SemaOverload.cpp revision f7be9448af88e0ebb204bdcebfc13f4cb2b9d8e1
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/Basic/Diagnostic.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Expr.h"
19#include "llvm/Support/Compiler.h"
20#include <algorithm>
21
22namespace clang {
23
24/// GetConversionCategory - Retrieve the implicit conversion
25/// category corresponding to the given implicit conversion kind.
26ImplicitConversionCategory
27GetConversionCategory(ImplicitConversionKind Kind) {
28  static const ImplicitConversionCategory
29    Category[(int)ICK_Num_Conversion_Kinds] = {
30    ICC_Identity,
31    ICC_Lvalue_Transformation,
32    ICC_Lvalue_Transformation,
33    ICC_Lvalue_Transformation,
34    ICC_Qualification_Adjustment,
35    ICC_Promotion,
36    ICC_Promotion,
37    ICC_Conversion,
38    ICC_Conversion,
39    ICC_Conversion,
40    ICC_Conversion,
41    ICC_Conversion,
42    ICC_Conversion,
43    ICC_Conversion
44  };
45  return Category[(int)Kind];
46}
47
48/// GetConversionRank - Retrieve the implicit conversion rank
49/// corresponding to the given implicit conversion kind.
50ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
51  static const ImplicitConversionRank
52    Rank[(int)ICK_Num_Conversion_Kinds] = {
53    ICR_Exact_Match,
54    ICR_Exact_Match,
55    ICR_Exact_Match,
56    ICR_Exact_Match,
57    ICR_Exact_Match,
58    ICR_Promotion,
59    ICR_Promotion,
60    ICR_Conversion,
61    ICR_Conversion,
62    ICR_Conversion,
63    ICR_Conversion,
64    ICR_Conversion,
65    ICR_Conversion,
66    ICR_Conversion
67  };
68  return Rank[(int)Kind];
69}
70
71/// GetImplicitConversionName - Return the name of this kind of
72/// implicit conversion.
73const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
74  static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
75    "No conversion",
76    "Lvalue-to-rvalue",
77    "Array-to-pointer",
78    "Function-to-pointer",
79    "Qualification",
80    "Integral promotion",
81    "Floating point promotion",
82    "Integral conversion",
83    "Floating conversion",
84    "Floating-integral conversion",
85    "Pointer conversion",
86    "Pointer-to-member conversion",
87    "Boolean conversion",
88    "Derived-to-base conversion"
89  };
90  return Name[Kind];
91}
92
93/// StandardConversionSequence - Set the standard conversion
94/// sequence to the identity conversion.
95void StandardConversionSequence::setAsIdentityConversion() {
96  First = ICK_Identity;
97  Second = ICK_Identity;
98  Third = ICK_Identity;
99  Deprecated = false;
100  ReferenceBinding = false;
101  DirectBinding = false;
102  CopyConstructor = 0;
103}
104
105/// getRank - Retrieve the rank of this standard conversion sequence
106/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
107/// implicit conversions.
108ImplicitConversionRank StandardConversionSequence::getRank() const {
109  ImplicitConversionRank Rank = ICR_Exact_Match;
110  if  (GetConversionRank(First) > Rank)
111    Rank = GetConversionRank(First);
112  if  (GetConversionRank(Second) > Rank)
113    Rank = GetConversionRank(Second);
114  if  (GetConversionRank(Third) > Rank)
115    Rank = GetConversionRank(Third);
116  return Rank;
117}
118
119/// isPointerConversionToBool - Determines whether this conversion is
120/// a conversion of a pointer or pointer-to-member to bool. This is
121/// used as part of the ranking of standard conversion sequences
122/// (C++ 13.3.3.2p4).
123bool StandardConversionSequence::isPointerConversionToBool() const
124{
125  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
126  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
127
128  // Note that FromType has not necessarily been transformed by the
129  // array-to-pointer or function-to-pointer implicit conversions, so
130  // check for their presence as well as checking whether FromType is
131  // a pointer.
132  if (ToType->isBooleanType() &&
133      (FromType->isPointerType() ||
134       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
135    return true;
136
137  return false;
138}
139
140/// isPointerConversionToVoidPointer - Determines whether this
141/// conversion is a conversion of a pointer to a void pointer. This is
142/// used as part of the ranking of standard conversion sequences (C++
143/// 13.3.3.2p4).
144bool
145StandardConversionSequence::
146isPointerConversionToVoidPointer(ASTContext& Context) const
147{
148  QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
149  QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
150
151  // Note that FromType has not necessarily been transformed by the
152  // array-to-pointer implicit conversion, so check for its presence
153  // and redo the conversion to get a pointer.
154  if (First == ICK_Array_To_Pointer)
155    FromType = Context.getArrayDecayedType(FromType);
156
157  if (Second == ICK_Pointer_Conversion)
158    if (const PointerType* ToPtrType = ToType->getAsPointerType())
159      return ToPtrType->getPointeeType()->isVoidType();
160
161  return false;
162}
163
164/// DebugPrint - Print this standard conversion sequence to standard
165/// error. Useful for debugging overloading issues.
166void StandardConversionSequence::DebugPrint() const {
167  bool PrintedSomething = false;
168  if (First != ICK_Identity) {
169    fprintf(stderr, "%s", GetImplicitConversionName(First));
170    PrintedSomething = true;
171  }
172
173  if (Second != ICK_Identity) {
174    if (PrintedSomething) {
175      fprintf(stderr, " -> ");
176    }
177    fprintf(stderr, "%s", GetImplicitConversionName(Second));
178
179    if (CopyConstructor) {
180      fprintf(stderr, " (by copy constructor)");
181    } else if (DirectBinding) {
182      fprintf(stderr, " (direct reference binding)");
183    } else if (ReferenceBinding) {
184      fprintf(stderr, " (reference binding)");
185    }
186    PrintedSomething = true;
187  }
188
189  if (Third != ICK_Identity) {
190    if (PrintedSomething) {
191      fprintf(stderr, " -> ");
192    }
193    fprintf(stderr, "%s", GetImplicitConversionName(Third));
194    PrintedSomething = true;
195  }
196
197  if (!PrintedSomething) {
198    fprintf(stderr, "No conversions required");
199  }
200}
201
202/// DebugPrint - Print this user-defined conversion sequence to standard
203/// error. Useful for debugging overloading issues.
204void UserDefinedConversionSequence::DebugPrint() const {
205  if (Before.First || Before.Second || Before.Third) {
206    Before.DebugPrint();
207    fprintf(stderr, " -> ");
208  }
209  fprintf(stderr, "'%s'", ConversionFunction->getName());
210  if (After.First || After.Second || After.Third) {
211    fprintf(stderr, " -> ");
212    After.DebugPrint();
213  }
214}
215
216/// DebugPrint - Print this implicit conversion sequence to standard
217/// error. Useful for debugging overloading issues.
218void ImplicitConversionSequence::DebugPrint() const {
219  switch (ConversionKind) {
220  case StandardConversion:
221    fprintf(stderr, "Standard conversion: ");
222    Standard.DebugPrint();
223    break;
224  case UserDefinedConversion:
225    fprintf(stderr, "User-defined conversion: ");
226    UserDefined.DebugPrint();
227    break;
228  case EllipsisConversion:
229    fprintf(stderr, "Ellipsis conversion");
230    break;
231  case BadConversion:
232    fprintf(stderr, "Bad conversion");
233    break;
234  }
235
236  fprintf(stderr, "\n");
237}
238
239// IsOverload - Determine whether the given New declaration is an
240// overload of the Old declaration. This routine returns false if New
241// and Old cannot be overloaded, e.g., if they are functions with the
242// same signature (C++ 1.3.10) or if the Old declaration isn't a
243// function (or overload set). When it does return false and Old is an
244// OverloadedFunctionDecl, MatchedDecl will be set to point to the
245// FunctionDecl that New cannot be overloaded with.
246//
247// Example: Given the following input:
248//
249//   void f(int, float); // #1
250//   void f(int, int); // #2
251//   int f(int, int); // #3
252//
253// When we process #1, there is no previous declaration of "f",
254// so IsOverload will not be used.
255//
256// When we process #2, Old is a FunctionDecl for #1.  By comparing the
257// parameter types, we see that #1 and #2 are overloaded (since they
258// have different signatures), so this routine returns false;
259// MatchedDecl is unchanged.
260//
261// When we process #3, Old is an OverloadedFunctionDecl containing #1
262// and #2. We compare the signatures of #3 to #1 (they're overloaded,
263// so we do nothing) and then #3 to #2. Since the signatures of #3 and
264// #2 are identical (return types of functions are not part of the
265// signature), IsOverload returns false and MatchedDecl will be set to
266// point to the FunctionDecl for #2.
267bool
268Sema::IsOverload(FunctionDecl *New, Decl* OldD,
269                 OverloadedFunctionDecl::function_iterator& MatchedDecl)
270{
271  if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
272    // Is this new function an overload of every function in the
273    // overload set?
274    OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
275                                           FuncEnd = Ovl->function_end();
276    for (; Func != FuncEnd; ++Func) {
277      if (!IsOverload(New, *Func, MatchedDecl)) {
278        MatchedDecl = Func;
279        return false;
280      }
281    }
282
283    // This function overloads every function in the overload set.
284    return true;
285  } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
286    // Is the function New an overload of the function Old?
287    QualType OldQType = Context.getCanonicalType(Old->getType());
288    QualType NewQType = Context.getCanonicalType(New->getType());
289
290    // Compare the signatures (C++ 1.3.10) of the two functions to
291    // determine whether they are overloads. If we find any mismatch
292    // in the signature, they are overloads.
293
294    // If either of these functions is a K&R-style function (no
295    // prototype), then we consider them to have matching signatures.
296    if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
297        isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
298      return false;
299
300    FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
301    FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
302
303    // The signature of a function includes the types of its
304    // parameters (C++ 1.3.10), which includes the presence or absence
305    // of the ellipsis; see C++ DR 357).
306    if (OldQType != NewQType &&
307        (OldType->getNumArgs() != NewType->getNumArgs() ||
308         OldType->isVariadic() != NewType->isVariadic() ||
309         !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
310                     NewType->arg_type_begin())))
311      return true;
312
313    // If the function is a class member, its signature includes the
314    // cv-qualifiers (if any) on the function itself.
315    //
316    // As part of this, also check whether one of the member functions
317    // is static, in which case they are not overloads (C++
318    // 13.1p2). While not part of the definition of the signature,
319    // this check is important to determine whether these functions
320    // can be overloaded.
321    CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
322    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
323    if (OldMethod && NewMethod &&
324        !OldMethod->isStatic() && !NewMethod->isStatic() &&
325        OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
326      return true;
327
328    // The signatures match; this is not an overload.
329    return false;
330  } else {
331    // (C++ 13p1):
332    //   Only function declarations can be overloaded; object and type
333    //   declarations cannot be overloaded.
334    return false;
335  }
336}
337
338/// TryImplicitConversion - Attempt to perform an implicit conversion
339/// from the given expression (Expr) to the given type (ToType). This
340/// function returns an implicit conversion sequence that can be used
341/// to perform the initialization. Given
342///
343///   void f(float f);
344///   void g(int i) { f(i); }
345///
346/// this routine would produce an implicit conversion sequence to
347/// describe the initialization of f from i, which will be a standard
348/// conversion sequence containing an lvalue-to-rvalue conversion (C++
349/// 4.1) followed by a floating-integral conversion (C++ 4.9).
350//
351/// Note that this routine only determines how the conversion can be
352/// performed; it does not actually perform the conversion. As such,
353/// it will not produce any diagnostics if no conversion is available,
354/// but will instead return an implicit conversion sequence of kind
355/// "BadConversion".
356///
357/// If @p SuppressUserConversions, then user-defined conversions are
358/// not permitted.
359ImplicitConversionSequence
360Sema::TryImplicitConversion(Expr* From, QualType ToType,
361                            bool SuppressUserConversions)
362{
363  ImplicitConversionSequence ICS;
364  if (IsStandardConversion(From, ToType, ICS.Standard))
365    ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
366  else if (!SuppressUserConversions &&
367           IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
368    ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
369    // C++ [over.ics.user]p4:
370    //   A conversion of an expression of class type to the same class
371    //   type is given Exact Match rank, and a conversion of an
372    //   expression of class type to a base class of that type is
373    //   given Conversion rank, in spite of the fact that a copy
374    //   constructor (i.e., a user-defined conversion function) is
375    //   called for those cases.
376    if (CXXConstructorDecl *Constructor
377          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
378      if (Constructor->isCopyConstructor(Context)) {
379        // Turn this into a "standard" conversion sequence, so that it
380        // gets ranked with standard conversion sequences.
381        ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
382        ICS.Standard.setAsIdentityConversion();
383        ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
384        ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
385        ICS.Standard.CopyConstructor = Constructor;
386        if (IsDerivedFrom(From->getType().getUnqualifiedType(),
387                          ToType.getUnqualifiedType()))
388          ICS.Standard.Second = ICK_Derived_To_Base;
389      }
390    }
391  } else
392    ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
393
394  return ICS;
395}
396
397/// IsStandardConversion - Determines whether there is a standard
398/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
399/// expression From to the type ToType. Standard conversion sequences
400/// only consider non-class types; for conversions that involve class
401/// types, use TryImplicitConversion. If a conversion exists, SCS will
402/// contain the standard conversion sequence required to perform this
403/// conversion and this routine will return true. Otherwise, this
404/// routine will return false and the value of SCS is unspecified.
405bool
406Sema::IsStandardConversion(Expr* From, QualType ToType,
407                           StandardConversionSequence &SCS)
408{
409  QualType FromType = From->getType();
410
411  // There are no standard conversions for class types, so abort early.
412  if (FromType->isRecordType() || ToType->isRecordType())
413    return false;
414
415  // Standard conversions (C++ [conv])
416  SCS.Deprecated = false;
417  SCS.FromTypePtr = FromType.getAsOpaquePtr();
418  SCS.CopyConstructor = 0;
419
420  // The first conversion can be an lvalue-to-rvalue conversion,
421  // array-to-pointer conversion, or function-to-pointer conversion
422  // (C++ 4p1).
423
424  // Lvalue-to-rvalue conversion (C++ 4.1):
425  //   An lvalue (3.10) of a non-function, non-array type T can be
426  //   converted to an rvalue.
427  Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
428  if (argIsLvalue == Expr::LV_Valid &&
429      !FromType->isFunctionType() && !FromType->isArrayType()) {
430    SCS.First = ICK_Lvalue_To_Rvalue;
431
432    // If T is a non-class type, the type of the rvalue is the
433    // cv-unqualified version of T. Otherwise, the type of the rvalue
434    // is T (C++ 4.1p1).
435    FromType = FromType.getUnqualifiedType();
436  }
437  // Array-to-pointer conversion (C++ 4.2)
438  else if (FromType->isArrayType()) {
439    SCS.First = ICK_Array_To_Pointer;
440
441    // An lvalue or rvalue of type "array of N T" or "array of unknown
442    // bound of T" can be converted to an rvalue of type "pointer to
443    // T" (C++ 4.2p1).
444    FromType = Context.getArrayDecayedType(FromType);
445
446    if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
447      // This conversion is deprecated. (C++ D.4).
448      SCS.Deprecated = true;
449
450      // For the purpose of ranking in overload resolution
451      // (13.3.3.1.1), this conversion is considered an
452      // array-to-pointer conversion followed by a qualification
453      // conversion (4.4). (C++ 4.2p2)
454      SCS.Second = ICK_Identity;
455      SCS.Third = ICK_Qualification;
456      SCS.ToTypePtr = ToType.getAsOpaquePtr();
457      return true;
458    }
459  }
460  // Function-to-pointer conversion (C++ 4.3).
461  else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
462    SCS.First = ICK_Function_To_Pointer;
463
464    // An lvalue of function type T can be converted to an rvalue of
465    // type "pointer to T." The result is a pointer to the
466    // function. (C++ 4.3p1).
467    FromType = Context.getPointerType(FromType);
468
469    // FIXME: Deal with overloaded functions here (C++ 4.3p2).
470  }
471  // We don't require any conversions for the first step.
472  else {
473    SCS.First = ICK_Identity;
474  }
475
476  // The second conversion can be an integral promotion, floating
477  // point promotion, integral conversion, floating point conversion,
478  // floating-integral conversion, pointer conversion,
479  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
480  if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
481      Context.getCanonicalType(ToType).getUnqualifiedType()) {
482    // The unqualified versions of the types are the same: there's no
483    // conversion to do.
484    SCS.Second = ICK_Identity;
485  }
486  // Integral promotion (C++ 4.5).
487  else if (IsIntegralPromotion(From, FromType, ToType)) {
488    SCS.Second = ICK_Integral_Promotion;
489    FromType = ToType.getUnqualifiedType();
490  }
491  // Floating point promotion (C++ 4.6).
492  else if (IsFloatingPointPromotion(FromType, ToType)) {
493    SCS.Second = ICK_Floating_Promotion;
494    FromType = ToType.getUnqualifiedType();
495  }
496  // Integral conversions (C++ 4.7).
497  // FIXME: isIntegralType shouldn't be true for enums in C++.
498  else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
499           (ToType->isIntegralType() && !ToType->isEnumeralType())) {
500    SCS.Second = ICK_Integral_Conversion;
501    FromType = ToType.getUnqualifiedType();
502  }
503  // Floating point conversions (C++ 4.8).
504  else if (FromType->isFloatingType() && ToType->isFloatingType()) {
505    SCS.Second = ICK_Floating_Conversion;
506    FromType = ToType.getUnqualifiedType();
507  }
508  // Floating-integral conversions (C++ 4.9).
509  // FIXME: isIntegralType shouldn't be true for enums in C++.
510  else if ((FromType->isFloatingType() &&
511            ToType->isIntegralType() && !ToType->isBooleanType() &&
512                                        !ToType->isEnumeralType()) ||
513           ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
514            ToType->isFloatingType())) {
515    SCS.Second = ICK_Floating_Integral;
516    FromType = ToType.getUnqualifiedType();
517  }
518  // Pointer conversions (C++ 4.10).
519  else if (IsPointerConversion(From, FromType, ToType, FromType)) {
520    SCS.Second = ICK_Pointer_Conversion;
521  }
522  // FIXME: Pointer to member conversions (4.11).
523  // Boolean conversions (C++ 4.12).
524  // FIXME: pointer-to-member type
525  else if (ToType->isBooleanType() &&
526           (FromType->isArithmeticType() ||
527            FromType->isEnumeralType() ||
528            FromType->isPointerType())) {
529    SCS.Second = ICK_Boolean_Conversion;
530    FromType = Context.BoolTy;
531  } else {
532    // No second conversion required.
533    SCS.Second = ICK_Identity;
534  }
535
536  QualType CanonFrom;
537  QualType CanonTo;
538  // The third conversion can be a qualification conversion (C++ 4p1).
539  if (IsQualificationConversion(FromType, ToType)) {
540    SCS.Third = ICK_Qualification;
541    FromType = ToType;
542    CanonFrom = Context.getCanonicalType(FromType);
543    CanonTo = Context.getCanonicalType(ToType);
544  } else {
545    // No conversion required
546    SCS.Third = ICK_Identity;
547
548    // C++ [over.best.ics]p6:
549    //   [...] Any difference in top-level cv-qualification is
550    //   subsumed by the initialization itself and does not constitute
551    //   a conversion. [...]
552    CanonFrom = Context.getCanonicalType(FromType);
553    CanonTo = Context.getCanonicalType(ToType);
554    if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
555        CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
556      FromType = ToType;
557      CanonFrom = CanonTo;
558    }
559  }
560
561  // If we have not converted the argument type to the parameter type,
562  // this is a bad conversion sequence.
563  if (CanonFrom != CanonTo)
564    return false;
565
566  SCS.ToTypePtr = FromType.getAsOpaquePtr();
567  return true;
568}
569
570/// IsIntegralPromotion - Determines whether the conversion from the
571/// expression From (whose potentially-adjusted type is FromType) to
572/// ToType is an integral promotion (C++ 4.5). If so, returns true and
573/// sets PromotedType to the promoted type.
574bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
575{
576  const BuiltinType *To = ToType->getAsBuiltinType();
577  // All integers are built-in.
578  if (!To) {
579    return false;
580  }
581
582  // An rvalue of type char, signed char, unsigned char, short int, or
583  // unsigned short int can be converted to an rvalue of type int if
584  // int can represent all the values of the source type; otherwise,
585  // the source rvalue can be converted to an rvalue of type unsigned
586  // int (C++ 4.5p1).
587  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
588    if (// We can promote any signed, promotable integer type to an int
589        (FromType->isSignedIntegerType() ||
590         // We can promote any unsigned integer type whose size is
591         // less than int to an int.
592         (!FromType->isSignedIntegerType() &&
593          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
594      return To->getKind() == BuiltinType::Int;
595    }
596
597    return To->getKind() == BuiltinType::UInt;
598  }
599
600  // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
601  // can be converted to an rvalue of the first of the following types
602  // that can represent all the values of its underlying type: int,
603  // unsigned int, long, or unsigned long (C++ 4.5p2).
604  if ((FromType->isEnumeralType() || FromType->isWideCharType())
605      && ToType->isIntegerType()) {
606    // Determine whether the type we're converting from is signed or
607    // unsigned.
608    bool FromIsSigned;
609    uint64_t FromSize = Context.getTypeSize(FromType);
610    if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
611      QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
612      FromIsSigned = UnderlyingType->isSignedIntegerType();
613    } else {
614      // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
615      FromIsSigned = true;
616    }
617
618    // The types we'll try to promote to, in the appropriate
619    // order. Try each of these types.
620    QualType PromoteTypes[4] = {
621      Context.IntTy, Context.UnsignedIntTy,
622      Context.LongTy, Context.UnsignedLongTy
623    };
624    for (int Idx = 0; Idx < 0; ++Idx) {
625      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
626      if (FromSize < ToSize ||
627          (FromSize == ToSize &&
628           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
629        // We found the type that we can promote to. If this is the
630        // type we wanted, we have a promotion. Otherwise, no
631        // promotion.
632        return Context.getCanonicalType(ToType).getUnqualifiedType()
633          == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
634      }
635    }
636  }
637
638  // An rvalue for an integral bit-field (9.6) can be converted to an
639  // rvalue of type int if int can represent all the values of the
640  // bit-field; otherwise, it can be converted to unsigned int if
641  // unsigned int can represent all the values of the bit-field. If
642  // the bit-field is larger yet, no integral promotion applies to
643  // it. If the bit-field has an enumerated type, it is treated as any
644  // other value of that type for promotion purposes (C++ 4.5p3).
645  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
646    using llvm::APSInt;
647    FieldDecl *MemberDecl = MemRef->getMemberDecl();
648    APSInt BitWidth;
649    if (MemberDecl->isBitField() &&
650        FromType->isIntegralType() && !FromType->isEnumeralType() &&
651        From->isIntegerConstantExpr(BitWidth, Context)) {
652      APSInt ToSize(Context.getTypeSize(ToType));
653
654      // Are we promoting to an int from a bitfield that fits in an int?
655      if (BitWidth < ToSize ||
656          (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
657        return To->getKind() == BuiltinType::Int;
658      }
659
660      // Are we promoting to an unsigned int from an unsigned bitfield
661      // that fits into an unsigned int?
662      if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
663        return To->getKind() == BuiltinType::UInt;
664      }
665
666      return false;
667    }
668  }
669
670  // An rvalue of type bool can be converted to an rvalue of type int,
671  // with false becoming zero and true becoming one (C++ 4.5p4).
672  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
673    return true;
674  }
675
676  return false;
677}
678
679/// IsFloatingPointPromotion - Determines whether the conversion from
680/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
681/// returns true and sets PromotedType to the promoted type.
682bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
683{
684  /// An rvalue of type float can be converted to an rvalue of type
685  /// double. (C++ 4.6p1).
686  if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
687    if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
688      if (FromBuiltin->getKind() == BuiltinType::Float &&
689          ToBuiltin->getKind() == BuiltinType::Double)
690        return true;
691
692  return false;
693}
694
695/// IsPointerConversion - Determines whether the conversion of the
696/// expression From, which has the (possibly adjusted) type FromType,
697/// can be converted to the type ToType via a pointer conversion (C++
698/// 4.10). If so, returns true and places the converted type (that
699/// might differ from ToType in its cv-qualifiers at some level) into
700/// ConvertedType.
701bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
702                               QualType& ConvertedType)
703{
704  const PointerType* ToTypePtr = ToType->getAsPointerType();
705  if (!ToTypePtr)
706    return false;
707
708  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
709  if (From->isNullPointerConstant(Context)) {
710    ConvertedType = ToType;
711    return true;
712  }
713
714  // An rvalue of type "pointer to cv T," where T is an object type,
715  // can be converted to an rvalue of type "pointer to cv void" (C++
716  // 4.10p2).
717  if (FromType->isPointerType() &&
718      FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
719      ToTypePtr->getPointeeType()->isVoidType()) {
720    // We need to produce a pointer to cv void, where cv is the same
721    // set of cv-qualifiers as we had on the incoming pointee type.
722    QualType toPointee = ToTypePtr->getPointeeType();
723    unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
724                   ->getPointeeType().getCVRQualifiers();
725
726    if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
727	  == Quals) {
728      // ToType is exactly the type we want. Use it.
729      ConvertedType = ToType;
730    } else {
731      // Build a new type with the right qualifiers.
732      ConvertedType
733	= Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
734    }
735    return true;
736  }
737
738  // C++ [conv.ptr]p3:
739  //
740  //   An rvalue of type "pointer to cv D," where D is a class type,
741  //   can be converted to an rvalue of type "pointer to cv B," where
742  //   B is a base class (clause 10) of D. If B is an inaccessible
743  //   (clause 11) or ambiguous (10.2) base class of D, a program that
744  //   necessitates this conversion is ill-formed. The result of the
745  //   conversion is a pointer to the base class sub-object of the
746  //   derived class object. The null pointer value is converted to
747  //   the null pointer value of the destination type.
748  //
749  // Note that we do not check for ambiguity or inaccessibility
750  // here. That is handled by CheckPointerConversion.
751  if (const PointerType *FromPtrType = FromType->getAsPointerType())
752    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
753      if (FromPtrType->getPointeeType()->isRecordType() &&
754          ToPtrType->getPointeeType()->isRecordType() &&
755          IsDerivedFrom(FromPtrType->getPointeeType(),
756                        ToPtrType->getPointeeType())) {
757        // The conversion is okay. Now, we need to produce the type
758        // that results from this conversion, which will have the same
759        // qualifiers as the incoming type.
760        QualType CanonFromPointee
761          = Context.getCanonicalType(FromPtrType->getPointeeType());
762        QualType ToPointee = ToPtrType->getPointeeType();
763        QualType CanonToPointee = Context.getCanonicalType(ToPointee);
764        unsigned Quals = CanonFromPointee.getCVRQualifiers();
765
766        if (CanonToPointee.getCVRQualifiers() == Quals) {
767          // ToType is exactly the type we want. Use it.
768          ConvertedType = ToType;
769        } else {
770          // Build a new type with the right qualifiers.
771          ConvertedType
772            = Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
773        }
774        return true;
775      }
776    }
777
778  return false;
779}
780
781/// CheckPointerConversion - Check the pointer conversion from the
782/// expression From to the type ToType. This routine checks for
783/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
784/// conversions for which IsPointerConversion has already returned
785/// true. It returns true and produces a diagnostic if there was an
786/// error, or returns false otherwise.
787bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
788  QualType FromType = From->getType();
789
790  if (const PointerType *FromPtrType = FromType->getAsPointerType())
791    if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
792      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
793                      /*DetectVirtual=*/false);
794      QualType FromPointeeType = FromPtrType->getPointeeType(),
795               ToPointeeType   = ToPtrType->getPointeeType();
796      if (FromPointeeType->isRecordType() &&
797          ToPointeeType->isRecordType()) {
798        // We must have a derived-to-base conversion. Check an
799        // ambiguous or inaccessible conversion.
800        return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
801                                            From->getExprLoc(),
802                                            From->getSourceRange());
803      }
804    }
805
806  return false;
807}
808
809/// IsQualificationConversion - Determines whether the conversion from
810/// an rvalue of type FromType to ToType is a qualification conversion
811/// (C++ 4.4).
812bool
813Sema::IsQualificationConversion(QualType FromType, QualType ToType)
814{
815  FromType = Context.getCanonicalType(FromType);
816  ToType = Context.getCanonicalType(ToType);
817
818  // If FromType and ToType are the same type, this is not a
819  // qualification conversion.
820  if (FromType == ToType)
821    return false;
822
823  // (C++ 4.4p4):
824  //   A conversion can add cv-qualifiers at levels other than the first
825  //   in multi-level pointers, subject to the following rules: [...]
826  bool PreviousToQualsIncludeConst = true;
827  bool UnwrappedAnyPointer = false;
828  while (UnwrapSimilarPointerTypes(FromType, ToType)) {
829    // Within each iteration of the loop, we check the qualifiers to
830    // determine if this still looks like a qualification
831    // conversion. Then, if all is well, we unwrap one more level of
832    // pointers or pointers-to-members and do it all again
833    // until there are no more pointers or pointers-to-members left to
834    // unwrap.
835    UnwrappedAnyPointer = true;
836
837    //   -- for every j > 0, if const is in cv 1,j then const is in cv
838    //      2,j, and similarly for volatile.
839    if (!ToType.isAtLeastAsQualifiedAs(FromType))
840      return false;
841
842    //   -- if the cv 1,j and cv 2,j are different, then const is in
843    //      every cv for 0 < k < j.
844    if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
845        && !PreviousToQualsIncludeConst)
846      return false;
847
848    // Keep track of whether all prior cv-qualifiers in the "to" type
849    // include const.
850    PreviousToQualsIncludeConst
851      = PreviousToQualsIncludeConst && ToType.isConstQualified();
852  }
853
854  // We are left with FromType and ToType being the pointee types
855  // after unwrapping the original FromType and ToType the same number
856  // of types. If we unwrapped any pointers, and if FromType and
857  // ToType have the same unqualified type (since we checked
858  // qualifiers above), then this is a qualification conversion.
859  return UnwrappedAnyPointer &&
860    FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
861}
862
863/// IsUserDefinedConversion - Determines whether there is a
864/// user-defined conversion sequence (C++ [over.ics.user]) that
865/// converts expression From to the type ToType. If such a conversion
866/// exists, User will contain the user-defined conversion sequence
867/// that performs such a conversion and this routine will return
868/// true. Otherwise, this routine returns false and User is
869/// unspecified.
870bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
871                                   UserDefinedConversionSequence& User)
872{
873  OverloadCandidateSet CandidateSet;
874  if (const CXXRecordType *ToRecordType
875        = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
876    // C++ [over.match.ctor]p1:
877    //   When objects of class type are direct-initialized (8.5), or
878    //   copy-initialized from an expression of the same or a
879    //   derived class type (8.5), overload resolution selects the
880    //   constructor. [...] For copy-initialization, the candidate
881    //   functions are all the converting constructors (12.3.1) of
882    //   that class. The argument list is the expression-list within
883    //   the parentheses of the initializer.
884    CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
885    const OverloadedFunctionDecl *Constructors = ToRecordDecl->getConstructors();
886    for (OverloadedFunctionDecl::function_const_iterator func
887           = Constructors->function_begin();
888         func != Constructors->function_end(); ++func) {
889      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
890      if (Constructor->isConvertingConstructor())
891        AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
892                             /*SuppressUserConversions=*/true);
893    }
894  }
895
896  // FIXME: Implement support for user-defined conversion operators.
897
898  OverloadCandidateSet::iterator Best;
899  switch (BestViableFunction(CandidateSet, Best)) {
900    case OR_Success:
901      // Record the standard conversion we used and the conversion function.
902      // FIXME: Handle user-defined conversion operators.
903      if (CXXConstructorDecl *Constructor
904            = dyn_cast<CXXConstructorDecl>(Best->Function)) {
905        // C++ [over.ics.user]p1:
906        //   If the user-defined conversion is specified by a
907        //   constructor (12.3.1), the initial standard conversion
908        //   sequence converts the source type to the type required by
909        //   the argument of the constructor.
910        //
911        // FIXME: What about ellipsis conversions?
912        QualType ThisType = Constructor->getThisType(Context);
913        User.Before = Best->Conversions[0].Standard;
914        User.ConversionFunction = Constructor;
915        User.After.setAsIdentityConversion();
916        User.After.FromTypePtr
917          = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
918        User.After.ToTypePtr = ToType.getAsOpaquePtr();
919        return true;
920      } else {
921        assert(false &&
922               "Cannot perform user-defined conversion via a conversion operator");
923        return false;
924      }
925
926    case OR_No_Viable_Function:
927      // No conversion here! We're done.
928      return false;
929
930    case OR_Ambiguous:
931      // FIXME: See C++ [over.best.ics]p10 for the handling of
932      // ambiguous conversion sequences.
933      return false;
934    }
935
936  return false;
937}
938
939/// CompareImplicitConversionSequences - Compare two implicit
940/// conversion sequences to determine whether one is better than the
941/// other or if they are indistinguishable (C++ 13.3.3.2).
942ImplicitConversionSequence::CompareKind
943Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
944                                         const ImplicitConversionSequence& ICS2)
945{
946  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
947  // conversion sequences (as defined in 13.3.3.1)
948  //   -- a standard conversion sequence (13.3.3.1.1) is a better
949  //      conversion sequence than a user-defined conversion sequence or
950  //      an ellipsis conversion sequence, and
951  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
952  //      conversion sequence than an ellipsis conversion sequence
953  //      (13.3.3.1.3).
954  //
955  if (ICS1.ConversionKind < ICS2.ConversionKind)
956    return ImplicitConversionSequence::Better;
957  else if (ICS2.ConversionKind < ICS1.ConversionKind)
958    return ImplicitConversionSequence::Worse;
959
960  // Two implicit conversion sequences of the same form are
961  // indistinguishable conversion sequences unless one of the
962  // following rules apply: (C++ 13.3.3.2p3):
963  if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
964    return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
965  else if (ICS1.ConversionKind ==
966             ImplicitConversionSequence::UserDefinedConversion) {
967    // User-defined conversion sequence U1 is a better conversion
968    // sequence than another user-defined conversion sequence U2 if
969    // they contain the same user-defined conversion function or
970    // constructor and if the second standard conversion sequence of
971    // U1 is better than the second standard conversion sequence of
972    // U2 (C++ 13.3.3.2p3).
973    if (ICS1.UserDefined.ConversionFunction ==
974          ICS2.UserDefined.ConversionFunction)
975      return CompareStandardConversionSequences(ICS1.UserDefined.After,
976                                                ICS2.UserDefined.After);
977  }
978
979  return ImplicitConversionSequence::Indistinguishable;
980}
981
982/// CompareStandardConversionSequences - Compare two standard
983/// conversion sequences to determine whether one is better than the
984/// other or if they are indistinguishable (C++ 13.3.3.2p3).
985ImplicitConversionSequence::CompareKind
986Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
987                                         const StandardConversionSequence& SCS2)
988{
989  // Standard conversion sequence S1 is a better conversion sequence
990  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
991
992  //  -- S1 is a proper subsequence of S2 (comparing the conversion
993  //     sequences in the canonical form defined by 13.3.3.1.1,
994  //     excluding any Lvalue Transformation; the identity conversion
995  //     sequence is considered to be a subsequence of any
996  //     non-identity conversion sequence) or, if not that,
997  if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
998    // Neither is a proper subsequence of the other. Do nothing.
999    ;
1000  else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1001           (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1002           (SCS1.Second == ICK_Identity &&
1003            SCS1.Third == ICK_Identity))
1004    // SCS1 is a proper subsequence of SCS2.
1005    return ImplicitConversionSequence::Better;
1006  else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1007           (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1008           (SCS2.Second == ICK_Identity &&
1009            SCS2.Third == ICK_Identity))
1010    // SCS2 is a proper subsequence of SCS1.
1011    return ImplicitConversionSequence::Worse;
1012
1013  //  -- the rank of S1 is better than the rank of S2 (by the rules
1014  //     defined below), or, if not that,
1015  ImplicitConversionRank Rank1 = SCS1.getRank();
1016  ImplicitConversionRank Rank2 = SCS2.getRank();
1017  if (Rank1 < Rank2)
1018    return ImplicitConversionSequence::Better;
1019  else if (Rank2 < Rank1)
1020    return ImplicitConversionSequence::Worse;
1021
1022  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1023  // are indistinguishable unless one of the following rules
1024  // applies:
1025
1026  //   A conversion that is not a conversion of a pointer, or
1027  //   pointer to member, to bool is better than another conversion
1028  //   that is such a conversion.
1029  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1030    return SCS2.isPointerConversionToBool()
1031             ? ImplicitConversionSequence::Better
1032             : ImplicitConversionSequence::Worse;
1033
1034  // C++ [over.ics.rank]p4b2:
1035  //
1036  //   If class B is derived directly or indirectly from class A,
1037  //   conversion of B* to A* is better than conversion of B* to
1038  //   void*, and conversion of A* to void* is better than conversion
1039  //   of B* to void*.
1040  bool SCS1ConvertsToVoid
1041    = SCS1.isPointerConversionToVoidPointer(Context);
1042  bool SCS2ConvertsToVoid
1043    = SCS2.isPointerConversionToVoidPointer(Context);
1044  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1045    // Exactly one of the conversion sequences is a conversion to
1046    // a void pointer; it's the worse conversion.
1047    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1048                              : ImplicitConversionSequence::Worse;
1049  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1050    // Neither conversion sequence converts to a void pointer; compare
1051    // their derived-to-base conversions.
1052    if (ImplicitConversionSequence::CompareKind DerivedCK
1053          = CompareDerivedToBaseConversions(SCS1, SCS2))
1054      return DerivedCK;
1055  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1056    // Both conversion sequences are conversions to void
1057    // pointers. Compare the source types to determine if there's an
1058    // inheritance relationship in their sources.
1059    QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1060    QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1061
1062    // Adjust the types we're converting from via the array-to-pointer
1063    // conversion, if we need to.
1064    if (SCS1.First == ICK_Array_To_Pointer)
1065      FromType1 = Context.getArrayDecayedType(FromType1);
1066    if (SCS2.First == ICK_Array_To_Pointer)
1067      FromType2 = Context.getArrayDecayedType(FromType2);
1068
1069    QualType FromPointee1
1070      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1071    QualType FromPointee2
1072      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1073
1074    if (IsDerivedFrom(FromPointee2, FromPointee1))
1075      return ImplicitConversionSequence::Better;
1076    else if (IsDerivedFrom(FromPointee1, FromPointee2))
1077      return ImplicitConversionSequence::Worse;
1078  }
1079
1080  // Compare based on qualification conversions (C++ 13.3.3.2p3,
1081  // bullet 3).
1082  if (ImplicitConversionSequence::CompareKind QualCK
1083        = CompareQualificationConversions(SCS1, SCS2))
1084    return QualCK;
1085
1086  // C++ [over.ics.rank]p3b4:
1087  //   -- S1 and S2 are reference bindings (8.5.3), and the types to
1088  //      which the references refer are the same type except for
1089  //      top-level cv-qualifiers, and the type to which the reference
1090  //      initialized by S2 refers is more cv-qualified than the type
1091  //      to which the reference initialized by S1 refers.
1092  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1093    QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1094    QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1095    T1 = Context.getCanonicalType(T1);
1096    T2 = Context.getCanonicalType(T2);
1097    if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1098      if (T2.isMoreQualifiedThan(T1))
1099        return ImplicitConversionSequence::Better;
1100      else if (T1.isMoreQualifiedThan(T2))
1101        return ImplicitConversionSequence::Worse;
1102    }
1103  }
1104
1105  return ImplicitConversionSequence::Indistinguishable;
1106}
1107
1108/// CompareQualificationConversions - Compares two standard conversion
1109/// sequences to determine whether they can be ranked based on their
1110/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1111ImplicitConversionSequence::CompareKind
1112Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1113                                      const StandardConversionSequence& SCS2)
1114{
1115  // C++ 13.3.3.2p3:
1116  //  -- S1 and S2 differ only in their qualification conversion and
1117  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
1118  //     cv-qualification signature of type T1 is a proper subset of
1119  //     the cv-qualification signature of type T2, and S1 is not the
1120  //     deprecated string literal array-to-pointer conversion (4.2).
1121  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1122      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1123    return ImplicitConversionSequence::Indistinguishable;
1124
1125  // FIXME: the example in the standard doesn't use a qualification
1126  // conversion (!)
1127  QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1128  QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1129  T1 = Context.getCanonicalType(T1);
1130  T2 = Context.getCanonicalType(T2);
1131
1132  // If the types are the same, we won't learn anything by unwrapped
1133  // them.
1134  if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1135    return ImplicitConversionSequence::Indistinguishable;
1136
1137  ImplicitConversionSequence::CompareKind Result
1138    = ImplicitConversionSequence::Indistinguishable;
1139  while (UnwrapSimilarPointerTypes(T1, T2)) {
1140    // Within each iteration of the loop, we check the qualifiers to
1141    // determine if this still looks like a qualification
1142    // conversion. Then, if all is well, we unwrap one more level of
1143    // pointers or pointers-to-members and do it all again
1144    // until there are no more pointers or pointers-to-members left
1145    // to unwrap. This essentially mimics what
1146    // IsQualificationConversion does, but here we're checking for a
1147    // strict subset of qualifiers.
1148    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1149      // The qualifiers are the same, so this doesn't tell us anything
1150      // about how the sequences rank.
1151      ;
1152    else if (T2.isMoreQualifiedThan(T1)) {
1153      // T1 has fewer qualifiers, so it could be the better sequence.
1154      if (Result == ImplicitConversionSequence::Worse)
1155        // Neither has qualifiers that are a subset of the other's
1156        // qualifiers.
1157        return ImplicitConversionSequence::Indistinguishable;
1158
1159      Result = ImplicitConversionSequence::Better;
1160    } else if (T1.isMoreQualifiedThan(T2)) {
1161      // T2 has fewer qualifiers, so it could be the better sequence.
1162      if (Result == ImplicitConversionSequence::Better)
1163        // Neither has qualifiers that are a subset of the other's
1164        // qualifiers.
1165        return ImplicitConversionSequence::Indistinguishable;
1166
1167      Result = ImplicitConversionSequence::Worse;
1168    } else {
1169      // Qualifiers are disjoint.
1170      return ImplicitConversionSequence::Indistinguishable;
1171    }
1172
1173    // If the types after this point are equivalent, we're done.
1174    if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1175      break;
1176  }
1177
1178  // Check that the winning standard conversion sequence isn't using
1179  // the deprecated string literal array to pointer conversion.
1180  switch (Result) {
1181  case ImplicitConversionSequence::Better:
1182    if (SCS1.Deprecated)
1183      Result = ImplicitConversionSequence::Indistinguishable;
1184    break;
1185
1186  case ImplicitConversionSequence::Indistinguishable:
1187    break;
1188
1189  case ImplicitConversionSequence::Worse:
1190    if (SCS2.Deprecated)
1191      Result = ImplicitConversionSequence::Indistinguishable;
1192    break;
1193  }
1194
1195  return Result;
1196}
1197
1198/// CompareDerivedToBaseConversions - Compares two standard conversion
1199/// sequences to determine whether they can be ranked based on their
1200/// various kinds of derived-to-base conversions (C++ [over.ics.rank]p4b3).
1201ImplicitConversionSequence::CompareKind
1202Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1203                                      const StandardConversionSequence& SCS2) {
1204  QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1205  QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1206  QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1207  QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1208
1209  // Adjust the types we're converting from via the array-to-pointer
1210  // conversion, if we need to.
1211  if (SCS1.First == ICK_Array_To_Pointer)
1212    FromType1 = Context.getArrayDecayedType(FromType1);
1213  if (SCS2.First == ICK_Array_To_Pointer)
1214    FromType2 = Context.getArrayDecayedType(FromType2);
1215
1216  // Canonicalize all of the types.
1217  FromType1 = Context.getCanonicalType(FromType1);
1218  ToType1 = Context.getCanonicalType(ToType1);
1219  FromType2 = Context.getCanonicalType(FromType2);
1220  ToType2 = Context.getCanonicalType(ToType2);
1221
1222  // C++ [over.ics.rank]p4b3:
1223  //
1224  //   If class B is derived directly or indirectly from class A and
1225  //   class C is derived directly or indirectly from B,
1226
1227  // Compare based on pointer conversions.
1228  if (SCS1.Second == ICK_Pointer_Conversion &&
1229      SCS2.Second == ICK_Pointer_Conversion) {
1230    QualType FromPointee1
1231      = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1232    QualType ToPointee1
1233      = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1234    QualType FromPointee2
1235      = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1236    QualType ToPointee2
1237      = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1238    //   -- conversion of C* to B* is better than conversion of C* to A*,
1239    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1240      if (IsDerivedFrom(ToPointee1, ToPointee2))
1241        return ImplicitConversionSequence::Better;
1242      else if (IsDerivedFrom(ToPointee2, ToPointee1))
1243        return ImplicitConversionSequence::Worse;
1244    }
1245
1246    //   -- conversion of B* to A* is better than conversion of C* to A*,
1247    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1248      if (IsDerivedFrom(FromPointee2, FromPointee1))
1249        return ImplicitConversionSequence::Better;
1250      else if (IsDerivedFrom(FromPointee1, FromPointee2))
1251        return ImplicitConversionSequence::Worse;
1252    }
1253  }
1254
1255  // Compare based on reference bindings.
1256  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1257      SCS1.Second == ICK_Derived_To_Base) {
1258    //   -- binding of an expression of type C to a reference of type
1259    //      B& is better than binding an expression of type C to a
1260    //      reference of type A&,
1261    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1262        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1263      if (IsDerivedFrom(ToType1, ToType2))
1264        return ImplicitConversionSequence::Better;
1265      else if (IsDerivedFrom(ToType2, ToType1))
1266        return ImplicitConversionSequence::Worse;
1267    }
1268
1269    //   -- binding of an expression of type B to a reference of type
1270    //      A& is better than binding an expression of type C to a
1271    //      reference of type A&,
1272    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1273        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1274      if (IsDerivedFrom(FromType2, FromType1))
1275        return ImplicitConversionSequence::Better;
1276      else if (IsDerivedFrom(FromType1, FromType2))
1277        return ImplicitConversionSequence::Worse;
1278    }
1279  }
1280
1281
1282  // FIXME: conversion of A::* to B::* is better than conversion of
1283  // A::* to C::*,
1284
1285  // FIXME: conversion of B::* to C::* is better than conversion of
1286  // A::* to C::*, and
1287
1288  if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1289      SCS1.Second == ICK_Derived_To_Base) {
1290    //   -- conversion of C to B is better than conversion of C to A,
1291    if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1292        ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1293      if (IsDerivedFrom(ToType1, ToType2))
1294        return ImplicitConversionSequence::Better;
1295      else if (IsDerivedFrom(ToType2, ToType1))
1296        return ImplicitConversionSequence::Worse;
1297    }
1298
1299    //   -- conversion of B to A is better than conversion of C to A.
1300    if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1301        ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1302      if (IsDerivedFrom(FromType2, FromType1))
1303        return ImplicitConversionSequence::Better;
1304      else if (IsDerivedFrom(FromType1, FromType2))
1305        return ImplicitConversionSequence::Worse;
1306    }
1307  }
1308
1309  return ImplicitConversionSequence::Indistinguishable;
1310}
1311
1312/// TryCopyInitialization - Try to copy-initialize a value of type
1313/// ToType from the expression From. Return the implicit conversion
1314/// sequence required to pass this argument, which may be a bad
1315/// conversion sequence (meaning that the argument cannot be passed to
1316/// a parameter of this type). If @p SuppressUserConversions, then we
1317/// do not permit any user-defined conversion sequences.
1318ImplicitConversionSequence
1319Sema::TryCopyInitialization(Expr *From, QualType ToType,
1320                            bool SuppressUserConversions) {
1321  if (!getLangOptions().CPlusPlus) {
1322    // In C, copy initialization is the same as performing an assignment.
1323    AssignConvertType ConvTy =
1324      CheckSingleAssignmentConstraints(ToType, From);
1325    ImplicitConversionSequence ICS;
1326    if (getLangOptions().NoExtensions? ConvTy != Compatible
1327                                     : ConvTy == Incompatible)
1328      ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1329    else
1330      ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1331    return ICS;
1332  } else if (ToType->isReferenceType()) {
1333    ImplicitConversionSequence ICS;
1334    CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
1335    return ICS;
1336  } else {
1337    return TryImplicitConversion(From, ToType, SuppressUserConversions);
1338  }
1339}
1340
1341/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1342/// type ToType. Returns true (and emits a diagnostic) if there was
1343/// an error, returns false if the initialization succeeded.
1344bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1345                                     const char* Flavor) {
1346  if (!getLangOptions().CPlusPlus) {
1347    // In C, argument passing is the same as performing an assignment.
1348    QualType FromType = From->getType();
1349    AssignConvertType ConvTy =
1350      CheckSingleAssignmentConstraints(ToType, From);
1351
1352    return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1353                                    FromType, From, Flavor);
1354  } else if (ToType->isReferenceType()) {
1355    return CheckReferenceInit(From, ToType);
1356  } else {
1357    if (PerformImplicitConversion(From, ToType))
1358      return Diag(From->getSourceRange().getBegin(),
1359                  diag::err_typecheck_convert_incompatible,
1360                  ToType.getAsString(), From->getType().getAsString(),
1361                  Flavor,
1362                  From->getSourceRange());
1363    else
1364      return false;
1365  }
1366}
1367
1368/// AddOverloadCandidate - Adds the given function to the set of
1369/// candidate functions, using the given function call arguments.  If
1370/// @p SuppressUserConversions, then don't allow user-defined
1371/// conversions via constructors or conversion operators.
1372void
1373Sema::AddOverloadCandidate(FunctionDecl *Function,
1374                           Expr **Args, unsigned NumArgs,
1375                           OverloadCandidateSet& CandidateSet,
1376                           bool SuppressUserConversions)
1377{
1378  const FunctionTypeProto* Proto
1379    = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1380  assert(Proto && "Functions without a prototype cannot be overloaded");
1381
1382  // Add this candidate
1383  CandidateSet.push_back(OverloadCandidate());
1384  OverloadCandidate& Candidate = CandidateSet.back();
1385  Candidate.Function = Function;
1386
1387  unsigned NumArgsInProto = Proto->getNumArgs();
1388
1389  // (C++ 13.3.2p2): A candidate function having fewer than m
1390  // parameters is viable only if it has an ellipsis in its parameter
1391  // list (8.3.5).
1392  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1393    Candidate.Viable = false;
1394    return;
1395  }
1396
1397  // (C++ 13.3.2p2): A candidate function having more than m parameters
1398  // is viable only if the (m+1)st parameter has a default argument
1399  // (8.3.6). For the purposes of overload resolution, the
1400  // parameter list is truncated on the right, so that there are
1401  // exactly m parameters.
1402  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1403  if (NumArgs < MinRequiredArgs) {
1404    // Not enough arguments.
1405    Candidate.Viable = false;
1406    return;
1407  }
1408
1409  // Determine the implicit conversion sequences for each of the
1410  // arguments.
1411  Candidate.Viable = true;
1412  Candidate.Conversions.resize(NumArgs);
1413  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1414    if (ArgIdx < NumArgsInProto) {
1415      // (C++ 13.3.2p3): for F to be a viable function, there shall
1416      // exist for each argument an implicit conversion sequence
1417      // (13.3.3.1) that converts that argument to the corresponding
1418      // parameter of F.
1419      QualType ParamType = Proto->getArgType(ArgIdx);
1420      Candidate.Conversions[ArgIdx]
1421        = TryCopyInitialization(Args[ArgIdx], ParamType,
1422                                SuppressUserConversions);
1423      if (Candidate.Conversions[ArgIdx].ConversionKind
1424            == ImplicitConversionSequence::BadConversion)
1425        Candidate.Viable = false;
1426    } else {
1427      // (C++ 13.3.2p2): For the purposes of overload resolution, any
1428      // argument for which there is no corresponding parameter is
1429      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1430      Candidate.Conversions[ArgIdx].ConversionKind
1431        = ImplicitConversionSequence::EllipsisConversion;
1432    }
1433  }
1434}
1435
1436/// AddOverloadCandidates - Add all of the function overloads in Ovl
1437/// to the candidate set.
1438void
1439Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
1440                            Expr **Args, unsigned NumArgs,
1441                            OverloadCandidateSet& CandidateSet,
1442                            bool SuppressUserConversions)
1443{
1444  for (OverloadedFunctionDecl::function_const_iterator Func
1445         = Ovl->function_begin();
1446       Func != Ovl->function_end(); ++Func)
1447    AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
1448                         SuppressUserConversions);
1449}
1450
1451/// isBetterOverloadCandidate - Determines whether the first overload
1452/// candidate is a better candidate than the second (C++ 13.3.3p1).
1453bool
1454Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
1455                                const OverloadCandidate& Cand2)
1456{
1457  // Define viable functions to be better candidates than non-viable
1458  // functions.
1459  if (!Cand2.Viable)
1460    return Cand1.Viable;
1461  else if (!Cand1.Viable)
1462    return false;
1463
1464  // FIXME: Deal with the implicit object parameter for static member
1465  // functions. (C++ 13.3.3p1).
1466
1467  // (C++ 13.3.3p1): a viable function F1 is defined to be a better
1468  // function than another viable function F2 if for all arguments i,
1469  // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
1470  // then...
1471  unsigned NumArgs = Cand1.Conversions.size();
1472  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
1473  bool HasBetterConversion = false;
1474  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1475    switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
1476                                               Cand2.Conversions[ArgIdx])) {
1477    case ImplicitConversionSequence::Better:
1478      // Cand1 has a better conversion sequence.
1479      HasBetterConversion = true;
1480      break;
1481
1482    case ImplicitConversionSequence::Worse:
1483      // Cand1 can't be better than Cand2.
1484      return false;
1485
1486    case ImplicitConversionSequence::Indistinguishable:
1487      // Do nothing.
1488      break;
1489    }
1490  }
1491
1492  if (HasBetterConversion)
1493    return true;
1494
1495  // FIXME: Several other bullets in (C++ 13.3.3p1) need to be implemented.
1496
1497  return false;
1498}
1499
1500/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
1501/// within an overload candidate set. If overloading is successful,
1502/// the result will be OR_Success and Best will be set to point to the
1503/// best viable function within the candidate set. Otherwise, one of
1504/// several kinds of errors will be returned; see
1505/// Sema::OverloadingResult.
1506Sema::OverloadingResult
1507Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
1508                         OverloadCandidateSet::iterator& Best)
1509{
1510  // Find the best viable function.
1511  Best = CandidateSet.end();
1512  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1513       Cand != CandidateSet.end(); ++Cand) {
1514    if (Cand->Viable) {
1515      if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
1516        Best = Cand;
1517    }
1518  }
1519
1520  // If we didn't find any viable functions, abort.
1521  if (Best == CandidateSet.end())
1522    return OR_No_Viable_Function;
1523
1524  // Make sure that this function is better than every other viable
1525  // function. If not, we have an ambiguity.
1526  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1527       Cand != CandidateSet.end(); ++Cand) {
1528    if (Cand->Viable &&
1529        Cand != Best &&
1530        !isBetterOverloadCandidate(*Best, *Cand))
1531      return OR_Ambiguous;
1532  }
1533
1534  // Best is the best viable function.
1535  return OR_Success;
1536}
1537
1538/// PrintOverloadCandidates - When overload resolution fails, prints
1539/// diagnostic messages containing the candidates in the candidate
1540/// set. If OnlyViable is true, only viable candidates will be printed.
1541void
1542Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
1543                              bool OnlyViable)
1544{
1545  OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
1546                             LastCand = CandidateSet.end();
1547  for (; Cand != LastCand; ++Cand) {
1548    if (Cand->Viable ||!OnlyViable)
1549      Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
1550  }
1551}
1552
1553} // end namespace clang
1554