    return false;
842
843  return IsFloatingPointPromotion(FromComplex->getElementType(),
844                                  ToComplex->getElementType()) ||
845    IsIntegralPromotion(0, FromComplex->getElementType(),
846                        ToComplex->getElementType());
847}
848
849/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
850/// the pointer type FromPtr to a pointer to type ToPointee, with the
851/// same type qualifiers as FromPtr has on its pointee type. ToType,
852/// if non-empty, will be a pointer to ToType that may or may not have
853/// the right set of qualifiers on its pointee.
854static QualType
855BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
856                                   QualType ToPointee, QualType ToType,
857                                   ASTContext &Context) {
858  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
859  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
860  Qualifiers Quals = CanonFromPointee.getQualifiers();
861
862  // Exact qualifier match -> return the pointer type we're converting to.
863  if (CanonToPointee.getQualifiers() == Quals) {
864    // ToType is exactly what we need. Return it.
865    if (!ToType.isNull())
866      return ToType;
867
868    // Build a pointer to ToPointee. It has the right qualifiers
869    // already.
870    return Context.getPointerType(ToPointee);
871  }
872
873  // Just build a canonical type that has the right qualifiers.
874  return Context.getPointerType(
875         Context.getQualifiedType(CanonToPointee.getUnqualifiedType(), Quals));
876}
877
878static bool isNullPointerConstantForConversion(Expr *Expr,
879                                               bool InOverloadResolution,
880                                               ASTContext &Context) {
881  // Handle value-dependent integral null pointer constants correctly.
882  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
883  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
884      Expr->getType()->isIntegralType())
885    return !InOverloadResolution;
886
887  return Expr->isNullPointerConstant(Context,
888                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
889                                        : Expr::NPC_ValueDependentIsNull);
890}
891
892/// IsPointerConversion - Determines whether the conversion of the
893/// expression From, which has the (possibly adjusted) type FromType,
894/// can be converted to the type ToType via a pointer conversion (C++
895/// 4.10). If so, returns true and places the converted type (that
896/// might differ from ToType in its cv-qualifiers at some level) into
897/// ConvertedType.
898///
899/// This routine also supports conversions to and from block pointers
900/// and conversions with Objective-C's 'id', 'id<protocols...>', and
901/// pointers to interfaces. FIXME: Once we've determined the
902/// appropriate overloading rules for Objective-C, we may want to
903/// split the Objective-C checks into a different routine; however,
904/// GCC seems to consider all of these conversions to be pointer
905/// conversions, so for now they live here. IncompatibleObjC will be
906/// set if the conversion is an allowed Objective-C conversion that
907/// should result in a warning.
908bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
909                               bool InOverloadResolution,
910                               QualType& ConvertedType,
911                               bool &IncompatibleObjC) {
912  IncompatibleObjC = false;
913  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
914    return true;
915
916  // Conversion from a null pointer constant to any Objective-C pointer type.
917  if (ToType->isObjCObjectPointerType() &&
918      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
919    ConvertedType = ToType;
920    return true;
921  }
922
923  // Blocks: Block pointers can be converted to void*.
924  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
925      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
926    ConvertedType = ToType;
927    return true;
928  }
929  // Blocks: A null pointer constant can be converted to a block
930  // pointer type.
931  if (ToType->isBlockPointerType() &&
932      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
933    ConvertedType = ToType;
934    return true;
935  }
936
937  // If the left-hand-side is nullptr_t, the right side can be a null
938  // pointer constant.
939  if (ToType->isNullPtrType() &&
940      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
941    ConvertedType = ToType;
942    return true;
943  }
944
945  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
946  if (!ToTypePtr)
947    return false;
948
949  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
950  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
951    ConvertedType = ToType;
952    return true;
953  }
954
955  // Beyond this point, both types need to be pointers.
956  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
957  if (!FromTypePtr)
958    return false;
959
960  QualType FromPointeeType = FromTypePtr->getPointeeType();
961  QualType ToPointeeType = ToTypePtr->getPointeeType();
962
963  // An rvalue of type "pointer to cv T," where T is an object type,
964  // can be converted to an rvalue of type "pointer to cv void" (C++
965  // 4.10p2).
966  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
967    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
968                                                       ToPointeeType,
969                                                       ToType, Context);
970    return true;
971  }
972
973  // When we're overloading in C, we allow a special kind of pointer
974  // conversion for compatible-but-not-identical pointee types.
975  if (!getLangOptions().CPlusPlus &&
976      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
977    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
978                                                       ToPointeeType,
979                                                       ToType, Context);
980    return true;
981  }
982
983  // C++ [conv.ptr]p3:
984  //
985  //   An rvalue of type "pointer to cv D," where D is a class type,
986  //   can be converted to an rvalue of type "pointer to cv B," where
987  //   B is a base class (clause 10) of D. If B is an inaccessible
988  //   (clause 11) or ambiguous (10.2) base class of D, a program that
989  //   necessitates this conversion is ill-formed. The result of the
990  //   conversion is a pointer to the base class sub-object of the
991  //   derived class object. The null pointer value is converted to
992  //   the null pointer value of the destination type.
993  //
994  // Note that we do not check for ambiguity or inaccessibility
995  // here. That is handled by CheckPointerConversion.
996  if (getLangOptions().CPlusPlus &&
997      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
998      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
999    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1000                                                       ToPointeeType,
1001                                                       ToType, Context);
1002    return true;
1003  }
1004
1005  return false;
1006}
1007
1008/// isObjCPointerConversion - Determines whether this is an
1009/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1010/// with the same arguments and return values.
1011bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1012                                   QualType& ConvertedType,
1013                                   bool &IncompatibleObjC) {
1014  if (!getLangOptions().ObjC1)
1015    return false;
1016
1017  // First, we handle all conversions on ObjC object pointer types.
1018  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1019  const ObjCObjectPointerType *FromObjCPtr =
1020    FromType->getAs<ObjCObjectPointerType>();
1021
1022  if (ToObjCPtr && FromObjCPtr) {
1023    // Objective C++: We're able to convert between "id" or "Class" and a
1024    // pointer to any interface (in both directions).
1025    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1026      ConvertedType = ToType;
1027      return true;
1028    }
1029    // Conversions with Objective-C's id<...>.
1030    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1031         ToObjCPtr->isObjCQualifiedIdType()) &&
1032        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1033                                                  /*compare=*/false)) {
1034      ConvertedType = ToType;
1035      return true;
1036    }
1037    // Objective C++: We're able to convert from a pointer to an
1038    // interface to a pointer to a different interface.
1039    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1040      ConvertedType = ToType;
1041      return true;
1042    }
1043
1044    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1045      // Okay: this is some kind of implicit downcast of Objective-C
1046      // interfaces, which is permitted. However, we're going to
1047      // complain about it.
1048      IncompatibleObjC = true;
1049      ConvertedType = FromType;
1050      return true;
1051    }
1052  }
1053  // Beyond this point, both types need to be C pointers or block pointers.
1054  QualType ToPointeeType;
1055  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1056    ToPointeeType = ToCPtr->getPointeeType();
1057  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1058    ToPointeeType = ToBlockPtr->getPointeeType();
1059  else
1060    return false;
1061
1062  QualType FromPointeeType;
1063  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1064    FromPointeeType = FromCPtr->getPointeeType();
1065  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1066    FromPointeeType = FromBlockPtr->getPointeeType();
1067  else
1068    return false;
1069
1070  // If we have pointers to pointers, recursively check whether this
1071  // is an Objective-C conversion.
1072  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1073      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1074                              IncompatibleObjC)) {
1075    // We always complain about this conversion.
1076    IncompatibleObjC = true;
1077    ConvertedType = ToType;
1078    return true;
1079  }
1080  // If we have pointers to functions or blocks, check whether the only
1081  // differences in the argument and result types are in Objective-C
1082  // pointer conversions. If so, we permit the conversion (but
1083  // complain about it).
1084  const FunctionProtoType *FromFunctionType
1085    = FromPointeeType->getAs<FunctionProtoType>();
1086  const FunctionProtoType *ToFunctionType
1087    = ToPointeeType->getAs<FunctionProtoType>();
1088  if (FromFunctionType && ToFunctionType) {
1089    // If the function types are exactly the same, this isn't an
1090    // Objective-C pointer conversion.
1091    if (Context.getCanonicalType(FromPointeeType)
1092          == Context.getCanonicalType(ToPointeeType))
1093      return false;
1094
1095    // Perform the quick checks that will tell us whether these
1096    // function types are obviously different.
1097    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1098        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1099        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1100      return false;
1101
1102    bool HasObjCConversion = false;
1103    if (Context.getCanonicalType(FromFunctionType->getResultType())
1104          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1105      // Okay, the types match exactly. Nothing to do.
1106    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1107                                       ToFunctionType->getResultType(),
1108                                       ConvertedType, IncompatibleObjC)) {
1109      // Okay, we have an Objective-C pointer conversion.
1110      HasObjCConversion = true;
1111    } else {
1112      // Function types are too different. Abort.
1113      return false;
1114    }
1115
1116    // Check argument types.
1117    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1118         ArgIdx != NumArgs; ++ArgIdx) {
1119      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1120      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1121      if (Context.getCanonicalType(FromArgType)
1122            == Context.getCanonicalType(ToArgType)) {
1123        // Okay, the types match exactly. Nothing to do.
1124      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1125                                         ConvertedType, IncompatibleObjC)) {
1126        // Okay, we have an Objective-C pointer conversion.
1127        HasObjCConversion = true;
1128      } else {
1129        // Argument types are too different. Abort.
1130        return false;
1131      }
1132    }
1133
1134    if (HasObjCConversion) {
1135      // We had an Objective-C conversion. Allow this pointer
1136      // conversion, but complain about it.
1137      ConvertedType = ToType;
1138      IncompatibleObjC = true;
1139      return true;
1140    }
1141  }
1142
1143  return false;
1144}
1145
1146/// CheckPointerConversion - Check the pointer conversion from the
1147/// expression From to the type ToType. This routine checks for
1148/// ambiguous or inaccessible derived-to-base pointer
1149/// conversions for which IsPointerConversion has already returned
1150/// true. It returns true and produces a diagnostic if there was an
1151/// error, or returns false otherwise.
1152bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1153                                  CastExpr::CastKind &Kind) {
1154  QualType FromType = From->getType();
1155
1156  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1157    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1158      QualType FromPointeeType = FromPtrType->getPointeeType(),
1159               ToPointeeType   = ToPtrType->getPointeeType();
1160
1161      if (FromPointeeType->isRecordType() &&
1162          ToPointeeType->isRecordType()) {
1163        // We must have a derived-to-base conversion. Check an
1164        // ambiguous or inaccessible conversion.
1165        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1166                                         From->getExprLoc(),
1167                                         From->getSourceRange()))
1168          return true;
1169
1170        // The conversion was successful.
1171        Kind = CastExpr::CK_DerivedToBase;
1172      }
1173    }
1174  if (const ObjCObjectPointerType *FromPtrType =
1175        FromType->getAs<ObjCObjectPointerType>())
1176    if (const ObjCObjectPointerType *ToPtrType =
1177          ToType->getAs<ObjCObjectPointerType>()) {
1178      // Objective-C++ conversions are always okay.
1179      // FIXME: We should have a different class of conversions for the
1180      // Objective-C++ implicit conversions.
1181      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1182        return false;
1183
1184  }
1185  return false;
1186}
1187
1188/// IsMemberPointerConversion - Determines whether the conversion of the
1189/// expression From, which has the (possibly adjusted) type FromType, can be
1190/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1191/// If so, returns true and places the converted type (that might differ from
1192/// ToType in its cv-qualifiers at some level) into ConvertedType.
1193bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1194                                     QualType ToType,
1195                                     bool InOverloadResolution,
1196                                     QualType &ConvertedType) {
1197  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1198  if (!ToTypePtr)
1199    return false;
1200
1201  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1202  if (From->isNullPointerConstant(Context,
1203                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1204                                        : Expr::NPC_ValueDependentIsNull)) {
1205    ConvertedType = ToType;
1206    return true;
1207  }
1208
1209  // Otherwise, both types have to be member pointers.
1210  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1211  if (!FromTypePtr)
1212    return false;
1213
1214  // A pointer to member of B can be converted to a pointer to member of D,
1215  // where D is derived from B (C++ 4.11p2).
1216  QualType FromClass(FromTypePtr->getClass(), 0);
1217  QualType ToClass(ToTypePtr->getClass(), 0);
1218  // FIXME: What happens when these are dependent? Is this function even called?
1219
1220  if (IsDerivedFrom(ToClass, FromClass)) {
1221    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1222                                                 ToClass.getTypePtr());
1223    return true;
1224  }
1225
1226  return false;
1227}
1228
1229/// CheckMemberPointerConversion - Check the member pointer conversion from the
1230/// expression From to the type ToType. This routine checks for ambiguous or
1231/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1232/// for which IsMemberPointerConversion has already returned true. It returns
1233/// true and produces a diagnostic if there was an error, or returns false
1234/// otherwise.
1235bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1236                                        CastExpr::CastKind &Kind) {
1237  QualType FromType = From->getType();
1238  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1239  if (!FromPtrType) {
1240    // This must be a null pointer to member pointer conversion
1241    assert(From->isNullPointerConstant(Context,
1242                                       Expr::NPC_ValueDependentIsNull) &&
1243           "Expr must be null pointer constant!");
1244    Kind = CastExpr::CK_NullToMemberPointer;
1245    return false;
1246  }
1247
1248  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1249  assert(ToPtrType && "No member pointer cast has a target type "
1250                      "that is not a member pointer.");
1251
1252  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1253  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1254
1255  // FIXME: What about dependent types?
1256  assert(FromClass->isRecordType() && "Pointer into non-class.");
1257  assert(ToClass->isRecordType() && "Pointer into non-class.");
1258
1259  BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1260                  /*DetectVirtual=*/true);
1261  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1262  assert(DerivationOkay &&
1263         "Should not have been called if derivation isn't OK.");
1264  (void)DerivationOkay;
1265
1266  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1267                                  getUnqualifiedType())) {
1268    // Derivation is ambiguous. Redo the check to find the exact paths.
1269    Paths.clear();
1270    Paths.setRecordingPaths(true);
1271    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1272    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1273    (void)StillOkay;
1274
1275    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1276    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1277      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1278    return true;
1279  }
1280
1281  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1282    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1283      << FromClass << ToClass << QualType(VBase, 0)
1284      << From->getSourceRange();
1285    return true;
1286  }
1287
1288  // Must be a base to derived member conversion.
1289  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1290  return false;
1291}
1292
1293/// IsQualificationConversion - Determines whether the conversion from
1294/// an rvalue of type FromType to ToType is a qualification conversion
1295/// (C++ 4.4).
1296bool
1297Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1298  FromType = Context.getCanonicalType(FromType);
1299  ToType = Context.getCanonicalType(ToType);
1300
1301  // If FromType and ToType are the same type, this is not a
1302  // qualification conversion.
1303  if (FromType == ToType)
1304    return false;
1305
1306  // (C++ 4.4p4):
1307  //   A conversion can add cv-qualifiers at levels other than the first
1308  //   in multi-level pointers, subject to the following rules: [...]
1309  bool PreviousToQualsIncludeConst = true;
1310  bool UnwrappedAnyPointer = false;
1311  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1312    // Within each iteration of the loop, we check the qualifiers to
1313    // determine if this still looks like a qualification
1314    // conversion. Then, if all is well, we unwrap one more level of
1315    // pointers or pointers-to-members and do it all again
1316    // until there are no more pointers or pointers-to-members left to
1317    // unwrap.
1318    UnwrappedAnyPointer = true;
1319
1320    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1321    //      2,j, and similarly for volatile.
1322    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1323      return false;
1324
1325    //   -- if the cv 1,j and cv 2,j are different, then const is in
1326    //      every cv for 0 < k < j.
1327    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1328        && !PreviousToQualsIncludeConst)
1329      return false;
1330
1331    // Keep track of whether all prior cv-qualifiers in the "to" type
1332    // include const.
1333    PreviousToQualsIncludeConst
1334      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1335  }
1336
1337  // We are left with FromType and ToType being the pointee types
1338  // after unwrapping the original FromType and ToType the same number
1339  // of types. If we unwrapped any pointers, and if FromType and
1340  // ToType have the same unqualified type (since we checked
1341  // qualifiers above), then this is a qualification conversion.
1342  return UnwrappedAnyPointer &&
1343    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1344}
1345
1346/// \brief Given a function template or function, extract the function template
1347/// declaration (if any) and the underlying function declaration.
1348template<typename T>
1349static void GetFunctionAndTemplate(AnyFunctionDecl Orig, T *&Function,
1350                                   FunctionTemplateDecl *&FunctionTemplate) {
1351  FunctionTemplate = dyn_cast<FunctionTemplateDecl>(Orig);
1352  if (FunctionTemplate)
1353    Function = cast<T>(FunctionTemplate->getTemplatedDecl());
1354  else
1355    Function = cast<T>(Orig);
1356}
1357
1358/// Determines whether there is a user-defined conversion sequence
1359/// (C++ [over.ics.user]) that converts expression From to the type
1360/// ToType. If such a conversion exists, User will contain the
1361/// user-defined conversion sequence that performs such a conversion
1362/// and this routine will return true. Otherwise, this routine returns
1363/// false and User is unspecified.
1364///
1365/// \param AllowConversionFunctions true if the conversion should
1366/// consider conversion functions at all. If false, only constructors
1367/// will be considered.
1368///
1369/// \param AllowExplicit  true if the conversion should consider C++0x
1370/// "explicit" conversion functions as well as non-explicit conversion
1371/// functions (C++0x [class.conv.fct]p2).
1372///
1373/// \param ForceRValue  true if the expression should be treated as an rvalue
1374/// for overload resolution.
1375Sema::OverloadingResult Sema::IsUserDefinedConversion(
1376                                   Expr *From, QualType ToType,
1377                                   UserDefinedConversionSequence& User,
1378                                   OverloadCandidateSet& CandidateSet,
1379                                   bool AllowConversionFunctions,
1380                                   bool AllowExplicit, bool ForceRValue) {
1381  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1382    if (CXXRecordDecl *ToRecordDecl
1383          = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1384      // C++ [over.match.ctor]p1:
1385      //   When objects of class type are direct-initialized (8.5), or
1386      //   copy-initialized from an expression of the same or a
1387      //   derived class type (8.5), overload resolution selects the
1388      //   constructor. [...] For copy-initialization, the candidate
1389      //   functions are all the converting constructors (12.3.1) of
1390      //   that class. The argument list is the expression-list within
1391      //   the parentheses of the initializer.
1392      DeclarationName ConstructorName
1393        = Context.DeclarationNames.getCXXConstructorName(
1394                          Context.getCanonicalType(ToType).getUnqualifiedType());
1395      DeclContext::lookup_iterator Con, ConEnd;
1396      for (llvm::tie(Con, ConEnd)
1397             = ToRecordDecl->lookup(ConstructorName);
1398           Con != ConEnd; ++Con) {
1399        // Find the constructor (which may be a template).
1400        CXXConstructorDecl *Constructor = 0;
1401        FunctionTemplateDecl *ConstructorTmpl
1402          = dyn_cast<FunctionTemplateDecl>(*Con);
1403        if (ConstructorTmpl)
1404          Constructor
1405            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1406        else
1407          Constructor = cast<CXXConstructorDecl>(*Con);
1408
1409        if (!Constructor->isInvalidDecl() &&
1410            Constructor->isConvertingConstructor(AllowExplicit)) {
1411          if (ConstructorTmpl)
1412            AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0, &From,
1413                                         1, CandidateSet,
1414                                         /*SuppressUserConversions=*/true,
1415                                         ForceRValue);
1416          else
1417            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1418                                 /*SuppressUserConversions=*/true, ForceRValue);
1419        }
1420      }
1421    }
1422  }
1423
1424  if (!AllowConversionFunctions) {
1425    // Don't allow any conversion functions to enter the overload set.
1426  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1427                                 PDiag(0)
1428                                   << From->getSourceRange())) {
1429    // No conversion functions from incomplete types.
1430  } else if (const RecordType *FromRecordType
1431               = From->getType()->getAs<RecordType>()) {
1432    if (CXXRecordDecl *FromRecordDecl
1433         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1434      // Add all of the conversion functions as candidates.
1435      OverloadedFunctionDecl *Conversions
1436        = FromRecordDecl->getVisibleConversionFunctions();
1437      for (OverloadedFunctionDecl::function_iterator Func
1438             = Conversions->function_begin();
1439           Func != Conversions->function_end(); ++Func) {
1440        CXXConversionDecl *Conv;
1441        FunctionTemplateDecl *ConvTemplate;
1442        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
1443        if (ConvTemplate)
1444          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1445        else
1446          Conv = dyn_cast<CXXConversionDecl>(*Func);
1447
1448        if (AllowExplicit || !Conv->isExplicit()) {
1449          if (ConvTemplate)
1450            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1451                                           CandidateSet);
1452          else
1453            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1454        }
1455      }
1456    }
1457  }
1458
1459  OverloadCandidateSet::iterator Best;
1460  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1461    case OR_Success:
1462      // Record the standard conversion we used and the conversion function.
1463      if (CXXConstructorDecl *Constructor
1464            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1465        // C++ [over.ics.user]p1:
1466        //   If the user-defined conversion is specified by a
1467        //   constructor (12.3.1), the initial standard conversion
1468        //   sequence converts the source type to the type required by
1469        //   the argument of the constructor.
1470        //
1471        // FIXME: What about ellipsis conversions?
1472        QualType ThisType = Constructor->getThisType(Context);
1473        User.Before = Best->Conversions[0].Standard;
1474        User.ConversionFunction = Constructor;
1475        User.After.setAsIdentityConversion();
1476        User.After.FromTypePtr
1477          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1478        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1479        return OR_Success;
1480      } else if (CXXConversionDecl *Conversion
1481                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1482        // C++ [over.ics.user]p1:
1483        //
1484        //   [...] If the user-defined conversion is specified by a
1485        //   conversion function (12.3.2), the initial standard
1486        //   conversion sequence converts the source type to the
1487        //   implicit object parameter of the conversion function.
1488        User.Before = Best->Conversions[0].Standard;
1489        User.ConversionFunction = Conversion;
1490
1491        // C++ [over.ics.user]p2:
1492        //   The second standard conversion sequence converts the
1493        //   result of the user-defined conversion to the target type
1494        //   for the sequence. Since an implicit conversion sequence
1495        //   is an initialization, the special rules for
1496        //   initialization by user-defined conversion apply when
1497        //   selecting the best user-defined conversion for a
1498        //   user-defined conversion sequence (see 13.3.3 and
1499        //   13.3.3.1).
1500        User.After = Best->FinalConversion;
1501        return OR_Success;
1502      } else {
1503        assert(false && "Not a constructor or conversion function?");
1504        return OR_No_Viable_Function;
1505      }
1506
1507    case OR_No_Viable_Function:
1508      return OR_No_Viable_Function;
1509    case OR_Deleted:
1510      // No conversion here! We're done.
1511      return OR_Deleted;
1512
1513    case OR_Ambiguous:
1514      // FIXME: See C++ [over.best.ics]p10 for the handling of
1515      // ambiguous conversion sequences.
1516      return OR_Ambiguous;
1517    }
1518
1519  return OR_No_Viable_Function;
1520}
1521
1522bool
1523Sema::DiagnoseAmbiguousUserDefinedConversion(Expr *From, QualType ToType) {
1524  ImplicitConversionSequence ICS;
1525  OverloadCandidateSet CandidateSet;
1526  OverloadingResult OvResult =
1527    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1528                            CandidateSet, true, false, false);
1529  if (OvResult != OR_Ambiguous)
1530    return false;
1531  Diag(From->getSourceRange().getBegin(),
1532       diag::err_typecheck_ambiguous_condition)
1533  << From->getType() << ToType << From->getSourceRange();
1534    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1535  return true;
1536}
1537
1538/// CompareImplicitConversionSequences - Compare two implicit
1539/// conversion sequences to determine whether one is better than the
1540/// other or if they are indistinguishable (C++ 13.3.3.2).
1541ImplicitConversionSequence::CompareKind
1542Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1543                                         const ImplicitConversionSequence& ICS2)
1544{
1545  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1546  // conversion sequences (as defined in 13.3.3.1)
1547  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1548  //      conversion sequence than a user-defined conversion sequence or
1549  //      an ellipsis conversion sequence, and
1550  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1551  //      conversion sequence than an ellipsis conversion sequence
1552  //      (13.3.3.1.3).
1553  //
1554  if (ICS1.ConversionKind < ICS2.ConversionKind)
1555    return ImplicitConversionSequence::Better;
1556  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1557    return ImplicitConversionSequence::Worse;
1558
1559  // Two implicit conversion sequences of the same form are
1560  // indistinguishable conversion sequences unless one of the
1561  // following rules apply: (C++ 13.3.3.2p3):
1562  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1563    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1564  else if (ICS1.ConversionKind ==
1565             ImplicitConversionSequence::UserDefinedConversion) {
1566    // User-defined conversion sequence U1 is a better conversion
1567    // sequence than another user-defined conversion sequence U2 if
1568    // they contain the same user-defined conversion function or
1569    // constructor and if the second standard conversion sequence of
1570    // U1 is better than the second standard conversion sequence of
1571    // U2 (C++ 13.3.3.2p3).
1572    if (ICS1.UserDefined.ConversionFunction ==
1573          ICS2.UserDefined.ConversionFunction)
1574      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1575                                                ICS2.UserDefined.After);
1576  }
1577
1578  return ImplicitConversionSequence::Indistinguishable;
1579}
1580
1581/// CompareStandardConversionSequences - Compare two standard
1582/// conversion sequences to determine whether one is better than the
1583/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1584ImplicitConversionSequence::CompareKind
1585Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1586                                         const StandardConversionSequence& SCS2)
1587{
1588  // Standard conversion sequence S1 is a better conversion sequence
1589  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1590
1591  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1592  //     sequences in the canonical form defined by 13.3.3.1.1,
1593  //     excluding any Lvalue Transformation; the identity conversion
1594  //     sequence is considered to be a subsequence of any
1595  //     non-identity conversion sequence) or, if not that,
1596  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1597    // Neither is a proper subsequence of the other. Do nothing.
1598    ;
1599  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1600           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1601           (SCS1.Second == ICK_Identity &&
1602            SCS1.Third == ICK_Identity))
1603    // SCS1 is a proper subsequence of SCS2.
1604    return ImplicitConversionSequence::Better;
1605  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1606           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1607           (SCS2.Second == ICK_Identity &&
1608            SCS2.Third == ICK_Identity))
1609    // SCS2 is a proper subsequence of SCS1.
1610    return ImplicitConversionSequence::Worse;
1611
1612  //  -- the rank of S1 is better than the rank of S2 (by the rules
1613  //     defined below), or, if not that,
1614  ImplicitConversionRank Rank1 = SCS1.getRank();
1615  ImplicitConversionRank Rank2 = SCS2.getRank();
1616  if (Rank1 < Rank2)
1617    return ImplicitConversionSequence::Better;
1618  else if (Rank2 < Rank1)
1619    return ImplicitConversionSequence::Worse;
1620
1621  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1622  // are indistinguishable unless one of the following rules
1623  // applies:
1624
1625  //   A conversion that is not a conversion of a pointer, or
1626  //   pointer to member, to bool is better than another conversion
1627  //   that is such a conversion.
1628  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1629    return SCS2.isPointerConversionToBool()
1630             ? ImplicitConversionSequence::Better
1631             : ImplicitConversionSequence::Worse;
1632
1633  // C++ [over.ics.rank]p4b2:
1634  //
1635  //   If class B is derived directly or indirectly from class A,
1636  //   conversion of B* to A* is better than conversion of B* to
1637  //   void*, and conversion of A* to void* is better than conversion
1638  //   of B* to void*.
1639  bool SCS1ConvertsToVoid
1640    = SCS1.isPointerConversionToVoidPointer(Context);
1641  bool SCS2ConvertsToVoid
1642    = SCS2.isPointerConversionToVoidPointer(Context);
1643  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1644    // Exactly one of the conversion sequences is a conversion to
1645    // a void pointer; it's the worse conversion.
1646    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1647                              : ImplicitConversionSequence::Worse;
1648  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1649    // Neither conversion sequence converts to a void pointer; compare
1650    // their derived-to-base conversions.
1651    if (ImplicitConversionSequence::CompareKind DerivedCK
1652          = CompareDerivedToBaseConversions(SCS1, SCS2))
1653      return DerivedCK;
1654  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1655    // Both conversion sequences are conversions to void
1656    // pointers. Compare the source types to determine if there's an
1657    // inheritance relationship in their sources.
1658    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1659    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1660
1661    // Adjust the types we're converting from via the array-to-pointer
1662    // conversion, if we need to.
1663    if (SCS1.First == ICK_Array_To_Pointer)
1664      FromType1 = Context.getArrayDecayedType(FromType1);
1665    if (SCS2.First == ICK_Array_To_Pointer)
1666      FromType2 = Context.getArrayDecayedType(FromType2);
1667
1668    QualType FromPointee1
1669      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1670    QualType FromPointee2
1671      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1672
1673    if (IsDerivedFrom(FromPointee2, FromPointee1))
1674      return ImplicitConversionSequence::Better;
1675    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1676      return ImplicitConversionSequence::Worse;
1677
1678    // Objective-C++: If one interface is more specific than the
1679    // other, it is the better one.
1680    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1681    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1682    if (FromIface1 && FromIface1) {
1683      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1684        return ImplicitConversionSequence::Better;
1685      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1686        return ImplicitConversionSequence::Worse;
1687    }
1688  }
1689
1690  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1691  // bullet 3).
1692  if (ImplicitConversionSequence::CompareKind QualCK
1693        = CompareQualificationConversions(SCS1, SCS2))
1694    return QualCK;
1695
1696  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1697    // C++0x [over.ics.rank]p3b4:
1698    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1699    //      implicit object parameter of a non-static member function declared
1700    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1701    //      rvalue and S2 binds an lvalue reference.
1702    // FIXME: We don't know if we're dealing with the implicit object parameter,
1703    // or if the member function in this case has a ref qualifier.
1704    // (Of course, we don't have ref qualifiers yet.)
1705    if (SCS1.RRefBinding != SCS2.RRefBinding)
1706      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1707                              : ImplicitConversionSequence::Worse;
1708
1709    // C++ [over.ics.rank]p3b4:
1710    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1711    //      which the references refer are the same type except for
1712    //      top-level cv-qualifiers, and the type to which the reference
1713    //      initialized by S2 refers is more cv-qualified than the type
1714    //      to which the reference initialized by S1 refers.
1715    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1716    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1717    T1 = Context.getCanonicalType(T1);
1718    T2 = Context.getCanonicalType(T2);
1719    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1720      if (T2.isMoreQualifiedThan(T1))
1721        return ImplicitConversionSequence::Better;
1722      else if (T1.isMoreQualifiedThan(T2))
1723        return ImplicitConversionSequence::Worse;
1724    }
1725  }
1726
1727  return ImplicitConversionSequence::Indistinguishable;
1728}
1729
1730/// CompareQualificationConversions - Compares two standard conversion
1731/// sequences to determine whether they can be ranked based on their
1732/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1733ImplicitConversionSequence::CompareKind
1734Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1735                                      const StandardConversionSequence& SCS2) {
1736  // C++ 13.3.3.2p3:
1737  //  -- S1 and S2 differ only in their qualification conversion and
1738  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1739  //     cv-qualification signature of type T1 is a proper subset of
1740  //     the cv-qualification signature of type T2, and S1 is not the
1741  //     deprecated string literal array-to-pointer conversion (4.2).
1742  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1743      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1744    return ImplicitConversionSequence::Indistinguishable;
1745
1746  // FIXME: the example in the standard doesn't use a qualification
1747  // conversion (!)
1748  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1749  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1750  T1 = Context.getCanonicalType(T1);
1751  T2 = Context.getCanonicalType(T2);
1752
1753  // If the types are the same, we won't learn anything by unwrapped
1754  // them.
1755  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1756    return ImplicitConversionSequence::Indistinguishable;
1757
1758  ImplicitConversionSequence::CompareKind Result
1759    = ImplicitConversionSequence::Indistinguishable;
1760  while (UnwrapSimilarPointerTypes(T1, T2)) {
1761    // Within each iteration of the loop, we check the qualifiers to
1762    // determine if this still looks like a qualification
1763    // conversion. Then, if all is well, we unwrap one more level of
1764    // pointers or pointers-to-members and do it all again
1765    // until there are no more pointers or pointers-to-members left
1766    // to unwrap. This essentially mimics what
1767    // IsQualificationConversion does, but here we're checking for a
1768    // strict subset of qualifiers.
1769    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1770      // The qualifiers are the same, so this doesn't tell us anything
1771      // about how the sequences rank.
1772      ;
1773    else if (T2.isMoreQualifiedThan(T1)) {
1774      // T1 has fewer qualifiers, so it could be the better sequence.
1775      if (Result == ImplicitConversionSequence::Worse)
1776        // Neither has qualifiers that are a subset of the other's
1777        // qualifiers.
1778        return ImplicitConversionSequence::Indistinguishable;
1779
1780      Result = ImplicitConversionSequence::Better;
1781    } else if (T1.isMoreQualifiedThan(T2)) {
1782      // T2 has fewer qualifiers, so it could be the better sequence.
1783      if (Result == ImplicitConversionSequence::Better)
1784        // Neither has qualifiers that are a subset of the other's
1785        // qualifiers.
1786        return ImplicitConversionSequence::Indistinguishable;
1787
1788      Result = ImplicitConversionSequence::Worse;
1789    } else {
1790      // Qualifiers are disjoint.
1791      return ImplicitConversionSequence::Indistinguishable;
1792    }
1793
1794    // If the types after this point are equivalent, we're done.
1795    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1796      break;
1797  }
1798
1799  // Check that the winning standard conversion sequence isn't using
1800  // the deprecated string literal array to pointer conversion.
1801  switch (Result) {
1802  case ImplicitConversionSequence::Better:
1803    if (SCS1.Deprecated)
1804      Result = ImplicitConversionSequence::Indistinguishable;
1805    break;
1806
1807  case ImplicitConversionSequence::Indistinguishable:
1808    break;
1809
1810  case ImplicitConversionSequence::Worse:
1811    if (SCS2.Deprecated)
1812      Result = ImplicitConversionSequence::Indistinguishable;
1813    break;
1814  }
1815
1816  return Result;
1817}
1818
1819/// CompareDerivedToBaseConversions - Compares two standard conversion
1820/// sequences to determine whether they can be ranked based on their
1821/// various kinds of derived-to-base conversions (C++
1822/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1823/// conversions between Objective-C interface types.
1824ImplicitConversionSequence::CompareKind
1825Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1826                                      const StandardConversionSequence& SCS2) {
1827  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1828  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1829  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1830  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1831
1832  // Adjust the types we're converting from via the array-to-pointer
1833  // conversion, if we need to.
1834  if (SCS1.First == ICK_Array_To_Pointer)
1835    FromType1 = Context.getArrayDecayedType(FromType1);
1836  if (SCS2.First == ICK_Array_To_Pointer)
1837    FromType2 = Context.getArrayDecayedType(FromType2);
1838
1839  // Canonicalize all of the types.
1840  FromType1 = Context.getCanonicalType(FromType1);
1841  ToType1 = Context.getCanonicalType(ToType1);
1842  FromType2 = Context.getCanonicalType(FromType2);
1843  ToType2 = Context.getCanonicalType(ToType2);
1844
1845  // C++ [over.ics.rank]p4b3:
1846  //
1847  //   If class B is derived directly or indirectly from class A and
1848  //   class C is derived directly or indirectly from B,
1849  //
1850  // For Objective-C, we let A, B, and C also be Objective-C
1851  // interfaces.
1852
1853  // Compare based on pointer conversions.
1854  if (SCS1.Second == ICK_Pointer_Conversion &&
1855      SCS2.Second == ICK_Pointer_Conversion &&
1856      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1857      FromType1->isPointerType() && FromType2->isPointerType() &&
1858      ToType1->isPointerType() && ToType2->isPointerType()) {
1859    QualType FromPointee1
1860      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1861    QualType ToPointee1
1862      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1863    QualType FromPointee2
1864      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1865    QualType ToPointee2
1866      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1867
1868    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1869    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1870    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1871    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1872
1873    //   -- conversion of C* to B* is better than conversion of C* to A*,
1874    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1875      if (IsDerivedFrom(ToPointee1, ToPointee2))
1876        return ImplicitConversionSequence::Better;
1877      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1878        return ImplicitConversionSequence::Worse;
1879
1880      if (ToIface1 && ToIface2) {
1881        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1882          return ImplicitConversionSequence::Better;
1883        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1884          return ImplicitConversionSequence::Worse;
1885      }
1886    }
1887
1888    //   -- conversion of B* to A* is better than conversion of C* to A*,
1889    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1890      if (IsDerivedFrom(FromPointee2, FromPointee1))
1891        return ImplicitConversionSequence::Better;
1892      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1893        return ImplicitConversionSequence::Worse;
1894
1895      if (FromIface1 && FromIface2) {
1896        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1897          return ImplicitConversionSequence::Better;
1898        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1899          return ImplicitConversionSequence::Worse;
1900      }
1901    }
1902  }
1903
1904  // Compare based on reference bindings.
1905  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1906      SCS1.Second == ICK_Derived_To_Base) {
1907    //   -- binding of an expression of type C to a reference of type
1908    //      B& is better than binding an expression of type C to a
1909    //      reference of type A&,
1910    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1911        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1912      if (IsDerivedFrom(ToType1, ToType2))
1913        return ImplicitConversionSequence::Better;
1914      else if (IsDerivedFrom(ToType2, ToType1))
1915        return ImplicitConversionSequence::Worse;
1916    }
1917
1918    //   -- binding of an expression of type B to a reference of type
1919    //      A& is better than binding an expression of type C to a
1920    //      reference of type A&,
1921    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1922        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1923      if (IsDerivedFrom(FromType2, FromType1))
1924        return ImplicitConversionSequence::Better;
1925      else if (IsDerivedFrom(FromType1, FromType2))
1926        return ImplicitConversionSequence::Worse;
1927    }
1928  }
1929
1930
1931  // FIXME: conversion of A::* to B::* is better than conversion of
1932  // A::* to C::*,
1933
1934  // FIXME: conversion of B::* to C::* is better than conversion of
1935  // A::* to C::*, and
1936
1937  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1938      SCS1.Second == ICK_Derived_To_Base) {
1939    //   -- conversion of C to B is better than conversion of C to A,
1940    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1941        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1942      if (IsDerivedFrom(ToType1, ToType2))
1943        return ImplicitConversionSequence::Better;
1944      else if (IsDerivedFrom(ToType2, ToType1))
1945        return ImplicitConversionSequence::Worse;
1946    }
1947
1948    //   -- conversion of B to A is better than conversion of C to A.
1949    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1950        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1951      if (IsDerivedFrom(FromType2, FromType1))
1952        return ImplicitConversionSequence::Better;
1953      else if (IsDerivedFrom(FromType1, FromType2))
1954        return ImplicitConversionSequence::Worse;
1955    }
1956  }
1957
1958  return ImplicitConversionSequence::Indistinguishable;
1959}
1960
1961/// TryCopyInitialization - Try to copy-initialize a value of type
1962/// ToType from the expression From. Return the implicit conversion
1963/// sequence required to pass this argument, which may be a bad
1964/// conversion sequence (meaning that the argument cannot be passed to
1965/// a parameter of this type). If @p SuppressUserConversions, then we
1966/// do not permit any user-defined conversion sequences. If @p ForceRValue,
1967/// then we treat @p From as an rvalue, even if it is an lvalue.
1968ImplicitConversionSequence
1969Sema::TryCopyInitialization(Expr *From, QualType ToType,
1970                            bool SuppressUserConversions, bool ForceRValue,
1971                            bool InOverloadResolution) {
1972  if (ToType->isReferenceType()) {
1973    ImplicitConversionSequence ICS;
1974    CheckReferenceInit(From, ToType,
1975                       /*FIXME:*/From->getLocStart(),
1976                       SuppressUserConversions,
1977                       /*AllowExplicit=*/false,
1978                       ForceRValue,
1979                       &ICS);
1980    return ICS;
1981  } else {
1982    return TryImplicitConversion(From, ToType,
1983                                 SuppressUserConversions,
1984                                 /*AllowExplicit=*/false,
1985                                 ForceRValue,
1986                                 InOverloadResolution);
1987  }
1988}
1989
1990/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
1991/// the expression @p From. Returns true (and emits a diagnostic) if there was
1992/// an error, returns false if the initialization succeeded. Elidable should
1993/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
1994/// differently in C++0x for this case.
1995bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1996                                     const char* Flavor, bool Elidable) {
1997  if (!getLangOptions().CPlusPlus) {
1998    // In C, argument passing is the same as performing an assignment.
1999    QualType FromType = From->getType();
2000
2001    AssignConvertType ConvTy =
2002      CheckSingleAssignmentConstraints(ToType, From);
2003    if (ConvTy != Compatible &&
2004        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2005      ConvTy = Compatible;
2006
2007    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2008                                    FromType, From, Flavor);
2009  }
2010
2011  if (ToType->isReferenceType())
2012    return CheckReferenceInit(From, ToType,
2013                              /*FIXME:*/From->getLocStart(),
2014                              /*SuppressUserConversions=*/false,
2015                              /*AllowExplicit=*/false,
2016                              /*ForceRValue=*/false);
2017
2018  if (!PerformImplicitConversion(From, ToType, Flavor,
2019                                 /*AllowExplicit=*/false, Elidable))
2020    return false;
2021  if (!DiagnoseAmbiguousUserDefinedConversion(From, ToType))
2022    return Diag(From->getSourceRange().getBegin(),
2023                diag::err_typecheck_convert_incompatible)
2024      << ToType << From->getType() << Flavor << From->getSourceRange();
2025  return true;
2026}
2027
2028/// TryObjectArgumentInitialization - Try to initialize the object
2029/// parameter of the given member function (@c Method) from the
2030/// expression @p From.
2031ImplicitConversionSequence
2032Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
2033  QualType ClassType = Context.getTypeDeclType(Method->getParent());
2034  QualType ImplicitParamType
2035    = Context.getCVRQualifiedType(ClassType, Method->getTypeQualifiers());
2036
2037  // Set up the conversion sequence as a "bad" conversion, to allow us
2038  // to exit early.
2039  ImplicitConversionSequence ICS;
2040  ICS.Standard.setAsIdentityConversion();
2041  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2042
2043  // We need to have an object of class type.
2044  QualType FromType = From->getType();
2045  if (const PointerType *PT = FromType->getAs<PointerType>())
2046    FromType = PT->getPointeeType();
2047
2048  assert(FromType->isRecordType());
2049
2050  // The implicit object parmeter is has the type "reference to cv X",
2051  // where X is the class of which the function is a member
2052  // (C++ [over.match.funcs]p4). However, when finding an implicit
2053  // conversion sequence for the argument, we are not allowed to
2054  // create temporaries or perform user-defined conversions
2055  // (C++ [over.match.funcs]p5). We perform a simplified version of
2056  // reference binding here, that allows class rvalues to bind to
2057  // non-constant references.
2058
2059  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2060  // with the implicit object parameter (C++ [over.match.funcs]p5).
2061  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2062  if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
2063      !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
2064    return ICS;
2065
2066  // Check that we have either the same type or a derived type. It
2067  // affects the conversion rank.
2068  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2069  if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
2070    ICS.Standard.Second = ICK_Identity;
2071  else if (IsDerivedFrom(FromType, ClassType))
2072    ICS.Standard.Second = ICK_Derived_To_Base;
2073  else
2074    return ICS;
2075
2076  // Success. Mark this as a reference binding.
2077  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2078  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2079  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2080  ICS.Standard.ReferenceBinding = true;
2081  ICS.Standard.DirectBinding = true;
2082  ICS.Standard.RRefBinding = false;
2083  return ICS;
2084}
2085
2086/// PerformObjectArgumentInitialization - Perform initialization of
2087/// the implicit object parameter for the given Method with the given
2088/// expression.
2089bool
2090Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2091  QualType FromRecordType, DestType;
2092  QualType ImplicitParamRecordType  =
2093    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2094
2095  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2096    FromRecordType = PT->getPointeeType();
2097    DestType = Method->getThisType(Context);
2098  } else {
2099    FromRecordType = From->getType();
2100    DestType = ImplicitParamRecordType;
2101  }
2102
2103  ImplicitConversionSequence ICS
2104    = TryObjectArgumentInitialization(From, Method);
2105  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2106    return Diag(From->getSourceRange().getBegin(),
2107                diag::err_implicit_object_parameter_init)
2108       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2109
2110  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2111      CheckDerivedToBaseConversion(FromRecordType,
2112                                   ImplicitParamRecordType,
2113                                   From->getSourceRange().getBegin(),
2114                                   From->getSourceRange()))
2115    return true;
2116
2117  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2118                    /*isLvalue=*/true);
2119  return false;
2120}
2121
2122/// TryContextuallyConvertToBool - Attempt to contextually convert the
2123/// expression From to bool (C++0x [conv]p3).
2124ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2125  return TryImplicitConversion(From, Context.BoolTy,
2126                               // FIXME: Are these flags correct?
2127                               /*SuppressUserConversions=*/false,
2128                               /*AllowExplicit=*/true,
2129                               /*ForceRValue=*/false,
2130                               /*InOverloadResolution=*/false);
2131}
2132
2133/// PerformContextuallyConvertToBool - Perform a contextual conversion
2134/// of the expression From to bool (C++0x [conv]p3).
2135bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2136  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2137  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2138    return false;
2139
2140  if (!DiagnoseAmbiguousUserDefinedConversion(From, Context.BoolTy))
2141    return  Diag(From->getSourceRange().getBegin(),
2142                 diag::err_typecheck_bool_condition)
2143                  << From->getType() << From->getSourceRange();
2144  return true;
2145}
2146
2147/// AddOverloadCandidate - Adds the given function to the set of
2148/// candidate functions, using the given function call arguments.  If
2149/// @p SuppressUserConversions, then don't allow user-defined
2150/// conversions via constructors or conversion operators.
2151/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2152/// hacky way to implement the overloading rules for elidable copy
2153/// initialization in C++0x (C++0x 12.8p15).
2154///
2155/// \para PartialOverloading true if we are performing "partial" overloading
2156/// based on an incomplete set of function arguments. This feature is used by
2157/// code completion.
2158void
2159Sema::AddOverloadCandidate(FunctionDecl *Function,
2160                           Expr **Args, unsigned NumArgs,
2161                           OverloadCandidateSet& CandidateSet,
2162                           bool SuppressUserConversions,
2163                           bool ForceRValue,
2164                           bool PartialOverloading) {
2165  const FunctionProtoType* Proto
2166    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2167  assert(Proto && "Functions without a prototype cannot be overloaded");
2168  assert(!isa<CXXConversionDecl>(Function) &&
2169         "Use AddConversionCandidate for conversion functions");
2170  assert(!Function->getDescribedFunctionTemplate() &&
2171         "Use AddTemplateOverloadCandidate for function templates");
2172
2173  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2174    if (!isa<CXXConstructorDecl>(Method)) {
2175      // If we get here, it's because we're calling a member function
2176      // that is named without a member access expression (e.g.,
2177      // "this->f") that was either written explicitly or created
2178      // implicitly. This can happen with a qualified call to a member
2179      // function, e.g., X::f(). We use a NULL object as the implied
2180      // object argument (C++ [over.call.func]p3).
2181      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2182                         SuppressUserConversions, ForceRValue);
2183      return;
2184    }
2185    // We treat a constructor like a non-member function, since its object
2186    // argument doesn't participate in overload resolution.
2187  }
2188
2189
2190  // Add this candidate
2191  CandidateSet.push_back(OverloadCandidate());
2192  OverloadCandidate& Candidate = CandidateSet.back();
2193  Candidate.Function = Function;
2194  Candidate.Viable = true;
2195  Candidate.IsSurrogate = false;
2196  Candidate.IgnoreObjectArgument = false;
2197
2198  unsigned NumArgsInProto = Proto->getNumArgs();
2199
2200  // (C++ 13.3.2p2): A candidate function having fewer than m
2201  // parameters is viable only if it has an ellipsis in its parameter
2202  // list (8.3.5).
2203  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2204      !Proto->isVariadic()) {
2205    Candidate.Viable = false;
2206    return;
2207  }
2208
2209  // (C++ 13.3.2p2): A candidate function having more than m parameters
2210  // is viable only if the (m+1)st parameter has a default argument
2211  // (8.3.6). For the purposes of overload resolution, the
2212  // parameter list is truncated on the right, so that there are
2213  // exactly m parameters.
2214  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2215  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2216    // Not enough arguments.
2217    Candidate.Viable = false;
2218    return;
2219  }
2220
2221  // Determine the implicit conversion sequences for each of the
2222  // arguments.
2223  Candidate.Conversions.resize(NumArgs);
2224  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2225    if (ArgIdx < NumArgsInProto) {
2226      // (C++ 13.3.2p3): for F to be a viable function, there shall
2227      // exist for each argument an implicit conversion sequence
2228      // (13.3.3.1) that converts that argument to the corresponding
2229      // parameter of F.
2230      QualType ParamType = Proto->getArgType(ArgIdx);
2231      Candidate.Conversions[ArgIdx]
2232        = TryCopyInitialization(Args[ArgIdx], ParamType,
2233                                SuppressUserConversions, ForceRValue,
2234                                /*InOverloadResolution=*/true);
2235      if (Candidate.Conversions[ArgIdx].ConversionKind
2236            == ImplicitConversionSequence::BadConversion) {
2237        Candidate.Viable = false;
2238        break;
2239      }
2240    } else {
2241      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2242      // argument for which there is no corresponding parameter is
2243      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2244      Candidate.Conversions[ArgIdx].ConversionKind
2245        = ImplicitConversionSequence::EllipsisConversion;
2246    }
2247  }
2248}
2249
2250/// \brief Add all of the function declarations in the given function set to
2251/// the overload canddiate set.
2252void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2253                                 Expr **Args, unsigned NumArgs,
2254                                 OverloadCandidateSet& CandidateSet,
2255                                 bool SuppressUserConversions) {
2256  for (FunctionSet::const_iterator F = Functions.begin(),
2257                                FEnd = Functions.end();
2258       F != FEnd; ++F) {
2259    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F))
2260      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2261                           SuppressUserConversions);
2262    else
2263      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*F),
2264                                   /*FIXME: explicit args */false, 0, 0,
2265                                   Args, NumArgs, CandidateSet,
2266                                   SuppressUserConversions);
2267  }
2268}
2269
2270/// AddMethodCandidate - Adds the given C++ member function to the set
2271/// of candidate functions, using the given function call arguments
2272/// and the object argument (@c Object). For example, in a call
2273/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2274/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2275/// allow user-defined conversions via constructors or conversion
2276/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2277/// a slightly hacky way to implement the overloading rules for elidable copy
2278/// initialization in C++0x (C++0x 12.8p15).
2279void
2280Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2281                         Expr **Args, unsigned NumArgs,
2282                         OverloadCandidateSet& CandidateSet,
2283                         bool SuppressUserConversions, bool ForceRValue) {
2284  const FunctionProtoType* Proto
2285    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2286  assert(Proto && "Methods without a prototype cannot be overloaded");
2287  assert(!isa<CXXConversionDecl>(Method) &&
2288         "Use AddConversionCandidate for conversion functions");
2289  assert(!isa<CXXConstructorDecl>(Method) &&
2290         "Use AddOverloadCandidate for constructors");
2291
2292  // Add this candidate
2293  CandidateSet.push_back(OverloadCandidate());
2294  OverloadCandidate& Candidate = CandidateSet.back();
2295  Candidate.Function = Method;
2296  Candidate.IsSurrogate = false;
2297  Candidate.IgnoreObjectArgument = false;
2298
2299  unsigned NumArgsInProto = Proto->getNumArgs();
2300
2301  // (C++ 13.3.2p2): A candidate function having fewer than m
2302  // parameters is viable only if it has an ellipsis in its parameter
2303  // list (8.3.5).
2304  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2305    Candidate.Viable = false;
2306    return;
2307  }
2308
2309  // (C++ 13.3.2p2): A candidate function having more than m parameters
2310  // is viable only if the (m+1)st parameter has a default argument
2311  // (8.3.6). For the purposes of overload resolution, the
2312  // parameter list is truncated on the right, so that there are
2313  // exactly m parameters.
2314  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2315  if (NumArgs < MinRequiredArgs) {
2316    // Not enough arguments.
2317    Candidate.Viable = false;
2318    return;
2319  }
2320
2321  Candidate.Viable = true;
2322  Candidate.Conversions.resize(NumArgs + 1);
2323
2324  if (Method->isStatic() || !Object)
2325    // The implicit object argument is ignored.
2326    Candidate.IgnoreObjectArgument = true;
2327  else {
2328    // Determine the implicit conversion sequence for the object
2329    // parameter.
2330    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2331    if (Candidate.Conversions[0].ConversionKind
2332          == ImplicitConversionSequence::BadConversion) {
2333      Candidate.Viable = false;
2334      return;
2335    }
2336  }
2337
2338  // Determine the implicit conversion sequences for each of the
2339  // arguments.
2340  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2341    if (ArgIdx < NumArgsInProto) {
2342      // (C++ 13.3.2p3): for F to be a viable function, there shall
2343      // exist for each argument an implicit conversion sequence
2344      // (13.3.3.1) that converts that argument to the corresponding
2345      // parameter of F.
2346      QualType ParamType = Proto->getArgType(ArgIdx);
2347      Candidate.Conversions[ArgIdx + 1]
2348        = TryCopyInitialization(Args[ArgIdx], ParamType,
2349                                SuppressUserConversions, ForceRValue,
2350                                /*InOverloadResolution=*/true);
2351      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2352            == ImplicitConversionSequence::BadConversion) {
2353        Candidate.Viable = false;
2354        break;
2355      }
2356    } else {
2357      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2358      // argument for which there is no corresponding parameter is
2359      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2360      Candidate.Conversions[ArgIdx + 1].ConversionKind
2361        = ImplicitConversionSequence::EllipsisConversion;
2362    }
2363  }
2364}
2365
2366/// \brief Add a C++ member function template as a candidate to the candidate
2367/// set, using template argument deduction to produce an appropriate member
2368/// function template specialization.
2369void
2370Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2371                                 bool HasExplicitTemplateArgs,
2372                                 const TemplateArgument *ExplicitTemplateArgs,
2373                                 unsigned NumExplicitTemplateArgs,
2374                                 Expr *Object, Expr **Args, unsigned NumArgs,
2375                                 OverloadCandidateSet& CandidateSet,
2376                                 bool SuppressUserConversions,
2377                                 bool ForceRValue) {
2378  // C++ [over.match.funcs]p7:
2379  //   In each case where a candidate is a function template, candidate
2380  //   function template specializations are generated using template argument
2381  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2382  //   candidate functions in the usual way.113) A given name can refer to one
2383  //   or more function templates and also to a set of overloaded non-template
2384  //   functions. In such a case, the candidate functions generated from each
2385  //   function template are combined with the set of non-template candidate
2386  //   functions.
2387  TemplateDeductionInfo Info(Context);
2388  FunctionDecl *Specialization = 0;
2389  if (TemplateDeductionResult Result
2390      = DeduceTemplateArguments(MethodTmpl, HasExplicitTemplateArgs,
2391                                ExplicitTemplateArgs, NumExplicitTemplateArgs,
2392                                Args, NumArgs, Specialization, Info)) {
2393        // FIXME: Record what happened with template argument deduction, so
2394        // that we can give the user a beautiful diagnostic.
2395        (void)Result;
2396        return;
2397      }
2398
2399  // Add the function template specialization produced by template argument
2400  // deduction as a candidate.
2401  assert(Specialization && "Missing member function template specialization?");
2402  assert(isa<CXXMethodDecl>(Specialization) &&
2403         "Specialization is not a member function?");
2404  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2405                     CandidateSet, SuppressUserConversions, ForceRValue);
2406}
2407
2408/// \brief Add a C++ function template specialization as a candidate
2409/// in the candidate set, using template argument deduction to produce
2410/// an appropriate function template specialization.
2411void
2412Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2413                                   bool HasExplicitTemplateArgs,
2414                                 const TemplateArgument *ExplicitTemplateArgs,
2415                                   unsigned NumExplicitTemplateArgs,
2416                                   Expr **Args, unsigned NumArgs,
2417                                   OverloadCandidateSet& CandidateSet,
2418                                   bool SuppressUserConversions,
2419                                   bool ForceRValue) {
2420  // C++ [over.match.funcs]p7:
2421  //   In each case where a candidate is a function template, candidate
2422  //   function template specializations are generated using template argument
2423  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2424  //   candidate functions in the usual way.113) A given name can refer to one
2425  //   or more function templates and also to a set of overloaded non-template
2426  //   functions. In such a case, the candidate functions generated from each
2427  //   function template are combined with the set of non-template candidate
2428  //   functions.
2429  TemplateDeductionInfo Info(Context);
2430  FunctionDecl *Specialization = 0;
2431  if (TemplateDeductionResult Result
2432        = DeduceTemplateArguments(FunctionTemplate, HasExplicitTemplateArgs,
2433                                  ExplicitTemplateArgs, NumExplicitTemplateArgs,
2434                                  Args, NumArgs, Specialization, Info)) {
2435    // FIXME: Record what happened with template argument deduction, so
2436    // that we can give the user a beautiful diagnostic.
2437    (void)Result;
2438    return;
2439  }
2440
2441  // Add the function template specialization produced by template argument
2442  // deduction as a candidate.
2443  assert(Specialization && "Missing function template specialization?");
2444  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2445                       SuppressUserConversions, ForceRValue);
2446}
2447
2448/// AddConversionCandidate - Add a C++ conversion function as a
2449/// candidate in the candidate set (C++ [over.match.conv],
2450/// C++ [over.match.copy]). From is the expression we're converting from,
2451/// and ToType is the type that we're eventually trying to convert to
2452/// (which may or may not be the same type as the type that the
2453/// conversion function produces).
2454void
2455Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2456                             Expr *From, QualType ToType,
2457                             OverloadCandidateSet& CandidateSet) {
2458  assert(!Conversion->getDescribedFunctionTemplate() &&
2459         "Conversion function templates use AddTemplateConversionCandidate");
2460
2461  // Add this candidate
2462  CandidateSet.push_back(OverloadCandidate());
2463  OverloadCandidate& Candidate = CandidateSet.back();
2464  Candidate.Function = Conversion;
2465  Candidate.IsSurrogate = false;
2466  Candidate.IgnoreObjectArgument = false;
2467  Candidate.FinalConversion.setAsIdentityConversion();
2468  Candidate.FinalConversion.FromTypePtr
2469    = Conversion->getConversionType().getAsOpaquePtr();
2470  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2471
2472  // Determine the implicit conversion sequence for the implicit
2473  // object parameter.
2474  Candidate.Viable = true;
2475  Candidate.Conversions.resize(1);
2476  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2477  // Conversion functions to a different type in the base class is visible in
2478  // the derived class.  So, a derived to base conversion should not participate
2479  // in overload resolution.
2480  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2481    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2482  if (Candidate.Conversions[0].ConversionKind
2483      == ImplicitConversionSequence::BadConversion) {
2484    Candidate.Viable = false;
2485    return;
2486  }
2487
2488  // To determine what the conversion from the result of calling the
2489  // conversion function to the type we're eventually trying to
2490  // convert to (ToType), we need to synthesize a call to the
2491  // conversion function and attempt copy initialization from it. This
2492  // makes sure that we get the right semantics with respect to
2493  // lvalues/rvalues and the type. Fortunately, we can allocate this
2494  // call on the stack and we don't need its arguments to be
2495  // well-formed.
2496  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2497                            SourceLocation());
2498  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2499                                CastExpr::CK_Unknown,
2500                                &ConversionRef, false);
2501
2502  // Note that it is safe to allocate CallExpr on the stack here because
2503  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2504  // allocator).
2505  CallExpr Call(Context, &ConversionFn, 0, 0,
2506                Conversion->getConversionType().getNonReferenceType(),
2507                SourceLocation());
2508  ImplicitConversionSequence ICS =
2509    TryCopyInitialization(&Call, ToType,
2510                          /*SuppressUserConversions=*/true,
2511                          /*ForceRValue=*/false,
2512                          /*InOverloadResolution=*/false);
2513
2514  switch (ICS.ConversionKind) {
2515  case ImplicitConversionSequence::StandardConversion:
2516    Candidate.FinalConversion = ICS.Standard;
2517    break;
2518
2519  case ImplicitConversionSequence::BadConversion:
2520    Candidate.Viable = false;
2521    break;
2522
2523  default:
2524    assert(false &&
2525           "Can only end up with a standard conversion sequence or failure");
2526  }
2527}
2528
2529/// \brief Adds a conversion function template specialization
2530/// candidate to the overload set, using template argument deduction
2531/// to deduce the template arguments of the conversion function
2532/// template from the type that we are converting to (C++
2533/// [temp.deduct.conv]).
2534void
2535Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2536                                     Expr *From, QualType ToType,
2537                                     OverloadCandidateSet &CandidateSet) {
2538  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2539         "Only conversion function templates permitted here");
2540
2541  TemplateDeductionInfo Info(Context);
2542  CXXConversionDecl *Specialization = 0;
2543  if (TemplateDeductionResult Result
2544        = DeduceTemplateArguments(FunctionTemplate, ToType,
2545                                  Specialization, Info)) {
2546    // FIXME: Record what happened with template argument deduction, so
2547    // that we can give the user a beautiful diagnostic.
2548    (void)Result;
2549    return;
2550  }
2551
2552  // Add the conversion function template specialization produced by
2553  // template argument deduction as a candidate.
2554  assert(Specialization && "Missing function template specialization?");
2555  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2556}
2557
2558/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2559/// converts the given @c Object to a function pointer via the
2560/// conversion function @c Conversion, and then attempts to call it
2561/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2562/// the type of function that we'll eventually be calling.
2563void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2564                                 const FunctionProtoType *Proto,
2565                                 Expr *Object, Expr **Args, unsigned NumArgs,
2566                                 OverloadCandidateSet& CandidateSet) {
2567  CandidateSet.push_back(OverloadCandidate());
2568  OverloadCandidate& Candidate = CandidateSet.back();
2569  Candidate.Function = 0;
2570  Candidate.Surrogate = Conversion;
2571  Candidate.Viable = true;
2572  Candidate.IsSurrogate = true;
2573  Candidate.IgnoreObjectArgument = false;
2574  Candidate.Conversions.resize(NumArgs + 1);
2575
2576  // Determine the implicit conversion sequence for the implicit
2577  // object parameter.
2578  ImplicitConversionSequence ObjectInit
2579    = TryObjectArgumentInitialization(Object, Conversion);
2580  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2581    Candidate.Viable = false;
2582    return;
2583  }
2584
2585  // The first conversion is actually a user-defined conversion whose
2586  // first conversion is ObjectInit's standard conversion (which is
2587  // effectively a reference binding). Record it as such.
2588  Candidate.Conversions[0].ConversionKind
2589    = ImplicitConversionSequence::UserDefinedConversion;
2590  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2591  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2592  Candidate.Conversions[0].UserDefined.After
2593    = Candidate.Conversions[0].UserDefined.Before;
2594  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2595
2596  // Find the
2597  unsigned NumArgsInProto = Proto->getNumArgs();
2598
2599  // (C++ 13.3.2p2): A candidate function having fewer than m
2600  // parameters is viable only if it has an ellipsis in its parameter
2601  // list (8.3.5).
2602  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2603    Candidate.Viable = false;
2604    return;
2605  }
2606
2607  // Function types don't have any default arguments, so just check if
2608  // we have enough arguments.
2609  if (NumArgs < NumArgsInProto) {
2610    // Not enough arguments.
2611    Candidate.Viable = false;
2612    return;
2613  }
2614
2615  // Determine the implicit conversion sequences for each of the
2616  // arguments.
2617  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2618    if (ArgIdx < NumArgsInProto) {
2619      // (C++ 13.3.2p3): for F to be a viable function, there shall
2620      // exist for each argument an implicit conversion sequence
2621      // (13.3.3.1) that converts that argument to the corresponding
2622      // parameter of F.
2623      QualType ParamType = Proto->getArgType(ArgIdx);
2624      Candidate.Conversions[ArgIdx + 1]
2625        = TryCopyInitialization(Args[ArgIdx], ParamType,
2626                                /*SuppressUserConversions=*/false,
2627                                /*ForceRValue=*/false,
2628                                /*InOverloadResolution=*/false);
2629      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2630            == ImplicitConversionSequence::BadConversion) {
2631        Candidate.Viable = false;
2632        break;
2633      }
2634    } else {
2635      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2636      // argument for which there is no corresponding parameter is
2637      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2638      Candidate.Conversions[ArgIdx + 1].ConversionKind
2639        = ImplicitConversionSequence::EllipsisConversion;
2640    }
2641  }
2642}
2643
2644// FIXME: This will eventually be removed, once we've migrated all of the
2645// operator overloading logic over to the scheme used by binary operators, which
2646// works for template instantiation.
2647void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2648                                 SourceLocation OpLoc,
2649                                 Expr **Args, unsigned NumArgs,
2650                                 OverloadCandidateSet& CandidateSet,
2651                                 SourceRange OpRange) {
2652
2653  FunctionSet Functions;
2654
2655  QualType T1 = Args[0]->getType();
2656  QualType T2;
2657  if (NumArgs > 1)
2658    T2 = Args[1]->getType();
2659
2660  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2661  if (S)
2662    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2663  ArgumentDependentLookup(OpName, Args, NumArgs, Functions);
2664  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2665  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2666  AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
2667}
2668
2669/// \brief Add overload candidates for overloaded operators that are
2670/// member functions.
2671///
2672/// Add the overloaded operator candidates that are member functions
2673/// for the operator Op that was used in an operator expression such
2674/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2675/// CandidateSet will store the added overload candidates. (C++
2676/// [over.match.oper]).
2677void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2678                                       SourceLocation OpLoc,
2679                                       Expr **Args, unsigned NumArgs,
2680                                       OverloadCandidateSet& CandidateSet,
2681                                       SourceRange OpRange) {
2682  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2683
2684  // C++ [over.match.oper]p3:
2685  //   For a unary operator @ with an operand of a type whose
2686  //   cv-unqualified version is T1, and for a binary operator @ with
2687  //   a left operand of a type whose cv-unqualified version is T1 and
2688  //   a right operand of a type whose cv-unqualified version is T2,
2689  //   three sets of candidate functions, designated member
2690  //   candidates, non-member candidates and built-in candidates, are
2691  //   constructed as follows:
2692  QualType T1 = Args[0]->getType();
2693  QualType T2;
2694  if (NumArgs > 1)
2695    T2 = Args[1]->getType();
2696
2697  //     -- If T1 is a class type, the set of member candidates is the
2698  //        result of the qualified lookup of T1::operator@
2699  //        (13.3.1.1.1); otherwise, the set of member candidates is
2700  //        empty.
2701  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2702    // Complete the type if it can be completed. Otherwise, we're done.
2703    if (RequireCompleteType(OpLoc, T1, PartialDiagnostic(0)))
2704      return;
2705
2706    LookupResult Operators = LookupQualifiedName(T1Rec->getDecl(), OpName,
2707                                                 LookupOrdinaryName, false);
2708    for (LookupResult::iterator Oper = Operators.begin(),
2709                             OperEnd = Operators.end();
2710         Oper != OperEnd;
2711         ++Oper)
2712      AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2713                         Args+1, NumArgs - 1, CandidateSet,
2714                         /*SuppressUserConversions=*/false);
2715  }
2716}
2717
2718/// AddBuiltinCandidate - Add a candidate for a built-in
2719/// operator. ResultTy and ParamTys are the result and parameter types
2720/// of the built-in candidate, respectively. Args and NumArgs are the
2721/// arguments being passed to the candidate. IsAssignmentOperator
2722/// should be true when this built-in candidate is an assignment
2723/// operator. NumContextualBoolArguments is the number of arguments
2724/// (at the beginning of the argument list) that will be contextually
2725/// converted to bool.
2726void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2727                               Expr **Args, unsigned NumArgs,
2728                               OverloadCandidateSet& CandidateSet,
2729                               bool IsAssignmentOperator,
2730                               unsigned NumContextualBoolArguments) {
2731  // Add this candidate
2732  CandidateSet.push_back(OverloadCandidate());
2733  OverloadCandidate& Candidate = CandidateSet.back();
2734  Candidate.Function = 0;
2735  Candidate.IsSurrogate = false;
2736  Candidate.IgnoreObjectArgument = false;
2737  Candidate.BuiltinTypes.ResultTy = ResultTy;
2738  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2739    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2740
2741  // Determine the implicit conversion sequences for each of the
2742  // arguments.
2743  Candidate.Viable = true;
2744  Candidate.Conversions.resize(NumArgs);
2745  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2746    // C++ [over.match.oper]p4:
2747    //   For the built-in assignment operators, conversions of the
2748    //   left operand are restricted as follows:
2749    //     -- no temporaries are introduced to hold the left operand, and
2750    //     -- no user-defined conversions are applied to the left
2751    //        operand to achieve a type match with the left-most
2752    //        parameter of a built-in candidate.
2753    //
2754    // We block these conversions by turning off user-defined
2755    // conversions, since that is the only way that initialization of
2756    // a reference to a non-class type can occur from something that
2757    // is not of the same type.
2758    if (ArgIdx < NumContextualBoolArguments) {
2759      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2760             "Contextual conversion to bool requires bool type");
2761      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2762    } else {
2763      Candidate.Conversions[ArgIdx]
2764        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2765                                ArgIdx == 0 && IsAssignmentOperator,
2766                                /*ForceRValue=*/false,
2767                                /*InOverloadResolution=*/false);
2768    }
2769    if (Candidate.Conversions[ArgIdx].ConversionKind
2770        == ImplicitConversionSequence::BadConversion) {
2771      Candidate.Viable = false;
2772      break;
2773    }
2774  }
2775}
2776
2777/// BuiltinCandidateTypeSet - A set of types that will be used for the
2778/// candidate operator functions for built-in operators (C++
2779/// [over.built]). The types are separated into pointer types and
2780/// enumeration types.
2781class BuiltinCandidateTypeSet  {
2782  /// TypeSet - A set of types.
2783  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2784
2785  /// PointerTypes - The set of pointer types that will be used in the
2786  /// built-in candidates.
2787  TypeSet PointerTypes;
2788
2789  /// MemberPointerTypes - The set of member pointer types that will be
2790  /// used in the built-in candidates.
2791  TypeSet MemberPointerTypes;
2792
2793  /// EnumerationTypes - The set of enumeration types that will be
2794  /// used in the built-in candidates.
2795  TypeSet EnumerationTypes;
2796
2797  /// Sema - The semantic analysis instance where we are building the
2798  /// candidate type set.
2799  Sema &SemaRef;
2800
2801  /// Context - The AST context in which we will build the type sets.
2802  ASTContext &Context;
2803
2804  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty);
2805  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2806
2807public:
2808  /// iterator - Iterates through the types that are part of the set.
2809  typedef TypeSet::iterator iterator;
2810
2811  BuiltinCandidateTypeSet(Sema &SemaRef)
2812    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2813
2814  void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2815                             bool AllowExplicitConversions);
2816
2817  /// pointer_begin - First pointer type found;
2818  iterator pointer_begin() { return PointerTypes.begin(); }
2819
2820  /// pointer_end - Past the last pointer type found;
2821  iterator pointer_end() { return PointerTypes.end(); }
2822
2823  /// member_pointer_begin - First member pointer type found;
2824  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2825
2826  /// member_pointer_end - Past the last member pointer type found;
2827  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2828
2829  /// enumeration_begin - First enumeration type found;
2830  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2831
2832  /// enumeration_end - Past the last enumeration type found;
2833  iterator enumeration_end() { return EnumerationTypes.end(); }
2834};
2835
2836/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2837/// the set of pointer types along with any more-qualified variants of
2838/// that type. For example, if @p Ty is "int const *", this routine
2839/// will add "int const *", "int const volatile *", "int const
2840/// restrict *", and "int const volatile restrict *" to the set of
2841/// pointer types. Returns true if the add of @p Ty itself succeeded,
2842/// false otherwise.
2843///
2844/// FIXME: what to do about extended qualifiers?
2845bool
2846BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty) {
2847
2848  // Insert this type.
2849  if (!PointerTypes.insert(Ty))
2850    return false;
2851
2852  const PointerType *PointerTy = Ty->getAs<PointerType>();
2853  assert(PointerTy && "type was not a pointer type!");
2854
2855  QualType PointeeTy = PointerTy->getPointeeType();
2856  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
2857
2858  // Iterate through all strict supersets of BaseCVR.
2859  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
2860    if ((CVR | BaseCVR) != CVR) continue;
2861
2862    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
2863    PointerTypes.insert(Context.getPointerType(QPointeeTy));
2864  }
2865
2866  return true;
2867}
2868
2869/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
2870/// to the set of pointer types along with any more-qualified variants of
2871/// that type. For example, if @p Ty is "int const *", this routine
2872/// will add "int const *", "int const volatile *", "int const
2873/// restrict *", and "int const volatile restrict *" to the set of
2874/// pointer types. Returns true if the add of @p Ty itself succeeded,
2875/// false otherwise.
2876///
2877/// FIXME: what to do about extended qualifiers?
2878bool
2879BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
2880    QualType Ty) {
2881  // Insert this type.
2882  if (!MemberPointerTypes.insert(Ty))
2883    return false;
2884
2885  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
2886  assert(PointerTy && "type was not a member pointer type!");
2887
2888  QualType PointeeTy = PointerTy->getPointeeType();
2889  const Type *ClassTy = PointerTy->getClass();
2890
2891  // Iterate through all strict supersets of the pointee type's CVR
2892  // qualifiers.
2893  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
2894  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
2895    if ((CVR | BaseCVR) != CVR) continue;
2896
2897    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
2898    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
2899  }
2900
2901  return true;
2902}
2903
2904/// AddTypesConvertedFrom - Add each of the types to which the type @p
2905/// Ty can be implicit converted to the given set of @p Types. We're
2906/// primarily interested in pointer types and enumeration types. We also
2907/// take member pointer types, for the conditional operator.
2908/// AllowUserConversions is true if we should look at the conversion
2909/// functions of a class type, and AllowExplicitConversions if we
2910/// should also include the explicit conversion functions of a class
2911/// type.
2912void
2913BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2914                                               bool AllowUserConversions,
2915                                               bool AllowExplicitConversions) {
2916  // Only deal with canonical types.
2917  Ty = Context.getCanonicalType(Ty);
2918
2919  // Look through reference types; they aren't part of the type of an
2920  // expression for the purposes of conversions.
2921  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
2922    Ty = RefTy->getPointeeType();
2923
2924  // We don't care about qualifiers on the type.
2925  Ty = Ty.getUnqualifiedType();
2926
2927  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
2928    QualType PointeeTy = PointerTy->getPointeeType();
2929
2930    // Insert our type, and its more-qualified variants, into the set
2931    // of types.
2932    if (!AddPointerWithMoreQualifiedTypeVariants(Ty))
2933      return;
2934
2935    // Add 'cv void*' to our set of types.
2936    if (!Ty->isVoidType()) {
2937      QualType QualVoid
2938        = Context.getCVRQualifiedType(Context.VoidTy,
2939                                   PointeeTy.getCVRQualifiers());
2940      AddPointerWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2941    }
2942
2943    // If this is a pointer to a class type, add pointers to its bases
2944    // (with the same level of cv-qualification as the original
2945    // derived class, of course).
2946    if (const RecordType *PointeeRec = PointeeTy->getAs<RecordType>()) {
2947      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2948      for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2949           Base != ClassDecl->bases_end(); ++Base) {
2950        QualType BaseTy = Context.getCanonicalType(Base->getType());
2951        BaseTy = Context.getCVRQualifiedType(BaseTy.getUnqualifiedType(),
2952                                          PointeeTy.getCVRQualifiers());
2953
2954        // Add the pointer type, recursively, so that we get all of
2955        // the indirect base classes, too.
2956        AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
2957      }
2958    }
2959  } else if (Ty->isMemberPointerType()) {
2960    // Member pointers are far easier, since the pointee can't be converted.
2961    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
2962      return;
2963  } else if (Ty->isEnumeralType()) {
2964    EnumerationTypes.insert(Ty);
2965  } else if (AllowUserConversions) {
2966    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
2967      if (SemaRef.RequireCompleteType(SourceLocation(), Ty, 0)) {
2968        // No conversion functions in incomplete types.
2969        return;
2970      }
2971
2972      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2973      // FIXME: Visit conversion functions in the base classes, too.
2974      OverloadedFunctionDecl *Conversions
2975        = ClassDecl->getConversionFunctions();
2976      for (OverloadedFunctionDecl::function_iterator Func
2977             = Conversions->function_begin();
2978           Func != Conversions->function_end(); ++Func) {
2979        CXXConversionDecl *Conv;
2980        FunctionTemplateDecl *ConvTemplate;
2981        GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
2982
2983        // Skip conversion function templates; they don't tell us anything
2984        // about which builtin types we can convert to.
2985        if (ConvTemplate)
2986          continue;
2987
2988        if (AllowExplicitConversions || !Conv->isExplicit())
2989          AddTypesConvertedFrom(Conv->getConversionType(), false, false);
2990      }
2991    }
2992  }
2993}
2994
2995/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
2996/// the volatile- and non-volatile-qualified assignment operators for the
2997/// given type to the candidate set.
2998static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
2999                                                   QualType T,
3000                                                   Expr **Args,
3001                                                   unsigned NumArgs,
3002                                    OverloadCandidateSet &CandidateSet) {
3003  QualType ParamTypes[2];
3004
3005  // T& operator=(T&, T)
3006  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3007  ParamTypes[1] = T;
3008  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3009                        /*IsAssignmentOperator=*/true);
3010
3011  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3012    // volatile T& operator=(volatile T&, T)
3013    ParamTypes[0]
3014      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3015    ParamTypes[1] = T;
3016    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3017                          /*IsAssignmentOperator=*/true);
3018  }
3019}
3020
3021/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3022/// operator overloads to the candidate set (C++ [over.built]), based
3023/// on the operator @p Op and the arguments given. For example, if the
3024/// operator is a binary '+', this routine might add "int
3025/// operator+(int, int)" to cover integer addition.
3026void
3027Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3028                                   Expr **Args, unsigned NumArgs,
3029                                   OverloadCandidateSet& CandidateSet) {
3030  // The set of "promoted arithmetic types", which are the arithmetic
3031  // types are that preserved by promotion (C++ [over.built]p2). Note
3032  // that the first few of these types are the promoted integral
3033  // types; these types need to be first.
3034  // FIXME: What about complex?
3035  const unsigned FirstIntegralType = 0;
3036  const unsigned LastIntegralType = 13;
3037  const unsigned FirstPromotedIntegralType = 7,
3038                 LastPromotedIntegralType = 13;
3039  const unsigned FirstPromotedArithmeticType = 7,
3040                 LastPromotedArithmeticType = 16;
3041  const unsigned NumArithmeticTypes = 16;
3042  QualType ArithmeticTypes[NumArithmeticTypes] = {
3043    Context.BoolTy, Context.CharTy, Context.WCharTy,
3044// FIXME:   Context.Char16Ty, Context.Char32Ty,
3045    Context.SignedCharTy, Context.ShortTy,
3046    Context.UnsignedCharTy, Context.UnsignedShortTy,
3047    Context.IntTy, Context.LongTy, Context.LongLongTy,
3048    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3049    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3050  };
3051
3052  // Find all of the types that the arguments can convert to, but only
3053  // if the operator we're looking at has built-in operator candidates
3054  // that make use of these types.
3055  BuiltinCandidateTypeSet CandidateTypes(*this);
3056  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3057      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3058      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3059      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3060      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3061      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3062    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3063      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3064                                           true,
3065                                           (Op == OO_Exclaim ||
3066                                            Op == OO_AmpAmp ||
3067                                            Op == OO_PipePipe));
3068  }
3069
3070  bool isComparison = false;
3071  switch (Op) {
3072  case OO_None:
3073  case NUM_OVERLOADED_OPERATORS:
3074    assert(false && "Expected an overloaded operator");
3075    break;
3076
3077  case OO_Star: // '*' is either unary or binary
3078    if (NumArgs == 1)
3079      goto UnaryStar;
3080    else
3081      goto BinaryStar;
3082    break;
3083
3084  case OO_Plus: // '+' is either unary or binary
3085    if (NumArgs == 1)
3086      goto UnaryPlus;
3087    else
3088      goto BinaryPlus;
3089    break;
3090
3091  case OO_Minus: // '-' is either unary or binary
3092    if (NumArgs == 1)
3093      goto UnaryMinus;
3094    else
3095      goto BinaryMinus;
3096    break;
3097
3098  case OO_Amp: // '&' is either unary or binary
3099    if (NumArgs == 1)
3100      goto UnaryAmp;
3101    else
3102      goto BinaryAmp;
3103
3104  case OO_PlusPlus:
3105  case OO_MinusMinus:
3106    // C++ [over.built]p3:
3107    //
3108    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3109    //   is either volatile or empty, there exist candidate operator
3110    //   functions of the form
3111    //
3112    //       VQ T&      operator++(VQ T&);
3113    //       T          operator++(VQ T&, int);
3114    //
3115    // C++ [over.built]p4:
3116    //
3117    //   For every pair (T, VQ), where T is an arithmetic type other
3118    //   than bool, and VQ is either volatile or empty, there exist
3119    //   candidate operator functions of the form
3120    //
3121    //       VQ T&      operator--(VQ T&);
3122    //       T          operator--(VQ T&, int);
3123    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3124         Arith < NumArithmeticTypes; ++Arith) {
3125      QualType ArithTy = ArithmeticTypes[Arith];
3126      QualType ParamTypes[2]
3127        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3128
3129      // Non-volatile version.
3130      if (NumArgs == 1)
3131        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3132      else
3133        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3134
3135      // Volatile version
3136      ParamTypes[0]
3137        = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3138      if (NumArgs == 1)
3139        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3140      else
3141        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3142    }
3143
3144    // C++ [over.built]p5:
3145    //
3146    //   For every pair (T, VQ), where T is a cv-qualified or
3147    //   cv-unqualified object type, and VQ is either volatile or
3148    //   empty, there exist candidate operator functions of the form
3149    //
3150    //       T*VQ&      operator++(T*VQ&);
3151    //       T*VQ&      operator--(T*VQ&);
3152    //       T*         operator++(T*VQ&, int);
3153    //       T*         operator--(T*VQ&, int);
3154    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3155         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3156      // Skip pointer types that aren't pointers to object types.
3157      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3158        continue;
3159
3160      QualType ParamTypes[2] = {
3161        Context.getLValueReferenceType(*Ptr), Context.IntTy
3162      };
3163
3164      // Without volatile
3165      if (NumArgs == 1)
3166        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3167      else
3168        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3169
3170      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3171        // With volatile
3172        ParamTypes[0]
3173          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3174        if (NumArgs == 1)
3175          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3176        else
3177          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3178      }
3179    }
3180    break;
3181
3182  UnaryStar:
3183    // C++ [over.built]p6:
3184    //   For every cv-qualified or cv-unqualified object type T, there
3185    //   exist candidate operator functions of the form
3186    //
3187    //       T&         operator*(T*);
3188    //
3189    // C++ [over.built]p7:
3190    //   For every function type T, there exist candidate operator
3191    //   functions of the form
3192    //       T&         operator*(T*);
3193    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3194         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3195      QualType ParamTy = *Ptr;
3196      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3197      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3198                          &ParamTy, Args, 1, CandidateSet);
3199    }
3200    break;
3201
3202  UnaryPlus:
3203    // C++ [over.built]p8:
3204    //   For every type T, there exist candidate operator functions of
3205    //   the form
3206    //
3207    //       T*         operator+(T*);
3208    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3209         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3210      QualType ParamTy = *Ptr;
3211      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3212    }
3213
3214    // Fall through
3215
3216  UnaryMinus:
3217    // C++ [over.built]p9:
3218    //  For every promoted arithmetic type T, there exist candidate
3219    //  operator functions of the form
3220    //
3221    //       T         operator+(T);
3222    //       T         operator-(T);
3223    for (unsigned Arith = FirstPromotedArithmeticType;
3224         Arith < LastPromotedArithmeticType; ++Arith) {
3225      QualType ArithTy = ArithmeticTypes[Arith];
3226      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3227    }
3228    break;
3229
3230  case OO_Tilde:
3231    // C++ [over.built]p10:
3232    //   For every promoted integral type T, there exist candidate
3233    //   operator functions of the form
3234    //
3235    //        T         operator~(T);
3236    for (unsigned Int = FirstPromotedIntegralType;
3237         Int < LastPromotedIntegralType; ++Int) {
3238      QualType IntTy = ArithmeticTypes[Int];
3239      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3240    }
3241    break;
3242
3243  case OO_New:
3244  case OO_Delete:
3245  case OO_Array_New:
3246  case OO_Array_Delete:
3247  case OO_Call:
3248    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3249    break;
3250
3251  case OO_Comma:
3252  UnaryAmp:
3253  case OO_Arrow:
3254    // C++ [over.match.oper]p3:
3255    //   -- For the operator ',', the unary operator '&', or the
3256    //      operator '->', the built-in candidates set is empty.
3257    break;
3258
3259  case OO_EqualEqual:
3260  case OO_ExclaimEqual:
3261    // C++ [over.match.oper]p16:
3262    //   For every pointer to member type T, there exist candidate operator
3263    //   functions of the form
3264    //
3265    //        bool operator==(T,T);
3266    //        bool operator!=(T,T);
3267    for (BuiltinCandidateTypeSet::iterator
3268           MemPtr = CandidateTypes.member_pointer_begin(),
3269           MemPtrEnd = CandidateTypes.member_pointer_end();
3270         MemPtr != MemPtrEnd;
3271         ++MemPtr) {
3272      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3273      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3274    }
3275
3276    // Fall through
3277
3278  case OO_Less:
3279  case OO_Greater:
3280  case OO_LessEqual:
3281  case OO_GreaterEqual:
3282    // C++ [over.built]p15:
3283    //
3284    //   For every pointer or enumeration type T, there exist
3285    //   candidate operator functions of the form
3286    //
3287    //        bool       operator<(T, T);
3288    //        bool       operator>(T, T);
3289    //        bool       operator<=(T, T);
3290    //        bool       operator>=(T, T);
3291    //        bool       operator==(T, T);
3292    //        bool       operator!=(T, T);
3293    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3294         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3295      QualType ParamTypes[2] = { *Ptr, *Ptr };
3296      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3297    }
3298    for (BuiltinCandidateTypeSet::iterator Enum
3299           = CandidateTypes.enumeration_begin();
3300         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3301      QualType ParamTypes[2] = { *Enum, *Enum };
3302      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3303    }
3304
3305    // Fall through.
3306    isComparison = true;
3307
3308  BinaryPlus:
3309  BinaryMinus:
3310    if (!isComparison) {
3311      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3312
3313      // C++ [over.built]p13:
3314      //
3315      //   For every cv-qualified or cv-unqualified object type T
3316      //   there exist candidate operator functions of the form
3317      //
3318      //      T*         operator+(T*, ptrdiff_t);
3319      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3320      //      T*         operator-(T*, ptrdiff_t);
3321      //      T*         operator+(ptrdiff_t, T*);
3322      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3323      //
3324      // C++ [over.built]p14:
3325      //
3326      //   For every T, where T is a pointer to object type, there
3327      //   exist candidate operator functions of the form
3328      //
3329      //      ptrdiff_t  operator-(T, T);
3330      for (BuiltinCandidateTypeSet::iterator Ptr
3331             = CandidateTypes.pointer_begin();
3332           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3333        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3334
3335        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3336        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3337
3338        if (Op == OO_Plus) {
3339          // T* operator+(ptrdiff_t, T*);
3340          ParamTypes[0] = ParamTypes[1];
3341          ParamTypes[1] = *Ptr;
3342          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3343        } else {
3344          // ptrdiff_t operator-(T, T);
3345          ParamTypes[1] = *Ptr;
3346          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3347                              Args, 2, CandidateSet);
3348        }
3349      }
3350    }
3351    // Fall through
3352
3353  case OO_Slash:
3354  BinaryStar:
3355  Conditional:
3356    // C++ [over.built]p12:
3357    //
3358    //   For every pair of promoted arithmetic types L and R, there
3359    //   exist candidate operator functions of the form
3360    //
3361    //        LR         operator*(L, R);
3362    //        LR         operator/(L, R);
3363    //        LR         operator+(L, R);
3364    //        LR         operator-(L, R);
3365    //        bool       operator<(L, R);
3366    //        bool       operator>(L, R);
3367    //        bool       operator<=(L, R);
3368    //        bool       operator>=(L, R);
3369    //        bool       operator==(L, R);
3370    //        bool       operator!=(L, R);
3371    //
3372    //   where LR is the result of the usual arithmetic conversions
3373    //   between types L and R.
3374    //
3375    // C++ [over.built]p24:
3376    //
3377    //   For every pair of promoted arithmetic types L and R, there exist
3378    //   candidate operator functions of the form
3379    //
3380    //        LR       operator?(bool, L, R);
3381    //
3382    //   where LR is the result of the usual arithmetic conversions
3383    //   between types L and R.
3384    // Our candidates ignore the first parameter.
3385    for (unsigned Left = FirstPromotedArithmeticType;
3386         Left < LastPromotedArithmeticType; ++Left) {
3387      for (unsigned Right = FirstPromotedArithmeticType;
3388           Right < LastPromotedArithmeticType; ++Right) {
3389        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3390        QualType Result
3391          = isComparison
3392          ? Context.BoolTy
3393          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3394        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3395      }
3396    }
3397    break;
3398
3399  case OO_Percent:
3400  BinaryAmp:
3401  case OO_Caret:
3402  case OO_Pipe:
3403  case OO_LessLess:
3404  case OO_GreaterGreater:
3405    // C++ [over.built]p17:
3406    //
3407    //   For every pair of promoted integral types L and R, there
3408    //   exist candidate operator functions of the form
3409    //
3410    //      LR         operator%(L, R);
3411    //      LR         operator&(L, R);
3412    //      LR         operator^(L, R);
3413    //      LR         operator|(L, R);
3414    //      L          operator<<(L, R);
3415    //      L          operator>>(L, R);
3416    //
3417    //   where LR is the result of the usual arithmetic conversions
3418    //   between types L and R.
3419    for (unsigned Left = FirstPromotedIntegralType;
3420         Left < LastPromotedIntegralType; ++Left) {
3421      for (unsigned Right = FirstPromotedIntegralType;
3422           Right < LastPromotedIntegralType; ++Right) {
3423        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3424        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3425            ? LandR[0]
3426            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3427        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3428      }
3429    }
3430    break;
3431
3432  case OO_Equal:
3433    // C++ [over.built]p20:
3434    //
3435    //   For every pair (T, VQ), where T is an enumeration or
3436    //   pointer to member type and VQ is either volatile or
3437    //   empty, there exist candidate operator functions of the form
3438    //
3439    //        VQ T&      operator=(VQ T&, T);
3440    for (BuiltinCandidateTypeSet::iterator
3441           Enum = CandidateTypes.enumeration_begin(),
3442           EnumEnd = CandidateTypes.enumeration_end();
3443         Enum != EnumEnd; ++Enum)
3444      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3445                                             CandidateSet);
3446    for (BuiltinCandidateTypeSet::iterator
3447           MemPtr = CandidateTypes.member_pointer_begin(),
3448         MemPtrEnd = CandidateTypes.member_pointer_end();
3449         MemPtr != MemPtrEnd; ++MemPtr)
3450      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3451                                             CandidateSet);
3452      // Fall through.
3453
3454  case OO_PlusEqual:
3455  case OO_MinusEqual:
3456    // C++ [over.built]p19:
3457    //
3458    //   For every pair (T, VQ), where T is any type and VQ is either
3459    //   volatile or empty, there exist candidate operator functions
3460    //   of the form
3461    //
3462    //        T*VQ&      operator=(T*VQ&, T*);
3463    //
3464    // C++ [over.built]p21:
3465    //
3466    //   For every pair (T, VQ), where T is a cv-qualified or
3467    //   cv-unqualified object type and VQ is either volatile or
3468    //   empty, there exist candidate operator functions of the form
3469    //
3470    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3471    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3472    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3473         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3474      QualType ParamTypes[2];
3475      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3476
3477      // non-volatile version
3478      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3479      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3480                          /*IsAssigmentOperator=*/Op == OO_Equal);
3481
3482      if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3483        // volatile version
3484        ParamTypes[0]
3485          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3486        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3487                            /*IsAssigmentOperator=*/Op == OO_Equal);
3488      }
3489    }
3490    // Fall through.
3491
3492  case OO_StarEqual:
3493  case OO_SlashEqual:
3494    // C++ [over.built]p18:
3495    //
3496    //   For every triple (L, VQ, R), where L is an arithmetic type,
3497    //   VQ is either volatile or empty, and R is a promoted
3498    //   arithmetic type, there exist candidate operator functions of
3499    //   the form
3500    //
3501    //        VQ L&      operator=(VQ L&, R);
3502    //        VQ L&      operator*=(VQ L&, R);
3503    //        VQ L&      operator/=(VQ L&, R);
3504    //        VQ L&      operator+=(VQ L&, R);
3505    //        VQ L&      operator-=(VQ L&, R);
3506    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3507      for (unsigned Right = FirstPromotedArithmeticType;
3508           Right < LastPromotedArithmeticType; ++Right) {
3509        QualType ParamTypes[2];
3510        ParamTypes[1] = ArithmeticTypes[Right];
3511
3512        // Add this built-in operator as a candidate (VQ is empty).
3513        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3514        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3515                            /*IsAssigmentOperator=*/Op == OO_Equal);
3516
3517        // Add this built-in operator as a candidate (VQ is 'volatile').
3518        ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3519        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3520        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3521                            /*IsAssigmentOperator=*/Op == OO_Equal);
3522      }
3523    }
3524    break;
3525
3526  case OO_PercentEqual:
3527  case OO_LessLessEqual:
3528  case OO_GreaterGreaterEqual:
3529  case OO_AmpEqual:
3530  case OO_CaretEqual:
3531  case OO_PipeEqual:
3532    // C++ [over.built]p22:
3533    //
3534    //   For every triple (L, VQ, R), where L is an integral type, VQ
3535    //   is either volatile or empty, and R is a promoted integral
3536    //   type, there exist candidate operator functions of the form
3537    //
3538    //        VQ L&       operator%=(VQ L&, R);
3539    //        VQ L&       operator<<=(VQ L&, R);
3540    //        VQ L&       operator>>=(VQ L&, R);
3541    //        VQ L&       operator&=(VQ L&, R);
3542    //        VQ L&       operator^=(VQ L&, R);
3543    //        VQ L&       operator|=(VQ L&, R);
3544    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3545      for (unsigned Right = FirstPromotedIntegralType;
3546           Right < LastPromotedIntegralType; ++Right) {
3547        QualType ParamTypes[2];
3548        ParamTypes[1] = ArithmeticTypes[Right];
3549
3550        // Add this built-in operator as a candidate (VQ is empty).
3551        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3552        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3553
3554        // Add this built-in operator as a candidate (VQ is 'volatile').
3555        ParamTypes[0] = ArithmeticTypes[Left];
3556        ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3557        ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3558        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3559      }
3560    }
3561    break;
3562
3563  case OO_Exclaim: {
3564    // C++ [over.operator]p23:
3565    //
3566    //   There also exist candidate operator functions of the form
3567    //
3568    //        bool        operator!(bool);
3569    //        bool        operator&&(bool, bool);     [BELOW]
3570    //        bool        operator||(bool, bool);     [BELOW]
3571    QualType ParamTy = Context.BoolTy;
3572    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3573                        /*IsAssignmentOperator=*/false,
3574                        /*NumContextualBoolArguments=*/1);
3575    break;
3576  }
3577
3578  case OO_AmpAmp:
3579  case OO_PipePipe: {
3580    // C++ [over.operator]p23:
3581    //
3582    //   There also exist candidate operator functions of the form
3583    //
3584    //        bool        operator!(bool);            [ABOVE]
3585    //        bool        operator&&(bool, bool);
3586    //        bool        operator||(bool, bool);
3587    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3588    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3589                        /*IsAssignmentOperator=*/false,
3590                        /*NumContextualBoolArguments=*/2);
3591    break;
3592  }
3593
3594  case OO_Subscript:
3595    // C++ [over.built]p13:
3596    //
3597    //   For every cv-qualified or cv-unqualified object type T there
3598    //   exist candidate operator functions of the form
3599    //
3600    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3601    //        T&         operator[](T*, ptrdiff_t);
3602    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3603    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3604    //        T&         operator[](ptrdiff_t, T*);
3605    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3606         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3607      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3608      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3609      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3610
3611      // T& operator[](T*, ptrdiff_t)
3612      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3613
3614      // T& operator[](ptrdiff_t, T*);
3615      ParamTypes[0] = ParamTypes[1];
3616      ParamTypes[1] = *Ptr;
3617      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3618    }
3619    break;
3620
3621  case OO_ArrowStar:
3622    // FIXME: No support for pointer-to-members yet.
3623    break;
3624
3625  case OO_Conditional:
3626    // Note that we don't consider the first argument, since it has been
3627    // contextually converted to bool long ago. The candidates below are
3628    // therefore added as binary.
3629    //
3630    // C++ [over.built]p24:
3631    //   For every type T, where T is a pointer or pointer-to-member type,
3632    //   there exist candidate operator functions of the form
3633    //
3634    //        T        operator?(bool, T, T);
3635    //
3636    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3637         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3638      QualType ParamTypes[2] = { *Ptr, *Ptr };
3639      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3640    }
3641    for (BuiltinCandidateTypeSet::iterator Ptr =
3642           CandidateTypes.member_pointer_begin(),
3643         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3644      QualType ParamTypes[2] = { *Ptr, *Ptr };
3645      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3646    }
3647    goto Conditional;
3648  }
3649}
3650
3651/// \brief Add function candidates found via argument-dependent lookup
3652/// to the set of overloading candidates.
3653///
3654/// This routine performs argument-dependent name lookup based on the
3655/// given function name (which may also be an operator name) and adds
3656/// all of the overload candidates found by ADL to the overload
3657/// candidate set (C++ [basic.lookup.argdep]).
3658void
3659Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3660                                           Expr **Args, unsigned NumArgs,
3661                                           bool HasExplicitTemplateArgs,
3662                                const TemplateArgument *ExplicitTemplateArgs,
3663                                           unsigned NumExplicitTemplateArgs,
3664                                           OverloadCandidateSet& CandidateSet,
3665                                           bool PartialOverloading) {
3666  FunctionSet Functions;
3667
3668  // FIXME: Should we be trafficking in canonical function decls throughout?
3669
3670  // Record all of the function candidates that we've already
3671  // added to the overload set, so that we don't add those same
3672  // candidates a second time.
3673  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3674                                   CandEnd = CandidateSet.end();
3675       Cand != CandEnd; ++Cand)
3676    if (Cand->Function) {
3677      Functions.insert(Cand->Function);
3678      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3679        Functions.insert(FunTmpl);
3680    }
3681
3682  // FIXME: Pass in the explicit template arguments?
3683  ArgumentDependentLookup(Name, Args, NumArgs, Functions);
3684
3685  // Erase all of the candidates we already knew about.
3686  // FIXME: This is suboptimal. Is there a better way?
3687  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3688                                   CandEnd = CandidateSet.end();
3689       Cand != CandEnd; ++Cand)
3690    if (Cand->Function) {
3691      Functions.erase(Cand->Function);
3692      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3693        Functions.erase(FunTmpl);
3694    }
3695
3696  // For each of the ADL candidates we found, add it to the overload
3697  // set.
3698  for (FunctionSet::iterator Func = Functions.begin(),
3699                          FuncEnd = Functions.end();
3700       Func != FuncEnd; ++Func) {
3701    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
3702      if (HasExplicitTemplateArgs)
3703        continue;
3704
3705      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
3706                           false, false, PartialOverloading);
3707    } else
3708      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3709                                   HasExplicitTemplateArgs,
3710                                   ExplicitTemplateArgs,
3711                                   NumExplicitTemplateArgs,
3712                                   Args, NumArgs, CandidateSet);
3713  }
3714}
3715
3716/// isBetterOverloadCandidate - Determines whether the first overload
3717/// candidate is a better candidate than the second (C++ 13.3.3p1).
3718bool
3719Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3720                                const OverloadCandidate& Cand2) {
3721  // Define viable functions to be better candidates than non-viable
3722  // functions.
3723  if (!Cand2.Viable)
3724    return Cand1.Viable;
3725  else if (!Cand1.Viable)
3726    return false;
3727
3728  // C++ [over.match.best]p1:
3729  //
3730  //   -- if F is a static member function, ICS1(F) is defined such
3731  //      that ICS1(F) is neither better nor worse than ICS1(G) for
3732  //      any function G, and, symmetrically, ICS1(G) is neither
3733  //      better nor worse than ICS1(F).
3734  unsigned StartArg = 0;
3735  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3736    StartArg = 1;
3737
3738  // C++ [over.match.best]p1:
3739  //   A viable function F1 is defined to be a better function than another
3740  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
3741  //   conversion sequence than ICSi(F2), and then...
3742  unsigned NumArgs = Cand1.Conversions.size();
3743  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3744  bool HasBetterConversion = false;
3745  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
3746    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3747                                               Cand2.Conversions[ArgIdx])) {
3748    case ImplicitConversionSequence::Better:
3749      // Cand1 has a better conversion sequence.
3750      HasBetterConversion = true;
3751      break;
3752
3753    case ImplicitConversionSequence::Worse:
3754      // Cand1 can't be better than Cand2.
3755      return false;
3756
3757    case ImplicitConversionSequence::Indistinguishable:
3758      // Do nothing.
3759      break;
3760    }
3761  }
3762
3763  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
3764  //       ICSj(F2), or, if not that,
3765  if (HasBetterConversion)
3766    return true;
3767
3768  //     - F1 is a non-template function and F2 is a function template
3769  //       specialization, or, if not that,
3770  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
3771      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3772    return true;
3773
3774  //   -- F1 and F2 are function template specializations, and the function
3775  //      template for F1 is more specialized than the template for F2
3776  //      according to the partial ordering rules described in 14.5.5.2, or,
3777  //      if not that,
3778  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
3779      Cand2.Function && Cand2.Function->getPrimaryTemplate())
3780    if (FunctionTemplateDecl *BetterTemplate
3781          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
3782                                       Cand2.Function->getPrimaryTemplate(),
3783                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
3784                                                             : TPOC_Call))
3785      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
3786
3787  //   -- the context is an initialization by user-defined conversion
3788  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
3789  //      from the return type of F1 to the destination type (i.e.,
3790  //      the type of the entity being initialized) is a better
3791  //      conversion sequence than the standard conversion sequence
3792  //      from the return type of F2 to the destination type.
3793  if (Cand1.Function && Cand2.Function &&
3794      isa<CXXConversionDecl>(Cand1.Function) &&
3795      isa<CXXConversionDecl>(Cand2.Function)) {
3796    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3797                                               Cand2.FinalConversion)) {
3798    case ImplicitConversionSequence::Better:
3799      // Cand1 has a better conversion sequence.
3800      return true;
3801
3802    case ImplicitConversionSequence::Worse:
3803      // Cand1 can't be better than Cand2.
3804      return false;
3805
3806    case ImplicitConversionSequence::Indistinguishable:
3807      // Do nothing
3808      break;
3809    }
3810  }
3811
3812  return false;
3813}
3814
3815/// \brief Computes the best viable function (C++ 13.3.3)
3816/// within an overload candidate set.
3817///
3818/// \param CandidateSet the set of candidate functions.
3819///
3820/// \param Loc the location of the function name (or operator symbol) for
3821/// which overload resolution occurs.
3822///
3823/// \param Best f overload resolution was successful or found a deleted
3824/// function, Best points to the candidate function found.
3825///
3826/// \returns The result of overload resolution.
3827Sema::OverloadingResult
3828Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3829                         SourceLocation Loc,
3830                         OverloadCandidateSet::iterator& Best) {
3831  // Find the best viable function.
3832  Best = CandidateSet.end();
3833  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3834       Cand != CandidateSet.end(); ++Cand) {
3835    if (Cand->Viable) {
3836      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3837        Best = Cand;
3838    }
3839  }
3840
3841  // If we didn't find any viable functions, abort.
3842  if (Best == CandidateSet.end())
3843    return OR_No_Viable_Function;
3844
3845  // Make sure that this function is better than every other viable
3846  // function. If not, we have an ambiguity.
3847  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3848       Cand != CandidateSet.end(); ++Cand) {
3849    if (Cand->Viable &&
3850        Cand != Best &&
3851        !isBetterOverloadCandidate(*Best, *Cand)) {
3852      Best = CandidateSet.end();
3853      return OR_Ambiguous;
3854    }
3855  }
3856
3857  // Best is the best viable function.
3858  if (Best->Function &&
3859      (Best->Function->isDeleted() ||
3860       Best->Function->getAttr<UnavailableAttr>()))
3861    return OR_Deleted;
3862
3863  // C++ [basic.def.odr]p2:
3864  //   An overloaded function is used if it is selected by overload resolution
3865  //   when referred to from a potentially-evaluated expression. [Note: this
3866  //   covers calls to named functions (5.2.2), operator overloading
3867  //   (clause 13), user-defined conversions (12.3.2), allocation function for
3868  //   placement new (5.3.4), as well as non-default initialization (8.5).
3869  if (Best->Function)
3870    MarkDeclarationReferenced(Loc, Best->Function);
3871  return OR_Success;
3872}
3873
3874/// PrintOverloadCandidates - When overload resolution fails, prints
3875/// diagnostic messages containing the candidates in the candidate
3876/// set. If OnlyViable is true, only viable candidates will be printed.
3877void
3878Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3879                              bool OnlyViable) {
3880  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3881                             LastCand = CandidateSet.end();
3882  for (; Cand != LastCand; ++Cand) {
3883    if (Cand->Viable || !OnlyViable) {
3884      if (Cand->Function) {
3885        if (Cand->Function->isDeleted() ||
3886            Cand->Function->getAttr<UnavailableAttr>()) {
3887          // Deleted or "unavailable" function.
3888          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3889            << Cand->Function->isDeleted();
3890        } else if (FunctionTemplateDecl *FunTmpl
3891                     = Cand->Function->getPrimaryTemplate()) {
3892          // Function template specialization
3893          // FIXME: Give a better reason!
3894          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
3895            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
3896                              *Cand->Function->getTemplateSpecializationArgs());
3897        } else {
3898          // Normal function
3899          bool errReported = false;
3900          if (!Cand->Viable && Cand->Conversions.size() > 0) {
3901            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
3902              const ImplicitConversionSequence &Conversion =
3903                                                        Cand->Conversions[i];
3904              if ((Conversion.ConversionKind !=
3905                   ImplicitConversionSequence::BadConversion) ||
3906                  Conversion.ConversionFunctionSet.size() == 0)
3907                continue;
3908              Diag(Cand->Function->getLocation(),
3909                   diag::err_ovl_candidate_not_viable) << (i+1);
3910              errReported = true;
3911              for (int j = Conversion.ConversionFunctionSet.size()-1;
3912                   j >= 0; j--) {
3913                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
3914                Diag(Func->getLocation(), diag::err_ovl_candidate);
3915              }
3916            }
3917          }
3918          if (!errReported)
3919            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3920        }
3921      } else if (Cand->IsSurrogate) {
3922        // Desugar the type of the surrogate down to a function type,
3923        // retaining as many typedefs as possible while still showing
3924        // the function type (and, therefore, its parameter types).
3925        QualType FnType = Cand->Surrogate->getConversionType();
3926        bool isLValueReference = false;
3927        bool isRValueReference = false;
3928        bool isPointer = false;
3929        if (const LValueReferenceType *FnTypeRef =
3930              FnType->getAs<LValueReferenceType>()) {
3931          FnType = FnTypeRef->getPointeeType();
3932          isLValueReference = true;
3933        } else if (const RValueReferenceType *FnTypeRef =
3934                     FnType->getAs<RValueReferenceType>()) {
3935          FnType = FnTypeRef->getPointeeType();
3936          isRValueReference = true;
3937        }
3938        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
3939          FnType = FnTypePtr->getPointeeType();
3940          isPointer = true;
3941        }
3942        // Desugar down to a function type.
3943        FnType = QualType(FnType->getAs<FunctionType>(), 0);
3944        // Reconstruct the pointer/reference as appropriate.
3945        if (isPointer) FnType = Context.getPointerType(FnType);
3946        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
3947        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
3948
3949        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
3950          << FnType;
3951      } else {
3952        // FIXME: We need to get the identifier in here
3953        // FIXME: Do we want the error message to point at the operator?
3954        // (built-ins won't have a location)
3955        QualType FnType
3956          = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3957                                    Cand->BuiltinTypes.ParamTypes,
3958                                    Cand->Conversions.size(),
3959                                    false, 0);
3960
3961        Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
3962      }
3963    }
3964  }
3965}
3966
3967/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3968/// an overloaded function (C++ [over.over]), where @p From is an
3969/// expression with overloaded function type and @p ToType is the type
3970/// we're trying to resolve to. For example:
3971///
3972/// @code
3973/// int f(double);
3974/// int f(int);
3975///
3976/// int (*pfd)(double) = f; // selects f(double)
3977/// @endcode
3978///
3979/// This routine returns the resulting FunctionDecl if it could be
3980/// resolved, and NULL otherwise. When @p Complain is true, this
3981/// routine will emit diagnostics if there is an error.
3982FunctionDecl *
3983Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3984                                         bool Complain) {
3985  QualType FunctionType = ToType;
3986  bool IsMember = false;
3987  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
3988    FunctionType = ToTypePtr->getPointeeType();
3989  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
3990    FunctionType = ToTypeRef->getPointeeType();
3991  else if (const MemberPointerType *MemTypePtr =
3992                    ToType->getAs<MemberPointerType>()) {
3993    FunctionType = MemTypePtr->getPointeeType();
3994    IsMember = true;
3995  }
3996
3997  // We only look at pointers or references to functions.
3998  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
3999  if (!FunctionType->isFunctionType())
4000    return 0;
4001
4002  // Find the actual overloaded function declaration.
4003  OverloadedFunctionDecl *Ovl = 0;
4004
4005  // C++ [over.over]p1:
4006  //   [...] [Note: any redundant set of parentheses surrounding the
4007  //   overloaded function name is ignored (5.1). ]
4008  Expr *OvlExpr = From->IgnoreParens();
4009
4010  // C++ [over.over]p1:
4011  //   [...] The overloaded function name can be preceded by the &
4012  //   operator.
4013  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4014    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4015      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4016  }
4017
4018  // Try to dig out the overloaded function.
4019  FunctionTemplateDecl *FunctionTemplate = 0;
4020  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
4021    Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
4022    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
4023  }
4024
4025  // If there's no overloaded function declaration or function template,
4026  // we're done.
4027  if (!Ovl && !FunctionTemplate)
4028    return 0;
4029
4030  OverloadIterator Fun;
4031  if (Ovl)
4032    Fun = Ovl;
4033  else
4034    Fun = FunctionTemplate;
4035
4036  // Look through all of the overloaded functions, searching for one
4037  // whose type matches exactly.
4038  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4039
4040  bool FoundNonTemplateFunction = false;
4041  for (OverloadIterator FunEnd; Fun != FunEnd; ++Fun) {
4042    // C++ [over.over]p3:
4043    //   Non-member functions and static member functions match
4044    //   targets of type "pointer-to-function" or "reference-to-function."
4045    //   Nonstatic member functions match targets of
4046    //   type "pointer-to-member-function."
4047    // Note that according to DR 247, the containing class does not matter.
4048
4049    if (FunctionTemplateDecl *FunctionTemplate
4050          = dyn_cast<FunctionTemplateDecl>(*Fun)) {
4051      if (CXXMethodDecl *Method
4052            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4053        // Skip non-static function templates when converting to pointer, and
4054        // static when converting to member pointer.
4055        if (Method->isStatic() == IsMember)
4056          continue;
4057      } else if (IsMember)
4058        continue;
4059
4060      // C++ [over.over]p2:
4061      //   If the name is a function template, template argument deduction is
4062      //   done (14.8.2.2), and if the argument deduction succeeds, the
4063      //   resulting template argument list is used to generate a single
4064      //   function template specialization, which is added to the set of
4065      //   overloaded functions considered.
4066      // FIXME: We don't really want to build the specialization here, do we?
4067      FunctionDecl *Specialization = 0;
4068      TemplateDeductionInfo Info(Context);
4069      if (TemplateDeductionResult Result
4070            = DeduceTemplateArguments(FunctionTemplate, /*FIXME*/false,
4071                                      /*FIXME:*/0, /*FIXME:*/0,
4072                                      FunctionType, Specialization, Info)) {
4073        // FIXME: make a note of the failed deduction for diagnostics.
4074        (void)Result;
4075      } else {
4076        // FIXME: If the match isn't exact, shouldn't we just drop this as
4077        // a candidate? Find a testcase before changing the code.
4078        assert(FunctionType
4079                 == Context.getCanonicalType(Specialization->getType()));
4080        Matches.insert(
4081                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4082      }
4083    }
4084
4085    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
4086      // Skip non-static functions when converting to pointer, and static
4087      // when converting to member pointer.
4088      if (Method->isStatic() == IsMember)
4089        continue;
4090    } else if (IsMember)
4091      continue;
4092
4093    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*Fun)) {
4094      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
4095        Matches.insert(cast<FunctionDecl>(Fun->getCanonicalDecl()));
4096        FoundNonTemplateFunction = true;
4097      }
4098    }
4099  }
4100
4101  // If there were 0 or 1 matches, we're done.
4102  if (Matches.empty())
4103    return 0;
4104  else if (Matches.size() == 1)
4105    return *Matches.begin();
4106
4107  // C++ [over.over]p4:
4108  //   If more than one function is selected, [...]
4109  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4110  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4111  if (FoundNonTemplateFunction) {
4112    //   [...] any function template specializations in the set are
4113    //   eliminated if the set also contains a non-template function, [...]
4114    for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4115      if ((*M)->getPrimaryTemplate() == 0)
4116        RemainingMatches.push_back(*M);
4117  } else {
4118    //   [...] and any given function template specialization F1 is
4119    //   eliminated if the set contains a second function template
4120    //   specialization whose function template is more specialized
4121    //   than the function template of F1 according to the partial
4122    //   ordering rules of 14.5.5.2.
4123
4124    // The algorithm specified above is quadratic. We instead use a
4125    // two-pass algorithm (similar to the one used to identify the
4126    // best viable function in an overload set) that identifies the
4127    // best function template (if it exists).
4128    MatchIter Best = Matches.begin();
4129    MatchIter M = Best, MEnd = Matches.end();
4130    // Find the most specialized function.
4131    for (++M; M != MEnd; ++M)
4132      if (getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4133                                     (*Best)->getPrimaryTemplate(),
4134                                     TPOC_Other)
4135            == (*M)->getPrimaryTemplate())
4136        Best = M;
4137
4138    // Determine whether this function template is more specialized
4139    // that all of the others.
4140    bool Ambiguous = false;
4141    for (M = Matches.begin(); M != MEnd; ++M) {
4142      if (M != Best &&
4143          getMoreSpecializedTemplate((*M)->getPrimaryTemplate(),
4144                                     (*Best)->getPrimaryTemplate(),
4145                                     TPOC_Other)
4146           != (*Best)->getPrimaryTemplate()) {
4147        Ambiguous = true;
4148        break;
4149      }
4150    }
4151
4152    // If one function template was more specialized than all of the
4153    // others, return it.
4154    if (!Ambiguous)
4155      return *Best;
4156
4157    // We could not find a most-specialized function template, which
4158    // is equivalent to having a set of function templates with more
4159    // than one such template. So, we place all of the function
4160    // templates into the set of remaining matches and produce a
4161    // diagnostic below. FIXME: we could perform the quadratic
4162    // algorithm here, pruning the result set to limit the number of
4163    // candidates output later.
4164    RemainingMatches.append(Matches.begin(), Matches.end());
4165  }
4166
4167  // [...] After such eliminations, if any, there shall remain exactly one
4168  // selected function.
4169  if (RemainingMatches.size() == 1)
4170    return RemainingMatches.front();
4171
4172  // FIXME: We should probably return the same thing that BestViableFunction
4173  // returns (even if we issue the diagnostics here).
4174  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4175    << RemainingMatches[0]->getDeclName();
4176  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4177    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4178  return 0;
4179}
4180
4181/// \brief Add a single candidate to the overload set.
4182static void AddOverloadedCallCandidate(Sema &S,
4183                                       AnyFunctionDecl Callee,
4184                                       bool &ArgumentDependentLookup,
4185                                       bool HasExplicitTemplateArgs,
4186                                 const TemplateArgument *ExplicitTemplateArgs,
4187                                       unsigned NumExplicitTemplateArgs,
4188                                       Expr **Args, unsigned NumArgs,
4189                                       OverloadCandidateSet &CandidateSet,
4190                                       bool PartialOverloading) {
4191  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4192    assert(!HasExplicitTemplateArgs && "Explicit template arguments?");
4193    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4194                           PartialOverloading);
4195
4196    if (Func->getDeclContext()->isRecord() ||
4197        Func->getDeclContext()->isFunctionOrMethod())
4198      ArgumentDependentLookup = false;
4199    return;
4200  }
4201
4202  FunctionTemplateDecl *FuncTemplate = cast<FunctionTemplateDecl>(Callee);
4203  S.AddTemplateOverloadCandidate(FuncTemplate, HasExplicitTemplateArgs,
4204                                 ExplicitTemplateArgs,
4205                                 NumExplicitTemplateArgs,
4206                                 Args, NumArgs, CandidateSet);
4207
4208  if (FuncTemplate->getDeclContext()->isRecord())
4209    ArgumentDependentLookup = false;
4210}
4211
4212/// \brief Add the overload candidates named by callee and/or found by argument
4213/// dependent lookup to the given overload set.
4214void Sema::AddOverloadedCallCandidates(NamedDecl *Callee,
4215                                       DeclarationName &UnqualifiedName,
4216                                       bool &ArgumentDependentLookup,
4217                                       bool HasExplicitTemplateArgs,
4218                                  const TemplateArgument *ExplicitTemplateArgs,
4219                                       unsigned NumExplicitTemplateArgs,
4220                                       Expr **Args, unsigned NumArgs,
4221                                       OverloadCandidateSet &CandidateSet,
4222                                       bool PartialOverloading) {
4223  // Add the functions denoted by Callee to the set of candidate
4224  // functions. While we're doing so, track whether argument-dependent
4225  // lookup still applies, per:
4226  //
4227  // C++0x [basic.lookup.argdep]p3:
4228  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4229  //   and let Y be the lookup set produced by argument dependent
4230  //   lookup (defined as follows). If X contains
4231  //
4232  //     -- a declaration of a class member, or
4233  //
4234  //     -- a block-scope function declaration that is not a
4235  //        using-declaration (FIXME: check for using declaration), or
4236  //
4237  //     -- a declaration that is neither a function or a function
4238  //        template
4239  //
4240  //   then Y is empty.
4241  if (!Callee) {
4242    // Nothing to do.
4243  } else if (OverloadedFunctionDecl *Ovl
4244               = dyn_cast<OverloadedFunctionDecl>(Callee)) {
4245    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
4246                                                FuncEnd = Ovl->function_end();
4247         Func != FuncEnd; ++Func)
4248      AddOverloadedCallCandidate(*this, *Func, ArgumentDependentLookup,
4249                                 HasExplicitTemplateArgs,
4250                                 ExplicitTemplateArgs, NumExplicitTemplateArgs,
4251                                 Args, NumArgs, CandidateSet,
4252                                 PartialOverloading);
4253  } else if (isa<FunctionDecl>(Callee) || isa<FunctionTemplateDecl>(Callee))
4254    AddOverloadedCallCandidate(*this,
4255                               AnyFunctionDecl::getFromNamedDecl(Callee),
4256                               ArgumentDependentLookup,
4257                               HasExplicitTemplateArgs,
4258                               ExplicitTemplateArgs, NumExplicitTemplateArgs,
4259                               Args, NumArgs, CandidateSet,
4260                               PartialOverloading);
4261  // FIXME: assert isa<FunctionDecl> || isa<FunctionTemplateDecl> rather than
4262  // checking dynamically.
4263
4264  if (Callee)
4265    UnqualifiedName = Callee->getDeclName();
4266
4267  if (ArgumentDependentLookup)
4268    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4269                                         HasExplicitTemplateArgs,
4270                                         ExplicitTemplateArgs,
4271                                         NumExplicitTemplateArgs,
4272                                         CandidateSet,
4273                                         PartialOverloading);
4274}
4275
4276/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4277/// (which eventually refers to the declaration Func) and the call
4278/// arguments Args/NumArgs, attempt to resolve the function call down
4279/// to a specific function. If overload resolution succeeds, returns
4280/// the function declaration produced by overload
4281/// resolution. Otherwise, emits diagnostics, deletes all of the
4282/// arguments and Fn, and returns NULL.
4283FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
4284                                            DeclarationName UnqualifiedName,
4285                                            bool HasExplicitTemplateArgs,
4286                                 const TemplateArgument *ExplicitTemplateArgs,
4287                                            unsigned NumExplicitTemplateArgs,
4288                                            SourceLocation LParenLoc,
4289                                            Expr **Args, unsigned NumArgs,
4290                                            SourceLocation *CommaLocs,
4291                                            SourceLocation RParenLoc,
4292                                            bool &ArgumentDependentLookup) {
4293  OverloadCandidateSet CandidateSet;
4294
4295  // Add the functions denoted by Callee to the set of candidate
4296  // functions.
4297  AddOverloadedCallCandidates(Callee, UnqualifiedName, ArgumentDependentLookup,
4298                              HasExplicitTemplateArgs, ExplicitTemplateArgs,
4299                              NumExplicitTemplateArgs, Args, NumArgs,
4300                              CandidateSet);
4301  OverloadCandidateSet::iterator Best;
4302  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4303  case OR_Success:
4304    return Best->Function;
4305
4306  case OR_No_Viable_Function:
4307    Diag(Fn->getSourceRange().getBegin(),
4308         diag::err_ovl_no_viable_function_in_call)
4309      << UnqualifiedName << Fn->getSourceRange();
4310    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4311    break;
4312
4313  case OR_Ambiguous:
4314    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4315      << UnqualifiedName << Fn->getSourceRange();
4316    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4317    break;
4318
4319  case OR_Deleted:
4320    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4321      << Best->Function->isDeleted()
4322      << UnqualifiedName
4323      << Fn->getSourceRange();
4324    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4325    break;
4326  }
4327
4328  // Overload resolution failed. Destroy all of the subexpressions and
4329  // return NULL.
4330  Fn->Destroy(Context);
4331  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4332    Args[Arg]->Destroy(Context);
4333  return 0;
4334}
4335
4336/// \brief Create a unary operation that may resolve to an overloaded
4337/// operator.
4338///
4339/// \param OpLoc The location of the operator itself (e.g., '*').
4340///
4341/// \param OpcIn The UnaryOperator::Opcode that describes this
4342/// operator.
4343///
4344/// \param Functions The set of non-member functions that will be
4345/// considered by overload resolution. The caller needs to build this
4346/// set based on the context using, e.g.,
4347/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4348/// set should not contain any member functions; those will be added
4349/// by CreateOverloadedUnaryOp().
4350///
4351/// \param input The input argument.
4352Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4353                                                     unsigned OpcIn,
4354                                                     FunctionSet &Functions,
4355                                                     ExprArg input) {
4356  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4357  Expr *Input = (Expr *)input.get();
4358
4359  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4360  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4361  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4362
4363  Expr *Args[2] = { Input, 0 };
4364  unsigned NumArgs = 1;
4365
4366  // For post-increment and post-decrement, add the implicit '0' as
4367  // the second argument, so that we know this is a post-increment or
4368  // post-decrement.
4369  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4370    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4371    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4372                                           SourceLocation());
4373    NumArgs = 2;
4374  }
4375
4376  if (Input->isTypeDependent()) {
4377    OverloadedFunctionDecl *Overloads
4378      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4379    for (FunctionSet::iterator Func = Functions.begin(),
4380                            FuncEnd = Functions.end();
4381         Func != FuncEnd; ++Func)
4382      Overloads->addOverload(*Func);
4383
4384    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4385                                                OpLoc, false, false);
4386
4387    input.release();
4388    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4389                                                   &Args[0], NumArgs,
4390                                                   Context.DependentTy,
4391                                                   OpLoc));
4392  }
4393
4394  // Build an empty overload set.
4395  OverloadCandidateSet CandidateSet;
4396
4397  // Add the candidates from the given function set.
4398  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4399
4400  // Add operator candidates that are member functions.
4401  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4402
4403  // Add builtin operator candidates.
4404  AddBuiltinOperatorCandidates(Op, &Args[0], NumArgs, CandidateSet);
4405
4406  // Perform overload resolution.
4407  OverloadCandidateSet::iterator Best;
4408  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4409  case OR_Success: {
4410    // We found a built-in operator or an overloaded operator.
4411    FunctionDecl *FnDecl = Best->Function;
4412
4413    if (FnDecl) {
4414      // We matched an overloaded operator. Build a call to that
4415      // operator.
4416
4417      // Convert the arguments.
4418      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4419        if (PerformObjectArgumentInitialization(Input, Method))
4420          return ExprError();
4421      } else {
4422        // Convert the arguments.
4423        if (PerformCopyInitialization(Input,
4424                                      FnDecl->getParamDecl(0)->getType(),
4425                                      "passing"))
4426          return ExprError();
4427      }
4428
4429      // Determine the result type
4430      QualType ResultTy
4431        = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4432      ResultTy = ResultTy.getNonReferenceType();
4433
4434      // Build the actual expression node.
4435      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4436                                               SourceLocation());
4437      UsualUnaryConversions(FnExpr);
4438
4439      input.release();
4440
4441      Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4442                                                   &Input, 1, ResultTy, OpLoc);
4443      return MaybeBindToTemporary(CE);
4444    } else {
4445      // We matched a built-in operator. Convert the arguments, then
4446      // break out so that we will build the appropriate built-in
4447      // operator node.
4448        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4449                                      Best->Conversions[0], "passing"))
4450          return ExprError();
4451
4452        break;
4453      }
4454    }
4455
4456    case OR_No_Viable_Function:
4457      // No viable function; fall through to handling this as a
4458      // built-in operator, which will produce an error message for us.
4459      break;
4460
4461    case OR_Ambiguous:
4462      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4463          << UnaryOperator::getOpcodeStr(Opc)
4464          << Input->getSourceRange();
4465      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4466      return ExprError();
4467
4468    case OR_Deleted:
4469      Diag(OpLoc, diag::err_ovl_deleted_oper)
4470        << Best->Function->isDeleted()
4471        << UnaryOperator::getOpcodeStr(Opc)
4472        << Input->getSourceRange();
4473      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4474      return ExprError();
4475    }
4476
4477  // Either we found no viable overloaded operator or we matched a
4478  // built-in operator. In either case, fall through to trying to
4479  // build a built-in operation.
4480  input.release();
4481  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4482}
4483
4484/// \brief Create a binary operation that may resolve to an overloaded
4485/// operator.
4486///
4487/// \param OpLoc The location of the operator itself (e.g., '+').
4488///
4489/// \param OpcIn The BinaryOperator::Opcode that describes this
4490/// operator.
4491///
4492/// \param Functions The set of non-member functions that will be
4493/// considered by overload resolution. The caller needs to build this
4494/// set based on the context using, e.g.,
4495/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4496/// set should not contain any member functions; those will be added
4497/// by CreateOverloadedBinOp().
4498///
4499/// \param LHS Left-hand argument.
4500/// \param RHS Right-hand argument.
4501Sema::OwningExprResult
4502Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4503                            unsigned OpcIn,
4504                            FunctionSet &Functions,
4505                            Expr *LHS, Expr *RHS) {
4506  Expr *Args[2] = { LHS, RHS };
4507  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4508
4509  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4510  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4511  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4512
4513  // If either side is type-dependent, create an appropriate dependent
4514  // expression.
4515  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4516    // .* cannot be overloaded.
4517    if (Opc == BinaryOperator::PtrMemD)
4518      return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4519                                                Context.DependentTy, OpLoc));
4520
4521    OverloadedFunctionDecl *Overloads
4522      = OverloadedFunctionDecl::Create(Context, CurContext, OpName);
4523    for (FunctionSet::iterator Func = Functions.begin(),
4524                            FuncEnd = Functions.end();
4525         Func != FuncEnd; ++Func)
4526      Overloads->addOverload(*Func);
4527
4528    DeclRefExpr *Fn = new (Context) DeclRefExpr(Overloads, Context.OverloadTy,
4529                                                OpLoc, false, false);
4530
4531    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4532                                                   Args, 2,
4533                                                   Context.DependentTy,
4534                                                   OpLoc));
4535  }
4536
4537  // If this is the .* operator, which is not overloadable, just
4538  // create a built-in binary operator.
4539  if (Opc == BinaryOperator::PtrMemD)
4540    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4541
4542  // If this is one of the assignment operators, we only perform
4543  // overload resolution if the left-hand side is a class or
4544  // enumeration type (C++ [expr.ass]p3).
4545  if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
4546      !Args[0]->getType()->isOverloadableType())
4547    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4548
4549  // Build an empty overload set.
4550  OverloadCandidateSet CandidateSet;
4551
4552  // Add the candidates from the given function set.
4553  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4554
4555  // Add operator candidates that are member functions.
4556  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4557
4558  // Add builtin operator candidates.
4559  AddBuiltinOperatorCandidates(Op, Args, 2, CandidateSet);
4560
4561  // Perform overload resolution.
4562  OverloadCandidateSet::iterator Best;
4563  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4564    case OR_Success: {
4565      // We found a built-in operator or an overloaded operator.
4566      FunctionDecl *FnDecl = Best->Function;
4567
4568      if (FnDecl) {
4569        // We matched an overloaded operator. Build a call to that
4570        // operator.
4571
4572        // Convert the arguments.
4573        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4574          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4575              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4576                                        "passing"))
4577            return ExprError();
4578        } else {
4579          // Convert the arguments.
4580          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4581                                        "passing") ||
4582              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4583                                        "passing"))
4584            return ExprError();
4585        }
4586
4587        // Determine the result type
4588        QualType ResultTy
4589          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4590        ResultTy = ResultTy.getNonReferenceType();
4591
4592        // Build the actual expression node.
4593        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4594                                                 OpLoc);
4595        UsualUnaryConversions(FnExpr);
4596
4597        Expr *CE = new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4598                                                     Args, 2, ResultTy, OpLoc);
4599        return MaybeBindToTemporary(CE);
4600      } else {
4601        // We matched a built-in operator. Convert the arguments, then
4602        // break out so that we will build the appropriate built-in
4603        // operator node.
4604        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4605                                      Best->Conversions[0], "passing") ||
4606            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4607                                      Best->Conversions[1], "passing"))
4608          return ExprError();
4609
4610        break;
4611      }
4612    }
4613
4614    case OR_No_Viable_Function:
4615      // For class as left operand for assignment or compound assigment operator
4616      // do not fall through to handling in built-in, but report that no overloaded
4617      // assignment operator found
4618      if (Args[0]->getType()->isRecordType() && Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4619        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4620             << BinaryOperator::getOpcodeStr(Opc)
4621             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4622        return ExprError();
4623      }
4624      // No viable function; fall through to handling this as a
4625      // built-in operator, which will produce an error message for us.
4626      break;
4627
4628    case OR_Ambiguous:
4629      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4630          << BinaryOperator::getOpcodeStr(Opc)
4631          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4632      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4633      return ExprError();
4634
4635    case OR_Deleted:
4636      Diag(OpLoc, diag::err_ovl_deleted_oper)
4637        << Best->Function->isDeleted()
4638        << BinaryOperator::getOpcodeStr(Opc)
4639        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4640      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4641      return ExprError();
4642    }
4643
4644  // Either we found no viable overloaded operator or we matched a
4645  // built-in operator. In either case, try to build a built-in
4646  // operation.
4647  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4648}
4649
4650/// BuildCallToMemberFunction - Build a call to a member
4651/// function. MemExpr is the expression that refers to the member
4652/// function (and includes the object parameter), Args/NumArgs are the
4653/// arguments to the function call (not including the object
4654/// parameter). The caller needs to validate that the member
4655/// expression refers to a member function or an overloaded member
4656/// function.
4657Sema::ExprResult
4658Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
4659                                SourceLocation LParenLoc, Expr **Args,
4660                                unsigned NumArgs, SourceLocation *CommaLocs,
4661                                SourceLocation RParenLoc) {
4662  // Dig out the member expression. This holds both the object
4663  // argument and the member function we're referring to.
4664  MemberExpr *MemExpr = 0;
4665  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
4666    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
4667  else
4668    MemExpr = dyn_cast<MemberExpr>(MemExprE);
4669  assert(MemExpr && "Building member call without member expression");
4670
4671  // Extract the object argument.
4672  Expr *ObjectArg = MemExpr->getBase();
4673
4674  CXXMethodDecl *Method = 0;
4675  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
4676      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
4677    // Add overload candidates
4678    OverloadCandidateSet CandidateSet;
4679    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
4680
4681    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
4682         Func != FuncEnd; ++Func) {
4683      if ((Method = dyn_cast<CXXMethodDecl>(*Func)))
4684        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
4685                           /*SuppressUserConversions=*/false);
4686      else
4687        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
4688                                   MemExpr->hasExplicitTemplateArgumentList(),
4689                                   MemExpr->getTemplateArgs(),
4690                                   MemExpr->getNumTemplateArgs(),
4691                                   ObjectArg, Args, NumArgs,
4692                                   CandidateSet,
4693                                   /*SuppressUsedConversions=*/false);
4694    }
4695
4696    OverloadCandidateSet::iterator Best;
4697    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
4698    case OR_Success:
4699      Method = cast<CXXMethodDecl>(Best->Function);
4700      break;
4701
4702    case OR_No_Viable_Function:
4703      Diag(MemExpr->getSourceRange().getBegin(),
4704           diag::err_ovl_no_viable_member_function_in_call)
4705        << DeclName << MemExprE->getSourceRange();
4706      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4707      // FIXME: Leaking incoming expressions!
4708      return true;
4709
4710    case OR_Ambiguous:
4711      Diag(MemExpr->getSourceRange().getBegin(),
4712           diag::err_ovl_ambiguous_member_call)
4713        << DeclName << MemExprE->getSourceRange();
4714      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4715      // FIXME: Leaking incoming expressions!
4716      return true;
4717
4718    case OR_Deleted:
4719      Diag(MemExpr->getSourceRange().getBegin(),
4720           diag::err_ovl_deleted_member_call)
4721        << Best->Function->isDeleted()
4722        << DeclName << MemExprE->getSourceRange();
4723      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4724      // FIXME: Leaking incoming expressions!
4725      return true;
4726    }
4727
4728    FixOverloadedFunctionReference(MemExpr, Method);
4729  } else {
4730    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
4731  }
4732
4733  assert(Method && "Member call to something that isn't a method?");
4734  ExprOwningPtr<CXXMemberCallExpr>
4735    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
4736                                                  NumArgs,
4737                                  Method->getResultType().getNonReferenceType(),
4738                                  RParenLoc));
4739
4740  // Convert the object argument (for a non-static member function call).
4741  if (!Method->isStatic() &&
4742      PerformObjectArgumentInitialization(ObjectArg, Method))
4743    return true;
4744  MemExpr->setBase(ObjectArg);
4745
4746  // Convert the rest of the arguments
4747  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
4748  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
4749                              RParenLoc))
4750    return true;
4751
4752  if (CheckFunctionCall(Method, TheCall.get()))
4753    return true;
4754
4755  return MaybeBindToTemporary(TheCall.release()).release();
4756}
4757
4758/// BuildCallToObjectOfClassType - Build a call to an object of class
4759/// type (C++ [over.call.object]), which can end up invoking an
4760/// overloaded function call operator (@c operator()) or performing a
4761/// user-defined conversion on the object argument.
4762Sema::ExprResult
4763Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
4764                                   SourceLocation LParenLoc,
4765                                   Expr **Args, unsigned NumArgs,
4766                                   SourceLocation *CommaLocs,
4767                                   SourceLocation RParenLoc) {
4768  assert(Object->getType()->isRecordType() && "Requires object type argument");
4769  const RecordType *Record = Object->getType()->getAs<RecordType>();
4770
4771  // C++ [over.call.object]p1:
4772  //  If the primary-expression E in the function call syntax
4773  //  evaluates to a class object of type "cv T", then the set of
4774  //  candidate functions includes at least the function call
4775  //  operators of T. The function call operators of T are obtained by
4776  //  ordinary lookup of the name operator() in the context of
4777  //  (E).operator().
4778  OverloadCandidateSet CandidateSet;
4779  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
4780  DeclContext::lookup_const_iterator Oper, OperEnd;
4781  for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
4782       Oper != OperEnd; ++Oper)
4783    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
4784                       CandidateSet, /*SuppressUserConversions=*/false);
4785
4786  // C++ [over.call.object]p2:
4787  //   In addition, for each conversion function declared in T of the
4788  //   form
4789  //
4790  //        operator conversion-type-id () cv-qualifier;
4791  //
4792  //   where cv-qualifier is the same cv-qualification as, or a
4793  //   greater cv-qualification than, cv, and where conversion-type-id
4794  //   denotes the type "pointer to function of (P1,...,Pn) returning
4795  //   R", or the type "reference to pointer to function of
4796  //   (P1,...,Pn) returning R", or the type "reference to function
4797  //   of (P1,...,Pn) returning R", a surrogate call function [...]
4798  //   is also considered as a candidate function. Similarly,
4799  //   surrogate call functions are added to the set of candidate
4800  //   functions for each conversion function declared in an
4801  //   accessible base class provided the function is not hidden
4802  //   within T by another intervening declaration.
4803
4804  if (!RequireCompleteType(SourceLocation(), Object->getType(), 0)) {
4805    // FIXME: Look in base classes for more conversion operators!
4806    OverloadedFunctionDecl *Conversions
4807      = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
4808    for (OverloadedFunctionDecl::function_iterator
4809           Func = Conversions->function_begin(),
4810           FuncEnd = Conversions->function_end();
4811         Func != FuncEnd; ++Func) {
4812      CXXConversionDecl *Conv;
4813      FunctionTemplateDecl *ConvTemplate;
4814      GetFunctionAndTemplate(*Func, Conv, ConvTemplate);
4815
4816      // Skip over templated conversion functions; they aren't
4817      // surrogates.
4818      if (ConvTemplate)
4819        continue;
4820
4821      // Strip the reference type (if any) and then the pointer type (if
4822      // any) to get down to what might be a function type.
4823      QualType ConvType = Conv->getConversionType().getNonReferenceType();
4824      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
4825        ConvType = ConvPtrType->getPointeeType();
4826
4827      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
4828        AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
4829    }
4830  }
4831
4832  // Perform overload resolution.
4833  OverloadCandidateSet::iterator Best;
4834  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
4835  case OR_Success:
4836    // Overload resolution succeeded; we'll build the appropriate call
4837    // below.
4838    break;
4839
4840  case OR_No_Viable_Function:
4841    Diag(Object->getSourceRange().getBegin(),
4842         diag::err_ovl_no_viable_object_call)
4843      << Object->getType() << Object->getSourceRange();
4844    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4845    break;
4846
4847  case OR_Ambiguous:
4848    Diag(Object->getSourceRange().getBegin(),
4849         diag::err_ovl_ambiguous_object_call)
4850      << Object->getType() << Object->getSourceRange();
4851    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4852    break;
4853
4854  case OR_Deleted:
4855    Diag(Object->getSourceRange().getBegin(),
4856         diag::err_ovl_deleted_object_call)
4857      << Best->Function->isDeleted()
4858      << Object->getType() << Object->getSourceRange();
4859    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4860    break;
4861  }
4862
4863  if (Best == CandidateSet.end()) {
4864    // We had an error; delete all of the subexpressions and return
4865    // the error.
4866    Object->Destroy(Context);
4867    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4868      Args[ArgIdx]->Destroy(Context);
4869    return true;
4870  }
4871
4872  if (Best->Function == 0) {
4873    // Since there is no function declaration, this is one of the
4874    // surrogate candidates. Dig out the conversion function.
4875    CXXConversionDecl *Conv
4876      = cast<CXXConversionDecl>(
4877                         Best->Conversions[0].UserDefined.ConversionFunction);
4878
4879    // We selected one of the surrogate functions that converts the
4880    // object parameter to a function pointer. Perform the conversion
4881    // on the object argument, then let ActOnCallExpr finish the job.
4882    // FIXME: Represent the user-defined conversion in the AST!
4883    ImpCastExprToType(Object,
4884                      Conv->getConversionType().getNonReferenceType(),
4885                      CastExpr::CK_Unknown,
4886                      Conv->getConversionType()->isLValueReferenceType());
4887    return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
4888                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
4889                         CommaLocs, RParenLoc).release();
4890  }
4891
4892  // We found an overloaded operator(). Build a CXXOperatorCallExpr
4893  // that calls this method, using Object for the implicit object
4894  // parameter and passing along the remaining arguments.
4895  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
4896  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
4897
4898  unsigned NumArgsInProto = Proto->getNumArgs();
4899  unsigned NumArgsToCheck = NumArgs;
4900
4901  // Build the full argument list for the method call (the
4902  // implicit object parameter is placed at the beginning of the
4903  // list).
4904  Expr **MethodArgs;
4905  if (NumArgs < NumArgsInProto) {
4906    NumArgsToCheck = NumArgsInProto;
4907    MethodArgs = new Expr*[NumArgsInProto + 1];
4908  } else {
4909    MethodArgs = new Expr*[NumArgs + 1];
4910  }
4911  MethodArgs[0] = Object;
4912  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
4913    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
4914
4915  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
4916                                          SourceLocation());
4917  UsualUnaryConversions(NewFn);
4918
4919  // Once we've built TheCall, all of the expressions are properly
4920  // owned.
4921  QualType ResultTy = Method->getResultType().getNonReferenceType();
4922  ExprOwningPtr<CXXOperatorCallExpr>
4923    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
4924                                                    MethodArgs, NumArgs + 1,
4925                                                    ResultTy, RParenLoc));
4926  delete [] MethodArgs;
4927
4928  // We may have default arguments. If so, we need to allocate more
4929  // slots in the call for them.
4930  if (NumArgs < NumArgsInProto)
4931    TheCall->setNumArgs(Context, NumArgsInProto + 1);
4932  else if (NumArgs > NumArgsInProto)
4933    NumArgsToCheck = NumArgsInProto;
4934
4935  bool IsError = false;
4936
4937  // Initialize the implicit object parameter.
4938  IsError |= PerformObjectArgumentInitialization(Object, Method);
4939  TheCall->setArg(0, Object);
4940
4941
4942  // Check the argument types.
4943  for (unsigned i = 0; i != NumArgsToCheck; i++) {
4944    Expr *Arg;
4945    if (i < NumArgs) {
4946      Arg = Args[i];
4947
4948      // Pass the argument.
4949      QualType ProtoArgType = Proto->getArgType(i);
4950      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
4951    } else {
4952      Arg = CXXDefaultArgExpr::Create(Context, Method->getParamDecl(i));
4953    }
4954
4955    TheCall->setArg(i + 1, Arg);
4956  }
4957
4958  // If this is a variadic call, handle args passed through "...".
4959  if (Proto->isVariadic()) {
4960    // Promote the arguments (C99 6.5.2.2p7).
4961    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
4962      Expr *Arg = Args[i];
4963      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
4964      TheCall->setArg(i + 1, Arg);
4965    }
4966  }
4967
4968  if (IsError) return true;
4969
4970  if (CheckFunctionCall(Method, TheCall.get()))
4971    return true;
4972
4973  return MaybeBindToTemporary(TheCall.release()).release();
4974}
4975
4976/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
4977///  (if one exists), where @c Base is an expression of class type and
4978/// @c Member is the name of the member we're trying to find.
4979Sema::OwningExprResult
4980Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
4981  Expr *Base = static_cast<Expr *>(BaseIn.get());
4982  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
4983
4984  // C++ [over.ref]p1:
4985  //
4986  //   [...] An expression x->m is interpreted as (x.operator->())->m
4987  //   for a class object x of type T if T::operator->() exists and if
4988  //   the operator is selected as the best match function by the
4989  //   overload resolution mechanism (13.3).
4990  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4991  OverloadCandidateSet CandidateSet;
4992  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
4993
4994  LookupResult R = LookupQualifiedName(BaseRecord->getDecl(), OpName,
4995                                       LookupOrdinaryName);
4996
4997  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
4998       Oper != OperEnd; ++Oper)
4999    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
5000                       /*SuppressUserConversions=*/false);
5001
5002  // Perform overload resolution.
5003  OverloadCandidateSet::iterator Best;
5004  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5005  case OR_Success:
5006    // Overload resolution succeeded; we'll build the call below.
5007    break;
5008
5009  case OR_No_Viable_Function:
5010    if (CandidateSet.empty())
5011      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5012        << Base->getType() << Base->getSourceRange();
5013    else
5014      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5015        << "operator->" << Base->getSourceRange();
5016    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5017    return ExprError();
5018
5019  case OR_Ambiguous:
5020    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5021      << "->" << Base->getSourceRange();
5022    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5023    return ExprError();
5024
5025  case OR_Deleted:
5026    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5027      << Best->Function->isDeleted()
5028      << "->" << Base->getSourceRange();
5029    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5030    return ExprError();
5031  }
5032
5033  // Convert the object parameter.
5034  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5035  if (PerformObjectArgumentInitialization(Base, Method))
5036    return ExprError();
5037
5038  // No concerns about early exits now.
5039  BaseIn.release();
5040
5041  // Build the operator call.
5042  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5043                                           SourceLocation());
5044  UsualUnaryConversions(FnExpr);
5045  Base = new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr, &Base, 1,
5046                                 Method->getResultType().getNonReferenceType(),
5047                                 OpLoc);
5048  return Owned(Base);
5049}
5050
5051/// FixOverloadedFunctionReference - E is an expression that refers to
5052/// a C++ overloaded function (possibly with some parentheses and
5053/// perhaps a '&' around it). We have resolved the overloaded function
5054/// to the function declaration Fn, so patch up the expression E to
5055/// refer (possibly indirectly) to Fn.
5056void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5057  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5058    FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5059    E->setType(PE->getSubExpr()->getType());
5060  } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5061    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5062           "Can only take the address of an overloaded function");
5063    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5064      if (Method->isStatic()) {
5065        // Do nothing: static member functions aren't any different
5066        // from non-member functions.
5067      } else if (QualifiedDeclRefExpr *DRE
5068                 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
5069        // We have taken the address of a pointer to member
5070        // function. Perform the computation here so that we get the
5071        // appropriate pointer to member type.
5072        DRE->setDecl(Fn);
5073        DRE->setType(Fn->getType());
5074        QualType ClassType
5075          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5076        E->setType(Context.getMemberPointerType(Fn->getType(),
5077                                                ClassType.getTypePtr()));
5078        return;
5079      }
5080    }
5081    FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5082    E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
5083  } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
5084    assert((isa<OverloadedFunctionDecl>(DR->getDecl()) ||
5085            isa<FunctionTemplateDecl>(DR->getDecl())) &&
5086           "Expected overloaded function or function template");
5087    DR->setDecl(Fn);
5088    E->setType(Fn->getType());
5089  } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
5090    MemExpr->setMemberDecl(Fn);
5091    E->setType(Fn->getType());
5092  } else {
5093    assert(false && "Invalid reference to overloaded function");
5094  }
5095}
5096
5097} // end namespace clang
5098