SemaOverload.cpp revision f6778cab8aa6004205ed04418f9fba6fa8b0b5b5
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/Lex/Preprocessor.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/TypeOrdering.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/Compiler.h"
27#include <algorithm>
28#include <cstdio>
29
30namespace clang {
31
32/// GetConversionCategory - Retrieve the implicit conversion
33/// category corresponding to the given implicit conversion kind.
34ImplicitConversionCategory
35GetConversionCategory(ImplicitConversionKind Kind) {
36  static const ImplicitConversionCategory
37    Category[(int)ICK_Num_Conversion_Kinds] = {
38    ICC_Identity,
39    ICC_Lvalue_Transformation,
40    ICC_Lvalue_Transformation,
41    ICC_Lvalue_Transformation,
42    ICC_Qualification_Adjustment,
43    ICC_Promotion,
44    ICC_Promotion,
45    ICC_Promotion,
46    ICC_Conversion,
47    ICC_Conversion,
48    ICC_Conversion,
49    ICC_Conversion,
50    ICC_Conversion,
51    ICC_Conversion,
52    ICC_Conversion,
53    ICC_Conversion,
54    ICC_Conversion,
55    ICC_Conversion
56  };
57  return Category[(int)Kind];
58}
59
60/// GetConversionRank - Retrieve the implicit conversion rank
61/// corresponding to the given implicit conversion kind.
62ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
63  static const ImplicitConversionRank
64    Rank[(int)ICK_Num_Conversion_Kinds] = {
65    ICR_Exact_Match,
66    ICR_Exact_Match,
67    ICR_Exact_Match,
68    ICR_Exact_Match,
69    ICR_Exact_Match,
70    ICR_Promotion,
71    ICR_Promotion,
72    ICR_Promotion,
73    ICR_Conversion,
74    ICR_Conversion,
75    ICR_Conversion,
76    ICR_Conversion,
77    ICR_Conversion,
78    ICR_Conversion,
79    ICR_Conversion,
80    ICR_Conversion,
81    ICR_Conversion,
82    ICR_Conversion
83  };
84  return Rank[(int)Kind];
85}
86
87/// GetImplicitConversionName - Return the name of this kind of
88/// implicit conversion.
89const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
90  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
91    "No conversion",
92    "Lvalue-to-rvalue",
93    "Array-to-pointer",
94    "Function-to-pointer",
95    "Qualification",
96    "Integral promotion",
97    "Floating point promotion",
98    "Complex promotion",
99    "Integral conversion",
100    "Floating conversion",
101    "Complex conversion",
102    "Floating-integral conversion",
103    "Complex-real conversion",
104    "Pointer conversion",
105    "Pointer-to-member conversion",
106    "Boolean conversion",
107    "Compatible-types conversion",
108    "Derived-to-base conversion"
109  };
110  return Name[Kind];
111}
112
113/// StandardConversionSequence - Set the standard conversion
114/// sequence to the identity conversion.
115void StandardConversionSequence::setAsIdentityConversion() {
116  First = ICK_Identity;
117  Second = ICK_Identity;
118  Third = ICK_Identity;
119  Deprecated = false;
120  ReferenceBinding = false;
121  DirectBinding = false;
122  RRefBinding = false;
123  CopyConstructor = 0;
124}
125
126/// getRank - Retrieve the rank of this standard conversion sequence
127/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
128/// implicit conversions.
129ImplicitConversionRank StandardConversionSequence::getRank() const {
130  ImplicitConversionRank Rank = ICR_Exact_Match;
131  if  (GetConversionRank(First) > Rank)
132    Rank = GetConversionRank(First);
133  if  (GetConversionRank(Second) > Rank)
134    Rank = GetConversionRank(Second);
135  if  (GetConversionRank(Third) > Rank)
136    Rank = GetConversionRank(Third);
137  return Rank;
138}
139
140/// isPointerConversionToBool - Determines whether this conversion is
141/// a conversion of a pointer or pointer-to-member to bool. This is
142/// used as part of the ranking of standard conversion sequences
143/// (C++ 13.3.3.2p4).
144bool StandardConversionSequence::isPointerConversionToBool() const {
145  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
146  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
147
148  // Note that FromType has not necessarily been transformed by the
149  // array-to-pointer or function-to-pointer implicit conversions, so
150  // check for their presence as well as checking whether FromType is
151  // a pointer.
152  if (ToType->isBooleanType() &&
153      (FromType->isPointerType() || FromType->isBlockPointerType() ||
154       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
155    return true;
156
157  return false;
158}
159
160/// isPointerConversionToVoidPointer - Determines whether this
161/// conversion is a conversion of a pointer to a void pointer. This is
162/// used as part of the ranking of standard conversion sequences (C++
163/// 13.3.3.2p4).
164bool
165StandardConversionSequence::
166isPointerConversionToVoidPointer(ASTContext& Context) const {
167  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
168  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
169
170  // Note that FromType has not necessarily been transformed by the
171  // array-to-pointer implicit conversion, so check for its presence
172  // and redo the conversion to get a pointer.
173  if (First == ICK_Array_To_Pointer)
174    FromType = Context.getArrayDecayedType(FromType);
175
176  if (Second == ICK_Pointer_Conversion)
177    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
178      return ToPtrType->getPointeeType()->isVoidType();
179
180  return false;
181}
182
183/// DebugPrint - Print this standard conversion sequence to standard
184/// error. Useful for debugging overloading issues.
185void StandardConversionSequence::DebugPrint() const {
186  bool PrintedSomething = false;
187  if (First != ICK_Identity) {
188    fprintf(stderr, "%s", GetImplicitConversionName(First));
189    PrintedSomething = true;
190  }
191
192  if (Second != ICK_Identity) {
193    if (PrintedSomething) {
194      fprintf(stderr, " -> ");
195    }
196    fprintf(stderr, "%s", GetImplicitConversionName(Second));
197
198    if (CopyConstructor) {
199      fprintf(stderr, " (by copy constructor)");
200    } else if (DirectBinding) {
201      fprintf(stderr, " (direct reference binding)");
202    } else if (ReferenceBinding) {
203      fprintf(stderr, " (reference binding)");
204    }
205    PrintedSomething = true;
206  }
207
208  if (Third != ICK_Identity) {
209    if (PrintedSomething) {
210      fprintf(stderr, " -> ");
211    }
212    fprintf(stderr, "%s", GetImplicitConversionName(Third));
213    PrintedSomething = true;
214  }
215
216  if (!PrintedSomething) {
217    fprintf(stderr, "No conversions required");
218  }
219}
220
221/// DebugPrint - Print this user-defined conversion sequence to standard
222/// error. Useful for debugging overloading issues.
223void UserDefinedConversionSequence::DebugPrint() const {
224  if (Before.First || Before.Second || Before.Third) {
225    Before.DebugPrint();
226    fprintf(stderr, " -> ");
227  }
228  fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
229  if (After.First || After.Second || After.Third) {
230    fprintf(stderr, " -> ");
231    After.DebugPrint();
232  }
233}
234
235/// DebugPrint - Print this implicit conversion sequence to standard
236/// error. Useful for debugging overloading issues.
237void ImplicitConversionSequence::DebugPrint() const {
238  switch (ConversionKind) {
239  case StandardConversion:
240    fprintf(stderr, "Standard conversion: ");
241    Standard.DebugPrint();
242    break;
243  case UserDefinedConversion:
244    fprintf(stderr, "User-defined conversion: ");
245    UserDefined.DebugPrint();
246    break;
247  case EllipsisConversion:
248    fprintf(stderr, "Ellipsis conversion");
249    break;
250  case BadConversion:
251    fprintf(stderr, "Bad conversion");
252    break;
253  }
254
255  fprintf(stderr, "\n");
256}
257
258// IsOverload - Determine whether the given New declaration is an
259// overload of the Old declaration. This routine returns false if New
260// and Old cannot be overloaded, e.g., if they are functions with the
261// same signature (C++ 1.3.10) or if the Old declaration isn't a
262// function (or overload set). When it does return false and Old is an
263// OverloadedFunctionDecl, MatchedDecl will be set to point to the
264// FunctionDecl that New cannot be overloaded with.
265//
266// Example: Given the following input:
267//
268//   void f(int, float); // #1
269//   void f(int, int); // #2
270//   int f(int, int); // #3
271//
272// When we process #1, there is no previous declaration of "f",
273// so IsOverload will not be used.
274//
275// When we process #2, Old is a FunctionDecl for #1.  By comparing the
276// parameter types, we see that #1 and #2 are overloaded (since they
277// have different signatures), so this routine returns false;
278// MatchedDecl is unchanged.
279//
280// When we process #3, Old is an OverloadedFunctionDecl containing #1
281// and #2. We compare the signatures of #3 to #1 (they're overloaded,
282// so we do nothing) and then #3 to #2. Since the signatures of #3 and
283// #2 are identical (return types of functions are not part of the
284// signature), IsOverload returns false and MatchedDecl will be set to
285// point to the FunctionDecl for #2.
286bool
287Sema::IsOverload(FunctionDecl *New, LookupResult &Previous, NamedDecl *&Match) {
288  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
289         I != E; ++I) {
290    NamedDecl *Old = (*I)->getUnderlyingDecl();
291    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(Old)) {
292      if (!IsOverload(New, OldT->getTemplatedDecl())) {
293        Match = Old;
294        return false;
295      }
296    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(Old)) {
297      if (!IsOverload(New, OldF)) {
298        Match = Old;
299        return false;
300      }
301    } else {
302      // (C++ 13p1):
303      //   Only function declarations can be overloaded; object and type
304      //   declarations cannot be overloaded.
305      Match = Old;
306      return false;
307    }
308  }
309
310  return true;
311}
312
313bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old) {
314  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
315  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
316
317  // C++ [temp.fct]p2:
318  //   A function template can be overloaded with other function templates
319  //   and with normal (non-template) functions.
320  if ((OldTemplate == 0) != (NewTemplate == 0))
321    return true;
322
323  // Is the function New an overload of the function Old?
324  QualType OldQType = Context.getCanonicalType(Old->getType());
325  QualType NewQType = Context.getCanonicalType(New->getType());
326
327  // Compare the signatures (C++ 1.3.10) of the two functions to
328  // determine whether they are overloads. If we find any mismatch
329  // in the signature, they are overloads.
330
331  // If either of these functions is a K&R-style function (no
332  // prototype), then we consider them to have matching signatures.
333  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
334      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
335    return false;
336
337  FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
338  FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
339
340  // The signature of a function includes the types of its
341  // parameters (C++ 1.3.10), which includes the presence or absence
342  // of the ellipsis; see C++ DR 357).
343  if (OldQType != NewQType &&
344      (OldType->getNumArgs() != NewType->getNumArgs() ||
345       OldType->isVariadic() != NewType->isVariadic() ||
346       !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
347                   NewType->arg_type_begin())))
348    return true;
349
350  // C++ [temp.over.link]p4:
351  //   The signature of a function template consists of its function
352  //   signature, its return type and its template parameter list. The names
353  //   of the template parameters are significant only for establishing the
354  //   relationship between the template parameters and the rest of the
355  //   signature.
356  //
357  // We check the return type and template parameter lists for function
358  // templates first; the remaining checks follow.
359  if (NewTemplate &&
360      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
361                                       OldTemplate->getTemplateParameters(),
362                                       false, TPL_TemplateMatch) ||
363       OldType->getResultType() != NewType->getResultType()))
364    return true;
365
366  // If the function is a class member, its signature includes the
367  // cv-qualifiers (if any) on the function itself.
368  //
369  // As part of this, also check whether one of the member functions
370  // is static, in which case they are not overloads (C++
371  // 13.1p2). While not part of the definition of the signature,
372  // this check is important to determine whether these functions
373  // can be overloaded.
374  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
375  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
376  if (OldMethod && NewMethod &&
377      !OldMethod->isStatic() && !NewMethod->isStatic() &&
378      OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
379    return true;
380
381  // The signatures match; this is not an overload.
382  return false;
383}
384
385/// TryImplicitConversion - Attempt to perform an implicit conversion
386/// from the given expression (Expr) to the given type (ToType). This
387/// function returns an implicit conversion sequence that can be used
388/// to perform the initialization. Given
389///
390///   void f(float f);
391///   void g(int i) { f(i); }
392///
393/// this routine would produce an implicit conversion sequence to
394/// describe the initialization of f from i, which will be a standard
395/// conversion sequence containing an lvalue-to-rvalue conversion (C++
396/// 4.1) followed by a floating-integral conversion (C++ 4.9).
397//
398/// Note that this routine only determines how the conversion can be
399/// performed; it does not actually perform the conversion. As such,
400/// it will not produce any diagnostics if no conversion is available,
401/// but will instead return an implicit conversion sequence of kind
402/// "BadConversion".
403///
404/// If @p SuppressUserConversions, then user-defined conversions are
405/// not permitted.
406/// If @p AllowExplicit, then explicit user-defined conversions are
407/// permitted.
408/// If @p ForceRValue, then overloading is performed as if From was an rvalue,
409/// no matter its actual lvalueness.
410/// If @p UserCast, the implicit conversion is being done for a user-specified
411/// cast.
412ImplicitConversionSequence
413Sema::TryImplicitConversion(Expr* From, QualType ToType,
414                            bool SuppressUserConversions,
415                            bool AllowExplicit, bool ForceRValue,
416                            bool InOverloadResolution,
417                            bool UserCast) {
418  ImplicitConversionSequence ICS;
419  OverloadCandidateSet Conversions;
420  OverloadingResult UserDefResult = OR_Success;
421  if (IsStandardConversion(From, ToType, InOverloadResolution, ICS.Standard))
422    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
423  else if (getLangOptions().CPlusPlus &&
424           (UserDefResult = IsUserDefinedConversion(From, ToType,
425                                   ICS.UserDefined,
426                                   Conversions,
427                                   !SuppressUserConversions, AllowExplicit,
428				   ForceRValue, UserCast)) == OR_Success) {
429    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
430    // C++ [over.ics.user]p4:
431    //   A conversion of an expression of class type to the same class
432    //   type is given Exact Match rank, and a conversion of an
433    //   expression of class type to a base class of that type is
434    //   given Conversion rank, in spite of the fact that a copy
435    //   constructor (i.e., a user-defined conversion function) is
436    //   called for those cases.
437    if (CXXConstructorDecl *Constructor
438          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
439      QualType FromCanon
440        = Context.getCanonicalType(From->getType().getUnqualifiedType());
441      QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
442      if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
443        // Turn this into a "standard" conversion sequence, so that it
444        // gets ranked with standard conversion sequences.
445        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
446        ICS.Standard.setAsIdentityConversion();
447        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
448        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
449        ICS.Standard.CopyConstructor = Constructor;
450        if (ToCanon != FromCanon)
451          ICS.Standard.Second = ICK_Derived_To_Base;
452      }
453    }
454
455    // C++ [over.best.ics]p4:
456    //   However, when considering the argument of a user-defined
457    //   conversion function that is a candidate by 13.3.1.3 when
458    //   invoked for the copying of the temporary in the second step
459    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
460    //   13.3.1.6 in all cases, only standard conversion sequences and
461    //   ellipsis conversion sequences are allowed.
462    if (SuppressUserConversions &&
463        ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
464      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
465  } else {
466    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
467    if (UserDefResult == OR_Ambiguous) {
468      for (OverloadCandidateSet::iterator Cand = Conversions.begin();
469           Cand != Conversions.end(); ++Cand)
470        if (Cand->Viable)
471          ICS.ConversionFunctionSet.push_back(Cand->Function);
472    }
473  }
474
475  return ICS;
476}
477
478/// IsStandardConversion - Determines whether there is a standard
479/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
480/// expression From to the type ToType. Standard conversion sequences
481/// only consider non-class types; for conversions that involve class
482/// types, use TryImplicitConversion. If a conversion exists, SCS will
483/// contain the standard conversion sequence required to perform this
484/// conversion and this routine will return true. Otherwise, this
485/// routine will return false and the value of SCS is unspecified.
486bool
487Sema::IsStandardConversion(Expr* From, QualType ToType,
488                           bool InOverloadResolution,
489                           StandardConversionSequence &SCS) {
490  QualType FromType = From->getType();
491
492  // Standard conversions (C++ [conv])
493  SCS.setAsIdentityConversion();
494  SCS.Deprecated = false;
495  SCS.IncompatibleObjC = false;
496  SCS.FromTypePtr = FromType.getAsOpaquePtr();
497  SCS.CopyConstructor = 0;
498
499  // There are no standard conversions for class types in C++, so
500  // abort early. When overloading in C, however, we do permit
501  if (FromType->isRecordType() || ToType->isRecordType()) {
502    if (getLangOptions().CPlusPlus)
503      return false;
504
505    // When we're overloading in C, we allow, as standard conversions,
506  }
507
508  // The first conversion can be an lvalue-to-rvalue conversion,
509  // array-to-pointer conversion, or function-to-pointer conversion
510  // (C++ 4p1).
511
512  // Lvalue-to-rvalue conversion (C++ 4.1):
513  //   An lvalue (3.10) of a non-function, non-array type T can be
514  //   converted to an rvalue.
515  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
516  if (argIsLvalue == Expr::LV_Valid &&
517      !FromType->isFunctionType() && !FromType->isArrayType() &&
518      Context.getCanonicalType(FromType) != Context.OverloadTy) {
519    SCS.First = ICK_Lvalue_To_Rvalue;
520
521    // If T is a non-class type, the type of the rvalue is the
522    // cv-unqualified version of T. Otherwise, the type of the rvalue
523    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
524    // just strip the qualifiers because they don't matter.
525    FromType = FromType.getUnqualifiedType();
526  } else if (FromType->isArrayType()) {
527    // Array-to-pointer conversion (C++ 4.2)
528    SCS.First = ICK_Array_To_Pointer;
529
530    // An lvalue or rvalue of type "array of N T" or "array of unknown
531    // bound of T" can be converted to an rvalue of type "pointer to
532    // T" (C++ 4.2p1).
533    FromType = Context.getArrayDecayedType(FromType);
534
535    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
536      // This conversion is deprecated. (C++ D.4).
537      SCS.Deprecated = true;
538
539      // For the purpose of ranking in overload resolution
540      // (13.3.3.1.1), this conversion is considered an
541      // array-to-pointer conversion followed by a qualification
542      // conversion (4.4). (C++ 4.2p2)
543      SCS.Second = ICK_Identity;
544      SCS.Third = ICK_Qualification;
545      SCS.ToTypePtr = ToType.getAsOpaquePtr();
546      return true;
547    }
548  } else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
549    // Function-to-pointer conversion (C++ 4.3).
550    SCS.First = ICK_Function_To_Pointer;
551
552    // An lvalue of function type T can be converted to an rvalue of
553    // type "pointer to T." The result is a pointer to the
554    // function. (C++ 4.3p1).
555    FromType = Context.getPointerType(FromType);
556  } else if (FunctionDecl *Fn
557             = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
558    // Address of overloaded function (C++ [over.over]).
559    SCS.First = ICK_Function_To_Pointer;
560
561    // We were able to resolve the address of the overloaded function,
562    // so we can convert to the type of that function.
563    FromType = Fn->getType();
564    if (ToType->isLValueReferenceType())
565      FromType = Context.getLValueReferenceType(FromType);
566    else if (ToType->isRValueReferenceType())
567      FromType = Context.getRValueReferenceType(FromType);
568    else if (ToType->isMemberPointerType()) {
569      // Resolve address only succeeds if both sides are member pointers,
570      // but it doesn't have to be the same class. See DR 247.
571      // Note that this means that the type of &Derived::fn can be
572      // Ret (Base::*)(Args) if the fn overload actually found is from the
573      // base class, even if it was brought into the derived class via a
574      // using declaration. The standard isn't clear on this issue at all.
575      CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
576      FromType = Context.getMemberPointerType(FromType,
577                    Context.getTypeDeclType(M->getParent()).getTypePtr());
578    } else
579      FromType = Context.getPointerType(FromType);
580  } else {
581    // We don't require any conversions for the first step.
582    SCS.First = ICK_Identity;
583  }
584
585  // The second conversion can be an integral promotion, floating
586  // point promotion, integral conversion, floating point conversion,
587  // floating-integral conversion, pointer conversion,
588  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
589  // For overloading in C, this can also be a "compatible-type"
590  // conversion.
591  bool IncompatibleObjC = false;
592  if (Context.hasSameUnqualifiedType(FromType, ToType)) {
593    // The unqualified versions of the types are the same: there's no
594    // conversion to do.
595    SCS.Second = ICK_Identity;
596  } else if (IsIntegralPromotion(From, FromType, ToType)) {
597    // Integral promotion (C++ 4.5).
598    SCS.Second = ICK_Integral_Promotion;
599    FromType = ToType.getUnqualifiedType();
600  } else if (IsFloatingPointPromotion(FromType, ToType)) {
601    // Floating point promotion (C++ 4.6).
602    SCS.Second = ICK_Floating_Promotion;
603    FromType = ToType.getUnqualifiedType();
604  } else if (IsComplexPromotion(FromType, ToType)) {
605    // Complex promotion (Clang extension)
606    SCS.Second = ICK_Complex_Promotion;
607    FromType = ToType.getUnqualifiedType();
608  } else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
609           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
610    // Integral conversions (C++ 4.7).
611    // FIXME: isIntegralType shouldn't be true for enums in C++.
612    SCS.Second = ICK_Integral_Conversion;
613    FromType = ToType.getUnqualifiedType();
614  } else if (FromType->isFloatingType() && ToType->isFloatingType()) {
615    // Floating point conversions (C++ 4.8).
616    SCS.Second = ICK_Floating_Conversion;
617    FromType = ToType.getUnqualifiedType();
618  } else if (FromType->isComplexType() && ToType->isComplexType()) {
619    // Complex conversions (C99 6.3.1.6)
620    SCS.Second = ICK_Complex_Conversion;
621    FromType = ToType.getUnqualifiedType();
622  } else if ((FromType->isFloatingType() &&
623              ToType->isIntegralType() && (!ToType->isBooleanType() &&
624                                           !ToType->isEnumeralType())) ||
625             ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
626              ToType->isFloatingType())) {
627    // Floating-integral conversions (C++ 4.9).
628    // FIXME: isIntegralType shouldn't be true for enums in C++.
629    SCS.Second = ICK_Floating_Integral;
630    FromType = ToType.getUnqualifiedType();
631  } else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
632             (ToType->isComplexType() && FromType->isArithmeticType())) {
633    // Complex-real conversions (C99 6.3.1.7)
634    SCS.Second = ICK_Complex_Real;
635    FromType = ToType.getUnqualifiedType();
636  } else if (IsPointerConversion(From, FromType, ToType, InOverloadResolution,
637                                 FromType, IncompatibleObjC)) {
638    // Pointer conversions (C++ 4.10).
639    SCS.Second = ICK_Pointer_Conversion;
640    SCS.IncompatibleObjC = IncompatibleObjC;
641  } else if (IsMemberPointerConversion(From, FromType, ToType,
642                                       InOverloadResolution, FromType)) {
643    // Pointer to member conversions (4.11).
644    SCS.Second = ICK_Pointer_Member;
645  } else if (ToType->isBooleanType() &&
646             (FromType->isArithmeticType() ||
647              FromType->isEnumeralType() ||
648              FromType->isPointerType() ||
649              FromType->isBlockPointerType() ||
650              FromType->isMemberPointerType() ||
651              FromType->isNullPtrType())) {
652    // Boolean conversions (C++ 4.12).
653    SCS.Second = ICK_Boolean_Conversion;
654    FromType = Context.BoolTy;
655  } else if (!getLangOptions().CPlusPlus &&
656             Context.typesAreCompatible(ToType, FromType)) {
657    // Compatible conversions (Clang extension for C function overloading)
658    SCS.Second = ICK_Compatible_Conversion;
659  } else {
660    // No second conversion required.
661    SCS.Second = ICK_Identity;
662  }
663
664  QualType CanonFrom;
665  QualType CanonTo;
666  // The third conversion can be a qualification conversion (C++ 4p1).
667  if (IsQualificationConversion(FromType, ToType)) {
668    SCS.Third = ICK_Qualification;
669    FromType = ToType;
670    CanonFrom = Context.getCanonicalType(FromType);
671    CanonTo = Context.getCanonicalType(ToType);
672  } else {
673    // No conversion required
674    SCS.Third = ICK_Identity;
675
676    // C++ [over.best.ics]p6:
677    //   [...] Any difference in top-level cv-qualification is
678    //   subsumed by the initialization itself and does not constitute
679    //   a conversion. [...]
680    CanonFrom = Context.getCanonicalType(FromType);
681    CanonTo = Context.getCanonicalType(ToType);
682    if (CanonFrom.getLocalUnqualifiedType()
683                                       == CanonTo.getLocalUnqualifiedType() &&
684        CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()) {
685      FromType = ToType;
686      CanonFrom = CanonTo;
687    }
688  }
689
690  // If we have not converted the argument type to the parameter type,
691  // this is a bad conversion sequence.
692  if (CanonFrom != CanonTo)
693    return false;
694
695  SCS.ToTypePtr = FromType.getAsOpaquePtr();
696  return true;
697}
698
699/// IsIntegralPromotion - Determines whether the conversion from the
700/// expression From (whose potentially-adjusted type is FromType) to
701/// ToType is an integral promotion (C++ 4.5). If so, returns true and
702/// sets PromotedType to the promoted type.
703bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
704  const BuiltinType *To = ToType->getAs<BuiltinType>();
705  // All integers are built-in.
706  if (!To) {
707    return false;
708  }
709
710  // An rvalue of type char, signed char, unsigned char, short int, or
711  // unsigned short int can be converted to an rvalue of type int if
712  // int can represent all the values of the source type; otherwise,
713  // the source rvalue can be converted to an rvalue of type unsigned
714  // int (C++ 4.5p1).
715  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
716    if (// We can promote any signed, promotable integer type to an int
717        (FromType->isSignedIntegerType() ||
718         // We can promote any unsigned integer type whose size is
719         // less than int to an int.
720         (!FromType->isSignedIntegerType() &&
721          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
722      return To->getKind() == BuiltinType::Int;
723    }
724
725    return To->getKind() == BuiltinType::UInt;
726  }
727
728  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
729  // can be converted to an rvalue of the first of the following types
730  // that can represent all the values of its underlying type: int,
731  // unsigned int, long, or unsigned long (C++ 4.5p2).
732  if ((FromType->isEnumeralType() || FromType->isWideCharType())
733      && ToType->isIntegerType()) {
734    // Determine whether the type we're converting from is signed or
735    // unsigned.
736    bool FromIsSigned;
737    uint64_t FromSize = Context.getTypeSize(FromType);
738    if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
739      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
740      FromIsSigned = UnderlyingType->isSignedIntegerType();
741    } else {
742      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
743      FromIsSigned = true;
744    }
745
746    // The types we'll try to promote to, in the appropriate
747    // order. Try each of these types.
748    QualType PromoteTypes[6] = {
749      Context.IntTy, Context.UnsignedIntTy,
750      Context.LongTy, Context.UnsignedLongTy ,
751      Context.LongLongTy, Context.UnsignedLongLongTy
752    };
753    for (int Idx = 0; Idx < 6; ++Idx) {
754      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
755      if (FromSize < ToSize ||
756          (FromSize == ToSize &&
757           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
758        // We found the type that we can promote to. If this is the
759        // type we wanted, we have a promotion. Otherwise, no
760        // promotion.
761        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
762      }
763    }
764  }
765
766  // An rvalue for an integral bit-field (9.6) can be converted to an
767  // rvalue of type int if int can represent all the values of the
768  // bit-field; otherwise, it can be converted to unsigned int if
769  // unsigned int can represent all the values of the bit-field. If
770  // the bit-field is larger yet, no integral promotion applies to
771  // it. If the bit-field has an enumerated type, it is treated as any
772  // other value of that type for promotion purposes (C++ 4.5p3).
773  // FIXME: We should delay checking of bit-fields until we actually perform the
774  // conversion.
775  using llvm::APSInt;
776  if (From)
777    if (FieldDecl *MemberDecl = From->getBitField()) {
778      APSInt BitWidth;
779      if (FromType->isIntegralType() && !FromType->isEnumeralType() &&
780          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
781        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
782        ToSize = Context.getTypeSize(ToType);
783
784        // Are we promoting to an int from a bitfield that fits in an int?
785        if (BitWidth < ToSize ||
786            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
787          return To->getKind() == BuiltinType::Int;
788        }
789
790        // Are we promoting to an unsigned int from an unsigned bitfield
791        // that fits into an unsigned int?
792        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
793          return To->getKind() == BuiltinType::UInt;
794        }
795
796        return false;
797      }
798    }
799
800  // An rvalue of type bool can be converted to an rvalue of type int,
801  // with false becoming zero and true becoming one (C++ 4.5p4).
802  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
803    return true;
804  }
805
806  return false;
807}
808
809/// IsFloatingPointPromotion - Determines whether the conversion from
810/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
811/// returns true and sets PromotedType to the promoted type.
812bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
813  /// An rvalue of type float can be converted to an rvalue of type
814  /// double. (C++ 4.6p1).
815  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
816    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
817      if (FromBuiltin->getKind() == BuiltinType::Float &&
818          ToBuiltin->getKind() == BuiltinType::Double)
819        return true;
820
821      // C99 6.3.1.5p1:
822      //   When a float is promoted to double or long double, or a
823      //   double is promoted to long double [...].
824      if (!getLangOptions().CPlusPlus &&
825          (FromBuiltin->getKind() == BuiltinType::Float ||
826           FromBuiltin->getKind() == BuiltinType::Double) &&
827          (ToBuiltin->getKind() == BuiltinType::LongDouble))
828        return true;
829    }
830
831  return false;
832}
833
834/// \brief Determine if a conversion is a complex promotion.
835///
836/// A complex promotion is defined as a complex -> complex conversion
837/// where the conversion between the underlying real types is a
838/// floating-point or integral promotion.
839bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
840  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
841  if (!FromComplex)
842    return false;
843
844  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
845  if (!ToComplex)
846    return false;
847
848  return IsFloatingPointPromotion(FromComplex->getElementType(),
849                                  ToComplex->getElementType()) ||
850    IsIntegralPromotion(0, FromComplex->getElementType(),
851                        ToComplex->getElementType());
852}
853
854/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
855/// the pointer type FromPtr to a pointer to type ToPointee, with the
856/// same type qualifiers as FromPtr has on its pointee type. ToType,
857/// if non-empty, will be a pointer to ToType that may or may not have
858/// the right set of qualifiers on its pointee.
859static QualType
860BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
861                                   QualType ToPointee, QualType ToType,
862                                   ASTContext &Context) {
863  QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
864  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
865  Qualifiers Quals = CanonFromPointee.getQualifiers();
866
867  // Exact qualifier match -> return the pointer type we're converting to.
868  if (CanonToPointee.getLocalQualifiers() == Quals) {
869    // ToType is exactly what we need. Return it.
870    if (!ToType.isNull())
871      return ToType;
872
873    // Build a pointer to ToPointee. It has the right qualifiers
874    // already.
875    return Context.getPointerType(ToPointee);
876  }
877
878  // Just build a canonical type that has the right qualifiers.
879  return Context.getPointerType(
880         Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(),
881                                  Quals));
882}
883
884static bool isNullPointerConstantForConversion(Expr *Expr,
885                                               bool InOverloadResolution,
886                                               ASTContext &Context) {
887  // Handle value-dependent integral null pointer constants correctly.
888  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
889  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
890      Expr->getType()->isIntegralType())
891    return !InOverloadResolution;
892
893  return Expr->isNullPointerConstant(Context,
894                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
895                                        : Expr::NPC_ValueDependentIsNull);
896}
897
898/// IsPointerConversion - Determines whether the conversion of the
899/// expression From, which has the (possibly adjusted) type FromType,
900/// can be converted to the type ToType via a pointer conversion (C++
901/// 4.10). If so, returns true and places the converted type (that
902/// might differ from ToType in its cv-qualifiers at some level) into
903/// ConvertedType.
904///
905/// This routine also supports conversions to and from block pointers
906/// and conversions with Objective-C's 'id', 'id<protocols...>', and
907/// pointers to interfaces. FIXME: Once we've determined the
908/// appropriate overloading rules for Objective-C, we may want to
909/// split the Objective-C checks into a different routine; however,
910/// GCC seems to consider all of these conversions to be pointer
911/// conversions, so for now they live here. IncompatibleObjC will be
912/// set if the conversion is an allowed Objective-C conversion that
913/// should result in a warning.
914bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
915                               bool InOverloadResolution,
916                               QualType& ConvertedType,
917                               bool &IncompatibleObjC) {
918  IncompatibleObjC = false;
919  if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
920    return true;
921
922  // Conversion from a null pointer constant to any Objective-C pointer type.
923  if (ToType->isObjCObjectPointerType() &&
924      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
925    ConvertedType = ToType;
926    return true;
927  }
928
929  // Blocks: Block pointers can be converted to void*.
930  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
931      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
932    ConvertedType = ToType;
933    return true;
934  }
935  // Blocks: A null pointer constant can be converted to a block
936  // pointer type.
937  if (ToType->isBlockPointerType() &&
938      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
939    ConvertedType = ToType;
940    return true;
941  }
942
943  // If the left-hand-side is nullptr_t, the right side can be a null
944  // pointer constant.
945  if (ToType->isNullPtrType() &&
946      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
947    ConvertedType = ToType;
948    return true;
949  }
950
951  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
952  if (!ToTypePtr)
953    return false;
954
955  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
956  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
957    ConvertedType = ToType;
958    return true;
959  }
960
961  // Beyond this point, both types need to be pointers.
962  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
963  if (!FromTypePtr)
964    return false;
965
966  QualType FromPointeeType = FromTypePtr->getPointeeType();
967  QualType ToPointeeType = ToTypePtr->getPointeeType();
968
969  // An rvalue of type "pointer to cv T," where T is an object type,
970  // can be converted to an rvalue of type "pointer to cv void" (C++
971  // 4.10p2).
972  if (FromPointeeType->isObjectType() && ToPointeeType->isVoidType()) {
973    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
974                                                       ToPointeeType,
975                                                       ToType, Context);
976    return true;
977  }
978
979  // When we're overloading in C, we allow a special kind of pointer
980  // conversion for compatible-but-not-identical pointee types.
981  if (!getLangOptions().CPlusPlus &&
982      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
983    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
984                                                       ToPointeeType,
985                                                       ToType, Context);
986    return true;
987  }
988
989  // C++ [conv.ptr]p3:
990  //
991  //   An rvalue of type "pointer to cv D," where D is a class type,
992  //   can be converted to an rvalue of type "pointer to cv B," where
993  //   B is a base class (clause 10) of D. If B is an inaccessible
994  //   (clause 11) or ambiguous (10.2) base class of D, a program that
995  //   necessitates this conversion is ill-formed. The result of the
996  //   conversion is a pointer to the base class sub-object of the
997  //   derived class object. The null pointer value is converted to
998  //   the null pointer value of the destination type.
999  //
1000  // Note that we do not check for ambiguity or inaccessibility
1001  // here. That is handled by CheckPointerConversion.
1002  if (getLangOptions().CPlusPlus &&
1003      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1004      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1005      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1006    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1007                                                       ToPointeeType,
1008                                                       ToType, Context);
1009    return true;
1010  }
1011
1012  return false;
1013}
1014
1015/// isObjCPointerConversion - Determines whether this is an
1016/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1017/// with the same arguments and return values.
1018bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1019                                   QualType& ConvertedType,
1020                                   bool &IncompatibleObjC) {
1021  if (!getLangOptions().ObjC1)
1022    return false;
1023
1024  // First, we handle all conversions on ObjC object pointer types.
1025  const ObjCObjectPointerType* ToObjCPtr = ToType->getAs<ObjCObjectPointerType>();
1026  const ObjCObjectPointerType *FromObjCPtr =
1027    FromType->getAs<ObjCObjectPointerType>();
1028
1029  if (ToObjCPtr && FromObjCPtr) {
1030    // Objective C++: We're able to convert between "id" or "Class" and a
1031    // pointer to any interface (in both directions).
1032    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1033      ConvertedType = ToType;
1034      return true;
1035    }
1036    // Conversions with Objective-C's id<...>.
1037    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1038         ToObjCPtr->isObjCQualifiedIdType()) &&
1039        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1040                                                  /*compare=*/false)) {
1041      ConvertedType = ToType;
1042      return true;
1043    }
1044    // Objective C++: We're able to convert from a pointer to an
1045    // interface to a pointer to a different interface.
1046    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1047      ConvertedType = ToType;
1048      return true;
1049    }
1050
1051    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1052      // Okay: this is some kind of implicit downcast of Objective-C
1053      // interfaces, which is permitted. However, we're going to
1054      // complain about it.
1055      IncompatibleObjC = true;
1056      ConvertedType = FromType;
1057      return true;
1058    }
1059  }
1060  // Beyond this point, both types need to be C pointers or block pointers.
1061  QualType ToPointeeType;
1062  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1063    ToPointeeType = ToCPtr->getPointeeType();
1064  else if (const BlockPointerType *ToBlockPtr = ToType->getAs<BlockPointerType>())
1065    ToPointeeType = ToBlockPtr->getPointeeType();
1066  else
1067    return false;
1068
1069  QualType FromPointeeType;
1070  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1071    FromPointeeType = FromCPtr->getPointeeType();
1072  else if (const BlockPointerType *FromBlockPtr = FromType->getAs<BlockPointerType>())
1073    FromPointeeType = FromBlockPtr->getPointeeType();
1074  else
1075    return false;
1076
1077  // If we have pointers to pointers, recursively check whether this
1078  // is an Objective-C conversion.
1079  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1080      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1081                              IncompatibleObjC)) {
1082    // We always complain about this conversion.
1083    IncompatibleObjC = true;
1084    ConvertedType = ToType;
1085    return true;
1086  }
1087  // If we have pointers to functions or blocks, check whether the only
1088  // differences in the argument and result types are in Objective-C
1089  // pointer conversions. If so, we permit the conversion (but
1090  // complain about it).
1091  const FunctionProtoType *FromFunctionType
1092    = FromPointeeType->getAs<FunctionProtoType>();
1093  const FunctionProtoType *ToFunctionType
1094    = ToPointeeType->getAs<FunctionProtoType>();
1095  if (FromFunctionType && ToFunctionType) {
1096    // If the function types are exactly the same, this isn't an
1097    // Objective-C pointer conversion.
1098    if (Context.getCanonicalType(FromPointeeType)
1099          == Context.getCanonicalType(ToPointeeType))
1100      return false;
1101
1102    // Perform the quick checks that will tell us whether these
1103    // function types are obviously different.
1104    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1105        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1106        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1107      return false;
1108
1109    bool HasObjCConversion = false;
1110    if (Context.getCanonicalType(FromFunctionType->getResultType())
1111          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1112      // Okay, the types match exactly. Nothing to do.
1113    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1114                                       ToFunctionType->getResultType(),
1115                                       ConvertedType, IncompatibleObjC)) {
1116      // Okay, we have an Objective-C pointer conversion.
1117      HasObjCConversion = true;
1118    } else {
1119      // Function types are too different. Abort.
1120      return false;
1121    }
1122
1123    // Check argument types.
1124    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1125         ArgIdx != NumArgs; ++ArgIdx) {
1126      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1127      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1128      if (Context.getCanonicalType(FromArgType)
1129            == Context.getCanonicalType(ToArgType)) {
1130        // Okay, the types match exactly. Nothing to do.
1131      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1132                                         ConvertedType, IncompatibleObjC)) {
1133        // Okay, we have an Objective-C pointer conversion.
1134        HasObjCConversion = true;
1135      } else {
1136        // Argument types are too different. Abort.
1137        return false;
1138      }
1139    }
1140
1141    if (HasObjCConversion) {
1142      // We had an Objective-C conversion. Allow this pointer
1143      // conversion, but complain about it.
1144      ConvertedType = ToType;
1145      IncompatibleObjC = true;
1146      return true;
1147    }
1148  }
1149
1150  return false;
1151}
1152
1153/// CheckPointerConversion - Check the pointer conversion from the
1154/// expression From to the type ToType. This routine checks for
1155/// ambiguous or inaccessible derived-to-base pointer
1156/// conversions for which IsPointerConversion has already returned
1157/// true. It returns true and produces a diagnostic if there was an
1158/// error, or returns false otherwise.
1159bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
1160                                  CastExpr::CastKind &Kind,
1161                                  bool IgnoreBaseAccess) {
1162  QualType FromType = From->getType();
1163
1164  if (const PointerType *FromPtrType = FromType->getAs<PointerType>())
1165    if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
1166      QualType FromPointeeType = FromPtrType->getPointeeType(),
1167               ToPointeeType   = ToPtrType->getPointeeType();
1168
1169      if (FromPointeeType->isRecordType() &&
1170          ToPointeeType->isRecordType()) {
1171        // We must have a derived-to-base conversion. Check an
1172        // ambiguous or inaccessible conversion.
1173        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1174                                         From->getExprLoc(),
1175                                         From->getSourceRange(),
1176                                         IgnoreBaseAccess))
1177          return true;
1178
1179        // The conversion was successful.
1180        Kind = CastExpr::CK_DerivedToBase;
1181      }
1182    }
1183  if (const ObjCObjectPointerType *FromPtrType =
1184        FromType->getAs<ObjCObjectPointerType>())
1185    if (const ObjCObjectPointerType *ToPtrType =
1186          ToType->getAs<ObjCObjectPointerType>()) {
1187      // Objective-C++ conversions are always okay.
1188      // FIXME: We should have a different class of conversions for the
1189      // Objective-C++ implicit conversions.
1190      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
1191        return false;
1192
1193  }
1194  return false;
1195}
1196
1197/// IsMemberPointerConversion - Determines whether the conversion of the
1198/// expression From, which has the (possibly adjusted) type FromType, can be
1199/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1200/// If so, returns true and places the converted type (that might differ from
1201/// ToType in its cv-qualifiers at some level) into ConvertedType.
1202bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1203                                     QualType ToType,
1204                                     bool InOverloadResolution,
1205                                     QualType &ConvertedType) {
1206  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
1207  if (!ToTypePtr)
1208    return false;
1209
1210  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1211  if (From->isNullPointerConstant(Context,
1212                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1213                                        : Expr::NPC_ValueDependentIsNull)) {
1214    ConvertedType = ToType;
1215    return true;
1216  }
1217
1218  // Otherwise, both types have to be member pointers.
1219  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
1220  if (!FromTypePtr)
1221    return false;
1222
1223  // A pointer to member of B can be converted to a pointer to member of D,
1224  // where D is derived from B (C++ 4.11p2).
1225  QualType FromClass(FromTypePtr->getClass(), 0);
1226  QualType ToClass(ToTypePtr->getClass(), 0);
1227  // FIXME: What happens when these are dependent? Is this function even called?
1228
1229  if (IsDerivedFrom(ToClass, FromClass)) {
1230    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1231                                                 ToClass.getTypePtr());
1232    return true;
1233  }
1234
1235  return false;
1236}
1237
1238/// CheckMemberPointerConversion - Check the member pointer conversion from the
1239/// expression From to the type ToType. This routine checks for ambiguous or
1240/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1241/// for which IsMemberPointerConversion has already returned true. It returns
1242/// true and produces a diagnostic if there was an error, or returns false
1243/// otherwise.
1244bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
1245                                        CastExpr::CastKind &Kind,
1246                                        bool IgnoreBaseAccess) {
1247  (void)IgnoreBaseAccess;
1248  QualType FromType = From->getType();
1249  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
1250  if (!FromPtrType) {
1251    // This must be a null pointer to member pointer conversion
1252    assert(From->isNullPointerConstant(Context,
1253                                       Expr::NPC_ValueDependentIsNull) &&
1254           "Expr must be null pointer constant!");
1255    Kind = CastExpr::CK_NullToMemberPointer;
1256    return false;
1257  }
1258
1259  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
1260  assert(ToPtrType && "No member pointer cast has a target type "
1261                      "that is not a member pointer.");
1262
1263  QualType FromClass = QualType(FromPtrType->getClass(), 0);
1264  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
1265
1266  // FIXME: What about dependent types?
1267  assert(FromClass->isRecordType() && "Pointer into non-class.");
1268  assert(ToClass->isRecordType() && "Pointer into non-class.");
1269
1270  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1271                     /*DetectVirtual=*/true);
1272  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1273  assert(DerivationOkay &&
1274         "Should not have been called if derivation isn't OK.");
1275  (void)DerivationOkay;
1276
1277  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1278                                  getUnqualifiedType())) {
1279    // Derivation is ambiguous. Redo the check to find the exact paths.
1280    Paths.clear();
1281    Paths.setRecordingPaths(true);
1282    bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1283    assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1284    (void)StillOkay;
1285
1286    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1287    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1288      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1289    return true;
1290  }
1291
1292  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1293    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1294      << FromClass << ToClass << QualType(VBase, 0)
1295      << From->getSourceRange();
1296    return true;
1297  }
1298
1299  // Must be a base to derived member conversion.
1300  Kind = CastExpr::CK_BaseToDerivedMemberPointer;
1301  return false;
1302}
1303
1304/// IsQualificationConversion - Determines whether the conversion from
1305/// an rvalue of type FromType to ToType is a qualification conversion
1306/// (C++ 4.4).
1307bool
1308Sema::IsQualificationConversion(QualType FromType, QualType ToType) {
1309  FromType = Context.getCanonicalType(FromType);
1310  ToType = Context.getCanonicalType(ToType);
1311
1312  // If FromType and ToType are the same type, this is not a
1313  // qualification conversion.
1314  if (FromType == ToType)
1315    return false;
1316
1317  // (C++ 4.4p4):
1318  //   A conversion can add cv-qualifiers at levels other than the first
1319  //   in multi-level pointers, subject to the following rules: [...]
1320  bool PreviousToQualsIncludeConst = true;
1321  bool UnwrappedAnyPointer = false;
1322  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
1323    // Within each iteration of the loop, we check the qualifiers to
1324    // determine if this still looks like a qualification
1325    // conversion. Then, if all is well, we unwrap one more level of
1326    // pointers or pointers-to-members and do it all again
1327    // until there are no more pointers or pointers-to-members left to
1328    // unwrap.
1329    UnwrappedAnyPointer = true;
1330
1331    //   -- for every j > 0, if const is in cv 1,j then const is in cv
1332    //      2,j, and similarly for volatile.
1333    if (!ToType.isAtLeastAsQualifiedAs(FromType))
1334      return false;
1335
1336    //   -- if the cv 1,j and cv 2,j are different, then const is in
1337    //      every cv for 0 < k < j.
1338    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
1339        && !PreviousToQualsIncludeConst)
1340      return false;
1341
1342    // Keep track of whether all prior cv-qualifiers in the "to" type
1343    // include const.
1344    PreviousToQualsIncludeConst
1345      = PreviousToQualsIncludeConst && ToType.isConstQualified();
1346  }
1347
1348  // We are left with FromType and ToType being the pointee types
1349  // after unwrapping the original FromType and ToType the same number
1350  // of types. If we unwrapped any pointers, and if FromType and
1351  // ToType have the same unqualified type (since we checked
1352  // qualifiers above), then this is a qualification conversion.
1353  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
1354}
1355
1356/// Determines whether there is a user-defined conversion sequence
1357/// (C++ [over.ics.user]) that converts expression From to the type
1358/// ToType. If such a conversion exists, User will contain the
1359/// user-defined conversion sequence that performs such a conversion
1360/// and this routine will return true. Otherwise, this routine returns
1361/// false and User is unspecified.
1362///
1363/// \param AllowConversionFunctions true if the conversion should
1364/// consider conversion functions at all. If false, only constructors
1365/// will be considered.
1366///
1367/// \param AllowExplicit  true if the conversion should consider C++0x
1368/// "explicit" conversion functions as well as non-explicit conversion
1369/// functions (C++0x [class.conv.fct]p2).
1370///
1371/// \param ForceRValue  true if the expression should be treated as an rvalue
1372/// for overload resolution.
1373/// \param UserCast true if looking for user defined conversion for a static
1374/// cast.
1375Sema::OverloadingResult Sema::IsUserDefinedConversion(
1376                                   Expr *From, QualType ToType,
1377                                   UserDefinedConversionSequence& User,
1378                                   OverloadCandidateSet& CandidateSet,
1379                                   bool AllowConversionFunctions,
1380                                   bool AllowExplicit, bool ForceRValue,
1381                                   bool UserCast) {
1382  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
1383    if (RequireCompleteType(From->getLocStart(), ToType, PDiag())) {
1384      // We're not going to find any constructors.
1385    } else if (CXXRecordDecl *ToRecordDecl
1386                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
1387      // C++ [over.match.ctor]p1:
1388      //   When objects of class type are direct-initialized (8.5), or
1389      //   copy-initialized from an expression of the same or a
1390      //   derived class type (8.5), overload resolution selects the
1391      //   constructor. [...] For copy-initialization, the candidate
1392      //   functions are all the converting constructors (12.3.1) of
1393      //   that class. The argument list is the expression-list within
1394      //   the parentheses of the initializer.
1395      bool SuppressUserConversions = !UserCast;
1396      if (Context.hasSameUnqualifiedType(ToType, From->getType()) ||
1397          IsDerivedFrom(From->getType(), ToType)) {
1398        SuppressUserConversions = false;
1399        AllowConversionFunctions = false;
1400      }
1401
1402      DeclarationName ConstructorName
1403        = Context.DeclarationNames.getCXXConstructorName(
1404                          Context.getCanonicalType(ToType).getUnqualifiedType());
1405      DeclContext::lookup_iterator Con, ConEnd;
1406      for (llvm::tie(Con, ConEnd)
1407             = ToRecordDecl->lookup(ConstructorName);
1408           Con != ConEnd; ++Con) {
1409        // Find the constructor (which may be a template).
1410        CXXConstructorDecl *Constructor = 0;
1411        FunctionTemplateDecl *ConstructorTmpl
1412          = dyn_cast<FunctionTemplateDecl>(*Con);
1413        if (ConstructorTmpl)
1414          Constructor
1415            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
1416        else
1417          Constructor = cast<CXXConstructorDecl>(*Con);
1418
1419        if (!Constructor->isInvalidDecl() &&
1420            Constructor->isConvertingConstructor(AllowExplicit)) {
1421          if (ConstructorTmpl)
1422            AddTemplateOverloadCandidate(ConstructorTmpl, /*ExplicitArgs*/ 0,
1423                                         &From, 1, CandidateSet,
1424                                         SuppressUserConversions, ForceRValue);
1425          else
1426            // Allow one user-defined conversion when user specifies a
1427            // From->ToType conversion via an static cast (c-style, etc).
1428            AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1429                                 SuppressUserConversions, ForceRValue);
1430        }
1431      }
1432    }
1433  }
1434
1435  if (!AllowConversionFunctions) {
1436    // Don't allow any conversion functions to enter the overload set.
1437  } else if (RequireCompleteType(From->getLocStart(), From->getType(),
1438                                 PDiag(0)
1439                                   << From->getSourceRange())) {
1440    // No conversion functions from incomplete types.
1441  } else if (const RecordType *FromRecordType
1442               = From->getType()->getAs<RecordType>()) {
1443    if (CXXRecordDecl *FromRecordDecl
1444         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
1445      // Add all of the conversion functions as candidates.
1446      const UnresolvedSet *Conversions
1447        = FromRecordDecl->getVisibleConversionFunctions();
1448      for (UnresolvedSet::iterator I = Conversions->begin(),
1449             E = Conversions->end(); I != E; ++I) {
1450        CXXConversionDecl *Conv;
1451        FunctionTemplateDecl *ConvTemplate;
1452        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(*I)))
1453          Conv = dyn_cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
1454        else
1455          Conv = dyn_cast<CXXConversionDecl>(*I);
1456
1457        if (AllowExplicit || !Conv->isExplicit()) {
1458          if (ConvTemplate)
1459            AddTemplateConversionCandidate(ConvTemplate, From, ToType,
1460                                           CandidateSet);
1461          else
1462            AddConversionCandidate(Conv, From, ToType, CandidateSet);
1463        }
1464      }
1465    }
1466  }
1467
1468  OverloadCandidateSet::iterator Best;
1469  switch (BestViableFunction(CandidateSet, From->getLocStart(), Best)) {
1470    case OR_Success:
1471      // Record the standard conversion we used and the conversion function.
1472      if (CXXConstructorDecl *Constructor
1473            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1474        // C++ [over.ics.user]p1:
1475        //   If the user-defined conversion is specified by a
1476        //   constructor (12.3.1), the initial standard conversion
1477        //   sequence converts the source type to the type required by
1478        //   the argument of the constructor.
1479        //
1480        QualType ThisType = Constructor->getThisType(Context);
1481        if (Best->Conversions[0].ConversionKind ==
1482            ImplicitConversionSequence::EllipsisConversion)
1483          User.EllipsisConversion = true;
1484        else {
1485          User.Before = Best->Conversions[0].Standard;
1486          User.EllipsisConversion = false;
1487        }
1488        User.ConversionFunction = Constructor;
1489        User.After.setAsIdentityConversion();
1490        User.After.FromTypePtr
1491          = ThisType->getAs<PointerType>()->getPointeeType().getAsOpaquePtr();
1492        User.After.ToTypePtr = ToType.getAsOpaquePtr();
1493        return OR_Success;
1494      } else if (CXXConversionDecl *Conversion
1495                   = dyn_cast<CXXConversionDecl>(Best->Function)) {
1496        // C++ [over.ics.user]p1:
1497        //
1498        //   [...] If the user-defined conversion is specified by a
1499        //   conversion function (12.3.2), the initial standard
1500        //   conversion sequence converts the source type to the
1501        //   implicit object parameter of the conversion function.
1502        User.Before = Best->Conversions[0].Standard;
1503        User.ConversionFunction = Conversion;
1504        User.EllipsisConversion = false;
1505
1506        // C++ [over.ics.user]p2:
1507        //   The second standard conversion sequence converts the
1508        //   result of the user-defined conversion to the target type
1509        //   for the sequence. Since an implicit conversion sequence
1510        //   is an initialization, the special rules for
1511        //   initialization by user-defined conversion apply when
1512        //   selecting the best user-defined conversion for a
1513        //   user-defined conversion sequence (see 13.3.3 and
1514        //   13.3.3.1).
1515        User.After = Best->FinalConversion;
1516        return OR_Success;
1517      } else {
1518        assert(false && "Not a constructor or conversion function?");
1519        return OR_No_Viable_Function;
1520      }
1521
1522    case OR_No_Viable_Function:
1523      return OR_No_Viable_Function;
1524    case OR_Deleted:
1525      // No conversion here! We're done.
1526      return OR_Deleted;
1527
1528    case OR_Ambiguous:
1529      return OR_Ambiguous;
1530    }
1531
1532  return OR_No_Viable_Function;
1533}
1534
1535bool
1536Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
1537  ImplicitConversionSequence ICS;
1538  OverloadCandidateSet CandidateSet;
1539  OverloadingResult OvResult =
1540    IsUserDefinedConversion(From, ToType, ICS.UserDefined,
1541                            CandidateSet, true, false, false);
1542  if (OvResult == OR_Ambiguous)
1543    Diag(From->getSourceRange().getBegin(),
1544         diag::err_typecheck_ambiguous_condition)
1545          << From->getType() << ToType << From->getSourceRange();
1546  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
1547    Diag(From->getSourceRange().getBegin(),
1548         diag::err_typecheck_nonviable_condition)
1549    << From->getType() << ToType << From->getSourceRange();
1550  else
1551    return false;
1552  PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1553  return true;
1554}
1555
1556/// CompareImplicitConversionSequences - Compare two implicit
1557/// conversion sequences to determine whether one is better than the
1558/// other or if they are indistinguishable (C++ 13.3.3.2).
1559ImplicitConversionSequence::CompareKind
1560Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1561                                         const ImplicitConversionSequence& ICS2)
1562{
1563  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1564  // conversion sequences (as defined in 13.3.3.1)
1565  //   -- a standard conversion sequence (13.3.3.1.1) is a better
1566  //      conversion sequence than a user-defined conversion sequence or
1567  //      an ellipsis conversion sequence, and
1568  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
1569  //      conversion sequence than an ellipsis conversion sequence
1570  //      (13.3.3.1.3).
1571  //
1572  if (ICS1.ConversionKind < ICS2.ConversionKind)
1573    return ImplicitConversionSequence::Better;
1574  else if (ICS2.ConversionKind < ICS1.ConversionKind)
1575    return ImplicitConversionSequence::Worse;
1576
1577  // Two implicit conversion sequences of the same form are
1578  // indistinguishable conversion sequences unless one of the
1579  // following rules apply: (C++ 13.3.3.2p3):
1580  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1581    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1582  else if (ICS1.ConversionKind ==
1583             ImplicitConversionSequence::UserDefinedConversion) {
1584    // User-defined conversion sequence U1 is a better conversion
1585    // sequence than another user-defined conversion sequence U2 if
1586    // they contain the same user-defined conversion function or
1587    // constructor and if the second standard conversion sequence of
1588    // U1 is better than the second standard conversion sequence of
1589    // U2 (C++ 13.3.3.2p3).
1590    if (ICS1.UserDefined.ConversionFunction ==
1591          ICS2.UserDefined.ConversionFunction)
1592      return CompareStandardConversionSequences(ICS1.UserDefined.After,
1593                                                ICS2.UserDefined.After);
1594  }
1595
1596  return ImplicitConversionSequence::Indistinguishable;
1597}
1598
1599/// CompareStandardConversionSequences - Compare two standard
1600/// conversion sequences to determine whether one is better than the
1601/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1602ImplicitConversionSequence::CompareKind
1603Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1604                                         const StandardConversionSequence& SCS2)
1605{
1606  // Standard conversion sequence S1 is a better conversion sequence
1607  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1608
1609  //  -- S1 is a proper subsequence of S2 (comparing the conversion
1610  //     sequences in the canonical form defined by 13.3.3.1.1,
1611  //     excluding any Lvalue Transformation; the identity conversion
1612  //     sequence is considered to be a subsequence of any
1613  //     non-identity conversion sequence) or, if not that,
1614  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1615    // Neither is a proper subsequence of the other. Do nothing.
1616    ;
1617  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1618           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1619           (SCS1.Second == ICK_Identity &&
1620            SCS1.Third == ICK_Identity))
1621    // SCS1 is a proper subsequence of SCS2.
1622    return ImplicitConversionSequence::Better;
1623  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1624           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1625           (SCS2.Second == ICK_Identity &&
1626            SCS2.Third == ICK_Identity))
1627    // SCS2 is a proper subsequence of SCS1.
1628    return ImplicitConversionSequence::Worse;
1629
1630  //  -- the rank of S1 is better than the rank of S2 (by the rules
1631  //     defined below), or, if not that,
1632  ImplicitConversionRank Rank1 = SCS1.getRank();
1633  ImplicitConversionRank Rank2 = SCS2.getRank();
1634  if (Rank1 < Rank2)
1635    return ImplicitConversionSequence::Better;
1636  else if (Rank2 < Rank1)
1637    return ImplicitConversionSequence::Worse;
1638
1639  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1640  // are indistinguishable unless one of the following rules
1641  // applies:
1642
1643  //   A conversion that is not a conversion of a pointer, or
1644  //   pointer to member, to bool is better than another conversion
1645  //   that is such a conversion.
1646  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1647    return SCS2.isPointerConversionToBool()
1648             ? ImplicitConversionSequence::Better
1649             : ImplicitConversionSequence::Worse;
1650
1651  // C++ [over.ics.rank]p4b2:
1652  //
1653  //   If class B is derived directly or indirectly from class A,
1654  //   conversion of B* to A* is better than conversion of B* to
1655  //   void*, and conversion of A* to void* is better than conversion
1656  //   of B* to void*.
1657  bool SCS1ConvertsToVoid
1658    = SCS1.isPointerConversionToVoidPointer(Context);
1659  bool SCS2ConvertsToVoid
1660    = SCS2.isPointerConversionToVoidPointer(Context);
1661  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1662    // Exactly one of the conversion sequences is a conversion to
1663    // a void pointer; it's the worse conversion.
1664    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1665                              : ImplicitConversionSequence::Worse;
1666  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1667    // Neither conversion sequence converts to a void pointer; compare
1668    // their derived-to-base conversions.
1669    if (ImplicitConversionSequence::CompareKind DerivedCK
1670          = CompareDerivedToBaseConversions(SCS1, SCS2))
1671      return DerivedCK;
1672  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1673    // Both conversion sequences are conversions to void
1674    // pointers. Compare the source types to determine if there's an
1675    // inheritance relationship in their sources.
1676    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1677    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1678
1679    // Adjust the types we're converting from via the array-to-pointer
1680    // conversion, if we need to.
1681    if (SCS1.First == ICK_Array_To_Pointer)
1682      FromType1 = Context.getArrayDecayedType(FromType1);
1683    if (SCS2.First == ICK_Array_To_Pointer)
1684      FromType2 = Context.getArrayDecayedType(FromType2);
1685
1686    QualType FromPointee1
1687      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1688    QualType FromPointee2
1689      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1690
1691    if (IsDerivedFrom(FromPointee2, FromPointee1))
1692      return ImplicitConversionSequence::Better;
1693    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1694      return ImplicitConversionSequence::Worse;
1695
1696    // Objective-C++: If one interface is more specific than the
1697    // other, it is the better one.
1698    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1699    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1700    if (FromIface1 && FromIface1) {
1701      if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1702        return ImplicitConversionSequence::Better;
1703      else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1704        return ImplicitConversionSequence::Worse;
1705    }
1706  }
1707
1708  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1709  // bullet 3).
1710  if (ImplicitConversionSequence::CompareKind QualCK
1711        = CompareQualificationConversions(SCS1, SCS2))
1712    return QualCK;
1713
1714  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1715    // C++0x [over.ics.rank]p3b4:
1716    //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
1717    //      implicit object parameter of a non-static member function declared
1718    //      without a ref-qualifier, and S1 binds an rvalue reference to an
1719    //      rvalue and S2 binds an lvalue reference.
1720    // FIXME: We don't know if we're dealing with the implicit object parameter,
1721    // or if the member function in this case has a ref qualifier.
1722    // (Of course, we don't have ref qualifiers yet.)
1723    if (SCS1.RRefBinding != SCS2.RRefBinding)
1724      return SCS1.RRefBinding ? ImplicitConversionSequence::Better
1725                              : ImplicitConversionSequence::Worse;
1726
1727    // C++ [over.ics.rank]p3b4:
1728    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1729    //      which the references refer are the same type except for
1730    //      top-level cv-qualifiers, and the type to which the reference
1731    //      initialized by S2 refers is more cv-qualified than the type
1732    //      to which the reference initialized by S1 refers.
1733    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1734    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1735    T1 = Context.getCanonicalType(T1);
1736    T2 = Context.getCanonicalType(T2);
1737    if (Context.hasSameUnqualifiedType(T1, T2)) {
1738      if (T2.isMoreQualifiedThan(T1))
1739        return ImplicitConversionSequence::Better;
1740      else if (T1.isMoreQualifiedThan(T2))
1741        return ImplicitConversionSequence::Worse;
1742    }
1743  }
1744
1745  return ImplicitConversionSequence::Indistinguishable;
1746}
1747
1748/// CompareQualificationConversions - Compares two standard conversion
1749/// sequences to determine whether they can be ranked based on their
1750/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1751ImplicitConversionSequence::CompareKind
1752Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1753                                      const StandardConversionSequence& SCS2) {
1754  // C++ 13.3.3.2p3:
1755  //  -- S1 and S2 differ only in their qualification conversion and
1756  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1757  //     cv-qualification signature of type T1 is a proper subset of
1758  //     the cv-qualification signature of type T2, and S1 is not the
1759  //     deprecated string literal array-to-pointer conversion (4.2).
1760  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1761      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1762    return ImplicitConversionSequence::Indistinguishable;
1763
1764  // FIXME: the example in the standard doesn't use a qualification
1765  // conversion (!)
1766  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1767  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1768  T1 = Context.getCanonicalType(T1);
1769  T2 = Context.getCanonicalType(T2);
1770
1771  // If the types are the same, we won't learn anything by unwrapped
1772  // them.
1773  if (Context.hasSameUnqualifiedType(T1, T2))
1774    return ImplicitConversionSequence::Indistinguishable;
1775
1776  ImplicitConversionSequence::CompareKind Result
1777    = ImplicitConversionSequence::Indistinguishable;
1778  while (UnwrapSimilarPointerTypes(T1, T2)) {
1779    // Within each iteration of the loop, we check the qualifiers to
1780    // determine if this still looks like a qualification
1781    // conversion. Then, if all is well, we unwrap one more level of
1782    // pointers or pointers-to-members and do it all again
1783    // until there are no more pointers or pointers-to-members left
1784    // to unwrap. This essentially mimics what
1785    // IsQualificationConversion does, but here we're checking for a
1786    // strict subset of qualifiers.
1787    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1788      // The qualifiers are the same, so this doesn't tell us anything
1789      // about how the sequences rank.
1790      ;
1791    else if (T2.isMoreQualifiedThan(T1)) {
1792      // T1 has fewer qualifiers, so it could be the better sequence.
1793      if (Result == ImplicitConversionSequence::Worse)
1794        // Neither has qualifiers that are a subset of the other's
1795        // qualifiers.
1796        return ImplicitConversionSequence::Indistinguishable;
1797
1798      Result = ImplicitConversionSequence::Better;
1799    } else if (T1.isMoreQualifiedThan(T2)) {
1800      // T2 has fewer qualifiers, so it could be the better sequence.
1801      if (Result == ImplicitConversionSequence::Better)
1802        // Neither has qualifiers that are a subset of the other's
1803        // qualifiers.
1804        return ImplicitConversionSequence::Indistinguishable;
1805
1806      Result = ImplicitConversionSequence::Worse;
1807    } else {
1808      // Qualifiers are disjoint.
1809      return ImplicitConversionSequence::Indistinguishable;
1810    }
1811
1812    // If the types after this point are equivalent, we're done.
1813    if (Context.hasSameUnqualifiedType(T1, T2))
1814      break;
1815  }
1816
1817  // Check that the winning standard conversion sequence isn't using
1818  // the deprecated string literal array to pointer conversion.
1819  switch (Result) {
1820  case ImplicitConversionSequence::Better:
1821    if (SCS1.Deprecated)
1822      Result = ImplicitConversionSequence::Indistinguishable;
1823    break;
1824
1825  case ImplicitConversionSequence::Indistinguishable:
1826    break;
1827
1828  case ImplicitConversionSequence::Worse:
1829    if (SCS2.Deprecated)
1830      Result = ImplicitConversionSequence::Indistinguishable;
1831    break;
1832  }
1833
1834  return Result;
1835}
1836
1837/// CompareDerivedToBaseConversions - Compares two standard conversion
1838/// sequences to determine whether they can be ranked based on their
1839/// various kinds of derived-to-base conversions (C++
1840/// [over.ics.rank]p4b3).  As part of these checks, we also look at
1841/// conversions between Objective-C interface types.
1842ImplicitConversionSequence::CompareKind
1843Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1844                                      const StandardConversionSequence& SCS2) {
1845  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1846  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1847  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1848  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1849
1850  // Adjust the types we're converting from via the array-to-pointer
1851  // conversion, if we need to.
1852  if (SCS1.First == ICK_Array_To_Pointer)
1853    FromType1 = Context.getArrayDecayedType(FromType1);
1854  if (SCS2.First == ICK_Array_To_Pointer)
1855    FromType2 = Context.getArrayDecayedType(FromType2);
1856
1857  // Canonicalize all of the types.
1858  FromType1 = Context.getCanonicalType(FromType1);
1859  ToType1 = Context.getCanonicalType(ToType1);
1860  FromType2 = Context.getCanonicalType(FromType2);
1861  ToType2 = Context.getCanonicalType(ToType2);
1862
1863  // C++ [over.ics.rank]p4b3:
1864  //
1865  //   If class B is derived directly or indirectly from class A and
1866  //   class C is derived directly or indirectly from B,
1867  //
1868  // For Objective-C, we let A, B, and C also be Objective-C
1869  // interfaces.
1870
1871  // Compare based on pointer conversions.
1872  if (SCS1.Second == ICK_Pointer_Conversion &&
1873      SCS2.Second == ICK_Pointer_Conversion &&
1874      /*FIXME: Remove if Objective-C id conversions get their own rank*/
1875      FromType1->isPointerType() && FromType2->isPointerType() &&
1876      ToType1->isPointerType() && ToType2->isPointerType()) {
1877    QualType FromPointee1
1878      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1879    QualType ToPointee1
1880      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1881    QualType FromPointee2
1882      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1883    QualType ToPointee2
1884      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
1885
1886    const ObjCInterfaceType* FromIface1 = FromPointee1->getAs<ObjCInterfaceType>();
1887    const ObjCInterfaceType* FromIface2 = FromPointee2->getAs<ObjCInterfaceType>();
1888    const ObjCInterfaceType* ToIface1 = ToPointee1->getAs<ObjCInterfaceType>();
1889    const ObjCInterfaceType* ToIface2 = ToPointee2->getAs<ObjCInterfaceType>();
1890
1891    //   -- conversion of C* to B* is better than conversion of C* to A*,
1892    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1893      if (IsDerivedFrom(ToPointee1, ToPointee2))
1894        return ImplicitConversionSequence::Better;
1895      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1896        return ImplicitConversionSequence::Worse;
1897
1898      if (ToIface1 && ToIface2) {
1899        if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1900          return ImplicitConversionSequence::Better;
1901        else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1902          return ImplicitConversionSequence::Worse;
1903      }
1904    }
1905
1906    //   -- conversion of B* to A* is better than conversion of C* to A*,
1907    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1908      if (IsDerivedFrom(FromPointee2, FromPointee1))
1909        return ImplicitConversionSequence::Better;
1910      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1911        return ImplicitConversionSequence::Worse;
1912
1913      if (FromIface1 && FromIface2) {
1914        if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1915          return ImplicitConversionSequence::Better;
1916        else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1917          return ImplicitConversionSequence::Worse;
1918      }
1919    }
1920  }
1921
1922  // Compare based on reference bindings.
1923  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1924      SCS1.Second == ICK_Derived_To_Base) {
1925    //   -- binding of an expression of type C to a reference of type
1926    //      B& is better than binding an expression of type C to a
1927    //      reference of type A&,
1928    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1929        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1930      if (IsDerivedFrom(ToType1, ToType2))
1931        return ImplicitConversionSequence::Better;
1932      else if (IsDerivedFrom(ToType2, ToType1))
1933        return ImplicitConversionSequence::Worse;
1934    }
1935
1936    //   -- binding of an expression of type B to a reference of type
1937    //      A& is better than binding an expression of type C to a
1938    //      reference of type A&,
1939    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1940        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1941      if (IsDerivedFrom(FromType2, FromType1))
1942        return ImplicitConversionSequence::Better;
1943      else if (IsDerivedFrom(FromType1, FromType2))
1944        return ImplicitConversionSequence::Worse;
1945    }
1946  }
1947
1948  // Ranking of member-pointer types.
1949  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
1950      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
1951      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
1952    const MemberPointerType * FromMemPointer1 =
1953                                        FromType1->getAs<MemberPointerType>();
1954    const MemberPointerType * ToMemPointer1 =
1955                                          ToType1->getAs<MemberPointerType>();
1956    const MemberPointerType * FromMemPointer2 =
1957                                          FromType2->getAs<MemberPointerType>();
1958    const MemberPointerType * ToMemPointer2 =
1959                                          ToType2->getAs<MemberPointerType>();
1960    const Type *FromPointeeType1 = FromMemPointer1->getClass();
1961    const Type *ToPointeeType1 = ToMemPointer1->getClass();
1962    const Type *FromPointeeType2 = FromMemPointer2->getClass();
1963    const Type *ToPointeeType2 = ToMemPointer2->getClass();
1964    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
1965    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
1966    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
1967    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
1968    // conversion of A::* to B::* is better than conversion of A::* to C::*,
1969    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1970      if (IsDerivedFrom(ToPointee1, ToPointee2))
1971        return ImplicitConversionSequence::Worse;
1972      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1973        return ImplicitConversionSequence::Better;
1974    }
1975    // conversion of B::* to C::* is better than conversion of A::* to C::*
1976    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
1977      if (IsDerivedFrom(FromPointee1, FromPointee2))
1978        return ImplicitConversionSequence::Better;
1979      else if (IsDerivedFrom(FromPointee2, FromPointee1))
1980        return ImplicitConversionSequence::Worse;
1981    }
1982  }
1983
1984  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1985      SCS1.Second == ICK_Derived_To_Base) {
1986    //   -- conversion of C to B is better than conversion of C to A,
1987    if (Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1988        !Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1989      if (IsDerivedFrom(ToType1, ToType2))
1990        return ImplicitConversionSequence::Better;
1991      else if (IsDerivedFrom(ToType2, ToType1))
1992        return ImplicitConversionSequence::Worse;
1993    }
1994
1995    //   -- conversion of B to A is better than conversion of C to A.
1996    if (!Context.hasSameUnqualifiedType(FromType1, FromType2) &&
1997        Context.hasSameUnqualifiedType(ToType1, ToType2)) {
1998      if (IsDerivedFrom(FromType2, FromType1))
1999        return ImplicitConversionSequence::Better;
2000      else if (IsDerivedFrom(FromType1, FromType2))
2001        return ImplicitConversionSequence::Worse;
2002    }
2003  }
2004
2005  return ImplicitConversionSequence::Indistinguishable;
2006}
2007
2008/// TryCopyInitialization - Try to copy-initialize a value of type
2009/// ToType from the expression From. Return the implicit conversion
2010/// sequence required to pass this argument, which may be a bad
2011/// conversion sequence (meaning that the argument cannot be passed to
2012/// a parameter of this type). If @p SuppressUserConversions, then we
2013/// do not permit any user-defined conversion sequences. If @p ForceRValue,
2014/// then we treat @p From as an rvalue, even if it is an lvalue.
2015ImplicitConversionSequence
2016Sema::TryCopyInitialization(Expr *From, QualType ToType,
2017                            bool SuppressUserConversions, bool ForceRValue,
2018                            bool InOverloadResolution) {
2019  if (ToType->isReferenceType()) {
2020    ImplicitConversionSequence ICS;
2021    CheckReferenceInit(From, ToType,
2022                       /*FIXME:*/From->getLocStart(),
2023                       SuppressUserConversions,
2024                       /*AllowExplicit=*/false,
2025                       ForceRValue,
2026                       &ICS);
2027    return ICS;
2028  } else {
2029    return TryImplicitConversion(From, ToType,
2030                                 SuppressUserConversions,
2031                                 /*AllowExplicit=*/false,
2032                                 ForceRValue,
2033                                 InOverloadResolution);
2034  }
2035}
2036
2037/// PerformCopyInitialization - Copy-initialize an object of type @p ToType with
2038/// the expression @p From. Returns true (and emits a diagnostic) if there was
2039/// an error, returns false if the initialization succeeded. Elidable should
2040/// be true when the copy may be elided (C++ 12.8p15). Overload resolution works
2041/// differently in C++0x for this case.
2042bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
2043                                     const char* Flavor, bool Elidable) {
2044  if (!getLangOptions().CPlusPlus) {
2045    // In C, argument passing is the same as performing an assignment.
2046    QualType FromType = From->getType();
2047
2048    AssignConvertType ConvTy =
2049      CheckSingleAssignmentConstraints(ToType, From);
2050    if (ConvTy != Compatible &&
2051        CheckTransparentUnionArgumentConstraints(ToType, From) == Compatible)
2052      ConvTy = Compatible;
2053
2054    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
2055                                    FromType, From, Flavor);
2056  }
2057
2058  if (ToType->isReferenceType())
2059    return CheckReferenceInit(From, ToType,
2060                              /*FIXME:*/From->getLocStart(),
2061                              /*SuppressUserConversions=*/false,
2062                              /*AllowExplicit=*/false,
2063                              /*ForceRValue=*/false);
2064
2065  if (!PerformImplicitConversion(From, ToType, Flavor,
2066                                 /*AllowExplicit=*/false, Elidable))
2067    return false;
2068  if (!DiagnoseMultipleUserDefinedConversion(From, ToType))
2069    return Diag(From->getSourceRange().getBegin(),
2070                diag::err_typecheck_convert_incompatible)
2071      << ToType << From->getType() << Flavor << From->getSourceRange();
2072  return true;
2073}
2074
2075/// TryObjectArgumentInitialization - Try to initialize the object
2076/// parameter of the given member function (@c Method) from the
2077/// expression @p From.
2078ImplicitConversionSequence
2079Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
2080  QualType ClassType = Context.getTypeDeclType(Method->getParent());
2081  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
2082  //                 const volatile object.
2083  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
2084    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
2085  QualType ImplicitParamType =  Context.getCVRQualifiedType(ClassType, Quals);
2086
2087  // Set up the conversion sequence as a "bad" conversion, to allow us
2088  // to exit early.
2089  ImplicitConversionSequence ICS;
2090  ICS.Standard.setAsIdentityConversion();
2091  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
2092
2093  // We need to have an object of class type.
2094  QualType FromType = From->getType();
2095  if (const PointerType *PT = FromType->getAs<PointerType>())
2096    FromType = PT->getPointeeType();
2097
2098  assert(FromType->isRecordType());
2099
2100  // The implicit object parameter is has the type "reference to cv X",
2101  // where X is the class of which the function is a member
2102  // (C++ [over.match.funcs]p4). However, when finding an implicit
2103  // conversion sequence for the argument, we are not allowed to
2104  // create temporaries or perform user-defined conversions
2105  // (C++ [over.match.funcs]p5). We perform a simplified version of
2106  // reference binding here, that allows class rvalues to bind to
2107  // non-constant references.
2108
2109  // First check the qualifiers. We don't care about lvalue-vs-rvalue
2110  // with the implicit object parameter (C++ [over.match.funcs]p5).
2111  QualType FromTypeCanon = Context.getCanonicalType(FromType);
2112  if (ImplicitParamType.getCVRQualifiers()
2113                                    != FromTypeCanon.getLocalCVRQualifiers() &&
2114      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon))
2115    return ICS;
2116
2117  // Check that we have either the same type or a derived type. It
2118  // affects the conversion rank.
2119  QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
2120  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType())
2121    ICS.Standard.Second = ICK_Identity;
2122  else if (IsDerivedFrom(FromType, ClassType))
2123    ICS.Standard.Second = ICK_Derived_To_Base;
2124  else
2125    return ICS;
2126
2127  // Success. Mark this as a reference binding.
2128  ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
2129  ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
2130  ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
2131  ICS.Standard.ReferenceBinding = true;
2132  ICS.Standard.DirectBinding = true;
2133  ICS.Standard.RRefBinding = false;
2134  return ICS;
2135}
2136
2137/// PerformObjectArgumentInitialization - Perform initialization of
2138/// the implicit object parameter for the given Method with the given
2139/// expression.
2140bool
2141Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
2142  QualType FromRecordType, DestType;
2143  QualType ImplicitParamRecordType  =
2144    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
2145
2146  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
2147    FromRecordType = PT->getPointeeType();
2148    DestType = Method->getThisType(Context);
2149  } else {
2150    FromRecordType = From->getType();
2151    DestType = ImplicitParamRecordType;
2152  }
2153
2154  ImplicitConversionSequence ICS
2155    = TryObjectArgumentInitialization(From, Method);
2156  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
2157    return Diag(From->getSourceRange().getBegin(),
2158                diag::err_implicit_object_parameter_init)
2159       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
2160
2161  if (ICS.Standard.Second == ICK_Derived_To_Base &&
2162      CheckDerivedToBaseConversion(FromRecordType,
2163                                   ImplicitParamRecordType,
2164                                   From->getSourceRange().getBegin(),
2165                                   From->getSourceRange()))
2166    return true;
2167
2168  ImpCastExprToType(From, DestType, CastExpr::CK_DerivedToBase,
2169                    /*isLvalue=*/true);
2170  return false;
2171}
2172
2173/// TryContextuallyConvertToBool - Attempt to contextually convert the
2174/// expression From to bool (C++0x [conv]p3).
2175ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
2176  return TryImplicitConversion(From, Context.BoolTy,
2177                               // FIXME: Are these flags correct?
2178                               /*SuppressUserConversions=*/false,
2179                               /*AllowExplicit=*/true,
2180                               /*ForceRValue=*/false,
2181                               /*InOverloadResolution=*/false);
2182}
2183
2184/// PerformContextuallyConvertToBool - Perform a contextual conversion
2185/// of the expression From to bool (C++0x [conv]p3).
2186bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
2187  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
2188  if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
2189    return false;
2190
2191  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
2192    return  Diag(From->getSourceRange().getBegin(),
2193                 diag::err_typecheck_bool_condition)
2194                  << From->getType() << From->getSourceRange();
2195  return true;
2196}
2197
2198/// AddOverloadCandidate - Adds the given function to the set of
2199/// candidate functions, using the given function call arguments.  If
2200/// @p SuppressUserConversions, then don't allow user-defined
2201/// conversions via constructors or conversion operators.
2202/// If @p ForceRValue, treat all arguments as rvalues. This is a slightly
2203/// hacky way to implement the overloading rules for elidable copy
2204/// initialization in C++0x (C++0x 12.8p15).
2205///
2206/// \para PartialOverloading true if we are performing "partial" overloading
2207/// based on an incomplete set of function arguments. This feature is used by
2208/// code completion.
2209void
2210Sema::AddOverloadCandidate(FunctionDecl *Function,
2211                           Expr **Args, unsigned NumArgs,
2212                           OverloadCandidateSet& CandidateSet,
2213                           bool SuppressUserConversions,
2214                           bool ForceRValue,
2215                           bool PartialOverloading) {
2216  const FunctionProtoType* Proto
2217    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
2218  assert(Proto && "Functions without a prototype cannot be overloaded");
2219  assert(!isa<CXXConversionDecl>(Function) &&
2220         "Use AddConversionCandidate for conversion functions");
2221  assert(!Function->getDescribedFunctionTemplate() &&
2222         "Use AddTemplateOverloadCandidate for function templates");
2223
2224  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
2225    if (!isa<CXXConstructorDecl>(Method)) {
2226      // If we get here, it's because we're calling a member function
2227      // that is named without a member access expression (e.g.,
2228      // "this->f") that was either written explicitly or created
2229      // implicitly. This can happen with a qualified call to a member
2230      // function, e.g., X::f(). We use a NULL object as the implied
2231      // object argument (C++ [over.call.func]p3).
2232      AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2233                         SuppressUserConversions, ForceRValue);
2234      return;
2235    }
2236    // We treat a constructor like a non-member function, since its object
2237    // argument doesn't participate in overload resolution.
2238  }
2239
2240  if (!CandidateSet.isNewCandidate(Function))
2241    return;
2242
2243  // Overload resolution is always an unevaluated context.
2244  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2245
2246  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
2247    // C++ [class.copy]p3:
2248    //   A member function template is never instantiated to perform the copy
2249    //   of a class object to an object of its class type.
2250    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
2251    if (NumArgs == 1 &&
2252        Constructor->isCopyConstructorLikeSpecialization() &&
2253        Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()))
2254      return;
2255  }
2256
2257  // Add this candidate
2258  CandidateSet.push_back(OverloadCandidate());
2259  OverloadCandidate& Candidate = CandidateSet.back();
2260  Candidate.Function = Function;
2261  Candidate.Viable = true;
2262  Candidate.IsSurrogate = false;
2263  Candidate.IgnoreObjectArgument = false;
2264
2265  unsigned NumArgsInProto = Proto->getNumArgs();
2266
2267  // (C++ 13.3.2p2): A candidate function having fewer than m
2268  // parameters is viable only if it has an ellipsis in its parameter
2269  // list (8.3.5).
2270  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
2271      !Proto->isVariadic()) {
2272    Candidate.Viable = false;
2273    return;
2274  }
2275
2276  // (C++ 13.3.2p2): A candidate function having more than m parameters
2277  // is viable only if the (m+1)st parameter has a default argument
2278  // (8.3.6). For the purposes of overload resolution, the
2279  // parameter list is truncated on the right, so that there are
2280  // exactly m parameters.
2281  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2282  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
2283    // Not enough arguments.
2284    Candidate.Viable = false;
2285    return;
2286  }
2287
2288  // Determine the implicit conversion sequences for each of the
2289  // arguments.
2290  Candidate.Conversions.resize(NumArgs);
2291  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2292    if (ArgIdx < NumArgsInProto) {
2293      // (C++ 13.3.2p3): for F to be a viable function, there shall
2294      // exist for each argument an implicit conversion sequence
2295      // (13.3.3.1) that converts that argument to the corresponding
2296      // parameter of F.
2297      QualType ParamType = Proto->getArgType(ArgIdx);
2298      Candidate.Conversions[ArgIdx]
2299        = TryCopyInitialization(Args[ArgIdx], ParamType,
2300                                SuppressUserConversions, ForceRValue,
2301                                /*InOverloadResolution=*/true);
2302      if (Candidate.Conversions[ArgIdx].ConversionKind
2303            == ImplicitConversionSequence::BadConversion) {
2304      // 13.3.3.1-p10 If several different sequences of conversions exist that
2305      // each convert the argument to the parameter type, the implicit conversion
2306      // sequence associated with the parameter is defined to be the unique conversion
2307      // sequence designated the ambiguous conversion sequence. For the purpose of
2308      // ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous
2309      // conversion sequence is treated as a user-defined sequence that is
2310      // indistinguishable from any other user-defined conversion sequence
2311        if (!Candidate.Conversions[ArgIdx].ConversionFunctionSet.empty()) {
2312          Candidate.Conversions[ArgIdx].ConversionKind =
2313            ImplicitConversionSequence::UserDefinedConversion;
2314          // Set the conversion function to one of them. As due to ambiguity,
2315          // they carry the same weight and is needed for overload resolution
2316          // later.
2317          Candidate.Conversions[ArgIdx].UserDefined.ConversionFunction =
2318            Candidate.Conversions[ArgIdx].ConversionFunctionSet[0];
2319        }
2320        else {
2321          Candidate.Viable = false;
2322          break;
2323        }
2324      }
2325    } else {
2326      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2327      // argument for which there is no corresponding parameter is
2328      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2329      Candidate.Conversions[ArgIdx].ConversionKind
2330        = ImplicitConversionSequence::EllipsisConversion;
2331    }
2332  }
2333}
2334
2335/// \brief Add all of the function declarations in the given function set to
2336/// the overload canddiate set.
2337void Sema::AddFunctionCandidates(const FunctionSet &Functions,
2338                                 Expr **Args, unsigned NumArgs,
2339                                 OverloadCandidateSet& CandidateSet,
2340                                 bool SuppressUserConversions) {
2341  for (FunctionSet::const_iterator F = Functions.begin(),
2342                                FEnd = Functions.end();
2343       F != FEnd; ++F) {
2344    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*F)) {
2345      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2346        AddMethodCandidate(cast<CXXMethodDecl>(FD),
2347                           Args[0], Args + 1, NumArgs - 1,
2348                           CandidateSet, SuppressUserConversions);
2349      else
2350        AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2351                             SuppressUserConversions);
2352    } else {
2353      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(*F);
2354      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
2355          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
2356        AddMethodTemplateCandidate(FunTmpl,
2357                                   /*FIXME: explicit args */ 0,
2358                                   Args[0], Args + 1, NumArgs - 1,
2359                                   CandidateSet,
2360                                   SuppressUserConversions);
2361      else
2362        AddTemplateOverloadCandidate(FunTmpl,
2363                                     /*FIXME: explicit args */ 0,
2364                                     Args, NumArgs, CandidateSet,
2365                                     SuppressUserConversions);
2366    }
2367  }
2368}
2369
2370/// AddMethodCandidate - Adds a named decl (which is some kind of
2371/// method) as a method candidate to the given overload set.
2372void Sema::AddMethodCandidate(NamedDecl *Decl, Expr *Object,
2373                              Expr **Args, unsigned NumArgs,
2374                              OverloadCandidateSet& CandidateSet,
2375                              bool SuppressUserConversions, bool ForceRValue) {
2376
2377  // FIXME: use this
2378  //DeclContext *ActingContext = Decl->getDeclContext();
2379
2380  if (isa<UsingShadowDecl>(Decl))
2381    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
2382
2383  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
2384    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
2385           "Expected a member function template");
2386    AddMethodTemplateCandidate(TD, /*ExplicitArgs*/ 0,
2387                               Object, Args, NumArgs,
2388                               CandidateSet,
2389                               SuppressUserConversions,
2390                               ForceRValue);
2391  } else {
2392    AddMethodCandidate(cast<CXXMethodDecl>(Decl), Object, Args, NumArgs,
2393                       CandidateSet, SuppressUserConversions, ForceRValue);
2394  }
2395}
2396
2397/// AddMethodCandidate - Adds the given C++ member function to the set
2398/// of candidate functions, using the given function call arguments
2399/// and the object argument (@c Object). For example, in a call
2400/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2401/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2402/// allow user-defined conversions via constructors or conversion
2403/// operators. If @p ForceRValue, treat all arguments as rvalues. This is
2404/// a slightly hacky way to implement the overloading rules for elidable copy
2405/// initialization in C++0x (C++0x 12.8p15).
2406void
2407Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2408                         Expr **Args, unsigned NumArgs,
2409                         OverloadCandidateSet& CandidateSet,
2410                         bool SuppressUserConversions, bool ForceRValue) {
2411  const FunctionProtoType* Proto
2412    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
2413  assert(Proto && "Methods without a prototype cannot be overloaded");
2414  assert(!isa<CXXConversionDecl>(Method) &&
2415         "Use AddConversionCandidate for conversion functions");
2416  assert(!isa<CXXConstructorDecl>(Method) &&
2417         "Use AddOverloadCandidate for constructors");
2418
2419  if (!CandidateSet.isNewCandidate(Method))
2420    return;
2421
2422  // Overload resolution is always an unevaluated context.
2423  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2424
2425  // Add this candidate
2426  CandidateSet.push_back(OverloadCandidate());
2427  OverloadCandidate& Candidate = CandidateSet.back();
2428  Candidate.Function = Method;
2429  Candidate.IsSurrogate = false;
2430  Candidate.IgnoreObjectArgument = false;
2431
2432  unsigned NumArgsInProto = Proto->getNumArgs();
2433
2434  // (C++ 13.3.2p2): A candidate function having fewer than m
2435  // parameters is viable only if it has an ellipsis in its parameter
2436  // list (8.3.5).
2437  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2438    Candidate.Viable = false;
2439    return;
2440  }
2441
2442  // (C++ 13.3.2p2): A candidate function having more than m parameters
2443  // is viable only if the (m+1)st parameter has a default argument
2444  // (8.3.6). For the purposes of overload resolution, the
2445  // parameter list is truncated on the right, so that there are
2446  // exactly m parameters.
2447  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2448  if (NumArgs < MinRequiredArgs) {
2449    // Not enough arguments.
2450    Candidate.Viable = false;
2451    return;
2452  }
2453
2454  Candidate.Viable = true;
2455  Candidate.Conversions.resize(NumArgs + 1);
2456
2457  if (Method->isStatic() || !Object)
2458    // The implicit object argument is ignored.
2459    Candidate.IgnoreObjectArgument = true;
2460  else {
2461    // Determine the implicit conversion sequence for the object
2462    // parameter.
2463    Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2464    if (Candidate.Conversions[0].ConversionKind
2465          == ImplicitConversionSequence::BadConversion) {
2466      Candidate.Viable = false;
2467      return;
2468    }
2469  }
2470
2471  // Determine the implicit conversion sequences for each of the
2472  // arguments.
2473  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2474    if (ArgIdx < NumArgsInProto) {
2475      // (C++ 13.3.2p3): for F to be a viable function, there shall
2476      // exist for each argument an implicit conversion sequence
2477      // (13.3.3.1) that converts that argument to the corresponding
2478      // parameter of F.
2479      QualType ParamType = Proto->getArgType(ArgIdx);
2480      Candidate.Conversions[ArgIdx + 1]
2481        = TryCopyInitialization(Args[ArgIdx], ParamType,
2482                                SuppressUserConversions, ForceRValue,
2483                                /*InOverloadResolution=*/true);
2484      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2485            == ImplicitConversionSequence::BadConversion) {
2486        Candidate.Viable = false;
2487        break;
2488      }
2489    } else {
2490      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2491      // argument for which there is no corresponding parameter is
2492      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2493      Candidate.Conversions[ArgIdx + 1].ConversionKind
2494        = ImplicitConversionSequence::EllipsisConversion;
2495    }
2496  }
2497}
2498
2499/// \brief Add a C++ member function template as a candidate to the candidate
2500/// set, using template argument deduction to produce an appropriate member
2501/// function template specialization.
2502void
2503Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
2504                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2505                                 Expr *Object, Expr **Args, unsigned NumArgs,
2506                                 OverloadCandidateSet& CandidateSet,
2507                                 bool SuppressUserConversions,
2508                                 bool ForceRValue) {
2509  if (!CandidateSet.isNewCandidate(MethodTmpl))
2510    return;
2511
2512  // C++ [over.match.funcs]p7:
2513  //   In each case where a candidate is a function template, candidate
2514  //   function template specializations are generated using template argument
2515  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2516  //   candidate functions in the usual way.113) A given name can refer to one
2517  //   or more function templates and also to a set of overloaded non-template
2518  //   functions. In such a case, the candidate functions generated from each
2519  //   function template are combined with the set of non-template candidate
2520  //   functions.
2521  TemplateDeductionInfo Info(Context);
2522  FunctionDecl *Specialization = 0;
2523  if (TemplateDeductionResult Result
2524      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
2525                                Args, NumArgs, Specialization, Info)) {
2526        // FIXME: Record what happened with template argument deduction, so
2527        // that we can give the user a beautiful diagnostic.
2528        (void)Result;
2529        return;
2530      }
2531
2532  // Add the function template specialization produced by template argument
2533  // deduction as a candidate.
2534  assert(Specialization && "Missing member function template specialization?");
2535  assert(isa<CXXMethodDecl>(Specialization) &&
2536         "Specialization is not a member function?");
2537  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), Object, Args, NumArgs,
2538                     CandidateSet, SuppressUserConversions, ForceRValue);
2539}
2540
2541/// \brief Add a C++ function template specialization as a candidate
2542/// in the candidate set, using template argument deduction to produce
2543/// an appropriate function template specialization.
2544void
2545Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
2546                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2547                                   Expr **Args, unsigned NumArgs,
2548                                   OverloadCandidateSet& CandidateSet,
2549                                   bool SuppressUserConversions,
2550                                   bool ForceRValue) {
2551  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2552    return;
2553
2554  // C++ [over.match.funcs]p7:
2555  //   In each case where a candidate is a function template, candidate
2556  //   function template specializations are generated using template argument
2557  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
2558  //   candidate functions in the usual way.113) A given name can refer to one
2559  //   or more function templates and also to a set of overloaded non-template
2560  //   functions. In such a case, the candidate functions generated from each
2561  //   function template are combined with the set of non-template candidate
2562  //   functions.
2563  TemplateDeductionInfo Info(Context);
2564  FunctionDecl *Specialization = 0;
2565  if (TemplateDeductionResult Result
2566        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2567                                  Args, NumArgs, Specialization, Info)) {
2568    // FIXME: Record what happened with template argument deduction, so
2569    // that we can give the user a beautiful diagnostic.
2570    (void)Result;
2571    return;
2572  }
2573
2574  // Add the function template specialization produced by template argument
2575  // deduction as a candidate.
2576  assert(Specialization && "Missing function template specialization?");
2577  AddOverloadCandidate(Specialization, Args, NumArgs, CandidateSet,
2578                       SuppressUserConversions, ForceRValue);
2579}
2580
2581/// AddConversionCandidate - Add a C++ conversion function as a
2582/// candidate in the candidate set (C++ [over.match.conv],
2583/// C++ [over.match.copy]). From is the expression we're converting from,
2584/// and ToType is the type that we're eventually trying to convert to
2585/// (which may or may not be the same type as the type that the
2586/// conversion function produces).
2587void
2588Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2589                             Expr *From, QualType ToType,
2590                             OverloadCandidateSet& CandidateSet) {
2591  assert(!Conversion->getDescribedFunctionTemplate() &&
2592         "Conversion function templates use AddTemplateConversionCandidate");
2593
2594  if (!CandidateSet.isNewCandidate(Conversion))
2595    return;
2596
2597  // Overload resolution is always an unevaluated context.
2598  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2599
2600  // Add this candidate
2601  CandidateSet.push_back(OverloadCandidate());
2602  OverloadCandidate& Candidate = CandidateSet.back();
2603  Candidate.Function = Conversion;
2604  Candidate.IsSurrogate = false;
2605  Candidate.IgnoreObjectArgument = false;
2606  Candidate.FinalConversion.setAsIdentityConversion();
2607  Candidate.FinalConversion.FromTypePtr
2608    = Conversion->getConversionType().getAsOpaquePtr();
2609  Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2610
2611  // Determine the implicit conversion sequence for the implicit
2612  // object parameter.
2613  Candidate.Viable = true;
2614  Candidate.Conversions.resize(1);
2615  Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
2616  // Conversion functions to a different type in the base class is visible in
2617  // the derived class.  So, a derived to base conversion should not participate
2618  // in overload resolution.
2619  if (Candidate.Conversions[0].Standard.Second == ICK_Derived_To_Base)
2620    Candidate.Conversions[0].Standard.Second = ICK_Identity;
2621  if (Candidate.Conversions[0].ConversionKind
2622      == ImplicitConversionSequence::BadConversion) {
2623    Candidate.Viable = false;
2624    return;
2625  }
2626
2627  // We won't go through a user-define type conversion function to convert a
2628  // derived to base as such conversions are given Conversion Rank. They only
2629  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
2630  QualType FromCanon
2631    = Context.getCanonicalType(From->getType().getUnqualifiedType());
2632  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
2633  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
2634    Candidate.Viable = false;
2635    return;
2636  }
2637
2638
2639  // To determine what the conversion from the result of calling the
2640  // conversion function to the type we're eventually trying to
2641  // convert to (ToType), we need to synthesize a call to the
2642  // conversion function and attempt copy initialization from it. This
2643  // makes sure that we get the right semantics with respect to
2644  // lvalues/rvalues and the type. Fortunately, we can allocate this
2645  // call on the stack and we don't need its arguments to be
2646  // well-formed.
2647  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2648                            From->getLocStart());
2649  ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
2650                                CastExpr::CK_FunctionToPointerDecay,
2651                                &ConversionRef, false);
2652
2653  // Note that it is safe to allocate CallExpr on the stack here because
2654  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2655  // allocator).
2656  CallExpr Call(Context, &ConversionFn, 0, 0,
2657                Conversion->getConversionType().getNonReferenceType(),
2658                From->getLocStart());
2659  ImplicitConversionSequence ICS =
2660    TryCopyInitialization(&Call, ToType,
2661                          /*SuppressUserConversions=*/true,
2662                          /*ForceRValue=*/false,
2663                          /*InOverloadResolution=*/false);
2664
2665  switch (ICS.ConversionKind) {
2666  case ImplicitConversionSequence::StandardConversion:
2667    Candidate.FinalConversion = ICS.Standard;
2668    break;
2669
2670  case ImplicitConversionSequence::BadConversion:
2671    Candidate.Viable = false;
2672    break;
2673
2674  default:
2675    assert(false &&
2676           "Can only end up with a standard conversion sequence or failure");
2677  }
2678}
2679
2680/// \brief Adds a conversion function template specialization
2681/// candidate to the overload set, using template argument deduction
2682/// to deduce the template arguments of the conversion function
2683/// template from the type that we are converting to (C++
2684/// [temp.deduct.conv]).
2685void
2686Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
2687                                     Expr *From, QualType ToType,
2688                                     OverloadCandidateSet &CandidateSet) {
2689  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
2690         "Only conversion function templates permitted here");
2691
2692  if (!CandidateSet.isNewCandidate(FunctionTemplate))
2693    return;
2694
2695  TemplateDeductionInfo Info(Context);
2696  CXXConversionDecl *Specialization = 0;
2697  if (TemplateDeductionResult Result
2698        = DeduceTemplateArguments(FunctionTemplate, ToType,
2699                                  Specialization, Info)) {
2700    // FIXME: Record what happened with template argument deduction, so
2701    // that we can give the user a beautiful diagnostic.
2702    (void)Result;
2703    return;
2704  }
2705
2706  // Add the conversion function template specialization produced by
2707  // template argument deduction as a candidate.
2708  assert(Specialization && "Missing function template specialization?");
2709  AddConversionCandidate(Specialization, From, ToType, CandidateSet);
2710}
2711
2712/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2713/// converts the given @c Object to a function pointer via the
2714/// conversion function @c Conversion, and then attempts to call it
2715/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2716/// the type of function that we'll eventually be calling.
2717void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2718                                 const FunctionProtoType *Proto,
2719                                 Expr *Object, Expr **Args, unsigned NumArgs,
2720                                 OverloadCandidateSet& CandidateSet) {
2721  if (!CandidateSet.isNewCandidate(Conversion))
2722    return;
2723
2724  // Overload resolution is always an unevaluated context.
2725  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2726
2727  CandidateSet.push_back(OverloadCandidate());
2728  OverloadCandidate& Candidate = CandidateSet.back();
2729  Candidate.Function = 0;
2730  Candidate.Surrogate = Conversion;
2731  Candidate.Viable = true;
2732  Candidate.IsSurrogate = true;
2733  Candidate.IgnoreObjectArgument = false;
2734  Candidate.Conversions.resize(NumArgs + 1);
2735
2736  // Determine the implicit conversion sequence for the implicit
2737  // object parameter.
2738  ImplicitConversionSequence ObjectInit
2739    = TryObjectArgumentInitialization(Object, Conversion);
2740  if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2741    Candidate.Viable = false;
2742    return;
2743  }
2744
2745  // The first conversion is actually a user-defined conversion whose
2746  // first conversion is ObjectInit's standard conversion (which is
2747  // effectively a reference binding). Record it as such.
2748  Candidate.Conversions[0].ConversionKind
2749    = ImplicitConversionSequence::UserDefinedConversion;
2750  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2751  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
2752  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2753  Candidate.Conversions[0].UserDefined.After
2754    = Candidate.Conversions[0].UserDefined.Before;
2755  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2756
2757  // Find the
2758  unsigned NumArgsInProto = Proto->getNumArgs();
2759
2760  // (C++ 13.3.2p2): A candidate function having fewer than m
2761  // parameters is viable only if it has an ellipsis in its parameter
2762  // list (8.3.5).
2763  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2764    Candidate.Viable = false;
2765    return;
2766  }
2767
2768  // Function types don't have any default arguments, so just check if
2769  // we have enough arguments.
2770  if (NumArgs < NumArgsInProto) {
2771    // Not enough arguments.
2772    Candidate.Viable = false;
2773    return;
2774  }
2775
2776  // Determine the implicit conversion sequences for each of the
2777  // arguments.
2778  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2779    if (ArgIdx < NumArgsInProto) {
2780      // (C++ 13.3.2p3): for F to be a viable function, there shall
2781      // exist for each argument an implicit conversion sequence
2782      // (13.3.3.1) that converts that argument to the corresponding
2783      // parameter of F.
2784      QualType ParamType = Proto->getArgType(ArgIdx);
2785      Candidate.Conversions[ArgIdx + 1]
2786        = TryCopyInitialization(Args[ArgIdx], ParamType,
2787                                /*SuppressUserConversions=*/false,
2788                                /*ForceRValue=*/false,
2789                                /*InOverloadResolution=*/false);
2790      if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2791            == ImplicitConversionSequence::BadConversion) {
2792        Candidate.Viable = false;
2793        break;
2794      }
2795    } else {
2796      // (C++ 13.3.2p2): For the purposes of overload resolution, any
2797      // argument for which there is no corresponding parameter is
2798      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2799      Candidate.Conversions[ArgIdx + 1].ConversionKind
2800        = ImplicitConversionSequence::EllipsisConversion;
2801    }
2802  }
2803}
2804
2805// FIXME: This will eventually be removed, once we've migrated all of the
2806// operator overloading logic over to the scheme used by binary operators, which
2807// works for template instantiation.
2808void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2809                                 SourceLocation OpLoc,
2810                                 Expr **Args, unsigned NumArgs,
2811                                 OverloadCandidateSet& CandidateSet,
2812                                 SourceRange OpRange) {
2813  FunctionSet Functions;
2814
2815  QualType T1 = Args[0]->getType();
2816  QualType T2;
2817  if (NumArgs > 1)
2818    T2 = Args[1]->getType();
2819
2820  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2821  if (S)
2822    LookupOverloadedOperatorName(Op, S, T1, T2, Functions);
2823  ArgumentDependentLookup(OpName, /*Operator*/true, Args, NumArgs, Functions);
2824  AddFunctionCandidates(Functions, Args, NumArgs, CandidateSet);
2825  AddMemberOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet, OpRange);
2826  AddBuiltinOperatorCandidates(Op, OpLoc, Args, NumArgs, CandidateSet);
2827}
2828
2829/// \brief Add overload candidates for overloaded operators that are
2830/// member functions.
2831///
2832/// Add the overloaded operator candidates that are member functions
2833/// for the operator Op that was used in an operator expression such
2834/// as "x Op y". , Args/NumArgs provides the operator arguments, and
2835/// CandidateSet will store the added overload candidates. (C++
2836/// [over.match.oper]).
2837void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
2838                                       SourceLocation OpLoc,
2839                                       Expr **Args, unsigned NumArgs,
2840                                       OverloadCandidateSet& CandidateSet,
2841                                       SourceRange OpRange) {
2842  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2843
2844  // C++ [over.match.oper]p3:
2845  //   For a unary operator @ with an operand of a type whose
2846  //   cv-unqualified version is T1, and for a binary operator @ with
2847  //   a left operand of a type whose cv-unqualified version is T1 and
2848  //   a right operand of a type whose cv-unqualified version is T2,
2849  //   three sets of candidate functions, designated member
2850  //   candidates, non-member candidates and built-in candidates, are
2851  //   constructed as follows:
2852  QualType T1 = Args[0]->getType();
2853  QualType T2;
2854  if (NumArgs > 1)
2855    T2 = Args[1]->getType();
2856
2857  //     -- If T1 is a class type, the set of member candidates is the
2858  //        result of the qualified lookup of T1::operator@
2859  //        (13.3.1.1.1); otherwise, the set of member candidates is
2860  //        empty.
2861  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
2862    // Complete the type if it can be completed. Otherwise, we're done.
2863    if (RequireCompleteType(OpLoc, T1, PDiag()))
2864      return;
2865
2866    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
2867    LookupQualifiedName(Operators, T1Rec->getDecl());
2868    Operators.suppressDiagnostics();
2869
2870    for (LookupResult::iterator Oper = Operators.begin(),
2871                             OperEnd = Operators.end();
2872         Oper != OperEnd;
2873         ++Oper)
2874      AddMethodCandidate(*Oper, Args[0], Args + 1, NumArgs - 1, CandidateSet,
2875                         /* SuppressUserConversions = */ false);
2876  }
2877}
2878
2879/// AddBuiltinCandidate - Add a candidate for a built-in
2880/// operator. ResultTy and ParamTys are the result and parameter types
2881/// of the built-in candidate, respectively. Args and NumArgs are the
2882/// arguments being passed to the candidate. IsAssignmentOperator
2883/// should be true when this built-in candidate is an assignment
2884/// operator. NumContextualBoolArguments is the number of arguments
2885/// (at the beginning of the argument list) that will be contextually
2886/// converted to bool.
2887void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2888                               Expr **Args, unsigned NumArgs,
2889                               OverloadCandidateSet& CandidateSet,
2890                               bool IsAssignmentOperator,
2891                               unsigned NumContextualBoolArguments) {
2892  // Overload resolution is always an unevaluated context.
2893  EnterExpressionEvaluationContext Unevaluated(*this, Action::Unevaluated);
2894
2895  // Add this candidate
2896  CandidateSet.push_back(OverloadCandidate());
2897  OverloadCandidate& Candidate = CandidateSet.back();
2898  Candidate.Function = 0;
2899  Candidate.IsSurrogate = false;
2900  Candidate.IgnoreObjectArgument = false;
2901  Candidate.BuiltinTypes.ResultTy = ResultTy;
2902  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2903    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2904
2905  // Determine the implicit conversion sequences for each of the
2906  // arguments.
2907  Candidate.Viable = true;
2908  Candidate.Conversions.resize(NumArgs);
2909  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2910    // C++ [over.match.oper]p4:
2911    //   For the built-in assignment operators, conversions of the
2912    //   left operand are restricted as follows:
2913    //     -- no temporaries are introduced to hold the left operand, and
2914    //     -- no user-defined conversions are applied to the left
2915    //        operand to achieve a type match with the left-most
2916    //        parameter of a built-in candidate.
2917    //
2918    // We block these conversions by turning off user-defined
2919    // conversions, since that is the only way that initialization of
2920    // a reference to a non-class type can occur from something that
2921    // is not of the same type.
2922    if (ArgIdx < NumContextualBoolArguments) {
2923      assert(ParamTys[ArgIdx] == Context.BoolTy &&
2924             "Contextual conversion to bool requires bool type");
2925      Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2926    } else {
2927      Candidate.Conversions[ArgIdx]
2928        = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2929                                ArgIdx == 0 && IsAssignmentOperator,
2930                                /*ForceRValue=*/false,
2931                                /*InOverloadResolution=*/false);
2932    }
2933    if (Candidate.Conversions[ArgIdx].ConversionKind
2934        == ImplicitConversionSequence::BadConversion) {
2935      Candidate.Viable = false;
2936      break;
2937    }
2938  }
2939}
2940
2941/// BuiltinCandidateTypeSet - A set of types that will be used for the
2942/// candidate operator functions for built-in operators (C++
2943/// [over.built]). The types are separated into pointer types and
2944/// enumeration types.
2945class BuiltinCandidateTypeSet  {
2946  /// TypeSet - A set of types.
2947  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
2948
2949  /// PointerTypes - The set of pointer types that will be used in the
2950  /// built-in candidates.
2951  TypeSet PointerTypes;
2952
2953  /// MemberPointerTypes - The set of member pointer types that will be
2954  /// used in the built-in candidates.
2955  TypeSet MemberPointerTypes;
2956
2957  /// EnumerationTypes - The set of enumeration types that will be
2958  /// used in the built-in candidates.
2959  TypeSet EnumerationTypes;
2960
2961  /// Sema - The semantic analysis instance where we are building the
2962  /// candidate type set.
2963  Sema &SemaRef;
2964
2965  /// Context - The AST context in which we will build the type sets.
2966  ASTContext &Context;
2967
2968  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
2969                                               const Qualifiers &VisibleQuals);
2970  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
2971
2972public:
2973  /// iterator - Iterates through the types that are part of the set.
2974  typedef TypeSet::iterator iterator;
2975
2976  BuiltinCandidateTypeSet(Sema &SemaRef)
2977    : SemaRef(SemaRef), Context(SemaRef.Context) { }
2978
2979  void AddTypesConvertedFrom(QualType Ty,
2980                             SourceLocation Loc,
2981                             bool AllowUserConversions,
2982                             bool AllowExplicitConversions,
2983                             const Qualifiers &VisibleTypeConversionsQuals);
2984
2985  /// pointer_begin - First pointer type found;
2986  iterator pointer_begin() { return PointerTypes.begin(); }
2987
2988  /// pointer_end - Past the last pointer type found;
2989  iterator pointer_end() { return PointerTypes.end(); }
2990
2991  /// member_pointer_begin - First member pointer type found;
2992  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
2993
2994  /// member_pointer_end - Past the last member pointer type found;
2995  iterator member_pointer_end() { return MemberPointerTypes.end(); }
2996
2997  /// enumeration_begin - First enumeration type found;
2998  iterator enumeration_begin() { return EnumerationTypes.begin(); }
2999
3000  /// enumeration_end - Past the last enumeration type found;
3001  iterator enumeration_end() { return EnumerationTypes.end(); }
3002};
3003
3004/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
3005/// the set of pointer types along with any more-qualified variants of
3006/// that type. For example, if @p Ty is "int const *", this routine
3007/// will add "int const *", "int const volatile *", "int const
3008/// restrict *", and "int const volatile restrict *" to the set of
3009/// pointer types. Returns true if the add of @p Ty itself succeeded,
3010/// false otherwise.
3011///
3012/// FIXME: what to do about extended qualifiers?
3013bool
3014BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
3015                                             const Qualifiers &VisibleQuals) {
3016
3017  // Insert this type.
3018  if (!PointerTypes.insert(Ty))
3019    return false;
3020
3021  const PointerType *PointerTy = Ty->getAs<PointerType>();
3022  assert(PointerTy && "type was not a pointer type!");
3023
3024  QualType PointeeTy = PointerTy->getPointeeType();
3025  // Don't add qualified variants of arrays. For one, they're not allowed
3026  // (the qualifier would sink to the element type), and for another, the
3027  // only overload situation where it matters is subscript or pointer +- int,
3028  // and those shouldn't have qualifier variants anyway.
3029  if (PointeeTy->isArrayType())
3030    return true;
3031  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3032  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
3033    BaseCVR = Array->getElementType().getCVRQualifiers();
3034  bool hasVolatile = VisibleQuals.hasVolatile();
3035  bool hasRestrict = VisibleQuals.hasRestrict();
3036
3037  // Iterate through all strict supersets of BaseCVR.
3038  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3039    if ((CVR | BaseCVR) != CVR) continue;
3040    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
3041    // in the types.
3042    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
3043    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
3044    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3045    PointerTypes.insert(Context.getPointerType(QPointeeTy));
3046  }
3047
3048  return true;
3049}
3050
3051/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
3052/// to the set of pointer types along with any more-qualified variants of
3053/// that type. For example, if @p Ty is "int const *", this routine
3054/// will add "int const *", "int const volatile *", "int const
3055/// restrict *", and "int const volatile restrict *" to the set of
3056/// pointer types. Returns true if the add of @p Ty itself succeeded,
3057/// false otherwise.
3058///
3059/// FIXME: what to do about extended qualifiers?
3060bool
3061BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
3062    QualType Ty) {
3063  // Insert this type.
3064  if (!MemberPointerTypes.insert(Ty))
3065    return false;
3066
3067  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
3068  assert(PointerTy && "type was not a member pointer type!");
3069
3070  QualType PointeeTy = PointerTy->getPointeeType();
3071  // Don't add qualified variants of arrays. For one, they're not allowed
3072  // (the qualifier would sink to the element type), and for another, the
3073  // only overload situation where it matters is subscript or pointer +- int,
3074  // and those shouldn't have qualifier variants anyway.
3075  if (PointeeTy->isArrayType())
3076    return true;
3077  const Type *ClassTy = PointerTy->getClass();
3078
3079  // Iterate through all strict supersets of the pointee type's CVR
3080  // qualifiers.
3081  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
3082  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
3083    if ((CVR | BaseCVR) != CVR) continue;
3084
3085    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
3086    MemberPointerTypes.insert(Context.getMemberPointerType(QPointeeTy, ClassTy));
3087  }
3088
3089  return true;
3090}
3091
3092/// AddTypesConvertedFrom - Add each of the types to which the type @p
3093/// Ty can be implicit converted to the given set of @p Types. We're
3094/// primarily interested in pointer types and enumeration types. We also
3095/// take member pointer types, for the conditional operator.
3096/// AllowUserConversions is true if we should look at the conversion
3097/// functions of a class type, and AllowExplicitConversions if we
3098/// should also include the explicit conversion functions of a class
3099/// type.
3100void
3101BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
3102                                               SourceLocation Loc,
3103                                               bool AllowUserConversions,
3104                                               bool AllowExplicitConversions,
3105                                               const Qualifiers &VisibleQuals) {
3106  // Only deal with canonical types.
3107  Ty = Context.getCanonicalType(Ty);
3108
3109  // Look through reference types; they aren't part of the type of an
3110  // expression for the purposes of conversions.
3111  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
3112    Ty = RefTy->getPointeeType();
3113
3114  // We don't care about qualifiers on the type.
3115  Ty = Ty.getLocalUnqualifiedType();
3116
3117  // If we're dealing with an array type, decay to the pointer.
3118  if (Ty->isArrayType())
3119    Ty = SemaRef.Context.getArrayDecayedType(Ty);
3120
3121  if (const PointerType *PointerTy = Ty->getAs<PointerType>()) {
3122    QualType PointeeTy = PointerTy->getPointeeType();
3123
3124    // Insert our type, and its more-qualified variants, into the set
3125    // of types.
3126    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
3127      return;
3128  } else if (Ty->isMemberPointerType()) {
3129    // Member pointers are far easier, since the pointee can't be converted.
3130    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
3131      return;
3132  } else if (Ty->isEnumeralType()) {
3133    EnumerationTypes.insert(Ty);
3134  } else if (AllowUserConversions) {
3135    if (const RecordType *TyRec = Ty->getAs<RecordType>()) {
3136      if (SemaRef.RequireCompleteType(Loc, Ty, 0)) {
3137        // No conversion functions in incomplete types.
3138        return;
3139      }
3140
3141      CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3142      const UnresolvedSet *Conversions
3143        = ClassDecl->getVisibleConversionFunctions();
3144      for (UnresolvedSet::iterator I = Conversions->begin(),
3145             E = Conversions->end(); I != E; ++I) {
3146
3147        // Skip conversion function templates; they don't tell us anything
3148        // about which builtin types we can convert to.
3149        if (isa<FunctionTemplateDecl>(*I))
3150          continue;
3151
3152        CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
3153        if (AllowExplicitConversions || !Conv->isExplicit()) {
3154          AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
3155                                VisibleQuals);
3156        }
3157      }
3158    }
3159  }
3160}
3161
3162/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
3163/// the volatile- and non-volatile-qualified assignment operators for the
3164/// given type to the candidate set.
3165static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
3166                                                   QualType T,
3167                                                   Expr **Args,
3168                                                   unsigned NumArgs,
3169                                    OverloadCandidateSet &CandidateSet) {
3170  QualType ParamTypes[2];
3171
3172  // T& operator=(T&, T)
3173  ParamTypes[0] = S.Context.getLValueReferenceType(T);
3174  ParamTypes[1] = T;
3175  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3176                        /*IsAssignmentOperator=*/true);
3177
3178  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
3179    // volatile T& operator=(volatile T&, T)
3180    ParamTypes[0]
3181      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
3182    ParamTypes[1] = T;
3183    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3184                          /*IsAssignmentOperator=*/true);
3185  }
3186}
3187
3188/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
3189/// if any, found in visible type conversion functions found in ArgExpr's type.
3190static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
3191    Qualifiers VRQuals;
3192    const RecordType *TyRec;
3193    if (const MemberPointerType *RHSMPType =
3194        ArgExpr->getType()->getAs<MemberPointerType>())
3195      TyRec = cast<RecordType>(RHSMPType->getClass());
3196    else
3197      TyRec = ArgExpr->getType()->getAs<RecordType>();
3198    if (!TyRec) {
3199      // Just to be safe, assume the worst case.
3200      VRQuals.addVolatile();
3201      VRQuals.addRestrict();
3202      return VRQuals;
3203    }
3204
3205    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
3206    const UnresolvedSet *Conversions =
3207      ClassDecl->getVisibleConversionFunctions();
3208
3209    for (UnresolvedSet::iterator I = Conversions->begin(),
3210           E = Conversions->end(); I != E; ++I) {
3211      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(*I)) {
3212        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
3213        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
3214          CanTy = ResTypeRef->getPointeeType();
3215        // Need to go down the pointer/mempointer chain and add qualifiers
3216        // as see them.
3217        bool done = false;
3218        while (!done) {
3219          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
3220            CanTy = ResTypePtr->getPointeeType();
3221          else if (const MemberPointerType *ResTypeMPtr =
3222                CanTy->getAs<MemberPointerType>())
3223            CanTy = ResTypeMPtr->getPointeeType();
3224          else
3225            done = true;
3226          if (CanTy.isVolatileQualified())
3227            VRQuals.addVolatile();
3228          if (CanTy.isRestrictQualified())
3229            VRQuals.addRestrict();
3230          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
3231            return VRQuals;
3232        }
3233      }
3234    }
3235    return VRQuals;
3236}
3237
3238/// AddBuiltinOperatorCandidates - Add the appropriate built-in
3239/// operator overloads to the candidate set (C++ [over.built]), based
3240/// on the operator @p Op and the arguments given. For example, if the
3241/// operator is a binary '+', this routine might add "int
3242/// operator+(int, int)" to cover integer addition.
3243void
3244Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3245                                   SourceLocation OpLoc,
3246                                   Expr **Args, unsigned NumArgs,
3247                                   OverloadCandidateSet& CandidateSet) {
3248  // The set of "promoted arithmetic types", which are the arithmetic
3249  // types are that preserved by promotion (C++ [over.built]p2). Note
3250  // that the first few of these types are the promoted integral
3251  // types; these types need to be first.
3252  // FIXME: What about complex?
3253  const unsigned FirstIntegralType = 0;
3254  const unsigned LastIntegralType = 13;
3255  const unsigned FirstPromotedIntegralType = 7,
3256                 LastPromotedIntegralType = 13;
3257  const unsigned FirstPromotedArithmeticType = 7,
3258                 LastPromotedArithmeticType = 16;
3259  const unsigned NumArithmeticTypes = 16;
3260  QualType ArithmeticTypes[NumArithmeticTypes] = {
3261    Context.BoolTy, Context.CharTy, Context.WCharTy,
3262// FIXME:   Context.Char16Ty, Context.Char32Ty,
3263    Context.SignedCharTy, Context.ShortTy,
3264    Context.UnsignedCharTy, Context.UnsignedShortTy,
3265    Context.IntTy, Context.LongTy, Context.LongLongTy,
3266    Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
3267    Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
3268  };
3269  assert(ArithmeticTypes[FirstPromotedIntegralType] == Context.IntTy &&
3270         "Invalid first promoted integral type");
3271  assert(ArithmeticTypes[LastPromotedIntegralType - 1]
3272           == Context.UnsignedLongLongTy &&
3273         "Invalid last promoted integral type");
3274  assert(ArithmeticTypes[FirstPromotedArithmeticType] == Context.IntTy &&
3275         "Invalid first promoted arithmetic type");
3276  assert(ArithmeticTypes[LastPromotedArithmeticType - 1]
3277            == Context.LongDoubleTy &&
3278         "Invalid last promoted arithmetic type");
3279
3280  // Find all of the types that the arguments can convert to, but only
3281  // if the operator we're looking at has built-in operator candidates
3282  // that make use of these types.
3283  Qualifiers VisibleTypeConversionsQuals;
3284  VisibleTypeConversionsQuals.addConst();
3285  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3286    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
3287
3288  BuiltinCandidateTypeSet CandidateTypes(*this);
3289  if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
3290      Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
3291      Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
3292      Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
3293      Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
3294      (Op == OO_Star && NumArgs == 1) || Op == OO_Conditional) {
3295    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3296      CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
3297                                           OpLoc,
3298                                           true,
3299                                           (Op == OO_Exclaim ||
3300                                            Op == OO_AmpAmp ||
3301                                            Op == OO_PipePipe),
3302                                           VisibleTypeConversionsQuals);
3303  }
3304
3305  bool isComparison = false;
3306  switch (Op) {
3307  case OO_None:
3308  case NUM_OVERLOADED_OPERATORS:
3309    assert(false && "Expected an overloaded operator");
3310    break;
3311
3312  case OO_Star: // '*' is either unary or binary
3313    if (NumArgs == 1)
3314      goto UnaryStar;
3315    else
3316      goto BinaryStar;
3317    break;
3318
3319  case OO_Plus: // '+' is either unary or binary
3320    if (NumArgs == 1)
3321      goto UnaryPlus;
3322    else
3323      goto BinaryPlus;
3324    break;
3325
3326  case OO_Minus: // '-' is either unary or binary
3327    if (NumArgs == 1)
3328      goto UnaryMinus;
3329    else
3330      goto BinaryMinus;
3331    break;
3332
3333  case OO_Amp: // '&' is either unary or binary
3334    if (NumArgs == 1)
3335      goto UnaryAmp;
3336    else
3337      goto BinaryAmp;
3338
3339  case OO_PlusPlus:
3340  case OO_MinusMinus:
3341    // C++ [over.built]p3:
3342    //
3343    //   For every pair (T, VQ), where T is an arithmetic type, and VQ
3344    //   is either volatile or empty, there exist candidate operator
3345    //   functions of the form
3346    //
3347    //       VQ T&      operator++(VQ T&);
3348    //       T          operator++(VQ T&, int);
3349    //
3350    // C++ [over.built]p4:
3351    //
3352    //   For every pair (T, VQ), where T is an arithmetic type other
3353    //   than bool, and VQ is either volatile or empty, there exist
3354    //   candidate operator functions of the form
3355    //
3356    //       VQ T&      operator--(VQ T&);
3357    //       T          operator--(VQ T&, int);
3358    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
3359         Arith < NumArithmeticTypes; ++Arith) {
3360      QualType ArithTy = ArithmeticTypes[Arith];
3361      QualType ParamTypes[2]
3362        = { Context.getLValueReferenceType(ArithTy), Context.IntTy };
3363
3364      // Non-volatile version.
3365      if (NumArgs == 1)
3366        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3367      else
3368        AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3369      // heuristic to reduce number of builtin candidates in the set.
3370      // Add volatile version only if there are conversions to a volatile type.
3371      if (VisibleTypeConversionsQuals.hasVolatile()) {
3372        // Volatile version
3373        ParamTypes[0]
3374          = Context.getLValueReferenceType(Context.getVolatileType(ArithTy));
3375        if (NumArgs == 1)
3376          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3377        else
3378          AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
3379      }
3380    }
3381
3382    // C++ [over.built]p5:
3383    //
3384    //   For every pair (T, VQ), where T is a cv-qualified or
3385    //   cv-unqualified object type, and VQ is either volatile or
3386    //   empty, there exist candidate operator functions of the form
3387    //
3388    //       T*VQ&      operator++(T*VQ&);
3389    //       T*VQ&      operator--(T*VQ&);
3390    //       T*         operator++(T*VQ&, int);
3391    //       T*         operator--(T*VQ&, int);
3392    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3393         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3394      // Skip pointer types that aren't pointers to object types.
3395      if (!(*Ptr)->getAs<PointerType>()->getPointeeType()->isObjectType())
3396        continue;
3397
3398      QualType ParamTypes[2] = {
3399        Context.getLValueReferenceType(*Ptr), Context.IntTy
3400      };
3401
3402      // Without volatile
3403      if (NumArgs == 1)
3404        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3405      else
3406        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3407
3408      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3409          VisibleTypeConversionsQuals.hasVolatile()) {
3410        // With volatile
3411        ParamTypes[0]
3412          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3413        if (NumArgs == 1)
3414          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
3415        else
3416          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3417      }
3418    }
3419    break;
3420
3421  UnaryStar:
3422    // C++ [over.built]p6:
3423    //   For every cv-qualified or cv-unqualified object type T, there
3424    //   exist candidate operator functions of the form
3425    //
3426    //       T&         operator*(T*);
3427    //
3428    // C++ [over.built]p7:
3429    //   For every function type T, there exist candidate operator
3430    //   functions of the form
3431    //       T&         operator*(T*);
3432    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3433         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3434      QualType ParamTy = *Ptr;
3435      QualType PointeeTy = ParamTy->getAs<PointerType>()->getPointeeType();
3436      AddBuiltinCandidate(Context.getLValueReferenceType(PointeeTy),
3437                          &ParamTy, Args, 1, CandidateSet);
3438    }
3439    break;
3440
3441  UnaryPlus:
3442    // C++ [over.built]p8:
3443    //   For every type T, there exist candidate operator functions of
3444    //   the form
3445    //
3446    //       T*         operator+(T*);
3447    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3448         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3449      QualType ParamTy = *Ptr;
3450      AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
3451    }
3452
3453    // Fall through
3454
3455  UnaryMinus:
3456    // C++ [over.built]p9:
3457    //  For every promoted arithmetic type T, there exist candidate
3458    //  operator functions of the form
3459    //
3460    //       T         operator+(T);
3461    //       T         operator-(T);
3462    for (unsigned Arith = FirstPromotedArithmeticType;
3463         Arith < LastPromotedArithmeticType; ++Arith) {
3464      QualType ArithTy = ArithmeticTypes[Arith];
3465      AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
3466    }
3467    break;
3468
3469  case OO_Tilde:
3470    // C++ [over.built]p10:
3471    //   For every promoted integral type T, there exist candidate
3472    //   operator functions of the form
3473    //
3474    //        T         operator~(T);
3475    for (unsigned Int = FirstPromotedIntegralType;
3476         Int < LastPromotedIntegralType; ++Int) {
3477      QualType IntTy = ArithmeticTypes[Int];
3478      AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
3479    }
3480    break;
3481
3482  case OO_New:
3483  case OO_Delete:
3484  case OO_Array_New:
3485  case OO_Array_Delete:
3486  case OO_Call:
3487    assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
3488    break;
3489
3490  case OO_Comma:
3491  UnaryAmp:
3492  case OO_Arrow:
3493    // C++ [over.match.oper]p3:
3494    //   -- For the operator ',', the unary operator '&', or the
3495    //      operator '->', the built-in candidates set is empty.
3496    break;
3497
3498  case OO_EqualEqual:
3499  case OO_ExclaimEqual:
3500    // C++ [over.match.oper]p16:
3501    //   For every pointer to member type T, there exist candidate operator
3502    //   functions of the form
3503    //
3504    //        bool operator==(T,T);
3505    //        bool operator!=(T,T);
3506    for (BuiltinCandidateTypeSet::iterator
3507           MemPtr = CandidateTypes.member_pointer_begin(),
3508           MemPtrEnd = CandidateTypes.member_pointer_end();
3509         MemPtr != MemPtrEnd;
3510         ++MemPtr) {
3511      QualType ParamTypes[2] = { *MemPtr, *MemPtr };
3512      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3513    }
3514
3515    // Fall through
3516
3517  case OO_Less:
3518  case OO_Greater:
3519  case OO_LessEqual:
3520  case OO_GreaterEqual:
3521    // C++ [over.built]p15:
3522    //
3523    //   For every pointer or enumeration type T, there exist
3524    //   candidate operator functions of the form
3525    //
3526    //        bool       operator<(T, T);
3527    //        bool       operator>(T, T);
3528    //        bool       operator<=(T, T);
3529    //        bool       operator>=(T, T);
3530    //        bool       operator==(T, T);
3531    //        bool       operator!=(T, T);
3532    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3533         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3534      QualType ParamTypes[2] = { *Ptr, *Ptr };
3535      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3536    }
3537    for (BuiltinCandidateTypeSet::iterator Enum
3538           = CandidateTypes.enumeration_begin();
3539         Enum != CandidateTypes.enumeration_end(); ++Enum) {
3540      QualType ParamTypes[2] = { *Enum, *Enum };
3541      AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
3542    }
3543
3544    // Fall through.
3545    isComparison = true;
3546
3547  BinaryPlus:
3548  BinaryMinus:
3549    if (!isComparison) {
3550      // We didn't fall through, so we must have OO_Plus or OO_Minus.
3551
3552      // C++ [over.built]p13:
3553      //
3554      //   For every cv-qualified or cv-unqualified object type T
3555      //   there exist candidate operator functions of the form
3556      //
3557      //      T*         operator+(T*, ptrdiff_t);
3558      //      T&         operator[](T*, ptrdiff_t);    [BELOW]
3559      //      T*         operator-(T*, ptrdiff_t);
3560      //      T*         operator+(ptrdiff_t, T*);
3561      //      T&         operator[](ptrdiff_t, T*);    [BELOW]
3562      //
3563      // C++ [over.built]p14:
3564      //
3565      //   For every T, where T is a pointer to object type, there
3566      //   exist candidate operator functions of the form
3567      //
3568      //      ptrdiff_t  operator-(T, T);
3569      for (BuiltinCandidateTypeSet::iterator Ptr
3570             = CandidateTypes.pointer_begin();
3571           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3572        QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3573
3574        // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
3575        AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3576
3577        if (Op == OO_Plus) {
3578          // T* operator+(ptrdiff_t, T*);
3579          ParamTypes[0] = ParamTypes[1];
3580          ParamTypes[1] = *Ptr;
3581          AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3582        } else {
3583          // ptrdiff_t operator-(T, T);
3584          ParamTypes[1] = *Ptr;
3585          AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
3586                              Args, 2, CandidateSet);
3587        }
3588      }
3589    }
3590    // Fall through
3591
3592  case OO_Slash:
3593  BinaryStar:
3594  Conditional:
3595    // C++ [over.built]p12:
3596    //
3597    //   For every pair of promoted arithmetic types L and R, there
3598    //   exist candidate operator functions of the form
3599    //
3600    //        LR         operator*(L, R);
3601    //        LR         operator/(L, R);
3602    //        LR         operator+(L, R);
3603    //        LR         operator-(L, R);
3604    //        bool       operator<(L, R);
3605    //        bool       operator>(L, R);
3606    //        bool       operator<=(L, R);
3607    //        bool       operator>=(L, R);
3608    //        bool       operator==(L, R);
3609    //        bool       operator!=(L, R);
3610    //
3611    //   where LR is the result of the usual arithmetic conversions
3612    //   between types L and R.
3613    //
3614    // C++ [over.built]p24:
3615    //
3616    //   For every pair of promoted arithmetic types L and R, there exist
3617    //   candidate operator functions of the form
3618    //
3619    //        LR       operator?(bool, L, R);
3620    //
3621    //   where LR is the result of the usual arithmetic conversions
3622    //   between types L and R.
3623    // Our candidates ignore the first parameter.
3624    for (unsigned Left = FirstPromotedArithmeticType;
3625         Left < LastPromotedArithmeticType; ++Left) {
3626      for (unsigned Right = FirstPromotedArithmeticType;
3627           Right < LastPromotedArithmeticType; ++Right) {
3628        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3629        QualType Result
3630          = isComparison
3631          ? Context.BoolTy
3632          : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3633        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3634      }
3635    }
3636    break;
3637
3638  case OO_Percent:
3639  BinaryAmp:
3640  case OO_Caret:
3641  case OO_Pipe:
3642  case OO_LessLess:
3643  case OO_GreaterGreater:
3644    // C++ [over.built]p17:
3645    //
3646    //   For every pair of promoted integral types L and R, there
3647    //   exist candidate operator functions of the form
3648    //
3649    //      LR         operator%(L, R);
3650    //      LR         operator&(L, R);
3651    //      LR         operator^(L, R);
3652    //      LR         operator|(L, R);
3653    //      L          operator<<(L, R);
3654    //      L          operator>>(L, R);
3655    //
3656    //   where LR is the result of the usual arithmetic conversions
3657    //   between types L and R.
3658    for (unsigned Left = FirstPromotedIntegralType;
3659         Left < LastPromotedIntegralType; ++Left) {
3660      for (unsigned Right = FirstPromotedIntegralType;
3661           Right < LastPromotedIntegralType; ++Right) {
3662        QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3663        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3664            ? LandR[0]
3665            : Context.UsualArithmeticConversionsType(LandR[0], LandR[1]);
3666        AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3667      }
3668    }
3669    break;
3670
3671  case OO_Equal:
3672    // C++ [over.built]p20:
3673    //
3674    //   For every pair (T, VQ), where T is an enumeration or
3675    //   pointer to member type and VQ is either volatile or
3676    //   empty, there exist candidate operator functions of the form
3677    //
3678    //        VQ T&      operator=(VQ T&, T);
3679    for (BuiltinCandidateTypeSet::iterator
3680           Enum = CandidateTypes.enumeration_begin(),
3681           EnumEnd = CandidateTypes.enumeration_end();
3682         Enum != EnumEnd; ++Enum)
3683      AddBuiltinAssignmentOperatorCandidates(*this, *Enum, Args, 2,
3684                                             CandidateSet);
3685    for (BuiltinCandidateTypeSet::iterator
3686           MemPtr = CandidateTypes.member_pointer_begin(),
3687         MemPtrEnd = CandidateTypes.member_pointer_end();
3688         MemPtr != MemPtrEnd; ++MemPtr)
3689      AddBuiltinAssignmentOperatorCandidates(*this, *MemPtr, Args, 2,
3690                                             CandidateSet);
3691      // Fall through.
3692
3693  case OO_PlusEqual:
3694  case OO_MinusEqual:
3695    // C++ [over.built]p19:
3696    //
3697    //   For every pair (T, VQ), where T is any type and VQ is either
3698    //   volatile or empty, there exist candidate operator functions
3699    //   of the form
3700    //
3701    //        T*VQ&      operator=(T*VQ&, T*);
3702    //
3703    // C++ [over.built]p21:
3704    //
3705    //   For every pair (T, VQ), where T is a cv-qualified or
3706    //   cv-unqualified object type and VQ is either volatile or
3707    //   empty, there exist candidate operator functions of the form
3708    //
3709    //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
3710    //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
3711    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3712         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3713      QualType ParamTypes[2];
3714      ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3715
3716      // non-volatile version
3717      ParamTypes[0] = Context.getLValueReferenceType(*Ptr);
3718      AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3719                          /*IsAssigmentOperator=*/Op == OO_Equal);
3720
3721      if (!Context.getCanonicalType(*Ptr).isVolatileQualified() &&
3722          VisibleTypeConversionsQuals.hasVolatile()) {
3723        // volatile version
3724        ParamTypes[0]
3725          = Context.getLValueReferenceType(Context.getVolatileType(*Ptr));
3726        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3727                            /*IsAssigmentOperator=*/Op == OO_Equal);
3728      }
3729    }
3730    // Fall through.
3731
3732  case OO_StarEqual:
3733  case OO_SlashEqual:
3734    // C++ [over.built]p18:
3735    //
3736    //   For every triple (L, VQ, R), where L is an arithmetic type,
3737    //   VQ is either volatile or empty, and R is a promoted
3738    //   arithmetic type, there exist candidate operator functions of
3739    //   the form
3740    //
3741    //        VQ L&      operator=(VQ L&, R);
3742    //        VQ L&      operator*=(VQ L&, R);
3743    //        VQ L&      operator/=(VQ L&, R);
3744    //        VQ L&      operator+=(VQ L&, R);
3745    //        VQ L&      operator-=(VQ L&, R);
3746    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3747      for (unsigned Right = FirstPromotedArithmeticType;
3748           Right < LastPromotedArithmeticType; ++Right) {
3749        QualType ParamTypes[2];
3750        ParamTypes[1] = ArithmeticTypes[Right];
3751
3752        // Add this built-in operator as a candidate (VQ is empty).
3753        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3754        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3755                            /*IsAssigmentOperator=*/Op == OO_Equal);
3756
3757        // Add this built-in operator as a candidate (VQ is 'volatile').
3758        if (VisibleTypeConversionsQuals.hasVolatile()) {
3759          ParamTypes[0] = Context.getVolatileType(ArithmeticTypes[Left]);
3760          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3761          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3762                              /*IsAssigmentOperator=*/Op == OO_Equal);
3763        }
3764      }
3765    }
3766    break;
3767
3768  case OO_PercentEqual:
3769  case OO_LessLessEqual:
3770  case OO_GreaterGreaterEqual:
3771  case OO_AmpEqual:
3772  case OO_CaretEqual:
3773  case OO_PipeEqual:
3774    // C++ [over.built]p22:
3775    //
3776    //   For every triple (L, VQ, R), where L is an integral type, VQ
3777    //   is either volatile or empty, and R is a promoted integral
3778    //   type, there exist candidate operator functions of the form
3779    //
3780    //        VQ L&       operator%=(VQ L&, R);
3781    //        VQ L&       operator<<=(VQ L&, R);
3782    //        VQ L&       operator>>=(VQ L&, R);
3783    //        VQ L&       operator&=(VQ L&, R);
3784    //        VQ L&       operator^=(VQ L&, R);
3785    //        VQ L&       operator|=(VQ L&, R);
3786    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3787      for (unsigned Right = FirstPromotedIntegralType;
3788           Right < LastPromotedIntegralType; ++Right) {
3789        QualType ParamTypes[2];
3790        ParamTypes[1] = ArithmeticTypes[Right];
3791
3792        // Add this built-in operator as a candidate (VQ is empty).
3793        ParamTypes[0] = Context.getLValueReferenceType(ArithmeticTypes[Left]);
3794        AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3795        if (VisibleTypeConversionsQuals.hasVolatile()) {
3796          // Add this built-in operator as a candidate (VQ is 'volatile').
3797          ParamTypes[0] = ArithmeticTypes[Left];
3798          ParamTypes[0] = Context.getVolatileType(ParamTypes[0]);
3799          ParamTypes[0] = Context.getLValueReferenceType(ParamTypes[0]);
3800          AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3801        }
3802      }
3803    }
3804    break;
3805
3806  case OO_Exclaim: {
3807    // C++ [over.operator]p23:
3808    //
3809    //   There also exist candidate operator functions of the form
3810    //
3811    //        bool        operator!(bool);
3812    //        bool        operator&&(bool, bool);     [BELOW]
3813    //        bool        operator||(bool, bool);     [BELOW]
3814    QualType ParamTy = Context.BoolTy;
3815    AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3816                        /*IsAssignmentOperator=*/false,
3817                        /*NumContextualBoolArguments=*/1);
3818    break;
3819  }
3820
3821  case OO_AmpAmp:
3822  case OO_PipePipe: {
3823    // C++ [over.operator]p23:
3824    //
3825    //   There also exist candidate operator functions of the form
3826    //
3827    //        bool        operator!(bool);            [ABOVE]
3828    //        bool        operator&&(bool, bool);
3829    //        bool        operator||(bool, bool);
3830    QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
3831    AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3832                        /*IsAssignmentOperator=*/false,
3833                        /*NumContextualBoolArguments=*/2);
3834    break;
3835  }
3836
3837  case OO_Subscript:
3838    // C++ [over.built]p13:
3839    //
3840    //   For every cv-qualified or cv-unqualified object type T there
3841    //   exist candidate operator functions of the form
3842    //
3843    //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
3844    //        T&         operator[](T*, ptrdiff_t);
3845    //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
3846    //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
3847    //        T&         operator[](ptrdiff_t, T*);
3848    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3849         Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3850      QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3851      QualType PointeeType = (*Ptr)->getAs<PointerType>()->getPointeeType();
3852      QualType ResultTy = Context.getLValueReferenceType(PointeeType);
3853
3854      // T& operator[](T*, ptrdiff_t)
3855      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3856
3857      // T& operator[](ptrdiff_t, T*);
3858      ParamTypes[0] = ParamTypes[1];
3859      ParamTypes[1] = *Ptr;
3860      AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3861    }
3862    break;
3863
3864  case OO_ArrowStar:
3865    // C++ [over.built]p11:
3866    //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
3867    //    C1 is the same type as C2 or is a derived class of C2, T is an object
3868    //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
3869    //    there exist candidate operator functions of the form
3870    //    CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
3871    //    where CV12 is the union of CV1 and CV2.
3872    {
3873      for (BuiltinCandidateTypeSet::iterator Ptr =
3874             CandidateTypes.pointer_begin();
3875           Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3876        QualType C1Ty = (*Ptr);
3877        QualType C1;
3878        QualifierCollector Q1;
3879        if (const PointerType *PointerTy = C1Ty->getAs<PointerType>()) {
3880          C1 = QualType(Q1.strip(PointerTy->getPointeeType()), 0);
3881          if (!isa<RecordType>(C1))
3882            continue;
3883          // heuristic to reduce number of builtin candidates in the set.
3884          // Add volatile/restrict version only if there are conversions to a
3885          // volatile/restrict type.
3886          if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
3887            continue;
3888          if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
3889            continue;
3890        }
3891        for (BuiltinCandidateTypeSet::iterator
3892             MemPtr = CandidateTypes.member_pointer_begin(),
3893             MemPtrEnd = CandidateTypes.member_pointer_end();
3894             MemPtr != MemPtrEnd; ++MemPtr) {
3895          const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
3896          QualType C2 = QualType(mptr->getClass(), 0);
3897          C2 = C2.getUnqualifiedType();
3898          if (C1 != C2 && !IsDerivedFrom(C1, C2))
3899            break;
3900          QualType ParamTypes[2] = { *Ptr, *MemPtr };
3901          // build CV12 T&
3902          QualType T = mptr->getPointeeType();
3903          if (!VisibleTypeConversionsQuals.hasVolatile() &&
3904              T.isVolatileQualified())
3905            continue;
3906          if (!VisibleTypeConversionsQuals.hasRestrict() &&
3907              T.isRestrictQualified())
3908            continue;
3909          T = Q1.apply(T);
3910          QualType ResultTy = Context.getLValueReferenceType(T);
3911          AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3912        }
3913      }
3914    }
3915    break;
3916
3917  case OO_Conditional:
3918    // Note that we don't consider the first argument, since it has been
3919    // contextually converted to bool long ago. The candidates below are
3920    // therefore added as binary.
3921    //
3922    // C++ [over.built]p24:
3923    //   For every type T, where T is a pointer or pointer-to-member type,
3924    //   there exist candidate operator functions of the form
3925    //
3926    //        T        operator?(bool, T, T);
3927    //
3928    for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin(),
3929         E = CandidateTypes.pointer_end(); Ptr != E; ++Ptr) {
3930      QualType ParamTypes[2] = { *Ptr, *Ptr };
3931      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3932    }
3933    for (BuiltinCandidateTypeSet::iterator Ptr =
3934           CandidateTypes.member_pointer_begin(),
3935         E = CandidateTypes.member_pointer_end(); Ptr != E; ++Ptr) {
3936      QualType ParamTypes[2] = { *Ptr, *Ptr };
3937      AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
3938    }
3939    goto Conditional;
3940  }
3941}
3942
3943/// \brief Add function candidates found via argument-dependent lookup
3944/// to the set of overloading candidates.
3945///
3946/// This routine performs argument-dependent name lookup based on the
3947/// given function name (which may also be an operator name) and adds
3948/// all of the overload candidates found by ADL to the overload
3949/// candidate set (C++ [basic.lookup.argdep]).
3950void
3951Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3952                                           Expr **Args, unsigned NumArgs,
3953                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
3954                                           OverloadCandidateSet& CandidateSet,
3955                                           bool PartialOverloading) {
3956  FunctionSet Functions;
3957
3958  // FIXME: Should we be trafficking in canonical function decls throughout?
3959
3960  // Record all of the function candidates that we've already
3961  // added to the overload set, so that we don't add those same
3962  // candidates a second time.
3963  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3964                                   CandEnd = CandidateSet.end();
3965       Cand != CandEnd; ++Cand)
3966    if (Cand->Function) {
3967      Functions.insert(Cand->Function);
3968      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3969        Functions.insert(FunTmpl);
3970    }
3971
3972  // FIXME: Pass in the explicit template arguments?
3973  ArgumentDependentLookup(Name, /*Operator*/false, Args, NumArgs, Functions);
3974
3975  // Erase all of the candidates we already knew about.
3976  // FIXME: This is suboptimal. Is there a better way?
3977  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3978                                   CandEnd = CandidateSet.end();
3979       Cand != CandEnd; ++Cand)
3980    if (Cand->Function) {
3981      Functions.erase(Cand->Function);
3982      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
3983        Functions.erase(FunTmpl);
3984    }
3985
3986  // For each of the ADL candidates we found, add it to the overload
3987  // set.
3988  for (FunctionSet::iterator Func = Functions.begin(),
3989                          FuncEnd = Functions.end();
3990       Func != FuncEnd; ++Func) {
3991    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func)) {
3992      if (ExplicitTemplateArgs)
3993        continue;
3994
3995      AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
3996                           false, false, PartialOverloading);
3997    } else
3998      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*Func),
3999                                   ExplicitTemplateArgs,
4000                                   Args, NumArgs, CandidateSet);
4001  }
4002}
4003
4004/// isBetterOverloadCandidate - Determines whether the first overload
4005/// candidate is a better candidate than the second (C++ 13.3.3p1).
4006bool
4007Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
4008                                const OverloadCandidate& Cand2) {
4009  // Define viable functions to be better candidates than non-viable
4010  // functions.
4011  if (!Cand2.Viable)
4012    return Cand1.Viable;
4013  else if (!Cand1.Viable)
4014    return false;
4015
4016  // C++ [over.match.best]p1:
4017  //
4018  //   -- if F is a static member function, ICS1(F) is defined such
4019  //      that ICS1(F) is neither better nor worse than ICS1(G) for
4020  //      any function G, and, symmetrically, ICS1(G) is neither
4021  //      better nor worse than ICS1(F).
4022  unsigned StartArg = 0;
4023  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
4024    StartArg = 1;
4025
4026  // C++ [over.match.best]p1:
4027  //   A viable function F1 is defined to be a better function than another
4028  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
4029  //   conversion sequence than ICSi(F2), and then...
4030  unsigned NumArgs = Cand1.Conversions.size();
4031  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
4032  bool HasBetterConversion = false;
4033  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
4034    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
4035                                               Cand2.Conversions[ArgIdx])) {
4036    case ImplicitConversionSequence::Better:
4037      // Cand1 has a better conversion sequence.
4038      HasBetterConversion = true;
4039      break;
4040
4041    case ImplicitConversionSequence::Worse:
4042      // Cand1 can't be better than Cand2.
4043      return false;
4044
4045    case ImplicitConversionSequence::Indistinguishable:
4046      // Do nothing.
4047      break;
4048    }
4049  }
4050
4051  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
4052  //       ICSj(F2), or, if not that,
4053  if (HasBetterConversion)
4054    return true;
4055
4056  //     - F1 is a non-template function and F2 is a function template
4057  //       specialization, or, if not that,
4058  if (Cand1.Function && !Cand1.Function->getPrimaryTemplate() &&
4059      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4060    return true;
4061
4062  //   -- F1 and F2 are function template specializations, and the function
4063  //      template for F1 is more specialized than the template for F2
4064  //      according to the partial ordering rules described in 14.5.5.2, or,
4065  //      if not that,
4066  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
4067      Cand2.Function && Cand2.Function->getPrimaryTemplate())
4068    if (FunctionTemplateDecl *BetterTemplate
4069          = getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
4070                                       Cand2.Function->getPrimaryTemplate(),
4071                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
4072                                                             : TPOC_Call))
4073      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
4074
4075  //   -- the context is an initialization by user-defined conversion
4076  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
4077  //      from the return type of F1 to the destination type (i.e.,
4078  //      the type of the entity being initialized) is a better
4079  //      conversion sequence than the standard conversion sequence
4080  //      from the return type of F2 to the destination type.
4081  if (Cand1.Function && Cand2.Function &&
4082      isa<CXXConversionDecl>(Cand1.Function) &&
4083      isa<CXXConversionDecl>(Cand2.Function)) {
4084    switch (CompareStandardConversionSequences(Cand1.FinalConversion,
4085                                               Cand2.FinalConversion)) {
4086    case ImplicitConversionSequence::Better:
4087      // Cand1 has a better conversion sequence.
4088      return true;
4089
4090    case ImplicitConversionSequence::Worse:
4091      // Cand1 can't be better than Cand2.
4092      return false;
4093
4094    case ImplicitConversionSequence::Indistinguishable:
4095      // Do nothing
4096      break;
4097    }
4098  }
4099
4100  return false;
4101}
4102
4103/// \brief Computes the best viable function (C++ 13.3.3)
4104/// within an overload candidate set.
4105///
4106/// \param CandidateSet the set of candidate functions.
4107///
4108/// \param Loc the location of the function name (or operator symbol) for
4109/// which overload resolution occurs.
4110///
4111/// \param Best f overload resolution was successful or found a deleted
4112/// function, Best points to the candidate function found.
4113///
4114/// \returns The result of overload resolution.
4115Sema::OverloadingResult
4116Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
4117                         SourceLocation Loc,
4118                         OverloadCandidateSet::iterator& Best) {
4119  // Find the best viable function.
4120  Best = CandidateSet.end();
4121  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4122       Cand != CandidateSet.end(); ++Cand) {
4123    if (Cand->Viable) {
4124      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
4125        Best = Cand;
4126    }
4127  }
4128
4129  // If we didn't find any viable functions, abort.
4130  if (Best == CandidateSet.end())
4131    return OR_No_Viable_Function;
4132
4133  // Make sure that this function is better than every other viable
4134  // function. If not, we have an ambiguity.
4135  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4136       Cand != CandidateSet.end(); ++Cand) {
4137    if (Cand->Viable &&
4138        Cand != Best &&
4139        !isBetterOverloadCandidate(*Best, *Cand)) {
4140      Best = CandidateSet.end();
4141      return OR_Ambiguous;
4142    }
4143  }
4144
4145  // Best is the best viable function.
4146  if (Best->Function &&
4147      (Best->Function->isDeleted() ||
4148       Best->Function->getAttr<UnavailableAttr>()))
4149    return OR_Deleted;
4150
4151  // C++ [basic.def.odr]p2:
4152  //   An overloaded function is used if it is selected by overload resolution
4153  //   when referred to from a potentially-evaluated expression. [Note: this
4154  //   covers calls to named functions (5.2.2), operator overloading
4155  //   (clause 13), user-defined conversions (12.3.2), allocation function for
4156  //   placement new (5.3.4), as well as non-default initialization (8.5).
4157  if (Best->Function)
4158    MarkDeclarationReferenced(Loc, Best->Function);
4159  return OR_Success;
4160}
4161
4162/// PrintOverloadCandidates - When overload resolution fails, prints
4163/// diagnostic messages containing the candidates in the candidate
4164/// set. If OnlyViable is true, only viable candidates will be printed.
4165void
4166Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
4167                              bool OnlyViable,
4168                              const char *Opc,
4169                              SourceLocation OpLoc) {
4170  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
4171                             LastCand = CandidateSet.end();
4172  bool Reported = false;
4173  for (; Cand != LastCand; ++Cand) {
4174    if (Cand->Viable || !OnlyViable) {
4175      if (Cand->Function) {
4176        if (Cand->Function->isDeleted() ||
4177            Cand->Function->getAttr<UnavailableAttr>()) {
4178          // Deleted or "unavailable" function.
4179          Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
4180            << Cand->Function->isDeleted();
4181        } else if (FunctionTemplateDecl *FunTmpl
4182                     = Cand->Function->getPrimaryTemplate()) {
4183          // Function template specialization
4184          // FIXME: Give a better reason!
4185          Diag(Cand->Function->getLocation(), diag::err_ovl_template_candidate)
4186            << getTemplateArgumentBindingsText(FunTmpl->getTemplateParameters(),
4187                              *Cand->Function->getTemplateSpecializationArgs());
4188        } else {
4189          // Normal function
4190          bool errReported = false;
4191          if (!Cand->Viable && Cand->Conversions.size() > 0) {
4192            for (int i = Cand->Conversions.size()-1; i >= 0; i--) {
4193              const ImplicitConversionSequence &Conversion =
4194                                                        Cand->Conversions[i];
4195              if ((Conversion.ConversionKind !=
4196                   ImplicitConversionSequence::BadConversion) ||
4197                  Conversion.ConversionFunctionSet.size() == 0)
4198                continue;
4199              Diag(Cand->Function->getLocation(),
4200                   diag::err_ovl_candidate_not_viable) << (i+1);
4201              errReported = true;
4202              for (int j = Conversion.ConversionFunctionSet.size()-1;
4203                   j >= 0; j--) {
4204                FunctionDecl *Func = Conversion.ConversionFunctionSet[j];
4205                Diag(Func->getLocation(), diag::err_ovl_candidate);
4206              }
4207            }
4208          }
4209          if (!errReported)
4210            Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
4211        }
4212      } else if (Cand->IsSurrogate) {
4213        // Desugar the type of the surrogate down to a function type,
4214        // retaining as many typedefs as possible while still showing
4215        // the function type (and, therefore, its parameter types).
4216        QualType FnType = Cand->Surrogate->getConversionType();
4217        bool isLValueReference = false;
4218        bool isRValueReference = false;
4219        bool isPointer = false;
4220        if (const LValueReferenceType *FnTypeRef =
4221              FnType->getAs<LValueReferenceType>()) {
4222          FnType = FnTypeRef->getPointeeType();
4223          isLValueReference = true;
4224        } else if (const RValueReferenceType *FnTypeRef =
4225                     FnType->getAs<RValueReferenceType>()) {
4226          FnType = FnTypeRef->getPointeeType();
4227          isRValueReference = true;
4228        }
4229        if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
4230          FnType = FnTypePtr->getPointeeType();
4231          isPointer = true;
4232        }
4233        // Desugar down to a function type.
4234        FnType = QualType(FnType->getAs<FunctionType>(), 0);
4235        // Reconstruct the pointer/reference as appropriate.
4236        if (isPointer) FnType = Context.getPointerType(FnType);
4237        if (isRValueReference) FnType = Context.getRValueReferenceType(FnType);
4238        if (isLValueReference) FnType = Context.getLValueReferenceType(FnType);
4239
4240        Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
4241          << FnType;
4242      } else if (OnlyViable) {
4243        assert(Cand->Conversions.size() <= 2 &&
4244               "builtin-binary-operator-not-binary");
4245        std::string TypeStr("operator");
4246        TypeStr += Opc;
4247        TypeStr += "(";
4248        TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
4249        if (Cand->Conversions.size() == 1) {
4250          TypeStr += ")";
4251          Diag(OpLoc, diag::err_ovl_builtin_unary_candidate) << TypeStr;
4252        }
4253        else {
4254          TypeStr += ", ";
4255          TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
4256          TypeStr += ")";
4257          Diag(OpLoc, diag::err_ovl_builtin_binary_candidate) << TypeStr;
4258        }
4259      }
4260      else if (!Cand->Viable && !Reported) {
4261        // Non-viability might be due to ambiguous user-defined conversions,
4262        // needed for built-in operators. Report them as well, but only once
4263        // as we have typically many built-in candidates.
4264        unsigned NoOperands = Cand->Conversions.size();
4265        for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
4266          const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
4267          if (ICS.ConversionKind != ImplicitConversionSequence::BadConversion ||
4268              ICS.ConversionFunctionSet.empty())
4269            continue;
4270          if (CXXConversionDecl *Func = dyn_cast<CXXConversionDecl>(
4271                         Cand->Conversions[ArgIdx].ConversionFunctionSet[0])) {
4272            QualType FromTy =
4273              QualType(
4274                     static_cast<Type*>(ICS.UserDefined.Before.FromTypePtr),0);
4275            Diag(OpLoc,diag::note_ambiguous_type_conversion)
4276                  << FromTy << Func->getConversionType();
4277          }
4278          for (unsigned j = 0; j < ICS.ConversionFunctionSet.size(); j++) {
4279            FunctionDecl *Func =
4280              Cand->Conversions[ArgIdx].ConversionFunctionSet[j];
4281            Diag(Func->getLocation(),diag::err_ovl_candidate);
4282          }
4283        }
4284        Reported = true;
4285      }
4286    }
4287  }
4288}
4289
4290/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
4291/// an overloaded function (C++ [over.over]), where @p From is an
4292/// expression with overloaded function type and @p ToType is the type
4293/// we're trying to resolve to. For example:
4294///
4295/// @code
4296/// int f(double);
4297/// int f(int);
4298///
4299/// int (*pfd)(double) = f; // selects f(double)
4300/// @endcode
4301///
4302/// This routine returns the resulting FunctionDecl if it could be
4303/// resolved, and NULL otherwise. When @p Complain is true, this
4304/// routine will emit diagnostics if there is an error.
4305FunctionDecl *
4306Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
4307                                         bool Complain) {
4308  QualType FunctionType = ToType;
4309  bool IsMember = false;
4310  if (const PointerType *ToTypePtr = ToType->getAs<PointerType>())
4311    FunctionType = ToTypePtr->getPointeeType();
4312  else if (const ReferenceType *ToTypeRef = ToType->getAs<ReferenceType>())
4313    FunctionType = ToTypeRef->getPointeeType();
4314  else if (const MemberPointerType *MemTypePtr =
4315                    ToType->getAs<MemberPointerType>()) {
4316    FunctionType = MemTypePtr->getPointeeType();
4317    IsMember = true;
4318  }
4319
4320  // We only look at pointers or references to functions.
4321  FunctionType = Context.getCanonicalType(FunctionType).getUnqualifiedType();
4322  if (!FunctionType->isFunctionType())
4323    return 0;
4324
4325  // Find the actual overloaded function declaration.
4326
4327  // C++ [over.over]p1:
4328  //   [...] [Note: any redundant set of parentheses surrounding the
4329  //   overloaded function name is ignored (5.1). ]
4330  Expr *OvlExpr = From->IgnoreParens();
4331
4332  // C++ [over.over]p1:
4333  //   [...] The overloaded function name can be preceded by the &
4334  //   operator.
4335  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
4336    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
4337      OvlExpr = UnOp->getSubExpr()->IgnoreParens();
4338  }
4339
4340  bool HasExplicitTemplateArgs = false;
4341  TemplateArgumentListInfo ExplicitTemplateArgs;
4342
4343  llvm::SmallVector<NamedDecl*,8> Fns;
4344
4345  // Try to dig out the overloaded function.
4346  OverloadedFunctionDecl *Ovl = 0;
4347  FunctionTemplateDecl *FunctionTemplate = 0;
4348  if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr)) {
4349    assert(!isa<OverloadedFunctionDecl>(DR->getDecl()));
4350    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(DR->getDecl());
4351    HasExplicitTemplateArgs = DR->hasExplicitTemplateArgumentList();
4352    if (HasExplicitTemplateArgs)
4353      DR->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4354  } else if (UnresolvedLookupExpr *UL
4355               = dyn_cast<UnresolvedLookupExpr>(OvlExpr)) {
4356    Fns.append(UL->decls_begin(), UL->decls_end());
4357  } else if (MemberExpr *ME = dyn_cast<MemberExpr>(OvlExpr)) {
4358    Ovl = dyn_cast<OverloadedFunctionDecl>(ME->getMemberDecl());
4359    FunctionTemplate = dyn_cast<FunctionTemplateDecl>(ME->getMemberDecl());
4360    HasExplicitTemplateArgs = ME->hasExplicitTemplateArgumentList();
4361    if (HasExplicitTemplateArgs)
4362      ME->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4363  } else if (TemplateIdRefExpr *TIRE = dyn_cast<TemplateIdRefExpr>(OvlExpr)) {
4364    TemplateName Name = TIRE->getTemplateName();
4365    Ovl = Name.getAsOverloadedFunctionDecl();
4366    FunctionTemplate =
4367      dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4368
4369    HasExplicitTemplateArgs = true;
4370    TIRE->copyTemplateArgumentsInto(ExplicitTemplateArgs);
4371  }
4372
4373  if (Ovl) Fns.append(Ovl->function_begin(), Ovl->function_end());
4374  if (FunctionTemplate) Fns.push_back(FunctionTemplate);
4375
4376  // If we didn't actually find anything, we're done.
4377  if (Fns.empty())
4378    return 0;
4379
4380  // Look through all of the overloaded functions, searching for one
4381  // whose type matches exactly.
4382  llvm::SmallPtrSet<FunctionDecl *, 4> Matches;
4383  bool FoundNonTemplateFunction = false;
4384  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
4385         E = Fns.end(); I != E; ++I) {
4386    // C++ [over.over]p3:
4387    //   Non-member functions and static member functions match
4388    //   targets of type "pointer-to-function" or "reference-to-function."
4389    //   Nonstatic member functions match targets of
4390    //   type "pointer-to-member-function."
4391    // Note that according to DR 247, the containing class does not matter.
4392
4393    if (FunctionTemplateDecl *FunctionTemplate
4394          = dyn_cast<FunctionTemplateDecl>(*I)) {
4395      if (CXXMethodDecl *Method
4396            = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
4397        // Skip non-static function templates when converting to pointer, and
4398        // static when converting to member pointer.
4399        if (Method->isStatic() == IsMember)
4400          continue;
4401      } else if (IsMember)
4402        continue;
4403
4404      // C++ [over.over]p2:
4405      //   If the name is a function template, template argument deduction is
4406      //   done (14.8.2.2), and if the argument deduction succeeds, the
4407      //   resulting template argument list is used to generate a single
4408      //   function template specialization, which is added to the set of
4409      //   overloaded functions considered.
4410      // FIXME: We don't really want to build the specialization here, do we?
4411      FunctionDecl *Specialization = 0;
4412      TemplateDeductionInfo Info(Context);
4413      if (TemplateDeductionResult Result
4414            = DeduceTemplateArguments(FunctionTemplate,
4415                       (HasExplicitTemplateArgs ? &ExplicitTemplateArgs : 0),
4416                                      FunctionType, Specialization, Info)) {
4417        // FIXME: make a note of the failed deduction for diagnostics.
4418        (void)Result;
4419      } else {
4420        // FIXME: If the match isn't exact, shouldn't we just drop this as
4421        // a candidate? Find a testcase before changing the code.
4422        assert(FunctionType
4423                 == Context.getCanonicalType(Specialization->getType()));
4424        Matches.insert(
4425                cast<FunctionDecl>(Specialization->getCanonicalDecl()));
4426      }
4427
4428      continue;
4429    }
4430
4431    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*I)) {
4432      // Skip non-static functions when converting to pointer, and static
4433      // when converting to member pointer.
4434      if (Method->isStatic() == IsMember)
4435        continue;
4436
4437      // If we have explicit template arguments, skip non-templates.
4438      if (HasExplicitTemplateArgs)
4439        continue;
4440    } else if (IsMember)
4441      continue;
4442
4443    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(*I)) {
4444      if (FunctionType == Context.getCanonicalType(FunDecl->getType())) {
4445        Matches.insert(cast<FunctionDecl>(FunDecl->getCanonicalDecl()));
4446        FoundNonTemplateFunction = true;
4447      }
4448    }
4449  }
4450
4451  // If there were 0 or 1 matches, we're done.
4452  if (Matches.empty())
4453    return 0;
4454  else if (Matches.size() == 1) {
4455    FunctionDecl *Result = *Matches.begin();
4456    MarkDeclarationReferenced(From->getLocStart(), Result);
4457    return Result;
4458  }
4459
4460  // C++ [over.over]p4:
4461  //   If more than one function is selected, [...]
4462  typedef llvm::SmallPtrSet<FunctionDecl *, 4>::iterator MatchIter;
4463  if (!FoundNonTemplateFunction) {
4464    //   [...] and any given function template specialization F1 is
4465    //   eliminated if the set contains a second function template
4466    //   specialization whose function template is more specialized
4467    //   than the function template of F1 according to the partial
4468    //   ordering rules of 14.5.5.2.
4469
4470    // The algorithm specified above is quadratic. We instead use a
4471    // two-pass algorithm (similar to the one used to identify the
4472    // best viable function in an overload set) that identifies the
4473    // best function template (if it exists).
4474    llvm::SmallVector<FunctionDecl *, 8> TemplateMatches(Matches.begin(),
4475                                                         Matches.end());
4476    FunctionDecl *Result =
4477        getMostSpecialized(TemplateMatches.data(), TemplateMatches.size(),
4478                           TPOC_Other, From->getLocStart(),
4479                           PDiag(),
4480                           PDiag(diag::err_addr_ovl_ambiguous)
4481                               << TemplateMatches[0]->getDeclName(),
4482                           PDiag(diag::err_ovl_template_candidate));
4483    MarkDeclarationReferenced(From->getLocStart(), Result);
4484    return Result;
4485  }
4486
4487  //   [...] any function template specializations in the set are
4488  //   eliminated if the set also contains a non-template function, [...]
4489  llvm::SmallVector<FunctionDecl *, 4> RemainingMatches;
4490  for (MatchIter M = Matches.begin(), MEnd = Matches.end(); M != MEnd; ++M)
4491    if ((*M)->getPrimaryTemplate() == 0)
4492      RemainingMatches.push_back(*M);
4493
4494  // [...] After such eliminations, if any, there shall remain exactly one
4495  // selected function.
4496  if (RemainingMatches.size() == 1) {
4497    FunctionDecl *Result = RemainingMatches.front();
4498    MarkDeclarationReferenced(From->getLocStart(), Result);
4499    return Result;
4500  }
4501
4502  // FIXME: We should probably return the same thing that BestViableFunction
4503  // returns (even if we issue the diagnostics here).
4504  Diag(From->getLocStart(), diag::err_addr_ovl_ambiguous)
4505    << RemainingMatches[0]->getDeclName();
4506  for (unsigned I = 0, N = RemainingMatches.size(); I != N; ++I)
4507    Diag(RemainingMatches[I]->getLocation(), diag::err_ovl_candidate);
4508  return 0;
4509}
4510
4511/// \brief Add a single candidate to the overload set.
4512static void AddOverloadedCallCandidate(Sema &S,
4513                                       NamedDecl *Callee,
4514                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4515                                       Expr **Args, unsigned NumArgs,
4516                                       OverloadCandidateSet &CandidateSet,
4517                                       bool PartialOverloading) {
4518  if (isa<UsingShadowDecl>(Callee))
4519    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
4520
4521  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
4522    assert(!ExplicitTemplateArgs && "Explicit template arguments?");
4523    S.AddOverloadCandidate(Func, Args, NumArgs, CandidateSet, false, false,
4524                           PartialOverloading);
4525    return;
4526  }
4527
4528  if (FunctionTemplateDecl *FuncTemplate
4529      = dyn_cast<FunctionTemplateDecl>(Callee)) {
4530    S.AddTemplateOverloadCandidate(FuncTemplate, ExplicitTemplateArgs,
4531                                   Args, NumArgs, CandidateSet);
4532    return;
4533  }
4534
4535  assert(false && "unhandled case in overloaded call candidate");
4536
4537  // do nothing?
4538}
4539
4540/// \brief Add the overload candidates named by callee and/or found by argument
4541/// dependent lookup to the given overload set.
4542void Sema::AddOverloadedCallCandidates(llvm::SmallVectorImpl<NamedDecl*> &Fns,
4543                                       DeclarationName &UnqualifiedName,
4544                                       bool ArgumentDependentLookup,
4545                         const TemplateArgumentListInfo *ExplicitTemplateArgs,
4546                                       Expr **Args, unsigned NumArgs,
4547                                       OverloadCandidateSet &CandidateSet,
4548                                       bool PartialOverloading) {
4549
4550#ifndef NDEBUG
4551  // Verify that ArgumentDependentLookup is consistent with the rules
4552  // in C++0x [basic.lookup.argdep]p3:
4553  //
4554  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
4555  //   and let Y be the lookup set produced by argument dependent
4556  //   lookup (defined as follows). If X contains
4557  //
4558  //     -- a declaration of a class member, or
4559  //
4560  //     -- a block-scope function declaration that is not a
4561  //        using-declaration, or
4562  //
4563  //     -- a declaration that is neither a function or a function
4564  //        template
4565  //
4566  //   then Y is empty.
4567
4568  if (ArgumentDependentLookup) {
4569    for (unsigned I = 0; I < Fns.size(); ++I) {
4570      assert(!Fns[I]->getDeclContext()->isRecord());
4571      assert(isa<UsingShadowDecl>(Fns[I]) ||
4572             !Fns[I]->getDeclContext()->isFunctionOrMethod());
4573      assert(Fns[I]->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
4574    }
4575  }
4576#endif
4577
4578  for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Fns.begin(),
4579         E = Fns.end(); I != E; ++I)
4580    AddOverloadedCallCandidate(*this, *I, ExplicitTemplateArgs,
4581                               Args, NumArgs, CandidateSet,
4582                               PartialOverloading);
4583
4584  if (ArgumentDependentLookup)
4585    AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
4586                                         ExplicitTemplateArgs,
4587                                         CandidateSet,
4588                                         PartialOverloading);
4589}
4590
4591/// ResolveOverloadedCallFn - Given the call expression that calls Fn
4592/// (which eventually refers to the declaration Func) and the call
4593/// arguments Args/NumArgs, attempt to resolve the function call down
4594/// to a specific function. If overload resolution succeeds, returns
4595/// the function declaration produced by overload
4596/// resolution. Otherwise, emits diagnostics, deletes all of the
4597/// arguments and Fn, and returns NULL.
4598FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn,
4599                                     llvm::SmallVectorImpl<NamedDecl*> &Fns,
4600                                            DeclarationName UnqualifiedName,
4601                       const TemplateArgumentListInfo *ExplicitTemplateArgs,
4602                                            SourceLocation LParenLoc,
4603                                            Expr **Args, unsigned NumArgs,
4604                                            SourceLocation *CommaLocs,
4605                                            SourceLocation RParenLoc,
4606                                            bool ArgumentDependentLookup) {
4607  OverloadCandidateSet CandidateSet;
4608
4609  // Add the functions denoted by Callee to the set of candidate
4610  // functions.
4611  AddOverloadedCallCandidates(Fns, UnqualifiedName, ArgumentDependentLookup,
4612                              ExplicitTemplateArgs, Args, NumArgs,
4613                              CandidateSet);
4614  OverloadCandidateSet::iterator Best;
4615  switch (BestViableFunction(CandidateSet, Fn->getLocStart(), Best)) {
4616  case OR_Success:
4617    return Best->Function;
4618
4619  case OR_No_Viable_Function:
4620    Diag(Fn->getSourceRange().getBegin(),
4621         diag::err_ovl_no_viable_function_in_call)
4622      << UnqualifiedName << Fn->getSourceRange();
4623    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4624    break;
4625
4626  case OR_Ambiguous:
4627    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
4628      << UnqualifiedName << Fn->getSourceRange();
4629    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4630    break;
4631
4632  case OR_Deleted:
4633    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
4634      << Best->Function->isDeleted()
4635      << UnqualifiedName
4636      << Fn->getSourceRange();
4637    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4638    break;
4639  }
4640
4641  // Overload resolution failed. Destroy all of the subexpressions and
4642  // return NULL.
4643  Fn->Destroy(Context);
4644  for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
4645    Args[Arg]->Destroy(Context);
4646  return 0;
4647}
4648
4649static bool IsOverloaded(const Sema::FunctionSet &Functions) {
4650  return Functions.size() > 1 ||
4651    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
4652}
4653
4654/// \brief Create a unary operation that may resolve to an overloaded
4655/// operator.
4656///
4657/// \param OpLoc The location of the operator itself (e.g., '*').
4658///
4659/// \param OpcIn The UnaryOperator::Opcode that describes this
4660/// operator.
4661///
4662/// \param Functions The set of non-member functions that will be
4663/// considered by overload resolution. The caller needs to build this
4664/// set based on the context using, e.g.,
4665/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4666/// set should not contain any member functions; those will be added
4667/// by CreateOverloadedUnaryOp().
4668///
4669/// \param input The input argument.
4670Sema::OwningExprResult Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc,
4671                                                     unsigned OpcIn,
4672                                                     FunctionSet &Functions,
4673                                                     ExprArg input) {
4674  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
4675  Expr *Input = (Expr *)input.get();
4676
4677  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
4678  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
4679  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4680
4681  Expr *Args[2] = { Input, 0 };
4682  unsigned NumArgs = 1;
4683
4684  // For post-increment and post-decrement, add the implicit '0' as
4685  // the second argument, so that we know this is a post-increment or
4686  // post-decrement.
4687  if (Opc == UnaryOperator::PostInc || Opc == UnaryOperator::PostDec) {
4688    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
4689    Args[1] = new (Context) IntegerLiteral(Zero, Context.IntTy,
4690                                           SourceLocation());
4691    NumArgs = 2;
4692  }
4693
4694  if (Input->isTypeDependent()) {
4695    UnresolvedLookupExpr *Fn
4696      = UnresolvedLookupExpr::Create(Context, 0, SourceRange(), OpName, OpLoc,
4697                                     /*ADL*/ true, IsOverloaded(Functions));
4698    for (FunctionSet::iterator Func = Functions.begin(),
4699                            FuncEnd = Functions.end();
4700         Func != FuncEnd; ++Func)
4701      Fn->addDecl(*Func);
4702
4703    input.release();
4704    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4705                                                   &Args[0], NumArgs,
4706                                                   Context.DependentTy,
4707                                                   OpLoc));
4708  }
4709
4710  // Build an empty overload set.
4711  OverloadCandidateSet CandidateSet;
4712
4713  // Add the candidates from the given function set.
4714  AddFunctionCandidates(Functions, &Args[0], NumArgs, CandidateSet, false);
4715
4716  // Add operator candidates that are member functions.
4717  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4718
4719  // Add builtin operator candidates.
4720  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
4721
4722  // Perform overload resolution.
4723  OverloadCandidateSet::iterator Best;
4724  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4725  case OR_Success: {
4726    // We found a built-in operator or an overloaded operator.
4727    FunctionDecl *FnDecl = Best->Function;
4728
4729    if (FnDecl) {
4730      // We matched an overloaded operator. Build a call to that
4731      // operator.
4732
4733      // Convert the arguments.
4734      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4735        if (PerformObjectArgumentInitialization(Input, Method))
4736          return ExprError();
4737      } else {
4738        // Convert the arguments.
4739        if (PerformCopyInitialization(Input,
4740                                      FnDecl->getParamDecl(0)->getType(),
4741                                      "passing"))
4742          return ExprError();
4743      }
4744
4745      // Determine the result type
4746      QualType ResultTy = FnDecl->getResultType().getNonReferenceType();
4747
4748      // Build the actual expression node.
4749      Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4750                                               SourceLocation());
4751      UsualUnaryConversions(FnExpr);
4752
4753      input.release();
4754      Args[0] = Input;
4755      ExprOwningPtr<CallExpr> TheCall(this,
4756        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4757                                          Args, NumArgs, ResultTy, OpLoc));
4758
4759      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4760                              FnDecl))
4761        return ExprError();
4762
4763      return MaybeBindToTemporary(TheCall.release());
4764    } else {
4765      // We matched a built-in operator. Convert the arguments, then
4766      // break out so that we will build the appropriate built-in
4767      // operator node.
4768        if (PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
4769                                      Best->Conversions[0], "passing"))
4770          return ExprError();
4771
4772        break;
4773      }
4774    }
4775
4776    case OR_No_Viable_Function:
4777      // No viable function; fall through to handling this as a
4778      // built-in operator, which will produce an error message for us.
4779      break;
4780
4781    case OR_Ambiguous:
4782      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4783          << UnaryOperator::getOpcodeStr(Opc)
4784          << Input->getSourceRange();
4785      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4786                              UnaryOperator::getOpcodeStr(Opc), OpLoc);
4787      return ExprError();
4788
4789    case OR_Deleted:
4790      Diag(OpLoc, diag::err_ovl_deleted_oper)
4791        << Best->Function->isDeleted()
4792        << UnaryOperator::getOpcodeStr(Opc)
4793        << Input->getSourceRange();
4794      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4795      return ExprError();
4796    }
4797
4798  // Either we found no viable overloaded operator or we matched a
4799  // built-in operator. In either case, fall through to trying to
4800  // build a built-in operation.
4801  input.release();
4802  return CreateBuiltinUnaryOp(OpLoc, Opc, Owned(Input));
4803}
4804
4805/// \brief Create a binary operation that may resolve to an overloaded
4806/// operator.
4807///
4808/// \param OpLoc The location of the operator itself (e.g., '+').
4809///
4810/// \param OpcIn The BinaryOperator::Opcode that describes this
4811/// operator.
4812///
4813/// \param Functions The set of non-member functions that will be
4814/// considered by overload resolution. The caller needs to build this
4815/// set based on the context using, e.g.,
4816/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
4817/// set should not contain any member functions; those will be added
4818/// by CreateOverloadedBinOp().
4819///
4820/// \param LHS Left-hand argument.
4821/// \param RHS Right-hand argument.
4822Sema::OwningExprResult
4823Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
4824                            unsigned OpcIn,
4825                            FunctionSet &Functions,
4826                            Expr *LHS, Expr *RHS) {
4827  Expr *Args[2] = { LHS, RHS };
4828  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
4829
4830  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
4831  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
4832  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
4833
4834  // If either side is type-dependent, create an appropriate dependent
4835  // expression.
4836  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
4837    if (Functions.empty()) {
4838      // If there are no functions to store, just build a dependent
4839      // BinaryOperator or CompoundAssignment.
4840      if (Opc <= BinaryOperator::Assign || Opc > BinaryOperator::OrAssign)
4841        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
4842                                                  Context.DependentTy, OpLoc));
4843
4844      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
4845                                                        Context.DependentTy,
4846                                                        Context.DependentTy,
4847                                                        Context.DependentTy,
4848                                                        OpLoc));
4849    }
4850
4851    UnresolvedLookupExpr *Fn
4852      = UnresolvedLookupExpr::Create(Context, 0, SourceRange(), OpName, OpLoc,
4853                                     /* ADL */ true, IsOverloaded(Functions));
4854
4855    for (FunctionSet::iterator Func = Functions.begin(),
4856                            FuncEnd = Functions.end();
4857         Func != FuncEnd; ++Func)
4858      Fn->addDecl(*Func);
4859
4860    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
4861                                                   Args, 2,
4862                                                   Context.DependentTy,
4863                                                   OpLoc));
4864  }
4865
4866  // If this is the .* operator, which is not overloadable, just
4867  // create a built-in binary operator.
4868  if (Opc == BinaryOperator::PtrMemD)
4869    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4870
4871  // If this is the assignment operator, we only perform overload resolution
4872  // if the left-hand side is a class or enumeration type. This is actually
4873  // a hack. The standard requires that we do overload resolution between the
4874  // various built-in candidates, but as DR507 points out, this can lead to
4875  // problems. So we do it this way, which pretty much follows what GCC does.
4876  // Note that we go the traditional code path for compound assignment forms.
4877  if (Opc==BinaryOperator::Assign && !Args[0]->getType()->isOverloadableType())
4878    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4879
4880  // Build an empty overload set.
4881  OverloadCandidateSet CandidateSet;
4882
4883  // Add the candidates from the given function set.
4884  AddFunctionCandidates(Functions, Args, 2, CandidateSet, false);
4885
4886  // Add operator candidates that are member functions.
4887  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4888
4889  // Add builtin operator candidates.
4890  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
4891
4892  // Perform overload resolution.
4893  OverloadCandidateSet::iterator Best;
4894  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
4895    case OR_Success: {
4896      // We found a built-in operator or an overloaded operator.
4897      FunctionDecl *FnDecl = Best->Function;
4898
4899      if (FnDecl) {
4900        // We matched an overloaded operator. Build a call to that
4901        // operator.
4902
4903        // Convert the arguments.
4904        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
4905          if (PerformObjectArgumentInitialization(Args[0], Method) ||
4906              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(0)->getType(),
4907                                        "passing"))
4908            return ExprError();
4909        } else {
4910          // Convert the arguments.
4911          if (PerformCopyInitialization(Args[0], FnDecl->getParamDecl(0)->getType(),
4912                                        "passing") ||
4913              PerformCopyInitialization(Args[1], FnDecl->getParamDecl(1)->getType(),
4914                                        "passing"))
4915            return ExprError();
4916        }
4917
4918        // Determine the result type
4919        QualType ResultTy
4920          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
4921        ResultTy = ResultTy.getNonReferenceType();
4922
4923        // Build the actual expression node.
4924        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
4925                                                 OpLoc);
4926        UsualUnaryConversions(FnExpr);
4927
4928        ExprOwningPtr<CXXOperatorCallExpr>
4929          TheCall(this, new (Context) CXXOperatorCallExpr(Context, Op, FnExpr,
4930                                                          Args, 2, ResultTy,
4931                                                          OpLoc));
4932
4933        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall.get(),
4934                                FnDecl))
4935          return ExprError();
4936
4937        return MaybeBindToTemporary(TheCall.release());
4938      } else {
4939        // We matched a built-in operator. Convert the arguments, then
4940        // break out so that we will build the appropriate built-in
4941        // operator node.
4942        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
4943                                      Best->Conversions[0], "passing") ||
4944            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
4945                                      Best->Conversions[1], "passing"))
4946          return ExprError();
4947
4948        break;
4949      }
4950    }
4951
4952    case OR_No_Viable_Function: {
4953      // C++ [over.match.oper]p9:
4954      //   If the operator is the operator , [...] and there are no
4955      //   viable functions, then the operator is assumed to be the
4956      //   built-in operator and interpreted according to clause 5.
4957      if (Opc == BinaryOperator::Comma)
4958        break;
4959
4960      // For class as left operand for assignment or compound assigment operator
4961      // do not fall through to handling in built-in, but report that no overloaded
4962      // assignment operator found
4963      OwningExprResult Result = ExprError();
4964      if (Args[0]->getType()->isRecordType() &&
4965          Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign) {
4966        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
4967             << BinaryOperator::getOpcodeStr(Opc)
4968             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4969      } else {
4970        // No viable function; try to create a built-in operation, which will
4971        // produce an error. Then, show the non-viable candidates.
4972        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
4973      }
4974      assert(Result.isInvalid() &&
4975             "C++ binary operator overloading is missing candidates!");
4976      if (Result.isInvalid())
4977        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
4978                                BinaryOperator::getOpcodeStr(Opc), OpLoc);
4979      return move(Result);
4980    }
4981
4982    case OR_Ambiguous:
4983      Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
4984          << BinaryOperator::getOpcodeStr(Opc)
4985          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4986      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
4987                              BinaryOperator::getOpcodeStr(Opc), OpLoc);
4988      return ExprError();
4989
4990    case OR_Deleted:
4991      Diag(OpLoc, diag::err_ovl_deleted_oper)
4992        << Best->Function->isDeleted()
4993        << BinaryOperator::getOpcodeStr(Opc)
4994        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
4995      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4996      return ExprError();
4997    }
4998
4999  // We matched a built-in operator; build it.
5000  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
5001}
5002
5003Action::OwningExprResult
5004Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
5005                                         SourceLocation RLoc,
5006                                         ExprArg Base, ExprArg Idx) {
5007  Expr *Args[2] = { static_cast<Expr*>(Base.get()),
5008                    static_cast<Expr*>(Idx.get()) };
5009  DeclarationName OpName =
5010      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
5011
5012  // If either side is type-dependent, create an appropriate dependent
5013  // expression.
5014  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
5015
5016    UnresolvedLookupExpr *Fn
5017      = UnresolvedLookupExpr::Create(Context, 0, SourceRange(), OpName, LLoc,
5018                                     /*ADL*/ true, /*Overloaded*/ false);
5019    // Can't add an actual overloads yet
5020
5021    Base.release();
5022    Idx.release();
5023    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
5024                                                   Args, 2,
5025                                                   Context.DependentTy,
5026                                                   RLoc));
5027  }
5028
5029  // Build an empty overload set.
5030  OverloadCandidateSet CandidateSet;
5031
5032  // Subscript can only be overloaded as a member function.
5033
5034  // Add operator candidates that are member functions.
5035  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5036
5037  // Add builtin operator candidates.
5038  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
5039
5040  // Perform overload resolution.
5041  OverloadCandidateSet::iterator Best;
5042  switch (BestViableFunction(CandidateSet, LLoc, Best)) {
5043    case OR_Success: {
5044      // We found a built-in operator or an overloaded operator.
5045      FunctionDecl *FnDecl = Best->Function;
5046
5047      if (FnDecl) {
5048        // We matched an overloaded operator. Build a call to that
5049        // operator.
5050
5051        // Convert the arguments.
5052        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5053        if (PerformObjectArgumentInitialization(Args[0], Method) ||
5054            PerformCopyInitialization(Args[1],
5055                                      FnDecl->getParamDecl(0)->getType(),
5056                                      "passing"))
5057          return ExprError();
5058
5059        // Determine the result type
5060        QualType ResultTy
5061          = FnDecl->getType()->getAs<FunctionType>()->getResultType();
5062        ResultTy = ResultTy.getNonReferenceType();
5063
5064        // Build the actual expression node.
5065        Expr *FnExpr = new (Context) DeclRefExpr(FnDecl, FnDecl->getType(),
5066                                                 LLoc);
5067        UsualUnaryConversions(FnExpr);
5068
5069        Base.release();
5070        Idx.release();
5071        ExprOwningPtr<CXXOperatorCallExpr>
5072          TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
5073                                                          FnExpr, Args, 2,
5074                                                          ResultTy, RLoc));
5075
5076        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall.get(),
5077                                FnDecl))
5078          return ExprError();
5079
5080        return MaybeBindToTemporary(TheCall.release());
5081      } else {
5082        // We matched a built-in operator. Convert the arguments, then
5083        // break out so that we will build the appropriate built-in
5084        // operator node.
5085        if (PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
5086                                      Best->Conversions[0], "passing") ||
5087            PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
5088                                      Best->Conversions[1], "passing"))
5089          return ExprError();
5090
5091        break;
5092      }
5093    }
5094
5095    case OR_No_Viable_Function: {
5096      // No viable function; try to create a built-in operation, which will
5097      // produce an error. Then, show the non-viable candidates.
5098      OwningExprResult Result =
5099          CreateBuiltinArraySubscriptExpr(move(Base), LLoc, move(Idx), RLoc);
5100      assert(Result.isInvalid() &&
5101             "C++ subscript operator overloading is missing candidates!");
5102      if (Result.isInvalid())
5103        PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false,
5104                                "[]", LLoc);
5105      return move(Result);
5106    }
5107
5108    case OR_Ambiguous:
5109      Diag(LLoc,  diag::err_ovl_ambiguous_oper)
5110          << "[]" << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5111      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true,
5112                              "[]", LLoc);
5113      return ExprError();
5114
5115    case OR_Deleted:
5116      Diag(LLoc, diag::err_ovl_deleted_oper)
5117        << Best->Function->isDeleted() << "[]"
5118        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
5119      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5120      return ExprError();
5121    }
5122
5123  // We matched a built-in operator; build it.
5124  Base.release();
5125  Idx.release();
5126  return CreateBuiltinArraySubscriptExpr(Owned(Args[0]), LLoc,
5127                                         Owned(Args[1]), RLoc);
5128}
5129
5130/// BuildCallToMemberFunction - Build a call to a member
5131/// function. MemExpr is the expression that refers to the member
5132/// function (and includes the object parameter), Args/NumArgs are the
5133/// arguments to the function call (not including the object
5134/// parameter). The caller needs to validate that the member
5135/// expression refers to a member function or an overloaded member
5136/// function.
5137Sema::ExprResult
5138Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
5139                                SourceLocation LParenLoc, Expr **Args,
5140                                unsigned NumArgs, SourceLocation *CommaLocs,
5141                                SourceLocation RParenLoc) {
5142  // Dig out the member expression. This holds both the object
5143  // argument and the member function we're referring to.
5144  MemberExpr *MemExpr = 0;
5145  if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
5146    MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
5147  else
5148    MemExpr = dyn_cast<MemberExpr>(MemExprE);
5149  assert(MemExpr && "Building member call without member expression");
5150
5151  // Extract the object argument.
5152  Expr *ObjectArg = MemExpr->getBase();
5153
5154  CXXMethodDecl *Method = 0;
5155  if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
5156      isa<FunctionTemplateDecl>(MemExpr->getMemberDecl())) {
5157    // Add overload candidates
5158    OverloadCandidateSet CandidateSet;
5159    DeclarationName DeclName = MemExpr->getMemberDecl()->getDeclName();
5160
5161    for (OverloadIterator Func(MemExpr->getMemberDecl()), FuncEnd;
5162         Func != FuncEnd; ++Func) {
5163      if ((Method = dyn_cast<CXXMethodDecl>(*Func))) {
5164        // If explicit template arguments were provided, we can't call a
5165        // non-template member function.
5166        if (MemExpr->hasExplicitTemplateArgumentList())
5167          continue;
5168
5169        AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
5170                           /*SuppressUserConversions=*/false);
5171      } else {
5172        // FIXME: avoid copy.
5173        TemplateArgumentListInfo TemplateArgs;
5174        if (MemExpr->hasExplicitTemplateArgumentList())
5175          MemExpr->copyTemplateArgumentsInto(TemplateArgs);
5176
5177        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(*Func),
5178                                   (MemExpr->hasExplicitTemplateArgumentList()
5179                                      ? &TemplateArgs : 0),
5180                                   ObjectArg, Args, NumArgs,
5181                                   CandidateSet,
5182                                   /*SuppressUsedConversions=*/false);
5183      }
5184    }
5185
5186    OverloadCandidateSet::iterator Best;
5187    switch (BestViableFunction(CandidateSet, MemExpr->getLocStart(), Best)) {
5188    case OR_Success:
5189      Method = cast<CXXMethodDecl>(Best->Function);
5190      break;
5191
5192    case OR_No_Viable_Function:
5193      Diag(MemExpr->getSourceRange().getBegin(),
5194           diag::err_ovl_no_viable_member_function_in_call)
5195        << DeclName << MemExprE->getSourceRange();
5196      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5197      // FIXME: Leaking incoming expressions!
5198      return true;
5199
5200    case OR_Ambiguous:
5201      Diag(MemExpr->getSourceRange().getBegin(),
5202           diag::err_ovl_ambiguous_member_call)
5203        << DeclName << MemExprE->getSourceRange();
5204      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5205      // FIXME: Leaking incoming expressions!
5206      return true;
5207
5208    case OR_Deleted:
5209      Diag(MemExpr->getSourceRange().getBegin(),
5210           diag::err_ovl_deleted_member_call)
5211        << Best->Function->isDeleted()
5212        << DeclName << MemExprE->getSourceRange();
5213      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5214      // FIXME: Leaking incoming expressions!
5215      return true;
5216    }
5217
5218    MemExprE = FixOverloadedFunctionReference(MemExprE, Method);
5219    if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
5220      MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
5221    else
5222      MemExpr = dyn_cast<MemberExpr>(MemExprE);
5223
5224  } else {
5225    Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
5226  }
5227
5228  assert(Method && "Member call to something that isn't a method?");
5229  ExprOwningPtr<CXXMemberCallExpr>
5230    TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
5231                                                  NumArgs,
5232                                  Method->getResultType().getNonReferenceType(),
5233                                  RParenLoc));
5234
5235  // Check for a valid return type.
5236  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
5237                          TheCall.get(), Method))
5238    return true;
5239
5240  // Convert the object argument (for a non-static member function call).
5241  if (!Method->isStatic() &&
5242      PerformObjectArgumentInitialization(ObjectArg, Method))
5243    return true;
5244  MemExpr->setBase(ObjectArg);
5245
5246  // Convert the rest of the arguments
5247  const FunctionProtoType *Proto = cast<FunctionProtoType>(Method->getType());
5248  if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
5249                              RParenLoc))
5250    return true;
5251
5252  if (CheckFunctionCall(Method, TheCall.get()))
5253    return true;
5254
5255  return MaybeBindToTemporary(TheCall.release()).release();
5256}
5257
5258/// BuildCallToObjectOfClassType - Build a call to an object of class
5259/// type (C++ [over.call.object]), which can end up invoking an
5260/// overloaded function call operator (@c operator()) or performing a
5261/// user-defined conversion on the object argument.
5262Sema::ExprResult
5263Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
5264                                   SourceLocation LParenLoc,
5265                                   Expr **Args, unsigned NumArgs,
5266                                   SourceLocation *CommaLocs,
5267                                   SourceLocation RParenLoc) {
5268  assert(Object->getType()->isRecordType() && "Requires object type argument");
5269  const RecordType *Record = Object->getType()->getAs<RecordType>();
5270
5271  // C++ [over.call.object]p1:
5272  //  If the primary-expression E in the function call syntax
5273  //  evaluates to a class object of type "cv T", then the set of
5274  //  candidate functions includes at least the function call
5275  //  operators of T. The function call operators of T are obtained by
5276  //  ordinary lookup of the name operator() in the context of
5277  //  (E).operator().
5278  OverloadCandidateSet CandidateSet;
5279  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
5280
5281  if (RequireCompleteType(LParenLoc, Object->getType(),
5282                          PartialDiagnostic(diag::err_incomplete_object_call)
5283                          << Object->getSourceRange()))
5284    return true;
5285
5286  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
5287  LookupQualifiedName(R, Record->getDecl());
5288  R.suppressDiagnostics();
5289
5290  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5291       Oper != OperEnd; ++Oper) {
5292    AddMethodCandidate(*Oper, Object, Args, NumArgs, CandidateSet,
5293                       /*SuppressUserConversions=*/ false);
5294  }
5295
5296  // C++ [over.call.object]p2:
5297  //   In addition, for each conversion function declared in T of the
5298  //   form
5299  //
5300  //        operator conversion-type-id () cv-qualifier;
5301  //
5302  //   where cv-qualifier is the same cv-qualification as, or a
5303  //   greater cv-qualification than, cv, and where conversion-type-id
5304  //   denotes the type "pointer to function of (P1,...,Pn) returning
5305  //   R", or the type "reference to pointer to function of
5306  //   (P1,...,Pn) returning R", or the type "reference to function
5307  //   of (P1,...,Pn) returning R", a surrogate call function [...]
5308  //   is also considered as a candidate function. Similarly,
5309  //   surrogate call functions are added to the set of candidate
5310  //   functions for each conversion function declared in an
5311  //   accessible base class provided the function is not hidden
5312  //   within T by another intervening declaration.
5313  // FIXME: Look in base classes for more conversion operators!
5314  const UnresolvedSet *Conversions
5315    = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
5316  for (UnresolvedSet::iterator I = Conversions->begin(),
5317         E = Conversions->end(); I != E; ++I) {
5318    // Skip over templated conversion functions; they aren't
5319    // surrogates.
5320    if (isa<FunctionTemplateDecl>(*I))
5321      continue;
5322
5323    CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
5324
5325    // Strip the reference type (if any) and then the pointer type (if
5326    // any) to get down to what might be a function type.
5327    QualType ConvType = Conv->getConversionType().getNonReferenceType();
5328    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
5329      ConvType = ConvPtrType->getPointeeType();
5330
5331    if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
5332      AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
5333  }
5334
5335  // Perform overload resolution.
5336  OverloadCandidateSet::iterator Best;
5337  switch (BestViableFunction(CandidateSet, Object->getLocStart(), Best)) {
5338  case OR_Success:
5339    // Overload resolution succeeded; we'll build the appropriate call
5340    // below.
5341    break;
5342
5343  case OR_No_Viable_Function:
5344    Diag(Object->getSourceRange().getBegin(),
5345         diag::err_ovl_no_viable_object_call)
5346      << Object->getType() << Object->getSourceRange();
5347    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5348    break;
5349
5350  case OR_Ambiguous:
5351    Diag(Object->getSourceRange().getBegin(),
5352         diag::err_ovl_ambiguous_object_call)
5353      << Object->getType() << Object->getSourceRange();
5354    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5355    break;
5356
5357  case OR_Deleted:
5358    Diag(Object->getSourceRange().getBegin(),
5359         diag::err_ovl_deleted_object_call)
5360      << Best->Function->isDeleted()
5361      << Object->getType() << Object->getSourceRange();
5362    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5363    break;
5364  }
5365
5366  if (Best == CandidateSet.end()) {
5367    // We had an error; delete all of the subexpressions and return
5368    // the error.
5369    Object->Destroy(Context);
5370    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5371      Args[ArgIdx]->Destroy(Context);
5372    return true;
5373  }
5374
5375  if (Best->Function == 0) {
5376    // Since there is no function declaration, this is one of the
5377    // surrogate candidates. Dig out the conversion function.
5378    CXXConversionDecl *Conv
5379      = cast<CXXConversionDecl>(
5380                         Best->Conversions[0].UserDefined.ConversionFunction);
5381
5382    // We selected one of the surrogate functions that converts the
5383    // object parameter to a function pointer. Perform the conversion
5384    // on the object argument, then let ActOnCallExpr finish the job.
5385
5386    // Create an implicit member expr to refer to the conversion operator.
5387    // and then call it.
5388    CXXMemberCallExpr *CE =
5389    BuildCXXMemberCallExpr(Object, Conv);
5390
5391    return ActOnCallExpr(S, ExprArg(*this, CE), LParenLoc,
5392                         MultiExprArg(*this, (ExprTy**)Args, NumArgs),
5393                         CommaLocs, RParenLoc).release();
5394  }
5395
5396  // We found an overloaded operator(). Build a CXXOperatorCallExpr
5397  // that calls this method, using Object for the implicit object
5398  // parameter and passing along the remaining arguments.
5399  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5400  const FunctionProtoType *Proto = Method->getType()->getAs<FunctionProtoType>();
5401
5402  unsigned NumArgsInProto = Proto->getNumArgs();
5403  unsigned NumArgsToCheck = NumArgs;
5404
5405  // Build the full argument list for the method call (the
5406  // implicit object parameter is placed at the beginning of the
5407  // list).
5408  Expr **MethodArgs;
5409  if (NumArgs < NumArgsInProto) {
5410    NumArgsToCheck = NumArgsInProto;
5411    MethodArgs = new Expr*[NumArgsInProto + 1];
5412  } else {
5413    MethodArgs = new Expr*[NumArgs + 1];
5414  }
5415  MethodArgs[0] = Object;
5416  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5417    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
5418
5419  Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
5420                                          SourceLocation());
5421  UsualUnaryConversions(NewFn);
5422
5423  // Once we've built TheCall, all of the expressions are properly
5424  // owned.
5425  QualType ResultTy = Method->getResultType().getNonReferenceType();
5426  ExprOwningPtr<CXXOperatorCallExpr>
5427    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn,
5428                                                    MethodArgs, NumArgs + 1,
5429                                                    ResultTy, RParenLoc));
5430  delete [] MethodArgs;
5431
5432  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall.get(),
5433                          Method))
5434    return true;
5435
5436  // We may have default arguments. If so, we need to allocate more
5437  // slots in the call for them.
5438  if (NumArgs < NumArgsInProto)
5439    TheCall->setNumArgs(Context, NumArgsInProto + 1);
5440  else if (NumArgs > NumArgsInProto)
5441    NumArgsToCheck = NumArgsInProto;
5442
5443  bool IsError = false;
5444
5445  // Initialize the implicit object parameter.
5446  IsError |= PerformObjectArgumentInitialization(Object, Method);
5447  TheCall->setArg(0, Object);
5448
5449
5450  // Check the argument types.
5451  for (unsigned i = 0; i != NumArgsToCheck; i++) {
5452    Expr *Arg;
5453    if (i < NumArgs) {
5454      Arg = Args[i];
5455
5456      // Pass the argument.
5457      QualType ProtoArgType = Proto->getArgType(i);
5458      IsError |= PerformCopyInitialization(Arg, ProtoArgType, "passing");
5459    } else {
5460      OwningExprResult DefArg
5461        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
5462      if (DefArg.isInvalid()) {
5463        IsError = true;
5464        break;
5465      }
5466
5467      Arg = DefArg.takeAs<Expr>();
5468    }
5469
5470    TheCall->setArg(i + 1, Arg);
5471  }
5472
5473  // If this is a variadic call, handle args passed through "...".
5474  if (Proto->isVariadic()) {
5475    // Promote the arguments (C99 6.5.2.2p7).
5476    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
5477      Expr *Arg = Args[i];
5478      IsError |= DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
5479      TheCall->setArg(i + 1, Arg);
5480    }
5481  }
5482
5483  if (IsError) return true;
5484
5485  if (CheckFunctionCall(Method, TheCall.get()))
5486    return true;
5487
5488  return MaybeBindToTemporary(TheCall.release()).release();
5489}
5490
5491/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
5492///  (if one exists), where @c Base is an expression of class type and
5493/// @c Member is the name of the member we're trying to find.
5494Sema::OwningExprResult
5495Sema::BuildOverloadedArrowExpr(Scope *S, ExprArg BaseIn, SourceLocation OpLoc) {
5496  Expr *Base = static_cast<Expr *>(BaseIn.get());
5497  assert(Base->getType()->isRecordType() && "left-hand side must have class type");
5498
5499  // C++ [over.ref]p1:
5500  //
5501  //   [...] An expression x->m is interpreted as (x.operator->())->m
5502  //   for a class object x of type T if T::operator->() exists and if
5503  //   the operator is selected as the best match function by the
5504  //   overload resolution mechanism (13.3).
5505  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
5506  OverloadCandidateSet CandidateSet;
5507  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
5508
5509  if (RequireCompleteType(Base->getLocStart(), Base->getType(),
5510                          PDiag(diag::err_typecheck_incomplete_tag)
5511                            << Base->getSourceRange()))
5512    return ExprError();
5513
5514  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
5515  LookupQualifiedName(R, BaseRecord->getDecl());
5516  R.suppressDiagnostics();
5517
5518  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
5519       Oper != OperEnd; ++Oper)
5520    AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
5521                       /*SuppressUserConversions=*/false);
5522
5523  // Perform overload resolution.
5524  OverloadCandidateSet::iterator Best;
5525  switch (BestViableFunction(CandidateSet, OpLoc, Best)) {
5526  case OR_Success:
5527    // Overload resolution succeeded; we'll build the call below.
5528    break;
5529
5530  case OR_No_Viable_Function:
5531    if (CandidateSet.empty())
5532      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5533        << Base->getType() << Base->getSourceRange();
5534    else
5535      Diag(OpLoc, diag::err_ovl_no_viable_oper)
5536        << "operator->" << Base->getSourceRange();
5537    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
5538    return ExprError();
5539
5540  case OR_Ambiguous:
5541    Diag(OpLoc,  diag::err_ovl_ambiguous_oper)
5542      << "->" << Base->getSourceRange();
5543    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5544    return ExprError();
5545
5546  case OR_Deleted:
5547    Diag(OpLoc,  diag::err_ovl_deleted_oper)
5548      << Best->Function->isDeleted()
5549      << "->" << Base->getSourceRange();
5550    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
5551    return ExprError();
5552  }
5553
5554  // Convert the object parameter.
5555  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
5556  if (PerformObjectArgumentInitialization(Base, Method))
5557    return ExprError();
5558
5559  // No concerns about early exits now.
5560  BaseIn.release();
5561
5562  // Build the operator call.
5563  Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
5564                                           SourceLocation());
5565  UsualUnaryConversions(FnExpr);
5566
5567  QualType ResultTy = Method->getResultType().getNonReferenceType();
5568  ExprOwningPtr<CXXOperatorCallExpr>
5569    TheCall(this, new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr,
5570                                                    &Base, 1, ResultTy, OpLoc));
5571
5572  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall.get(),
5573                          Method))
5574          return ExprError();
5575  return move(TheCall);
5576}
5577
5578/// FixOverloadedFunctionReference - E is an expression that refers to
5579/// a C++ overloaded function (possibly with some parentheses and
5580/// perhaps a '&' around it). We have resolved the overloaded function
5581/// to the function declaration Fn, so patch up the expression E to
5582/// refer (possibly indirectly) to Fn. Returns the new expr.
5583Expr *Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
5584  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5585    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
5586    if (SubExpr == PE->getSubExpr())
5587      return PE->Retain();
5588
5589    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
5590  }
5591
5592  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5593    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), Fn);
5594    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
5595                               SubExpr->getType()) &&
5596           "Implicit cast type cannot be determined from overload");
5597    if (SubExpr == ICE->getSubExpr())
5598      return ICE->Retain();
5599
5600    return new (Context) ImplicitCastExpr(ICE->getType(),
5601                                          ICE->getCastKind(),
5602                                          SubExpr,
5603                                          ICE->isLvalueCast());
5604  }
5605
5606  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
5607    assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
5608           "Can only take the address of an overloaded function");
5609    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
5610      if (Method->isStatic()) {
5611        // Do nothing: static member functions aren't any different
5612        // from non-member functions.
5613      } else {
5614        // Fix the sub expression, which really has to be one of:
5615        //   * a DeclRefExpr holding a member function template
5616        //   * a TemplateIdRefExpr, also holding a member function template
5617        //   * an UnresolvedLookupExpr holding an overloaded member function
5618        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5619        if (SubExpr == UnOp->getSubExpr())
5620          return UnOp->Retain();
5621
5622        assert(isa<DeclRefExpr>(SubExpr)
5623               && "fixed to something other than a decl ref");
5624        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
5625               && "fixed to a member ref with no nested name qualifier");
5626
5627        // We have taken the address of a pointer to member
5628        // function. Perform the computation here so that we get the
5629        // appropriate pointer to member type.
5630        QualType ClassType
5631          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
5632        QualType MemPtrType
5633          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
5634
5635        return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
5636                                           MemPtrType, UnOp->getOperatorLoc());
5637      }
5638
5639      // FIXME: TemplateIdRefExpr referring to a member function template
5640      // specialization!
5641    }
5642    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
5643    if (SubExpr == UnOp->getSubExpr())
5644      return UnOp->Retain();
5645
5646    return new (Context) UnaryOperator(SubExpr, UnaryOperator::AddrOf,
5647                                     Context.getPointerType(SubExpr->getType()),
5648                                       UnOp->getOperatorLoc());
5649  }
5650
5651  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
5652    assert((isa<FunctionTemplateDecl>(DRE->getDecl()) ||
5653            isa<FunctionDecl>(DRE->getDecl())) &&
5654           "Expected function or function template");
5655    // FIXME: avoid copy.
5656    TemplateArgumentListInfo TemplateArgs;
5657    if (DRE->hasExplicitTemplateArgumentList())
5658      DRE->copyTemplateArgumentsInto(TemplateArgs);
5659
5660    return DeclRefExpr::Create(Context,
5661                               DRE->getQualifier(),
5662                               DRE->getQualifierRange(),
5663                               Fn,
5664                               DRE->getLocation(),
5665                               Fn->getType(),
5666                               (DRE->hasExplicitTemplateArgumentList()
5667                                  ? &TemplateArgs : 0));
5668  }
5669
5670  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
5671    return DeclRefExpr::Create(Context,
5672                               ULE->getQualifier(),
5673                               ULE->getQualifierRange(),
5674                               Fn,
5675                               ULE->getNameLoc(),
5676                               Fn->getType());
5677  }
5678
5679
5680  if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
5681    assert((isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
5682            isa<FunctionTemplateDecl>(MemExpr->getMemberDecl()) ||
5683            isa<FunctionDecl>(MemExpr->getMemberDecl())) &&
5684           "Expected member function or member function template");
5685    // FIXME: avoid copy.
5686    TemplateArgumentListInfo TemplateArgs;
5687    if (MemExpr->hasExplicitTemplateArgumentList())
5688      MemExpr->copyTemplateArgumentsInto(TemplateArgs);
5689
5690    return MemberExpr::Create(Context, MemExpr->getBase()->Retain(),
5691                              MemExpr->isArrow(),
5692                              MemExpr->getQualifier(),
5693                              MemExpr->getQualifierRange(),
5694                              Fn,
5695                              MemExpr->getMemberLoc(),
5696                              (MemExpr->hasExplicitTemplateArgumentList()
5697                                 ? &TemplateArgs : 0),
5698                              Fn->getType());
5699  }
5700
5701  if (TemplateIdRefExpr *TID = dyn_cast<TemplateIdRefExpr>(E)) {
5702    // FIXME: Don't destroy TID here, since we need its template arguments
5703    // to survive.
5704    // TID->Destroy(Context);
5705
5706    // FIXME: avoid copy.
5707    TemplateArgumentListInfo TemplateArgs;
5708    TID->copyTemplateArgumentsInto(TemplateArgs);
5709
5710    return DeclRefExpr::Create(Context,
5711                               TID->getQualifier(), TID->getQualifierRange(),
5712                               Fn, TID->getTemplateNameLoc(),
5713                               Fn->getType(),
5714                               &TemplateArgs);
5715  }
5716
5717  assert(false && "Invalid reference to overloaded function");
5718  return E->Retain();
5719}
5720
5721} // end namespace clang
5722