SemaOverload.cpp revision f3f91f3719a95036175ad767805657cdfeb54406
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "SemaInit.h"
17#include "clang/Basic/Diagnostic.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include <algorithm>
28
29namespace clang {
30
31/// GetConversionCategory - Retrieve the implicit conversion
32/// category corresponding to the given implicit conversion kind.
33ImplicitConversionCategory
34GetConversionCategory(ImplicitConversionKind Kind) {
35  static const ImplicitConversionCategory
36    Category[(int)ICK_Num_Conversion_Kinds] = {
37    ICC_Identity,
38    ICC_Lvalue_Transformation,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Identity,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Exact_Match,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Promotion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion,
83    ICR_Conversion
84  };
85  return Rank[(int)Kind];
86}
87
88/// GetImplicitConversionName - Return the name of this kind of
89/// implicit conversion.
90const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
91  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
92    "No conversion",
93    "Lvalue-to-rvalue",
94    "Array-to-pointer",
95    "Function-to-pointer",
96    "Noreturn adjustment",
97    "Qualification",
98    "Integral promotion",
99    "Floating point promotion",
100    "Complex promotion",
101    "Integral conversion",
102    "Floating conversion",
103    "Complex conversion",
104    "Floating-integral conversion",
105    "Complex-real conversion",
106    "Pointer conversion",
107    "Pointer-to-member conversion",
108    "Boolean conversion",
109    "Compatible-types conversion",
110    "Derived-to-base conversion"
111  };
112  return Name[Kind];
113}
114
115/// StandardConversionSequence - Set the standard conversion
116/// sequence to the identity conversion.
117void StandardConversionSequence::setAsIdentityConversion() {
118  First = ICK_Identity;
119  Second = ICK_Identity;
120  Third = ICK_Identity;
121  Deprecated = false;
122  ReferenceBinding = false;
123  DirectBinding = false;
124  RRefBinding = false;
125  CopyConstructor = 0;
126}
127
128/// getRank - Retrieve the rank of this standard conversion sequence
129/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
130/// implicit conversions.
131ImplicitConversionRank StandardConversionSequence::getRank() const {
132  ImplicitConversionRank Rank = ICR_Exact_Match;
133  if  (GetConversionRank(First) > Rank)
134    Rank = GetConversionRank(First);
135  if  (GetConversionRank(Second) > Rank)
136    Rank = GetConversionRank(Second);
137  if  (GetConversionRank(Third) > Rank)
138    Rank = GetConversionRank(Third);
139  return Rank;
140}
141
142/// isPointerConversionToBool - Determines whether this conversion is
143/// a conversion of a pointer or pointer-to-member to bool. This is
144/// used as part of the ranking of standard conversion sequences
145/// (C++ 13.3.3.2p4).
146bool StandardConversionSequence::isPointerConversionToBool() const {
147  // Note that FromType has not necessarily been transformed by the
148  // array-to-pointer or function-to-pointer implicit conversions, so
149  // check for their presence as well as checking whether FromType is
150  // a pointer.
151  if (getToType()->isBooleanType() &&
152      (getFromType()->isPointerType() || getFromType()->isBlockPointerType() ||
153       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
154    return true;
155
156  return false;
157}
158
159/// isPointerConversionToVoidPointer - Determines whether this
160/// conversion is a conversion of a pointer to a void pointer. This is
161/// used as part of the ranking of standard conversion sequences (C++
162/// 13.3.3.2p4).
163bool
164StandardConversionSequence::
165isPointerConversionToVoidPointer(ASTContext& Context) const {
166  QualType FromType = getFromType();
167  QualType ToType = getToType();
168
169  // Note that FromType has not necessarily been transformed by the
170  // array-to-pointer implicit conversion, so check for its presence
171  // and redo the conversion to get a pointer.
172  if (First == ICK_Array_To_Pointer)
173    FromType = Context.getArrayDecayedType(FromType);
174
175  if (Second == ICK_Pointer_Conversion && FromType->isPointerType())
176    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
177      return ToPtrType->getPointeeType()->isVoidType();
178
179  return false;
180}
181
182/// DebugPrint - Print this standard conversion sequence to standard
183/// error. Useful for debugging overloading issues.
184void StandardConversionSequence::DebugPrint() const {
185  llvm::raw_ostream &OS = llvm::errs();
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    OS << GetImplicitConversionName(First);
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      OS << " -> ";
195    }
196    OS << GetImplicitConversionName(Second);
197
198    if (CopyConstructor) {
199      OS << " (by copy constructor)";
200    } else if (DirectBinding) {
201      OS << " (direct reference binding)";
202    } else if (ReferenceBinding) {
203      OS << " (reference binding)";
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      OS << " -> ";
211    }
212    OS << GetImplicitConversionName(Third);
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    OS << "No conversions required";
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  llvm::raw_ostream &OS = llvm::errs();
225  if (Before.First || Before.Second || Before.Third) {
226    Before.DebugPrint();
227    OS << " -> ";
228  }
229  OS << "'" << ConversionFunction->getNameAsString() << "'";
230  if (After.First || After.Second || After.Third) {
231    OS << " -> ";
232    After.DebugPrint();
233  }
234}
235
236/// DebugPrint - Print this implicit conversion sequence to standard
237/// error. Useful for debugging overloading issues.
238void ImplicitConversionSequence::DebugPrint() const {
239  llvm::raw_ostream &OS = llvm::errs();
240  switch (ConversionKind) {
241  case StandardConversion:
242    OS << "Standard conversion: ";
243    Standard.DebugPrint();
244    break;
245  case UserDefinedConversion:
246    OS << "User-defined conversion: ";
247    UserDefined.DebugPrint();
248    break;
249  case EllipsisConversion:
250    OS << "Ellipsis conversion";
251    break;
252  case AmbiguousConversion:
253    OS << "Ambiguous conversion";
254    break;
255  case BadConversion:
256    OS << "Bad conversion";
257    break;
258  }
259
260  OS << "\n";
261}
262
263void AmbiguousConversionSequence::construct() {
264  new (&conversions()) ConversionSet();
265}
266
267void AmbiguousConversionSequence::destruct() {
268  conversions().~ConversionSet();
269}
270
271void
272AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
273  FromTypePtr = O.FromTypePtr;
274  ToTypePtr = O.ToTypePtr;
275  new (&conversions()) ConversionSet(O.conversions());
276}
277
278
279// IsOverload - Determine whether the given New declaration is an
280// overload of the declarations in Old. This routine returns false if
281// New and Old cannot be overloaded, e.g., if New has the same
282// signature as some function in Old (C++ 1.3.10) or if the Old
283// declarations aren't functions (or function templates) at all. When
284// it does return false, MatchedDecl will point to the decl that New
285// cannot be overloaded with.  This decl may be a UsingShadowDecl on
286// top of the underlying declaration.
287//
288// Example: Given the following input:
289//
290//   void f(int, float); // #1
291//   void f(int, int); // #2
292//   int f(int, int); // #3
293//
294// When we process #1, there is no previous declaration of "f",
295// so IsOverload will not be used.
296//
297// When we process #2, Old contains only the FunctionDecl for #1.  By
298// comparing the parameter types, we see that #1 and #2 are overloaded
299// (since they have different signatures), so this routine returns
300// false; MatchedDecl is unchanged.
301//
302// When we process #3, Old is an overload set containing #1 and #2. We
303// compare the signatures of #3 to #1 (they're overloaded, so we do
304// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
305// identical (return types of functions are not part of the
306// signature), IsOverload returns false and MatchedDecl will be set to
307// point to the FunctionDecl for #2.
308Sema::OverloadKind
309Sema::CheckOverload(FunctionDecl *New, const LookupResult &Old,
310                    NamedDecl *&Match) {
311  for (LookupResult::iterator I = Old.begin(), E = Old.end();
312         I != E; ++I) {
313    NamedDecl *OldD = (*I)->getUnderlyingDecl();
314    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
315      if (!IsOverload(New, OldT->getTemplatedDecl())) {
316        Match = *I;
317        return Ovl_Match;
318      }
319    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
320      if (!IsOverload(New, OldF)) {
321        Match = *I;
322        return Ovl_Match;
323      }
324    } else if (isa<UsingDecl>(OldD) || isa<TagDecl>(OldD)) {
325      // We can overload with these, which can show up when doing
326      // redeclaration checks for UsingDecls.
327      assert(Old.getLookupKind() == LookupUsingDeclName);
328    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
329      // Optimistically assume that an unresolved using decl will
330      // overload; if it doesn't, we'll have to diagnose during
331      // template instantiation.
332    } else {
333      // (C++ 13p1):
334      //   Only function declarations can be overloaded; object and type
335      //   declarations cannot be overloaded.
336      Match = *I;
337      return Ovl_NonFunction;
338    }
339  }
340
341  return Ovl_Overload;
342}
343
344bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
345  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
346  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
347
348  // C++ [temp.fct]p2:
349  //   A function template can be overloaded with other function templates
350  //   and with normal (non-template) functions.
351  if ((OldTemplate == 0) != (NewTemplate == 0))
352    return true;
353
354  // Is the function New an overload of the function Old?
355  QualType OldQType = Context.getCanonicalType(Old->getType());
356  QualType NewQType = Context.getCanonicalType(New->getType());
357
358  // Compare the signatures (C++ 1.3.10) of the two functions to
359  // determine whether they are overloads. If we find any mismatch
360  // in the signature, they are overloads.
361
362  // If either of these functions is a K&R-style function (no
363  // prototype), then we consider them to have matching signatures.
364  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
365      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
366    return false;
367
368  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
369  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
370
371  // The signature of a function includes the types of its
372  // parameters (C++ 1.3.10), which includes the presence or absence
373  // of the ellipsis; see C++ DR 357).
374  if (OldQType != NewQType &&
375      (OldType->getNumArgs() != NewType->getNumArgs() ||
376       OldType->isVariadic() != NewType->isVariadic() ||
377       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
378                   NewType->arg_type_begin())))
379    return true;
380
381  // C++ [temp.over.link]p4:
382  //   The signature of a function template consists of its function
383  //   signature, its return type and its template parameter list. The names
384  //   of the template parameters are significant only for establishing the
385  //   relationship between the template parameters and the rest of the
386  //   signature.
387  //
388  // We check the return type and template parameter lists for function
389  // templates first; the remaining checks follow.
390  if (NewTemplate &&
391      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
392                                       OldTemplate->getTemplateParameters(),
393                                       false, TPL_TemplateMatch) ||
394       OldType->getResultType() != NewType->getResultType()))
395    return true;
396
397  // If the function is a class member, its signature includes the
398  // cv-qualifiers (if any) on the function itself.
399  //
400  // As part of this, also check whether one of the member functions
401  // is static, in which case they are not overloads (C++
402  // 13.1p2). While not part of the definition of the signature,
403  // this check is important to determine whether these functions
404  // can be overloaded.
405  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
406  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
407  if (OldMethod && NewMethod &&
408      !OldMethod->isStatic() && !NewMethod->isStatic() &&
409      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
410    return true;
411
412  // The signatures match; this is not an overload.
413  return false;
414}
415
416/// TryImplicitConversion - Attempt to perform an implicit conversion
417/// from the given expression (Expr) to the given type (ToType). This
418/// function returns an implicit conversion sequence that can be used
419/// to perform the initialization. Given
420///
421///   void f(float f);
422///   void g(int i) { f(i); }
423///
424/// this routine would produce an implicit conversion sequence to
425/// describe the initialization of f from i, which will be a standard
426/// conversion sequence containing an lvalue-to-rvalue conversion (C++
427/// 4.1) followed by a floating-integral conversion (C++ 4.9).
428//
429/// Note that this routine only determines how the conversion can be
430/// performed; it does not actually perform the conversion. As such,
431/// it will not produce any diagnostics if no conversion is available,
432/// but will instead return an implicit conversion sequence of kind
433/// "BadConversion".
434///
435/// If @p SuppressUserConversions, then user-defined conversions are
436/// not permitted.
437/// If @p AllowExplicit, then explicit user-defined conversions are
438/// permitted.
439/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
440/// no matter its actual lvalueness.
441/// If @p UserCast, the implicit conversion is being done for a user-specified
442/// cast.
443ImplicitConversionSequence
444Sema::TryImplicitConversion(Expr* From, QualType ToType,
445                            bool SuppressUserConversions,
446                            bool AllowExplicit, bool ForceRValue,
447                            bool InOverloadResolution,
448                            bool UserCast) {
449  ImplicitConversionSequence ICS;
450  OverloadCandidateSet Conversions;
451  OverloadingResult UserDefResult = OR_Success;
452  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
453    ICS.setStandard();
454  else if (getLangOptions().CPlusPlus &&
455           (UserDefResult = IsUserDefinedConversion(From, ToType,
456                                   ICS.UserDefined,
457                                   Conversions,
458                                   !SuppressUserConversions, AllowExplicit,
459				   ForceRValue, UserCast)) == OR_Success) {
460    ICS.setUserDefined();
461    // C++ [over.ics.user]p4:
462    //   A conversion of an expression of class type to the same class
463    //   type is given Exact Match rank, and a conversion of an
464    //   expression of class type to a base class of that type is
465    //   given Conversion rank, in spite of the fact that a copy
466    //   constructor (i.e., a user-defined conversion function) is
467    //   called for those cases.
468    if (CXXConstructorDecl *Constructor
469          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
470      QualType FromCanon
471        = Context.getCanonicalType(From->getType().getUnqualifiedType());
472      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
473      if (Constructor->isCopyConstructor() &&
474          (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon))) {
475        // Turn this into a "standard" conversion sequence, so that it
476        // gets ranked with standard conversion sequences.
477        ICS.setStandard();
478        ICS.Standard.setAsIdentityConversion();
479        ICS.Standard.setFromType(From->getType());
480        ICS.Standard.setToType(ToType);
481        ICS.Standard.CopyConstructor = Constructor;
482        if (ToCanon != FromCanon)
483          ICS.Standard.Second = ICK_Derived_To_Base;
484      }
485    }
486
487    // C++ [over.best.ics]p4:
488    //   However, when considering the argument of a user-defined
489    //   conversion function that is a candidate by 13.3.1.3 when
490    //   invoked for the copying of the temporary in the second step
491    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
492    //   13.3.1.6 in all cases, only standard conversion sequences and
493    //   ellipsis conversion sequences are allowed.
494    if (SuppressUserConversions && ICS.isUserDefined()) {
495      ICS.setBad();
496      ICS.Bad.init(BadConversionSequence::suppressed_user, From, ToType);
497    }
498  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
499    ICS.setAmbiguous();
500    ICS.Ambiguous.setFromType(From->getType());
501    ICS.Ambiguous.setToType(ToType);
502    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
503         Cand != Conversions.end(); ++Cand)
504      if (Cand->Viable)
505        ICS.Ambiguous.addConversion(Cand->Function);
506  } else {
507    ICS.setBad();
508    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
509  }
510
511  return ICS;
512}
513
514/// \brief Determine whether the conversion from FromType to ToType is a valid
515/// conversion that strips "noreturn" off the nested function type.
516static bool IsNoReturnConversion(ASTContext &Context, QualType FromType,
517                                 QualType ToType, QualType &ResultTy) {
518  if (Context.hasSameUnqualifiedType(FromType, ToType))
519    return false;
520
521  // Strip the noreturn off the type we're converting from; noreturn can
522  // safely be removed.
523  FromType = Context.getNoReturnType(FromType, false);
524  if (!Context.hasSameUnqualifiedType(FromType, ToType))
525    return false;
526
527  ResultTy = FromType;
528  return true;
529}
530
531/// IsStandardConversion - Determines whether there is a standard
532/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
533/// expression From to the type ToType. Standard conversion sequences
534/// only consider non-class types; for conversions that involve class
535/// types, use TryImplicitConversion. If a conversion exists, SCS will
536/// contain the standard conversion sequence required to perform this
537/// conversion and this routine will return true. Otherwise, this
538/// routine will return false and the value of SCS is unspecified.
539bool
540Sema::IsStandardConversion(Expr* From, QualType ToType,
541                           bool InOverloadResolution,
542                           StandardConversionSequence &SCS) {
543  QualType FromType = From->getType();
544
545  // Standard conversions (C++ [conv])
546  SCS.setAsIdentityConversion();
547  SCS.Deprecated = false;
548  SCS.IncompatibleObjC = false;
549  SCS.setFromType(FromType);
550  SCS.CopyConstructor = 0;
551
552  // There are no standard conversions for class types in C++, so
553  // abort early. When overloading in C, however, we do permit
554  if (FromType->isRecordType() || ToType->isRecordType()) {
555    if (getLangOptions().CPlusPlus)
556      return false;
557
558    // When we're overloading in C, we allow, as standard conversions,
559  }
560
561  // The first conversion can be an lvalue-to-rvalue conversion,
562  // array-to-pointer conversion, or function-to-pointer conversion
563  // (C++ 4p1).
564
565  // Lvalue-to-rvalue conversion (C++ 4.1):
566  //   An lvalue (3.10) of a non-function, non-array type T can be
567  //   converted to an rvalue.
568  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
569  if (argIsLvalue == Expr::LV_Valid &&
570      !FromType->isFunctionType() && !FromType->isArrayType() &&
571      Context.getCanonicalType(FromType) != Context.OverloadTy) {
572    SCS.First = ICK_Lvalue_To_Rvalue;
573
574    // If T is a non-class type, the type of the rvalue is the
575    // cv-unqualified version of T. Otherwise, the type of the rvalue
576    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
577    // just strip the qualifiers because they don't matter.
578    FromType = FromType.getUnqualifiedType();
579  } else if (FromType->isArrayType()) {
580    // Array-to-pointer conversion (C++ 4.2)
581    SCS.First = ICK_Array_To_Pointer;
582
583    // An lvalue or rvalue of type "array of N T" or "array of unknown
584    // bound of T" can be converted to an rvalue of type "pointer to
585    // T" (C++ 4.2p1).
586    FromType = Context.getArrayDecayedType(FromType);
587
588    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
589      // This conversion is deprecated. (C++ D.4).
590      SCS.Deprecated = true;
591
592      // For the purpose of ranking in overload resolution
593      // (13.3.3.1.1), this conversion is considered an
594      // array-to-pointer conversion followed by a qualification
595      // conversion (4.4). (C++ 4.2p2)
596      SCS.Second = ICK_Identity;
597      SCS.Third = ICK_Qualification;
598      SCS.setToType(ToType);
599      return true;
600    }
601  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
602    // Function-to-pointer conversion (C++ 4.3).
603    SCS.First = ICK_Function_To_Pointer;
604
605    // An lvalue of function type T can be converted to an rvalue of
606    // type "pointer to T." The result is a pointer to the
607    // function. (C++ 4.3p1).
608    FromType = Context.getPointerType(FromType);
609  } else if (FunctionDecl *Fn
610               = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
611    // Address of overloaded function (C++ [over.over]).
612    SCS.First = ICK_Function_To_Pointer;
613
614    // We were able to resolve the address of the overloaded function,
615    // so we can convert to the type of that function.
616    FromType = Fn->getType();
617    if (ToType->isLValueReferenceType())
618      FromType = Context.getLValueReferenceType(FromType);
619    else if (ToType->isRValueReferenceType())
620      FromType = Context.getRValueReferenceType(FromType);
621    else if (ToType->isMemberPointerType()) {
622      // Resolve address only succeeds if both sides are member pointers,
623      // but it doesn't have to be the same class. See DR 247.
624      // Note that this means that the type of &Derived::fn can be
625      // Ret (Base::*)(Args) if the fn overload actually found is from the
626      // base class, even if it was brought into the derived class via a
627      // using declaration. The standard isn't clear on this issue at all.
628      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
629      FromType = Context.getMemberPointerType(FromType,
630                    Context.getTypeDeclType(M->getParent()).getTypePtr());
631    } else
632      FromType = Context.getPointerType(FromType);
633  } else {
634    // We don't require any conversions for the first step.
635    SCS.First = ICK_Identity;
636  }
637
638  // The second conversion can be an integral promotion, floating
639  // point promotion, integral conversion, floating point conversion,
640  // floating-integral conversion, pointer conversion,
641  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
642  // For overloading in C, this can also be a "compatible-type"
643  // conversion.
644  bool IncompatibleObjC = false;
645  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
646    // The unqualified versions of the types are the same: there's no
647    // conversion to do.
648    SCS.Second = ICK_Identity;
649  } else if (IsIntegralPromotion(From, FromType, ToType)) {
650    // Integral promotion (C++ 4.5).
651    SCS.Second = ICK_Integral_Promotion;
652    FromType = ToType.getUnqualifiedType();
653  } else if (IsFloatingPointPromotion(FromType, ToType)) {
654    // Floating point promotion (C++ 4.6).
655    SCS.Second = ICK_Floating_Promotion;
656    FromType = ToType.getUnqualifiedType();
657  } else if (IsComplexPromotion(FromType, ToType)) {
658    // Complex promotion (Clang extension)
659    SCS.Second = ICK_Complex_Promotion;
660    FromType = ToType.getUnqualifiedType();
661  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
662           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
663    // Integral conversions (C++ 4.7).
664    SCS.Second = ICK_Integral_Conversion;
665    FromType = ToType.getUnqualifiedType();
666  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
667    // Floating point conversions (C++ 4.8).
668    SCS.Second = ICK_Floating_Conversion;
669    FromType = ToType.getUnqualifiedType();
670  } else if (FromType->isComplexType() && ToType->isComplexType()) {
671    // Complex conversions (C99 6.3.1.6)
672    SCS.Second = ICK_Complex_Conversion;
673    FromType = ToType.getUnqualifiedType();
674  } else if ((FromType->isFloatingType() &&
675              ToType->isIntegralType() && (!ToType->isBooleanType() &&
676                                           !ToType->isEnumeralType())) ||
677             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
678              ToType->isFloatingType())) {
679    // Floating-integral conversions (C++ 4.9).
680    SCS.Second = ICK_Floating_Integral;
681    FromType = ToType.getUnqualifiedType();
682  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
683             (ToType->isComplexType() && FromType->isArithmeticType())) {
684    // Complex-real conversions (C99 6.3.1.7)
685    SCS.Second = ICK_Complex_Real;
686    FromType = ToType.getUnqualifiedType();
687  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
688                                 FromType, IncompatibleObjC)) {
689    // Pointer conversions (C++ 4.10).
690    SCS.Second = ICK_Pointer_Conversion;
691    SCS.IncompatibleObjC = IncompatibleObjC;
692  } else if (IsMemberPointerConversion(From, FromType, ToType,
693                                       InOverloadResolution, FromType)) {
694    // Pointer to member conversions (4.11).
695    SCS.Second = ICK_Pointer_Member;
696  } else if (ToType->isBooleanType() &&
697             (FromType->isArithmeticType() ||
698              FromType->isEnumeralType() ||
699              FromType->isAnyPointerType() ||
700              FromType->isBlockPointerType() ||
701              FromType->isMemberPointerType() ||
702              FromType->isNullPtrType())) {
703    // Boolean conversions (C++ 4.12).
704    SCS.Second = ICK_Boolean_Conversion;
705    FromType = Context.BoolTy;
706  } else if (!getLangOptions().CPlusPlus &&
707             Context.typesAreCompatible(ToType, FromType)) {
708    // Compatible conversions (Clang extension for C function overloading)
709    SCS.Second = ICK_Compatible_Conversion;
710  } else if (IsNoReturnConversion(Context, FromType, ToType, FromType)) {
711    // Treat a conversion that strips "noreturn" as an identity conversion.
712    SCS.Second = ICK_NoReturn_Adjustment;
713  } else {
714    // No second conversion required.
715    SCS.Second = ICK_Identity;
716  }
717
718  QualType CanonFrom;
719  QualType CanonTo;
720  // The third conversion can be a qualification conversion (C++ 4p1).
721  if (IsQualificationConversion(FromType, ToType)) {
722    SCS.Third = ICK_Qualification;
723    FromType = ToType;
724    CanonFrom = Context.getCanonicalType(FromType);
725    CanonTo = Context.getCanonicalType(ToType);
726  } else {
727    // No conversion required
728    SCS.Third = ICK_Identity;
729
730    // C++ [over.best.ics]p6:
731    //   [...] Any difference in top-level cv-qualification is
732    //   subsumed by the initialization itself and does not constitute
733    //   a conversion. [...]
734    CanonFrom = Context.getCanonicalType(FromType);
735    CanonTo = Context.getCanonicalType(ToType);
736    if (CanonFrom.getLocalUnqualifiedType()
737                                       == CanonTo.getLocalUnqualifiedType() &&
738        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
739      FromType = ToType;
740      CanonFrom = CanonTo;
741    }
742  }
743
744  // If we have not converted the argument type to the parameter type,
745  // this is a bad conversion sequence.
746  if (CanonFrom != CanonTo)
747    return false;
748
749  SCS.setToType(FromType);
750  return true;
751}
752
753/// IsIntegralPromotion - Determines whether the conversion from the
754/// expression From (whose potentially-adjusted type is FromType) to
755/// ToType is an integral promotion (C++ 4.5). If so, returns true and
756/// sets PromotedType to the promoted type.
757bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
758  const BuiltinType *To = ToType->getAs<BuiltinType>();
759  // All integers are built-in.
760  if (!To) {
761    return false;
762  }
763
764  // An rvalue of type char, signed char, unsigned char, short int, or
765  // unsigned short int can be converted to an rvalue of type int if
766  // int can represent all the values of the source type; otherwise,
767  // the source rvalue can be converted to an rvalue of type unsigned
768  // int (C++ 4.5p1).
769  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
770    if (// We can promote any signed, promotable integer type to an int
771        (FromType->isSignedIntegerType() ||
772         // We can promote any unsigned integer type whose size is
773         // less than int to an int.
774         (!FromType->isSignedIntegerType() &&
775          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
776      return To->getKind() == BuiltinType::Int;
777    }
778
779    return To->getKind() == BuiltinType::UInt;
780  }
781
782  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
783  // can be converted to an rvalue of the first of the following types
784  // that can represent all the values of its underlying type: int,
785  // unsigned int, long, or unsigned long (C++ 4.5p2).
786
787  // We pre-calculate the promotion type for enum types.
788  if (const EnumType *FromEnumType = FromType->getAs<EnumType>())
789    if (ToType->isIntegerType())
790      return Context.hasSameUnqualifiedType(ToType,
791                                FromEnumType->getDecl()->getPromotionType());
792
793  if (FromType->isWideCharType() && ToType->isIntegerType()) {
794    // Determine whether the type we're converting from is signed or
795    // unsigned.
796    bool FromIsSigned;
797    uint64_t FromSize = Context.getTypeSize(FromType);
798
799    // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
800    FromIsSigned = true;
801
802    // The types we'll try to promote to, in the appropriate
803    // order. Try each of these types.
804    QualType PromoteTypes[6] = {
805      Context.IntTy, Context.UnsignedIntTy,
806      Context.LongTy, Context.UnsignedLongTy ,
807      Context.LongLongTy, Context.UnsignedLongLongTy
808    };
809    for (int Idx = 0; Idx < 6; ++Idx) {
810      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
811      if (FromSize < ToSize ||
812          (FromSize == ToSize &&
813           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
814        // We found the type that we can promote to. If this is the
815        // type we wanted, we have a promotion. Otherwise, no
816        // promotion.
817        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
818      }
819    }
820  }
821
822  // An rvalue for an integral bit-field (9.6) can be converted to an
823  // rvalue of type int if int can represent all the values of the
824  // bit-field; otherwise, it can be converted to unsigned int if
825  // unsigned int can represent all the values of the bit-field. If
826  // the bit-field is larger yet, no integral promotion applies to
827  // it. If the bit-field has an enumerated type, it is treated as any
828  // other value of that type for promotion purposes (C++ 4.5p3).
829  // FIXME: We should delay checking of bit-fields until we actually perform the
830  // conversion.
831  using llvm::APSInt;
832  if (From)
833    if (FieldDecl *MemberDecl = From->getBitField()) {
834      APSInt BitWidth;
835      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
836          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
837        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
838        ToSize = Context.getTypeSize(ToType);
839
840        // Are we promoting to an int from a bitfield that fits in an int?
841        if (BitWidth < ToSize ||
842            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
843          return To->getKind() == BuiltinType::Int;
844        }
845
846        // Are we promoting to an unsigned int from an unsigned bitfield
847        // that fits into an unsigned int?
848        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
849          return To->getKind() == BuiltinType::UInt;
850        }
851
852        return false;
853      }
854    }
855
856  // An rvalue of type bool can be converted to an rvalue of type int,
857  // with false becoming zero and true becoming one (C++ 4.5p4).
858  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
859    return true;
860  }
861
862  return false;
863}
864
865/// IsFloatingPointPromotion - Determines whether the conversion from
866/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
867/// returns true and sets PromotedType to the promoted type.
868bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
869  /// An rvalue of type float can be converted to an rvalue of type
870  /// double. (C++ 4.6p1).
871  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
872    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
873      if (FromBuiltin->getKind() == BuiltinType::Float &&
874          ToBuiltin->getKind() == BuiltinType::Double)
875        return true;
876
877      // C99 6.3.1.5p1:
878      //   When a float is promoted to double or long double, or a
879      //   double is promoted to long double [...].
880      if (!getLangOptions().CPlusPlus &&
881          (FromBuiltin->getKind() == BuiltinType::Float ||
882           FromBuiltin->getKind() == BuiltinType::Double) &&
883          (ToBuiltin->getKind() == BuiltinType::LongDouble))
884        return true;
885    }
886
887  return false;
888}
889
890/// \brief Determine if a conversion is a complex promotion.
891///
892/// A complex promotion is defined as a complex -> complex conversion
893/// where the conversion between the underlying real types is a
894/// floating-point or integral promotion.
895bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
896  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
897  if (!FromComplex)
898    return false;
899
900  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
901  if (!ToComplex)
902    return false;
903
904  return IsFloatingPointPromotion(FromComplex->getElementType(),
905                                  ToComplex->getElementType()) ||
906    IsIntegralPromotion(0, FromComplex->getElementType(),
907                        ToComplex->getElementType());
908}
909
910/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
911/// the pointer type FromPtr to a pointer to type ToPointee, with the
912/// same type qualifiers as FromPtr has on its pointee type. ToType,
913/// if non-empty, will be a pointer to ToType that may or may not have
914/// the right set of qualifiers on its pointee.
915static QualType
916BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
917                                   QualType ToPointee, QualType ToType,
918                                   ASTContext &Context) {
919  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
920  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
921  Qualifiers Quals = CanonFromPointee.getQualifiers();
922
923  // Exact qualifier match -> return the pointer type we're converting to.
924  if (CanonToPointee.getLocalQualifiers() == Quals) {
925    // ToType is exactly what we need. Return it.
926    if (!ToType.isNull())
927      return ToType;
928
929    // Build a pointer to ToPointee. It has the right qualifiers
930    // already.
931    return Context.getPointerType(ToPointee);
932  }
933
934  // Just build a canonical type that has the right qualifiers.
935  return Context.getPointerType(
936         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
937                                  Quals));
938}
939
940/// BuildSimilarlyQualifiedObjCObjectPointerType - In a pointer conversion from
941/// the FromType, which is an objective-c pointer, to ToType, which may or may
942/// not have the right set of qualifiers.
943static QualType
944BuildSimilarlyQualifiedObjCObjectPointerType(QualType FromType,
945                                             QualType ToType,
946                                             ASTContext &Context) {
947  QualType CanonFromType = Context.getCanonicalType(FromType);
948  QualType CanonToType = Context.getCanonicalType(ToType);
949  Qualifiers Quals = CanonFromType.getQualifiers();
950
951  // Exact qualifier match -> return the pointer type we're converting to.
952  if (CanonToType.getLocalQualifiers() == Quals)
953    return ToType;
954
955  // Just build a canonical type that has the right qualifiers.
956  return Context.getQualifiedType(CanonToType.getLocalUnqualifiedType(), Quals);
957}
958
959static bool isNullPointerConstantForConversion(Expr *Expr,
960                                               bool InOverloadResolution,
961                                               ASTContext &Context) {
962  // Handle value-dependent integral null pointer constants correctly.
963  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
964  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
965      Expr->getType()->isIntegralType())
966    return !InOverloadResolution;
967
968  return Expr->isNullPointerConstant(Context,
969                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
970                                        : Expr::NPC_ValueDependentIsNull);
971}
972
973/// IsPointerConversion - Determines whether the conversion of the
974/// expression From, which has the (possibly adjusted) type FromType,
975/// can be converted to the type ToType via a pointer conversion (C++
976/// 4.10). If so, returns true and places the converted type (that
977/// might differ from ToType in its cv-qualifiers at some level) into
978/// ConvertedType.
979///
980/// This routine also supports conversions to and from block pointers
981/// and conversions with Objective-C's 'id', 'id<protocols...>', and
982/// pointers to interfaces. FIXME: Once we've determined the
983/// appropriate overloading rules for Objective-C, we may want to
984/// split the Objective-C checks into a different routine; however,
985/// GCC seems to consider all of these conversions to be pointer
986/// conversions, so for now they live here. IncompatibleObjC will be
987/// set if the conversion is an allowed Objective-C conversion that
988/// should result in a warning.
989bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
990                               bool InOverloadResolution,
991                               QualType& ConvertedType,
992                               bool &IncompatibleObjC) {
993  IncompatibleObjC = false;
994  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
995    return true;
996
997  // Conversion from a null pointer constant to any Objective-C pointer type.
998  if (ToType->isObjCObjectPointerType() &&
999      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1000    ConvertedType = ToType;
1001    return true;
1002  }
1003
1004  // Blocks: Block pointers can be converted to void*.
1005  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1006      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1007    ConvertedType = ToType;
1008    return true;
1009  }
1010  // Blocks: A null pointer constant can be converted to a block
1011  // pointer type.
1012  if (ToType->isBlockPointerType() &&
1013      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1014    ConvertedType = ToType;
1015    return true;
1016  }
1017
1018  // If the left-hand-side is nullptr_t, the right side can be a null
1019  // pointer constant.
1020  if (ToType->isNullPtrType() &&
1021      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1022    ConvertedType = ToType;
1023    return true;
1024  }
1025
1026  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1027  if (!ToTypePtr)
1028    return false;
1029
1030  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1031  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1032    ConvertedType = ToType;
1033    return true;
1034  }
1035
1036  // Beyond this point, both types need to be pointers
1037  // , including objective-c pointers.
1038  QualType ToPointeeType = ToTypePtr->getPointeeType();
1039  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType()) {
1040    ConvertedType = BuildSimilarlyQualifiedObjCObjectPointerType(FromType,
1041                                                       ToType, Context);
1042    return true;
1043
1044  }
1045  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1046  if (!FromTypePtr)
1047    return false;
1048
1049  QualType FromPointeeType = FromTypePtr->getPointeeType();
1050
1051  // An rvalue of type "pointer to cv T," where T is an object type,
1052  // can be converted to an rvalue of type "pointer to cv void" (C++
1053  // 4.10p2).
1054  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
1055    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1056                                                       ToPointeeType,
1057                                                       ToType, Context);
1058    return true;
1059  }
1060
1061  // When we're overloading in C, we allow a special kind of pointer
1062  // conversion for compatible-but-not-identical pointee types.
1063  if (!getLangOptions().CPlusPlus &&
1064      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1065    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1066                                                       ToPointeeType,
1067                                                       ToType, Context);
1068    return true;
1069  }
1070
1071  // C++ [conv.ptr]p3:
1072  //
1073  //   An rvalue of type "pointer to cv D," where D is a class type,
1074  //   can be converted to an rvalue of type "pointer to cv B," where
1075  //   B is a base class (clause 10) of D. If B is an inaccessible
1076  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1077  //   necessitates this conversion is ill-formed. The result of the
1078  //   conversion is a pointer to the base class sub-object of the
1079  //   derived class object. The null pointer value is converted to
1080  //   the null pointer value of the destination type.
1081  //
1082  // Note that we do not check for ambiguity or inaccessibility
1083  // here. That is handled by CheckPointerConversion.
1084  if (getLangOptions().CPlusPlus &&
1085      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1086      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1087      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1088    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1089                                                       ToPointeeType,
1090                                                       ToType, Context);
1091    return true;
1092  }
1093
1094  return false;
1095}
1096
1097/// isObjCPointerConversion - Determines whether this is an
1098/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1099/// with the same arguments and return values.
1100bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1101                                   QualType& ConvertedType,
1102                                   bool &IncompatibleObjC) {
1103  if (!getLangOptions().ObjC1)
1104    return false;
1105
1106  // First, we handle all conversions on ObjC object pointer types.
1107  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1108  const ObjCObjectPointerType *FromObjCPtr =
1109    FromType->getAs<ObjCObjectPointerType>();
1110
1111  if (ToObjCPtr && FromObjCPtr) {
1112    // Objective C++: We're able to convert between "id" or "Class" and a
1113    // pointer to any interface (in both directions).
1114    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1115      ConvertedType = ToType;
1116      return true;
1117    }
1118    // Conversions with Objective-C's id<...>.
1119    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1120         ToObjCPtr->isObjCQualifiedIdType()) &&
1121        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1122                                                  /*compare=*/false)) {
1123      ConvertedType = ToType;
1124      return true;
1125    }
1126    // Objective C++: We're able to convert from a pointer to an
1127    // interface to a pointer to a different interface.
1128    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1129      ConvertedType = ToType;
1130      return true;
1131    }
1132
1133    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1134      // Okay: this is some kind of implicit downcast of Objective-C
1135      // interfaces, which is permitted. However, we're going to
1136      // complain about it.
1137      IncompatibleObjC = true;
1138      ConvertedType = FromType;
1139      return true;
1140    }
1141  }
1142  // Beyond this point, both types need to be C pointers or block pointers.
1143  QualType ToPointeeType;
1144  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1145    ToPointeeType = ToCPtr->getPointeeType();
1146  else if (const BlockPointerType *ToBlockPtr =
1147            ToType->getAs<BlockPointerType>()) {
1148    // Objective C++: We're able to convert from a pointer to any object
1149    // to a block pointer type.
1150    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1151      ConvertedType = ToType;
1152      return true;
1153    }
1154    ToPointeeType = ToBlockPtr->getPointeeType();
1155  }
1156  else if (FromType->getAs<BlockPointerType>() &&
1157           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1158    // Objective C++: We're able to convert from a block pointer type to a
1159    // pointer to any object.
1160    ConvertedType = ToType;
1161    return true;
1162  }
1163  else
1164    return false;
1165
1166  QualType FromPointeeType;
1167  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1168    FromPointeeType = FromCPtr->getPointeeType();
1169  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1170    FromPointeeType = FromBlockPtr->getPointeeType();
1171  else
1172    return false;
1173
1174  // If we have pointers to pointers, recursively check whether this
1175  // is an Objective-C conversion.
1176  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1177      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1178                              IncompatibleObjC)) {
1179    // We always complain about this conversion.
1180    IncompatibleObjC = true;
1181    ConvertedType = ToType;
1182    return true;
1183  }
1184  // Allow conversion of pointee being objective-c pointer to another one;
1185  // as in I* to id.
1186  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1187      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1188      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1189                              IncompatibleObjC)) {
1190    ConvertedType = ToType;
1191    return true;
1192  }
1193
1194  // If we have pointers to functions or blocks, check whether the only
1195  // differences in the argument and result types are in Objective-C
1196  // pointer conversions. If so, we permit the conversion (but
1197  // complain about it).
1198  const FunctionProtoType *FromFunctionType
1199    = FromPointeeType->getAs<FunctionProtoType>();
1200  const FunctionProtoType *ToFunctionType
1201    = ToPointeeType->getAs<FunctionProtoType>();
1202  if (FromFunctionType && ToFunctionType) {
1203    // If the function types are exactly the same, this isn't an
1204    // Objective-C pointer conversion.
1205    if (Context.getCanonicalType(FromPointeeType)
1206          == Context.getCanonicalType(ToPointeeType))
1207      return false;
1208
1209    // Perform the quick checks that will tell us whether these
1210    // function types are obviously different.
1211    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1212        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1213        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1214      return false;
1215
1216    bool HasObjCConversion = false;
1217    if (Context.getCanonicalType(FromFunctionType->getResultType())
1218          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1219      // Okay, the types match exactly. Nothing to do.
1220    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1221                                       ToFunctionType->getResultType(),
1222                                       ConvertedType, IncompatibleObjC)) {
1223      // Okay, we have an Objective-C pointer conversion.
1224      HasObjCConversion = true;
1225    } else {
1226      // Function types are too different. Abort.
1227      return false;
1228    }
1229
1230    // Check argument types.
1231    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1232         ArgIdx != NumArgs; ++ArgIdx) {
1233      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1234      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1235      if (Context.getCanonicalType(FromArgType)
1236            == Context.getCanonicalType(ToArgType)) {
1237        // Okay, the types match exactly. Nothing to do.
1238      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1239                                         ConvertedType, IncompatibleObjC)) {
1240        // Okay, we have an Objective-C pointer conversion.
1241        HasObjCConversion = true;
1242      } else {
1243        // Argument types are too different. Abort.
1244        return false;
1245      }
1246    }
1247
1248    if (HasObjCConversion) {
1249      // We had an Objective-C conversion. Allow this pointer
1250      // conversion, but complain about it.
1251      ConvertedType = ToType;
1252      IncompatibleObjC = true;
1253      return true;
1254    }
1255  }
1256
1257  return false;
1258}
1259
1260/// CheckPointerConversion - Check the pointer conversion from the
1261/// expression From to the type ToType. This routine checks for
1262/// ambiguous or inaccessible derived-to-base pointer
1263/// conversions for which IsPointerConversion has already returned
1264/// true. It returns true and produces a diagnostic if there was an
1265/// error, or returns false otherwise.
1266bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1267                                  CastExpr::CastKind &Kind,
1268                                  bool IgnoreBaseAccess) {
1269  QualType FromType = From->getType();
1270
1271  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1272    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1273      QualType FromPointeeType = FromPtrType->getPointeeType(),
1274               ToPointeeType   = ToPtrType->getPointeeType();
1275
1276      if (FromPointeeType->isRecordType() &&
1277          ToPointeeType->isRecordType()) {
1278        // We must have a derived-to-base conversion. Check an
1279        // ambiguous or inaccessible conversion.
1280        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1281                                         From->getExprLoc(),
1282                                         From->getSourceRange(),
1283                                         IgnoreBaseAccess))
1284          return true;
1285
1286        // The conversion was successful.
1287        Kind = CastExpr::CK_DerivedToBase;
1288      }
1289    }
1290  if (const ObjCObjectPointerType *FromPtrType =
1291        FromType->getAs<ObjCObjectPointerType>())
1292    if (const ObjCObjectPointerType *ToPtrType =
1293          ToType->getAs<ObjCObjectPointerType>()) {
1294      // Objective-C++ conversions are always okay.
1295      // FIXME: We should have a different class of conversions for the
1296      // Objective-C++ implicit conversions.
1297      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1298        return false;
1299
1300  }
1301  return false;
1302}
1303
1304/// IsMemberPointerConversion - Determines whether the conversion of the
1305/// expression From, which has the (possibly adjusted) type FromType, can be
1306/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1307/// If so, returns true and places the converted type (that might differ from
1308/// ToType in its cv-qualifiers at some level) into ConvertedType.
1309bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1310                                     QualType ToType,
1311                                     bool InOverloadResolution,
1312                                     QualType &ConvertedType) {
1313  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1314  if (!ToTypePtr)
1315    return false;
1316
1317  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1318  if (From->isNullPointerConstant(Context,
1319                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1320                                        : Expr::NPC_ValueDependentIsNull)) {
1321    ConvertedType = ToType;
1322    return true;
1323  }
1324
1325  // Otherwise, both types have to be member pointers.
1326  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1327  if (!FromTypePtr)
1328    return false;
1329
1330  // A pointer to member of B can be converted to a pointer to member of D,
1331  // where D is derived from B (C++ 4.11p2).
1332  QualType FromClass(FromTypePtr->getClass(), 0);
1333  QualType ToClass(ToTypePtr->getClass(), 0);
1334  // FIXME: What happens when these are dependent? Is this function even called?
1335
1336  if (IsDerivedFrom(ToClass, FromClass)) {
1337    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1338                                                 ToClass.getTypePtr());
1339    return true;
1340  }
1341
1342  return false;
1343}
1344
1345/// CheckMemberPointerConversion - Check the member pointer conversion from the
1346/// expression From to the type ToType. This routine checks for ambiguous or
1347/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1348/// for which IsMemberPointerConversion has already returned true. It returns
1349/// true and produces a diagnostic if there was an error, or returns false
1350/// otherwise.
1351bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1352                                        CastExpr::CastKind &Kind,
1353                                        bool IgnoreBaseAccess) {
1354  (void)IgnoreBaseAccess;
1355  QualType FromType = From->getType();
1356  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1357  if (!FromPtrType) {
1358    // This must be a null pointer to member pointer conversion
1359    assert(From->isNullPointerConstant(Context,
1360                                       Expr::NPC_ValueDependentIsNull) &&
1361           "Expr must be null pointer constant!");
1362    Kind = CastExpr::CK_NullToMemberPointer;
1363    return false;
1364  }
1365
1366  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1367  assert(ToPtrType && "No member pointer cast has a target type "
1368                      "that is not a member pointer.");
1369
1370  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1371  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1372
1373  // FIXME: What about dependent types?
1374  assert(FromClass->isRecordType() && "Pointer into non-class.");
1375  assert(ToClass->isRecordType() && "Pointer into non-class.");
1376
1377  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1378                     /*DetectVirtual=*/true);
1379  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1380  assert(DerivationOkay &&
1381         "Should not have been called if derivation isn't OK.");
1382  (void)DerivationOkay;
1383
1384  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1385                                  getUnqualifiedType())) {
1386    // Derivation is ambiguous. Redo the check to find the exact paths.
1387    Paths.clear();
1388    Paths.setRecordingPaths(true);
1389    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1390    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1391    (void)StillOkay;
1392
1393    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1394    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1395      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1396    return true;
1397  }
1398
1399  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1400    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1401      << FromClass << ToClass << QualType(VBase, 0)
1402      << From->getSourceRange();
1403    return true;
1404  }
1405
1406  // Must be a base to derived member conversion.
1407  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1408  return false;
1409}
1410
1411/// IsQualificationConversion - Determines whether the conversion from
1412/// an rvalue of type FromType to ToType is a qualification conversion
1413/// (C++ 4.4).
1414bool
1415Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1416  FromType = Context.getCanonicalType(FromType);
1417  ToType = Context.getCanonicalType(ToType);
1418
1419  // If FromType and ToType are the same type, this is not a
1420  // qualification conversion.
1421  if (FromType == ToType)
1422    return false;
1423
1424  // (C++ 4.4p4):
1425  //   A conversion can add cv-qualifiers at levels other than the first
1426  //   in multi-level pointers, subject to the following rules: [...]
1427  bool PreviousToQualsIncludeConst = true;
1428  bool UnwrappedAnyPointer = false;
1429  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1430    // Within each iteration of the loop, we check the qualifiers to
1431    // determine if this still looks like a qualification
1432    // conversion. Then, if all is well, we unwrap one more level of
1433    // pointers or pointers-to-members and do it all again
1434    // until there are no more pointers or pointers-to-members left to
1435    // unwrap.
1436    UnwrappedAnyPointer = true;
1437
1438    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1439    //      2,j, and similarly for volatile.
1440    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1441      return false;
1442
1443    //   -- if the cv 1,j and cv 2,j are different, then const is in
1444    //      every cv for 0 < k < j.
1445    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1446        && !PreviousToQualsIncludeConst)
1447      return false;
1448
1449    // Keep track of whether all prior cv-qualifiers in the "to" type
1450    // include const.
1451    PreviousToQualsIncludeConst
1452      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1453  }
1454
1455  // We are left with FromType and ToType being the pointee types
1456  // after unwrapping the original FromType and ToType the same number
1457  // of types. If we unwrapped any pointers, and if FromType and
1458  // ToType have the same unqualified type (since we checked
1459  // qualifiers above), then this is a qualification conversion.
1460  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1461}
1462
1463/// Determines whether there is a user-defined conversion sequence
1464/// (C++ [over.ics.user]) that converts expression From to the type
1465/// ToType. If such a conversion exists, User will contain the
1466/// user-defined conversion sequence that performs such a conversion
1467/// and this routine will return true. Otherwise, this routine returns
1468/// false and User is unspecified.
1469///
1470/// \param AllowConversionFunctions true if the conversion should
1471/// consider conversion functions at all. If false, only constructors
1472/// will be considered.
1473///
1474/// \param AllowExplicit  true if the conversion should consider C++0x
1475/// "explicit" conversion functions as well as non-explicit conversion
1476/// functions (C++0x [class.conv.fct]p2).
1477///
1478/// \param ForceRValue  true if the expression should be treated as an rvalue
1479/// for overload resolution.
1480/// \param UserCast true if looking for user defined conversion for a static
1481/// cast.
1482OverloadingResult Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1483                                          UserDefinedConversionSequence& User,
1484                                            OverloadCandidateSet& CandidateSet,
1485                                                bool AllowConversionFunctions,
1486                                                bool AllowExplicit,
1487                                                bool ForceRValue,
1488                                                bool UserCast) {
1489  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1490    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1491      // We're not going to find any constructors.
1492    } else if (CXXRecordDecl *ToRecordDecl
1493                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1494      // C++ [over.match.ctor]p1:
1495      //   When objects of class type are direct-initialized (8.5), or
1496      //   copy-initialized from an expression of the same or a
1497      //   derived class type (8.5), overload resolution selects the
1498      //   constructor. [...] For copy-initialization, the candidate
1499      //   functions are all the converting constructors (12.3.1) of
1500      //   that class. The argument list is the expression-list within
1501      //   the parentheses of the initializer.
1502      bool SuppressUserConversions = !UserCast;
1503      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1504          IsDerivedFrom(From->getType(), ToType)) {
1505        SuppressUserConversions = false;
1506        AllowConversionFunctions = false;
1507      }
1508
1509      DeclarationName ConstructorName
1510        = Context.DeclarationNames.getCXXConstructorName(
1511                          Context.getCanonicalType(ToType).getUnqualifiedType());
1512      DeclContext::lookup_iterator Con, ConEnd;
1513      for (llvm::tie(Con, ConEnd)
1514             = ToRecordDecl->lookup(ConstructorName);
1515           Con != ConEnd; ++Con) {
1516        // Find the constructor (which may be a template).
1517        CXXConstructorDecl *Constructor = 0;
1518        FunctionTemplateDecl *ConstructorTmpl
1519          = dyn_cast<FunctionTemplateDecl>(*Con);
1520        if (ConstructorTmpl)
1521          Constructor
1522            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1523        else
1524          Constructor = cast<CXXConstructorDecl>(*Con);
1525
1526        if (!Constructor->isInvalidDecl() &&
1527            Constructor->isConvertingConstructor(AllowExplicit)) {
1528          if (ConstructorTmpl)
1529            AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0,
1530                                         &From, 1, CandidateSet,
1531                                         SuppressUserConversions, ForceRValue);
1532          else
1533            // Allow one user-defined conversion when user specifies a
1534            // From->ToType conversion via an static cast (c-style, etc).
1535            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1536                                 SuppressUserConversions, ForceRValue);
1537        }
1538      }
1539    }
1540  }
1541
1542  if (!AllowConversionFunctions) {
1543    // Don't allow any conversion functions to enter the overload set.
1544  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1545                                 PDiag(0)
1546                                   << From->getSourceRange())) {
1547    // No conversion functions from incomplete types.
1548  } else if (const RecordType *FromRecordType
1549               = From->getType()->getAs<RecordType>()) {
1550    if (CXXRecordDecl *FromRecordDecl
1551         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1552      // Add all of the conversion functions as candidates.
1553      const UnresolvedSetImpl *Conversions
1554        = FromRecordDecl->getVisibleConversionFunctions();
1555      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1556             E = Conversions->end(); I != E; ++I) {
1557        NamedDecl *D = *I;
1558        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
1559        if (isa<UsingShadowDecl>(D))
1560          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1561
1562        CXXConversionDecl *Conv;
1563        FunctionTemplateDecl *ConvTemplate;
1564        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1565          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1566        else
1567          Conv = dyn_cast<CXXConversionDecl>(*I);
1568
1569        if (AllowExplicit || !Conv->isExplicit()) {
1570          if (ConvTemplate)
1571            AddTemplateConversionCandidate(ConvTemplate, ActingContext,
1572                                           From, ToType, CandidateSet);
1573          else
1574            AddConversionCandidate(Conv, ActingContext, From, ToType,
1575                                   CandidateSet);
1576        }
1577      }
1578    }
1579  }
1580
1581  OverloadCandidateSet::iterator Best;
1582  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1583    case OR_Success:
1584      // Record the standard conversion we used and the conversion function.
1585      if (CXXConstructorDecl *Constructor
1586            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1587        // C++ [over.ics.user]p1:
1588        //   If the user-defined conversion is specified by a
1589        //   constructor (12.3.1), the initial standard conversion
1590        //   sequence converts the source type to the type required by
1591        //   the argument of the constructor.
1592        //
1593        QualType ThisType = Constructor->getThisType(Context);
1594        if (Best->Conversions[0].isEllipsis())
1595          User.EllipsisConversion = true;
1596        else {
1597          User.Before = Best->Conversions[0].Standard;
1598          User.EllipsisConversion = false;
1599        }
1600        User.ConversionFunction = Constructor;
1601        User.After.setAsIdentityConversion();
1602        User.After.setFromType(
1603          ThisType->getAs<PointerType>()->getPointeeType());
1604        User.After.setToType(ToType);
1605        return OR_Success;
1606      } else if (CXXConversionDecl *Conversion
1607                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1608        // C++ [over.ics.user]p1:
1609        //
1610        //   [...] If the user-defined conversion is specified by a
1611        //   conversion function (12.3.2), the initial standard
1612        //   conversion sequence converts the source type to the
1613        //   implicit object parameter of the conversion function.
1614        User.Before = Best->Conversions[0].Standard;
1615        User.ConversionFunction = Conversion;
1616        User.EllipsisConversion = false;
1617
1618        // C++ [over.ics.user]p2:
1619        //   The second standard conversion sequence converts the
1620        //   result of the user-defined conversion to the target type
1621        //   for the sequence. Since an implicit conversion sequence
1622        //   is an initialization, the special rules for
1623        //   initialization by user-defined conversion apply when
1624        //   selecting the best user-defined conversion for a
1625        //   user-defined conversion sequence (see 13.3.3 and
1626        //   13.3.3.1).
1627        User.After = Best->FinalConversion;
1628        return OR_Success;
1629      } else {
1630        assert(false && "Not a constructor or conversion function?");
1631        return OR_No_Viable_Function;
1632      }
1633
1634    case OR_No_Viable_Function:
1635      return OR_No_Viable_Function;
1636    case OR_Deleted:
1637      // No conversion here! We're done.
1638      return OR_Deleted;
1639
1640    case OR_Ambiguous:
1641      return OR_Ambiguous;
1642    }
1643
1644  return OR_No_Viable_Function;
1645}
1646
1647bool
1648Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1649  ImplicitConversionSequence ICS;
1650  OverloadCandidateSet CandidateSet;
1651  OverloadingResult OvResult =
1652    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1653                            CandidateSet, true, false, false);
1654  if (OvResult == OR_Ambiguous)
1655    Diag(From->getSourceRange().getBegin(),
1656         diag::err_typecheck_ambiguous_condition)
1657          << From->getType() << ToType << From->getSourceRange();
1658  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1659    Diag(From->getSourceRange().getBegin(),
1660         diag::err_typecheck_nonviable_condition)
1661    << From->getType() << ToType << From->getSourceRange();
1662  else
1663    return false;
1664  PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &From, 1);
1665  return true;
1666}
1667
1668/// CompareImplicitConversionSequences - Compare two implicit
1669/// conversion sequences to determine whether one is better than the
1670/// other or if they are indistinguishable (C++ 13.3.3.2).
1671ImplicitConversionSequence::CompareKind
1672Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1673                                         const ImplicitConversionSequence& ICS2)
1674{
1675  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1676  // conversion sequences (as defined in 13.3.3.1)
1677  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1678  //      conversion sequence than a user-defined conversion sequence or
1679  //      an ellipsis conversion sequence, and
1680  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1681  //      conversion sequence than an ellipsis conversion sequence
1682  //      (13.3.3.1.3).
1683  //
1684  // C++0x [over.best.ics]p10:
1685  //   For the purpose of ranking implicit conversion sequences as
1686  //   described in 13.3.3.2, the ambiguous conversion sequence is
1687  //   treated as a user-defined sequence that is indistinguishable
1688  //   from any other user-defined conversion sequence.
1689  if (ICS1.getKind() < ICS2.getKind()) {
1690    if (!(ICS1.isUserDefined() && ICS2.isAmbiguous()))
1691      return ImplicitConversionSequence::Better;
1692  } else if (ICS2.getKind() < ICS1.getKind()) {
1693    if (!(ICS2.isUserDefined() && ICS1.isAmbiguous()))
1694      return ImplicitConversionSequence::Worse;
1695  }
1696
1697  if (ICS1.isAmbiguous() || ICS2.isAmbiguous())
1698    return ImplicitConversionSequence::Indistinguishable;
1699
1700  // Two implicit conversion sequences of the same form are
1701  // indistinguishable conversion sequences unless one of the
1702  // following rules apply: (C++ 13.3.3.2p3):
1703  if (ICS1.isStandard())
1704    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1705  else if (ICS1.isUserDefined()) {
1706    // User-defined conversion sequence U1 is a better conversion
1707    // sequence than another user-defined conversion sequence U2 if
1708    // they contain the same user-defined conversion function or
1709    // constructor and if the second standard conversion sequence of
1710    // U1 is better than the second standard conversion sequence of
1711    // U2 (C++ 13.3.3.2p3).
1712    if (ICS1.UserDefined.ConversionFunction ==
1713          ICS2.UserDefined.ConversionFunction)
1714      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1715                                                ICS2.UserDefined.After);
1716  }
1717
1718  return ImplicitConversionSequence::Indistinguishable;
1719}
1720
1721/// CompareStandardConversionSequences - Compare two standard
1722/// conversion sequences to determine whether one is better than the
1723/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1724ImplicitConversionSequence::CompareKind
1725Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1726                                         const StandardConversionSequence& SCS2)
1727{
1728  // Standard conversion sequence S1 is a better conversion sequence
1729  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1730
1731  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1732  //     sequences in the canonical form defined by 13.3.3.1.1,
1733  //     excluding any Lvalue Transformation; the identity conversion
1734  //     sequence is considered to be a subsequence of any
1735  //     non-identity conversion sequence) or, if not that,
1736  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1737    // Neither is a proper subsequence of the other. Do nothing.
1738    ;
1739  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1740           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1741           (SCS1.Second == ICK_Identity &&
1742            SCS1.Third == ICK_Identity))
1743    // SCS1 is a proper subsequence of SCS2.
1744    return ImplicitConversionSequence::Better;
1745  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1746           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1747           (SCS2.Second == ICK_Identity &&
1748            SCS2.Third == ICK_Identity))
1749    // SCS2 is a proper subsequence of SCS1.
1750    return ImplicitConversionSequence::Worse;
1751
1752  //  -- the rank of S1 is better than the rank of S2 (by the rules
1753  //     defined below), or, if not that,
1754  ImplicitConversionRank Rank1 = SCS1.getRank();
1755  ImplicitConversionRank Rank2 = SCS2.getRank();
1756  if (Rank1 < Rank2)
1757    return ImplicitConversionSequence::Better;
1758  else if (Rank2 < Rank1)
1759    return ImplicitConversionSequence::Worse;
1760
1761  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1762  // are indistinguishable unless one of the following rules
1763  // applies:
1764
1765  //   A conversion that is not a conversion of a pointer, or
1766  //   pointer to member, to bool is better than another conversion
1767  //   that is such a conversion.
1768  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1769    return SCS2.isPointerConversionToBool()
1770             ? ImplicitConversionSequence::Better
1771             : ImplicitConversionSequence::Worse;
1772
1773  // C++ [over.ics.rank]p4b2:
1774  //
1775  //   If class B is derived directly or indirectly from class A,
1776  //   conversion of B* to A* is better than conversion of B* to
1777  //   void*, and conversion of A* to void* is better than conversion
1778  //   of B* to void*.
1779  bool SCS1ConvertsToVoid
1780    = SCS1.isPointerConversionToVoidPointer(Context);
1781  bool SCS2ConvertsToVoid
1782    = SCS2.isPointerConversionToVoidPointer(Context);
1783  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1784    // Exactly one of the conversion sequences is a conversion to
1785    // a void pointer; it's the worse conversion.
1786    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1787                              : ImplicitConversionSequence::Worse;
1788  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1789    // Neither conversion sequence converts to a void pointer; compare
1790    // their derived-to-base conversions.
1791    if (ImplicitConversionSequence::CompareKind DerivedCK
1792          = CompareDerivedToBaseConversions(SCS1, SCS2))
1793      return DerivedCK;
1794  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1795    // Both conversion sequences are conversions to void
1796    // pointers. Compare the source types to determine if there's an
1797    // inheritance relationship in their sources.
1798    QualType FromType1 = SCS1.getFromType();
1799    QualType FromType2 = SCS2.getFromType();
1800
1801    // Adjust the types we're converting from via the array-to-pointer
1802    // conversion, if we need to.
1803    if (SCS1.First == ICK_Array_To_Pointer)
1804      FromType1 = Context.getArrayDecayedType(FromType1);
1805    if (SCS2.First == ICK_Array_To_Pointer)
1806      FromType2 = Context.getArrayDecayedType(FromType2);
1807
1808    QualType FromPointee1
1809      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1810    QualType FromPointee2
1811      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1812
1813    if (IsDerivedFrom(FromPointee2, FromPointee1))
1814      return ImplicitConversionSequence::Better;
1815    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1816      return ImplicitConversionSequence::Worse;
1817
1818    // Objective-C++: If one interface is more specific than the
1819    // other, it is the better one.
1820    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1821    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1822    if (FromIface1 && FromIface1) {
1823      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1824        return ImplicitConversionSequence::Better;
1825      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1826        return ImplicitConversionSequence::Worse;
1827    }
1828  }
1829
1830  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1831  // bullet 3).
1832  if (ImplicitConversionSequence::CompareKind QualCK
1833        = CompareQualificationConversions(SCS1, SCS2))
1834    return QualCK;
1835
1836  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1837    // C++0x [over.ics.rank]p3b4:
1838    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1839    //      implicit object parameter of a non-static member function declared
1840    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1841    //      rvalue and S2 binds an lvalue reference.
1842    // FIXME: We don't know if we're dealing with the implicit object parameter,
1843    // or if the member function in this case has a ref qualifier.
1844    // (Of course, we don't have ref qualifiers yet.)
1845    if (SCS1.RRefBinding != SCS2.RRefBinding)
1846      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1847                              : ImplicitConversionSequence::Worse;
1848
1849    // C++ [over.ics.rank]p3b4:
1850    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1851    //      which the references refer are the same type except for
1852    //      top-level cv-qualifiers, and the type to which the reference
1853    //      initialized by S2 refers is more cv-qualified than the type
1854    //      to which the reference initialized by S1 refers.
1855    QualType T1 = SCS1.getToType();
1856    QualType T2 = SCS2.getToType();
1857    T1 = Context.getCanonicalType(T1);
1858    T2 = Context.getCanonicalType(T2);
1859    Qualifiers T1Quals, T2Quals;
1860    QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1861    QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1862    if (UnqualT1 == UnqualT2) {
1863      // If the type is an array type, promote the element qualifiers to the type
1864      // for comparison.
1865      if (isa<ArrayType>(T1) && T1Quals)
1866        T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1867      if (isa<ArrayType>(T2) && T2Quals)
1868        T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1869      if (T2.isMoreQualifiedThan(T1))
1870        return ImplicitConversionSequence::Better;
1871      else if (T1.isMoreQualifiedThan(T2))
1872        return ImplicitConversionSequence::Worse;
1873    }
1874  }
1875
1876  return ImplicitConversionSequence::Indistinguishable;
1877}
1878
1879/// CompareQualificationConversions - Compares two standard conversion
1880/// sequences to determine whether they can be ranked based on their
1881/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1882ImplicitConversionSequence::CompareKind
1883Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1884                                      const StandardConversionSequence& SCS2) {
1885  // C++ 13.3.3.2p3:
1886  //  -- S1 and S2 differ only in their qualification conversion and
1887  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1888  //     cv-qualification signature of type T1 is a proper subset of
1889  //     the cv-qualification signature of type T2, and S1 is not the
1890  //     deprecated string literal array-to-pointer conversion (4.2).
1891  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1892      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1893    return ImplicitConversionSequence::Indistinguishable;
1894
1895  // FIXME: the example in the standard doesn't use a qualification
1896  // conversion (!)
1897  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1898  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1899  T1 = Context.getCanonicalType(T1);
1900  T2 = Context.getCanonicalType(T2);
1901  Qualifiers T1Quals, T2Quals;
1902  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
1903  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
1904
1905  // If the types are the same, we won't learn anything by unwrapped
1906  // them.
1907  if (UnqualT1 == UnqualT2)
1908    return ImplicitConversionSequence::Indistinguishable;
1909
1910  // If the type is an array type, promote the element qualifiers to the type
1911  // for comparison.
1912  if (isa<ArrayType>(T1) && T1Quals)
1913    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
1914  if (isa<ArrayType>(T2) && T2Quals)
1915    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
1916
1917  ImplicitConversionSequence::CompareKind Result
1918    = ImplicitConversionSequence::Indistinguishable;
1919  while (UnwrapSimilarPointerTypes(T1, T2)) {
1920    // Within each iteration of the loop, we check the qualifiers to
1921    // determine if this still looks like a qualification
1922    // conversion. Then, if all is well, we unwrap one more level of
1923    // pointers or pointers-to-members and do it all again
1924    // until there are no more pointers or pointers-to-members left
1925    // to unwrap. This essentially mimics what
1926    // IsQualificationConversion does, but here we're checking for a
1927    // strict subset of qualifiers.
1928    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1929      // The qualifiers are the same, so this doesn't tell us anything
1930      // about how the sequences rank.
1931      ;
1932    else if (T2.isMoreQualifiedThan(T1)) {
1933      // T1 has fewer qualifiers, so it could be the better sequence.
1934      if (Result == ImplicitConversionSequence::Worse)
1935        // Neither has qualifiers that are a subset of the other's
1936        // qualifiers.
1937        return ImplicitConversionSequence::Indistinguishable;
1938
1939      Result = ImplicitConversionSequence::Better;
1940    } else if (T1.isMoreQualifiedThan(T2)) {
1941      // T2 has fewer qualifiers, so it could be the better sequence.
1942      if (Result == ImplicitConversionSequence::Better)
1943        // Neither has qualifiers that are a subset of the other's
1944        // qualifiers.
1945        return ImplicitConversionSequence::Indistinguishable;
1946
1947      Result = ImplicitConversionSequence::Worse;
1948    } else {
1949      // Qualifiers are disjoint.
1950      return ImplicitConversionSequence::Indistinguishable;
1951    }
1952
1953    // If the types after this point are equivalent, we're done.
1954    if (Context.hasSameUnqualifiedType(T1, T2))
1955      break;
1956  }
1957
1958  // Check that the winning standard conversion sequence isn't using
1959  // the deprecated string literal array to pointer conversion.
1960  switch (Result) {
1961  case ImplicitConversionSequence::Better:
1962    if (SCS1.Deprecated)
1963      Result = ImplicitConversionSequence::Indistinguishable;
1964    break;
1965
1966  case ImplicitConversionSequence::Indistinguishable:
1967    break;
1968
1969  case ImplicitConversionSequence::Worse:
1970    if (SCS2.Deprecated)
1971      Result = ImplicitConversionSequence::Indistinguishable;
1972    break;
1973  }
1974
1975  return Result;
1976}
1977
1978/// CompareDerivedToBaseConversions - Compares two standard conversion
1979/// sequences to determine whether they can be ranked based on their
1980/// various kinds of derived-to-base conversions (C++
1981/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1982/// conversions between Objective-C interface types.
1983ImplicitConversionSequence::CompareKind
1984Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1985                                      const StandardConversionSequence& SCS2) {
1986  QualType FromType1 = SCS1.getFromType();
1987  QualType ToType1 = SCS1.getToType();
1988  QualType FromType2 = SCS2.getFromType();
1989  QualType ToType2 = SCS2.getToType();
1990
1991  // Adjust the types we're converting from via the array-to-pointer
1992  // conversion, if we need to.
1993  if (SCS1.First == ICK_Array_To_Pointer)
1994    FromType1 = Context.getArrayDecayedType(FromType1);
1995  if (SCS2.First == ICK_Array_To_Pointer)
1996    FromType2 = Context.getArrayDecayedType(FromType2);
1997
1998  // Canonicalize all of the types.
1999  FromType1 = Context.getCanonicalType(FromType1);
2000  ToType1 = Context.getCanonicalType(ToType1);
2001  FromType2 = Context.getCanonicalType(FromType2);
2002  ToType2 = Context.getCanonicalType(ToType2);
2003
2004  // C++ [over.ics.rank]p4b3:
2005  //
2006  //   If class B is derived directly or indirectly from class A and
2007  //   class C is derived directly or indirectly from B,
2008  //
2009  // For Objective-C, we let A, B, and C also be Objective-C
2010  // interfaces.
2011
2012  // Compare based on pointer conversions.
2013  if (SCS1.Second == ICK_Pointer_Conversion &&
2014      SCS2.Second == ICK_Pointer_Conversion &&
2015      /*FIXME: Remove if Objective-C id conversions get their own rank*/
2016      FromType1->isPointerType() && FromType2->isPointerType() &&
2017      ToType1->isPointerType() && ToType2->isPointerType()) {
2018    QualType FromPointee1
2019      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2020    QualType ToPointee1
2021      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2022    QualType FromPointee2
2023      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2024    QualType ToPointee2
2025      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
2026
2027    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
2028    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
2029    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
2030    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
2031
2032    //   -- conversion of C* to B* is better than conversion of C* to A*,
2033    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2034      if (IsDerivedFrom(ToPointee1, ToPointee2))
2035        return ImplicitConversionSequence::Better;
2036      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2037        return ImplicitConversionSequence::Worse;
2038
2039      if (ToIface1 && ToIface2) {
2040        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
2041          return ImplicitConversionSequence::Better;
2042        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
2043          return ImplicitConversionSequence::Worse;
2044      }
2045    }
2046
2047    //   -- conversion of B* to A* is better than conversion of C* to A*,
2048    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
2049      if (IsDerivedFrom(FromPointee2, FromPointee1))
2050        return ImplicitConversionSequence::Better;
2051      else if (IsDerivedFrom(FromPointee1, FromPointee2))
2052        return ImplicitConversionSequence::Worse;
2053
2054      if (FromIface1 && FromIface2) {
2055        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
2056          return ImplicitConversionSequence::Better;
2057        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
2058          return ImplicitConversionSequence::Worse;
2059      }
2060    }
2061  }
2062
2063  // Compare based on reference bindings.
2064  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
2065      SCS1.Second == ICK_Derived_To_Base) {
2066    //   -- binding of an expression of type C to a reference of type
2067    //      B& is better than binding an expression of type C to a
2068    //      reference of type A&,
2069    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2070        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2071      if (IsDerivedFrom(ToType1, ToType2))
2072        return ImplicitConversionSequence::Better;
2073      else if (IsDerivedFrom(ToType2, ToType1))
2074        return ImplicitConversionSequence::Worse;
2075    }
2076
2077    //   -- binding of an expression of type B to a reference of type
2078    //      A& is better than binding an expression of type C to a
2079    //      reference of type A&,
2080    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2081        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2082      if (IsDerivedFrom(FromType2, FromType1))
2083        return ImplicitConversionSequence::Better;
2084      else if (IsDerivedFrom(FromType1, FromType2))
2085        return ImplicitConversionSequence::Worse;
2086    }
2087  }
2088
2089  // Ranking of member-pointer types.
2090  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
2091      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
2092      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
2093    const MemberPointerType * FromMemPointer1 =
2094                                        FromType1->getAs<MemberPointerType>();
2095    const MemberPointerType * ToMemPointer1 =
2096                                          ToType1->getAs<MemberPointerType>();
2097    const MemberPointerType * FromMemPointer2 =
2098                                          FromType2->getAs<MemberPointerType>();
2099    const MemberPointerType * ToMemPointer2 =
2100                                          ToType2->getAs<MemberPointerType>();
2101    const Type *FromPointeeType1 = FromMemPointer1->getClass();
2102    const Type *ToPointeeType1 = ToMemPointer1->getClass();
2103    const Type *FromPointeeType2 = FromMemPointer2->getClass();
2104    const Type *ToPointeeType2 = ToMemPointer2->getClass();
2105    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
2106    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
2107    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
2108    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
2109    // conversion of A::* to B::* is better than conversion of A::* to C::*,
2110    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
2111      if (IsDerivedFrom(ToPointee1, ToPointee2))
2112        return ImplicitConversionSequence::Worse;
2113      else if (IsDerivedFrom(ToPointee2, ToPointee1))
2114        return ImplicitConversionSequence::Better;
2115    }
2116    // conversion of B::* to C::* is better than conversion of A::* to C::*
2117    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
2118      if (IsDerivedFrom(FromPointee1, FromPointee2))
2119        return ImplicitConversionSequence::Better;
2120      else if (IsDerivedFrom(FromPointee2, FromPointee1))
2121        return ImplicitConversionSequence::Worse;
2122    }
2123  }
2124
2125  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
2126      SCS1.Second == ICK_Derived_To_Base) {
2127    //   -- conversion of C to B is better than conversion of C to A,
2128    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2129        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2130      if (IsDerivedFrom(ToType1, ToType2))
2131        return ImplicitConversionSequence::Better;
2132      else if (IsDerivedFrom(ToType2, ToType1))
2133        return ImplicitConversionSequence::Worse;
2134    }
2135
2136    //   -- conversion of B to A is better than conversion of C to A.
2137    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
2138        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
2139      if (IsDerivedFrom(FromType2, FromType1))
2140        return ImplicitConversionSequence::Better;
2141      else if (IsDerivedFrom(FromType1, FromType2))
2142        return ImplicitConversionSequence::Worse;
2143    }
2144  }
2145
2146  return ImplicitConversionSequence::Indistinguishable;
2147}
2148
2149/// TryCopyInitialization - Try to copy-initialize a value of type
2150/// ToType from the expression From. Return the implicit conversion
2151/// sequence required to pass this argument, which may be a bad
2152/// conversion sequence (meaning that the argument cannot be passed to
2153/// a parameter of this type). If @p SuppressUserConversions, then we
2154/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2155/// then we treat @p From as an rvalue, even if it is an lvalue.
2156ImplicitConversionSequence
2157Sema::TryCopyInitialization(Expr *From, QualType ToType,
2158                            bool SuppressUserConversions, bool ForceRValue,
2159                            bool InOverloadResolution) {
2160  if (ToType->isReferenceType()) {
2161    ImplicitConversionSequence ICS;
2162    ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
2163    CheckReferenceInit(From, ToType,
2164                       /*FIXME:*/From->getLocStart(),
2165                       SuppressUserConversions,
2166                       /*AllowExplicit=*/false,
2167                       ForceRValue,
2168                       &ICS);
2169    return ICS;
2170  } else {
2171    return TryImplicitConversion(From, ToType,
2172                                 SuppressUserConversions,
2173                                 /*AllowExplicit=*/false,
2174                                 ForceRValue,
2175                                 InOverloadResolution);
2176  }
2177}
2178
2179/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2180/// the expression @p From. Returns true (and emits a diagnostic) if there was
2181/// an error, returns false if the initialization succeeded. Elidable should
2182/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2183/// differently in C++0x for this case.
2184bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2185                                     AssignmentAction Action, bool Elidable) {
2186  if (!getLangOptions().CPlusPlus) {
2187    // In C, argument passing is the same as performing an assignment.
2188    QualType FromType = From->getType();
2189
2190    AssignConvertType ConvTy =
2191      CheckSingleAssignmentConstraints(ToType, From);
2192    if (ConvTy != Compatible &&
2193        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2194      ConvTy = Compatible;
2195
2196    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2197                                    FromType, From, Action);
2198  }
2199
2200  if (ToType->isReferenceType())
2201    return CheckReferenceInit(From, ToType,
2202                              /*FIXME:*/From->getLocStart(),
2203                              /*SuppressUserConversions=*/false,
2204                              /*AllowExplicit=*/false,
2205                              /*ForceRValue=*/false);
2206
2207  if (!PerformImplicitConversion(From, ToType, Action,
2208                                 /*AllowExplicit=*/false, Elidable))
2209    return false;
2210  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2211    return Diag(From->getSourceRange().getBegin(),
2212                diag::err_typecheck_convert_incompatible)
2213      << ToType << From->getType() << Action << From->getSourceRange();
2214  return true;
2215}
2216
2217/// TryObjectArgumentInitialization - Try to initialize the object
2218/// parameter of the given member function (@c Method) from the
2219/// expression @p From.
2220ImplicitConversionSequence
2221Sema::TryObjectArgumentInitialization(QualType OrigFromType,
2222                                      CXXMethodDecl *Method,
2223                                      CXXRecordDecl *ActingContext) {
2224  QualType ClassType = Context.getTypeDeclType(ActingContext);
2225  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2226  //                 const volatile object.
2227  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2228    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2229  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2230
2231  // Set up the conversion sequence as a "bad" conversion, to allow us
2232  // to exit early.
2233  ImplicitConversionSequence ICS;
2234  ICS.Standard.setAsIdentityConversion();
2235  ICS.setBad();
2236
2237  // We need to have an object of class type.
2238  QualType FromType = OrigFromType;
2239  if (const PointerType *PT = FromType->getAs<PointerType>())
2240    FromType = PT->getPointeeType();
2241
2242  assert(FromType->isRecordType());
2243
2244  // The implicit object parameter is has the type "reference to cv X",
2245  // where X is the class of which the function is a member
2246  // (C++ [over.match.funcs]p4). However, when finding an implicit
2247  // conversion sequence for the argument, we are not allowed to
2248  // create temporaries or perform user-defined conversions
2249  // (C++ [over.match.funcs]p5). We perform a simplified version of
2250  // reference binding here, that allows class rvalues to bind to
2251  // non-constant references.
2252
2253  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2254  // with the implicit object parameter (C++ [over.match.funcs]p5).
2255  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2256  if (ImplicitParamType.getCVRQualifiers()
2257                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2258      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
2259    ICS.Bad.init(BadConversionSequence::bad_qualifiers,
2260                 OrigFromType, ImplicitParamType);
2261    return ICS;
2262  }
2263
2264  // Check that we have either the same type or a derived type. It
2265  // affects the conversion rank.
2266  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2267  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType())
2268    ICS.Standard.Second = ICK_Identity;
2269  else if (IsDerivedFrom(FromType, ClassType))
2270    ICS.Standard.Second = ICK_Derived_To_Base;
2271  else {
2272    ICS.Bad.init(BadConversionSequence::unrelated_class, FromType, ImplicitParamType);
2273    return ICS;
2274  }
2275
2276  // Success. Mark this as a reference binding.
2277  ICS.setStandard();
2278  ICS.Standard.setFromType(FromType);
2279  ICS.Standard.setToType(ImplicitParamType);
2280  ICS.Standard.ReferenceBinding = true;
2281  ICS.Standard.DirectBinding = true;
2282  ICS.Standard.RRefBinding = false;
2283  return ICS;
2284}
2285
2286/// PerformObjectArgumentInitialization - Perform initialization of
2287/// the implicit object parameter for the given Method with the given
2288/// expression.
2289bool
2290Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2291  QualType FromRecordType, DestType;
2292  QualType ImplicitParamRecordType  =
2293    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2294
2295  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2296    FromRecordType = PT->getPointeeType();
2297    DestType = Method->getThisType(Context);
2298  } else {
2299    FromRecordType = From->getType();
2300    DestType = ImplicitParamRecordType;
2301  }
2302
2303  // Note that we always use the true parent context when performing
2304  // the actual argument initialization.
2305  ImplicitConversionSequence ICS
2306    = TryObjectArgumentInitialization(From->getType(), Method,
2307                                      Method->getParent());
2308  if (ICS.isBad())
2309    return Diag(From->getSourceRange().getBegin(),
2310                diag::err_implicit_object_parameter_init)
2311       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2312
2313  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2314      CheckDerivedToBaseConversion(FromRecordType,
2315                                   ImplicitParamRecordType,
2316                                   From->getSourceRange().getBegin(),
2317                                   From->getSourceRange()))
2318    return true;
2319
2320  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2321                    /*isLvalue=*/true);
2322  return false;
2323}
2324
2325/// TryContextuallyConvertToBool - Attempt to contextually convert the
2326/// expression From to bool (C++0x [conv]p3).
2327ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2328  return TryImplicitConversion(From, Context.BoolTy,
2329                               // FIXME: Are these flags correct?
2330                               /*SuppressUserConversions=*/false,
2331                               /*AllowExplicit=*/true,
2332                               /*ForceRValue=*/false,
2333                               /*InOverloadResolution=*/false);
2334}
2335
2336/// PerformContextuallyConvertToBool - Perform a contextual conversion
2337/// of the expression From to bool (C++0x [conv]p3).
2338bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2339  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2340  if (!ICS.isBad())
2341    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
2342
2343  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2344    return  Diag(From->getSourceRange().getBegin(),
2345                 diag::err_typecheck_bool_condition)
2346                  << From->getType() << From->getSourceRange();
2347  return true;
2348}
2349
2350/// AddOverloadCandidate - Adds the given function to the set of
2351/// candidate functions, using the given function call arguments.  If
2352/// @p SuppressUserConversions, then don't allow user-defined
2353/// conversions via constructors or conversion operators.
2354/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2355/// hacky way to implement the overloading rules for elidable copy
2356/// initialization in C++0x (C++0x 12.8p15).
2357///
2358/// \para PartialOverloading true if we are performing "partial" overloading
2359/// based on an incomplete set of function arguments. This feature is used by
2360/// code completion.
2361void
2362Sema::AddOverloadCandidate(FunctionDecl *Function,
2363                           Expr **Args, unsigned NumArgs,
2364                           OverloadCandidateSet& CandidateSet,
2365                           bool SuppressUserConversions,
2366                           bool ForceRValue,
2367                           bool PartialOverloading) {
2368  const FunctionProtoType* Proto
2369    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2370  assert(Proto && "Functions without a prototype cannot be overloaded");
2371  assert(!Function->getDescribedFunctionTemplate() &&
2372         "Use AddTemplateOverloadCandidate for function templates");
2373
2374  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2375    if (!isa<CXXConstructorDecl>(Method)) {
2376      // If we get here, it's because we're calling a member function
2377      // that is named without a member access expression (e.g.,
2378      // "this->f") that was either written explicitly or created
2379      // implicitly. This can happen with a qualified call to a member
2380      // function, e.g., X::f(). We use an empty type for the implied
2381      // object argument (C++ [over.call.func]p3), and the acting context
2382      // is irrelevant.
2383      AddMethodCandidate(Method, Method->getParent(),
2384                         QualType(), Args, NumArgs, CandidateSet,
2385                         SuppressUserConversions, ForceRValue);
2386      return;
2387    }
2388    // We treat a constructor like a non-member function, since its object
2389    // argument doesn't participate in overload resolution.
2390  }
2391
2392  if (!CandidateSet.isNewCandidate(Function))
2393    return;
2394
2395  // Overload resolution is always an unevaluated context.
2396  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2397
2398  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2399    // C++ [class.copy]p3:
2400    //   A member function template is never instantiated to perform the copy
2401    //   of a class object to an object of its class type.
2402    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2403    if (NumArgs == 1 &&
2404        Constructor->isCopyConstructorLikeSpecialization() &&
2405        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2406      return;
2407  }
2408
2409  // Add this candidate
2410  CandidateSet.push_back(OverloadCandidate());
2411  OverloadCandidate& Candidate = CandidateSet.back();
2412  Candidate.Function = Function;
2413  Candidate.Viable = true;
2414  Candidate.IsSurrogate = false;
2415  Candidate.IgnoreObjectArgument = false;
2416
2417  unsigned NumArgsInProto = Proto->getNumArgs();
2418
2419  // (C++ 13.3.2p2): A candidate function having fewer than m
2420  // parameters is viable only if it has an ellipsis in its parameter
2421  // list (8.3.5).
2422  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2423      !Proto->isVariadic()) {
2424    Candidate.Viable = false;
2425    Candidate.FailureKind = ovl_fail_too_many_arguments;
2426    return;
2427  }
2428
2429  // (C++ 13.3.2p2): A candidate function having more than m parameters
2430  // is viable only if the (m+1)st parameter has a default argument
2431  // (8.3.6). For the purposes of overload resolution, the
2432  // parameter list is truncated on the right, so that there are
2433  // exactly m parameters.
2434  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2435  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2436    // Not enough arguments.
2437    Candidate.Viable = false;
2438    Candidate.FailureKind = ovl_fail_too_few_arguments;
2439    return;
2440  }
2441
2442  // Determine the implicit conversion sequences for each of the
2443  // arguments.
2444  Candidate.Conversions.resize(NumArgs);
2445  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2446    if (ArgIdx < NumArgsInProto) {
2447      // (C++ 13.3.2p3): for F to be a viable function, there shall
2448      // exist for each argument an implicit conversion sequence
2449      // (13.3.3.1) that converts that argument to the corresponding
2450      // parameter of F.
2451      QualType ParamType = Proto->getArgType(ArgIdx);
2452      Candidate.Conversions[ArgIdx]
2453        = TryCopyInitialization(Args[ArgIdx], ParamType,
2454                                SuppressUserConversions, ForceRValue,
2455                                /*InOverloadResolution=*/true);
2456      if (Candidate.Conversions[ArgIdx].isBad()) {
2457        Candidate.Viable = false;
2458        Candidate.FailureKind = ovl_fail_bad_conversion;
2459        break;
2460      }
2461    } else {
2462      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2463      // argument for which there is no corresponding parameter is
2464      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2465      Candidate.Conversions[ArgIdx].setEllipsis();
2466    }
2467  }
2468}
2469
2470/// \brief Add all of the function declarations in the given function set to
2471/// the overload canddiate set.
2472void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2473                                 Expr **Args, unsigned NumArgs,
2474                                 OverloadCandidateSet& CandidateSet,
2475                                 bool SuppressUserConversions) {
2476  for (FunctionSet::const_iterator F = Functions.begin(),
2477                                FEnd = Functions.end();
2478       F != FEnd; ++F) {
2479    // FIXME: using declarations
2480    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2481      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2482        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2483                           cast<CXXMethodDecl>(FD)->getParent(),
2484                           Args[0]->getType(), Args + 1, NumArgs - 1,
2485                           CandidateSet, SuppressUserConversions);
2486      else
2487        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2488                             SuppressUserConversions);
2489    } else {
2490      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2491      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2492          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2493        AddMethodTemplateCandidate(FunTmpl,
2494                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
2495                                   /*FIXME: explicit args */ 0,
2496                                   Args[0]->getType(), Args + 1, NumArgs - 1,
2497                                   CandidateSet,
2498                                   SuppressUserConversions);
2499      else
2500        AddTemplateOverloadCandidate(FunTmpl,
2501                                     /*FIXME: explicit args */ 0,
2502                                     Args, NumArgs, CandidateSet,
2503                                     SuppressUserConversions);
2504    }
2505  }
2506}
2507
2508/// AddMethodCandidate - Adds a named decl (which is some kind of
2509/// method) as a method candidate to the given overload set.
2510void Sema::AddMethodCandidate(NamedDecl *Decl,
2511                              QualType ObjectType,
2512                              Expr **Args, unsigned NumArgs,
2513                              OverloadCandidateSet& CandidateSet,
2514                              bool SuppressUserConversions, bool ForceRValue) {
2515  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
2516
2517  if (isa<UsingShadowDecl>(Decl))
2518    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2519
2520  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2521    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2522           "Expected a member function template");
2523    AddMethodTemplateCandidate(TD, ActingContext, /*ExplicitArgs*/ 0,
2524                               ObjectType, Args, NumArgs,
2525                               CandidateSet,
2526                               SuppressUserConversions,
2527                               ForceRValue);
2528  } else {
2529    AddMethodCandidate(cast<CXXMethodDecl>(Decl), ActingContext,
2530                       ObjectType, Args, NumArgs,
2531                       CandidateSet, SuppressUserConversions, ForceRValue);
2532  }
2533}
2534
2535/// AddMethodCandidate - Adds the given C++ member function to the set
2536/// of candidate functions, using the given function call arguments
2537/// and the object argument (@c Object). For example, in a call
2538/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2539/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2540/// allow user-defined conversions via constructors or conversion
2541/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2542/// a slightly hacky way to implement the overloading rules for elidable copy
2543/// initialization in C++0x (C++0x 12.8p15).
2544void
2545Sema::AddMethodCandidate(CXXMethodDecl *Method, CXXRecordDecl *ActingContext,
2546                         QualType ObjectType, Expr **Args, unsigned NumArgs,
2547                         OverloadCandidateSet& CandidateSet,
2548                         bool SuppressUserConversions, bool ForceRValue) {
2549  const FunctionProtoType* Proto
2550    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2551  assert(Proto && "Methods without a prototype cannot be overloaded");
2552  assert(!isa<CXXConstructorDecl>(Method) &&
2553         "Use AddOverloadCandidate for constructors");
2554
2555  if (!CandidateSet.isNewCandidate(Method))
2556    return;
2557
2558  // Overload resolution is always an unevaluated context.
2559  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2560
2561  // Add this candidate
2562  CandidateSet.push_back(OverloadCandidate());
2563  OverloadCandidate& Candidate = CandidateSet.back();
2564  Candidate.Function = Method;
2565  Candidate.IsSurrogate = false;
2566  Candidate.IgnoreObjectArgument = false;
2567
2568  unsigned NumArgsInProto = Proto->getNumArgs();
2569
2570  // (C++ 13.3.2p2): A candidate function having fewer than m
2571  // parameters is viable only if it has an ellipsis in its parameter
2572  // list (8.3.5).
2573  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2574    Candidate.Viable = false;
2575    Candidate.FailureKind = ovl_fail_too_many_arguments;
2576    return;
2577  }
2578
2579  // (C++ 13.3.2p2): A candidate function having more than m parameters
2580  // is viable only if the (m+1)st parameter has a default argument
2581  // (8.3.6). For the purposes of overload resolution, the
2582  // parameter list is truncated on the right, so that there are
2583  // exactly m parameters.
2584  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2585  if (NumArgs < MinRequiredArgs) {
2586    // Not enough arguments.
2587    Candidate.Viable = false;
2588    Candidate.FailureKind = ovl_fail_too_few_arguments;
2589    return;
2590  }
2591
2592  Candidate.Viable = true;
2593  Candidate.Conversions.resize(NumArgs + 1);
2594
2595  if (Method->isStatic() || ObjectType.isNull())
2596    // The implicit object argument is ignored.
2597    Candidate.IgnoreObjectArgument = true;
2598  else {
2599    // Determine the implicit conversion sequence for the object
2600    // parameter.
2601    Candidate.Conversions[0]
2602      = TryObjectArgumentInitialization(ObjectType, Method, ActingContext);
2603    if (Candidate.Conversions[0].isBad()) {
2604      Candidate.Viable = false;
2605      Candidate.FailureKind = ovl_fail_bad_conversion;
2606      return;
2607    }
2608  }
2609
2610  // Determine the implicit conversion sequences for each of the
2611  // arguments.
2612  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2613    if (ArgIdx < NumArgsInProto) {
2614      // (C++ 13.3.2p3): for F to be a viable function, there shall
2615      // exist for each argument an implicit conversion sequence
2616      // (13.3.3.1) that converts that argument to the corresponding
2617      // parameter of F.
2618      QualType ParamType = Proto->getArgType(ArgIdx);
2619      Candidate.Conversions[ArgIdx + 1]
2620        = TryCopyInitialization(Args[ArgIdx], ParamType,
2621                                SuppressUserConversions, ForceRValue,
2622                                /*InOverloadResolution=*/true);
2623      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2624        Candidate.Viable = false;
2625        Candidate.FailureKind = ovl_fail_bad_conversion;
2626        break;
2627      }
2628    } else {
2629      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2630      // argument for which there is no corresponding parameter is
2631      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2632      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2633    }
2634  }
2635}
2636
2637/// \brief Add a C++ member function template as a candidate to the candidate
2638/// set, using template argument deduction to produce an appropriate member
2639/// function template specialization.
2640void
2641Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2642                                 CXXRecordDecl *ActingContext,
2643                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2644                                 QualType ObjectType,
2645                                 Expr **Args, unsigned NumArgs,
2646                                 OverloadCandidateSet& CandidateSet,
2647                                 bool SuppressUserConversions,
2648                                 bool ForceRValue) {
2649  if (!CandidateSet.isNewCandidate(MethodTmpl))
2650    return;
2651
2652  // C++ [over.match.funcs]p7:
2653  //   In each case where a candidate is a function template, candidate
2654  //   function template specializations are generated using template argument
2655  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2656  //   candidate functions in the usual way.113) A given name can refer to one
2657  //   or more function templates and also to a set of overloaded non-template
2658  //   functions. In such a case, the candidate functions generated from each
2659  //   function template are combined with the set of non-template candidate
2660  //   functions.
2661  TemplateDeductionInfo Info(Context);
2662  FunctionDecl *Specialization = 0;
2663  if (TemplateDeductionResult Result
2664      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2665                                Args, NumArgs, Specialization, Info)) {
2666        // FIXME: Record what happened with template argument deduction, so
2667        // that we can give the user a beautiful diagnostic.
2668        (void)Result;
2669        return;
2670      }
2671
2672  // Add the function template specialization produced by template argument
2673  // deduction as a candidate.
2674  assert(Specialization && "Missing member function template specialization?");
2675  assert(isa<CXXMethodDecl>(Specialization) &&
2676         "Specialization is not a member function?");
2677  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), ActingContext,
2678                     ObjectType, Args, NumArgs,
2679                     CandidateSet, SuppressUserConversions, ForceRValue);
2680}
2681
2682/// \brief Add a C++ function template specialization as a candidate
2683/// in the candidate set, using template argument deduction to produce
2684/// an appropriate function template specialization.
2685void
2686Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2687                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2688                                   Expr **Args, unsigned NumArgs,
2689                                   OverloadCandidateSet& CandidateSet,
2690                                   bool SuppressUserConversions,
2691                                   bool ForceRValue) {
2692  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2693    return;
2694
2695  // C++ [over.match.funcs]p7:
2696  //   In each case where a candidate is a function template, candidate
2697  //   function template specializations are generated using template argument
2698  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2699  //   candidate functions in the usual way.113) A given name can refer to one
2700  //   or more function templates and also to a set of overloaded non-template
2701  //   functions. In such a case, the candidate functions generated from each
2702  //   function template are combined with the set of non-template candidate
2703  //   functions.
2704  TemplateDeductionInfo Info(Context);
2705  FunctionDecl *Specialization = 0;
2706  if (TemplateDeductionResult Result
2707        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2708                                  Args, NumArgs, Specialization, Info)) {
2709    // FIXME: Record what happened with template argument deduction, so
2710    // that we can give the user a beautiful diagnostic.
2711    (void) Result;
2712
2713    CandidateSet.push_back(OverloadCandidate());
2714    OverloadCandidate &Candidate = CandidateSet.back();
2715    Candidate.Function = FunctionTemplate->getTemplatedDecl();
2716    Candidate.Viable = false;
2717    Candidate.FailureKind = ovl_fail_bad_deduction;
2718    Candidate.IsSurrogate = false;
2719    Candidate.IgnoreObjectArgument = false;
2720    return;
2721  }
2722
2723  // Add the function template specialization produced by template argument
2724  // deduction as a candidate.
2725  assert(Specialization && "Missing function template specialization?");
2726  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2727                       SuppressUserConversions, ForceRValue);
2728}
2729
2730/// AddConversionCandidate - Add a C++ conversion function as a
2731/// candidate in the candidate set (C++ [over.match.conv],
2732/// C++ [over.match.copy]). From is the expression we're converting from,
2733/// and ToType is the type that we're eventually trying to convert to
2734/// (which may or may not be the same type as the type that the
2735/// conversion function produces).
2736void
2737Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2738                             CXXRecordDecl *ActingContext,
2739                             Expr *From, QualType ToType,
2740                             OverloadCandidateSet& CandidateSet) {
2741  assert(!Conversion->getDescribedFunctionTemplate() &&
2742         "Conversion function templates use AddTemplateConversionCandidate");
2743
2744  if (!CandidateSet.isNewCandidate(Conversion))
2745    return;
2746
2747  // Overload resolution is always an unevaluated context.
2748  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2749
2750  // Add this candidate
2751  CandidateSet.push_back(OverloadCandidate());
2752  OverloadCandidate& Candidate = CandidateSet.back();
2753  Candidate.Function = Conversion;
2754  Candidate.IsSurrogate = false;
2755  Candidate.IgnoreObjectArgument = false;
2756  Candidate.FinalConversion.setAsIdentityConversion();
2757  Candidate.FinalConversion.setFromType(Conversion->getConversionType());
2758  Candidate.FinalConversion.setToType(ToType);
2759
2760  // Determine the implicit conversion sequence for the implicit
2761  // object parameter.
2762  Candidate.Viable = true;
2763  Candidate.Conversions.resize(1);
2764  Candidate.Conversions[0]
2765    = TryObjectArgumentInitialization(From->getType(), Conversion,
2766                                      ActingContext);
2767  // Conversion functions to a different type in the base class is visible in
2768  // the derived class.  So, a derived to base conversion should not participate
2769  // in overload resolution.
2770  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2771    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2772  if (Candidate.Conversions[0].isBad()) {
2773    Candidate.Viable = false;
2774    Candidate.FailureKind = ovl_fail_bad_conversion;
2775    return;
2776  }
2777
2778  // We won't go through a user-define type conversion function to convert a
2779  // derived to base as such conversions are given Conversion Rank. They only
2780  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2781  QualType FromCanon
2782    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2783  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2784  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2785    Candidate.Viable = false;
2786    Candidate.FailureKind = ovl_fail_bad_conversion;
2787    return;
2788  }
2789
2790
2791  // To determine what the conversion from the result of calling the
2792  // conversion function to the type we're eventually trying to
2793  // convert to (ToType), we need to synthesize a call to the
2794  // conversion function and attempt copy initialization from it. This
2795  // makes sure that we get the right semantics with respect to
2796  // lvalues/rvalues and the type. Fortunately, we can allocate this
2797  // call on the stack and we don't need its arguments to be
2798  // well-formed.
2799  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2800                            From->getLocStart());
2801  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2802                                CastExpr::CK_FunctionToPointerDecay,
2803                                &ConversionRef, false);
2804
2805  // Note that it is safe to allocate CallExpr on the stack here because
2806  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2807  // allocator).
2808  CallExpr Call(Context, &ConversionFn, 0, 0,
2809                Conversion->getConversionType().getNonReferenceType(),
2810                From->getLocStart());
2811  ImplicitConversionSequence ICS =
2812    TryCopyInitialization(&Call, ToType,
2813                          /*SuppressUserConversions=*/true,
2814                          /*ForceRValue=*/false,
2815                          /*InOverloadResolution=*/false);
2816
2817  switch (ICS.getKind()) {
2818  case ImplicitConversionSequence::StandardConversion:
2819    Candidate.FinalConversion = ICS.Standard;
2820    break;
2821
2822  case ImplicitConversionSequence::BadConversion:
2823    Candidate.Viable = false;
2824    Candidate.FailureKind = ovl_fail_bad_conversion;
2825    break;
2826
2827  default:
2828    assert(false &&
2829           "Can only end up with a standard conversion sequence or failure");
2830  }
2831}
2832
2833/// \brief Adds a conversion function template specialization
2834/// candidate to the overload set, using template argument deduction
2835/// to deduce the template arguments of the conversion function
2836/// template from the type that we are converting to (C++
2837/// [temp.deduct.conv]).
2838void
2839Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2840                                     CXXRecordDecl *ActingDC,
2841                                     Expr *From, QualType ToType,
2842                                     OverloadCandidateSet &CandidateSet) {
2843  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2844         "Only conversion function templates permitted here");
2845
2846  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2847    return;
2848
2849  TemplateDeductionInfo Info(Context);
2850  CXXConversionDecl *Specialization = 0;
2851  if (TemplateDeductionResult Result
2852        = DeduceTemplateArguments(FunctionTemplate, ToType,
2853                                  Specialization, Info)) {
2854    // FIXME: Record what happened with template argument deduction, so
2855    // that we can give the user a beautiful diagnostic.
2856    (void)Result;
2857    return;
2858  }
2859
2860  // Add the conversion function template specialization produced by
2861  // template argument deduction as a candidate.
2862  assert(Specialization && "Missing function template specialization?");
2863  AddConversionCandidate(Specialization, ActingDC, From, ToType, CandidateSet);
2864}
2865
2866/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2867/// converts the given @c Object to a function pointer via the
2868/// conversion function @c Conversion, and then attempts to call it
2869/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2870/// the type of function that we'll eventually be calling.
2871void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2872                                 CXXRecordDecl *ActingContext,
2873                                 const FunctionProtoType *Proto,
2874                                 QualType ObjectType,
2875                                 Expr **Args, unsigned NumArgs,
2876                                 OverloadCandidateSet& CandidateSet) {
2877  if (!CandidateSet.isNewCandidate(Conversion))
2878    return;
2879
2880  // Overload resolution is always an unevaluated context.
2881  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2882
2883  CandidateSet.push_back(OverloadCandidate());
2884  OverloadCandidate& Candidate = CandidateSet.back();
2885  Candidate.Function = 0;
2886  Candidate.Surrogate = Conversion;
2887  Candidate.Viable = true;
2888  Candidate.IsSurrogate = true;
2889  Candidate.IgnoreObjectArgument = false;
2890  Candidate.Conversions.resize(NumArgs + 1);
2891
2892  // Determine the implicit conversion sequence for the implicit
2893  // object parameter.
2894  ImplicitConversionSequence ObjectInit
2895    = TryObjectArgumentInitialization(ObjectType, Conversion, ActingContext);
2896  if (ObjectInit.isBad()) {
2897    Candidate.Viable = false;
2898    Candidate.FailureKind = ovl_fail_bad_conversion;
2899    return;
2900  }
2901
2902  // The first conversion is actually a user-defined conversion whose
2903  // first conversion is ObjectInit's standard conversion (which is
2904  // effectively a reference binding). Record it as such.
2905  Candidate.Conversions[0].setUserDefined();
2906  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2907  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2908  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2909  Candidate.Conversions[0].UserDefined.After
2910    = Candidate.Conversions[0].UserDefined.Before;
2911  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2912
2913  // Find the
2914  unsigned NumArgsInProto = Proto->getNumArgs();
2915
2916  // (C++ 13.3.2p2): A candidate function having fewer than m
2917  // parameters is viable only if it has an ellipsis in its parameter
2918  // list (8.3.5).
2919  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2920    Candidate.Viable = false;
2921    Candidate.FailureKind = ovl_fail_too_many_arguments;
2922    return;
2923  }
2924
2925  // Function types don't have any default arguments, so just check if
2926  // we have enough arguments.
2927  if (NumArgs < NumArgsInProto) {
2928    // Not enough arguments.
2929    Candidate.Viable = false;
2930    Candidate.FailureKind = ovl_fail_too_few_arguments;
2931    return;
2932  }
2933
2934  // Determine the implicit conversion sequences for each of the
2935  // arguments.
2936  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2937    if (ArgIdx < NumArgsInProto) {
2938      // (C++ 13.3.2p3): for F to be a viable function, there shall
2939      // exist for each argument an implicit conversion sequence
2940      // (13.3.3.1) that converts that argument to the corresponding
2941      // parameter of F.
2942      QualType ParamType = Proto->getArgType(ArgIdx);
2943      Candidate.Conversions[ArgIdx + 1]
2944        = TryCopyInitialization(Args[ArgIdx], ParamType,
2945                                /*SuppressUserConversions=*/false,
2946                                /*ForceRValue=*/false,
2947                                /*InOverloadResolution=*/false);
2948      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
2949        Candidate.Viable = false;
2950        Candidate.FailureKind = ovl_fail_bad_conversion;
2951        break;
2952      }
2953    } else {
2954      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2955      // argument for which there is no corresponding parameter is
2956      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2957      Candidate.Conversions[ArgIdx + 1].setEllipsis();
2958    }
2959  }
2960}
2961
2962// FIXME: This will eventually be removed, once we've migrated all of the
2963// operator overloading logic over to the scheme used by binary operators, which
2964// works for template instantiation.
2965void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2966                                 SourceLocation OpLoc,
2967                                 Expr **Args, unsigned NumArgs,
2968                                 OverloadCandidateSet& CandidateSet,
2969                                 SourceRange OpRange) {
2970  FunctionSet Functions;
2971
2972  QualType T1 = Args[0]->getType();
2973  QualType T2;
2974  if (NumArgs > 1)
2975    T2 = Args[1]->getType();
2976
2977  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2978  if (S)
2979    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2980  ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions);
2981  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2982  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2983  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2984}
2985
2986/// \brief Add overload candidates for overloaded operators that are
2987/// member functions.
2988///
2989/// Add the overloaded operator candidates that are member functions
2990/// for the operator Op that was used in an operator expression such
2991/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2992/// CandidateSet will store the added overload candidates. (C++
2993/// [over.match.oper]).
2994void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2995                                       SourceLocation OpLoc,
2996                                       Expr **Args, unsigned NumArgs,
2997                                       OverloadCandidateSet& CandidateSet,
2998                                       SourceRange OpRange) {
2999  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3000
3001  // C++ [over.match.oper]p3:
3002  //   For a unary operator @ with an operand of a type whose
3003  //   cv-unqualified version is T1, and for a binary operator @ with
3004  //   a left operand of a type whose cv-unqualified version is T1 and
3005  //   a right operand of a type whose cv-unqualified version is T2,
3006  //   three sets of candidate functions, designated member
3007  //   candidates, non-member candidates and built-in candidates, are
3008  //   constructed as follows:
3009  QualType T1 = Args[0]->getType();
3010  QualType T2;
3011  if (NumArgs > 1)
3012    T2 = Args[1]->getType();
3013
3014  //     -- If T1 is a class type, the set of member candidates is the
3015  //        result of the qualified lookup of T1::operator@
3016  //        (13.3.1.1.1); otherwise, the set of member candidates is
3017  //        empty.
3018  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
3019    // Complete the type if it can be completed. Otherwise, we're done.
3020    if (RequireCompleteType(OpLoc, T1, PDiag()))
3021      return;
3022
3023    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
3024    LookupQualifiedName(Operators, T1Rec->getDecl());
3025    Operators.suppressDiagnostics();
3026
3027    for (LookupResult::iterator Oper = Operators.begin(),
3028                             OperEnd = Operators.end();
3029         Oper != OperEnd;
3030         ++Oper)
3031      AddMethodCandidate(*Oper, Args[0]->getType(),
3032                         Args + 1, NumArgs - 1, CandidateSet,
3033                         /* SuppressUserConversions = */ false);
3034  }
3035}
3036
3037/// AddBuiltinCandidate - Add a candidate for a built-in
3038/// operator. ResultTy and ParamTys are the result and parameter types
3039/// of the built-in candidate, respectively. Args and NumArgs are the
3040/// arguments being passed to the candidate. IsAssignmentOperator
3041/// should be true when this built-in candidate is an assignment
3042/// operator. NumContextualBoolArguments is the number of arguments
3043/// (at the beginning of the argument list) that will be contextually
3044/// converted to bool.
3045void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
3046                               Expr **Args, unsigned NumArgs,
3047                               OverloadCandidateSet& CandidateSet,
3048                               bool IsAssignmentOperator,
3049                               unsigned NumContextualBoolArguments) {
3050  // Overload resolution is always an unevaluated context.
3051  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
3052
3053  // Add this candidate
3054  CandidateSet.push_back(OverloadCandidate());
3055  OverloadCandidate& Candidate = CandidateSet.back();
3056  Candidate.Function = 0;
3057  Candidate.IsSurrogate = false;
3058  Candidate.IgnoreObjectArgument = false;
3059  Candidate.BuiltinTypes.ResultTy = ResultTy;
3060  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3061    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
3062
3063  // Determine the implicit conversion sequences for each of the
3064  // arguments.
3065  Candidate.Viable = true;
3066  Candidate.Conversions.resize(NumArgs);
3067  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
3068    // C++ [over.match.oper]p4:
3069    //   For the built-in assignment operators, conversions of the
3070    //   left operand are restricted as follows:
3071    //     -- no temporaries are introduced to hold the left operand, and
3072    //     -- no user-defined conversions are applied to the left
3073    //        operand to achieve a type match with the left-most
3074    //        parameter of a built-in candidate.
3075    //
3076    // We block these conversions by turning off user-defined
3077    // conversions, since that is the only way that initialization of
3078    // a reference to a non-class type can occur from something that
3079    // is not of the same type.
3080    if (ArgIdx < NumContextualBoolArguments) {
3081      assert(ParamTys[ArgIdx] == Context.BoolTy &&
3082             "Contextual conversion to bool requires bool type");
3083      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
3084    } else {
3085      Candidate.Conversions[ArgIdx]
3086        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
3087                                ArgIdx == 0 && IsAssignmentOperator,
3088                                /*ForceRValue=*/false,
3089                                /*InOverloadResolution=*/false);
3090    }
3091    if (Candidate.Conversions[ArgIdx].isBad()) {
3092      Candidate.Viable = false;
3093      Candidate.FailureKind = ovl_fail_bad_conversion;
3094      break;
3095    }
3096  }
3097}
3098
3099/// BuiltinCandidateTypeSet - A set of types that will be used for the
3100/// candidate operator functions for built-in operators (C++
3101/// [over.built]). The types are separated into pointer types and
3102/// enumeration types.
3103class BuiltinCandidateTypeSet  {
3104  /// TypeSet - A set of types.
3105  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
3106
3107  /// PointerTypes - The set of pointer types that will be used in the
3108  /// built-in candidates.
3109  TypeSet PointerTypes;
3110
3111  /// MemberPointerTypes - The set of member pointer types that will be
3112  /// used in the built-in candidates.
3113  TypeSet MemberPointerTypes;
3114
3115  /// EnumerationTypes - The set of enumeration types that will be
3116  /// used in the built-in candidates.
3117  TypeSet EnumerationTypes;
3118
3119  /// Sema - The semantic analysis instance where we are building the
3120  /// candidate type set.
3121  Sema &SemaRef;
3122
3123  /// Context - The AST context in which we will build the type sets.
3124  ASTContext &Context;
3125
3126  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3127                                               const Qualifiers &VisibleQuals);
3128  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
3129
3130public:
3131  /// iterator - Iterates through the types that are part of the set.
3132  typedef TypeSet::iterator iterator;
3133
3134  BuiltinCandidateTypeSet(Sema &SemaRef)
3135    : SemaRef(SemaRef), Context(SemaRef.Context) { }
3136
3137  void AddTypesConvertedFrom(QualType Ty,
3138                             SourceLocation Loc,
3139                             bool AllowUserConversions,
3140                             bool AllowExplicitConversions,
3141                             const Qualifiers &VisibleTypeConversionsQuals);
3142
3143  /// pointer_begin - First pointer type found;
3144  iterator pointer_begin() { return PointerTypes.begin(); }
3145
3146  /// pointer_end - Past the last pointer type found;
3147  iterator pointer_end() { return PointerTypes.end(); }
3148
3149  /// member_pointer_begin - First member pointer type found;
3150  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
3151
3152  /// member_pointer_end - Past the last member pointer type found;
3153  iterator member_pointer_end() { return MemberPointerTypes.end(); }
3154
3155  /// enumeration_begin - First enumeration type found;
3156  iterator enumeration_begin() { return EnumerationTypes.begin(); }
3157
3158  /// enumeration_end - Past the last enumeration type found;
3159  iterator enumeration_end() { return EnumerationTypes.end(); }
3160};
3161
3162/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3163/// the set of pointer types along with any more-qualified variants of
3164/// that type. For example, if @p Ty is "int const *", this routine
3165/// will add "int const *", "int const volatile *", "int const
3166/// restrict *", and "int const volatile restrict *" to the set of
3167/// pointer types. Returns true if the add of @p Ty itself succeeded,
3168/// false otherwise.
3169///
3170/// FIXME: what to do about extended qualifiers?
3171bool
3172BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3173                                             const Qualifiers &VisibleQuals) {
3174
3175  // Insert this type.
3176  if (!PointerTypes.insert(Ty))
3177    return false;
3178
3179  const PointerType *PointerTy = Ty->getAs<PointerType>();
3180  assert(PointerTy && "type was not a pointer type!");
3181
3182  QualType PointeeTy = PointerTy->getPointeeType();
3183  // Don't add qualified variants of arrays. For one, they're not allowed
3184  // (the qualifier would sink to the element type), and for another, the
3185  // only overload situation where it matters is subscript or pointer +- int,
3186  // and those shouldn't have qualifier variants anyway.
3187  if (PointeeTy->isArrayType())
3188    return true;
3189  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3190  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3191    BaseCVR = Array->getElementType().getCVRQualifiers();
3192  bool hasVolatile = VisibleQuals.hasVolatile();
3193  bool hasRestrict = VisibleQuals.hasRestrict();
3194
3195  // Iterate through all strict supersets of BaseCVR.
3196  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3197    if ((CVR | BaseCVR) != CVR) continue;
3198    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3199    // in the types.
3200    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3201    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3202    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3203    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3204  }
3205
3206  return true;
3207}
3208
3209/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3210/// to the set of pointer types along with any more-qualified variants of
3211/// that type. For example, if @p Ty is "int const *", this routine
3212/// will add "int const *", "int const volatile *", "int const
3213/// restrict *", and "int const volatile restrict *" to the set of
3214/// pointer types. Returns true if the add of @p Ty itself succeeded,
3215/// false otherwise.
3216///
3217/// FIXME: what to do about extended qualifiers?
3218bool
3219BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3220    QualType Ty) {
3221  // Insert this type.
3222  if (!MemberPointerTypes.insert(Ty))
3223    return false;
3224
3225  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3226  assert(PointerTy && "type was not a member pointer type!");
3227
3228  QualType PointeeTy = PointerTy->getPointeeType();
3229  // Don't add qualified variants of arrays. For one, they're not allowed
3230  // (the qualifier would sink to the element type), and for another, the
3231  // only overload situation where it matters is subscript or pointer +- int,
3232  // and those shouldn't have qualifier variants anyway.
3233  if (PointeeTy->isArrayType())
3234    return true;
3235  const Type *ClassTy = PointerTy->getClass();
3236
3237  // Iterate through all strict supersets of the pointee type's CVR
3238  // qualifiers.
3239  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3240  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3241    if ((CVR | BaseCVR) != CVR) continue;
3242
3243    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3244    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3245  }
3246
3247  return true;
3248}
3249
3250/// AddTypesConvertedFrom - Add each of the types to which the type @p
3251/// Ty can be implicit converted to the given set of @p Types. We're
3252/// primarily interested in pointer types and enumeration types. We also
3253/// take member pointer types, for the conditional operator.
3254/// AllowUserConversions is true if we should look at the conversion
3255/// functions of a class type, and AllowExplicitConversions if we
3256/// should also include the explicit conversion functions of a class
3257/// type.
3258void
3259BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3260                                               SourceLocation Loc,
3261                                               bool AllowUserConversions,
3262                                               bool AllowExplicitConversions,
3263                                               const Qualifiers &VisibleQuals) {
3264  // Only deal with canonical types.
3265  Ty = Context.getCanonicalType(Ty);
3266
3267  // Look through reference types; they aren't part of the type of an
3268  // expression for the purposes of conversions.
3269  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3270    Ty = RefTy->getPointeeType();
3271
3272  // We don't care about qualifiers on the type.
3273  Ty = Ty.getLocalUnqualifiedType();
3274
3275  // If we're dealing with an array type, decay to the pointer.
3276  if (Ty->isArrayType())
3277    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3278
3279  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3280    QualType PointeeTy = PointerTy->getPointeeType();
3281
3282    // Insert our type, and its more-qualified variants, into the set
3283    // of types.
3284    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3285      return;
3286  } else if (Ty->isMemberPointerType()) {
3287    // Member pointers are far easier, since the pointee can't be converted.
3288    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3289      return;
3290  } else if (Ty->isEnumeralType()) {
3291    EnumerationTypes.insert(Ty);
3292  } else if (AllowUserConversions) {
3293    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3294      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3295        // No conversion functions in incomplete types.
3296        return;
3297      }
3298
3299      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3300      const UnresolvedSetImpl *Conversions
3301        = ClassDecl->getVisibleConversionFunctions();
3302      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3303             E = Conversions->end(); I != E; ++I) {
3304
3305        // Skip conversion function templates; they don't tell us anything
3306        // about which builtin types we can convert to.
3307        if (isa<FunctionTemplateDecl>(*I))
3308          continue;
3309
3310        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3311        if (AllowExplicitConversions || !Conv->isExplicit()) {
3312          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3313                                VisibleQuals);
3314        }
3315      }
3316    }
3317  }
3318}
3319
3320/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3321/// the volatile- and non-volatile-qualified assignment operators for the
3322/// given type to the candidate set.
3323static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3324                                                   QualType T,
3325                                                   Expr **Args,
3326                                                   unsigned NumArgs,
3327                                    OverloadCandidateSet &CandidateSet) {
3328  QualType ParamTypes[2];
3329
3330  // T& operator=(T&, T)
3331  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3332  ParamTypes[1] = T;
3333  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3334                        /*IsAssignmentOperator=*/true);
3335
3336  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3337    // volatile T& operator=(volatile T&, T)
3338    ParamTypes[0]
3339      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3340    ParamTypes[1] = T;
3341    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3342                          /*IsAssignmentOperator=*/true);
3343  }
3344}
3345
3346/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3347/// if any, found in visible type conversion functions found in ArgExpr's type.
3348static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3349    Qualifiers VRQuals;
3350    const RecordType *TyRec;
3351    if (const MemberPointerType *RHSMPType =
3352        ArgExpr->getType()->getAs<MemberPointerType>())
3353      TyRec = cast<RecordType>(RHSMPType->getClass());
3354    else
3355      TyRec = ArgExpr->getType()->getAs<RecordType>();
3356    if (!TyRec) {
3357      // Just to be safe, assume the worst case.
3358      VRQuals.addVolatile();
3359      VRQuals.addRestrict();
3360      return VRQuals;
3361    }
3362
3363    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3364    const UnresolvedSetImpl *Conversions =
3365      ClassDecl->getVisibleConversionFunctions();
3366
3367    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3368           E = Conversions->end(); I != E; ++I) {
3369      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3370        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3371        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3372          CanTy = ResTypeRef->getPointeeType();
3373        // Need to go down the pointer/mempointer chain and add qualifiers
3374        // as see them.
3375        bool done = false;
3376        while (!done) {
3377          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3378            CanTy = ResTypePtr->getPointeeType();
3379          else if (const MemberPointerType *ResTypeMPtr =
3380                CanTy->getAs<MemberPointerType>())
3381            CanTy = ResTypeMPtr->getPointeeType();
3382          else
3383            done = true;
3384          if (CanTy.isVolatileQualified())
3385            VRQuals.addVolatile();
3386          if (CanTy.isRestrictQualified())
3387            VRQuals.addRestrict();
3388          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3389            return VRQuals;
3390        }
3391      }
3392    }
3393    return VRQuals;
3394}
3395
3396/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3397/// operator overloads to the candidate set (C++ [over.built]), based
3398/// on the operator @p Op and the arguments given. For example, if the
3399/// operator is a binary '+', this routine might add "int
3400/// operator+(int, int)" to cover integer addition.
3401void
3402Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3403                                   SourceLocation OpLoc,
3404                                   Expr **Args, unsigned NumArgs,
3405                                   OverloadCandidateSet& CandidateSet) {
3406  // The set of "promoted arithmetic types", which are the arithmetic
3407  // types are that preserved by promotion (C++ [over.built]p2). Note
3408  // that the first few of these types are the promoted integral
3409  // types; these types need to be first.
3410  // FIXME: What about complex?
3411  const unsigned FirstIntegralType = 0;
3412  const unsigned LastIntegralType = 13;
3413  const unsigned FirstPromotedIntegralType = 7,
3414                 LastPromotedIntegralType = 13;
3415  const unsigned FirstPromotedArithmeticType = 7,
3416                 LastPromotedArithmeticType = 16;
3417  const unsigned NumArithmeticTypes = 16;
3418  QualType ArithmeticTypes[NumArithmeticTypes] = {
3419    Context.BoolTy, Context.CharTy, Context.WCharTy,
3420// FIXME:   Context.Char16Ty, Context.Char32Ty,
3421    Context.SignedCharTy, Context.ShortTy,
3422    Context.UnsignedCharTy, Context.UnsignedShortTy,
3423    Context.IntTy, Context.LongTy, Context.LongLongTy,
3424    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3425    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3426  };
3427  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3428         "Invalid first promoted integral type");
3429  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3430           == Context.UnsignedLongLongTy &&
3431         "Invalid last promoted integral type");
3432  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3433         "Invalid first promoted arithmetic type");
3434  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3435            == Context.LongDoubleTy &&
3436         "Invalid last promoted arithmetic type");
3437
3438  // Find all of the types that the arguments can convert to, but only
3439  // if the operator we're looking at has built-in operator candidates
3440  // that make use of these types.
3441  Qualifiers VisibleTypeConversionsQuals;
3442  VisibleTypeConversionsQuals.addConst();
3443  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3444    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3445
3446  BuiltinCandidateTypeSet CandidateTypes(*this);
3447  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3448      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3449      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3450      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3451      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3452      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3453    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3454      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3455                                           OpLoc,
3456                                           true,
3457                                           (Op == OO_Exclaim ||
3458                                            Op == OO_AmpAmp ||
3459                                            Op == OO_PipePipe),
3460                                           VisibleTypeConversionsQuals);
3461  }
3462
3463  bool isComparison = false;
3464  switch (Op) {
3465  case OO_None:
3466  case NUM_OVERLOADED_OPERATORS:
3467    assert(false && "Expected an overloaded operator");
3468    break;
3469
3470  case OO_Star: // '*' is either unary or binary
3471    if (NumArgs == 1)
3472      goto UnaryStar;
3473    else
3474      goto BinaryStar;
3475    break;
3476
3477  case OO_Plus: // '+' is either unary or binary
3478    if (NumArgs == 1)
3479      goto UnaryPlus;
3480    else
3481      goto BinaryPlus;
3482    break;
3483
3484  case OO_Minus: // '-' is either unary or binary
3485    if (NumArgs == 1)
3486      goto UnaryMinus;
3487    else
3488      goto BinaryMinus;
3489    break;
3490
3491  case OO_Amp: // '&' is either unary or binary
3492    if (NumArgs == 1)
3493      goto UnaryAmp;
3494    else
3495      goto BinaryAmp;
3496
3497  case OO_PlusPlus:
3498  case OO_MinusMinus:
3499    // C++ [over.built]p3:
3500    //
3501    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3502    //   is either volatile or empty, there exist candidate operator
3503    //   functions of the form
3504    //
3505    //       VQ T&      operator++(VQ T&);
3506    //       T          operator++(VQ T&, int);
3507    //
3508    // C++ [over.built]p4:
3509    //
3510    //   For every pair (T, VQ), where T is an arithmetic type other
3511    //   than bool, and VQ is either volatile or empty, there exist
3512    //   candidate operator functions of the form
3513    //
3514    //       VQ T&      operator--(VQ T&);
3515    //       T          operator--(VQ T&, int);
3516    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3517         Arith < NumArithmeticTypes; ++Arith) {
3518      QualType ArithTy = ArithmeticTypes[Arith];
3519      QualType ParamTypes[2]
3520        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3521
3522      // Non-volatile version.
3523      if (NumArgs == 1)
3524        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3525      else
3526        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3527      // heuristic to reduce number of builtin candidates in the set.
3528      // Add volatile version only if there are conversions to a volatile type.
3529      if (VisibleTypeConversionsQuals.hasVolatile()) {
3530        // Volatile version
3531        ParamTypes[0]
3532          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3533        if (NumArgs == 1)
3534          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3535        else
3536          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3537      }
3538    }
3539
3540    // C++ [over.built]p5:
3541    //
3542    //   For every pair (T, VQ), where T is a cv-qualified or
3543    //   cv-unqualified object type, and VQ is either volatile or
3544    //   empty, there exist candidate operator functions of the form
3545    //
3546    //       T*VQ&      operator++(T*VQ&);
3547    //       T*VQ&      operator--(T*VQ&);
3548    //       T*         operator++(T*VQ&, int);
3549    //       T*         operator--(T*VQ&, int);
3550    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3551         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3552      // Skip pointer types that aren't pointers to object types.
3553      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3554        continue;
3555
3556      QualType ParamTypes[2] = {
3557        Context.getLValueReferenceType(*Ptr), Context.IntTy
3558      };
3559
3560      // Without volatile
3561      if (NumArgs == 1)
3562        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3563      else
3564        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3565
3566      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3567          VisibleTypeConversionsQuals.hasVolatile()) {
3568        // With volatile
3569        ParamTypes[0]
3570          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3571        if (NumArgs == 1)
3572          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3573        else
3574          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3575      }
3576    }
3577    break;
3578
3579  UnaryStar:
3580    // C++ [over.built]p6:
3581    //   For every cv-qualified or cv-unqualified object type T, there
3582    //   exist candidate operator functions of the form
3583    //
3584    //       T&         operator*(T*);
3585    //
3586    // C++ [over.built]p7:
3587    //   For every function type T, there exist candidate operator
3588    //   functions of the form
3589    //       T&         operator*(T*);
3590    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3591         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3592      QualType ParamTy = *Ptr;
3593      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3594      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3595                          &ParamTy, Args, 1, CandidateSet);
3596    }
3597    break;
3598
3599  UnaryPlus:
3600    // C++ [over.built]p8:
3601    //   For every type T, there exist candidate operator functions of
3602    //   the form
3603    //
3604    //       T*         operator+(T*);
3605    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3606         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3607      QualType ParamTy = *Ptr;
3608      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3609    }
3610
3611    // Fall through
3612
3613  UnaryMinus:
3614    // C++ [over.built]p9:
3615    //  For every promoted arithmetic type T, there exist candidate
3616    //  operator functions of the form
3617    //
3618    //       T         operator+(T);
3619    //       T         operator-(T);
3620    for (unsigned Arith = FirstPromotedArithmeticType;
3621         Arith < LastPromotedArithmeticType; ++Arith) {
3622      QualType ArithTy = ArithmeticTypes[Arith];
3623      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3624    }
3625    break;
3626
3627  case OO_Tilde:
3628    // C++ [over.built]p10:
3629    //   For every promoted integral type T, there exist candidate
3630    //   operator functions of the form
3631    //
3632    //        T         operator~(T);
3633    for (unsigned Int = FirstPromotedIntegralType;
3634         Int < LastPromotedIntegralType; ++Int) {
3635      QualType IntTy = ArithmeticTypes[Int];
3636      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3637    }
3638    break;
3639
3640  case OO_New:
3641  case OO_Delete:
3642  case OO_Array_New:
3643  case OO_Array_Delete:
3644  case OO_Call:
3645    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3646    break;
3647
3648  case OO_Comma:
3649  UnaryAmp:
3650  case OO_Arrow:
3651    // C++ [over.match.oper]p3:
3652    //   -- For the operator ',', the unary operator '&', or the
3653    //      operator '->', the built-in candidates set is empty.
3654    break;
3655
3656  case OO_EqualEqual:
3657  case OO_ExclaimEqual:
3658    // C++ [over.match.oper]p16:
3659    //   For every pointer to member type T, there exist candidate operator
3660    //   functions of the form
3661    //
3662    //        bool operator==(T,T);
3663    //        bool operator!=(T,T);
3664    for (BuiltinCandidateTypeSet::iterator
3665           MemPtr = CandidateTypes.member_pointer_begin(),
3666           MemPtrEnd = CandidateTypes.member_pointer_end();
3667         MemPtr != MemPtrEnd;
3668         ++MemPtr) {
3669      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3670      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3671    }
3672
3673    // Fall through
3674
3675  case OO_Less:
3676  case OO_Greater:
3677  case OO_LessEqual:
3678  case OO_GreaterEqual:
3679    // C++ [over.built]p15:
3680    //
3681    //   For every pointer or enumeration type T, there exist
3682    //   candidate operator functions of the form
3683    //
3684    //        bool       operator<(T, T);
3685    //        bool       operator>(T, T);
3686    //        bool       operator<=(T, T);
3687    //        bool       operator>=(T, T);
3688    //        bool       operator==(T, T);
3689    //        bool       operator!=(T, T);
3690    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3691         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3692      QualType ParamTypes[2] = { *Ptr, *Ptr };
3693      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3694    }
3695    for (BuiltinCandidateTypeSet::iterator Enum
3696           = CandidateTypes.enumeration_begin();
3697         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3698      QualType ParamTypes[2] = { *Enum, *Enum };
3699      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3700    }
3701
3702    // Fall through.
3703    isComparison = true;
3704
3705  BinaryPlus:
3706  BinaryMinus:
3707    if (!isComparison) {
3708      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3709
3710      // C++ [over.built]p13:
3711      //
3712      //   For every cv-qualified or cv-unqualified object type T
3713      //   there exist candidate operator functions of the form
3714      //
3715      //      T*         operator+(T*, ptrdiff_t);
3716      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3717      //      T*         operator-(T*, ptrdiff_t);
3718      //      T*         operator+(ptrdiff_t, T*);
3719      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3720      //
3721      // C++ [over.built]p14:
3722      //
3723      //   For every T, where T is a pointer to object type, there
3724      //   exist candidate operator functions of the form
3725      //
3726      //      ptrdiff_t  operator-(T, T);
3727      for (BuiltinCandidateTypeSet::iterator Ptr
3728             = CandidateTypes.pointer_begin();
3729           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3730        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3731
3732        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3733        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3734
3735        if (Op == OO_Plus) {
3736          // T* operator+(ptrdiff_t, T*);
3737          ParamTypes[0] = ParamTypes[1];
3738          ParamTypes[1] = *Ptr;
3739          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3740        } else {
3741          // ptrdiff_t operator-(T, T);
3742          ParamTypes[1] = *Ptr;
3743          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3744                              Args, 2, CandidateSet);
3745        }
3746      }
3747    }
3748    // Fall through
3749
3750  case OO_Slash:
3751  BinaryStar:
3752  Conditional:
3753    // C++ [over.built]p12:
3754    //
3755    //   For every pair of promoted arithmetic types L and R, there
3756    //   exist candidate operator functions of the form
3757    //
3758    //        LR         operator*(L, R);
3759    //        LR         operator/(L, R);
3760    //        LR         operator+(L, R);
3761    //        LR         operator-(L, R);
3762    //        bool       operator<(L, R);
3763    //        bool       operator>(L, R);
3764    //        bool       operator<=(L, R);
3765    //        bool       operator>=(L, R);
3766    //        bool       operator==(L, R);
3767    //        bool       operator!=(L, R);
3768    //
3769    //   where LR is the result of the usual arithmetic conversions
3770    //   between types L and R.
3771    //
3772    // C++ [over.built]p24:
3773    //
3774    //   For every pair of promoted arithmetic types L and R, there exist
3775    //   candidate operator functions of the form
3776    //
3777    //        LR       operator?(bool, L, R);
3778    //
3779    //   where LR is the result of the usual arithmetic conversions
3780    //   between types L and R.
3781    // Our candidates ignore the first parameter.
3782    for (unsigned Left = FirstPromotedArithmeticType;
3783         Left < LastPromotedArithmeticType; ++Left) {
3784      for (unsigned Right = FirstPromotedArithmeticType;
3785           Right < LastPromotedArithmeticType; ++Right) {
3786        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3787        QualType Result
3788          = isComparison
3789          ? Context.BoolTy
3790          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3791        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3792      }
3793    }
3794    break;
3795
3796  case OO_Percent:
3797  BinaryAmp:
3798  case OO_Caret:
3799  case OO_Pipe:
3800  case OO_LessLess:
3801  case OO_GreaterGreater:
3802    // C++ [over.built]p17:
3803    //
3804    //   For every pair of promoted integral types L and R, there
3805    //   exist candidate operator functions of the form
3806    //
3807    //      LR         operator%(L, R);
3808    //      LR         operator&(L, R);
3809    //      LR         operator^(L, R);
3810    //      LR         operator|(L, R);
3811    //      L          operator<<(L, R);
3812    //      L          operator>>(L, R);
3813    //
3814    //   where LR is the result of the usual arithmetic conversions
3815    //   between types L and R.
3816    for (unsigned Left = FirstPromotedIntegralType;
3817         Left < LastPromotedIntegralType; ++Left) {
3818      for (unsigned Right = FirstPromotedIntegralType;
3819           Right < LastPromotedIntegralType; ++Right) {
3820        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3821        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3822            ? LandR[0]
3823            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3824        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3825      }
3826    }
3827    break;
3828
3829  case OO_Equal:
3830    // C++ [over.built]p20:
3831    //
3832    //   For every pair (T, VQ), where T is an enumeration or
3833    //   pointer to member type and VQ is either volatile or
3834    //   empty, there exist candidate operator functions of the form
3835    //
3836    //        VQ T&      operator=(VQ T&, T);
3837    for (BuiltinCandidateTypeSet::iterator
3838           Enum = CandidateTypes.enumeration_begin(),
3839           EnumEnd = CandidateTypes.enumeration_end();
3840         Enum != EnumEnd; ++Enum)
3841      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3842                                             CandidateSet);
3843    for (BuiltinCandidateTypeSet::iterator
3844           MemPtr = CandidateTypes.member_pointer_begin(),
3845         MemPtrEnd = CandidateTypes.member_pointer_end();
3846         MemPtr != MemPtrEnd; ++MemPtr)
3847      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3848                                             CandidateSet);
3849      // Fall through.
3850
3851  case OO_PlusEqual:
3852  case OO_MinusEqual:
3853    // C++ [over.built]p19:
3854    //
3855    //   For every pair (T, VQ), where T is any type and VQ is either
3856    //   volatile or empty, there exist candidate operator functions
3857    //   of the form
3858    //
3859    //        T*VQ&      operator=(T*VQ&, T*);
3860    //
3861    // C++ [over.built]p21:
3862    //
3863    //   For every pair (T, VQ), where T is a cv-qualified or
3864    //   cv-unqualified object type and VQ is either volatile or
3865    //   empty, there exist candidate operator functions of the form
3866    //
3867    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3868    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3869    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3870         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3871      QualType ParamTypes[2];
3872      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3873
3874      // non-volatile version
3875      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3876      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3877                          /*IsAssigmentOperator=*/Op == OO_Equal);
3878
3879      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3880          VisibleTypeConversionsQuals.hasVolatile()) {
3881        // volatile version
3882        ParamTypes[0]
3883          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3884        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3885                            /*IsAssigmentOperator=*/Op == OO_Equal);
3886      }
3887    }
3888    // Fall through.
3889
3890  case OO_StarEqual:
3891  case OO_SlashEqual:
3892    // C++ [over.built]p18:
3893    //
3894    //   For every triple (L, VQ, R), where L is an arithmetic type,
3895    //   VQ is either volatile or empty, and R is a promoted
3896    //   arithmetic type, there exist candidate operator functions of
3897    //   the form
3898    //
3899    //        VQ L&      operator=(VQ L&, R);
3900    //        VQ L&      operator*=(VQ L&, R);
3901    //        VQ L&      operator/=(VQ L&, R);
3902    //        VQ L&      operator+=(VQ L&, R);
3903    //        VQ L&      operator-=(VQ L&, R);
3904    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3905      for (unsigned Right = FirstPromotedArithmeticType;
3906           Right < LastPromotedArithmeticType; ++Right) {
3907        QualType ParamTypes[2];
3908        ParamTypes[1] = ArithmeticTypes[Right];
3909
3910        // Add this built-in operator as a candidate (VQ is empty).
3911        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3912        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3913                            /*IsAssigmentOperator=*/Op == OO_Equal);
3914
3915        // Add this built-in operator as a candidate (VQ is 'volatile').
3916        if (VisibleTypeConversionsQuals.hasVolatile()) {
3917          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3918          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3919          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3920                              /*IsAssigmentOperator=*/Op == OO_Equal);
3921        }
3922      }
3923    }
3924    break;
3925
3926  case OO_PercentEqual:
3927  case OO_LessLessEqual:
3928  case OO_GreaterGreaterEqual:
3929  case OO_AmpEqual:
3930  case OO_CaretEqual:
3931  case OO_PipeEqual:
3932    // C++ [over.built]p22:
3933    //
3934    //   For every triple (L, VQ, R), where L is an integral type, VQ
3935    //   is either volatile or empty, and R is a promoted integral
3936    //   type, there exist candidate operator functions of the form
3937    //
3938    //        VQ L&       operator%=(VQ L&, R);
3939    //        VQ L&       operator<<=(VQ L&, R);
3940    //        VQ L&       operator>>=(VQ L&, R);
3941    //        VQ L&       operator&=(VQ L&, R);
3942    //        VQ L&       operator^=(VQ L&, R);
3943    //        VQ L&       operator|=(VQ L&, R);
3944    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3945      for (unsigned Right = FirstPromotedIntegralType;
3946           Right < LastPromotedIntegralType; ++Right) {
3947        QualType ParamTypes[2];
3948        ParamTypes[1] = ArithmeticTypes[Right];
3949
3950        // Add this built-in operator as a candidate (VQ is empty).
3951        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3952        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3953        if (VisibleTypeConversionsQuals.hasVolatile()) {
3954          // Add this built-in operator as a candidate (VQ is 'volatile').
3955          ParamTypes[0] = ArithmeticTypes[Left];
3956          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3957          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3958          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3959        }
3960      }
3961    }
3962    break;
3963
3964  case OO_Exclaim: {
3965    // C++ [over.operator]p23:
3966    //
3967    //   There also exist candidate operator functions of the form
3968    //
3969    //        bool        operator!(bool);
3970    //        bool        operator&&(bool, bool);     [BELOW]
3971    //        bool        operator||(bool, bool);     [BELOW]
3972    QualType ParamTy = Context.BoolTy;
3973    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3974                        /*IsAssignmentOperator=*/false,
3975                        /*NumContextualBoolArguments=*/1);
3976    break;
3977  }
3978
3979  case OO_AmpAmp:
3980  case OO_PipePipe: {
3981    // C++ [over.operator]p23:
3982    //
3983    //   There also exist candidate operator functions of the form
3984    //
3985    //        bool        operator!(bool);            [ABOVE]
3986    //        bool        operator&&(bool, bool);
3987    //        bool        operator||(bool, bool);
3988    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3989    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3990                        /*IsAssignmentOperator=*/false,
3991                        /*NumContextualBoolArguments=*/2);
3992    break;
3993  }
3994
3995  case OO_Subscript:
3996    // C++ [over.built]p13:
3997    //
3998    //   For every cv-qualified or cv-unqualified object type T there
3999    //   exist candidate operator functions of the form
4000    //
4001    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
4002    //        T&         operator[](T*, ptrdiff_t);
4003    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
4004    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
4005    //        T&         operator[](ptrdiff_t, T*);
4006    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
4007         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4008      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
4009      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
4010      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
4011
4012      // T& operator[](T*, ptrdiff_t)
4013      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4014
4015      // T& operator[](ptrdiff_t, T*);
4016      ParamTypes[0] = ParamTypes[1];
4017      ParamTypes[1] = *Ptr;
4018      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4019    }
4020    break;
4021
4022  case OO_ArrowStar:
4023    // C++ [over.built]p11:
4024    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
4025    //    C1 is the same type as C2 or is a derived class of C2, T is an object
4026    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
4027    //    there exist candidate operator functions of the form
4028    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
4029    //    where CV12 is the union of CV1 and CV2.
4030    {
4031      for (BuiltinCandidateTypeSet::iterator Ptr =
4032             CandidateTypes.pointer_begin();
4033           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
4034        QualType C1Ty = (*Ptr);
4035        QualType C1;
4036        QualifierCollector Q1;
4037        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
4038          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
4039          if (!isa<RecordType>(C1))
4040            continue;
4041          // heuristic to reduce number of builtin candidates in the set.
4042          // Add volatile/restrict version only if there are conversions to a
4043          // volatile/restrict type.
4044          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
4045            continue;
4046          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
4047            continue;
4048        }
4049        for (BuiltinCandidateTypeSet::iterator
4050             MemPtr = CandidateTypes.member_pointer_begin(),
4051             MemPtrEnd = CandidateTypes.member_pointer_end();
4052             MemPtr != MemPtrEnd; ++MemPtr) {
4053          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
4054          QualType C2 = QualType(mptr->getClass(), 0);
4055          C2 = C2.getUnqualifiedType();
4056          if (C1 != C2 && !IsDerivedFrom(C1, C2))
4057            break;
4058          QualType ParamTypes[2] = { *Ptr, *MemPtr };
4059          // build CV12 T&
4060          QualType T = mptr->getPointeeType();
4061          if (!VisibleTypeConversionsQuals.hasVolatile() &&
4062              T.isVolatileQualified())
4063            continue;
4064          if (!VisibleTypeConversionsQuals.hasRestrict() &&
4065              T.isRestrictQualified())
4066            continue;
4067          T = Q1.apply(T);
4068          QualType ResultTy = Context.getLValueReferenceType(T);
4069          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
4070        }
4071      }
4072    }
4073    break;
4074
4075  case OO_Conditional:
4076    // Note that we don't consider the first argument, since it has been
4077    // contextually converted to bool long ago. The candidates below are
4078    // therefore added as binary.
4079    //
4080    // C++ [over.built]p24:
4081    //   For every type T, where T is a pointer or pointer-to-member type,
4082    //   there exist candidate operator functions of the form
4083    //
4084    //        T        operator?(bool, T, T);
4085    //
4086    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
4087         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
4088      QualType ParamTypes[2] = { *Ptr, *Ptr };
4089      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4090    }
4091    for (BuiltinCandidateTypeSet::iterator Ptr =
4092           CandidateTypes.member_pointer_begin(),
4093         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
4094      QualType ParamTypes[2] = { *Ptr, *Ptr };
4095      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
4096    }
4097    goto Conditional;
4098  }
4099}
4100
4101/// \brief Add function candidates found via argument-dependent lookup
4102/// to the set of overloading candidates.
4103///
4104/// This routine performs argument-dependent name lookup based on the
4105/// given function name (which may also be an operator name) and adds
4106/// all of the overload candidates found by ADL to the overload
4107/// candidate set (C++ [basic.lookup.argdep]).
4108void
4109Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
4110                                           Expr **Args, unsigned NumArgs,
4111                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4112                                           OverloadCandidateSet& CandidateSet,
4113                                           bool PartialOverloading) {
4114  FunctionSet Functions;
4115
4116  // FIXME: Should we be trafficking in canonical function decls throughout?
4117
4118  // Record all of the function candidates that we've already
4119  // added to the overload set, so that we don't add those same
4120  // candidates a second time.
4121  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4122                                   CandEnd = CandidateSet.end();
4123       Cand != CandEnd; ++Cand)
4124    if (Cand->Function) {
4125      Functions.insert(Cand->Function);
4126      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4127        Functions.insert(FunTmpl);
4128    }
4129
4130  // FIXME: Pass in the explicit template arguments?
4131  ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions);
4132
4133  // Erase all of the candidates we already knew about.
4134  // FIXME: This is suboptimal. Is there a better way?
4135  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4136                                   CandEnd = CandidateSet.end();
4137       Cand != CandEnd; ++Cand)
4138    if (Cand->Function) {
4139      Functions.erase(Cand->Function);
4140      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
4141        Functions.erase(FunTmpl);
4142    }
4143
4144  // For each of the ADL candidates we found, add it to the overload
4145  // set.
4146  for (FunctionSet::iterator Func = Functions.begin(),
4147                          FuncEnd = Functions.end();
4148       Func != FuncEnd; ++Func) {
4149    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
4150      if (ExplicitTemplateArgs)
4151        continue;
4152
4153      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
4154                           false, false, PartialOverloading);
4155    } else
4156      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
4157                                   ExplicitTemplateArgs,
4158                                   Args, NumArgs, CandidateSet);
4159  }
4160}
4161
4162/// isBetterOverloadCandidate - Determines whether the first overload
4163/// candidate is a better candidate than the second (C++ 13.3.3p1).
4164bool
4165Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4166                                const OverloadCandidate& Cand2) {
4167  // Define viable functions to be better candidates than non-viable
4168  // functions.
4169  if (!Cand2.Viable)
4170    return Cand1.Viable;
4171  else if (!Cand1.Viable)
4172    return false;
4173
4174  // C++ [over.match.best]p1:
4175  //
4176  //   -- if F is a static member function, ICS1(F) is defined such
4177  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4178  //      any function G, and, symmetrically, ICS1(G) is neither
4179  //      better nor worse than ICS1(F).
4180  unsigned StartArg = 0;
4181  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4182    StartArg = 1;
4183
4184  // C++ [over.match.best]p1:
4185  //   A viable function F1 is defined to be a better function than another
4186  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4187  //   conversion sequence than ICSi(F2), and then...
4188  unsigned NumArgs = Cand1.Conversions.size();
4189  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4190  bool HasBetterConversion = false;
4191  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4192    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4193                                               Cand2.Conversions[ArgIdx])) {
4194    case ImplicitConversionSequence::Better:
4195      // Cand1 has a better conversion sequence.
4196      HasBetterConversion = true;
4197      break;
4198
4199    case ImplicitConversionSequence::Worse:
4200      // Cand1 can't be better than Cand2.
4201      return false;
4202
4203    case ImplicitConversionSequence::Indistinguishable:
4204      // Do nothing.
4205      break;
4206    }
4207  }
4208
4209  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4210  //       ICSj(F2), or, if not that,
4211  if (HasBetterConversion)
4212    return true;
4213
4214  //     - F1 is a non-template function and F2 is a function template
4215  //       specialization, or, if not that,
4216  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4217      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4218    return true;
4219
4220  //   -- F1 and F2 are function template specializations, and the function
4221  //      template for F1 is more specialized than the template for F2
4222  //      according to the partial ordering rules described in 14.5.5.2, or,
4223  //      if not that,
4224  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4225      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4226    if (FunctionTemplateDecl *BetterTemplate
4227          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4228                                       Cand2.Function->getPrimaryTemplate(),
4229                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4230                                                             : TPOC_Call))
4231      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4232
4233  //   -- the context is an initialization by user-defined conversion
4234  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4235  //      from the return type of F1 to the destination type (i.e.,
4236  //      the type of the entity being initialized) is a better
4237  //      conversion sequence than the standard conversion sequence
4238  //      from the return type of F2 to the destination type.
4239  if (Cand1.Function && Cand2.Function &&
4240      isa<CXXConversionDecl>(Cand1.Function) &&
4241      isa<CXXConversionDecl>(Cand2.Function)) {
4242    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4243                                               Cand2.FinalConversion)) {
4244    case ImplicitConversionSequence::Better:
4245      // Cand1 has a better conversion sequence.
4246      return true;
4247
4248    case ImplicitConversionSequence::Worse:
4249      // Cand1 can't be better than Cand2.
4250      return false;
4251
4252    case ImplicitConversionSequence::Indistinguishable:
4253      // Do nothing
4254      break;
4255    }
4256  }
4257
4258  return false;
4259}
4260
4261/// \brief Computes the best viable function (C++ 13.3.3)
4262/// within an overload candidate set.
4263///
4264/// \param CandidateSet the set of candidate functions.
4265///
4266/// \param Loc the location of the function name (or operator symbol) for
4267/// which overload resolution occurs.
4268///
4269/// \param Best f overload resolution was successful or found a deleted
4270/// function, Best points to the candidate function found.
4271///
4272/// \returns The result of overload resolution.
4273OverloadingResult Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4274                                           SourceLocation Loc,
4275                                        OverloadCandidateSet::iterator& Best) {
4276  // Find the best viable function.
4277  Best = CandidateSet.end();
4278  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4279       Cand != CandidateSet.end(); ++Cand) {
4280    if (Cand->Viable) {
4281      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4282        Best = Cand;
4283    }
4284  }
4285
4286  // If we didn't find any viable functions, abort.
4287  if (Best == CandidateSet.end())
4288    return OR_No_Viable_Function;
4289
4290  // Make sure that this function is better than every other viable
4291  // function. If not, we have an ambiguity.
4292  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4293       Cand != CandidateSet.end(); ++Cand) {
4294    if (Cand->Viable &&
4295        Cand != Best &&
4296        !isBetterOverloadCandidate(*Best, *Cand)) {
4297      Best = CandidateSet.end();
4298      return OR_Ambiguous;
4299    }
4300  }
4301
4302  // Best is the best viable function.
4303  if (Best->Function &&
4304      (Best->Function->isDeleted() ||
4305       Best->Function->getAttr<UnavailableAttr>()))
4306    return OR_Deleted;
4307
4308  // C++ [basic.def.odr]p2:
4309  //   An overloaded function is used if it is selected by overload resolution
4310  //   when referred to from a potentially-evaluated expression. [Note: this
4311  //   covers calls to named functions (5.2.2), operator overloading
4312  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4313  //   placement new (5.3.4), as well as non-default initialization (8.5).
4314  if (Best->Function)
4315    MarkDeclarationReferenced(Loc, Best->Function);
4316  return OR_Success;
4317}
4318
4319namespace {
4320
4321enum OverloadCandidateKind {
4322  oc_function,
4323  oc_method,
4324  oc_constructor,
4325  oc_function_template,
4326  oc_method_template,
4327  oc_constructor_template,
4328  oc_implicit_default_constructor,
4329  oc_implicit_copy_constructor,
4330  oc_implicit_copy_assignment
4331};
4332
4333OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
4334                                                FunctionDecl *Fn,
4335                                                std::string &Description) {
4336  bool isTemplate = false;
4337
4338  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
4339    isTemplate = true;
4340    Description = S.getTemplateArgumentBindingsText(
4341      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
4342  }
4343
4344  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
4345    if (!Ctor->isImplicit())
4346      return isTemplate ? oc_constructor_template : oc_constructor;
4347
4348    return Ctor->isCopyConstructor() ? oc_implicit_copy_constructor
4349                                     : oc_implicit_default_constructor;
4350  }
4351
4352  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
4353    // This actually gets spelled 'candidate function' for now, but
4354    // it doesn't hurt to split it out.
4355    if (!Meth->isImplicit())
4356      return isTemplate ? oc_method_template : oc_method;
4357
4358    assert(Meth->isCopyAssignment()
4359           && "implicit method is not copy assignment operator?");
4360    return oc_implicit_copy_assignment;
4361  }
4362
4363  return isTemplate ? oc_function_template : oc_function;
4364}
4365
4366} // end anonymous namespace
4367
4368// Notes the location of an overload candidate.
4369void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
4370  std::string FnDesc;
4371  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
4372  Diag(Fn->getLocation(), diag::note_ovl_candidate)
4373    << (unsigned) K << FnDesc;
4374}
4375
4376/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
4377/// "lead" diagnostic; it will be given two arguments, the source and
4378/// target types of the conversion.
4379void Sema::DiagnoseAmbiguousConversion(const ImplicitConversionSequence &ICS,
4380                                       SourceLocation CaretLoc,
4381                                       const PartialDiagnostic &PDiag) {
4382  Diag(CaretLoc, PDiag)
4383    << ICS.Ambiguous.getFromType() << ICS.Ambiguous.getToType();
4384  for (AmbiguousConversionSequence::const_iterator
4385         I = ICS.Ambiguous.begin(), E = ICS.Ambiguous.end(); I != E; ++I) {
4386    NoteOverloadCandidate(*I);
4387  }
4388}
4389
4390namespace {
4391
4392void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
4393  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
4394  assert(Conv.isBad());
4395  assert(Cand->Function && "for now, candidate must be a function");
4396  FunctionDecl *Fn = Cand->Function;
4397
4398  // There's a conversion slot for the object argument if this is a
4399  // non-constructor method.  Note that 'I' corresponds the
4400  // conversion-slot index.
4401  bool isObjectArgument = false;
4402  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
4403    if (I == 0)
4404      isObjectArgument = true;
4405    else
4406      I--;
4407  }
4408
4409  std::string FnDesc;
4410  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4411
4412  Expr *FromExpr = Conv.Bad.FromExpr;
4413  QualType FromTy = Conv.Bad.getFromType();
4414  QualType ToTy = Conv.Bad.getToType();
4415
4416  // Do some hand-waving analysis to see if the non-viability is due to a
4417  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
4418  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
4419  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
4420    CToTy = RT->getPointeeType();
4421  else {
4422    // TODO: detect and diagnose the full richness of const mismatches.
4423    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
4424      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
4425        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
4426  }
4427
4428  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
4429      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
4430    // It is dumb that we have to do this here.
4431    while (isa<ArrayType>(CFromTy))
4432      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
4433    while (isa<ArrayType>(CToTy))
4434      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
4435
4436    Qualifiers FromQs = CFromTy.getQualifiers();
4437    Qualifiers ToQs = CToTy.getQualifiers();
4438
4439    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
4440      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
4441        << (unsigned) FnKind << FnDesc
4442        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4443        << FromTy
4444        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
4445        << (unsigned) isObjectArgument << I+1;
4446      return;
4447    }
4448
4449    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4450    assert(CVR && "unexpected qualifiers mismatch");
4451
4452    if (isObjectArgument) {
4453      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
4454        << (unsigned) FnKind << FnDesc
4455        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4456        << FromTy << (CVR - 1);
4457    } else {
4458      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
4459        << (unsigned) FnKind << FnDesc
4460        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4461        << FromTy << (CVR - 1) << I+1;
4462    }
4463    return;
4464  }
4465
4466  // TODO: specialize more based on the kind of mismatch
4467  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv)
4468    << (unsigned) FnKind << FnDesc
4469    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
4470    << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
4471}
4472
4473void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
4474                           unsigned NumFormalArgs) {
4475  // TODO: treat calls to a missing default constructor as a special case
4476
4477  FunctionDecl *Fn = Cand->Function;
4478  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
4479
4480  unsigned MinParams = Fn->getMinRequiredArguments();
4481
4482  // at least / at most / exactly
4483  unsigned mode, modeCount;
4484  if (NumFormalArgs < MinParams) {
4485    assert(Cand->FailureKind == ovl_fail_too_few_arguments);
4486    if (MinParams != FnTy->getNumArgs() || FnTy->isVariadic())
4487      mode = 0; // "at least"
4488    else
4489      mode = 2; // "exactly"
4490    modeCount = MinParams;
4491  } else {
4492    assert(Cand->FailureKind == ovl_fail_too_many_arguments);
4493    if (MinParams != FnTy->getNumArgs())
4494      mode = 1; // "at most"
4495    else
4496      mode = 2; // "exactly"
4497    modeCount = FnTy->getNumArgs();
4498  }
4499
4500  std::string Description;
4501  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
4502
4503  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
4504    << (unsigned) FnKind << Description << mode << modeCount << NumFormalArgs;
4505}
4506
4507void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
4508                           Expr **Args, unsigned NumArgs) {
4509  FunctionDecl *Fn = Cand->Function;
4510
4511  // Note deleted candidates, but only if they're viable.
4512  if (Cand->Viable && (Fn->isDeleted() || Fn->hasAttr<UnavailableAttr>())) {
4513    std::string FnDesc;
4514    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
4515
4516    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
4517      << FnKind << FnDesc << Fn->isDeleted();
4518    return;
4519  }
4520
4521  // We don't really have anything else to say about viable candidates.
4522  if (Cand->Viable) {
4523    S.NoteOverloadCandidate(Fn);
4524    return;
4525  }
4526
4527  switch (Cand->FailureKind) {
4528  case ovl_fail_too_many_arguments:
4529  case ovl_fail_too_few_arguments:
4530    return DiagnoseArityMismatch(S, Cand, NumArgs);
4531
4532  case ovl_fail_bad_deduction:
4533    return S.NoteOverloadCandidate(Fn);
4534
4535  case ovl_fail_bad_conversion:
4536    for (unsigned I = 0, N = Cand->Conversions.size(); I != N; ++I)
4537      if (Cand->Conversions[I].isBad())
4538        return DiagnoseBadConversion(S, Cand, I);
4539
4540    // FIXME: this currently happens when we're called from SemaInit
4541    // when user-conversion overload fails.  Figure out how to handle
4542    // those conditions and diagnose them well.
4543    return S.NoteOverloadCandidate(Fn);
4544  }
4545}
4546
4547void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
4548  // Desugar the type of the surrogate down to a function type,
4549  // retaining as many typedefs as possible while still showing
4550  // the function type (and, therefore, its parameter types).
4551  QualType FnType = Cand->Surrogate->getConversionType();
4552  bool isLValueReference = false;
4553  bool isRValueReference = false;
4554  bool isPointer = false;
4555  if (const LValueReferenceType *FnTypeRef =
4556        FnType->getAs<LValueReferenceType>()) {
4557    FnType = FnTypeRef->getPointeeType();
4558    isLValueReference = true;
4559  } else if (const RValueReferenceType *FnTypeRef =
4560               FnType->getAs<RValueReferenceType>()) {
4561    FnType = FnTypeRef->getPointeeType();
4562    isRValueReference = true;
4563  }
4564  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4565    FnType = FnTypePtr->getPointeeType();
4566    isPointer = true;
4567  }
4568  // Desugar down to a function type.
4569  FnType = QualType(FnType->getAs<FunctionType>(), 0);
4570  // Reconstruct the pointer/reference as appropriate.
4571  if (isPointer) FnType = S.Context.getPointerType(FnType);
4572  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
4573  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
4574
4575  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
4576    << FnType;
4577}
4578
4579void NoteBuiltinOperatorCandidate(Sema &S,
4580                                  const char *Opc,
4581                                  SourceLocation OpLoc,
4582                                  OverloadCandidate *Cand) {
4583  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
4584  std::string TypeStr("operator");
4585  TypeStr += Opc;
4586  TypeStr += "(";
4587  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4588  if (Cand->Conversions.size() == 1) {
4589    TypeStr += ")";
4590    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
4591  } else {
4592    TypeStr += ", ";
4593    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4594    TypeStr += ")";
4595    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
4596  }
4597}
4598
4599void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
4600                                  OverloadCandidate *Cand) {
4601  unsigned NoOperands = Cand->Conversions.size();
4602  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4603    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4604    if (ICS.isBad()) break; // all meaningless after first invalid
4605    if (!ICS.isAmbiguous()) continue;
4606
4607    S.DiagnoseAmbiguousConversion(ICS, OpLoc,
4608                              PDiag(diag::note_ambiguous_type_conversion));
4609  }
4610}
4611
4612SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
4613  if (Cand->Function)
4614    return Cand->Function->getLocation();
4615  if (Cand->IsSurrogate)
4616    return Cand->Surrogate->getLocation();
4617  return SourceLocation();
4618}
4619
4620struct CompareOverloadCandidatesForDisplay {
4621  Sema &S;
4622  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
4623
4624  bool operator()(const OverloadCandidate *L,
4625                  const OverloadCandidate *R) {
4626    // Fast-path this check.
4627    if (L == R) return false;
4628
4629    // Order first by viability.
4630    if (L->Viable) {
4631      if (!R->Viable) return true;
4632
4633      // TODO: introduce a tri-valued comparison for overload
4634      // candidates.  Would be more worthwhile if we had a sort
4635      // that could exploit it.
4636      if (S.isBetterOverloadCandidate(*L, *R)) return true;
4637      if (S.isBetterOverloadCandidate(*R, *L)) return false;
4638    } else if (R->Viable)
4639      return false;
4640
4641    assert(L->Viable == R->Viable);
4642
4643    // Criteria by which we can sort non-viable candidates:
4644    if (!L->Viable) {
4645      // 1. Arity mismatches come after other candidates.
4646      if (L->FailureKind == ovl_fail_too_many_arguments ||
4647          L->FailureKind == ovl_fail_too_few_arguments)
4648        return false;
4649      if (R->FailureKind == ovl_fail_too_many_arguments ||
4650          R->FailureKind == ovl_fail_too_few_arguments)
4651        return true;
4652
4653      // TODO: others?
4654    }
4655
4656    // Sort everything else by location.
4657    SourceLocation LLoc = GetLocationForCandidate(L);
4658    SourceLocation RLoc = GetLocationForCandidate(R);
4659
4660    // Put candidates without locations (e.g. builtins) at the end.
4661    if (LLoc.isInvalid()) return false;
4662    if (RLoc.isInvalid()) return true;
4663
4664    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
4665  }
4666};
4667
4668} // end anonymous namespace
4669
4670/// PrintOverloadCandidates - When overload resolution fails, prints
4671/// diagnostic messages containing the candidates in the candidate
4672/// set.
4673void
4674Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4675                              OverloadCandidateDisplayKind OCD,
4676                              Expr **Args, unsigned NumArgs,
4677                              const char *Opc,
4678                              SourceLocation OpLoc) {
4679  // Sort the candidates by viability and position.  Sorting directly would
4680  // be prohibitive, so we make a set of pointers and sort those.
4681  llvm::SmallVector<OverloadCandidate*, 32> Cands;
4682  if (OCD == OCD_AllCandidates) Cands.reserve(CandidateSet.size());
4683  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4684                                  LastCand = CandidateSet.end();
4685       Cand != LastCand; ++Cand)
4686    if (Cand->Viable || OCD == OCD_AllCandidates)
4687      Cands.push_back(Cand);
4688  std::sort(Cands.begin(), Cands.end(),
4689            CompareOverloadCandidatesForDisplay(*this));
4690
4691  bool ReportedAmbiguousConversions = false;
4692
4693  llvm::SmallVectorImpl<OverloadCandidate*>::iterator I, E;
4694  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
4695    OverloadCandidate *Cand = *I;
4696
4697    if (Cand->Function)
4698      NoteFunctionCandidate(*this, Cand, Args, NumArgs);
4699    else if (Cand->IsSurrogate)
4700      NoteSurrogateCandidate(*this, Cand);
4701
4702    // This a builtin candidate.  We do not, in general, want to list
4703    // every possible builtin candidate.
4704    else if (Cand->Viable) {
4705      // Generally we only see ambiguities including viable builtin
4706      // operators if overload resolution got screwed up by an
4707      // ambiguous user-defined conversion.
4708      //
4709      // FIXME: It's quite possible for different conversions to see
4710      // different ambiguities, though.
4711      if (!ReportedAmbiguousConversions) {
4712        NoteAmbiguousUserConversions(*this, OpLoc, Cand);
4713        ReportedAmbiguousConversions = true;
4714      }
4715
4716      // If this is a viable builtin, print it.
4717      NoteBuiltinOperatorCandidate(*this, Opc, OpLoc, Cand);
4718    }
4719  }
4720}
4721
4722/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4723/// an overloaded function (C++ [over.over]), where @p From is an
4724/// expression with overloaded function type and @p ToType is the type
4725/// we're trying to resolve to. For example:
4726///
4727/// @code
4728/// int f(double);
4729/// int f(int);
4730///
4731/// int (*pfd)(double) = f; // selects f(double)
4732/// @endcode
4733///
4734/// This routine returns the resulting FunctionDecl if it could be
4735/// resolved, and NULL otherwise. When @p Complain is true, this
4736/// routine will emit diagnostics if there is an error.
4737FunctionDecl *
4738Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4739                                         bool Complain) {
4740  QualType FunctionType = ToType;
4741  bool IsMember = false;
4742  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4743    FunctionType = ToTypePtr->getPointeeType();
4744  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4745    FunctionType = ToTypeRef->getPointeeType();
4746  else if (const MemberPointerType *MemTypePtr =
4747                    ToType->getAs<MemberPointerType>()) {
4748    FunctionType = MemTypePtr->getPointeeType();
4749    IsMember = true;
4750  }
4751
4752  // We only look at pointers or references to functions.
4753  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4754  if (!FunctionType->isFunctionType())
4755    return 0;
4756
4757  // Find the actual overloaded function declaration.
4758
4759  // C++ [over.over]p1:
4760  //   [...] [Note: any redundant set of parentheses surrounding the
4761  //   overloaded function name is ignored (5.1). ]
4762  Expr *OvlExpr = From->IgnoreParens();
4763
4764  // C++ [over.over]p1:
4765  //   [...] The overloaded function name can be preceded by the &
4766  //   operator.
4767  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4768    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4769      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4770  }
4771
4772  bool HasExplicitTemplateArgs = false;
4773  TemplateArgumentListInfo ExplicitTemplateArgs;
4774
4775  llvm::SmallVector<NamedDecl*,8> Fns;
4776
4777  // Look into the overloaded expression.
4778  if (UnresolvedLookupExpr *UL
4779               = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) {
4780    Fns.append(UL->decls_begin(), UL->decls_end());
4781    if (UL->hasExplicitTemplateArgs()) {
4782      HasExplicitTemplateArgs = true;
4783      UL->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4784    }
4785  } else if (UnresolvedMemberExpr *ME
4786               = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) {
4787    Fns.append(ME->decls_begin(), ME->decls_end());
4788    if (ME->hasExplicitTemplateArgs()) {
4789      HasExplicitTemplateArgs = true;
4790      ME->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4791    }
4792  }
4793
4794  // If we didn't actually find anything, we're done.
4795  if (Fns.empty())
4796    return 0;
4797
4798  // Look through all of the overloaded functions, searching for one
4799  // whose type matches exactly.
4800  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4801  bool FoundNonTemplateFunction = false;
4802  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
4803         E = Fns.end(); I != E; ++I) {
4804    // Look through any using declarations to find the underlying function.
4805    NamedDecl *Fn = (*I)->getUnderlyingDecl();
4806
4807    // C++ [over.over]p3:
4808    //   Non-member functions and static member functions match
4809    //   targets of type "pointer-to-function" or "reference-to-function."
4810    //   Nonstatic member functions match targets of
4811    //   type "pointer-to-member-function."
4812    // Note that according to DR 247, the containing class does not matter.
4813
4814    if (FunctionTemplateDecl *FunctionTemplate
4815          = dyn_cast<FunctionTemplateDecl>(Fn)) {
4816      if (CXXMethodDecl *Method
4817            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4818        // Skip non-static function templates when converting to pointer, and
4819        // static when converting to member pointer.
4820        if (Method->isStatic() == IsMember)
4821          continue;
4822      } else if (IsMember)
4823        continue;
4824
4825      // C++ [over.over]p2:
4826      //   If the name is a function template, template argument deduction is
4827      //   done (14.8.2.2), and if the argument deduction succeeds, the
4828      //   resulting template argument list is used to generate a single
4829      //   function template specialization, which is added to the set of
4830      //   overloaded functions considered.
4831      // FIXME: We don't really want to build the specialization here, do we?
4832      FunctionDecl *Specialization = 0;
4833      TemplateDeductionInfo Info(Context);
4834      if (TemplateDeductionResult Result
4835            = DeduceTemplateArguments(FunctionTemplate,
4836                       (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0),
4837                                      FunctionType, Specialization, Info)) {
4838        // FIXME: make a note of the failed deduction for diagnostics.
4839        (void)Result;
4840      } else {
4841        // FIXME: If the match isn't exact, shouldn't we just drop this as
4842        // a candidate? Find a testcase before changing the code.
4843        assert(FunctionType
4844                 == Context.getCanonicalType(Specialization->getType()));
4845        Matches.insert(
4846                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4847      }
4848
4849      continue;
4850    }
4851
4852    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4853      // Skip non-static functions when converting to pointer, and static
4854      // when converting to member pointer.
4855      if (Method->isStatic() == IsMember)
4856        continue;
4857
4858      // If we have explicit template arguments, skip non-templates.
4859      if (HasExplicitTemplateArgs)
4860        continue;
4861    } else if (IsMember)
4862      continue;
4863
4864    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
4865      QualType ResultTy;
4866      if (Context.hasSameUnqualifiedType(FunctionType, FunDecl->getType()) ||
4867          IsNoReturnConversion(Context, FunDecl->getType(), FunctionType,
4868                               ResultTy)) {
4869        Matches.insert(cast<FunctionDecl>(FunDecl->getCanonicalDecl()));
4870        FoundNonTemplateFunction = true;
4871      }
4872    }
4873  }
4874
4875  // If there were 0 or 1 matches, we're done.
4876  if (Matches.empty())
4877    return 0;
4878  else if (Matches.size() == 1) {
4879    FunctionDecl *Result = *Matches.begin();
4880    MarkDeclarationReferenced(From->getLocStart(), Result);
4881    return Result;
4882  }
4883
4884  // C++ [over.over]p4:
4885  //   If more than one function is selected, [...]
4886  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4887  if (!FoundNonTemplateFunction) {
4888    //   [...] and any given function template specialization F1 is
4889    //   eliminated if the set contains a second function template
4890    //   specialization whose function template is more specialized
4891    //   than the function template of F1 according to the partial
4892    //   ordering rules of 14.5.5.2.
4893
4894    // The algorithm specified above is quadratic. We instead use a
4895    // two-pass algorithm (similar to the one used to identify the
4896    // best viable function in an overload set) that identifies the
4897    // best function template (if it exists).
4898    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4899                                                         Matches.end());
4900    FunctionDecl *Result =
4901        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4902                           TPOC_Other, From->getLocStart(),
4903                           PDiag(),
4904                           PDiag(diag::err_addr_ovl_ambiguous)
4905                               << TemplateMatches[0]->getDeclName(),
4906                           PDiag(diag::note_ovl_candidate)
4907                               << (unsigned) oc_function_template);
4908    MarkDeclarationReferenced(From->getLocStart(), Result);
4909    return Result;
4910  }
4911
4912  //   [...] any function template specializations in the set are
4913  //   eliminated if the set also contains a non-template function, [...]
4914  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4915  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4916    if ((*M)->getPrimaryTemplate() == 0)
4917      RemainingMatches.push_back(*M);
4918
4919  // [...] After such eliminations, if any, there shall remain exactly one
4920  // selected function.
4921  if (RemainingMatches.size() == 1) {
4922    FunctionDecl *Result = RemainingMatches.front();
4923    MarkDeclarationReferenced(From->getLocStart(), Result);
4924    return Result;
4925  }
4926
4927  // FIXME: We should probably return the same thing that BestViableFunction
4928  // returns (even if we issue the diagnostics here).
4929  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4930    << RemainingMatches[0]->getDeclName();
4931  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4932    NoteOverloadCandidate(RemainingMatches[I]);
4933  return 0;
4934}
4935
4936/// \brief Given an expression that refers to an overloaded function, try to
4937/// resolve that overloaded function expression down to a single function.
4938///
4939/// This routine can only resolve template-ids that refer to a single function
4940/// template, where that template-id refers to a single template whose template
4941/// arguments are either provided by the template-id or have defaults,
4942/// as described in C++0x [temp.arg.explicit]p3.
4943FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization(Expr *From) {
4944  // C++ [over.over]p1:
4945  //   [...] [Note: any redundant set of parentheses surrounding the
4946  //   overloaded function name is ignored (5.1). ]
4947  Expr *OvlExpr = From->IgnoreParens();
4948
4949  // C++ [over.over]p1:
4950  //   [...] The overloaded function name can be preceded by the &
4951  //   operator.
4952  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4953    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4954      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4955  }
4956
4957  bool HasExplicitTemplateArgs = false;
4958  TemplateArgumentListInfo ExplicitTemplateArgs;
4959
4960  llvm::SmallVector<NamedDecl*,8> Fns;
4961
4962  // Look into the overloaded expression.
4963  if (UnresolvedLookupExpr *UL
4964      = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) {
4965    Fns.append(UL->decls_begin(), UL->decls_end());
4966    if (UL->hasExplicitTemplateArgs()) {
4967      HasExplicitTemplateArgs = true;
4968      UL->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4969    }
4970  } else if (UnresolvedMemberExpr *ME
4971             = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) {
4972    Fns.append(ME->decls_begin(), ME->decls_end());
4973    if (ME->hasExplicitTemplateArgs()) {
4974      HasExplicitTemplateArgs = true;
4975      ME->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4976    }
4977  }
4978
4979  // If we didn't actually find any template-ids, we're done.
4980  if (Fns.empty() || !HasExplicitTemplateArgs)
4981    return 0;
4982
4983  // Look through all of the overloaded functions, searching for one
4984  // whose type matches exactly.
4985  FunctionDecl *Matched = 0;
4986  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
4987       E = Fns.end(); I != E; ++I) {
4988    // C++0x [temp.arg.explicit]p3:
4989    //   [...] In contexts where deduction is done and fails, or in contexts
4990    //   where deduction is not done, if a template argument list is
4991    //   specified and it, along with any default template arguments,
4992    //   identifies a single function template specialization, then the
4993    //   template-id is an lvalue for the function template specialization.
4994    FunctionTemplateDecl *FunctionTemplate = cast<FunctionTemplateDecl>(*I);
4995
4996    // C++ [over.over]p2:
4997    //   If the name is a function template, template argument deduction is
4998    //   done (14.8.2.2), and if the argument deduction succeeds, the
4999    //   resulting template argument list is used to generate a single
5000    //   function template specialization, which is added to the set of
5001    //   overloaded functions considered.
5002    FunctionDecl *Specialization = 0;
5003    TemplateDeductionInfo Info(Context);
5004    if (TemplateDeductionResult Result
5005          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
5006                                    Specialization, Info)) {
5007      // FIXME: make a note of the failed deduction for diagnostics.
5008      (void)Result;
5009      continue;
5010    }
5011
5012    // Multiple matches; we can't resolve to a single declaration.
5013    if (Matched)
5014      return 0;
5015
5016    Matched = Specialization;
5017  }
5018
5019  return Matched;
5020}
5021
5022/// \brief Add a single candidate to the overload set.
5023static void AddOverloadedCallCandidate(Sema &S,
5024                                       NamedDecl *Callee,
5025                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
5026                                       Expr **Args, unsigned NumArgs,
5027                                       OverloadCandidateSet &CandidateSet,
5028                                       bool PartialOverloading) {
5029  if (isa<UsingShadowDecl>(Callee))
5030    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
5031
5032  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
5033    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
5034    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
5035                           PartialOverloading);
5036    return;
5037  }
5038
5039  if (FunctionTemplateDecl *FuncTemplate
5040      = dyn_cast<FunctionTemplateDecl>(Callee)) {
5041    S.AddTemplateOverloadCandidate(FuncTemplate, ExplicitTemplateArgs,
5042                                   Args, NumArgs, CandidateSet);
5043    return;
5044  }
5045
5046  assert(false && "unhandled case in overloaded call candidate");
5047
5048  // do nothing?
5049}
5050
5051/// \brief Add the overload candidates named by callee and/or found by argument
5052/// dependent lookup to the given overload set.
5053void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
5054                                       Expr **Args, unsigned NumArgs,
5055                                       OverloadCandidateSet &CandidateSet,
5056                                       bool PartialOverloading) {
5057
5058#ifndef NDEBUG
5059  // Verify that ArgumentDependentLookup is consistent with the rules
5060  // in C++0x [basic.lookup.argdep]p3:
5061  //
5062  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
5063  //   and let Y be the lookup set produced by argument dependent
5064  //   lookup (defined as follows). If X contains
5065  //
5066  //     -- a declaration of a class member, or
5067  //
5068  //     -- a block-scope function declaration that is not a
5069  //        using-declaration, or
5070  //
5071  //     -- a declaration that is neither a function or a function
5072  //        template
5073  //
5074  //   then Y is empty.
5075
5076  if (ULE->requiresADL()) {
5077    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5078           E = ULE->decls_end(); I != E; ++I) {
5079      assert(!(*I)->getDeclContext()->isRecord());
5080      assert(isa<UsingShadowDecl>(*I) ||
5081             !(*I)->getDeclContext()->isFunctionOrMethod());
5082      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
5083    }
5084  }
5085#endif
5086
5087  // It would be nice to avoid this copy.
5088  TemplateArgumentListInfo TABuffer;
5089  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5090  if (ULE->hasExplicitTemplateArgs()) {
5091    ULE->copyTemplateArgumentsInto(TABuffer);
5092    ExplicitTemplateArgs = &TABuffer;
5093  }
5094
5095  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
5096         E = ULE->decls_end(); I != E; ++I)
5097    AddOverloadedCallCandidate(*this, *I, ExplicitTemplateArgs,
5098                               Args, NumArgs, CandidateSet,
5099                               PartialOverloading);
5100
5101  if (ULE->requiresADL())
5102    AddArgumentDependentLookupCandidates(ULE->getName(), Args, NumArgs,
5103                                         ExplicitTemplateArgs,
5104                                         CandidateSet,
5105                                         PartialOverloading);
5106}
5107
5108static Sema::OwningExprResult Destroy(Sema &SemaRef, Expr *Fn,
5109                                      Expr **Args, unsigned NumArgs) {
5110  Fn->Destroy(SemaRef.Context);
5111  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5112    Args[Arg]->Destroy(SemaRef.Context);
5113  return SemaRef.ExprError();
5114}
5115
5116/// Attempts to recover from a call where no functions were found.
5117///
5118/// Returns true if new candidates were found.
5119static Sema::OwningExprResult
5120BuildRecoveryCallExpr(Sema &SemaRef, Expr *Fn,
5121                      UnresolvedLookupExpr *ULE,
5122                      SourceLocation LParenLoc,
5123                      Expr **Args, unsigned NumArgs,
5124                      SourceLocation *CommaLocs,
5125                      SourceLocation RParenLoc) {
5126
5127  CXXScopeSpec SS;
5128  if (ULE->getQualifier()) {
5129    SS.setScopeRep(ULE->getQualifier());
5130    SS.setRange(ULE->getQualifierRange());
5131  }
5132
5133  TemplateArgumentListInfo TABuffer;
5134  const TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
5135  if (ULE->hasExplicitTemplateArgs()) {
5136    ULE->copyTemplateArgumentsInto(TABuffer);
5137    ExplicitTemplateArgs = &TABuffer;
5138  }
5139
5140  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
5141                 Sema::LookupOrdinaryName);
5142  if (SemaRef.DiagnoseEmptyLookup(/*Scope=*/0, SS, R))
5143    return Destroy(SemaRef, Fn, Args, NumArgs);
5144
5145  assert(!R.empty() && "lookup results empty despite recovery");
5146
5147  // Build an implicit member call if appropriate.  Just drop the
5148  // casts and such from the call, we don't really care.
5149  Sema::OwningExprResult NewFn = SemaRef.ExprError();
5150  if ((*R.begin())->isCXXClassMember())
5151    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, ExplicitTemplateArgs);
5152  else if (ExplicitTemplateArgs)
5153    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
5154  else
5155    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
5156
5157  if (NewFn.isInvalid())
5158    return Destroy(SemaRef, Fn, Args, NumArgs);
5159
5160  Fn->Destroy(SemaRef.Context);
5161
5162  // This shouldn't cause an infinite loop because we're giving it
5163  // an expression with non-empty lookup results, which should never
5164  // end up here.
5165  return SemaRef.ActOnCallExpr(/*Scope*/ 0, move(NewFn), LParenLoc,
5166                         Sema::MultiExprArg(SemaRef, (void**) Args, NumArgs),
5167                               CommaLocs, RParenLoc);
5168}
5169
5170/// ResolveOverloadedCallFn - Given the call expression that calls Fn
5171/// (which eventually refers to the declaration Func) and the call
5172/// arguments Args/NumArgs, attempt to resolve the function call down
5173/// to a specific function. If overload resolution succeeds, returns
5174/// the function declaration produced by overload
5175/// resolution. Otherwise, emits diagnostics, deletes all of the
5176/// arguments and Fn, and returns NULL.
5177Sema::OwningExprResult
5178Sema::BuildOverloadedCallExpr(Expr *Fn, UnresolvedLookupExpr *ULE,
5179                              SourceLocation LParenLoc,
5180                              Expr **Args, unsigned NumArgs,
5181                              SourceLocation *CommaLocs,
5182                              SourceLocation RParenLoc) {
5183#ifndef NDEBUG
5184  if (ULE->requiresADL()) {
5185    // To do ADL, we must have found an unqualified name.
5186    assert(!ULE->getQualifier() && "qualified name with ADL");
5187
5188    // We don't perform ADL for implicit declarations of builtins.
5189    // Verify that this was correctly set up.
5190    FunctionDecl *F;
5191    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
5192        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
5193        F->getBuiltinID() && F->isImplicit())
5194      assert(0 && "performing ADL for builtin");
5195
5196    // We don't perform ADL in C.
5197    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
5198  }
5199#endif
5200
5201  OverloadCandidateSet CandidateSet;
5202
5203  // Add the functions denoted by the callee to the set of candidate
5204  // functions, including those from argument-dependent lookup.
5205  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
5206
5207  // If we found nothing, try to recover.
5208  // AddRecoveryCallCandidates diagnoses the error itself, so we just
5209  // bailout out if it fails.
5210  if (CandidateSet.empty())
5211    return BuildRecoveryCallExpr(*this, Fn, ULE, LParenLoc, Args, NumArgs,
5212                                 CommaLocs, RParenLoc);
5213
5214  OverloadCandidateSet::iterator Best;
5215  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
5216  case OR_Success: {
5217    FunctionDecl *FDecl = Best->Function;
5218    Fn = FixOverloadedFunctionReference(Fn, FDecl);
5219    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc);
5220  }
5221
5222  case OR_No_Viable_Function:
5223    Diag(Fn->getSourceRange().getBegin(),
5224         diag::err_ovl_no_viable_function_in_call)
5225      << ULE->getName() << Fn->getSourceRange();
5226    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5227    break;
5228
5229  case OR_Ambiguous:
5230    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
5231      << ULE->getName() << Fn->getSourceRange();
5232    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
5233    break;
5234
5235  case OR_Deleted:
5236    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
5237      << Best->Function->isDeleted()
5238      << ULE->getName()
5239      << Fn->getSourceRange();
5240    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5241    break;
5242  }
5243
5244  // Overload resolution failed. Destroy all of the subexpressions and
5245  // return NULL.
5246  Fn->Destroy(Context);
5247  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
5248    Args[Arg]->Destroy(Context);
5249  return ExprError();
5250}
5251
5252static bool IsOverloaded(const Sema::FunctionSet &Functions) {
5253  return Functions.size() > 1 ||
5254    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
5255}
5256
5257/// \brief Create a unary operation that may resolve to an overloaded
5258/// operator.
5259///
5260/// \param OpLoc The location of the operator itself (e.g., '*').
5261///
5262/// \param OpcIn The UnaryOperator::Opcode that describes this
5263/// operator.
5264///
5265/// \param Functions The set of non-member functions that will be
5266/// considered by overload resolution. The caller needs to build this
5267/// set based on the context using, e.g.,
5268/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5269/// set should not contain any member functions; those will be added
5270/// by CreateOverloadedUnaryOp().
5271///
5272/// \param input The input argument.
5273Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
5274                                                     unsigned OpcIn,
5275                                                     FunctionSet &Functions,
5276                                                     ExprArg input) {
5277  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
5278  Expr *Input = (Expr *)input.get();
5279
5280  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
5281  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
5282  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5283
5284  Expr *Args[2] = { Input, 0 };
5285  unsigned NumArgs = 1;
5286
5287  // For post-increment and post-decrement, add the implicit '0' as
5288  // the second argument, so that we know this is a post-increment or
5289  // post-decrement.
5290  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
5291    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
5292    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
5293                                           SourceLocation());
5294    NumArgs = 2;
5295  }
5296
5297  if (Input->isTypeDependent()) {
5298    UnresolvedLookupExpr *Fn
5299      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
5300                                     0, SourceRange(), OpName, OpLoc,
5301                                     /*ADL*/ true, IsOverloaded(Functions));
5302    for (FunctionSet::iterator Func = Functions.begin(),
5303                            FuncEnd = Functions.end();
5304         Func != FuncEnd; ++Func)
5305      Fn->addDecl(*Func);
5306
5307    input.release();
5308    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5309                                                   &Args[0], NumArgs,
5310                                                   Context.DependentTy,
5311                                                   OpLoc));
5312  }
5313
5314  // Build an empty overload set.
5315  OverloadCandidateSet CandidateSet;
5316
5317  // Add the candidates from the given function set.
5318  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
5319
5320  // Add operator candidates that are member functions.
5321  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5322
5323  // Add builtin operator candidates.
5324  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
5325
5326  // Perform overload resolution.
5327  OverloadCandidateSet::iterator Best;
5328  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5329  case OR_Success: {
5330    // We found a built-in operator or an overloaded operator.
5331    FunctionDecl *FnDecl = Best->Function;
5332
5333    if (FnDecl) {
5334      // We matched an overloaded operator. Build a call to that
5335      // operator.
5336
5337      // Convert the arguments.
5338      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5339        if (PerformObjectArgumentInitialization(Input, Method))
5340          return ExprError();
5341      } else {
5342        // Convert the arguments.
5343        OwningExprResult InputInit
5344          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
5345                                                      FnDecl->getParamDecl(0)),
5346                                      SourceLocation(),
5347                                      move(input));
5348        if (InputInit.isInvalid())
5349          return ExprError();
5350
5351        input = move(InputInit);
5352        Input = (Expr *)input.get();
5353      }
5354
5355      // Determine the result type
5356      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
5357
5358      // Build the actual expression node.
5359      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5360                                               SourceLocation());
5361      UsualUnaryConversions(FnExpr);
5362
5363      input.release();
5364      Args[0] = Input;
5365      ExprOwningPtr<CallExpr> TheCall(this,
5366        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5367                                          Args, NumArgs, ResultTy, OpLoc));
5368
5369      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5370                              FnDecl))
5371        return ExprError();
5372
5373      return MaybeBindToTemporary(TheCall.release());
5374    } else {
5375      // We matched a built-in operator. Convert the arguments, then
5376      // break out so that we will build the appropriate built-in
5377      // operator node.
5378        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
5379                                      Best->Conversions[0], AA_Passing))
5380          return ExprError();
5381
5382        break;
5383      }
5384    }
5385
5386    case OR_No_Viable_Function:
5387      // No viable function; fall through to handling this as a
5388      // built-in operator, which will produce an error message for us.
5389      break;
5390
5391    case OR_Ambiguous:
5392      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5393          << UnaryOperator::getOpcodeStr(Opc)
5394          << Input->getSourceRange();
5395      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs,
5396                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
5397      return ExprError();
5398
5399    case OR_Deleted:
5400      Diag(OpLoc, diag::err_ovl_deleted_oper)
5401        << Best->Function->isDeleted()
5402        << UnaryOperator::getOpcodeStr(Opc)
5403        << Input->getSourceRange();
5404      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5405      return ExprError();
5406    }
5407
5408  // Either we found no viable overloaded operator or we matched a
5409  // built-in operator. In either case, fall through to trying to
5410  // build a built-in operation.
5411  input.release();
5412  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
5413}
5414
5415/// \brief Create a binary operation that may resolve to an overloaded
5416/// operator.
5417///
5418/// \param OpLoc The location of the operator itself (e.g., '+').
5419///
5420/// \param OpcIn The BinaryOperator::Opcode that describes this
5421/// operator.
5422///
5423/// \param Functions The set of non-member functions that will be
5424/// considered by overload resolution. The caller needs to build this
5425/// set based on the context using, e.g.,
5426/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
5427/// set should not contain any member functions; those will be added
5428/// by CreateOverloadedBinOp().
5429///
5430/// \param LHS Left-hand argument.
5431/// \param RHS Right-hand argument.
5432Sema::OwningExprResult
5433Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
5434                            unsigned OpcIn,
5435                            FunctionSet &Functions,
5436                            Expr *LHS, Expr *RHS) {
5437  Expr *Args[2] = { LHS, RHS };
5438  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
5439
5440  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
5441  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
5442  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5443
5444  // If either side is type-dependent, create an appropriate dependent
5445  // expression.
5446  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5447    if (Functions.empty()) {
5448      // If there are no functions to store, just build a dependent
5449      // BinaryOperator or CompoundAssignment.
5450      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
5451        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
5452                                                  Context.DependentTy, OpLoc));
5453
5454      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
5455                                                        Context.DependentTy,
5456                                                        Context.DependentTy,
5457                                                        Context.DependentTy,
5458                                                        OpLoc));
5459    }
5460
5461    UnresolvedLookupExpr *Fn
5462      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
5463                                     0, SourceRange(), OpName, OpLoc,
5464                                     /* ADL */ true, IsOverloaded(Functions));
5465
5466    for (FunctionSet::iterator Func = Functions.begin(),
5467                            FuncEnd = Functions.end();
5468         Func != FuncEnd; ++Func)
5469      Fn->addDecl(*Func);
5470
5471    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
5472                                                   Args, 2,
5473                                                   Context.DependentTy,
5474                                                   OpLoc));
5475  }
5476
5477  // If this is the .* operator, which is not overloadable, just
5478  // create a built-in binary operator.
5479  if (Opc == BinaryOperator::PtrMemD)
5480    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5481
5482  // If this is the assignment operator, we only perform overload resolution
5483  // if the left-hand side is a class or enumeration type. This is actually
5484  // a hack. The standard requires that we do overload resolution between the
5485  // various built-in candidates, but as DR507 points out, this can lead to
5486  // problems. So we do it this way, which pretty much follows what GCC does.
5487  // Note that we go the traditional code path for compound assignment forms.
5488  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
5489    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5490
5491  // Build an empty overload set.
5492  OverloadCandidateSet CandidateSet;
5493
5494  // Add the candidates from the given function set.
5495  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
5496
5497  // Add operator candidates that are member functions.
5498  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5499
5500  // Add builtin operator candidates.
5501  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
5502
5503  // Perform overload resolution.
5504  OverloadCandidateSet::iterator Best;
5505  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5506    case OR_Success: {
5507      // We found a built-in operator or an overloaded operator.
5508      FunctionDecl *FnDecl = Best->Function;
5509
5510      if (FnDecl) {
5511        // We matched an overloaded operator. Build a call to that
5512        // operator.
5513
5514        // Convert the arguments.
5515        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
5516          OwningExprResult Arg1
5517            = PerformCopyInitialization(
5518                                        InitializedEntity::InitializeParameter(
5519                                                        FnDecl->getParamDecl(0)),
5520                                        SourceLocation(),
5521                                        Owned(Args[1]));
5522          if (Arg1.isInvalid())
5523            return ExprError();
5524
5525          if (PerformObjectArgumentInitialization(Args[0], Method))
5526            return ExprError();
5527
5528          Args[1] = RHS = Arg1.takeAs<Expr>();
5529        } else {
5530          // Convert the arguments.
5531          OwningExprResult Arg0
5532            = PerformCopyInitialization(
5533                                        InitializedEntity::InitializeParameter(
5534                                                        FnDecl->getParamDecl(0)),
5535                                        SourceLocation(),
5536                                        Owned(Args[0]));
5537          if (Arg0.isInvalid())
5538            return ExprError();
5539
5540          OwningExprResult Arg1
5541            = PerformCopyInitialization(
5542                                        InitializedEntity::InitializeParameter(
5543                                                        FnDecl->getParamDecl(1)),
5544                                        SourceLocation(),
5545                                        Owned(Args[1]));
5546          if (Arg1.isInvalid())
5547            return ExprError();
5548          Args[0] = LHS = Arg0.takeAs<Expr>();
5549          Args[1] = RHS = Arg1.takeAs<Expr>();
5550        }
5551
5552        // Determine the result type
5553        QualType ResultTy
5554          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5555        ResultTy = ResultTy.getNonReferenceType();
5556
5557        // Build the actual expression node.
5558        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5559                                                 OpLoc);
5560        UsualUnaryConversions(FnExpr);
5561
5562        ExprOwningPtr<CXXOperatorCallExpr>
5563          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
5564                                                          Args, 2, ResultTy,
5565                                                          OpLoc));
5566
5567        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
5568                                FnDecl))
5569          return ExprError();
5570
5571        return MaybeBindToTemporary(TheCall.release());
5572      } else {
5573        // We matched a built-in operator. Convert the arguments, then
5574        // break out so that we will build the appropriate built-in
5575        // operator node.
5576        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5577                                      Best->Conversions[0], AA_Passing) ||
5578            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5579                                      Best->Conversions[1], AA_Passing))
5580          return ExprError();
5581
5582        break;
5583      }
5584    }
5585
5586    case OR_No_Viable_Function: {
5587      // C++ [over.match.oper]p9:
5588      //   If the operator is the operator , [...] and there are no
5589      //   viable functions, then the operator is assumed to be the
5590      //   built-in operator and interpreted according to clause 5.
5591      if (Opc == BinaryOperator::Comma)
5592        break;
5593
5594      // For class as left operand for assignment or compound assigment operator
5595      // do not fall through to handling in built-in, but report that no overloaded
5596      // assignment operator found
5597      OwningExprResult Result = ExprError();
5598      if (Args[0]->getType()->isRecordType() &&
5599          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
5600        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
5601             << BinaryOperator::getOpcodeStr(Opc)
5602             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5603      } else {
5604        // No viable function; try to create a built-in operation, which will
5605        // produce an error. Then, show the non-viable candidates.
5606        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5607      }
5608      assert(Result.isInvalid() &&
5609             "C++ binary operator overloading is missing candidates!");
5610      if (Result.isInvalid())
5611        PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5612                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
5613      return move(Result);
5614    }
5615
5616    case OR_Ambiguous:
5617      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5618          << BinaryOperator::getOpcodeStr(Opc)
5619          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5620      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5621                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
5622      return ExprError();
5623
5624    case OR_Deleted:
5625      Diag(OpLoc, diag::err_ovl_deleted_oper)
5626        << Best->Function->isDeleted()
5627        << BinaryOperator::getOpcodeStr(Opc)
5628        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5629      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2);
5630      return ExprError();
5631  }
5632
5633  // We matched a built-in operator; build it.
5634  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5635}
5636
5637Action::OwningExprResult
5638Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5639                                         SourceLocation RLoc,
5640                                         ExprArg Base, ExprArg Idx) {
5641  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5642                    static_cast<Expr*>(Idx.get()) };
5643  DeclarationName OpName =
5644      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5645
5646  // If either side is type-dependent, create an appropriate dependent
5647  // expression.
5648  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5649
5650    UnresolvedLookupExpr *Fn
5651      = UnresolvedLookupExpr::Create(Context, /*Dependent*/ true,
5652                                     0, SourceRange(), OpName, LLoc,
5653                                     /*ADL*/ true, /*Overloaded*/ false);
5654    // Can't add any actual overloads yet
5655
5656    Base.release();
5657    Idx.release();
5658    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5659                                                   Args, 2,
5660                                                   Context.DependentTy,
5661                                                   RLoc));
5662  }
5663
5664  // Build an empty overload set.
5665  OverloadCandidateSet CandidateSet;
5666
5667  // Subscript can only be overloaded as a member function.
5668
5669  // Add operator candidates that are member functions.
5670  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5671
5672  // Add builtin operator candidates.
5673  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5674
5675  // Perform overload resolution.
5676  OverloadCandidateSet::iterator Best;
5677  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5678    case OR_Success: {
5679      // We found a built-in operator or an overloaded operator.
5680      FunctionDecl *FnDecl = Best->Function;
5681
5682      if (FnDecl) {
5683        // We matched an overloaded operator. Build a call to that
5684        // operator.
5685
5686        // Convert the arguments.
5687        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5688        if (PerformObjectArgumentInitialization(Args[0], Method) ||
5689            PerformCopyInitialization(Args[1],
5690                                      FnDecl->getParamDecl(0)->getType(),
5691                                      AA_Passing))
5692          return ExprError();
5693
5694        // Determine the result type
5695        QualType ResultTy
5696          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5697        ResultTy = ResultTy.getNonReferenceType();
5698
5699        // Build the actual expression node.
5700        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5701                                                 LLoc);
5702        UsualUnaryConversions(FnExpr);
5703
5704        Base.release();
5705        Idx.release();
5706        ExprOwningPtr<CXXOperatorCallExpr>
5707          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5708                                                          FnExpr, Args, 2,
5709                                                          ResultTy, RLoc));
5710
5711        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5712                                FnDecl))
5713          return ExprError();
5714
5715        return MaybeBindToTemporary(TheCall.release());
5716      } else {
5717        // We matched a built-in operator. Convert the arguments, then
5718        // break out so that we will build the appropriate built-in
5719        // operator node.
5720        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5721                                      Best->Conversions[0], AA_Passing) ||
5722            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5723                                      Best->Conversions[1], AA_Passing))
5724          return ExprError();
5725
5726        break;
5727      }
5728    }
5729
5730    case OR_No_Viable_Function: {
5731      if (CandidateSet.empty())
5732        Diag(LLoc, diag::err_ovl_no_oper)
5733          << Args[0]->getType() << /*subscript*/ 0
5734          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5735      else
5736        Diag(LLoc, diag::err_ovl_no_viable_subscript)
5737          << Args[0]->getType()
5738          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5739      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5740                              "[]", LLoc);
5741      return ExprError();
5742    }
5743
5744    case OR_Ambiguous:
5745      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5746          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5747      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, 2,
5748                              "[]", LLoc);
5749      return ExprError();
5750
5751    case OR_Deleted:
5752      Diag(LLoc, diag::err_ovl_deleted_oper)
5753        << Best->Function->isDeleted() << "[]"
5754        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5755      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, 2,
5756                              "[]", LLoc);
5757      return ExprError();
5758    }
5759
5760  // We matched a built-in operator; build it.
5761  Base.release();
5762  Idx.release();
5763  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5764                                         Owned(Args[1]), RLoc);
5765}
5766
5767/// BuildCallToMemberFunction - Build a call to a member
5768/// function. MemExpr is the expression that refers to the member
5769/// function (and includes the object parameter), Args/NumArgs are the
5770/// arguments to the function call (not including the object
5771/// parameter). The caller needs to validate that the member
5772/// expression refers to a member function or an overloaded member
5773/// function.
5774Sema::OwningExprResult
5775Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5776                                SourceLocation LParenLoc, Expr **Args,
5777                                unsigned NumArgs, SourceLocation *CommaLocs,
5778                                SourceLocation RParenLoc) {
5779  // Dig out the member expression. This holds both the object
5780  // argument and the member function we're referring to.
5781  Expr *NakedMemExpr = MemExprE->IgnoreParens();
5782
5783  MemberExpr *MemExpr;
5784  CXXMethodDecl *Method = 0;
5785  if (isa<MemberExpr>(NakedMemExpr)) {
5786    MemExpr = cast<MemberExpr>(NakedMemExpr);
5787    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5788  } else {
5789    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
5790
5791    QualType ObjectType = UnresExpr->getBaseType();
5792
5793    // Add overload candidates
5794    OverloadCandidateSet CandidateSet;
5795
5796    // FIXME: avoid copy.
5797    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
5798    if (UnresExpr->hasExplicitTemplateArgs()) {
5799      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
5800      TemplateArgs = &TemplateArgsBuffer;
5801    }
5802
5803    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
5804           E = UnresExpr->decls_end(); I != E; ++I) {
5805
5806      NamedDecl *Func = *I;
5807      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
5808      if (isa<UsingShadowDecl>(Func))
5809        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
5810
5811      if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
5812        // If explicit template arguments were provided, we can't call a
5813        // non-template member function.
5814        if (TemplateArgs)
5815          continue;
5816
5817        AddMethodCandidate(Method, ActingDC, ObjectType, Args, NumArgs,
5818                           CandidateSet, /*SuppressUserConversions=*/false);
5819      } else {
5820        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
5821                                   ActingDC, TemplateArgs,
5822                                   ObjectType, Args, NumArgs,
5823                                   CandidateSet,
5824                                   /*SuppressUsedConversions=*/false);
5825      }
5826    }
5827
5828    DeclarationName DeclName = UnresExpr->getMemberName();
5829
5830    OverloadCandidateSet::iterator Best;
5831    switch (BestViableFunction(CandidateSet, UnresExpr->getLocStart(), Best)) {
5832    case OR_Success:
5833      Method = cast<CXXMethodDecl>(Best->Function);
5834      break;
5835
5836    case OR_No_Viable_Function:
5837      Diag(UnresExpr->getMemberLoc(),
5838           diag::err_ovl_no_viable_member_function_in_call)
5839        << DeclName << MemExprE->getSourceRange();
5840      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5841      // FIXME: Leaking incoming expressions!
5842      return ExprError();
5843
5844    case OR_Ambiguous:
5845      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
5846        << DeclName << MemExprE->getSourceRange();
5847      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5848      // FIXME: Leaking incoming expressions!
5849      return ExprError();
5850
5851    case OR_Deleted:
5852      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
5853        << Best->Function->isDeleted()
5854        << DeclName << MemExprE->getSourceRange();
5855      PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
5856      // FIXME: Leaking incoming expressions!
5857      return ExprError();
5858    }
5859
5860    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
5861
5862    // If overload resolution picked a static member, build a
5863    // non-member call based on that function.
5864    if (Method->isStatic()) {
5865      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
5866                                   Args, NumArgs, RParenLoc);
5867    }
5868
5869    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
5870  }
5871
5872  assert(Method && "Member call to something that isn't a method?");
5873  ExprOwningPtr<CXXMemberCallExpr>
5874    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExprE, Args,
5875                                                  NumArgs,
5876                                  Method->getResultType().getNonReferenceType(),
5877                                  RParenLoc));
5878
5879  // Check for a valid return type.
5880  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5881                          TheCall.get(), Method))
5882    return ExprError();
5883
5884  // Convert the object argument (for a non-static member function call).
5885  Expr *ObjectArg = MemExpr->getBase();
5886  if (!Method->isStatic() &&
5887      PerformObjectArgumentInitialization(ObjectArg, Method))
5888    return ExprError();
5889  MemExpr->setBase(ObjectArg);
5890
5891  // Convert the rest of the arguments
5892  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5893  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5894                              RParenLoc))
5895    return ExprError();
5896
5897  if (CheckFunctionCall(Method, TheCall.get()))
5898    return ExprError();
5899
5900  return MaybeBindToTemporary(TheCall.release());
5901}
5902
5903/// BuildCallToObjectOfClassType - Build a call to an object of class
5904/// type (C++ [over.call.object]), which can end up invoking an
5905/// overloaded function call operator (@c operator()) or performing a
5906/// user-defined conversion on the object argument.
5907Sema::ExprResult
5908Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5909                                   SourceLocation LParenLoc,
5910                                   Expr **Args, unsigned NumArgs,
5911                                   SourceLocation *CommaLocs,
5912                                   SourceLocation RParenLoc) {
5913  assert(Object->getType()->isRecordType() && "Requires object type argument");
5914  const RecordType *Record = Object->getType()->getAs<RecordType>();
5915
5916  // C++ [over.call.object]p1:
5917  //  If the primary-expression E in the function call syntax
5918  //  evaluates to a class object of type "cv T", then the set of
5919  //  candidate functions includes at least the function call
5920  //  operators of T. The function call operators of T are obtained by
5921  //  ordinary lookup of the name operator() in the context of
5922  //  (E).operator().
5923  OverloadCandidateSet CandidateSet;
5924  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5925
5926  if (RequireCompleteType(LParenLoc, Object->getType(),
5927                          PartialDiagnostic(diag::err_incomplete_object_call)
5928                          << Object->getSourceRange()))
5929    return true;
5930
5931  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
5932  LookupQualifiedName(R, Record->getDecl());
5933  R.suppressDiagnostics();
5934
5935  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5936       Oper != OperEnd; ++Oper) {
5937    AddMethodCandidate(*Oper, Object->getType(), Args, NumArgs, CandidateSet,
5938                       /*SuppressUserConversions=*/ false);
5939  }
5940
5941  // C++ [over.call.object]p2:
5942  //   In addition, for each conversion function declared in T of the
5943  //   form
5944  //
5945  //        operator conversion-type-id () cv-qualifier;
5946  //
5947  //   where cv-qualifier is the same cv-qualification as, or a
5948  //   greater cv-qualification than, cv, and where conversion-type-id
5949  //   denotes the type "pointer to function of (P1,...,Pn) returning
5950  //   R", or the type "reference to pointer to function of
5951  //   (P1,...,Pn) returning R", or the type "reference to function
5952  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5953  //   is also considered as a candidate function. Similarly,
5954  //   surrogate call functions are added to the set of candidate
5955  //   functions for each conversion function declared in an
5956  //   accessible base class provided the function is not hidden
5957  //   within T by another intervening declaration.
5958  const UnresolvedSetImpl *Conversions
5959    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
5960  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5961         E = Conversions->end(); I != E; ++I) {
5962    NamedDecl *D = *I;
5963    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
5964    if (isa<UsingShadowDecl>(D))
5965      D = cast<UsingShadowDecl>(D)->getTargetDecl();
5966
5967    // Skip over templated conversion functions; they aren't
5968    // surrogates.
5969    if (isa<FunctionTemplateDecl>(D))
5970      continue;
5971
5972    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
5973
5974    // Strip the reference type (if any) and then the pointer type (if
5975    // any) to get down to what might be a function type.
5976    QualType ConvType = Conv->getConversionType().getNonReferenceType();
5977    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5978      ConvType = ConvPtrType->getPointeeType();
5979
5980    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5981      AddSurrogateCandidate(Conv, ActingContext, Proto,
5982                            Object->getType(), Args, NumArgs,
5983                            CandidateSet);
5984  }
5985
5986  // Perform overload resolution.
5987  OverloadCandidateSet::iterator Best;
5988  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5989  case OR_Success:
5990    // Overload resolution succeeded; we'll build the appropriate call
5991    // below.
5992    break;
5993
5994  case OR_No_Viable_Function:
5995    if (CandidateSet.empty())
5996      Diag(Object->getSourceRange().getBegin(), diag::err_ovl_no_oper)
5997        << Object->getType() << /*call*/ 1
5998        << Object->getSourceRange();
5999    else
6000      Diag(Object->getSourceRange().getBegin(),
6001           diag::err_ovl_no_viable_object_call)
6002        << Object->getType() << Object->getSourceRange();
6003    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6004    break;
6005
6006  case OR_Ambiguous:
6007    Diag(Object->getSourceRange().getBegin(),
6008         diag::err_ovl_ambiguous_object_call)
6009      << Object->getType() << Object->getSourceRange();
6010    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, Args, NumArgs);
6011    break;
6012
6013  case OR_Deleted:
6014    Diag(Object->getSourceRange().getBegin(),
6015         diag::err_ovl_deleted_object_call)
6016      << Best->Function->isDeleted()
6017      << Object->getType() << Object->getSourceRange();
6018    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, Args, NumArgs);
6019    break;
6020  }
6021
6022  if (Best == CandidateSet.end()) {
6023    // We had an error; delete all of the subexpressions and return
6024    // the error.
6025    Object->Destroy(Context);
6026    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6027      Args[ArgIdx]->Destroy(Context);
6028    return true;
6029  }
6030
6031  if (Best->Function == 0) {
6032    // Since there is no function declaration, this is one of the
6033    // surrogate candidates. Dig out the conversion function.
6034    CXXConversionDecl *Conv
6035      = cast<CXXConversionDecl>(
6036                         Best->Conversions[0].UserDefined.ConversionFunction);
6037
6038    // We selected one of the surrogate functions that converts the
6039    // object parameter to a function pointer. Perform the conversion
6040    // on the object argument, then let ActOnCallExpr finish the job.
6041
6042    // Create an implicit member expr to refer to the conversion operator.
6043    // and then call it.
6044    CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(Object, Conv);
6045
6046    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
6047                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
6048                         CommaLocs, RParenLoc).release();
6049  }
6050
6051  // We found an overloaded operator(). Build a CXXOperatorCallExpr
6052  // that calls this method, using Object for the implicit object
6053  // parameter and passing along the remaining arguments.
6054  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6055  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
6056
6057  unsigned NumArgsInProto = Proto->getNumArgs();
6058  unsigned NumArgsToCheck = NumArgs;
6059
6060  // Build the full argument list for the method call (the
6061  // implicit object parameter is placed at the beginning of the
6062  // list).
6063  Expr **MethodArgs;
6064  if (NumArgs < NumArgsInProto) {
6065    NumArgsToCheck = NumArgsInProto;
6066    MethodArgs = new Expr*[NumArgsInProto + 1];
6067  } else {
6068    MethodArgs = new Expr*[NumArgs + 1];
6069  }
6070  MethodArgs[0] = Object;
6071  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6072    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
6073
6074  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
6075                                          SourceLocation());
6076  UsualUnaryConversions(NewFn);
6077
6078  // Once we've built TheCall, all of the expressions are properly
6079  // owned.
6080  QualType ResultTy = Method->getResultType().getNonReferenceType();
6081  ExprOwningPtr<CXXOperatorCallExpr>
6082    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
6083                                                    MethodArgs, NumArgs + 1,
6084                                                    ResultTy, RParenLoc));
6085  delete [] MethodArgs;
6086
6087  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
6088                          Method))
6089    return true;
6090
6091  // We may have default arguments. If so, we need to allocate more
6092  // slots in the call for them.
6093  if (NumArgs < NumArgsInProto)
6094    TheCall->setNumArgs(Context, NumArgsInProto + 1);
6095  else if (NumArgs > NumArgsInProto)
6096    NumArgsToCheck = NumArgsInProto;
6097
6098  bool IsError = false;
6099
6100  // Initialize the implicit object parameter.
6101  IsError |= PerformObjectArgumentInitialization(Object, Method);
6102  TheCall->setArg(0, Object);
6103
6104
6105  // Check the argument types.
6106  for (unsigned i = 0; i != NumArgsToCheck; i++) {
6107    Expr *Arg;
6108    if (i < NumArgs) {
6109      Arg = Args[i];
6110
6111      // Pass the argument.
6112      QualType ProtoArgType = Proto->getArgType(i);
6113      IsError |= PerformCopyInitialization(Arg, ProtoArgType, AA_Passing);
6114    } else {
6115      OwningExprResult DefArg
6116        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
6117      if (DefArg.isInvalid()) {
6118        IsError = true;
6119        break;
6120      }
6121
6122      Arg = DefArg.takeAs<Expr>();
6123    }
6124
6125    TheCall->setArg(i + 1, Arg);
6126  }
6127
6128  // If this is a variadic call, handle args passed through "...".
6129  if (Proto->isVariadic()) {
6130    // Promote the arguments (C99 6.5.2.2p7).
6131    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
6132      Expr *Arg = Args[i];
6133      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
6134      TheCall->setArg(i + 1, Arg);
6135    }
6136  }
6137
6138  if (IsError) return true;
6139
6140  if (CheckFunctionCall(Method, TheCall.get()))
6141    return true;
6142
6143  return MaybeBindToTemporary(TheCall.release()).release();
6144}
6145
6146/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
6147///  (if one exists), where @c Base is an expression of class type and
6148/// @c Member is the name of the member we're trying to find.
6149Sema::OwningExprResult
6150Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
6151  Expr *Base = static_cast<Expr *>(BaseIn.get());
6152  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
6153
6154  // C++ [over.ref]p1:
6155  //
6156  //   [...] An expression x->m is interpreted as (x.operator->())->m
6157  //   for a class object x of type T if T::operator->() exists and if
6158  //   the operator is selected as the best match function by the
6159  //   overload resolution mechanism (13.3).
6160  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
6161  OverloadCandidateSet CandidateSet;
6162  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
6163
6164  if (RequireCompleteType(Base->getLocStart(), Base->getType(),
6165                          PDiag(diag::err_typecheck_incomplete_tag)
6166                            << Base->getSourceRange()))
6167    return ExprError();
6168
6169  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
6170  LookupQualifiedName(R, BaseRecord->getDecl());
6171  R.suppressDiagnostics();
6172
6173  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
6174       Oper != OperEnd; ++Oper) {
6175    NamedDecl *D = *Oper;
6176    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
6177    if (isa<UsingShadowDecl>(D))
6178      D = cast<UsingShadowDecl>(D)->getTargetDecl();
6179
6180    AddMethodCandidate(cast<CXXMethodDecl>(D), ActingContext,
6181                       Base->getType(), 0, 0, CandidateSet,
6182                       /*SuppressUserConversions=*/false);
6183  }
6184
6185  // Perform overload resolution.
6186  OverloadCandidateSet::iterator Best;
6187  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
6188  case OR_Success:
6189    // Overload resolution succeeded; we'll build the call below.
6190    break;
6191
6192  case OR_No_Viable_Function:
6193    if (CandidateSet.empty())
6194      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6195        << Base->getType() << Base->getSourceRange();
6196    else
6197      Diag(OpLoc, diag::err_ovl_no_viable_oper)
6198        << "operator->" << Base->getSourceRange();
6199    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6200    return ExprError();
6201
6202  case OR_Ambiguous:
6203    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
6204      << "->" << Base->getSourceRange();
6205    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Base, 1);
6206    return ExprError();
6207
6208  case OR_Deleted:
6209    Diag(OpLoc,  diag::err_ovl_deleted_oper)
6210      << Best->Function->isDeleted()
6211      << "->" << Base->getSourceRange();
6212    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates, &Base, 1);
6213    return ExprError();
6214  }
6215
6216  // Convert the object parameter.
6217  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
6218  if (PerformObjectArgumentInitialization(Base, Method))
6219    return ExprError();
6220
6221  // No concerns about early exits now.
6222  BaseIn.release();
6223
6224  // Build the operator call.
6225  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
6226                                           SourceLocation());
6227  UsualUnaryConversions(FnExpr);
6228
6229  QualType ResultTy = Method->getResultType().getNonReferenceType();
6230  ExprOwningPtr<CXXOperatorCallExpr>
6231    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
6232                                                    &Base, 1, ResultTy, OpLoc));
6233
6234  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
6235                          Method))
6236          return ExprError();
6237  return move(TheCall);
6238}
6239
6240/// FixOverloadedFunctionReference - E is an expression that refers to
6241/// a C++ overloaded function (possibly with some parentheses and
6242/// perhaps a '&' around it). We have resolved the overloaded function
6243/// to the function declaration Fn, so patch up the expression E to
6244/// refer (possibly indirectly) to Fn. Returns the new expr.
6245Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
6246  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6247    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
6248    if (SubExpr == PE->getSubExpr())
6249      return PE->Retain();
6250
6251    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
6252  }
6253
6254  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6255    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
6256    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
6257                               SubExpr->getType()) &&
6258           "Implicit cast type cannot be determined from overload");
6259    if (SubExpr == ICE->getSubExpr())
6260      return ICE->Retain();
6261
6262    return new (Context) ImplicitCastExpr(ICE->getType(),
6263                                          ICE->getCastKind(),
6264                                          SubExpr,
6265                                          ICE->isLvalueCast());
6266  }
6267
6268  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
6269    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
6270           "Can only take the address of an overloaded function");
6271    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
6272      if (Method->isStatic()) {
6273        // Do nothing: static member functions aren't any different
6274        // from non-member functions.
6275      } else {
6276        // Fix the sub expression, which really has to be an
6277        // UnresolvedLookupExpr holding an overloaded member function
6278        // or template.
6279        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6280        if (SubExpr == UnOp->getSubExpr())
6281          return UnOp->Retain();
6282
6283        assert(isa<DeclRefExpr>(SubExpr)
6284               && "fixed to something other than a decl ref");
6285        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
6286               && "fixed to a member ref with no nested name qualifier");
6287
6288        // We have taken the address of a pointer to member
6289        // function. Perform the computation here so that we get the
6290        // appropriate pointer to member type.
6291        QualType ClassType
6292          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
6293        QualType MemPtrType
6294          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
6295
6296        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6297                                           MemPtrType, UnOp->getOperatorLoc());
6298      }
6299    }
6300    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
6301    if (SubExpr == UnOp->getSubExpr())
6302      return UnOp->Retain();
6303
6304    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
6305                                     Context.getPointerType(SubExpr->getType()),
6306                                       UnOp->getOperatorLoc());
6307  }
6308
6309  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
6310    // FIXME: avoid copy.
6311    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6312    if (ULE->hasExplicitTemplateArgs()) {
6313      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
6314      TemplateArgs = &TemplateArgsBuffer;
6315    }
6316
6317    return DeclRefExpr::Create(Context,
6318                               ULE->getQualifier(),
6319                               ULE->getQualifierRange(),
6320                               Fn,
6321                               ULE->getNameLoc(),
6322                               Fn->getType(),
6323                               TemplateArgs);
6324  }
6325
6326  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
6327    // FIXME: avoid copy.
6328    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
6329    if (MemExpr->hasExplicitTemplateArgs()) {
6330      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
6331      TemplateArgs = &TemplateArgsBuffer;
6332    }
6333
6334    Expr *Base;
6335
6336    // If we're filling in
6337    if (MemExpr->isImplicitAccess()) {
6338      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
6339        return DeclRefExpr::Create(Context,
6340                                   MemExpr->getQualifier(),
6341                                   MemExpr->getQualifierRange(),
6342                                   Fn,
6343                                   MemExpr->getMemberLoc(),
6344                                   Fn->getType(),
6345                                   TemplateArgs);
6346      } else {
6347        SourceLocation Loc = MemExpr->getMemberLoc();
6348        if (MemExpr->getQualifier())
6349          Loc = MemExpr->getQualifierRange().getBegin();
6350        Base = new (Context) CXXThisExpr(Loc,
6351                                         MemExpr->getBaseType(),
6352                                         /*isImplicit=*/true);
6353      }
6354    } else
6355      Base = MemExpr->getBase()->Retain();
6356
6357    return MemberExpr::Create(Context, Base,
6358                              MemExpr->isArrow(),
6359                              MemExpr->getQualifier(),
6360                              MemExpr->getQualifierRange(),
6361                              Fn,
6362                              MemExpr->getMemberLoc(),
6363                              TemplateArgs,
6364                              Fn->getType());
6365  }
6366
6367  assert(false && "Invalid reference to overloaded function");
6368  return E->Retain();
6369}
6370
6371Sema::OwningExprResult Sema::FixOverloadedFunctionReference(OwningExprResult E,
6372                                                            FunctionDecl *Fn) {
6373  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Fn));
6374}
6375
6376} // end namespace clang
6377