SemaOverload.cpp revision ff416d486f6e34c46d299be8aa054cc1d501cd36
1//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Template.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/STLExtras.h"
32#include <algorithm>
33
34namespace clang {
35using namespace sema;
36
37/// A convenience routine for creating a decayed reference to a
38/// function.
39static ExprResult
40CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
41                      SourceLocation Loc = SourceLocation(),
42                      const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
43  DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, Fn->getType(),
44                                                 VK_LValue, Loc, LocInfo);
45  if (HadMultipleCandidates)
46    DRE->setHadMultipleCandidates(true);
47  ExprResult E = S.Owned(DRE);
48  E = S.DefaultFunctionArrayConversion(E.take());
49  if (E.isInvalid())
50    return ExprError();
51  return move(E);
52}
53
54static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
55                                 bool InOverloadResolution,
56                                 StandardConversionSequence &SCS,
57                                 bool CStyle,
58                                 bool AllowObjCWritebackConversion);
59
60static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
61                                                 QualType &ToType,
62                                                 bool InOverloadResolution,
63                                                 StandardConversionSequence &SCS,
64                                                 bool CStyle);
65static OverloadingResult
66IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
67                        UserDefinedConversionSequence& User,
68                        OverloadCandidateSet& Conversions,
69                        bool AllowExplicit);
70
71
72static ImplicitConversionSequence::CompareKind
73CompareStandardConversionSequences(Sema &S,
74                                   const StandardConversionSequence& SCS1,
75                                   const StandardConversionSequence& SCS2);
76
77static ImplicitConversionSequence::CompareKind
78CompareQualificationConversions(Sema &S,
79                                const StandardConversionSequence& SCS1,
80                                const StandardConversionSequence& SCS2);
81
82static ImplicitConversionSequence::CompareKind
83CompareDerivedToBaseConversions(Sema &S,
84                                const StandardConversionSequence& SCS1,
85                                const StandardConversionSequence& SCS2);
86
87
88
89/// GetConversionCategory - Retrieve the implicit conversion
90/// category corresponding to the given implicit conversion kind.
91ImplicitConversionCategory
92GetConversionCategory(ImplicitConversionKind Kind) {
93  static const ImplicitConversionCategory
94    Category[(int)ICK_Num_Conversion_Kinds] = {
95    ICC_Identity,
96    ICC_Lvalue_Transformation,
97    ICC_Lvalue_Transformation,
98    ICC_Lvalue_Transformation,
99    ICC_Identity,
100    ICC_Qualification_Adjustment,
101    ICC_Promotion,
102    ICC_Promotion,
103    ICC_Promotion,
104    ICC_Conversion,
105    ICC_Conversion,
106    ICC_Conversion,
107    ICC_Conversion,
108    ICC_Conversion,
109    ICC_Conversion,
110    ICC_Conversion,
111    ICC_Conversion,
112    ICC_Conversion,
113    ICC_Conversion,
114    ICC_Conversion,
115    ICC_Conversion,
116    ICC_Conversion
117  };
118  return Category[(int)Kind];
119}
120
121/// GetConversionRank - Retrieve the implicit conversion rank
122/// corresponding to the given implicit conversion kind.
123ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
124  static const ImplicitConversionRank
125    Rank[(int)ICK_Num_Conversion_Kinds] = {
126    ICR_Exact_Match,
127    ICR_Exact_Match,
128    ICR_Exact_Match,
129    ICR_Exact_Match,
130    ICR_Exact_Match,
131    ICR_Exact_Match,
132    ICR_Promotion,
133    ICR_Promotion,
134    ICR_Promotion,
135    ICR_Conversion,
136    ICR_Conversion,
137    ICR_Conversion,
138    ICR_Conversion,
139    ICR_Conversion,
140    ICR_Conversion,
141    ICR_Conversion,
142    ICR_Conversion,
143    ICR_Conversion,
144    ICR_Conversion,
145    ICR_Conversion,
146    ICR_Complex_Real_Conversion,
147    ICR_Conversion,
148    ICR_Conversion,
149    ICR_Writeback_Conversion
150  };
151  return Rank[(int)Kind];
152}
153
154/// GetImplicitConversionName - Return the name of this kind of
155/// implicit conversion.
156const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
157  static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
158    "No conversion",
159    "Lvalue-to-rvalue",
160    "Array-to-pointer",
161    "Function-to-pointer",
162    "Noreturn adjustment",
163    "Qualification",
164    "Integral promotion",
165    "Floating point promotion",
166    "Complex promotion",
167    "Integral conversion",
168    "Floating conversion",
169    "Complex conversion",
170    "Floating-integral conversion",
171    "Pointer conversion",
172    "Pointer-to-member conversion",
173    "Boolean conversion",
174    "Compatible-types conversion",
175    "Derived-to-base conversion",
176    "Vector conversion",
177    "Vector splat",
178    "Complex-real conversion",
179    "Block Pointer conversion",
180    "Transparent Union Conversion"
181    "Writeback conversion"
182  };
183  return Name[Kind];
184}
185
186/// StandardConversionSequence - Set the standard conversion
187/// sequence to the identity conversion.
188void StandardConversionSequence::setAsIdentityConversion() {
189  First = ICK_Identity;
190  Second = ICK_Identity;
191  Third = ICK_Identity;
192  DeprecatedStringLiteralToCharPtr = false;
193  QualificationIncludesObjCLifetime = false;
194  ReferenceBinding = false;
195  DirectBinding = false;
196  IsLvalueReference = true;
197  BindsToFunctionLvalue = false;
198  BindsToRvalue = false;
199  BindsImplicitObjectArgumentWithoutRefQualifier = false;
200  ObjCLifetimeConversionBinding = false;
201  CopyConstructor = 0;
202}
203
204/// getRank - Retrieve the rank of this standard conversion sequence
205/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
206/// implicit conversions.
207ImplicitConversionRank StandardConversionSequence::getRank() const {
208  ImplicitConversionRank Rank = ICR_Exact_Match;
209  if  (GetConversionRank(First) > Rank)
210    Rank = GetConversionRank(First);
211  if  (GetConversionRank(Second) > Rank)
212    Rank = GetConversionRank(Second);
213  if  (GetConversionRank(Third) > Rank)
214    Rank = GetConversionRank(Third);
215  return Rank;
216}
217
218/// isPointerConversionToBool - Determines whether this conversion is
219/// a conversion of a pointer or pointer-to-member to bool. This is
220/// used as part of the ranking of standard conversion sequences
221/// (C++ 13.3.3.2p4).
222bool StandardConversionSequence::isPointerConversionToBool() const {
223  // Note that FromType has not necessarily been transformed by the
224  // array-to-pointer or function-to-pointer implicit conversions, so
225  // check for their presence as well as checking whether FromType is
226  // a pointer.
227  if (getToType(1)->isBooleanType() &&
228      (getFromType()->isPointerType() ||
229       getFromType()->isObjCObjectPointerType() ||
230       getFromType()->isBlockPointerType() ||
231       getFromType()->isNullPtrType() ||
232       First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
233    return true;
234
235  return false;
236}
237
238/// isPointerConversionToVoidPointer - Determines whether this
239/// conversion is a conversion of a pointer to a void pointer. This is
240/// used as part of the ranking of standard conversion sequences (C++
241/// 13.3.3.2p4).
242bool
243StandardConversionSequence::
244isPointerConversionToVoidPointer(ASTContext& Context) const {
245  QualType FromType = getFromType();
246  QualType ToType = getToType(1);
247
248  // Note that FromType has not necessarily been transformed by the
249  // array-to-pointer implicit conversion, so check for its presence
250  // and redo the conversion to get a pointer.
251  if (First == ICK_Array_To_Pointer)
252    FromType = Context.getArrayDecayedType(FromType);
253
254  if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
255    if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
256      return ToPtrType->getPointeeType()->isVoidType();
257
258  return false;
259}
260
261/// DebugPrint - Print this standard conversion sequence to standard
262/// error. Useful for debugging overloading issues.
263void StandardConversionSequence::DebugPrint() const {
264  raw_ostream &OS = llvm::errs();
265  bool PrintedSomething = false;
266  if (First != ICK_Identity) {
267    OS << GetImplicitConversionName(First);
268    PrintedSomething = true;
269  }
270
271  if (Second != ICK_Identity) {
272    if (PrintedSomething) {
273      OS << " -> ";
274    }
275    OS << GetImplicitConversionName(Second);
276
277    if (CopyConstructor) {
278      OS << " (by copy constructor)";
279    } else if (DirectBinding) {
280      OS << " (direct reference binding)";
281    } else if (ReferenceBinding) {
282      OS << " (reference binding)";
283    }
284    PrintedSomething = true;
285  }
286
287  if (Third != ICK_Identity) {
288    if (PrintedSomething) {
289      OS << " -> ";
290    }
291    OS << GetImplicitConversionName(Third);
292    PrintedSomething = true;
293  }
294
295  if (!PrintedSomething) {
296    OS << "No conversions required";
297  }
298}
299
300/// DebugPrint - Print this user-defined conversion sequence to standard
301/// error. Useful for debugging overloading issues.
302void UserDefinedConversionSequence::DebugPrint() const {
303  raw_ostream &OS = llvm::errs();
304  if (Before.First || Before.Second || Before.Third) {
305    Before.DebugPrint();
306    OS << " -> ";
307  }
308  if (ConversionFunction)
309    OS << '\'' << *ConversionFunction << '\'';
310  else
311    OS << "aggregate initialization";
312  if (After.First || After.Second || After.Third) {
313    OS << " -> ";
314    After.DebugPrint();
315  }
316}
317
318/// DebugPrint - Print this implicit conversion sequence to standard
319/// error. Useful for debugging overloading issues.
320void ImplicitConversionSequence::DebugPrint() const {
321  raw_ostream &OS = llvm::errs();
322  switch (ConversionKind) {
323  case StandardConversion:
324    OS << "Standard conversion: ";
325    Standard.DebugPrint();
326    break;
327  case UserDefinedConversion:
328    OS << "User-defined conversion: ";
329    UserDefined.DebugPrint();
330    break;
331  case EllipsisConversion:
332    OS << "Ellipsis conversion";
333    break;
334  case AmbiguousConversion:
335    OS << "Ambiguous conversion";
336    break;
337  case BadConversion:
338    OS << "Bad conversion";
339    break;
340  }
341
342  OS << "\n";
343}
344
345void AmbiguousConversionSequence::construct() {
346  new (&conversions()) ConversionSet();
347}
348
349void AmbiguousConversionSequence::destruct() {
350  conversions().~ConversionSet();
351}
352
353void
354AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
355  FromTypePtr = O.FromTypePtr;
356  ToTypePtr = O.ToTypePtr;
357  new (&conversions()) ConversionSet(O.conversions());
358}
359
360namespace {
361  // Structure used by OverloadCandidate::DeductionFailureInfo to store
362  // template parameter and template argument information.
363  struct DFIParamWithArguments {
364    TemplateParameter Param;
365    TemplateArgument FirstArg;
366    TemplateArgument SecondArg;
367  };
368}
369
370/// \brief Convert from Sema's representation of template deduction information
371/// to the form used in overload-candidate information.
372OverloadCandidate::DeductionFailureInfo
373static MakeDeductionFailureInfo(ASTContext &Context,
374                                Sema::TemplateDeductionResult TDK,
375                                TemplateDeductionInfo &Info) {
376  OverloadCandidate::DeductionFailureInfo Result;
377  Result.Result = static_cast<unsigned>(TDK);
378  Result.Data = 0;
379  switch (TDK) {
380  case Sema::TDK_Success:
381  case Sema::TDK_InstantiationDepth:
382  case Sema::TDK_TooManyArguments:
383  case Sema::TDK_TooFewArguments:
384    break;
385
386  case Sema::TDK_Incomplete:
387  case Sema::TDK_InvalidExplicitArguments:
388    Result.Data = Info.Param.getOpaqueValue();
389    break;
390
391  case Sema::TDK_Inconsistent:
392  case Sema::TDK_Underqualified: {
393    // FIXME: Should allocate from normal heap so that we can free this later.
394    DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
395    Saved->Param = Info.Param;
396    Saved->FirstArg = Info.FirstArg;
397    Saved->SecondArg = Info.SecondArg;
398    Result.Data = Saved;
399    break;
400  }
401
402  case Sema::TDK_SubstitutionFailure:
403    Result.Data = Info.take();
404    break;
405
406  case Sema::TDK_NonDeducedMismatch:
407  case Sema::TDK_FailedOverloadResolution:
408    break;
409  }
410
411  return Result;
412}
413
414void OverloadCandidate::DeductionFailureInfo::Destroy() {
415  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
416  case Sema::TDK_Success:
417  case Sema::TDK_InstantiationDepth:
418  case Sema::TDK_Incomplete:
419  case Sema::TDK_TooManyArguments:
420  case Sema::TDK_TooFewArguments:
421  case Sema::TDK_InvalidExplicitArguments:
422    break;
423
424  case Sema::TDK_Inconsistent:
425  case Sema::TDK_Underqualified:
426    // FIXME: Destroy the data?
427    Data = 0;
428    break;
429
430  case Sema::TDK_SubstitutionFailure:
431    // FIXME: Destroy the template arugment list?
432    Data = 0;
433    break;
434
435  // Unhandled
436  case Sema::TDK_NonDeducedMismatch:
437  case Sema::TDK_FailedOverloadResolution:
438    break;
439  }
440}
441
442TemplateParameter
443OverloadCandidate::DeductionFailureInfo::getTemplateParameter() {
444  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
445  case Sema::TDK_Success:
446  case Sema::TDK_InstantiationDepth:
447  case Sema::TDK_TooManyArguments:
448  case Sema::TDK_TooFewArguments:
449  case Sema::TDK_SubstitutionFailure:
450    return TemplateParameter();
451
452  case Sema::TDK_Incomplete:
453  case Sema::TDK_InvalidExplicitArguments:
454    return TemplateParameter::getFromOpaqueValue(Data);
455
456  case Sema::TDK_Inconsistent:
457  case Sema::TDK_Underqualified:
458    return static_cast<DFIParamWithArguments*>(Data)->Param;
459
460  // Unhandled
461  case Sema::TDK_NonDeducedMismatch:
462  case Sema::TDK_FailedOverloadResolution:
463    break;
464  }
465
466  return TemplateParameter();
467}
468
469TemplateArgumentList *
470OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() {
471  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
472    case Sema::TDK_Success:
473    case Sema::TDK_InstantiationDepth:
474    case Sema::TDK_TooManyArguments:
475    case Sema::TDK_TooFewArguments:
476    case Sema::TDK_Incomplete:
477    case Sema::TDK_InvalidExplicitArguments:
478    case Sema::TDK_Inconsistent:
479    case Sema::TDK_Underqualified:
480      return 0;
481
482    case Sema::TDK_SubstitutionFailure:
483      return static_cast<TemplateArgumentList*>(Data);
484
485    // Unhandled
486    case Sema::TDK_NonDeducedMismatch:
487    case Sema::TDK_FailedOverloadResolution:
488      break;
489  }
490
491  return 0;
492}
493
494const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() {
495  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
496  case Sema::TDK_Success:
497  case Sema::TDK_InstantiationDepth:
498  case Sema::TDK_Incomplete:
499  case Sema::TDK_TooManyArguments:
500  case Sema::TDK_TooFewArguments:
501  case Sema::TDK_InvalidExplicitArguments:
502  case Sema::TDK_SubstitutionFailure:
503    return 0;
504
505  case Sema::TDK_Inconsistent:
506  case Sema::TDK_Underqualified:
507    return &static_cast<DFIParamWithArguments*>(Data)->FirstArg;
508
509  // Unhandled
510  case Sema::TDK_NonDeducedMismatch:
511  case Sema::TDK_FailedOverloadResolution:
512    break;
513  }
514
515  return 0;
516}
517
518const TemplateArgument *
519OverloadCandidate::DeductionFailureInfo::getSecondArg() {
520  switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
521  case Sema::TDK_Success:
522  case Sema::TDK_InstantiationDepth:
523  case Sema::TDK_Incomplete:
524  case Sema::TDK_TooManyArguments:
525  case Sema::TDK_TooFewArguments:
526  case Sema::TDK_InvalidExplicitArguments:
527  case Sema::TDK_SubstitutionFailure:
528    return 0;
529
530  case Sema::TDK_Inconsistent:
531  case Sema::TDK_Underqualified:
532    return &static_cast<DFIParamWithArguments*>(Data)->SecondArg;
533
534  // Unhandled
535  case Sema::TDK_NonDeducedMismatch:
536  case Sema::TDK_FailedOverloadResolution:
537    break;
538  }
539
540  return 0;
541}
542
543void OverloadCandidateSet::clear() {
544  inherited::clear();
545  Functions.clear();
546}
547
548namespace {
549  class UnbridgedCastsSet {
550    struct Entry {
551      Expr **Addr;
552      Expr *Saved;
553    };
554    SmallVector<Entry, 2> Entries;
555
556  public:
557    void save(Sema &S, Expr *&E) {
558      assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
559      Entry entry = { &E, E };
560      Entries.push_back(entry);
561      E = S.stripARCUnbridgedCast(E);
562    }
563
564    void restore() {
565      for (SmallVectorImpl<Entry>::iterator
566             i = Entries.begin(), e = Entries.end(); i != e; ++i)
567        *i->Addr = i->Saved;
568    }
569  };
570}
571
572/// checkPlaceholderForOverload - Do any interesting placeholder-like
573/// preprocessing on the given expression.
574///
575/// \param unbridgedCasts a collection to which to add unbridged casts;
576///   without this, they will be immediately diagnosed as errors
577///
578/// Return true on unrecoverable error.
579static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
580                                        UnbridgedCastsSet *unbridgedCasts = 0) {
581  if (const BuiltinType *placeholder =  E->getType()->getAsPlaceholderType()) {
582    // We can't handle overloaded expressions here because overload
583    // resolution might reasonably tweak them.
584    if (placeholder->getKind() == BuiltinType::Overload) return false;
585
586    // If the context potentially accepts unbridged ARC casts, strip
587    // the unbridged cast and add it to the collection for later restoration.
588    if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
589        unbridgedCasts) {
590      unbridgedCasts->save(S, E);
591      return false;
592    }
593
594    // Go ahead and check everything else.
595    ExprResult result = S.CheckPlaceholderExpr(E);
596    if (result.isInvalid())
597      return true;
598
599    E = result.take();
600    return false;
601  }
602
603  // Nothing to do.
604  return false;
605}
606
607/// checkArgPlaceholdersForOverload - Check a set of call operands for
608/// placeholders.
609static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
610                                            unsigned numArgs,
611                                            UnbridgedCastsSet &unbridged) {
612  for (unsigned i = 0; i != numArgs; ++i)
613    if (checkPlaceholderForOverload(S, args[i], &unbridged))
614      return true;
615
616  return false;
617}
618
619// IsOverload - Determine whether the given New declaration is an
620// overload of the declarations in Old. This routine returns false if
621// New and Old cannot be overloaded, e.g., if New has the same
622// signature as some function in Old (C++ 1.3.10) or if the Old
623// declarations aren't functions (or function templates) at all. When
624// it does return false, MatchedDecl will point to the decl that New
625// cannot be overloaded with.  This decl may be a UsingShadowDecl on
626// top of the underlying declaration.
627//
628// Example: Given the following input:
629//
630//   void f(int, float); // #1
631//   void f(int, int); // #2
632//   int f(int, int); // #3
633//
634// When we process #1, there is no previous declaration of "f",
635// so IsOverload will not be used.
636//
637// When we process #2, Old contains only the FunctionDecl for #1.  By
638// comparing the parameter types, we see that #1 and #2 are overloaded
639// (since they have different signatures), so this routine returns
640// false; MatchedDecl is unchanged.
641//
642// When we process #3, Old is an overload set containing #1 and #2. We
643// compare the signatures of #3 to #1 (they're overloaded, so we do
644// nothing) and then #3 to #2. Since the signatures of #3 and #2 are
645// identical (return types of functions are not part of the
646// signature), IsOverload returns false and MatchedDecl will be set to
647// point to the FunctionDecl for #2.
648//
649// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced
650// into a class by a using declaration.  The rules for whether to hide
651// shadow declarations ignore some properties which otherwise figure
652// into a function template's signature.
653Sema::OverloadKind
654Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
655                    NamedDecl *&Match, bool NewIsUsingDecl) {
656  for (LookupResult::iterator I = Old.begin(), E = Old.end();
657         I != E; ++I) {
658    NamedDecl *OldD = *I;
659
660    bool OldIsUsingDecl = false;
661    if (isa<UsingShadowDecl>(OldD)) {
662      OldIsUsingDecl = true;
663
664      // We can always introduce two using declarations into the same
665      // context, even if they have identical signatures.
666      if (NewIsUsingDecl) continue;
667
668      OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
669    }
670
671    // If either declaration was introduced by a using declaration,
672    // we'll need to use slightly different rules for matching.
673    // Essentially, these rules are the normal rules, except that
674    // function templates hide function templates with different
675    // return types or template parameter lists.
676    bool UseMemberUsingDeclRules =
677      (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord();
678
679    if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) {
680      if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) {
681        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
682          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
683          continue;
684        }
685
686        Match = *I;
687        return Ovl_Match;
688      }
689    } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) {
690      if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
691        if (UseMemberUsingDeclRules && OldIsUsingDecl) {
692          HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
693          continue;
694        }
695
696        Match = *I;
697        return Ovl_Match;
698      }
699    } else if (isa<UsingDecl>(OldD)) {
700      // We can overload with these, which can show up when doing
701      // redeclaration checks for UsingDecls.
702      assert(Old.getLookupKind() == LookupUsingDeclName);
703    } else if (isa<TagDecl>(OldD)) {
704      // We can always overload with tags by hiding them.
705    } else if (isa<UnresolvedUsingValueDecl>(OldD)) {
706      // Optimistically assume that an unresolved using decl will
707      // overload; if it doesn't, we'll have to diagnose during
708      // template instantiation.
709    } else {
710      // (C++ 13p1):
711      //   Only function declarations can be overloaded; object and type
712      //   declarations cannot be overloaded.
713      Match = *I;
714      return Ovl_NonFunction;
715    }
716  }
717
718  return Ovl_Overload;
719}
720
721bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
722                      bool UseUsingDeclRules) {
723  // If both of the functions are extern "C", then they are not
724  // overloads.
725  if (Old->isExternC() && New->isExternC())
726    return false;
727
728  FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
729  FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
730
731  // C++ [temp.fct]p2:
732  //   A function template can be overloaded with other function templates
733  //   and with normal (non-template) functions.
734  if ((OldTemplate == 0) != (NewTemplate == 0))
735    return true;
736
737  // Is the function New an overload of the function Old?
738  QualType OldQType = Context.getCanonicalType(Old->getType());
739  QualType NewQType = Context.getCanonicalType(New->getType());
740
741  // Compare the signatures (C++ 1.3.10) of the two functions to
742  // determine whether they are overloads. If we find any mismatch
743  // in the signature, they are overloads.
744
745  // If either of these functions is a K&R-style function (no
746  // prototype), then we consider them to have matching signatures.
747  if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
748      isa<FunctionNoProtoType>(NewQType.getTypePtr()))
749    return false;
750
751  const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType);
752  const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType);
753
754  // The signature of a function includes the types of its
755  // parameters (C++ 1.3.10), which includes the presence or absence
756  // of the ellipsis; see C++ DR 357).
757  if (OldQType != NewQType &&
758      (OldType->getNumArgs() != NewType->getNumArgs() ||
759       OldType->isVariadic() != NewType->isVariadic() ||
760       !FunctionArgTypesAreEqual(OldType, NewType)))
761    return true;
762
763  // C++ [temp.over.link]p4:
764  //   The signature of a function template consists of its function
765  //   signature, its return type and its template parameter list. The names
766  //   of the template parameters are significant only for establishing the
767  //   relationship between the template parameters and the rest of the
768  //   signature.
769  //
770  // We check the return type and template parameter lists for function
771  // templates first; the remaining checks follow.
772  //
773  // However, we don't consider either of these when deciding whether
774  // a member introduced by a shadow declaration is hidden.
775  if (!UseUsingDeclRules && NewTemplate &&
776      (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
777                                       OldTemplate->getTemplateParameters(),
778                                       false, TPL_TemplateMatch) ||
779       OldType->getResultType() != NewType->getResultType()))
780    return true;
781
782  // If the function is a class member, its signature includes the
783  // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
784  //
785  // As part of this, also check whether one of the member functions
786  // is static, in which case they are not overloads (C++
787  // 13.1p2). While not part of the definition of the signature,
788  // this check is important to determine whether these functions
789  // can be overloaded.
790  CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
791  CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
792  if (OldMethod && NewMethod &&
793      !OldMethod->isStatic() && !NewMethod->isStatic() &&
794      (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() ||
795       OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) {
796    if (!UseUsingDeclRules &&
797        OldMethod->getRefQualifier() != NewMethod->getRefQualifier() &&
798        (OldMethod->getRefQualifier() == RQ_None ||
799         NewMethod->getRefQualifier() == RQ_None)) {
800      // C++0x [over.load]p2:
801      //   - Member function declarations with the same name and the same
802      //     parameter-type-list as well as member function template
803      //     declarations with the same name, the same parameter-type-list, and
804      //     the same template parameter lists cannot be overloaded if any of
805      //     them, but not all, have a ref-qualifier (8.3.5).
806      Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
807        << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
808      Diag(OldMethod->getLocation(), diag::note_previous_declaration);
809    }
810
811    return true;
812  }
813
814  // The signatures match; this is not an overload.
815  return false;
816}
817
818/// \brief Checks availability of the function depending on the current
819/// function context. Inside an unavailable function, unavailability is ignored.
820///
821/// \returns true if \arg FD is unavailable and current context is inside
822/// an available function, false otherwise.
823bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
824  return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
825}
826
827/// TryImplicitConversion - Attempt to perform an implicit conversion
828/// from the given expression (Expr) to the given type (ToType). This
829/// function returns an implicit conversion sequence that can be used
830/// to perform the initialization. Given
831///
832///   void f(float f);
833///   void g(int i) { f(i); }
834///
835/// this routine would produce an implicit conversion sequence to
836/// describe the initialization of f from i, which will be a standard
837/// conversion sequence containing an lvalue-to-rvalue conversion (C++
838/// 4.1) followed by a floating-integral conversion (C++ 4.9).
839//
840/// Note that this routine only determines how the conversion can be
841/// performed; it does not actually perform the conversion. As such,
842/// it will not produce any diagnostics if no conversion is available,
843/// but will instead return an implicit conversion sequence of kind
844/// "BadConversion".
845///
846/// If @p SuppressUserConversions, then user-defined conversions are
847/// not permitted.
848/// If @p AllowExplicit, then explicit user-defined conversions are
849/// permitted.
850///
851/// \param AllowObjCWritebackConversion Whether we allow the Objective-C
852/// writeback conversion, which allows __autoreleasing id* parameters to
853/// be initialized with __strong id* or __weak id* arguments.
854static ImplicitConversionSequence
855TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
856                      bool SuppressUserConversions,
857                      bool AllowExplicit,
858                      bool InOverloadResolution,
859                      bool CStyle,
860                      bool AllowObjCWritebackConversion) {
861  ImplicitConversionSequence ICS;
862  if (IsStandardConversion(S, From, ToType, InOverloadResolution,
863                           ICS.Standard, CStyle, AllowObjCWritebackConversion)){
864    ICS.setStandard();
865    return ICS;
866  }
867
868  if (!S.getLangOptions().CPlusPlus) {
869    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
870    return ICS;
871  }
872
873  // C++ [over.ics.user]p4:
874  //   A conversion of an expression of class type to the same class
875  //   type is given Exact Match rank, and a conversion of an
876  //   expression of class type to a base class of that type is
877  //   given Conversion rank, in spite of the fact that a copy/move
878  //   constructor (i.e., a user-defined conversion function) is
879  //   called for those cases.
880  QualType FromType = From->getType();
881  if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
882      (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
883       S.IsDerivedFrom(FromType, ToType))) {
884    ICS.setStandard();
885    ICS.Standard.setAsIdentityConversion();
886    ICS.Standard.setFromType(FromType);
887    ICS.Standard.setAllToTypes(ToType);
888
889    // We don't actually check at this point whether there is a valid
890    // copy/move constructor, since overloading just assumes that it
891    // exists. When we actually perform initialization, we'll find the
892    // appropriate constructor to copy the returned object, if needed.
893    ICS.Standard.CopyConstructor = 0;
894
895    // Determine whether this is considered a derived-to-base conversion.
896    if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
897      ICS.Standard.Second = ICK_Derived_To_Base;
898
899    return ICS;
900  }
901
902  if (SuppressUserConversions) {
903    // We're not in the case above, so there is no conversion that
904    // we can perform.
905    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
906    return ICS;
907  }
908
909  // Attempt user-defined conversion.
910  OverloadCandidateSet Conversions(From->getExprLoc());
911  OverloadingResult UserDefResult
912    = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
913                              AllowExplicit);
914
915  if (UserDefResult == OR_Success) {
916    ICS.setUserDefined();
917    // C++ [over.ics.user]p4:
918    //   A conversion of an expression of class type to the same class
919    //   type is given Exact Match rank, and a conversion of an
920    //   expression of class type to a base class of that type is
921    //   given Conversion rank, in spite of the fact that a copy
922    //   constructor (i.e., a user-defined conversion function) is
923    //   called for those cases.
924    if (CXXConstructorDecl *Constructor
925          = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
926      QualType FromCanon
927        = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
928      QualType ToCanon
929        = S.Context.getCanonicalType(ToType).getUnqualifiedType();
930      if (Constructor->isCopyConstructor() &&
931          (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
932        // Turn this into a "standard" conversion sequence, so that it
933        // gets ranked with standard conversion sequences.
934        ICS.setStandard();
935        ICS.Standard.setAsIdentityConversion();
936        ICS.Standard.setFromType(From->getType());
937        ICS.Standard.setAllToTypes(ToType);
938        ICS.Standard.CopyConstructor = Constructor;
939        if (ToCanon != FromCanon)
940          ICS.Standard.Second = ICK_Derived_To_Base;
941      }
942    }
943
944    // C++ [over.best.ics]p4:
945    //   However, when considering the argument of a user-defined
946    //   conversion function that is a candidate by 13.3.1.3 when
947    //   invoked for the copying of the temporary in the second step
948    //   of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
949    //   13.3.1.6 in all cases, only standard conversion sequences and
950    //   ellipsis conversion sequences are allowed.
951    if (SuppressUserConversions && ICS.isUserDefined()) {
952      ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
953    }
954  } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
955    ICS.setAmbiguous();
956    ICS.Ambiguous.setFromType(From->getType());
957    ICS.Ambiguous.setToType(ToType);
958    for (OverloadCandidateSet::iterator Cand = Conversions.begin();
959         Cand != Conversions.end(); ++Cand)
960      if (Cand->Viable)
961        ICS.Ambiguous.addConversion(Cand->Function);
962  } else {
963    ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
964  }
965
966  return ICS;
967}
968
969ImplicitConversionSequence
970Sema::TryImplicitConversion(Expr *From, QualType ToType,
971                            bool SuppressUserConversions,
972                            bool AllowExplicit,
973                            bool InOverloadResolution,
974                            bool CStyle,
975                            bool AllowObjCWritebackConversion) {
976  return clang::TryImplicitConversion(*this, From, ToType,
977                                      SuppressUserConversions, AllowExplicit,
978                                      InOverloadResolution, CStyle,
979                                      AllowObjCWritebackConversion);
980}
981
982/// PerformImplicitConversion - Perform an implicit conversion of the
983/// expression From to the type ToType. Returns the
984/// converted expression. Flavor is the kind of conversion we're
985/// performing, used in the error message. If @p AllowExplicit,
986/// explicit user-defined conversions are permitted.
987ExprResult
988Sema::PerformImplicitConversion(Expr *From, QualType ToType,
989                                AssignmentAction Action, bool AllowExplicit) {
990  ImplicitConversionSequence ICS;
991  return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
992}
993
994ExprResult
995Sema::PerformImplicitConversion(Expr *From, QualType ToType,
996                                AssignmentAction Action, bool AllowExplicit,
997                                ImplicitConversionSequence& ICS) {
998  if (checkPlaceholderForOverload(*this, From))
999    return ExprError();
1000
1001  // Objective-C ARC: Determine whether we will allow the writeback conversion.
1002  bool AllowObjCWritebackConversion
1003    = getLangOptions().ObjCAutoRefCount &&
1004      (Action == AA_Passing || Action == AA_Sending);
1005
1006  ICS = clang::TryImplicitConversion(*this, From, ToType,
1007                                     /*SuppressUserConversions=*/false,
1008                                     AllowExplicit,
1009                                     /*InOverloadResolution=*/false,
1010                                     /*CStyle=*/false,
1011                                     AllowObjCWritebackConversion);
1012  return PerformImplicitConversion(From, ToType, ICS, Action);
1013}
1014
1015/// \brief Determine whether the conversion from FromType to ToType is a valid
1016/// conversion that strips "noreturn" off the nested function type.
1017bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType,
1018                                QualType &ResultTy) {
1019  if (Context.hasSameUnqualifiedType(FromType, ToType))
1020    return false;
1021
1022  // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
1023  // where F adds one of the following at most once:
1024  //   - a pointer
1025  //   - a member pointer
1026  //   - a block pointer
1027  CanQualType CanTo = Context.getCanonicalType(ToType);
1028  CanQualType CanFrom = Context.getCanonicalType(FromType);
1029  Type::TypeClass TyClass = CanTo->getTypeClass();
1030  if (TyClass != CanFrom->getTypeClass()) return false;
1031  if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
1032    if (TyClass == Type::Pointer) {
1033      CanTo = CanTo.getAs<PointerType>()->getPointeeType();
1034      CanFrom = CanFrom.getAs<PointerType>()->getPointeeType();
1035    } else if (TyClass == Type::BlockPointer) {
1036      CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType();
1037      CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType();
1038    } else if (TyClass == Type::MemberPointer) {
1039      CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType();
1040      CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType();
1041    } else {
1042      return false;
1043    }
1044
1045    TyClass = CanTo->getTypeClass();
1046    if (TyClass != CanFrom->getTypeClass()) return false;
1047    if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
1048      return false;
1049  }
1050
1051  const FunctionType *FromFn = cast<FunctionType>(CanFrom);
1052  FunctionType::ExtInfo EInfo = FromFn->getExtInfo();
1053  if (!EInfo.getNoReturn()) return false;
1054
1055  FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false));
1056  assert(QualType(FromFn, 0).isCanonical());
1057  if (QualType(FromFn, 0) != CanTo) return false;
1058
1059  ResultTy = ToType;
1060  return true;
1061}
1062
1063/// \brief Determine whether the conversion from FromType to ToType is a valid
1064/// vector conversion.
1065///
1066/// \param ICK Will be set to the vector conversion kind, if this is a vector
1067/// conversion.
1068static bool IsVectorConversion(ASTContext &Context, QualType FromType,
1069                               QualType ToType, ImplicitConversionKind &ICK) {
1070  // We need at least one of these types to be a vector type to have a vector
1071  // conversion.
1072  if (!ToType->isVectorType() && !FromType->isVectorType())
1073    return false;
1074
1075  // Identical types require no conversions.
1076  if (Context.hasSameUnqualifiedType(FromType, ToType))
1077    return false;
1078
1079  // There are no conversions between extended vector types, only identity.
1080  if (ToType->isExtVectorType()) {
1081    // There are no conversions between extended vector types other than the
1082    // identity conversion.
1083    if (FromType->isExtVectorType())
1084      return false;
1085
1086    // Vector splat from any arithmetic type to a vector.
1087    if (FromType->isArithmeticType()) {
1088      ICK = ICK_Vector_Splat;
1089      return true;
1090    }
1091  }
1092
1093  // We can perform the conversion between vector types in the following cases:
1094  // 1)vector types are equivalent AltiVec and GCC vector types
1095  // 2)lax vector conversions are permitted and the vector types are of the
1096  //   same size
1097  if (ToType->isVectorType() && FromType->isVectorType()) {
1098    if (Context.areCompatibleVectorTypes(FromType, ToType) ||
1099        (Context.getLangOptions().LaxVectorConversions &&
1100         (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
1101      ICK = ICK_Vector_Conversion;
1102      return true;
1103    }
1104  }
1105
1106  return false;
1107}
1108
1109/// IsStandardConversion - Determines whether there is a standard
1110/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
1111/// expression From to the type ToType. Standard conversion sequences
1112/// only consider non-class types; for conversions that involve class
1113/// types, use TryImplicitConversion. If a conversion exists, SCS will
1114/// contain the standard conversion sequence required to perform this
1115/// conversion and this routine will return true. Otherwise, this
1116/// routine will return false and the value of SCS is unspecified.
1117static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
1118                                 bool InOverloadResolution,
1119                                 StandardConversionSequence &SCS,
1120                                 bool CStyle,
1121                                 bool AllowObjCWritebackConversion) {
1122  QualType FromType = From->getType();
1123
1124  // Standard conversions (C++ [conv])
1125  SCS.setAsIdentityConversion();
1126  SCS.DeprecatedStringLiteralToCharPtr = false;
1127  SCS.IncompatibleObjC = false;
1128  SCS.setFromType(FromType);
1129  SCS.CopyConstructor = 0;
1130
1131  // There are no standard conversions for class types in C++, so
1132  // abort early. When overloading in C, however, we do permit
1133  if (FromType->isRecordType() || ToType->isRecordType()) {
1134    if (S.getLangOptions().CPlusPlus)
1135      return false;
1136
1137    // When we're overloading in C, we allow, as standard conversions,
1138  }
1139
1140  // The first conversion can be an lvalue-to-rvalue conversion,
1141  // array-to-pointer conversion, or function-to-pointer conversion
1142  // (C++ 4p1).
1143
1144  if (FromType == S.Context.OverloadTy) {
1145    DeclAccessPair AccessPair;
1146    if (FunctionDecl *Fn
1147          = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
1148                                                 AccessPair)) {
1149      // We were able to resolve the address of the overloaded function,
1150      // so we can convert to the type of that function.
1151      FromType = Fn->getType();
1152
1153      // we can sometimes resolve &foo<int> regardless of ToType, so check
1154      // if the type matches (identity) or we are converting to bool
1155      if (!S.Context.hasSameUnqualifiedType(
1156                      S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
1157        QualType resultTy;
1158        // if the function type matches except for [[noreturn]], it's ok
1159        if (!S.IsNoReturnConversion(FromType,
1160              S.ExtractUnqualifiedFunctionType(ToType), resultTy))
1161          // otherwise, only a boolean conversion is standard
1162          if (!ToType->isBooleanType())
1163            return false;
1164      }
1165
1166      // Check if the "from" expression is taking the address of an overloaded
1167      // function and recompute the FromType accordingly. Take advantage of the
1168      // fact that non-static member functions *must* have such an address-of
1169      // expression.
1170      CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
1171      if (Method && !Method->isStatic()) {
1172        assert(isa<UnaryOperator>(From->IgnoreParens()) &&
1173               "Non-unary operator on non-static member address");
1174        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
1175               == UO_AddrOf &&
1176               "Non-address-of operator on non-static member address");
1177        const Type *ClassType
1178          = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
1179        FromType = S.Context.getMemberPointerType(FromType, ClassType);
1180      } else if (isa<UnaryOperator>(From->IgnoreParens())) {
1181        assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
1182               UO_AddrOf &&
1183               "Non-address-of operator for overloaded function expression");
1184        FromType = S.Context.getPointerType(FromType);
1185      }
1186
1187      // Check that we've computed the proper type after overload resolution.
1188      assert(S.Context.hasSameType(
1189        FromType,
1190        S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
1191    } else {
1192      return false;
1193    }
1194  }
1195  // Lvalue-to-rvalue conversion (C++11 4.1):
1196  //   A glvalue (3.10) of a non-function, non-array type T can
1197  //   be converted to a prvalue.
1198  bool argIsLValue = From->isGLValue();
1199  if (argIsLValue &&
1200      !FromType->isFunctionType() && !FromType->isArrayType() &&
1201      S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
1202    SCS.First = ICK_Lvalue_To_Rvalue;
1203
1204    // If T is a non-class type, the type of the rvalue is the
1205    // cv-unqualified version of T. Otherwise, the type of the rvalue
1206    // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
1207    // just strip the qualifiers because they don't matter.
1208    FromType = FromType.getUnqualifiedType();
1209  } else if (FromType->isArrayType()) {
1210    // Array-to-pointer conversion (C++ 4.2)
1211    SCS.First = ICK_Array_To_Pointer;
1212
1213    // An lvalue or rvalue of type "array of N T" or "array of unknown
1214    // bound of T" can be converted to an rvalue of type "pointer to
1215    // T" (C++ 4.2p1).
1216    FromType = S.Context.getArrayDecayedType(FromType);
1217
1218    if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
1219      // This conversion is deprecated. (C++ D.4).
1220      SCS.DeprecatedStringLiteralToCharPtr = true;
1221
1222      // For the purpose of ranking in overload resolution
1223      // (13.3.3.1.1), this conversion is considered an
1224      // array-to-pointer conversion followed by a qualification
1225      // conversion (4.4). (C++ 4.2p2)
1226      SCS.Second = ICK_Identity;
1227      SCS.Third = ICK_Qualification;
1228      SCS.QualificationIncludesObjCLifetime = false;
1229      SCS.setAllToTypes(FromType);
1230      return true;
1231    }
1232  } else if (FromType->isFunctionType() && argIsLValue) {
1233    // Function-to-pointer conversion (C++ 4.3).
1234    SCS.First = ICK_Function_To_Pointer;
1235
1236    // An lvalue of function type T can be converted to an rvalue of
1237    // type "pointer to T." The result is a pointer to the
1238    // function. (C++ 4.3p1).
1239    FromType = S.Context.getPointerType(FromType);
1240  } else {
1241    // We don't require any conversions for the first step.
1242    SCS.First = ICK_Identity;
1243  }
1244  SCS.setToType(0, FromType);
1245
1246  // The second conversion can be an integral promotion, floating
1247  // point promotion, integral conversion, floating point conversion,
1248  // floating-integral conversion, pointer conversion,
1249  // pointer-to-member conversion, or boolean conversion (C++ 4p1).
1250  // For overloading in C, this can also be a "compatible-type"
1251  // conversion.
1252  bool IncompatibleObjC = false;
1253  ImplicitConversionKind SecondICK = ICK_Identity;
1254  if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
1255    // The unqualified versions of the types are the same: there's no
1256    // conversion to do.
1257    SCS.Second = ICK_Identity;
1258  } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
1259    // Integral promotion (C++ 4.5).
1260    SCS.Second = ICK_Integral_Promotion;
1261    FromType = ToType.getUnqualifiedType();
1262  } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
1263    // Floating point promotion (C++ 4.6).
1264    SCS.Second = ICK_Floating_Promotion;
1265    FromType = ToType.getUnqualifiedType();
1266  } else if (S.IsComplexPromotion(FromType, ToType)) {
1267    // Complex promotion (Clang extension)
1268    SCS.Second = ICK_Complex_Promotion;
1269    FromType = ToType.getUnqualifiedType();
1270  } else if (ToType->isBooleanType() &&
1271             (FromType->isArithmeticType() ||
1272              FromType->isAnyPointerType() ||
1273              FromType->isBlockPointerType() ||
1274              FromType->isMemberPointerType() ||
1275              FromType->isNullPtrType())) {
1276    // Boolean conversions (C++ 4.12).
1277    SCS.Second = ICK_Boolean_Conversion;
1278    FromType = S.Context.BoolTy;
1279  } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
1280             ToType->isIntegralType(S.Context)) {
1281    // Integral conversions (C++ 4.7).
1282    SCS.Second = ICK_Integral_Conversion;
1283    FromType = ToType.getUnqualifiedType();
1284  } else if (FromType->isAnyComplexType() && ToType->isComplexType()) {
1285    // Complex conversions (C99 6.3.1.6)
1286    SCS.Second = ICK_Complex_Conversion;
1287    FromType = ToType.getUnqualifiedType();
1288  } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
1289             (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
1290    // Complex-real conversions (C99 6.3.1.7)
1291    SCS.Second = ICK_Complex_Real;
1292    FromType = ToType.getUnqualifiedType();
1293  } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
1294    // Floating point conversions (C++ 4.8).
1295    SCS.Second = ICK_Floating_Conversion;
1296    FromType = ToType.getUnqualifiedType();
1297  } else if ((FromType->isRealFloatingType() &&
1298              ToType->isIntegralType(S.Context)) ||
1299             (FromType->isIntegralOrUnscopedEnumerationType() &&
1300              ToType->isRealFloatingType())) {
1301    // Floating-integral conversions (C++ 4.9).
1302    SCS.Second = ICK_Floating_Integral;
1303    FromType = ToType.getUnqualifiedType();
1304  } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
1305    SCS.Second = ICK_Block_Pointer_Conversion;
1306  } else if (AllowObjCWritebackConversion &&
1307             S.isObjCWritebackConversion(FromType, ToType, FromType)) {
1308    SCS.Second = ICK_Writeback_Conversion;
1309  } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
1310                                   FromType, IncompatibleObjC)) {
1311    // Pointer conversions (C++ 4.10).
1312    SCS.Second = ICK_Pointer_Conversion;
1313    SCS.IncompatibleObjC = IncompatibleObjC;
1314    FromType = FromType.getUnqualifiedType();
1315  } else if (S.IsMemberPointerConversion(From, FromType, ToType,
1316                                         InOverloadResolution, FromType)) {
1317    // Pointer to member conversions (4.11).
1318    SCS.Second = ICK_Pointer_Member;
1319  } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
1320    SCS.Second = SecondICK;
1321    FromType = ToType.getUnqualifiedType();
1322  } else if (!S.getLangOptions().CPlusPlus &&
1323             S.Context.typesAreCompatible(ToType, FromType)) {
1324    // Compatible conversions (Clang extension for C function overloading)
1325    SCS.Second = ICK_Compatible_Conversion;
1326    FromType = ToType.getUnqualifiedType();
1327  } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) {
1328    // Treat a conversion that strips "noreturn" as an identity conversion.
1329    SCS.Second = ICK_NoReturn_Adjustment;
1330  } else if (IsTransparentUnionStandardConversion(S, From, ToType,
1331                                             InOverloadResolution,
1332                                             SCS, CStyle)) {
1333    SCS.Second = ICK_TransparentUnionConversion;
1334    FromType = ToType;
1335  } else {
1336    // No second conversion required.
1337    SCS.Second = ICK_Identity;
1338  }
1339  SCS.setToType(1, FromType);
1340
1341  QualType CanonFrom;
1342  QualType CanonTo;
1343  // The third conversion can be a qualification conversion (C++ 4p1).
1344  bool ObjCLifetimeConversion;
1345  if (S.IsQualificationConversion(FromType, ToType, CStyle,
1346                                  ObjCLifetimeConversion)) {
1347    SCS.Third = ICK_Qualification;
1348    SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
1349    FromType = ToType;
1350    CanonFrom = S.Context.getCanonicalType(FromType);
1351    CanonTo = S.Context.getCanonicalType(ToType);
1352  } else {
1353    // No conversion required
1354    SCS.Third = ICK_Identity;
1355
1356    // C++ [over.best.ics]p6:
1357    //   [...] Any difference in top-level cv-qualification is
1358    //   subsumed by the initialization itself and does not constitute
1359    //   a conversion. [...]
1360    CanonFrom = S.Context.getCanonicalType(FromType);
1361    CanonTo = S.Context.getCanonicalType(ToType);
1362    if (CanonFrom.getLocalUnqualifiedType()
1363                                       == CanonTo.getLocalUnqualifiedType() &&
1364        (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers()
1365         || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr()
1366         || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) {
1367      FromType = ToType;
1368      CanonFrom = CanonTo;
1369    }
1370  }
1371  SCS.setToType(2, FromType);
1372
1373  // If we have not converted the argument type to the parameter type,
1374  // this is a bad conversion sequence.
1375  if (CanonFrom != CanonTo)
1376    return false;
1377
1378  return true;
1379}
1380
1381static bool
1382IsTransparentUnionStandardConversion(Sema &S, Expr* From,
1383                                     QualType &ToType,
1384                                     bool InOverloadResolution,
1385                                     StandardConversionSequence &SCS,
1386                                     bool CStyle) {
1387
1388  const RecordType *UT = ToType->getAsUnionType();
1389  if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
1390    return false;
1391  // The field to initialize within the transparent union.
1392  RecordDecl *UD = UT->getDecl();
1393  // It's compatible if the expression matches any of the fields.
1394  for (RecordDecl::field_iterator it = UD->field_begin(),
1395       itend = UD->field_end();
1396       it != itend; ++it) {
1397    if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
1398                             CStyle, /*ObjCWritebackConversion=*/false)) {
1399      ToType = it->getType();
1400      return true;
1401    }
1402  }
1403  return false;
1404}
1405
1406/// IsIntegralPromotion - Determines whether the conversion from the
1407/// expression From (whose potentially-adjusted type is FromType) to
1408/// ToType is an integral promotion (C++ 4.5). If so, returns true and
1409/// sets PromotedType to the promoted type.
1410bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
1411  const BuiltinType *To = ToType->getAs<BuiltinType>();
1412  // All integers are built-in.
1413  if (!To) {
1414    return false;
1415  }
1416
1417  // An rvalue of type char, signed char, unsigned char, short int, or
1418  // unsigned short int can be converted to an rvalue of type int if
1419  // int can represent all the values of the source type; otherwise,
1420  // the source rvalue can be converted to an rvalue of type unsigned
1421  // int (C++ 4.5p1).
1422  if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
1423      !FromType->isEnumeralType()) {
1424    if (// We can promote any signed, promotable integer type to an int
1425        (FromType->isSignedIntegerType() ||
1426         // We can promote any unsigned integer type whose size is
1427         // less than int to an int.
1428         (!FromType->isSignedIntegerType() &&
1429          Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
1430      return To->getKind() == BuiltinType::Int;
1431    }
1432
1433    return To->getKind() == BuiltinType::UInt;
1434  }
1435
1436  // C++0x [conv.prom]p3:
1437  //   A prvalue of an unscoped enumeration type whose underlying type is not
1438  //   fixed (7.2) can be converted to an rvalue a prvalue of the first of the
1439  //   following types that can represent all the values of the enumeration
1440  //   (i.e., the values in the range bmin to bmax as described in 7.2): int,
1441  //   unsigned int, long int, unsigned long int, long long int, or unsigned
1442  //   long long int. If none of the types in that list can represent all the
1443  //   values of the enumeration, an rvalue a prvalue of an unscoped enumeration
1444  //   type can be converted to an rvalue a prvalue of the extended integer type
1445  //   with lowest integer conversion rank (4.13) greater than the rank of long
1446  //   long in which all the values of the enumeration can be represented. If
1447  //   there are two such extended types, the signed one is chosen.
1448  if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
1449    // C++0x 7.2p9: Note that this implicit enum to int conversion is not
1450    // provided for a scoped enumeration.
1451    if (FromEnumType->getDecl()->isScoped())
1452      return false;
1453
1454    // We have already pre-calculated the promotion type, so this is trivial.
1455    if (ToType->isIntegerType() &&
1456        !RequireCompleteType(From->getLocStart(), FromType, PDiag()))
1457      return Context.hasSameUnqualifiedType(ToType,
1458                                FromEnumType->getDecl()->getPromotionType());
1459  }
1460
1461  // C++0x [conv.prom]p2:
1462  //   A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
1463  //   to an rvalue a prvalue of the first of the following types that can
1464  //   represent all the values of its underlying type: int, unsigned int,
1465  //   long int, unsigned long int, long long int, or unsigned long long int.
1466  //   If none of the types in that list can represent all the values of its
1467  //   underlying type, an rvalue a prvalue of type char16_t, char32_t,
1468  //   or wchar_t can be converted to an rvalue a prvalue of its underlying
1469  //   type.
1470  if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
1471      ToType->isIntegerType()) {
1472    // Determine whether the type we're converting from is signed or
1473    // unsigned.
1474    bool FromIsSigned = FromType->isSignedIntegerType();
1475    uint64_t FromSize = Context.getTypeSize(FromType);
1476
1477    // The types we'll try to promote to, in the appropriate
1478    // order. Try each of these types.
1479    QualType PromoteTypes[6] = {
1480      Context.IntTy, Context.UnsignedIntTy,
1481      Context.LongTy, Context.UnsignedLongTy ,
1482      Context.LongLongTy, Context.UnsignedLongLongTy
1483    };
1484    for (int Idx = 0; Idx < 6; ++Idx) {
1485      uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
1486      if (FromSize < ToSize ||
1487          (FromSize == ToSize &&
1488           FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
1489        // We found the type that we can promote to. If this is the
1490        // type we wanted, we have a promotion. Otherwise, no
1491        // promotion.
1492        return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
1493      }
1494    }
1495  }
1496
1497  // An rvalue for an integral bit-field (9.6) can be converted to an
1498  // rvalue of type int if int can represent all the values of the
1499  // bit-field; otherwise, it can be converted to unsigned int if
1500  // unsigned int can represent all the values of the bit-field. If
1501  // the bit-field is larger yet, no integral promotion applies to
1502  // it. If the bit-field has an enumerated type, it is treated as any
1503  // other value of that type for promotion purposes (C++ 4.5p3).
1504  // FIXME: We should delay checking of bit-fields until we actually perform the
1505  // conversion.
1506  using llvm::APSInt;
1507  if (From)
1508    if (FieldDecl *MemberDecl = From->getBitField()) {
1509      APSInt BitWidth;
1510      if (FromType->isIntegralType(Context) &&
1511          MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
1512        APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
1513        ToSize = Context.getTypeSize(ToType);
1514
1515        // Are we promoting to an int from a bitfield that fits in an int?
1516        if (BitWidth < ToSize ||
1517            (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
1518          return To->getKind() == BuiltinType::Int;
1519        }
1520
1521        // Are we promoting to an unsigned int from an unsigned bitfield
1522        // that fits into an unsigned int?
1523        if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
1524          return To->getKind() == BuiltinType::UInt;
1525        }
1526
1527        return false;
1528      }
1529    }
1530
1531  // An rvalue of type bool can be converted to an rvalue of type int,
1532  // with false becoming zero and true becoming one (C++ 4.5p4).
1533  if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
1534    return true;
1535  }
1536
1537  return false;
1538}
1539
1540/// IsFloatingPointPromotion - Determines whether the conversion from
1541/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
1542/// returns true and sets PromotedType to the promoted type.
1543bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
1544  if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
1545    if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
1546      /// An rvalue of type float can be converted to an rvalue of type
1547      /// double. (C++ 4.6p1).
1548      if (FromBuiltin->getKind() == BuiltinType::Float &&
1549          ToBuiltin->getKind() == BuiltinType::Double)
1550        return true;
1551
1552      // C99 6.3.1.5p1:
1553      //   When a float is promoted to double or long double, or a
1554      //   double is promoted to long double [...].
1555      if (!getLangOptions().CPlusPlus &&
1556          (FromBuiltin->getKind() == BuiltinType::Float ||
1557           FromBuiltin->getKind() == BuiltinType::Double) &&
1558          (ToBuiltin->getKind() == BuiltinType::LongDouble))
1559        return true;
1560
1561      // Half can be promoted to float.
1562      if (FromBuiltin->getKind() == BuiltinType::Half &&
1563          ToBuiltin->getKind() == BuiltinType::Float)
1564        return true;
1565    }
1566
1567  return false;
1568}
1569
1570/// \brief Determine if a conversion is a complex promotion.
1571///
1572/// A complex promotion is defined as a complex -> complex conversion
1573/// where the conversion between the underlying real types is a
1574/// floating-point or integral promotion.
1575bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
1576  const ComplexType *FromComplex = FromType->getAs<ComplexType>();
1577  if (!FromComplex)
1578    return false;
1579
1580  const ComplexType *ToComplex = ToType->getAs<ComplexType>();
1581  if (!ToComplex)
1582    return false;
1583
1584  return IsFloatingPointPromotion(FromComplex->getElementType(),
1585                                  ToComplex->getElementType()) ||
1586    IsIntegralPromotion(0, FromComplex->getElementType(),
1587                        ToComplex->getElementType());
1588}
1589
1590/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
1591/// the pointer type FromPtr to a pointer to type ToPointee, with the
1592/// same type qualifiers as FromPtr has on its pointee type. ToType,
1593/// if non-empty, will be a pointer to ToType that may or may not have
1594/// the right set of qualifiers on its pointee.
1595///
1596static QualType
1597BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
1598                                   QualType ToPointee, QualType ToType,
1599                                   ASTContext &Context,
1600                                   bool StripObjCLifetime = false) {
1601  assert((FromPtr->getTypeClass() == Type::Pointer ||
1602          FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
1603         "Invalid similarly-qualified pointer type");
1604
1605  /// Conversions to 'id' subsume cv-qualifier conversions.
1606  if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
1607    return ToType.getUnqualifiedType();
1608
1609  QualType CanonFromPointee
1610    = Context.getCanonicalType(FromPtr->getPointeeType());
1611  QualType CanonToPointee = Context.getCanonicalType(ToPointee);
1612  Qualifiers Quals = CanonFromPointee.getQualifiers();
1613
1614  if (StripObjCLifetime)
1615    Quals.removeObjCLifetime();
1616
1617  // Exact qualifier match -> return the pointer type we're converting to.
1618  if (CanonToPointee.getLocalQualifiers() == Quals) {
1619    // ToType is exactly what we need. Return it.
1620    if (!ToType.isNull())
1621      return ToType.getUnqualifiedType();
1622
1623    // Build a pointer to ToPointee. It has the right qualifiers
1624    // already.
1625    if (isa<ObjCObjectPointerType>(ToType))
1626      return Context.getObjCObjectPointerType(ToPointee);
1627    return Context.getPointerType(ToPointee);
1628  }
1629
1630  // Just build a canonical type that has the right qualifiers.
1631  QualType QualifiedCanonToPointee
1632    = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
1633
1634  if (isa<ObjCObjectPointerType>(ToType))
1635    return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
1636  return Context.getPointerType(QualifiedCanonToPointee);
1637}
1638
1639static bool isNullPointerConstantForConversion(Expr *Expr,
1640                                               bool InOverloadResolution,
1641                                               ASTContext &Context) {
1642  // Handle value-dependent integral null pointer constants correctly.
1643  // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
1644  if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
1645      Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
1646    return !InOverloadResolution;
1647
1648  return Expr->isNullPointerConstant(Context,
1649                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
1650                                        : Expr::NPC_ValueDependentIsNull);
1651}
1652
1653/// IsPointerConversion - Determines whether the conversion of the
1654/// expression From, which has the (possibly adjusted) type FromType,
1655/// can be converted to the type ToType via a pointer conversion (C++
1656/// 4.10). If so, returns true and places the converted type (that
1657/// might differ from ToType in its cv-qualifiers at some level) into
1658/// ConvertedType.
1659///
1660/// This routine also supports conversions to and from block pointers
1661/// and conversions with Objective-C's 'id', 'id<protocols...>', and
1662/// pointers to interfaces. FIXME: Once we've determined the
1663/// appropriate overloading rules for Objective-C, we may want to
1664/// split the Objective-C checks into a different routine; however,
1665/// GCC seems to consider all of these conversions to be pointer
1666/// conversions, so for now they live here. IncompatibleObjC will be
1667/// set if the conversion is an allowed Objective-C conversion that
1668/// should result in a warning.
1669bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
1670                               bool InOverloadResolution,
1671                               QualType& ConvertedType,
1672                               bool &IncompatibleObjC) {
1673  IncompatibleObjC = false;
1674  if (isObjCPointerConversion(FromType, ToType, ConvertedType,
1675                              IncompatibleObjC))
1676    return true;
1677
1678  // Conversion from a null pointer constant to any Objective-C pointer type.
1679  if (ToType->isObjCObjectPointerType() &&
1680      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1681    ConvertedType = ToType;
1682    return true;
1683  }
1684
1685  // Blocks: Block pointers can be converted to void*.
1686  if (FromType->isBlockPointerType() && ToType->isPointerType() &&
1687      ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) {
1688    ConvertedType = ToType;
1689    return true;
1690  }
1691  // Blocks: A null pointer constant can be converted to a block
1692  // pointer type.
1693  if (ToType->isBlockPointerType() &&
1694      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1695    ConvertedType = ToType;
1696    return true;
1697  }
1698
1699  // If the left-hand-side is nullptr_t, the right side can be a null
1700  // pointer constant.
1701  if (ToType->isNullPtrType() &&
1702      isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1703    ConvertedType = ToType;
1704    return true;
1705  }
1706
1707  const PointerType* ToTypePtr = ToType->getAs<PointerType>();
1708  if (!ToTypePtr)
1709    return false;
1710
1711  // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
1712  if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
1713    ConvertedType = ToType;
1714    return true;
1715  }
1716
1717  // Beyond this point, both types need to be pointers
1718  // , including objective-c pointers.
1719  QualType ToPointeeType = ToTypePtr->getPointeeType();
1720  if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
1721      !getLangOptions().ObjCAutoRefCount) {
1722    ConvertedType = BuildSimilarlyQualifiedPointerType(
1723                                      FromType->getAs<ObjCObjectPointerType>(),
1724                                                       ToPointeeType,
1725                                                       ToType, Context);
1726    return true;
1727  }
1728  const PointerType *FromTypePtr = FromType->getAs<PointerType>();
1729  if (!FromTypePtr)
1730    return false;
1731
1732  QualType FromPointeeType = FromTypePtr->getPointeeType();
1733
1734  // If the unqualified pointee types are the same, this can't be a
1735  // pointer conversion, so don't do all of the work below.
1736  if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
1737    return false;
1738
1739  // An rvalue of type "pointer to cv T," where T is an object type,
1740  // can be converted to an rvalue of type "pointer to cv void" (C++
1741  // 4.10p2).
1742  if (FromPointeeType->isIncompleteOrObjectType() &&
1743      ToPointeeType->isVoidType()) {
1744    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1745                                                       ToPointeeType,
1746                                                       ToType, Context,
1747                                                   /*StripObjCLifetime=*/true);
1748    return true;
1749  }
1750
1751  // MSVC allows implicit function to void* type conversion.
1752  if (getLangOptions().MicrosoftExt && FromPointeeType->isFunctionType() &&
1753      ToPointeeType->isVoidType()) {
1754    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1755                                                       ToPointeeType,
1756                                                       ToType, Context);
1757    return true;
1758  }
1759
1760  // When we're overloading in C, we allow a special kind of pointer
1761  // conversion for compatible-but-not-identical pointee types.
1762  if (!getLangOptions().CPlusPlus &&
1763      Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
1764    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1765                                                       ToPointeeType,
1766                                                       ToType, Context);
1767    return true;
1768  }
1769
1770  // C++ [conv.ptr]p3:
1771  //
1772  //   An rvalue of type "pointer to cv D," where D is a class type,
1773  //   can be converted to an rvalue of type "pointer to cv B," where
1774  //   B is a base class (clause 10) of D. If B is an inaccessible
1775  //   (clause 11) or ambiguous (10.2) base class of D, a program that
1776  //   necessitates this conversion is ill-formed. The result of the
1777  //   conversion is a pointer to the base class sub-object of the
1778  //   derived class object. The null pointer value is converted to
1779  //   the null pointer value of the destination type.
1780  //
1781  // Note that we do not check for ambiguity or inaccessibility
1782  // here. That is handled by CheckPointerConversion.
1783  if (getLangOptions().CPlusPlus &&
1784      FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
1785      !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
1786      !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
1787      IsDerivedFrom(FromPointeeType, ToPointeeType)) {
1788    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1789                                                       ToPointeeType,
1790                                                       ToType, Context);
1791    return true;
1792  }
1793
1794  if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
1795      Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
1796    ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1797                                                       ToPointeeType,
1798                                                       ToType, Context);
1799    return true;
1800  }
1801
1802  return false;
1803}
1804
1805/// \brief Adopt the given qualifiers for the given type.
1806static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
1807  Qualifiers TQs = T.getQualifiers();
1808
1809  // Check whether qualifiers already match.
1810  if (TQs == Qs)
1811    return T;
1812
1813  if (Qs.compatiblyIncludes(TQs))
1814    return Context.getQualifiedType(T, Qs);
1815
1816  return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
1817}
1818
1819/// isObjCPointerConversion - Determines whether this is an
1820/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
1821/// with the same arguments and return values.
1822bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
1823                                   QualType& ConvertedType,
1824                                   bool &IncompatibleObjC) {
1825  if (!getLangOptions().ObjC1)
1826    return false;
1827
1828  // The set of qualifiers on the type we're converting from.
1829  Qualifiers FromQualifiers = FromType.getQualifiers();
1830
1831  // First, we handle all conversions on ObjC object pointer types.
1832  const ObjCObjectPointerType* ToObjCPtr =
1833    ToType->getAs<ObjCObjectPointerType>();
1834  const ObjCObjectPointerType *FromObjCPtr =
1835    FromType->getAs<ObjCObjectPointerType>();
1836
1837  if (ToObjCPtr && FromObjCPtr) {
1838    // If the pointee types are the same (ignoring qualifications),
1839    // then this is not a pointer conversion.
1840    if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
1841                                       FromObjCPtr->getPointeeType()))
1842      return false;
1843
1844    // Check for compatible
1845    // Objective C++: We're able to convert between "id" or "Class" and a
1846    // pointer to any interface (in both directions).
1847    if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) {
1848      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1849      return true;
1850    }
1851    // Conversions with Objective-C's id<...>.
1852    if ((FromObjCPtr->isObjCQualifiedIdType() ||
1853         ToObjCPtr->isObjCQualifiedIdType()) &&
1854        Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType,
1855                                                  /*compare=*/false)) {
1856      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1857      return true;
1858    }
1859    // Objective C++: We're able to convert from a pointer to an
1860    // interface to a pointer to a different interface.
1861    if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
1862      const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
1863      const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
1864      if (getLangOptions().CPlusPlus && LHS && RHS &&
1865          !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
1866                                                FromObjCPtr->getPointeeType()))
1867        return false;
1868      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1869                                                   ToObjCPtr->getPointeeType(),
1870                                                         ToType, Context);
1871      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1872      return true;
1873    }
1874
1875    if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
1876      // Okay: this is some kind of implicit downcast of Objective-C
1877      // interfaces, which is permitted. However, we're going to
1878      // complain about it.
1879      IncompatibleObjC = true;
1880      ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
1881                                                   ToObjCPtr->getPointeeType(),
1882                                                         ToType, Context);
1883      ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1884      return true;
1885    }
1886  }
1887  // Beyond this point, both types need to be C pointers or block pointers.
1888  QualType ToPointeeType;
1889  if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
1890    ToPointeeType = ToCPtr->getPointeeType();
1891  else if (const BlockPointerType *ToBlockPtr =
1892            ToType->getAs<BlockPointerType>()) {
1893    // Objective C++: We're able to convert from a pointer to any object
1894    // to a block pointer type.
1895    if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
1896      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1897      return true;
1898    }
1899    ToPointeeType = ToBlockPtr->getPointeeType();
1900  }
1901  else if (FromType->getAs<BlockPointerType>() &&
1902           ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
1903    // Objective C++: We're able to convert from a block pointer type to a
1904    // pointer to any object.
1905    ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
1906    return true;
1907  }
1908  else
1909    return false;
1910
1911  QualType FromPointeeType;
1912  if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
1913    FromPointeeType = FromCPtr->getPointeeType();
1914  else if (const BlockPointerType *FromBlockPtr =
1915           FromType->getAs<BlockPointerType>())
1916    FromPointeeType = FromBlockPtr->getPointeeType();
1917  else
1918    return false;
1919
1920  // If we have pointers to pointers, recursively check whether this
1921  // is an Objective-C conversion.
1922  if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1923      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1924                              IncompatibleObjC)) {
1925    // We always complain about this conversion.
1926    IncompatibleObjC = true;
1927    ConvertedType = Context.getPointerType(ConvertedType);
1928    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1929    return true;
1930  }
1931  // Allow conversion of pointee being objective-c pointer to another one;
1932  // as in I* to id.
1933  if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
1934      ToPointeeType->getAs<ObjCObjectPointerType>() &&
1935      isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1936                              IncompatibleObjC)) {
1937
1938    ConvertedType = Context.getPointerType(ConvertedType);
1939    ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
1940    return true;
1941  }
1942
1943  // If we have pointers to functions or blocks, check whether the only
1944  // differences in the argument and result types are in Objective-C
1945  // pointer conversions. If so, we permit the conversion (but
1946  // complain about it).
1947  const FunctionProtoType *FromFunctionType
1948    = FromPointeeType->getAs<FunctionProtoType>();
1949  const FunctionProtoType *ToFunctionType
1950    = ToPointeeType->getAs<FunctionProtoType>();
1951  if (FromFunctionType && ToFunctionType) {
1952    // If the function types are exactly the same, this isn't an
1953    // Objective-C pointer conversion.
1954    if (Context.getCanonicalType(FromPointeeType)
1955          == Context.getCanonicalType(ToPointeeType))
1956      return false;
1957
1958    // Perform the quick checks that will tell us whether these
1959    // function types are obviously different.
1960    if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1961        FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1962        FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1963      return false;
1964
1965    bool HasObjCConversion = false;
1966    if (Context.getCanonicalType(FromFunctionType->getResultType())
1967          == Context.getCanonicalType(ToFunctionType->getResultType())) {
1968      // Okay, the types match exactly. Nothing to do.
1969    } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1970                                       ToFunctionType->getResultType(),
1971                                       ConvertedType, IncompatibleObjC)) {
1972      // Okay, we have an Objective-C pointer conversion.
1973      HasObjCConversion = true;
1974    } else {
1975      // Function types are too different. Abort.
1976      return false;
1977    }
1978
1979    // Check argument types.
1980    for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1981         ArgIdx != NumArgs; ++ArgIdx) {
1982      QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1983      QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1984      if (Context.getCanonicalType(FromArgType)
1985            == Context.getCanonicalType(ToArgType)) {
1986        // Okay, the types match exactly. Nothing to do.
1987      } else if (isObjCPointerConversion(FromArgType, ToArgType,
1988                                         ConvertedType, IncompatibleObjC)) {
1989        // Okay, we have an Objective-C pointer conversion.
1990        HasObjCConversion = true;
1991      } else {
1992        // Argument types are too different. Abort.
1993        return false;
1994      }
1995    }
1996
1997    if (HasObjCConversion) {
1998      // We had an Objective-C conversion. Allow this pointer
1999      // conversion, but complain about it.
2000      ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
2001      IncompatibleObjC = true;
2002      return true;
2003    }
2004  }
2005
2006  return false;
2007}
2008
2009/// \brief Determine whether this is an Objective-C writeback conversion,
2010/// used for parameter passing when performing automatic reference counting.
2011///
2012/// \param FromType The type we're converting form.
2013///
2014/// \param ToType The type we're converting to.
2015///
2016/// \param ConvertedType The type that will be produced after applying
2017/// this conversion.
2018bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
2019                                     QualType &ConvertedType) {
2020  if (!getLangOptions().ObjCAutoRefCount ||
2021      Context.hasSameUnqualifiedType(FromType, ToType))
2022    return false;
2023
2024  // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
2025  QualType ToPointee;
2026  if (const PointerType *ToPointer = ToType->getAs<PointerType>())
2027    ToPointee = ToPointer->getPointeeType();
2028  else
2029    return false;
2030
2031  Qualifiers ToQuals = ToPointee.getQualifiers();
2032  if (!ToPointee->isObjCLifetimeType() ||
2033      ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
2034      !ToQuals.withoutObjCGLifetime().empty())
2035    return false;
2036
2037  // Argument must be a pointer to __strong to __weak.
2038  QualType FromPointee;
2039  if (const PointerType *FromPointer = FromType->getAs<PointerType>())
2040    FromPointee = FromPointer->getPointeeType();
2041  else
2042    return false;
2043
2044  Qualifiers FromQuals = FromPointee.getQualifiers();
2045  if (!FromPointee->isObjCLifetimeType() ||
2046      (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
2047       FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
2048    return false;
2049
2050  // Make sure that we have compatible qualifiers.
2051  FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
2052  if (!ToQuals.compatiblyIncludes(FromQuals))
2053    return false;
2054
2055  // Remove qualifiers from the pointee type we're converting from; they
2056  // aren't used in the compatibility check belong, and we'll be adding back
2057  // qualifiers (with __autoreleasing) if the compatibility check succeeds.
2058  FromPointee = FromPointee.getUnqualifiedType();
2059
2060  // The unqualified form of the pointee types must be compatible.
2061  ToPointee = ToPointee.getUnqualifiedType();
2062  bool IncompatibleObjC;
2063  if (Context.typesAreCompatible(FromPointee, ToPointee))
2064    FromPointee = ToPointee;
2065  else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
2066                                    IncompatibleObjC))
2067    return false;
2068
2069  /// \brief Construct the type we're converting to, which is a pointer to
2070  /// __autoreleasing pointee.
2071  FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
2072  ConvertedType = Context.getPointerType(FromPointee);
2073  return true;
2074}
2075
2076bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
2077                                    QualType& ConvertedType) {
2078  QualType ToPointeeType;
2079  if (const BlockPointerType *ToBlockPtr =
2080        ToType->getAs<BlockPointerType>())
2081    ToPointeeType = ToBlockPtr->getPointeeType();
2082  else
2083    return false;
2084
2085  QualType FromPointeeType;
2086  if (const BlockPointerType *FromBlockPtr =
2087      FromType->getAs<BlockPointerType>())
2088    FromPointeeType = FromBlockPtr->getPointeeType();
2089  else
2090    return false;
2091  // We have pointer to blocks, check whether the only
2092  // differences in the argument and result types are in Objective-C
2093  // pointer conversions. If so, we permit the conversion.
2094
2095  const FunctionProtoType *FromFunctionType
2096    = FromPointeeType->getAs<FunctionProtoType>();
2097  const FunctionProtoType *ToFunctionType
2098    = ToPointeeType->getAs<FunctionProtoType>();
2099
2100  if (!FromFunctionType || !ToFunctionType)
2101    return false;
2102
2103  if (Context.hasSameType(FromPointeeType, ToPointeeType))
2104    return true;
2105
2106  // Perform the quick checks that will tell us whether these
2107  // function types are obviously different.
2108  if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
2109      FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
2110    return false;
2111
2112  FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
2113  FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
2114  if (FromEInfo != ToEInfo)
2115    return false;
2116
2117  bool IncompatibleObjC = false;
2118  if (Context.hasSameType(FromFunctionType->getResultType(),
2119                          ToFunctionType->getResultType())) {
2120    // Okay, the types match exactly. Nothing to do.
2121  } else {
2122    QualType RHS = FromFunctionType->getResultType();
2123    QualType LHS = ToFunctionType->getResultType();
2124    if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) &&
2125        !RHS.hasQualifiers() && LHS.hasQualifiers())
2126       LHS = LHS.getUnqualifiedType();
2127
2128     if (Context.hasSameType(RHS,LHS)) {
2129       // OK exact match.
2130     } else if (isObjCPointerConversion(RHS, LHS,
2131                                        ConvertedType, IncompatibleObjC)) {
2132     if (IncompatibleObjC)
2133       return false;
2134     // Okay, we have an Objective-C pointer conversion.
2135     }
2136     else
2137       return false;
2138   }
2139
2140   // Check argument types.
2141   for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
2142        ArgIdx != NumArgs; ++ArgIdx) {
2143     IncompatibleObjC = false;
2144     QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
2145     QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
2146     if (Context.hasSameType(FromArgType, ToArgType)) {
2147       // Okay, the types match exactly. Nothing to do.
2148     } else if (isObjCPointerConversion(ToArgType, FromArgType,
2149                                        ConvertedType, IncompatibleObjC)) {
2150       if (IncompatibleObjC)
2151         return false;
2152       // Okay, we have an Objective-C pointer conversion.
2153     } else
2154       // Argument types are too different. Abort.
2155       return false;
2156   }
2157   if (LangOpts.ObjCAutoRefCount &&
2158       !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType,
2159                                                    ToFunctionType))
2160     return false;
2161
2162   ConvertedType = ToType;
2163   return true;
2164}
2165
2166/// FunctionArgTypesAreEqual - This routine checks two function proto types
2167/// for equlity of their argument types. Caller has already checked that
2168/// they have same number of arguments. This routine assumes that Objective-C
2169/// pointer types which only differ in their protocol qualifiers are equal.
2170bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
2171                                    const FunctionProtoType *NewType) {
2172  if (!getLangOptions().ObjC1)
2173    return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
2174                      NewType->arg_type_begin());
2175
2176  for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
2177       N = NewType->arg_type_begin(),
2178       E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
2179    QualType ToType = (*O);
2180    QualType FromType = (*N);
2181    if (ToType != FromType) {
2182      if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
2183        if (const PointerType *PTFr = FromType->getAs<PointerType>())
2184          if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
2185               PTFr->getPointeeType()->isObjCQualifiedIdType()) ||
2186              (PTTo->getPointeeType()->isObjCQualifiedClassType() &&
2187               PTFr->getPointeeType()->isObjCQualifiedClassType()))
2188            continue;
2189      }
2190      else if (const ObjCObjectPointerType *PTTo =
2191                 ToType->getAs<ObjCObjectPointerType>()) {
2192        if (const ObjCObjectPointerType *PTFr =
2193              FromType->getAs<ObjCObjectPointerType>())
2194          if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
2195            continue;
2196      }
2197      return false;
2198    }
2199  }
2200  return true;
2201}
2202
2203/// CheckPointerConversion - Check the pointer conversion from the
2204/// expression From to the type ToType. This routine checks for
2205/// ambiguous or inaccessible derived-to-base pointer
2206/// conversions for which IsPointerConversion has already returned
2207/// true. It returns true and produces a diagnostic if there was an
2208/// error, or returns false otherwise.
2209bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
2210                                  CastKind &Kind,
2211                                  CXXCastPath& BasePath,
2212                                  bool IgnoreBaseAccess) {
2213  QualType FromType = From->getType();
2214  bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
2215
2216  Kind = CK_BitCast;
2217
2218  if (!IsCStyleOrFunctionalCast &&
2219      Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) &&
2220      From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull))
2221    DiagRuntimeBehavior(From->getExprLoc(), From,
2222                        PDiag(diag::warn_impcast_bool_to_null_pointer)
2223                          << ToType << From->getSourceRange());
2224
2225  if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
2226    if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
2227      QualType FromPointeeType = FromPtrType->getPointeeType(),
2228               ToPointeeType   = ToPtrType->getPointeeType();
2229
2230      if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
2231          !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
2232        // We must have a derived-to-base conversion. Check an
2233        // ambiguous or inaccessible conversion.
2234        if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
2235                                         From->getExprLoc(),
2236                                         From->getSourceRange(), &BasePath,
2237                                         IgnoreBaseAccess))
2238          return true;
2239
2240        // The conversion was successful.
2241        Kind = CK_DerivedToBase;
2242      }
2243    }
2244  } else if (const ObjCObjectPointerType *ToPtrType =
2245               ToType->getAs<ObjCObjectPointerType>()) {
2246    if (const ObjCObjectPointerType *FromPtrType =
2247          FromType->getAs<ObjCObjectPointerType>()) {
2248      // Objective-C++ conversions are always okay.
2249      // FIXME: We should have a different class of conversions for the
2250      // Objective-C++ implicit conversions.
2251      if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
2252        return false;
2253    } else if (FromType->isBlockPointerType()) {
2254      Kind = CK_BlockPointerToObjCPointerCast;
2255    } else {
2256      Kind = CK_CPointerToObjCPointerCast;
2257    }
2258  } else if (ToType->isBlockPointerType()) {
2259    if (!FromType->isBlockPointerType())
2260      Kind = CK_AnyPointerToBlockPointerCast;
2261  }
2262
2263  // We shouldn't fall into this case unless it's valid for other
2264  // reasons.
2265  if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
2266    Kind = CK_NullToPointer;
2267
2268  return false;
2269}
2270
2271/// IsMemberPointerConversion - Determines whether the conversion of the
2272/// expression From, which has the (possibly adjusted) type FromType, can be
2273/// converted to the type ToType via a member pointer conversion (C++ 4.11).
2274/// If so, returns true and places the converted type (that might differ from
2275/// ToType in its cv-qualifiers at some level) into ConvertedType.
2276bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
2277                                     QualType ToType,
2278                                     bool InOverloadResolution,
2279                                     QualType &ConvertedType) {
2280  const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
2281  if (!ToTypePtr)
2282    return false;
2283
2284  // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
2285  if (From->isNullPointerConstant(Context,
2286                    InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
2287                                        : Expr::NPC_ValueDependentIsNull)) {
2288    ConvertedType = ToType;
2289    return true;
2290  }
2291
2292  // Otherwise, both types have to be member pointers.
2293  const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
2294  if (!FromTypePtr)
2295    return false;
2296
2297  // A pointer to member of B can be converted to a pointer to member of D,
2298  // where D is derived from B (C++ 4.11p2).
2299  QualType FromClass(FromTypePtr->getClass(), 0);
2300  QualType ToClass(ToTypePtr->getClass(), 0);
2301
2302  if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
2303      !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) &&
2304      IsDerivedFrom(ToClass, FromClass)) {
2305    ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
2306                                                 ToClass.getTypePtr());
2307    return true;
2308  }
2309
2310  return false;
2311}
2312
2313/// CheckMemberPointerConversion - Check the member pointer conversion from the
2314/// expression From to the type ToType. This routine checks for ambiguous or
2315/// virtual or inaccessible base-to-derived member pointer conversions
2316/// for which IsMemberPointerConversion has already returned true. It returns
2317/// true and produces a diagnostic if there was an error, or returns false
2318/// otherwise.
2319bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
2320                                        CastKind &Kind,
2321                                        CXXCastPath &BasePath,
2322                                        bool IgnoreBaseAccess) {
2323  QualType FromType = From->getType();
2324  const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
2325  if (!FromPtrType) {
2326    // This must be a null pointer to member pointer conversion
2327    assert(From->isNullPointerConstant(Context,
2328                                       Expr::NPC_ValueDependentIsNull) &&
2329           "Expr must be null pointer constant!");
2330    Kind = CK_NullToMemberPointer;
2331    return false;
2332  }
2333
2334  const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
2335  assert(ToPtrType && "No member pointer cast has a target type "
2336                      "that is not a member pointer.");
2337
2338  QualType FromClass = QualType(FromPtrType->getClass(), 0);
2339  QualType ToClass   = QualType(ToPtrType->getClass(), 0);
2340
2341  // FIXME: What about dependent types?
2342  assert(FromClass->isRecordType() && "Pointer into non-class.");
2343  assert(ToClass->isRecordType() && "Pointer into non-class.");
2344
2345  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2346                     /*DetectVirtual=*/true);
2347  bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
2348  assert(DerivationOkay &&
2349         "Should not have been called if derivation isn't OK.");
2350  (void)DerivationOkay;
2351
2352  if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
2353                                  getUnqualifiedType())) {
2354    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2355    Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
2356      << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
2357    return true;
2358  }
2359
2360  if (const RecordType *VBase = Paths.getDetectedVirtual()) {
2361    Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
2362      << FromClass << ToClass << QualType(VBase, 0)
2363      << From->getSourceRange();
2364    return true;
2365  }
2366
2367  if (!IgnoreBaseAccess)
2368    CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
2369                         Paths.front(),
2370                         diag::err_downcast_from_inaccessible_base);
2371
2372  // Must be a base to derived member conversion.
2373  BuildBasePathArray(Paths, BasePath);
2374  Kind = CK_BaseToDerivedMemberPointer;
2375  return false;
2376}
2377
2378/// IsQualificationConversion - Determines whether the conversion from
2379/// an rvalue of type FromType to ToType is a qualification conversion
2380/// (C++ 4.4).
2381///
2382/// \param ObjCLifetimeConversion Output parameter that will be set to indicate
2383/// when the qualification conversion involves a change in the Objective-C
2384/// object lifetime.
2385bool
2386Sema::IsQualificationConversion(QualType FromType, QualType ToType,
2387                                bool CStyle, bool &ObjCLifetimeConversion) {
2388  FromType = Context.getCanonicalType(FromType);
2389  ToType = Context.getCanonicalType(ToType);
2390  ObjCLifetimeConversion = false;
2391
2392  // If FromType and ToType are the same type, this is not a
2393  // qualification conversion.
2394  if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
2395    return false;
2396
2397  // (C++ 4.4p4):
2398  //   A conversion can add cv-qualifiers at levels other than the first
2399  //   in multi-level pointers, subject to the following rules: [...]
2400  bool PreviousToQualsIncludeConst = true;
2401  bool UnwrappedAnyPointer = false;
2402  while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) {
2403    // Within each iteration of the loop, we check the qualifiers to
2404    // determine if this still looks like a qualification
2405    // conversion. Then, if all is well, we unwrap one more level of
2406    // pointers or pointers-to-members and do it all again
2407    // until there are no more pointers or pointers-to-members left to
2408    // unwrap.
2409    UnwrappedAnyPointer = true;
2410
2411    Qualifiers FromQuals = FromType.getQualifiers();
2412    Qualifiers ToQuals = ToType.getQualifiers();
2413
2414    // Objective-C ARC:
2415    //   Check Objective-C lifetime conversions.
2416    if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
2417        UnwrappedAnyPointer) {
2418      if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
2419        ObjCLifetimeConversion = true;
2420        FromQuals.removeObjCLifetime();
2421        ToQuals.removeObjCLifetime();
2422      } else {
2423        // Qualification conversions cannot cast between different
2424        // Objective-C lifetime qualifiers.
2425        return false;
2426      }
2427    }
2428
2429    // Allow addition/removal of GC attributes but not changing GC attributes.
2430    if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
2431        (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
2432      FromQuals.removeObjCGCAttr();
2433      ToQuals.removeObjCGCAttr();
2434    }
2435
2436    //   -- for every j > 0, if const is in cv 1,j then const is in cv
2437    //      2,j, and similarly for volatile.
2438    if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
2439      return false;
2440
2441    //   -- if the cv 1,j and cv 2,j are different, then const is in
2442    //      every cv for 0 < k < j.
2443    if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
2444        && !PreviousToQualsIncludeConst)
2445      return false;
2446
2447    // Keep track of whether all prior cv-qualifiers in the "to" type
2448    // include const.
2449    PreviousToQualsIncludeConst
2450      = PreviousToQualsIncludeConst && ToQuals.hasConst();
2451  }
2452
2453  // We are left with FromType and ToType being the pointee types
2454  // after unwrapping the original FromType and ToType the same number
2455  // of types. If we unwrapped any pointers, and if FromType and
2456  // ToType have the same unqualified type (since we checked
2457  // qualifiers above), then this is a qualification conversion.
2458  return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
2459}
2460
2461/// Determines whether there is a user-defined conversion sequence
2462/// (C++ [over.ics.user]) that converts expression From to the type
2463/// ToType. If such a conversion exists, User will contain the
2464/// user-defined conversion sequence that performs such a conversion
2465/// and this routine will return true. Otherwise, this routine returns
2466/// false and User is unspecified.
2467///
2468/// \param AllowExplicit  true if the conversion should consider C++0x
2469/// "explicit" conversion functions as well as non-explicit conversion
2470/// functions (C++0x [class.conv.fct]p2).
2471static OverloadingResult
2472IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
2473                        UserDefinedConversionSequence& User,
2474                        OverloadCandidateSet& CandidateSet,
2475                        bool AllowExplicit) {
2476  // Whether we will only visit constructors.
2477  bool ConstructorsOnly = false;
2478
2479  // If the type we are conversion to is a class type, enumerate its
2480  // constructors.
2481  if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
2482    // C++ [over.match.ctor]p1:
2483    //   When objects of class type are direct-initialized (8.5), or
2484    //   copy-initialized from an expression of the same or a
2485    //   derived class type (8.5), overload resolution selects the
2486    //   constructor. [...] For copy-initialization, the candidate
2487    //   functions are all the converting constructors (12.3.1) of
2488    //   that class. The argument list is the expression-list within
2489    //   the parentheses of the initializer.
2490    if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
2491        (From->getType()->getAs<RecordType>() &&
2492         S.IsDerivedFrom(From->getType(), ToType)))
2493      ConstructorsOnly = true;
2494
2495    S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag());
2496    // RequireCompleteType may have returned true due to some invalid decl
2497    // during template instantiation, but ToType may be complete enough now
2498    // to try to recover.
2499    if (ToType->isIncompleteType()) {
2500      // We're not going to find any constructors.
2501    } else if (CXXRecordDecl *ToRecordDecl
2502                 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
2503      DeclContext::lookup_iterator Con, ConEnd;
2504      for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
2505           Con != ConEnd; ++Con) {
2506        NamedDecl *D = *Con;
2507        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2508
2509        // Find the constructor (which may be a template).
2510        CXXConstructorDecl *Constructor = 0;
2511        FunctionTemplateDecl *ConstructorTmpl
2512          = dyn_cast<FunctionTemplateDecl>(D);
2513        if (ConstructorTmpl)
2514          Constructor
2515            = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2516        else
2517          Constructor = cast<CXXConstructorDecl>(D);
2518
2519        if (!Constructor->isInvalidDecl() &&
2520            Constructor->isConvertingConstructor(AllowExplicit)) {
2521          if (ConstructorTmpl)
2522            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2523                                           /*ExplicitArgs*/ 0,
2524                                           &From, 1, CandidateSet,
2525                                           /*SuppressUserConversions=*/
2526                                             !ConstructorsOnly);
2527          else
2528            // Allow one user-defined conversion when user specifies a
2529            // From->ToType conversion via an static cast (c-style, etc).
2530            S.AddOverloadCandidate(Constructor, FoundDecl,
2531                                   &From, 1, CandidateSet,
2532                                   /*SuppressUserConversions=*/
2533                                     !ConstructorsOnly);
2534        }
2535      }
2536    }
2537  }
2538
2539  // Enumerate conversion functions, if we're allowed to.
2540  if (ConstructorsOnly) {
2541  } else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
2542                                   S.PDiag(0) << From->getSourceRange())) {
2543    // No conversion functions from incomplete types.
2544  } else if (const RecordType *FromRecordType
2545                                   = From->getType()->getAs<RecordType>()) {
2546    if (CXXRecordDecl *FromRecordDecl
2547         = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
2548      // Add all of the conversion functions as candidates.
2549      const UnresolvedSetImpl *Conversions
2550        = FromRecordDecl->getVisibleConversionFunctions();
2551      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2552             E = Conversions->end(); I != E; ++I) {
2553        DeclAccessPair FoundDecl = I.getPair();
2554        NamedDecl *D = FoundDecl.getDecl();
2555        CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
2556        if (isa<UsingShadowDecl>(D))
2557          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2558
2559        CXXConversionDecl *Conv;
2560        FunctionTemplateDecl *ConvTemplate;
2561        if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
2562          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2563        else
2564          Conv = cast<CXXConversionDecl>(D);
2565
2566        if (AllowExplicit || !Conv->isExplicit()) {
2567          if (ConvTemplate)
2568            S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl,
2569                                             ActingContext, From, ToType,
2570                                             CandidateSet);
2571          else
2572            S.AddConversionCandidate(Conv, FoundDecl, ActingContext,
2573                                     From, ToType, CandidateSet);
2574        }
2575      }
2576    }
2577  }
2578
2579  bool HadMultipleCandidates = (CandidateSet.size() > 1);
2580
2581  OverloadCandidateSet::iterator Best;
2582  switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
2583  case OR_Success:
2584    // Record the standard conversion we used and the conversion function.
2585    if (CXXConstructorDecl *Constructor
2586          = dyn_cast<CXXConstructorDecl>(Best->Function)) {
2587      S.MarkDeclarationReferenced(From->getLocStart(), Constructor);
2588
2589      // C++ [over.ics.user]p1:
2590      //   If the user-defined conversion is specified by a
2591      //   constructor (12.3.1), the initial standard conversion
2592      //   sequence converts the source type to the type required by
2593      //   the argument of the constructor.
2594      //
2595      QualType ThisType = Constructor->getThisType(S.Context);
2596      if (Best->Conversions[0].isEllipsis())
2597        User.EllipsisConversion = true;
2598      else {
2599        User.Before = Best->Conversions[0].Standard;
2600        User.EllipsisConversion = false;
2601      }
2602      User.HadMultipleCandidates = HadMultipleCandidates;
2603      User.ConversionFunction = Constructor;
2604      User.FoundConversionFunction = Best->FoundDecl;
2605      User.After.setAsIdentityConversion();
2606      User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
2607      User.After.setAllToTypes(ToType);
2608      return OR_Success;
2609    } else if (CXXConversionDecl *Conversion
2610                 = dyn_cast<CXXConversionDecl>(Best->Function)) {
2611      S.MarkDeclarationReferenced(From->getLocStart(), Conversion);
2612
2613      // C++ [over.ics.user]p1:
2614      //
2615      //   [...] If the user-defined conversion is specified by a
2616      //   conversion function (12.3.2), the initial standard
2617      //   conversion sequence converts the source type to the
2618      //   implicit object parameter of the conversion function.
2619      User.Before = Best->Conversions[0].Standard;
2620      User.HadMultipleCandidates = HadMultipleCandidates;
2621      User.ConversionFunction = Conversion;
2622      User.FoundConversionFunction = Best->FoundDecl;
2623      User.EllipsisConversion = false;
2624
2625      // C++ [over.ics.user]p2:
2626      //   The second standard conversion sequence converts the
2627      //   result of the user-defined conversion to the target type
2628      //   for the sequence. Since an implicit conversion sequence
2629      //   is an initialization, the special rules for
2630      //   initialization by user-defined conversion apply when
2631      //   selecting the best user-defined conversion for a
2632      //   user-defined conversion sequence (see 13.3.3 and
2633      //   13.3.3.1).
2634      User.After = Best->FinalConversion;
2635      return OR_Success;
2636    } else {
2637      llvm_unreachable("Not a constructor or conversion function?");
2638      return OR_No_Viable_Function;
2639    }
2640
2641  case OR_No_Viable_Function:
2642    return OR_No_Viable_Function;
2643  case OR_Deleted:
2644    // No conversion here! We're done.
2645    return OR_Deleted;
2646
2647  case OR_Ambiguous:
2648    return OR_Ambiguous;
2649  }
2650
2651  return OR_No_Viable_Function;
2652}
2653
2654bool
2655Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
2656  ImplicitConversionSequence ICS;
2657  OverloadCandidateSet CandidateSet(From->getExprLoc());
2658  OverloadingResult OvResult =
2659    IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
2660                            CandidateSet, false);
2661  if (OvResult == OR_Ambiguous)
2662    Diag(From->getSourceRange().getBegin(),
2663         diag::err_typecheck_ambiguous_condition)
2664          << From->getType() << ToType << From->getSourceRange();
2665  else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
2666    Diag(From->getSourceRange().getBegin(),
2667         diag::err_typecheck_nonviable_condition)
2668    << From->getType() << ToType << From->getSourceRange();
2669  else
2670    return false;
2671  CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
2672  return true;
2673}
2674
2675/// CompareImplicitConversionSequences - Compare two implicit
2676/// conversion sequences to determine whether one is better than the
2677/// other or if they are indistinguishable (C++ 13.3.3.2).
2678static ImplicitConversionSequence::CompareKind
2679CompareImplicitConversionSequences(Sema &S,
2680                                   const ImplicitConversionSequence& ICS1,
2681                                   const ImplicitConversionSequence& ICS2)
2682{
2683  // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
2684  // conversion sequences (as defined in 13.3.3.1)
2685  //   -- a standard conversion sequence (13.3.3.1.1) is a better
2686  //      conversion sequence than a user-defined conversion sequence or
2687  //      an ellipsis conversion sequence, and
2688  //   -- a user-defined conversion sequence (13.3.3.1.2) is a better
2689  //      conversion sequence than an ellipsis conversion sequence
2690  //      (13.3.3.1.3).
2691  //
2692  // C++0x [over.best.ics]p10:
2693  //   For the purpose of ranking implicit conversion sequences as
2694  //   described in 13.3.3.2, the ambiguous conversion sequence is
2695  //   treated as a user-defined sequence that is indistinguishable
2696  //   from any other user-defined conversion sequence.
2697  if (ICS1.getKindRank() < ICS2.getKindRank())
2698    return ImplicitConversionSequence::Better;
2699  else if (ICS2.getKindRank() < ICS1.getKindRank())
2700    return ImplicitConversionSequence::Worse;
2701
2702  // The following checks require both conversion sequences to be of
2703  // the same kind.
2704  if (ICS1.getKind() != ICS2.getKind())
2705    return ImplicitConversionSequence::Indistinguishable;
2706
2707  ImplicitConversionSequence::CompareKind Result =
2708      ImplicitConversionSequence::Indistinguishable;
2709
2710  // Two implicit conversion sequences of the same form are
2711  // indistinguishable conversion sequences unless one of the
2712  // following rules apply: (C++ 13.3.3.2p3):
2713  if (ICS1.isStandard())
2714    Result = CompareStandardConversionSequences(S,
2715                                                ICS1.Standard, ICS2.Standard);
2716  else if (ICS1.isUserDefined()) {
2717    // User-defined conversion sequence U1 is a better conversion
2718    // sequence than another user-defined conversion sequence U2 if
2719    // they contain the same user-defined conversion function or
2720    // constructor and if the second standard conversion sequence of
2721    // U1 is better than the second standard conversion sequence of
2722    // U2 (C++ 13.3.3.2p3).
2723    if (ICS1.UserDefined.ConversionFunction ==
2724          ICS2.UserDefined.ConversionFunction)
2725      Result = CompareStandardConversionSequences(S,
2726                                                  ICS1.UserDefined.After,
2727                                                  ICS2.UserDefined.After);
2728  }
2729
2730  // List-initialization sequence L1 is a better conversion sequence than
2731  // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
2732  // for some X and L2 does not.
2733  if (Result == ImplicitConversionSequence::Indistinguishable &&
2734      ICS1.isListInitializationSequence() &&
2735      ICS2.isListInitializationSequence()) {
2736    // FIXME: Find out if ICS1 converts to initializer_list and ICS2 doesn't.
2737  }
2738
2739  return Result;
2740}
2741
2742static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
2743  while (Context.UnwrapSimilarPointerTypes(T1, T2)) {
2744    Qualifiers Quals;
2745    T1 = Context.getUnqualifiedArrayType(T1, Quals);
2746    T2 = Context.getUnqualifiedArrayType(T2, Quals);
2747  }
2748
2749  return Context.hasSameUnqualifiedType(T1, T2);
2750}
2751
2752// Per 13.3.3.2p3, compare the given standard conversion sequences to
2753// determine if one is a proper subset of the other.
2754static ImplicitConversionSequence::CompareKind
2755compareStandardConversionSubsets(ASTContext &Context,
2756                                 const StandardConversionSequence& SCS1,
2757                                 const StandardConversionSequence& SCS2) {
2758  ImplicitConversionSequence::CompareKind Result
2759    = ImplicitConversionSequence::Indistinguishable;
2760
2761  // the identity conversion sequence is considered to be a subsequence of
2762  // any non-identity conversion sequence
2763  if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
2764    return ImplicitConversionSequence::Better;
2765  else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
2766    return ImplicitConversionSequence::Worse;
2767
2768  if (SCS1.Second != SCS2.Second) {
2769    if (SCS1.Second == ICK_Identity)
2770      Result = ImplicitConversionSequence::Better;
2771    else if (SCS2.Second == ICK_Identity)
2772      Result = ImplicitConversionSequence::Worse;
2773    else
2774      return ImplicitConversionSequence::Indistinguishable;
2775  } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1)))
2776    return ImplicitConversionSequence::Indistinguishable;
2777
2778  if (SCS1.Third == SCS2.Third) {
2779    return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
2780                             : ImplicitConversionSequence::Indistinguishable;
2781  }
2782
2783  if (SCS1.Third == ICK_Identity)
2784    return Result == ImplicitConversionSequence::Worse
2785             ? ImplicitConversionSequence::Indistinguishable
2786             : ImplicitConversionSequence::Better;
2787
2788  if (SCS2.Third == ICK_Identity)
2789    return Result == ImplicitConversionSequence::Better
2790             ? ImplicitConversionSequence::Indistinguishable
2791             : ImplicitConversionSequence::Worse;
2792
2793  return ImplicitConversionSequence::Indistinguishable;
2794}
2795
2796/// \brief Determine whether one of the given reference bindings is better
2797/// than the other based on what kind of bindings they are.
2798static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
2799                                       const StandardConversionSequence &SCS2) {
2800  // C++0x [over.ics.rank]p3b4:
2801  //   -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
2802  //      implicit object parameter of a non-static member function declared
2803  //      without a ref-qualifier, and *either* S1 binds an rvalue reference
2804  //      to an rvalue and S2 binds an lvalue reference *or S1 binds an
2805  //      lvalue reference to a function lvalue and S2 binds an rvalue
2806  //      reference*.
2807  //
2808  // FIXME: Rvalue references. We're going rogue with the above edits,
2809  // because the semantics in the current C++0x working paper (N3225 at the
2810  // time of this writing) break the standard definition of std::forward
2811  // and std::reference_wrapper when dealing with references to functions.
2812  // Proposed wording changes submitted to CWG for consideration.
2813  if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
2814      SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
2815    return false;
2816
2817  return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
2818          SCS2.IsLvalueReference) ||
2819         (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
2820          !SCS2.IsLvalueReference);
2821}
2822
2823/// CompareStandardConversionSequences - Compare two standard
2824/// conversion sequences to determine whether one is better than the
2825/// other or if they are indistinguishable (C++ 13.3.3.2p3).
2826static ImplicitConversionSequence::CompareKind
2827CompareStandardConversionSequences(Sema &S,
2828                                   const StandardConversionSequence& SCS1,
2829                                   const StandardConversionSequence& SCS2)
2830{
2831  // Standard conversion sequence S1 is a better conversion sequence
2832  // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
2833
2834  //  -- S1 is a proper subsequence of S2 (comparing the conversion
2835  //     sequences in the canonical form defined by 13.3.3.1.1,
2836  //     excluding any Lvalue Transformation; the identity conversion
2837  //     sequence is considered to be a subsequence of any
2838  //     non-identity conversion sequence) or, if not that,
2839  if (ImplicitConversionSequence::CompareKind CK
2840        = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
2841    return CK;
2842
2843  //  -- the rank of S1 is better than the rank of S2 (by the rules
2844  //     defined below), or, if not that,
2845  ImplicitConversionRank Rank1 = SCS1.getRank();
2846  ImplicitConversionRank Rank2 = SCS2.getRank();
2847  if (Rank1 < Rank2)
2848    return ImplicitConversionSequence::Better;
2849  else if (Rank2 < Rank1)
2850    return ImplicitConversionSequence::Worse;
2851
2852  // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
2853  // are indistinguishable unless one of the following rules
2854  // applies:
2855
2856  //   A conversion that is not a conversion of a pointer, or
2857  //   pointer to member, to bool is better than another conversion
2858  //   that is such a conversion.
2859  if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
2860    return SCS2.isPointerConversionToBool()
2861             ? ImplicitConversionSequence::Better
2862             : ImplicitConversionSequence::Worse;
2863
2864  // C++ [over.ics.rank]p4b2:
2865  //
2866  //   If class B is derived directly or indirectly from class A,
2867  //   conversion of B* to A* is better than conversion of B* to
2868  //   void*, and conversion of A* to void* is better than conversion
2869  //   of B* to void*.
2870  bool SCS1ConvertsToVoid
2871    = SCS1.isPointerConversionToVoidPointer(S.Context);
2872  bool SCS2ConvertsToVoid
2873    = SCS2.isPointerConversionToVoidPointer(S.Context);
2874  if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
2875    // Exactly one of the conversion sequences is a conversion to
2876    // a void pointer; it's the worse conversion.
2877    return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
2878                              : ImplicitConversionSequence::Worse;
2879  } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
2880    // Neither conversion sequence converts to a void pointer; compare
2881    // their derived-to-base conversions.
2882    if (ImplicitConversionSequence::CompareKind DerivedCK
2883          = CompareDerivedToBaseConversions(S, SCS1, SCS2))
2884      return DerivedCK;
2885  } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
2886             !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
2887    // Both conversion sequences are conversions to void
2888    // pointers. Compare the source types to determine if there's an
2889    // inheritance relationship in their sources.
2890    QualType FromType1 = SCS1.getFromType();
2891    QualType FromType2 = SCS2.getFromType();
2892
2893    // Adjust the types we're converting from via the array-to-pointer
2894    // conversion, if we need to.
2895    if (SCS1.First == ICK_Array_To_Pointer)
2896      FromType1 = S.Context.getArrayDecayedType(FromType1);
2897    if (SCS2.First == ICK_Array_To_Pointer)
2898      FromType2 = S.Context.getArrayDecayedType(FromType2);
2899
2900    QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
2901    QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
2902
2903    if (S.IsDerivedFrom(FromPointee2, FromPointee1))
2904      return ImplicitConversionSequence::Better;
2905    else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
2906      return ImplicitConversionSequence::Worse;
2907
2908    // Objective-C++: If one interface is more specific than the
2909    // other, it is the better one.
2910    const ObjCObjectPointerType* FromObjCPtr1
2911      = FromType1->getAs<ObjCObjectPointerType>();
2912    const ObjCObjectPointerType* FromObjCPtr2
2913      = FromType2->getAs<ObjCObjectPointerType>();
2914    if (FromObjCPtr1 && FromObjCPtr2) {
2915      bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
2916                                                          FromObjCPtr2);
2917      bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
2918                                                           FromObjCPtr1);
2919      if (AssignLeft != AssignRight) {
2920        return AssignLeft? ImplicitConversionSequence::Better
2921                         : ImplicitConversionSequence::Worse;
2922      }
2923    }
2924  }
2925
2926  // Compare based on qualification conversions (C++ 13.3.3.2p3,
2927  // bullet 3).
2928  if (ImplicitConversionSequence::CompareKind QualCK
2929        = CompareQualificationConversions(S, SCS1, SCS2))
2930    return QualCK;
2931
2932  if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
2933    // Check for a better reference binding based on the kind of bindings.
2934    if (isBetterReferenceBindingKind(SCS1, SCS2))
2935      return ImplicitConversionSequence::Better;
2936    else if (isBetterReferenceBindingKind(SCS2, SCS1))
2937      return ImplicitConversionSequence::Worse;
2938
2939    // C++ [over.ics.rank]p3b4:
2940    //   -- S1 and S2 are reference bindings (8.5.3), and the types to
2941    //      which the references refer are the same type except for
2942    //      top-level cv-qualifiers, and the type to which the reference
2943    //      initialized by S2 refers is more cv-qualified than the type
2944    //      to which the reference initialized by S1 refers.
2945    QualType T1 = SCS1.getToType(2);
2946    QualType T2 = SCS2.getToType(2);
2947    T1 = S.Context.getCanonicalType(T1);
2948    T2 = S.Context.getCanonicalType(T2);
2949    Qualifiers T1Quals, T2Quals;
2950    QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
2951    QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
2952    if (UnqualT1 == UnqualT2) {
2953      // Objective-C++ ARC: If the references refer to objects with different
2954      // lifetimes, prefer bindings that don't change lifetime.
2955      if (SCS1.ObjCLifetimeConversionBinding !=
2956                                          SCS2.ObjCLifetimeConversionBinding) {
2957        return SCS1.ObjCLifetimeConversionBinding
2958                                           ? ImplicitConversionSequence::Worse
2959                                           : ImplicitConversionSequence::Better;
2960      }
2961
2962      // If the type is an array type, promote the element qualifiers to the
2963      // type for comparison.
2964      if (isa<ArrayType>(T1) && T1Quals)
2965        T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
2966      if (isa<ArrayType>(T2) && T2Quals)
2967        T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
2968      if (T2.isMoreQualifiedThan(T1))
2969        return ImplicitConversionSequence::Better;
2970      else if (T1.isMoreQualifiedThan(T2))
2971        return ImplicitConversionSequence::Worse;
2972    }
2973  }
2974
2975  // In Microsoft mode, prefer an integral conversion to a
2976  // floating-to-integral conversion if the integral conversion
2977  // is between types of the same size.
2978  // For example:
2979  // void f(float);
2980  // void f(int);
2981  // int main {
2982  //    long a;
2983  //    f(a);
2984  // }
2985  // Here, MSVC will call f(int) instead of generating a compile error
2986  // as clang will do in standard mode.
2987  if (S.getLangOptions().MicrosoftMode &&
2988      SCS1.Second == ICK_Integral_Conversion &&
2989      SCS2.Second == ICK_Floating_Integral &&
2990      S.Context.getTypeSize(SCS1.getFromType()) ==
2991      S.Context.getTypeSize(SCS1.getToType(2)))
2992    return ImplicitConversionSequence::Better;
2993
2994  return ImplicitConversionSequence::Indistinguishable;
2995}
2996
2997/// CompareQualificationConversions - Compares two standard conversion
2998/// sequences to determine whether they can be ranked based on their
2999/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
3000ImplicitConversionSequence::CompareKind
3001CompareQualificationConversions(Sema &S,
3002                                const StandardConversionSequence& SCS1,
3003                                const StandardConversionSequence& SCS2) {
3004  // C++ 13.3.3.2p3:
3005  //  -- S1 and S2 differ only in their qualification conversion and
3006  //     yield similar types T1 and T2 (C++ 4.4), respectively, and the
3007  //     cv-qualification signature of type T1 is a proper subset of
3008  //     the cv-qualification signature of type T2, and S1 is not the
3009  //     deprecated string literal array-to-pointer conversion (4.2).
3010  if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
3011      SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
3012    return ImplicitConversionSequence::Indistinguishable;
3013
3014  // FIXME: the example in the standard doesn't use a qualification
3015  // conversion (!)
3016  QualType T1 = SCS1.getToType(2);
3017  QualType T2 = SCS2.getToType(2);
3018  T1 = S.Context.getCanonicalType(T1);
3019  T2 = S.Context.getCanonicalType(T2);
3020  Qualifiers T1Quals, T2Quals;
3021  QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
3022  QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
3023
3024  // If the types are the same, we won't learn anything by unwrapped
3025  // them.
3026  if (UnqualT1 == UnqualT2)
3027    return ImplicitConversionSequence::Indistinguishable;
3028
3029  // If the type is an array type, promote the element qualifiers to the type
3030  // for comparison.
3031  if (isa<ArrayType>(T1) && T1Quals)
3032    T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
3033  if (isa<ArrayType>(T2) && T2Quals)
3034    T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
3035
3036  ImplicitConversionSequence::CompareKind Result
3037    = ImplicitConversionSequence::Indistinguishable;
3038
3039  // Objective-C++ ARC:
3040  //   Prefer qualification conversions not involving a change in lifetime
3041  //   to qualification conversions that do not change lifetime.
3042  if (SCS1.QualificationIncludesObjCLifetime !=
3043                                      SCS2.QualificationIncludesObjCLifetime) {
3044    Result = SCS1.QualificationIncludesObjCLifetime
3045               ? ImplicitConversionSequence::Worse
3046               : ImplicitConversionSequence::Better;
3047  }
3048
3049  while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) {
3050    // Within each iteration of the loop, we check the qualifiers to
3051    // determine if this still looks like a qualification
3052    // conversion. Then, if all is well, we unwrap one more level of
3053    // pointers or pointers-to-members and do it all again
3054    // until there are no more pointers or pointers-to-members left
3055    // to unwrap. This essentially mimics what
3056    // IsQualificationConversion does, but here we're checking for a
3057    // strict subset of qualifiers.
3058    if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3059      // The qualifiers are the same, so this doesn't tell us anything
3060      // about how the sequences rank.
3061      ;
3062    else if (T2.isMoreQualifiedThan(T1)) {
3063      // T1 has fewer qualifiers, so it could be the better sequence.
3064      if (Result == ImplicitConversionSequence::Worse)
3065        // Neither has qualifiers that are a subset of the other's
3066        // qualifiers.
3067        return ImplicitConversionSequence::Indistinguishable;
3068
3069      Result = ImplicitConversionSequence::Better;
3070    } else if (T1.isMoreQualifiedThan(T2)) {
3071      // T2 has fewer qualifiers, so it could be the better sequence.
3072      if (Result == ImplicitConversionSequence::Better)
3073        // Neither has qualifiers that are a subset of the other's
3074        // qualifiers.
3075        return ImplicitConversionSequence::Indistinguishable;
3076
3077      Result = ImplicitConversionSequence::Worse;
3078    } else {
3079      // Qualifiers are disjoint.
3080      return ImplicitConversionSequence::Indistinguishable;
3081    }
3082
3083    // If the types after this point are equivalent, we're done.
3084    if (S.Context.hasSameUnqualifiedType(T1, T2))
3085      break;
3086  }
3087
3088  // Check that the winning standard conversion sequence isn't using
3089  // the deprecated string literal array to pointer conversion.
3090  switch (Result) {
3091  case ImplicitConversionSequence::Better:
3092    if (SCS1.DeprecatedStringLiteralToCharPtr)
3093      Result = ImplicitConversionSequence::Indistinguishable;
3094    break;
3095
3096  case ImplicitConversionSequence::Indistinguishable:
3097    break;
3098
3099  case ImplicitConversionSequence::Worse:
3100    if (SCS2.DeprecatedStringLiteralToCharPtr)
3101      Result = ImplicitConversionSequence::Indistinguishable;
3102    break;
3103  }
3104
3105  return Result;
3106}
3107
3108/// CompareDerivedToBaseConversions - Compares two standard conversion
3109/// sequences to determine whether they can be ranked based on their
3110/// various kinds of derived-to-base conversions (C++
3111/// [over.ics.rank]p4b3).  As part of these checks, we also look at
3112/// conversions between Objective-C interface types.
3113ImplicitConversionSequence::CompareKind
3114CompareDerivedToBaseConversions(Sema &S,
3115                                const StandardConversionSequence& SCS1,
3116                                const StandardConversionSequence& SCS2) {
3117  QualType FromType1 = SCS1.getFromType();
3118  QualType ToType1 = SCS1.getToType(1);
3119  QualType FromType2 = SCS2.getFromType();
3120  QualType ToType2 = SCS2.getToType(1);
3121
3122  // Adjust the types we're converting from via the array-to-pointer
3123  // conversion, if we need to.
3124  if (SCS1.First == ICK_Array_To_Pointer)
3125    FromType1 = S.Context.getArrayDecayedType(FromType1);
3126  if (SCS2.First == ICK_Array_To_Pointer)
3127    FromType2 = S.Context.getArrayDecayedType(FromType2);
3128
3129  // Canonicalize all of the types.
3130  FromType1 = S.Context.getCanonicalType(FromType1);
3131  ToType1 = S.Context.getCanonicalType(ToType1);
3132  FromType2 = S.Context.getCanonicalType(FromType2);
3133  ToType2 = S.Context.getCanonicalType(ToType2);
3134
3135  // C++ [over.ics.rank]p4b3:
3136  //
3137  //   If class B is derived directly or indirectly from class A and
3138  //   class C is derived directly or indirectly from B,
3139  //
3140  // Compare based on pointer conversions.
3141  if (SCS1.Second == ICK_Pointer_Conversion &&
3142      SCS2.Second == ICK_Pointer_Conversion &&
3143      /*FIXME: Remove if Objective-C id conversions get their own rank*/
3144      FromType1->isPointerType() && FromType2->isPointerType() &&
3145      ToType1->isPointerType() && ToType2->isPointerType()) {
3146    QualType FromPointee1
3147      = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3148    QualType ToPointee1
3149      = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3150    QualType FromPointee2
3151      = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3152    QualType ToPointee2
3153      = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType();
3154
3155    //   -- conversion of C* to B* is better than conversion of C* to A*,
3156    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3157      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3158        return ImplicitConversionSequence::Better;
3159      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3160        return ImplicitConversionSequence::Worse;
3161    }
3162
3163    //   -- conversion of B* to A* is better than conversion of C* to A*,
3164    if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
3165      if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3166        return ImplicitConversionSequence::Better;
3167      else if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3168        return ImplicitConversionSequence::Worse;
3169    }
3170  } else if (SCS1.Second == ICK_Pointer_Conversion &&
3171             SCS2.Second == ICK_Pointer_Conversion) {
3172    const ObjCObjectPointerType *FromPtr1
3173      = FromType1->getAs<ObjCObjectPointerType>();
3174    const ObjCObjectPointerType *FromPtr2
3175      = FromType2->getAs<ObjCObjectPointerType>();
3176    const ObjCObjectPointerType *ToPtr1
3177      = ToType1->getAs<ObjCObjectPointerType>();
3178    const ObjCObjectPointerType *ToPtr2
3179      = ToType2->getAs<ObjCObjectPointerType>();
3180
3181    if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
3182      // Apply the same conversion ranking rules for Objective-C pointer types
3183      // that we do for C++ pointers to class types. However, we employ the
3184      // Objective-C pseudo-subtyping relationship used for assignment of
3185      // Objective-C pointer types.
3186      bool FromAssignLeft
3187        = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
3188      bool FromAssignRight
3189        = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
3190      bool ToAssignLeft
3191        = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
3192      bool ToAssignRight
3193        = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
3194
3195      // A conversion to an a non-id object pointer type or qualified 'id'
3196      // type is better than a conversion to 'id'.
3197      if (ToPtr1->isObjCIdType() &&
3198          (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
3199        return ImplicitConversionSequence::Worse;
3200      if (ToPtr2->isObjCIdType() &&
3201          (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
3202        return ImplicitConversionSequence::Better;
3203
3204      // A conversion to a non-id object pointer type is better than a
3205      // conversion to a qualified 'id' type
3206      if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
3207        return ImplicitConversionSequence::Worse;
3208      if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
3209        return ImplicitConversionSequence::Better;
3210
3211      // A conversion to an a non-Class object pointer type or qualified 'Class'
3212      // type is better than a conversion to 'Class'.
3213      if (ToPtr1->isObjCClassType() &&
3214          (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
3215        return ImplicitConversionSequence::Worse;
3216      if (ToPtr2->isObjCClassType() &&
3217          (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
3218        return ImplicitConversionSequence::Better;
3219
3220      // A conversion to a non-Class object pointer type is better than a
3221      // conversion to a qualified 'Class' type.
3222      if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
3223        return ImplicitConversionSequence::Worse;
3224      if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
3225        return ImplicitConversionSequence::Better;
3226
3227      //   -- "conversion of C* to B* is better than conversion of C* to A*,"
3228      if (S.Context.hasSameType(FromType1, FromType2) &&
3229          !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
3230          (ToAssignLeft != ToAssignRight))
3231        return ToAssignLeft? ImplicitConversionSequence::Worse
3232                           : ImplicitConversionSequence::Better;
3233
3234      //   -- "conversion of B* to A* is better than conversion of C* to A*,"
3235      if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
3236          (FromAssignLeft != FromAssignRight))
3237        return FromAssignLeft? ImplicitConversionSequence::Better
3238        : ImplicitConversionSequence::Worse;
3239    }
3240  }
3241
3242  // Ranking of member-pointer types.
3243  if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
3244      FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
3245      ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
3246    const MemberPointerType * FromMemPointer1 =
3247                                        FromType1->getAs<MemberPointerType>();
3248    const MemberPointerType * ToMemPointer1 =
3249                                          ToType1->getAs<MemberPointerType>();
3250    const MemberPointerType * FromMemPointer2 =
3251                                          FromType2->getAs<MemberPointerType>();
3252    const MemberPointerType * ToMemPointer2 =
3253                                          ToType2->getAs<MemberPointerType>();
3254    const Type *FromPointeeType1 = FromMemPointer1->getClass();
3255    const Type *ToPointeeType1 = ToMemPointer1->getClass();
3256    const Type *FromPointeeType2 = FromMemPointer2->getClass();
3257    const Type *ToPointeeType2 = ToMemPointer2->getClass();
3258    QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
3259    QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
3260    QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
3261    QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
3262    // conversion of A::* to B::* is better than conversion of A::* to C::*,
3263    if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
3264      if (S.IsDerivedFrom(ToPointee1, ToPointee2))
3265        return ImplicitConversionSequence::Worse;
3266      else if (S.IsDerivedFrom(ToPointee2, ToPointee1))
3267        return ImplicitConversionSequence::Better;
3268    }
3269    // conversion of B::* to C::* is better than conversion of A::* to C::*
3270    if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
3271      if (S.IsDerivedFrom(FromPointee1, FromPointee2))
3272        return ImplicitConversionSequence::Better;
3273      else if (S.IsDerivedFrom(FromPointee2, FromPointee1))
3274        return ImplicitConversionSequence::Worse;
3275    }
3276  }
3277
3278  if (SCS1.Second == ICK_Derived_To_Base) {
3279    //   -- conversion of C to B is better than conversion of C to A,
3280    //   -- binding of an expression of type C to a reference of type
3281    //      B& is better than binding an expression of type C to a
3282    //      reference of type A&,
3283    if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3284        !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3285      if (S.IsDerivedFrom(ToType1, ToType2))
3286        return ImplicitConversionSequence::Better;
3287      else if (S.IsDerivedFrom(ToType2, ToType1))
3288        return ImplicitConversionSequence::Worse;
3289    }
3290
3291    //   -- conversion of B to A is better than conversion of C to A.
3292    //   -- binding of an expression of type B to a reference of type
3293    //      A& is better than binding an expression of type C to a
3294    //      reference of type A&,
3295    if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
3296        S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
3297      if (S.IsDerivedFrom(FromType2, FromType1))
3298        return ImplicitConversionSequence::Better;
3299      else if (S.IsDerivedFrom(FromType1, FromType2))
3300        return ImplicitConversionSequence::Worse;
3301    }
3302  }
3303
3304  return ImplicitConversionSequence::Indistinguishable;
3305}
3306
3307/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3308/// determine whether they are reference-related,
3309/// reference-compatible, reference-compatible with added
3310/// qualification, or incompatible, for use in C++ initialization by
3311/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3312/// type, and the first type (T1) is the pointee type of the reference
3313/// type being initialized.
3314Sema::ReferenceCompareResult
3315Sema::CompareReferenceRelationship(SourceLocation Loc,
3316                                   QualType OrigT1, QualType OrigT2,
3317                                   bool &DerivedToBase,
3318                                   bool &ObjCConversion,
3319                                   bool &ObjCLifetimeConversion) {
3320  assert(!OrigT1->isReferenceType() &&
3321    "T1 must be the pointee type of the reference type");
3322  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3323
3324  QualType T1 = Context.getCanonicalType(OrigT1);
3325  QualType T2 = Context.getCanonicalType(OrigT2);
3326  Qualifiers T1Quals, T2Quals;
3327  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
3328  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
3329
3330  // C++ [dcl.init.ref]p4:
3331  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3332  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3333  //   T1 is a base class of T2.
3334  DerivedToBase = false;
3335  ObjCConversion = false;
3336  ObjCLifetimeConversion = false;
3337  if (UnqualT1 == UnqualT2) {
3338    // Nothing to do.
3339  } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) &&
3340           IsDerivedFrom(UnqualT2, UnqualT1))
3341    DerivedToBase = true;
3342  else if (UnqualT1->isObjCObjectOrInterfaceType() &&
3343           UnqualT2->isObjCObjectOrInterfaceType() &&
3344           Context.canBindObjCObjectType(UnqualT1, UnqualT2))
3345    ObjCConversion = true;
3346  else
3347    return Ref_Incompatible;
3348
3349  // At this point, we know that T1 and T2 are reference-related (at
3350  // least).
3351
3352  // If the type is an array type, promote the element qualifiers to the type
3353  // for comparison.
3354  if (isa<ArrayType>(T1) && T1Quals)
3355    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
3356  if (isa<ArrayType>(T2) && T2Quals)
3357    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
3358
3359  // C++ [dcl.init.ref]p4:
3360  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3361  //   reference-related to T2 and cv1 is the same cv-qualification
3362  //   as, or greater cv-qualification than, cv2. For purposes of
3363  //   overload resolution, cases for which cv1 is greater
3364  //   cv-qualification than cv2 are identified as
3365  //   reference-compatible with added qualification (see 13.3.3.2).
3366  //
3367  // Note that we also require equivalence of Objective-C GC and address-space
3368  // qualifiers when performing these computations, so that e.g., an int in
3369  // address space 1 is not reference-compatible with an int in address
3370  // space 2.
3371  if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
3372      T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
3373    T1Quals.removeObjCLifetime();
3374    T2Quals.removeObjCLifetime();
3375    ObjCLifetimeConversion = true;
3376  }
3377
3378  if (T1Quals == T2Quals)
3379    return Ref_Compatible;
3380  else if (T1Quals.compatiblyIncludes(T2Quals))
3381    return Ref_Compatible_With_Added_Qualification;
3382  else
3383    return Ref_Related;
3384}
3385
3386/// \brief Look for a user-defined conversion to an value reference-compatible
3387///        with DeclType. Return true if something definite is found.
3388static bool
3389FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
3390                         QualType DeclType, SourceLocation DeclLoc,
3391                         Expr *Init, QualType T2, bool AllowRvalues,
3392                         bool AllowExplicit) {
3393  assert(T2->isRecordType() && "Can only find conversions of record types.");
3394  CXXRecordDecl *T2RecordDecl
3395    = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3396
3397  OverloadCandidateSet CandidateSet(DeclLoc);
3398  const UnresolvedSetImpl *Conversions
3399    = T2RecordDecl->getVisibleConversionFunctions();
3400  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
3401         E = Conversions->end(); I != E; ++I) {
3402    NamedDecl *D = *I;
3403    CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3404    if (isa<UsingShadowDecl>(D))
3405      D = cast<UsingShadowDecl>(D)->getTargetDecl();
3406
3407    FunctionTemplateDecl *ConvTemplate
3408      = dyn_cast<FunctionTemplateDecl>(D);
3409    CXXConversionDecl *Conv;
3410    if (ConvTemplate)
3411      Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3412    else
3413      Conv = cast<CXXConversionDecl>(D);
3414
3415    // If this is an explicit conversion, and we're not allowed to consider
3416    // explicit conversions, skip it.
3417    if (!AllowExplicit && Conv->isExplicit())
3418      continue;
3419
3420    if (AllowRvalues) {
3421      bool DerivedToBase = false;
3422      bool ObjCConversion = false;
3423      bool ObjCLifetimeConversion = false;
3424
3425      // If we are initializing an rvalue reference, don't permit conversion
3426      // functions that return lvalues.
3427      if (!ConvTemplate && DeclType->isRValueReferenceType()) {
3428        const ReferenceType *RefType
3429          = Conv->getConversionType()->getAs<LValueReferenceType>();
3430        if (RefType && !RefType->getPointeeType()->isFunctionType())
3431          continue;
3432      }
3433
3434      if (!ConvTemplate &&
3435          S.CompareReferenceRelationship(
3436            DeclLoc,
3437            Conv->getConversionType().getNonReferenceType()
3438              .getUnqualifiedType(),
3439            DeclType.getNonReferenceType().getUnqualifiedType(),
3440            DerivedToBase, ObjCConversion, ObjCLifetimeConversion) ==
3441          Sema::Ref_Incompatible)
3442        continue;
3443    } else {
3444      // If the conversion function doesn't return a reference type,
3445      // it can't be considered for this conversion. An rvalue reference
3446      // is only acceptable if its referencee is a function type.
3447
3448      const ReferenceType *RefType =
3449        Conv->getConversionType()->getAs<ReferenceType>();
3450      if (!RefType ||
3451          (!RefType->isLValueReferenceType() &&
3452           !RefType->getPointeeType()->isFunctionType()))
3453        continue;
3454    }
3455
3456    if (ConvTemplate)
3457      S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
3458                                       Init, DeclType, CandidateSet);
3459    else
3460      S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
3461                               DeclType, CandidateSet);
3462  }
3463
3464  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3465
3466  OverloadCandidateSet::iterator Best;
3467  switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3468  case OR_Success:
3469    // C++ [over.ics.ref]p1:
3470    //
3471    //   [...] If the parameter binds directly to the result of
3472    //   applying a conversion function to the argument
3473    //   expression, the implicit conversion sequence is a
3474    //   user-defined conversion sequence (13.3.3.1.2), with the
3475    //   second standard conversion sequence either an identity
3476    //   conversion or, if the conversion function returns an
3477    //   entity of a type that is a derived class of the parameter
3478    //   type, a derived-to-base Conversion.
3479    if (!Best->FinalConversion.DirectBinding)
3480      return false;
3481
3482    if (Best->Function)
3483      S.MarkDeclarationReferenced(DeclLoc, Best->Function);
3484    ICS.setUserDefined();
3485    ICS.UserDefined.Before = Best->Conversions[0].Standard;
3486    ICS.UserDefined.After = Best->FinalConversion;
3487    ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
3488    ICS.UserDefined.ConversionFunction = Best->Function;
3489    ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
3490    ICS.UserDefined.EllipsisConversion = false;
3491    assert(ICS.UserDefined.After.ReferenceBinding &&
3492           ICS.UserDefined.After.DirectBinding &&
3493           "Expected a direct reference binding!");
3494    return true;
3495
3496  case OR_Ambiguous:
3497    ICS.setAmbiguous();
3498    for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3499         Cand != CandidateSet.end(); ++Cand)
3500      if (Cand->Viable)
3501        ICS.Ambiguous.addConversion(Cand->Function);
3502    return true;
3503
3504  case OR_No_Viable_Function:
3505  case OR_Deleted:
3506    // There was no suitable conversion, or we found a deleted
3507    // conversion; continue with other checks.
3508    return false;
3509  }
3510
3511  return false;
3512}
3513
3514/// \brief Compute an implicit conversion sequence for reference
3515/// initialization.
3516static ImplicitConversionSequence
3517TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
3518                 SourceLocation DeclLoc,
3519                 bool SuppressUserConversions,
3520                 bool AllowExplicit) {
3521  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3522
3523  // Most paths end in a failed conversion.
3524  ImplicitConversionSequence ICS;
3525  ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3526
3527  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3528  QualType T2 = Init->getType();
3529
3530  // If the initializer is the address of an overloaded function, try
3531  // to resolve the overloaded function. If all goes well, T2 is the
3532  // type of the resulting function.
3533  if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3534    DeclAccessPair Found;
3535    if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
3536                                                                false, Found))
3537      T2 = Fn->getType();
3538  }
3539
3540  // Compute some basic properties of the types and the initializer.
3541  bool isRValRef = DeclType->isRValueReferenceType();
3542  bool DerivedToBase = false;
3543  bool ObjCConversion = false;
3544  bool ObjCLifetimeConversion = false;
3545  Expr::Classification InitCategory = Init->Classify(S.Context);
3546  Sema::ReferenceCompareResult RefRelationship
3547    = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase,
3548                                     ObjCConversion, ObjCLifetimeConversion);
3549
3550
3551  // C++0x [dcl.init.ref]p5:
3552  //   A reference to type "cv1 T1" is initialized by an expression
3553  //   of type "cv2 T2" as follows:
3554
3555  //     -- If reference is an lvalue reference and the initializer expression
3556  if (!isRValRef) {
3557    //     -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3558    //        reference-compatible with "cv2 T2," or
3559    //
3560    // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
3561    if (InitCategory.isLValue() &&
3562        RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) {
3563      // C++ [over.ics.ref]p1:
3564      //   When a parameter of reference type binds directly (8.5.3)
3565      //   to an argument expression, the implicit conversion sequence
3566      //   is the identity conversion, unless the argument expression
3567      //   has a type that is a derived class of the parameter type,
3568      //   in which case the implicit conversion sequence is a
3569      //   derived-to-base Conversion (13.3.3.1).
3570      ICS.setStandard();
3571      ICS.Standard.First = ICK_Identity;
3572      ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3573                         : ObjCConversion? ICK_Compatible_Conversion
3574                         : ICK_Identity;
3575      ICS.Standard.Third = ICK_Identity;
3576      ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3577      ICS.Standard.setToType(0, T2);
3578      ICS.Standard.setToType(1, T1);
3579      ICS.Standard.setToType(2, T1);
3580      ICS.Standard.ReferenceBinding = true;
3581      ICS.Standard.DirectBinding = true;
3582      ICS.Standard.IsLvalueReference = !isRValRef;
3583      ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3584      ICS.Standard.BindsToRvalue = false;
3585      ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3586      ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3587      ICS.Standard.CopyConstructor = 0;
3588
3589      // Nothing more to do: the inaccessibility/ambiguity check for
3590      // derived-to-base conversions is suppressed when we're
3591      // computing the implicit conversion sequence (C++
3592      // [over.best.ics]p2).
3593      return ICS;
3594    }
3595
3596    //       -- has a class type (i.e., T2 is a class type), where T1 is
3597    //          not reference-related to T2, and can be implicitly
3598    //          converted to an lvalue of type "cv3 T3," where "cv1 T1"
3599    //          is reference-compatible with "cv3 T3" 92) (this
3600    //          conversion is selected by enumerating the applicable
3601    //          conversion functions (13.3.1.6) and choosing the best
3602    //          one through overload resolution (13.3)),
3603    if (!SuppressUserConversions && T2->isRecordType() &&
3604        !S.RequireCompleteType(DeclLoc, T2, 0) &&
3605        RefRelationship == Sema::Ref_Incompatible) {
3606      if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3607                                   Init, T2, /*AllowRvalues=*/false,
3608                                   AllowExplicit))
3609        return ICS;
3610    }
3611  }
3612
3613  //     -- Otherwise, the reference shall be an lvalue reference to a
3614  //        non-volatile const type (i.e., cv1 shall be const), or the reference
3615  //        shall be an rvalue reference.
3616  //
3617  // We actually handle one oddity of C++ [over.ics.ref] at this
3618  // point, which is that, due to p2 (which short-circuits reference
3619  // binding by only attempting a simple conversion for non-direct
3620  // bindings) and p3's strange wording, we allow a const volatile
3621  // reference to bind to an rvalue. Hence the check for the presence
3622  // of "const" rather than checking for "const" being the only
3623  // qualifier.
3624  // This is also the point where rvalue references and lvalue inits no longer
3625  // go together.
3626  if (!isRValRef && !T1.isConstQualified())
3627    return ICS;
3628
3629  //       -- If the initializer expression
3630  //
3631  //            -- is an xvalue, class prvalue, array prvalue or function
3632  //               lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
3633  if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification &&
3634      (InitCategory.isXValue() ||
3635      (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
3636      (InitCategory.isLValue() && T2->isFunctionType()))) {
3637    ICS.setStandard();
3638    ICS.Standard.First = ICK_Identity;
3639    ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
3640                      : ObjCConversion? ICK_Compatible_Conversion
3641                      : ICK_Identity;
3642    ICS.Standard.Third = ICK_Identity;
3643    ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
3644    ICS.Standard.setToType(0, T2);
3645    ICS.Standard.setToType(1, T1);
3646    ICS.Standard.setToType(2, T1);
3647    ICS.Standard.ReferenceBinding = true;
3648    // In C++0x, this is always a direct binding. In C++98/03, it's a direct
3649    // binding unless we're binding to a class prvalue.
3650    // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
3651    // allow the use of rvalue references in C++98/03 for the benefit of
3652    // standard library implementors; therefore, we need the xvalue check here.
3653    ICS.Standard.DirectBinding =
3654      S.getLangOptions().CPlusPlus0x ||
3655      (InitCategory.isPRValue() && !T2->isRecordType());
3656    ICS.Standard.IsLvalueReference = !isRValRef;
3657    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3658    ICS.Standard.BindsToRvalue = InitCategory.isRValue();
3659    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3660    ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
3661    ICS.Standard.CopyConstructor = 0;
3662    return ICS;
3663  }
3664
3665  //            -- has a class type (i.e., T2 is a class type), where T1 is not
3666  //               reference-related to T2, and can be implicitly converted to
3667  //               an xvalue, class prvalue, or function lvalue of type
3668  //               "cv3 T3", where "cv1 T1" is reference-compatible with
3669  //               "cv3 T3",
3670  //
3671  //          then the reference is bound to the value of the initializer
3672  //          expression in the first case and to the result of the conversion
3673  //          in the second case (or, in either case, to an appropriate base
3674  //          class subobject).
3675  if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3676      T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) &&
3677      FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
3678                               Init, T2, /*AllowRvalues=*/true,
3679                               AllowExplicit)) {
3680    // In the second case, if the reference is an rvalue reference
3681    // and the second standard conversion sequence of the
3682    // user-defined conversion sequence includes an lvalue-to-rvalue
3683    // conversion, the program is ill-formed.
3684    if (ICS.isUserDefined() && isRValRef &&
3685        ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
3686      ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
3687
3688    return ICS;
3689  }
3690
3691  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3692  //          initialized from the initializer expression using the
3693  //          rules for a non-reference copy initialization (8.5). The
3694  //          reference is then bound to the temporary. If T1 is
3695  //          reference-related to T2, cv1 must be the same
3696  //          cv-qualification as, or greater cv-qualification than,
3697  //          cv2; otherwise, the program is ill-formed.
3698  if (RefRelationship == Sema::Ref_Related) {
3699    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3700    // we would be reference-compatible or reference-compatible with
3701    // added qualification. But that wasn't the case, so the reference
3702    // initialization fails.
3703    //
3704    // Note that we only want to check address spaces and cvr-qualifiers here.
3705    // ObjC GC and lifetime qualifiers aren't important.
3706    Qualifiers T1Quals = T1.getQualifiers();
3707    Qualifiers T2Quals = T2.getQualifiers();
3708    T1Quals.removeObjCGCAttr();
3709    T1Quals.removeObjCLifetime();
3710    T2Quals.removeObjCGCAttr();
3711    T2Quals.removeObjCLifetime();
3712    if (!T1Quals.compatiblyIncludes(T2Quals))
3713      return ICS;
3714  }
3715
3716  // If at least one of the types is a class type, the types are not
3717  // related, and we aren't allowed any user conversions, the
3718  // reference binding fails. This case is important for breaking
3719  // recursion, since TryImplicitConversion below will attempt to
3720  // create a temporary through the use of a copy constructor.
3721  if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
3722      (T1->isRecordType() || T2->isRecordType()))
3723    return ICS;
3724
3725  // If T1 is reference-related to T2 and the reference is an rvalue
3726  // reference, the initializer expression shall not be an lvalue.
3727  if (RefRelationship >= Sema::Ref_Related &&
3728      isRValRef && Init->Classify(S.Context).isLValue())
3729    return ICS;
3730
3731  // C++ [over.ics.ref]p2:
3732  //   When a parameter of reference type is not bound directly to
3733  //   an argument expression, the conversion sequence is the one
3734  //   required to convert the argument expression to the
3735  //   underlying type of the reference according to
3736  //   13.3.3.1. Conceptually, this conversion sequence corresponds
3737  //   to copy-initializing a temporary of the underlying type with
3738  //   the argument expression. Any difference in top-level
3739  //   cv-qualification is subsumed by the initialization itself
3740  //   and does not constitute a conversion.
3741  ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
3742                              /*AllowExplicit=*/false,
3743                              /*InOverloadResolution=*/false,
3744                              /*CStyle=*/false,
3745                              /*AllowObjCWritebackConversion=*/false);
3746
3747  // Of course, that's still a reference binding.
3748  if (ICS.isStandard()) {
3749    ICS.Standard.ReferenceBinding = true;
3750    ICS.Standard.IsLvalueReference = !isRValRef;
3751    ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
3752    ICS.Standard.BindsToRvalue = true;
3753    ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3754    ICS.Standard.ObjCLifetimeConversionBinding = false;
3755  } else if (ICS.isUserDefined()) {
3756    // Don't allow rvalue references to bind to lvalues.
3757    if (DeclType->isRValueReferenceType()) {
3758      if (const ReferenceType *RefType
3759            = ICS.UserDefined.ConversionFunction->getResultType()
3760                ->getAs<LValueReferenceType>()) {
3761        if (!RefType->getPointeeType()->isFunctionType()) {
3762          ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init,
3763                     DeclType);
3764          return ICS;
3765        }
3766      }
3767    }
3768
3769    ICS.UserDefined.After.ReferenceBinding = true;
3770    ICS.UserDefined.After.IsLvalueReference = !isRValRef;
3771    ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType();
3772    ICS.UserDefined.After.BindsToRvalue = true;
3773    ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
3774    ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
3775  }
3776
3777  return ICS;
3778}
3779
3780static ImplicitConversionSequence
3781TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3782                      bool SuppressUserConversions,
3783                      bool InOverloadResolution,
3784                      bool AllowObjCWritebackConversion);
3785
3786/// TryListConversion - Try to copy-initialize a value of type ToType from the
3787/// initializer list From.
3788static ImplicitConversionSequence
3789TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
3790                  bool SuppressUserConversions,
3791                  bool InOverloadResolution,
3792                  bool AllowObjCWritebackConversion) {
3793  // C++11 [over.ics.list]p1:
3794  //   When an argument is an initializer list, it is not an expression and
3795  //   special rules apply for converting it to a parameter type.
3796
3797  ImplicitConversionSequence Result;
3798  Result.setBad(BadConversionSequence::no_conversion, From, ToType);
3799  Result.setListInitializationSequence();
3800
3801  // C++11 [over.ics.list]p2:
3802  //   If the parameter type is std::initializer_list<X> or "array of X" and
3803  //   all the elements can be implicitly converted to X, the implicit
3804  //   conversion sequence is the worst conversion necessary to convert an
3805  //   element of the list to X.
3806  // FIXME: Recognize std::initializer_list.
3807  // FIXME: Arrays don't make sense until we can deal with references.
3808  if (ToType->isArrayType())
3809    return Result;
3810
3811  // C++11 [over.ics.list]p3:
3812  //   Otherwise, if the parameter is a non-aggregate class X and overload
3813  //   resolution chooses a single best constructor [...] the implicit
3814  //   conversion sequence is a user-defined conversion sequence. If multiple
3815  //   constructors are viable but none is better than the others, the
3816  //   implicit conversion sequence is a user-defined conversion sequence.
3817  // FIXME: Implement this.
3818  if (ToType->isRecordType() && !ToType->isAggregateType())
3819    return Result;
3820
3821  // C++11 [over.ics.list]p4:
3822  //   Otherwise, if the parameter has an aggregate type which can be
3823  //   initialized from the initializer list [...] the implicit conversion
3824  //   sequence is a user-defined conversion sequence.
3825  if (ToType->isAggregateType()) {
3826    // Type is an aggregate, argument is an init list. At this point it comes
3827    // down to checking whether the initialization works.
3828    // FIXME: Find out whether this parameter is consumed or not.
3829    InitializedEntity Entity =
3830        InitializedEntity::InitializeParameter(S.Context, ToType,
3831                                               /*Consumed=*/false);
3832    if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
3833      Result.setUserDefined();
3834      Result.UserDefined.Before.setAsIdentityConversion();
3835      // Initializer lists don't have a type.
3836      Result.UserDefined.Before.setFromType(QualType());
3837      Result.UserDefined.Before.setAllToTypes(QualType());
3838
3839      Result.UserDefined.After.setAsIdentityConversion();
3840      Result.UserDefined.After.setFromType(ToType);
3841      Result.UserDefined.After.setAllToTypes(ToType);
3842    }
3843    return Result;
3844  }
3845
3846  // C++11 [over.ics.list]p5:
3847  //   Otherwise, if the parameter is a reference, see 13.3.3.1.4.
3848  // FIXME: Implement this.
3849  if (ToType->isReferenceType())
3850    return Result;
3851
3852  // C++11 [over.ics.list]p6:
3853  //   Otherwise, if the parameter type is not a class:
3854  if (!ToType->isRecordType()) {
3855    //    - if the initializer list has one element, the implicit conversion
3856    //      sequence is the one required to convert the element to the
3857    //      parameter type.
3858    // FIXME: Catch narrowing here?
3859    unsigned NumInits = From->getNumInits();
3860    if (NumInits == 1)
3861      Result = TryCopyInitialization(S, From->getInit(0), ToType,
3862                                     SuppressUserConversions,
3863                                     InOverloadResolution,
3864                                     AllowObjCWritebackConversion);
3865    //    - if the initializer list has no elements, the implicit conversion
3866    //      sequence is the identity conversion.
3867    else if (NumInits == 0) {
3868      Result.setStandard();
3869      Result.Standard.setAsIdentityConversion();
3870    }
3871    return Result;
3872  }
3873
3874  // C++11 [over.ics.list]p7:
3875  //   In all cases other than those enumerated above, no conversion is possible
3876  return Result;
3877}
3878
3879/// TryCopyInitialization - Try to copy-initialize a value of type
3880/// ToType from the expression From. Return the implicit conversion
3881/// sequence required to pass this argument, which may be a bad
3882/// conversion sequence (meaning that the argument cannot be passed to
3883/// a parameter of this type). If @p SuppressUserConversions, then we
3884/// do not permit any user-defined conversion sequences.
3885static ImplicitConversionSequence
3886TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
3887                      bool SuppressUserConversions,
3888                      bool InOverloadResolution,
3889                      bool AllowObjCWritebackConversion) {
3890  if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
3891    return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
3892                             InOverloadResolution,AllowObjCWritebackConversion);
3893
3894  if (ToType->isReferenceType())
3895    return TryReferenceInit(S, From, ToType,
3896                            /*FIXME:*/From->getLocStart(),
3897                            SuppressUserConversions,
3898                            /*AllowExplicit=*/false);
3899
3900  return TryImplicitConversion(S, From, ToType,
3901                               SuppressUserConversions,
3902                               /*AllowExplicit=*/false,
3903                               InOverloadResolution,
3904                               /*CStyle=*/false,
3905                               AllowObjCWritebackConversion);
3906}
3907
3908static bool TryCopyInitialization(const CanQualType FromQTy,
3909                                  const CanQualType ToQTy,
3910                                  Sema &S,
3911                                  SourceLocation Loc,
3912                                  ExprValueKind FromVK) {
3913  OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
3914  ImplicitConversionSequence ICS =
3915    TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
3916
3917  return !ICS.isBad();
3918}
3919
3920/// TryObjectArgumentInitialization - Try to initialize the object
3921/// parameter of the given member function (@c Method) from the
3922/// expression @p From.
3923static ImplicitConversionSequence
3924TryObjectArgumentInitialization(Sema &S, QualType OrigFromType,
3925                                Expr::Classification FromClassification,
3926                                CXXMethodDecl *Method,
3927                                CXXRecordDecl *ActingContext) {
3928  QualType ClassType = S.Context.getTypeDeclType(ActingContext);
3929  // [class.dtor]p2: A destructor can be invoked for a const, volatile or
3930  //                 const volatile object.
3931  unsigned Quals = isa<CXXDestructorDecl>(Method) ?
3932    Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers();
3933  QualType ImplicitParamType =  S.Context.getCVRQualifiedType(ClassType, Quals);
3934
3935  // Set up the conversion sequence as a "bad" conversion, to allow us
3936  // to exit early.
3937  ImplicitConversionSequence ICS;
3938
3939  // We need to have an object of class type.
3940  QualType FromType = OrigFromType;
3941  if (const PointerType *PT = FromType->getAs<PointerType>()) {
3942    FromType = PT->getPointeeType();
3943
3944    // When we had a pointer, it's implicitly dereferenced, so we
3945    // better have an lvalue.
3946    assert(FromClassification.isLValue());
3947  }
3948
3949  assert(FromType->isRecordType());
3950
3951  // C++0x [over.match.funcs]p4:
3952  //   For non-static member functions, the type of the implicit object
3953  //   parameter is
3954  //
3955  //     - "lvalue reference to cv X" for functions declared without a
3956  //        ref-qualifier or with the & ref-qualifier
3957  //     - "rvalue reference to cv X" for functions declared with the &&
3958  //        ref-qualifier
3959  //
3960  // where X is the class of which the function is a member and cv is the
3961  // cv-qualification on the member function declaration.
3962  //
3963  // However, when finding an implicit conversion sequence for the argument, we
3964  // are not allowed to create temporaries or perform user-defined conversions
3965  // (C++ [over.match.funcs]p5). We perform a simplified version of
3966  // reference binding here, that allows class rvalues to bind to
3967  // non-constant references.
3968
3969  // First check the qualifiers.
3970  QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
3971  if (ImplicitParamType.getCVRQualifiers()
3972                                    != FromTypeCanon.getLocalCVRQualifiers() &&
3973      !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
3974    ICS.setBad(BadConversionSequence::bad_qualifiers,
3975               OrigFromType, ImplicitParamType);
3976    return ICS;
3977  }
3978
3979  // Check that we have either the same type or a derived type. It
3980  // affects the conversion rank.
3981  QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
3982  ImplicitConversionKind SecondKind;
3983  if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
3984    SecondKind = ICK_Identity;
3985  } else if (S.IsDerivedFrom(FromType, ClassType))
3986    SecondKind = ICK_Derived_To_Base;
3987  else {
3988    ICS.setBad(BadConversionSequence::unrelated_class,
3989               FromType, ImplicitParamType);
3990    return ICS;
3991  }
3992
3993  // Check the ref-qualifier.
3994  switch (Method->getRefQualifier()) {
3995  case RQ_None:
3996    // Do nothing; we don't care about lvalueness or rvalueness.
3997    break;
3998
3999  case RQ_LValue:
4000    if (!FromClassification.isLValue() && Quals != Qualifiers::Const) {
4001      // non-const lvalue reference cannot bind to an rvalue
4002      ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
4003                 ImplicitParamType);
4004      return ICS;
4005    }
4006    break;
4007
4008  case RQ_RValue:
4009    if (!FromClassification.isRValue()) {
4010      // rvalue reference cannot bind to an lvalue
4011      ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
4012                 ImplicitParamType);
4013      return ICS;
4014    }
4015    break;
4016  }
4017
4018  // Success. Mark this as a reference binding.
4019  ICS.setStandard();
4020  ICS.Standard.setAsIdentityConversion();
4021  ICS.Standard.Second = SecondKind;
4022  ICS.Standard.setFromType(FromType);
4023  ICS.Standard.setAllToTypes(ImplicitParamType);
4024  ICS.Standard.ReferenceBinding = true;
4025  ICS.Standard.DirectBinding = true;
4026  ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
4027  ICS.Standard.BindsToFunctionLvalue = false;
4028  ICS.Standard.BindsToRvalue = FromClassification.isRValue();
4029  ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
4030    = (Method->getRefQualifier() == RQ_None);
4031  return ICS;
4032}
4033
4034/// PerformObjectArgumentInitialization - Perform initialization of
4035/// the implicit object parameter for the given Method with the given
4036/// expression.
4037ExprResult
4038Sema::PerformObjectArgumentInitialization(Expr *From,
4039                                          NestedNameSpecifier *Qualifier,
4040                                          NamedDecl *FoundDecl,
4041                                          CXXMethodDecl *Method) {
4042  QualType FromRecordType, DestType;
4043  QualType ImplicitParamRecordType  =
4044    Method->getThisType(Context)->getAs<PointerType>()->getPointeeType();
4045
4046  Expr::Classification FromClassification;
4047  if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
4048    FromRecordType = PT->getPointeeType();
4049    DestType = Method->getThisType(Context);
4050    FromClassification = Expr::Classification::makeSimpleLValue();
4051  } else {
4052    FromRecordType = From->getType();
4053    DestType = ImplicitParamRecordType;
4054    FromClassification = From->Classify(Context);
4055  }
4056
4057  // Note that we always use the true parent context when performing
4058  // the actual argument initialization.
4059  ImplicitConversionSequence ICS
4060    = TryObjectArgumentInitialization(*this, From->getType(), FromClassification,
4061                                      Method, Method->getParent());
4062  if (ICS.isBad()) {
4063    if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) {
4064      Qualifiers FromQs = FromRecordType.getQualifiers();
4065      Qualifiers ToQs = DestType.getQualifiers();
4066      unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
4067      if (CVR) {
4068        Diag(From->getSourceRange().getBegin(),
4069             diag::err_member_function_call_bad_cvr)
4070          << Method->getDeclName() << FromRecordType << (CVR - 1)
4071          << From->getSourceRange();
4072        Diag(Method->getLocation(), diag::note_previous_decl)
4073          << Method->getDeclName();
4074        return ExprError();
4075      }
4076    }
4077
4078    return Diag(From->getSourceRange().getBegin(),
4079                diag::err_implicit_object_parameter_init)
4080       << ImplicitParamRecordType << FromRecordType << From->getSourceRange();
4081  }
4082
4083  if (ICS.Standard.Second == ICK_Derived_To_Base) {
4084    ExprResult FromRes =
4085      PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
4086    if (FromRes.isInvalid())
4087      return ExprError();
4088    From = FromRes.take();
4089  }
4090
4091  if (!Context.hasSameType(From->getType(), DestType))
4092    From = ImpCastExprToType(From, DestType, CK_NoOp,
4093                             From->getValueKind()).take();
4094  return Owned(From);
4095}
4096
4097/// TryContextuallyConvertToBool - Attempt to contextually convert the
4098/// expression From to bool (C++0x [conv]p3).
4099static ImplicitConversionSequence
4100TryContextuallyConvertToBool(Sema &S, Expr *From) {
4101  // FIXME: This is pretty broken.
4102  return TryImplicitConversion(S, From, S.Context.BoolTy,
4103                               // FIXME: Are these flags correct?
4104                               /*SuppressUserConversions=*/false,
4105                               /*AllowExplicit=*/true,
4106                               /*InOverloadResolution=*/false,
4107                               /*CStyle=*/false,
4108                               /*AllowObjCWritebackConversion=*/false);
4109}
4110
4111/// PerformContextuallyConvertToBool - Perform a contextual conversion
4112/// of the expression From to bool (C++0x [conv]p3).
4113ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
4114  if (checkPlaceholderForOverload(*this, From))
4115    return ExprError();
4116
4117  ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
4118  if (!ICS.isBad())
4119    return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
4120
4121  if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
4122    return Diag(From->getSourceRange().getBegin(),
4123                diag::err_typecheck_bool_condition)
4124                  << From->getType() << From->getSourceRange();
4125  return ExprError();
4126}
4127
4128/// dropPointerConversions - If the given standard conversion sequence
4129/// involves any pointer conversions, remove them.  This may change
4130/// the result type of the conversion sequence.
4131static void dropPointerConversion(StandardConversionSequence &SCS) {
4132  if (SCS.Second == ICK_Pointer_Conversion) {
4133    SCS.Second = ICK_Identity;
4134    SCS.Third = ICK_Identity;
4135    SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
4136  }
4137}
4138
4139/// TryContextuallyConvertToObjCPointer - Attempt to contextually
4140/// convert the expression From to an Objective-C pointer type.
4141static ImplicitConversionSequence
4142TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
4143  // Do an implicit conversion to 'id'.
4144  QualType Ty = S.Context.getObjCIdType();
4145  ImplicitConversionSequence ICS
4146    = TryImplicitConversion(S, From, Ty,
4147                            // FIXME: Are these flags correct?
4148                            /*SuppressUserConversions=*/false,
4149                            /*AllowExplicit=*/true,
4150                            /*InOverloadResolution=*/false,
4151                            /*CStyle=*/false,
4152                            /*AllowObjCWritebackConversion=*/false);
4153
4154  // Strip off any final conversions to 'id'.
4155  switch (ICS.getKind()) {
4156  case ImplicitConversionSequence::BadConversion:
4157  case ImplicitConversionSequence::AmbiguousConversion:
4158  case ImplicitConversionSequence::EllipsisConversion:
4159    break;
4160
4161  case ImplicitConversionSequence::UserDefinedConversion:
4162    dropPointerConversion(ICS.UserDefined.After);
4163    break;
4164
4165  case ImplicitConversionSequence::StandardConversion:
4166    dropPointerConversion(ICS.Standard);
4167    break;
4168  }
4169
4170  return ICS;
4171}
4172
4173/// PerformContextuallyConvertToObjCPointer - Perform a contextual
4174/// conversion of the expression From to an Objective-C pointer type.
4175ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
4176  if (checkPlaceholderForOverload(*this, From))
4177    return ExprError();
4178
4179  QualType Ty = Context.getObjCIdType();
4180  ImplicitConversionSequence ICS =
4181    TryContextuallyConvertToObjCPointer(*this, From);
4182  if (!ICS.isBad())
4183    return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
4184  return ExprError();
4185}
4186
4187/// \brief Attempt to convert the given expression to an integral or
4188/// enumeration type.
4189///
4190/// This routine will attempt to convert an expression of class type to an
4191/// integral or enumeration type, if that class type only has a single
4192/// conversion to an integral or enumeration type.
4193///
4194/// \param Loc The source location of the construct that requires the
4195/// conversion.
4196///
4197/// \param FromE The expression we're converting from.
4198///
4199/// \param NotIntDiag The diagnostic to be emitted if the expression does not
4200/// have integral or enumeration type.
4201///
4202/// \param IncompleteDiag The diagnostic to be emitted if the expression has
4203/// incomplete class type.
4204///
4205/// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an
4206/// explicit conversion function (because no implicit conversion functions
4207/// were available). This is a recovery mode.
4208///
4209/// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag,
4210/// showing which conversion was picked.
4211///
4212/// \param AmbigDiag The diagnostic to be emitted if there is more than one
4213/// conversion function that could convert to integral or enumeration type.
4214///
4215/// \param AmbigNote The note to be emitted with \p AmbigDiag for each
4216/// usable conversion function.
4217///
4218/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
4219/// function, which may be an extension in this case.
4220///
4221/// \returns The expression, converted to an integral or enumeration type if
4222/// successful.
4223ExprResult
4224Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
4225                                         const PartialDiagnostic &NotIntDiag,
4226                                       const PartialDiagnostic &IncompleteDiag,
4227                                     const PartialDiagnostic &ExplicitConvDiag,
4228                                     const PartialDiagnostic &ExplicitConvNote,
4229                                         const PartialDiagnostic &AmbigDiag,
4230                                         const PartialDiagnostic &AmbigNote,
4231                                         const PartialDiagnostic &ConvDiag) {
4232  // We can't perform any more checking for type-dependent expressions.
4233  if (From->isTypeDependent())
4234    return Owned(From);
4235
4236  // If the expression already has integral or enumeration type, we're golden.
4237  QualType T = From->getType();
4238  if (T->isIntegralOrEnumerationType())
4239    return Owned(From);
4240
4241  // FIXME: Check for missing '()' if T is a function type?
4242
4243  // If we don't have a class type in C++, there's no way we can get an
4244  // expression of integral or enumeration type.
4245  const RecordType *RecordTy = T->getAs<RecordType>();
4246  if (!RecordTy || !getLangOptions().CPlusPlus) {
4247    Diag(Loc, NotIntDiag)
4248      << T << From->getSourceRange();
4249    return Owned(From);
4250  }
4251
4252  // We must have a complete class type.
4253  if (RequireCompleteType(Loc, T, IncompleteDiag))
4254    return Owned(From);
4255
4256  // Look for a conversion to an integral or enumeration type.
4257  UnresolvedSet<4> ViableConversions;
4258  UnresolvedSet<4> ExplicitConversions;
4259  const UnresolvedSetImpl *Conversions
4260    = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
4261
4262  bool HadMultipleCandidates = (Conversions->size() > 1);
4263
4264  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4265                                   E = Conversions->end();
4266       I != E;
4267       ++I) {
4268    if (CXXConversionDecl *Conversion
4269          = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
4270      if (Conversion->getConversionType().getNonReferenceType()
4271            ->isIntegralOrEnumerationType()) {
4272        if (Conversion->isExplicit())
4273          ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
4274        else
4275          ViableConversions.addDecl(I.getDecl(), I.getAccess());
4276      }
4277  }
4278
4279  switch (ViableConversions.size()) {
4280  case 0:
4281    if (ExplicitConversions.size() == 1) {
4282      DeclAccessPair Found = ExplicitConversions[0];
4283      CXXConversionDecl *Conversion
4284        = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4285
4286      // The user probably meant to invoke the given explicit
4287      // conversion; use it.
4288      QualType ConvTy
4289        = Conversion->getConversionType().getNonReferenceType();
4290      std::string TypeStr;
4291      ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy());
4292
4293      Diag(Loc, ExplicitConvDiag)
4294        << T << ConvTy
4295        << FixItHint::CreateInsertion(From->getLocStart(),
4296                                      "static_cast<" + TypeStr + ">(")
4297        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()),
4298                                      ")");
4299      Diag(Conversion->getLocation(), ExplicitConvNote)
4300        << ConvTy->isEnumeralType() << ConvTy;
4301
4302      // If we aren't in a SFINAE context, build a call to the
4303      // explicit conversion function.
4304      if (isSFINAEContext())
4305        return ExprError();
4306
4307      CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4308      ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
4309                                                 HadMultipleCandidates);
4310      if (Result.isInvalid())
4311        return ExprError();
4312
4313      From = Result.get();
4314    }
4315
4316    // We'll complain below about a non-integral condition type.
4317    break;
4318
4319  case 1: {
4320    // Apply this conversion.
4321    DeclAccessPair Found = ViableConversions[0];
4322    CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found);
4323
4324    CXXConversionDecl *Conversion
4325      = cast<CXXConversionDecl>(Found->getUnderlyingDecl());
4326    QualType ConvTy
4327      = Conversion->getConversionType().getNonReferenceType();
4328    if (ConvDiag.getDiagID()) {
4329      if (isSFINAEContext())
4330        return ExprError();
4331
4332      Diag(Loc, ConvDiag)
4333        << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange();
4334    }
4335
4336    ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion,
4337                                               HadMultipleCandidates);
4338    if (Result.isInvalid())
4339      return ExprError();
4340
4341    From = Result.get();
4342    break;
4343  }
4344
4345  default:
4346    Diag(Loc, AmbigDiag)
4347      << T << From->getSourceRange();
4348    for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
4349      CXXConversionDecl *Conv
4350        = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
4351      QualType ConvTy = Conv->getConversionType().getNonReferenceType();
4352      Diag(Conv->getLocation(), AmbigNote)
4353        << ConvTy->isEnumeralType() << ConvTy;
4354    }
4355    return Owned(From);
4356  }
4357
4358  if (!From->getType()->isIntegralOrEnumerationType())
4359    Diag(Loc, NotIntDiag)
4360      << From->getType() << From->getSourceRange();
4361
4362  return Owned(From);
4363}
4364
4365/// AddOverloadCandidate - Adds the given function to the set of
4366/// candidate functions, using the given function call arguments.  If
4367/// @p SuppressUserConversions, then don't allow user-defined
4368/// conversions via constructors or conversion operators.
4369///
4370/// \para PartialOverloading true if we are performing "partial" overloading
4371/// based on an incomplete set of function arguments. This feature is used by
4372/// code completion.
4373void
4374Sema::AddOverloadCandidate(FunctionDecl *Function,
4375                           DeclAccessPair FoundDecl,
4376                           Expr **Args, unsigned NumArgs,
4377                           OverloadCandidateSet& CandidateSet,
4378                           bool SuppressUserConversions,
4379                           bool PartialOverloading) {
4380  const FunctionProtoType* Proto
4381    = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
4382  assert(Proto && "Functions without a prototype cannot be overloaded");
4383  assert(!Function->getDescribedFunctionTemplate() &&
4384         "Use AddTemplateOverloadCandidate for function templates");
4385
4386  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
4387    if (!isa<CXXConstructorDecl>(Method)) {
4388      // If we get here, it's because we're calling a member function
4389      // that is named without a member access expression (e.g.,
4390      // "this->f") that was either written explicitly or created
4391      // implicitly. This can happen with a qualified call to a member
4392      // function, e.g., X::f(). We use an empty type for the implied
4393      // object argument (C++ [over.call.func]p3), and the acting context
4394      // is irrelevant.
4395      AddMethodCandidate(Method, FoundDecl, Method->getParent(),
4396                         QualType(), Expr::Classification::makeSimpleLValue(),
4397                         Args, NumArgs, CandidateSet,
4398                         SuppressUserConversions);
4399      return;
4400    }
4401    // We treat a constructor like a non-member function, since its object
4402    // argument doesn't participate in overload resolution.
4403  }
4404
4405  if (!CandidateSet.isNewCandidate(Function))
4406    return;
4407
4408  // Overload resolution is always an unevaluated context.
4409  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4410
4411  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){
4412    // C++ [class.copy]p3:
4413    //   A member function template is never instantiated to perform the copy
4414    //   of a class object to an object of its class type.
4415    QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
4416    if (NumArgs == 1 &&
4417        Constructor->isSpecializationCopyingObject() &&
4418        (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
4419         IsDerivedFrom(Args[0]->getType(), ClassType)))
4420      return;
4421  }
4422
4423  // Add this candidate
4424  CandidateSet.push_back(OverloadCandidate());
4425  OverloadCandidate& Candidate = CandidateSet.back();
4426  Candidate.FoundDecl = FoundDecl;
4427  Candidate.Function = Function;
4428  Candidate.Viable = true;
4429  Candidate.IsSurrogate = false;
4430  Candidate.IgnoreObjectArgument = false;
4431  Candidate.ExplicitCallArguments = NumArgs;
4432
4433  unsigned NumArgsInProto = Proto->getNumArgs();
4434
4435  // (C++ 13.3.2p2): A candidate function having fewer than m
4436  // parameters is viable only if it has an ellipsis in its parameter
4437  // list (8.3.5).
4438  if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
4439      !Proto->isVariadic()) {
4440    Candidate.Viable = false;
4441    Candidate.FailureKind = ovl_fail_too_many_arguments;
4442    return;
4443  }
4444
4445  // (C++ 13.3.2p2): A candidate function having more than m parameters
4446  // is viable only if the (m+1)st parameter has a default argument
4447  // (8.3.6). For the purposes of overload resolution, the
4448  // parameter list is truncated on the right, so that there are
4449  // exactly m parameters.
4450  unsigned MinRequiredArgs = Function->getMinRequiredArguments();
4451  if (NumArgs < MinRequiredArgs && !PartialOverloading) {
4452    // Not enough arguments.
4453    Candidate.Viable = false;
4454    Candidate.FailureKind = ovl_fail_too_few_arguments;
4455    return;
4456  }
4457
4458  // (CUDA B.1): Check for invalid calls between targets.
4459  if (getLangOptions().CUDA)
4460    if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
4461      if (CheckCUDATarget(Caller, Function)) {
4462        Candidate.Viable = false;
4463        Candidate.FailureKind = ovl_fail_bad_target;
4464        return;
4465      }
4466
4467  // Determine the implicit conversion sequences for each of the
4468  // arguments.
4469  Candidate.Conversions.resize(NumArgs);
4470  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4471    if (ArgIdx < NumArgsInProto) {
4472      // (C++ 13.3.2p3): for F to be a viable function, there shall
4473      // exist for each argument an implicit conversion sequence
4474      // (13.3.3.1) that converts that argument to the corresponding
4475      // parameter of F.
4476      QualType ParamType = Proto->getArgType(ArgIdx);
4477      Candidate.Conversions[ArgIdx]
4478        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4479                                SuppressUserConversions,
4480                                /*InOverloadResolution=*/true,
4481                                /*AllowObjCWritebackConversion=*/
4482                                  getLangOptions().ObjCAutoRefCount);
4483      if (Candidate.Conversions[ArgIdx].isBad()) {
4484        Candidate.Viable = false;
4485        Candidate.FailureKind = ovl_fail_bad_conversion;
4486        break;
4487      }
4488    } else {
4489      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4490      // argument for which there is no corresponding parameter is
4491      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4492      Candidate.Conversions[ArgIdx].setEllipsis();
4493    }
4494  }
4495}
4496
4497/// \brief Add all of the function declarations in the given function set to
4498/// the overload canddiate set.
4499void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
4500                                 Expr **Args, unsigned NumArgs,
4501                                 OverloadCandidateSet& CandidateSet,
4502                                 bool SuppressUserConversions) {
4503  for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
4504    NamedDecl *D = F.getDecl()->getUnderlyingDecl();
4505    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4506      if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
4507        AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
4508                           cast<CXXMethodDecl>(FD)->getParent(),
4509                           Args[0]->getType(), Args[0]->Classify(Context),
4510                           Args + 1, NumArgs - 1,
4511                           CandidateSet, SuppressUserConversions);
4512      else
4513        AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
4514                             SuppressUserConversions);
4515    } else {
4516      FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
4517      if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) &&
4518          !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
4519        AddMethodTemplateCandidate(FunTmpl, F.getPair(),
4520                              cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
4521                                   /*FIXME: explicit args */ 0,
4522                                   Args[0]->getType(),
4523                                   Args[0]->Classify(Context),
4524                                   Args + 1, NumArgs - 1,
4525                                   CandidateSet,
4526                                   SuppressUserConversions);
4527      else
4528        AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
4529                                     /*FIXME: explicit args */ 0,
4530                                     Args, NumArgs, CandidateSet,
4531                                     SuppressUserConversions);
4532    }
4533  }
4534}
4535
4536/// AddMethodCandidate - Adds a named decl (which is some kind of
4537/// method) as a method candidate to the given overload set.
4538void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
4539                              QualType ObjectType,
4540                              Expr::Classification ObjectClassification,
4541                              Expr **Args, unsigned NumArgs,
4542                              OverloadCandidateSet& CandidateSet,
4543                              bool SuppressUserConversions) {
4544  NamedDecl *Decl = FoundDecl.getDecl();
4545  CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
4546
4547  if (isa<UsingShadowDecl>(Decl))
4548    Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
4549
4550  if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
4551    assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
4552           "Expected a member function template");
4553    AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
4554                               /*ExplicitArgs*/ 0,
4555                               ObjectType, ObjectClassification, Args, NumArgs,
4556                               CandidateSet,
4557                               SuppressUserConversions);
4558  } else {
4559    AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
4560                       ObjectType, ObjectClassification, Args, NumArgs,
4561                       CandidateSet, SuppressUserConversions);
4562  }
4563}
4564
4565/// AddMethodCandidate - Adds the given C++ member function to the set
4566/// of candidate functions, using the given function call arguments
4567/// and the object argument (@c Object). For example, in a call
4568/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
4569/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
4570/// allow user-defined conversions via constructors or conversion
4571/// operators.
4572void
4573Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
4574                         CXXRecordDecl *ActingContext, QualType ObjectType,
4575                         Expr::Classification ObjectClassification,
4576                         Expr **Args, unsigned NumArgs,
4577                         OverloadCandidateSet& CandidateSet,
4578                         bool SuppressUserConversions) {
4579  const FunctionProtoType* Proto
4580    = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
4581  assert(Proto && "Methods without a prototype cannot be overloaded");
4582  assert(!isa<CXXConstructorDecl>(Method) &&
4583         "Use AddOverloadCandidate for constructors");
4584
4585  if (!CandidateSet.isNewCandidate(Method))
4586    return;
4587
4588  // Overload resolution is always an unevaluated context.
4589  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4590
4591  // Add this candidate
4592  CandidateSet.push_back(OverloadCandidate());
4593  OverloadCandidate& Candidate = CandidateSet.back();
4594  Candidate.FoundDecl = FoundDecl;
4595  Candidate.Function = Method;
4596  Candidate.IsSurrogate = false;
4597  Candidate.IgnoreObjectArgument = false;
4598  Candidate.ExplicitCallArguments = NumArgs;
4599
4600  unsigned NumArgsInProto = Proto->getNumArgs();
4601
4602  // (C++ 13.3.2p2): A candidate function having fewer than m
4603  // parameters is viable only if it has an ellipsis in its parameter
4604  // list (8.3.5).
4605  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
4606    Candidate.Viable = false;
4607    Candidate.FailureKind = ovl_fail_too_many_arguments;
4608    return;
4609  }
4610
4611  // (C++ 13.3.2p2): A candidate function having more than m parameters
4612  // is viable only if the (m+1)st parameter has a default argument
4613  // (8.3.6). For the purposes of overload resolution, the
4614  // parameter list is truncated on the right, so that there are
4615  // exactly m parameters.
4616  unsigned MinRequiredArgs = Method->getMinRequiredArguments();
4617  if (NumArgs < MinRequiredArgs) {
4618    // Not enough arguments.
4619    Candidate.Viable = false;
4620    Candidate.FailureKind = ovl_fail_too_few_arguments;
4621    return;
4622  }
4623
4624  Candidate.Viable = true;
4625  Candidate.Conversions.resize(NumArgs + 1);
4626
4627  if (Method->isStatic() || ObjectType.isNull())
4628    // The implicit object argument is ignored.
4629    Candidate.IgnoreObjectArgument = true;
4630  else {
4631    // Determine the implicit conversion sequence for the object
4632    // parameter.
4633    Candidate.Conversions[0]
4634      = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification,
4635                                        Method, ActingContext);
4636    if (Candidate.Conversions[0].isBad()) {
4637      Candidate.Viable = false;
4638      Candidate.FailureKind = ovl_fail_bad_conversion;
4639      return;
4640    }
4641  }
4642
4643  // Determine the implicit conversion sequences for each of the
4644  // arguments.
4645  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
4646    if (ArgIdx < NumArgsInProto) {
4647      // (C++ 13.3.2p3): for F to be a viable function, there shall
4648      // exist for each argument an implicit conversion sequence
4649      // (13.3.3.1) that converts that argument to the corresponding
4650      // parameter of F.
4651      QualType ParamType = Proto->getArgType(ArgIdx);
4652      Candidate.Conversions[ArgIdx + 1]
4653        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
4654                                SuppressUserConversions,
4655                                /*InOverloadResolution=*/true,
4656                                /*AllowObjCWritebackConversion=*/
4657                                  getLangOptions().ObjCAutoRefCount);
4658      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
4659        Candidate.Viable = false;
4660        Candidate.FailureKind = ovl_fail_bad_conversion;
4661        break;
4662      }
4663    } else {
4664      // (C++ 13.3.2p2): For the purposes of overload resolution, any
4665      // argument for which there is no corresponding parameter is
4666      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
4667      Candidate.Conversions[ArgIdx + 1].setEllipsis();
4668    }
4669  }
4670}
4671
4672/// \brief Add a C++ member function template as a candidate to the candidate
4673/// set, using template argument deduction to produce an appropriate member
4674/// function template specialization.
4675void
4676Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
4677                                 DeclAccessPair FoundDecl,
4678                                 CXXRecordDecl *ActingContext,
4679                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4680                                 QualType ObjectType,
4681                                 Expr::Classification ObjectClassification,
4682                                 Expr **Args, unsigned NumArgs,
4683                                 OverloadCandidateSet& CandidateSet,
4684                                 bool SuppressUserConversions) {
4685  if (!CandidateSet.isNewCandidate(MethodTmpl))
4686    return;
4687
4688  // C++ [over.match.funcs]p7:
4689  //   In each case where a candidate is a function template, candidate
4690  //   function template specializations are generated using template argument
4691  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4692  //   candidate functions in the usual way.113) A given name can refer to one
4693  //   or more function templates and also to a set of overloaded non-template
4694  //   functions. In such a case, the candidate functions generated from each
4695  //   function template are combined with the set of non-template candidate
4696  //   functions.
4697  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4698  FunctionDecl *Specialization = 0;
4699  if (TemplateDeductionResult Result
4700      = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
4701                                Args, NumArgs, Specialization, Info)) {
4702    CandidateSet.push_back(OverloadCandidate());
4703    OverloadCandidate &Candidate = CandidateSet.back();
4704    Candidate.FoundDecl = FoundDecl;
4705    Candidate.Function = MethodTmpl->getTemplatedDecl();
4706    Candidate.Viable = false;
4707    Candidate.FailureKind = ovl_fail_bad_deduction;
4708    Candidate.IsSurrogate = false;
4709    Candidate.IgnoreObjectArgument = false;
4710    Candidate.ExplicitCallArguments = NumArgs;
4711    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4712                                                          Info);
4713    return;
4714  }
4715
4716  // Add the function template specialization produced by template argument
4717  // deduction as a candidate.
4718  assert(Specialization && "Missing member function template specialization?");
4719  assert(isa<CXXMethodDecl>(Specialization) &&
4720         "Specialization is not a member function?");
4721  AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
4722                     ActingContext, ObjectType, ObjectClassification,
4723                     Args, NumArgs, CandidateSet, SuppressUserConversions);
4724}
4725
4726/// \brief Add a C++ function template specialization as a candidate
4727/// in the candidate set, using template argument deduction to produce
4728/// an appropriate function template specialization.
4729void
4730Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
4731                                   DeclAccessPair FoundDecl,
4732                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
4733                                   Expr **Args, unsigned NumArgs,
4734                                   OverloadCandidateSet& CandidateSet,
4735                                   bool SuppressUserConversions) {
4736  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4737    return;
4738
4739  // C++ [over.match.funcs]p7:
4740  //   In each case where a candidate is a function template, candidate
4741  //   function template specializations are generated using template argument
4742  //   deduction (14.8.3, 14.8.2). Those candidates are then handled as
4743  //   candidate functions in the usual way.113) A given name can refer to one
4744  //   or more function templates and also to a set of overloaded non-template
4745  //   functions. In such a case, the candidate functions generated from each
4746  //   function template are combined with the set of non-template candidate
4747  //   functions.
4748  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4749  FunctionDecl *Specialization = 0;
4750  if (TemplateDeductionResult Result
4751        = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
4752                                  Args, NumArgs, Specialization, Info)) {
4753    CandidateSet.push_back(OverloadCandidate());
4754    OverloadCandidate &Candidate = CandidateSet.back();
4755    Candidate.FoundDecl = FoundDecl;
4756    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4757    Candidate.Viable = false;
4758    Candidate.FailureKind = ovl_fail_bad_deduction;
4759    Candidate.IsSurrogate = false;
4760    Candidate.IgnoreObjectArgument = false;
4761    Candidate.ExplicitCallArguments = NumArgs;
4762    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4763                                                          Info);
4764    return;
4765  }
4766
4767  // Add the function template specialization produced by template argument
4768  // deduction as a candidate.
4769  assert(Specialization && "Missing function template specialization?");
4770  AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
4771                       SuppressUserConversions);
4772}
4773
4774/// AddConversionCandidate - Add a C++ conversion function as a
4775/// candidate in the candidate set (C++ [over.match.conv],
4776/// C++ [over.match.copy]). From is the expression we're converting from,
4777/// and ToType is the type that we're eventually trying to convert to
4778/// (which may or may not be the same type as the type that the
4779/// conversion function produces).
4780void
4781Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
4782                             DeclAccessPair FoundDecl,
4783                             CXXRecordDecl *ActingContext,
4784                             Expr *From, QualType ToType,
4785                             OverloadCandidateSet& CandidateSet) {
4786  assert(!Conversion->getDescribedFunctionTemplate() &&
4787         "Conversion function templates use AddTemplateConversionCandidate");
4788  QualType ConvType = Conversion->getConversionType().getNonReferenceType();
4789  if (!CandidateSet.isNewCandidate(Conversion))
4790    return;
4791
4792  // Overload resolution is always an unevaluated context.
4793  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4794
4795  // Add this candidate
4796  CandidateSet.push_back(OverloadCandidate());
4797  OverloadCandidate& Candidate = CandidateSet.back();
4798  Candidate.FoundDecl = FoundDecl;
4799  Candidate.Function = Conversion;
4800  Candidate.IsSurrogate = false;
4801  Candidate.IgnoreObjectArgument = false;
4802  Candidate.FinalConversion.setAsIdentityConversion();
4803  Candidate.FinalConversion.setFromType(ConvType);
4804  Candidate.FinalConversion.setAllToTypes(ToType);
4805  Candidate.Viable = true;
4806  Candidate.Conversions.resize(1);
4807  Candidate.ExplicitCallArguments = 1;
4808
4809  // C++ [over.match.funcs]p4:
4810  //   For conversion functions, the function is considered to be a member of
4811  //   the class of the implicit implied object argument for the purpose of
4812  //   defining the type of the implicit object parameter.
4813  //
4814  // Determine the implicit conversion sequence for the implicit
4815  // object parameter.
4816  QualType ImplicitParamType = From->getType();
4817  if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
4818    ImplicitParamType = FromPtrType->getPointeeType();
4819  CXXRecordDecl *ConversionContext
4820    = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl());
4821
4822  Candidate.Conversions[0]
4823    = TryObjectArgumentInitialization(*this, From->getType(),
4824                                      From->Classify(Context),
4825                                      Conversion, ConversionContext);
4826
4827  if (Candidate.Conversions[0].isBad()) {
4828    Candidate.Viable = false;
4829    Candidate.FailureKind = ovl_fail_bad_conversion;
4830    return;
4831  }
4832
4833  // We won't go through a user-define type conversion function to convert a
4834  // derived to base as such conversions are given Conversion Rank. They only
4835  // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
4836  QualType FromCanon
4837    = Context.getCanonicalType(From->getType().getUnqualifiedType());
4838  QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
4839  if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
4840    Candidate.Viable = false;
4841    Candidate.FailureKind = ovl_fail_trivial_conversion;
4842    return;
4843  }
4844
4845  // To determine what the conversion from the result of calling the
4846  // conversion function to the type we're eventually trying to
4847  // convert to (ToType), we need to synthesize a call to the
4848  // conversion function and attempt copy initialization from it. This
4849  // makes sure that we get the right semantics with respect to
4850  // lvalues/rvalues and the type. Fortunately, we can allocate this
4851  // call on the stack and we don't need its arguments to be
4852  // well-formed.
4853  DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
4854                            VK_LValue, From->getLocStart());
4855  ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
4856                                Context.getPointerType(Conversion->getType()),
4857                                CK_FunctionToPointerDecay,
4858                                &ConversionRef, VK_RValue);
4859
4860  QualType ConversionType = Conversion->getConversionType();
4861  if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) {
4862    Candidate.Viable = false;
4863    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4864    return;
4865  }
4866
4867  ExprValueKind VK = Expr::getValueKindForType(ConversionType);
4868
4869  // Note that it is safe to allocate CallExpr on the stack here because
4870  // there are 0 arguments (i.e., nothing is allocated using ASTContext's
4871  // allocator).
4872  QualType CallResultType = ConversionType.getNonLValueExprType(Context);
4873  CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK,
4874                From->getLocStart());
4875  ImplicitConversionSequence ICS =
4876    TryCopyInitialization(*this, &Call, ToType,
4877                          /*SuppressUserConversions=*/true,
4878                          /*InOverloadResolution=*/false,
4879                          /*AllowObjCWritebackConversion=*/false);
4880
4881  switch (ICS.getKind()) {
4882  case ImplicitConversionSequence::StandardConversion:
4883    Candidate.FinalConversion = ICS.Standard;
4884
4885    // C++ [over.ics.user]p3:
4886    //   If the user-defined conversion is specified by a specialization of a
4887    //   conversion function template, the second standard conversion sequence
4888    //   shall have exact match rank.
4889    if (Conversion->getPrimaryTemplate() &&
4890        GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
4891      Candidate.Viable = false;
4892      Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
4893    }
4894
4895    // C++0x [dcl.init.ref]p5:
4896    //    In the second case, if the reference is an rvalue reference and
4897    //    the second standard conversion sequence of the user-defined
4898    //    conversion sequence includes an lvalue-to-rvalue conversion, the
4899    //    program is ill-formed.
4900    if (ToType->isRValueReferenceType() &&
4901        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4902      Candidate.Viable = false;
4903      Candidate.FailureKind = ovl_fail_bad_final_conversion;
4904    }
4905    break;
4906
4907  case ImplicitConversionSequence::BadConversion:
4908    Candidate.Viable = false;
4909    Candidate.FailureKind = ovl_fail_bad_final_conversion;
4910    break;
4911
4912  default:
4913    llvm_unreachable(
4914           "Can only end up with a standard conversion sequence or failure");
4915  }
4916}
4917
4918/// \brief Adds a conversion function template specialization
4919/// candidate to the overload set, using template argument deduction
4920/// to deduce the template arguments of the conversion function
4921/// template from the type that we are converting to (C++
4922/// [temp.deduct.conv]).
4923void
4924Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
4925                                     DeclAccessPair FoundDecl,
4926                                     CXXRecordDecl *ActingDC,
4927                                     Expr *From, QualType ToType,
4928                                     OverloadCandidateSet &CandidateSet) {
4929  assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
4930         "Only conversion function templates permitted here");
4931
4932  if (!CandidateSet.isNewCandidate(FunctionTemplate))
4933    return;
4934
4935  TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
4936  CXXConversionDecl *Specialization = 0;
4937  if (TemplateDeductionResult Result
4938        = DeduceTemplateArguments(FunctionTemplate, ToType,
4939                                  Specialization, Info)) {
4940    CandidateSet.push_back(OverloadCandidate());
4941    OverloadCandidate &Candidate = CandidateSet.back();
4942    Candidate.FoundDecl = FoundDecl;
4943    Candidate.Function = FunctionTemplate->getTemplatedDecl();
4944    Candidate.Viable = false;
4945    Candidate.FailureKind = ovl_fail_bad_deduction;
4946    Candidate.IsSurrogate = false;
4947    Candidate.IgnoreObjectArgument = false;
4948    Candidate.ExplicitCallArguments = 1;
4949    Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
4950                                                          Info);
4951    return;
4952  }
4953
4954  // Add the conversion function template specialization produced by
4955  // template argument deduction as a candidate.
4956  assert(Specialization && "Missing function template specialization?");
4957  AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
4958                         CandidateSet);
4959}
4960
4961/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
4962/// converts the given @c Object to a function pointer via the
4963/// conversion function @c Conversion, and then attempts to call it
4964/// with the given arguments (C++ [over.call.object]p2-4). Proto is
4965/// the type of function that we'll eventually be calling.
4966void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
4967                                 DeclAccessPair FoundDecl,
4968                                 CXXRecordDecl *ActingContext,
4969                                 const FunctionProtoType *Proto,
4970                                 Expr *Object,
4971                                 Expr **Args, unsigned NumArgs,
4972                                 OverloadCandidateSet& CandidateSet) {
4973  if (!CandidateSet.isNewCandidate(Conversion))
4974    return;
4975
4976  // Overload resolution is always an unevaluated context.
4977  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
4978
4979  CandidateSet.push_back(OverloadCandidate());
4980  OverloadCandidate& Candidate = CandidateSet.back();
4981  Candidate.FoundDecl = FoundDecl;
4982  Candidate.Function = 0;
4983  Candidate.Surrogate = Conversion;
4984  Candidate.Viable = true;
4985  Candidate.IsSurrogate = true;
4986  Candidate.IgnoreObjectArgument = false;
4987  Candidate.Conversions.resize(NumArgs + 1);
4988  Candidate.ExplicitCallArguments = NumArgs;
4989
4990  // Determine the implicit conversion sequence for the implicit
4991  // object parameter.
4992  ImplicitConversionSequence ObjectInit
4993    = TryObjectArgumentInitialization(*this, Object->getType(),
4994                                      Object->Classify(Context),
4995                                      Conversion, ActingContext);
4996  if (ObjectInit.isBad()) {
4997    Candidate.Viable = false;
4998    Candidate.FailureKind = ovl_fail_bad_conversion;
4999    Candidate.Conversions[0] = ObjectInit;
5000    return;
5001  }
5002
5003  // The first conversion is actually a user-defined conversion whose
5004  // first conversion is ObjectInit's standard conversion (which is
5005  // effectively a reference binding). Record it as such.
5006  Candidate.Conversions[0].setUserDefined();
5007  Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
5008  Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
5009  Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
5010  Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
5011  Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
5012  Candidate.Conversions[0].UserDefined.After
5013    = Candidate.Conversions[0].UserDefined.Before;
5014  Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
5015
5016  // Find the
5017  unsigned NumArgsInProto = Proto->getNumArgs();
5018
5019  // (C++ 13.3.2p2): A candidate function having fewer than m
5020  // parameters is viable only if it has an ellipsis in its parameter
5021  // list (8.3.5).
5022  if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
5023    Candidate.Viable = false;
5024    Candidate.FailureKind = ovl_fail_too_many_arguments;
5025    return;
5026  }
5027
5028  // Function types don't have any default arguments, so just check if
5029  // we have enough arguments.
5030  if (NumArgs < NumArgsInProto) {
5031    // Not enough arguments.
5032    Candidate.Viable = false;
5033    Candidate.FailureKind = ovl_fail_too_few_arguments;
5034    return;
5035  }
5036
5037  // Determine the implicit conversion sequences for each of the
5038  // arguments.
5039  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5040    if (ArgIdx < NumArgsInProto) {
5041      // (C++ 13.3.2p3): for F to be a viable function, there shall
5042      // exist for each argument an implicit conversion sequence
5043      // (13.3.3.1) that converts that argument to the corresponding
5044      // parameter of F.
5045      QualType ParamType = Proto->getArgType(ArgIdx);
5046      Candidate.Conversions[ArgIdx + 1]
5047        = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
5048                                /*SuppressUserConversions=*/false,
5049                                /*InOverloadResolution=*/false,
5050                                /*AllowObjCWritebackConversion=*/
5051                                  getLangOptions().ObjCAutoRefCount);
5052      if (Candidate.Conversions[ArgIdx + 1].isBad()) {
5053        Candidate.Viable = false;
5054        Candidate.FailureKind = ovl_fail_bad_conversion;
5055        break;
5056      }
5057    } else {
5058      // (C++ 13.3.2p2): For the purposes of overload resolution, any
5059      // argument for which there is no corresponding parameter is
5060      // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
5061      Candidate.Conversions[ArgIdx + 1].setEllipsis();
5062    }
5063  }
5064}
5065
5066/// \brief Add overload candidates for overloaded operators that are
5067/// member functions.
5068///
5069/// Add the overloaded operator candidates that are member functions
5070/// for the operator Op that was used in an operator expression such
5071/// as "x Op y". , Args/NumArgs provides the operator arguments, and
5072/// CandidateSet will store the added overload candidates. (C++
5073/// [over.match.oper]).
5074void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
5075                                       SourceLocation OpLoc,
5076                                       Expr **Args, unsigned NumArgs,
5077                                       OverloadCandidateSet& CandidateSet,
5078                                       SourceRange OpRange) {
5079  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
5080
5081  // C++ [over.match.oper]p3:
5082  //   For a unary operator @ with an operand of a type whose
5083  //   cv-unqualified version is T1, and for a binary operator @ with
5084  //   a left operand of a type whose cv-unqualified version is T1 and
5085  //   a right operand of a type whose cv-unqualified version is T2,
5086  //   three sets of candidate functions, designated member
5087  //   candidates, non-member candidates and built-in candidates, are
5088  //   constructed as follows:
5089  QualType T1 = Args[0]->getType();
5090
5091  //     -- If T1 is a class type, the set of member candidates is the
5092  //        result of the qualified lookup of T1::operator@
5093  //        (13.3.1.1.1); otherwise, the set of member candidates is
5094  //        empty.
5095  if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
5096    // Complete the type if it can be completed. Otherwise, we're done.
5097    if (RequireCompleteType(OpLoc, T1, PDiag()))
5098      return;
5099
5100    LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
5101    LookupQualifiedName(Operators, T1Rec->getDecl());
5102    Operators.suppressDiagnostics();
5103
5104    for (LookupResult::iterator Oper = Operators.begin(),
5105                             OperEnd = Operators.end();
5106         Oper != OperEnd;
5107         ++Oper)
5108      AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
5109                         Args[0]->Classify(Context), Args + 1, NumArgs - 1,
5110                         CandidateSet,
5111                         /* SuppressUserConversions = */ false);
5112  }
5113}
5114
5115/// AddBuiltinCandidate - Add a candidate for a built-in
5116/// operator. ResultTy and ParamTys are the result and parameter types
5117/// of the built-in candidate, respectively. Args and NumArgs are the
5118/// arguments being passed to the candidate. IsAssignmentOperator
5119/// should be true when this built-in candidate is an assignment
5120/// operator. NumContextualBoolArguments is the number of arguments
5121/// (at the beginning of the argument list) that will be contextually
5122/// converted to bool.
5123void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
5124                               Expr **Args, unsigned NumArgs,
5125                               OverloadCandidateSet& CandidateSet,
5126                               bool IsAssignmentOperator,
5127                               unsigned NumContextualBoolArguments) {
5128  // Overload resolution is always an unevaluated context.
5129  EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
5130
5131  // Add this candidate
5132  CandidateSet.push_back(OverloadCandidate());
5133  OverloadCandidate& Candidate = CandidateSet.back();
5134  Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
5135  Candidate.Function = 0;
5136  Candidate.IsSurrogate = false;
5137  Candidate.IgnoreObjectArgument = false;
5138  Candidate.BuiltinTypes.ResultTy = ResultTy;
5139  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
5140    Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
5141
5142  // Determine the implicit conversion sequences for each of the
5143  // arguments.
5144  Candidate.Viable = true;
5145  Candidate.Conversions.resize(NumArgs);
5146  Candidate.ExplicitCallArguments = NumArgs;
5147  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5148    // C++ [over.match.oper]p4:
5149    //   For the built-in assignment operators, conversions of the
5150    //   left operand are restricted as follows:
5151    //     -- no temporaries are introduced to hold the left operand, and
5152    //     -- no user-defined conversions are applied to the left
5153    //        operand to achieve a type match with the left-most
5154    //        parameter of a built-in candidate.
5155    //
5156    // We block these conversions by turning off user-defined
5157    // conversions, since that is the only way that initialization of
5158    // a reference to a non-class type can occur from something that
5159    // is not of the same type.
5160    if (ArgIdx < NumContextualBoolArguments) {
5161      assert(ParamTys[ArgIdx] == Context.BoolTy &&
5162             "Contextual conversion to bool requires bool type");
5163      Candidate.Conversions[ArgIdx]
5164        = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
5165    } else {
5166      Candidate.Conversions[ArgIdx]
5167        = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
5168                                ArgIdx == 0 && IsAssignmentOperator,
5169                                /*InOverloadResolution=*/false,
5170                                /*AllowObjCWritebackConversion=*/
5171                                  getLangOptions().ObjCAutoRefCount);
5172    }
5173    if (Candidate.Conversions[ArgIdx].isBad()) {
5174      Candidate.Viable = false;
5175      Candidate.FailureKind = ovl_fail_bad_conversion;
5176      break;
5177    }
5178  }
5179}
5180
5181/// BuiltinCandidateTypeSet - A set of types that will be used for the
5182/// candidate operator functions for built-in operators (C++
5183/// [over.built]). The types are separated into pointer types and
5184/// enumeration types.
5185class BuiltinCandidateTypeSet  {
5186  /// TypeSet - A set of types.
5187  typedef llvm::SmallPtrSet<QualType, 8> TypeSet;
5188
5189  /// PointerTypes - The set of pointer types that will be used in the
5190  /// built-in candidates.
5191  TypeSet PointerTypes;
5192
5193  /// MemberPointerTypes - The set of member pointer types that will be
5194  /// used in the built-in candidates.
5195  TypeSet MemberPointerTypes;
5196
5197  /// EnumerationTypes - The set of enumeration types that will be
5198  /// used in the built-in candidates.
5199  TypeSet EnumerationTypes;
5200
5201  /// \brief The set of vector types that will be used in the built-in
5202  /// candidates.
5203  TypeSet VectorTypes;
5204
5205  /// \brief A flag indicating non-record types are viable candidates
5206  bool HasNonRecordTypes;
5207
5208  /// \brief A flag indicating whether either arithmetic or enumeration types
5209  /// were present in the candidate set.
5210  bool HasArithmeticOrEnumeralTypes;
5211
5212  /// \brief A flag indicating whether the nullptr type was present in the
5213  /// candidate set.
5214  bool HasNullPtrType;
5215
5216  /// Sema - The semantic analysis instance where we are building the
5217  /// candidate type set.
5218  Sema &SemaRef;
5219
5220  /// Context - The AST context in which we will build the type sets.
5221  ASTContext &Context;
5222
5223  bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
5224                                               const Qualifiers &VisibleQuals);
5225  bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
5226
5227public:
5228  /// iterator - Iterates through the types that are part of the set.
5229  typedef TypeSet::iterator iterator;
5230
5231  BuiltinCandidateTypeSet(Sema &SemaRef)
5232    : HasNonRecordTypes(false),
5233      HasArithmeticOrEnumeralTypes(false),
5234      HasNullPtrType(false),
5235      SemaRef(SemaRef),
5236      Context(SemaRef.Context) { }
5237
5238  void AddTypesConvertedFrom(QualType Ty,
5239                             SourceLocation Loc,
5240                             bool AllowUserConversions,
5241                             bool AllowExplicitConversions,
5242                             const Qualifiers &VisibleTypeConversionsQuals);
5243
5244  /// pointer_begin - First pointer type found;
5245  iterator pointer_begin() { return PointerTypes.begin(); }
5246
5247  /// pointer_end - Past the last pointer type found;
5248  iterator pointer_end() { return PointerTypes.end(); }
5249
5250  /// member_pointer_begin - First member pointer type found;
5251  iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
5252
5253  /// member_pointer_end - Past the last member pointer type found;
5254  iterator member_pointer_end() { return MemberPointerTypes.end(); }
5255
5256  /// enumeration_begin - First enumeration type found;
5257  iterator enumeration_begin() { return EnumerationTypes.begin(); }
5258
5259  /// enumeration_end - Past the last enumeration type found;
5260  iterator enumeration_end() { return EnumerationTypes.end(); }
5261
5262  iterator vector_begin() { return VectorTypes.begin(); }
5263  iterator vector_end() { return VectorTypes.end(); }
5264
5265  bool hasNonRecordTypes() { return HasNonRecordTypes; }
5266  bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
5267  bool hasNullPtrType() const { return HasNullPtrType; }
5268};
5269
5270/// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
5271/// the set of pointer types along with any more-qualified variants of
5272/// that type. For example, if @p Ty is "int const *", this routine
5273/// will add "int const *", "int const volatile *", "int const
5274/// restrict *", and "int const volatile restrict *" to the set of
5275/// pointer types. Returns true if the add of @p Ty itself succeeded,
5276/// false otherwise.
5277///
5278/// FIXME: what to do about extended qualifiers?
5279bool
5280BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
5281                                             const Qualifiers &VisibleQuals) {
5282
5283  // Insert this type.
5284  if (!PointerTypes.insert(Ty))
5285    return false;
5286
5287  QualType PointeeTy;
5288  const PointerType *PointerTy = Ty->getAs<PointerType>();
5289  bool buildObjCPtr = false;
5290  if (!PointerTy) {
5291    if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) {
5292      PointeeTy = PTy->getPointeeType();
5293      buildObjCPtr = true;
5294    }
5295    else
5296      llvm_unreachable("type was not a pointer type!");
5297  }
5298  else
5299    PointeeTy = PointerTy->getPointeeType();
5300
5301  // Don't add qualified variants of arrays. For one, they're not allowed
5302  // (the qualifier would sink to the element type), and for another, the
5303  // only overload situation where it matters is subscript or pointer +- int,
5304  // and those shouldn't have qualifier variants anyway.
5305  if (PointeeTy->isArrayType())
5306    return true;
5307  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5308  if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy))
5309    BaseCVR = Array->getElementType().getCVRQualifiers();
5310  bool hasVolatile = VisibleQuals.hasVolatile();
5311  bool hasRestrict = VisibleQuals.hasRestrict();
5312
5313  // Iterate through all strict supersets of BaseCVR.
5314  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5315    if ((CVR | BaseCVR) != CVR) continue;
5316    // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere
5317    // in the types.
5318    if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
5319    if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue;
5320    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5321    if (!buildObjCPtr)
5322      PointerTypes.insert(Context.getPointerType(QPointeeTy));
5323    else
5324      PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy));
5325  }
5326
5327  return true;
5328}
5329
5330/// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
5331/// to the set of pointer types along with any more-qualified variants of
5332/// that type. For example, if @p Ty is "int const *", this routine
5333/// will add "int const *", "int const volatile *", "int const
5334/// restrict *", and "int const volatile restrict *" to the set of
5335/// pointer types. Returns true if the add of @p Ty itself succeeded,
5336/// false otherwise.
5337///
5338/// FIXME: what to do about extended qualifiers?
5339bool
5340BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
5341    QualType Ty) {
5342  // Insert this type.
5343  if (!MemberPointerTypes.insert(Ty))
5344    return false;
5345
5346  const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
5347  assert(PointerTy && "type was not a member pointer type!");
5348
5349  QualType PointeeTy = PointerTy->getPointeeType();
5350  // Don't add qualified variants of arrays. For one, they're not allowed
5351  // (the qualifier would sink to the element type), and for another, the
5352  // only overload situation where it matters is subscript or pointer +- int,
5353  // and those shouldn't have qualifier variants anyway.
5354  if (PointeeTy->isArrayType())
5355    return true;
5356  const Type *ClassTy = PointerTy->getClass();
5357
5358  // Iterate through all strict supersets of the pointee type's CVR
5359  // qualifiers.
5360  unsigned BaseCVR = PointeeTy.getCVRQualifiers();
5361  for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
5362    if ((CVR | BaseCVR) != CVR) continue;
5363
5364    QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
5365    MemberPointerTypes.insert(
5366      Context.getMemberPointerType(QPointeeTy, ClassTy));
5367  }
5368
5369  return true;
5370}
5371
5372/// AddTypesConvertedFrom - Add each of the types to which the type @p
5373/// Ty can be implicit converted to the given set of @p Types. We're
5374/// primarily interested in pointer types and enumeration types. We also
5375/// take member pointer types, for the conditional operator.
5376/// AllowUserConversions is true if we should look at the conversion
5377/// functions of a class type, and AllowExplicitConversions if we
5378/// should also include the explicit conversion functions of a class
5379/// type.
5380void
5381BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
5382                                               SourceLocation Loc,
5383                                               bool AllowUserConversions,
5384                                               bool AllowExplicitConversions,
5385                                               const Qualifiers &VisibleQuals) {
5386  // Only deal with canonical types.
5387  Ty = Context.getCanonicalType(Ty);
5388
5389  // Look through reference types; they aren't part of the type of an
5390  // expression for the purposes of conversions.
5391  if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
5392    Ty = RefTy->getPointeeType();
5393
5394  // If we're dealing with an array type, decay to the pointer.
5395  if (Ty->isArrayType())
5396    Ty = SemaRef.Context.getArrayDecayedType(Ty);
5397
5398  // Otherwise, we don't care about qualifiers on the type.
5399  Ty = Ty.getLocalUnqualifiedType();
5400
5401  // Flag if we ever add a non-record type.
5402  const RecordType *TyRec = Ty->getAs<RecordType>();
5403  HasNonRecordTypes = HasNonRecordTypes || !TyRec;
5404
5405  // Flag if we encounter an arithmetic type.
5406  HasArithmeticOrEnumeralTypes =
5407    HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
5408
5409  if (Ty->isObjCIdType() || Ty->isObjCClassType())
5410    PointerTypes.insert(Ty);
5411  else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
5412    // Insert our type, and its more-qualified variants, into the set
5413    // of types.
5414    if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
5415      return;
5416  } else if (Ty->isMemberPointerType()) {
5417    // Member pointers are far easier, since the pointee can't be converted.
5418    if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
5419      return;
5420  } else if (Ty->isEnumeralType()) {
5421    HasArithmeticOrEnumeralTypes = true;
5422    EnumerationTypes.insert(Ty);
5423  } else if (Ty->isVectorType()) {
5424    // We treat vector types as arithmetic types in many contexts as an
5425    // extension.
5426    HasArithmeticOrEnumeralTypes = true;
5427    VectorTypes.insert(Ty);
5428  } else if (Ty->isNullPtrType()) {
5429    HasNullPtrType = true;
5430  } else if (AllowUserConversions && TyRec) {
5431    // No conversion functions in incomplete types.
5432    if (SemaRef.RequireCompleteType(Loc, Ty, 0))
5433      return;
5434
5435    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
5436    const UnresolvedSetImpl *Conversions
5437      = ClassDecl->getVisibleConversionFunctions();
5438    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5439           E = Conversions->end(); I != E; ++I) {
5440      NamedDecl *D = I.getDecl();
5441      if (isa<UsingShadowDecl>(D))
5442        D = cast<UsingShadowDecl>(D)->getTargetDecl();
5443
5444      // Skip conversion function templates; they don't tell us anything
5445      // about which builtin types we can convert to.
5446      if (isa<FunctionTemplateDecl>(D))
5447        continue;
5448
5449      CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
5450      if (AllowExplicitConversions || !Conv->isExplicit()) {
5451        AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
5452                              VisibleQuals);
5453      }
5454    }
5455  }
5456}
5457
5458/// \brief Helper function for AddBuiltinOperatorCandidates() that adds
5459/// the volatile- and non-volatile-qualified assignment operators for the
5460/// given type to the candidate set.
5461static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
5462                                                   QualType T,
5463                                                   Expr **Args,
5464                                                   unsigned NumArgs,
5465                                    OverloadCandidateSet &CandidateSet) {
5466  QualType ParamTypes[2];
5467
5468  // T& operator=(T&, T)
5469  ParamTypes[0] = S.Context.getLValueReferenceType(T);
5470  ParamTypes[1] = T;
5471  S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5472                        /*IsAssignmentOperator=*/true);
5473
5474  if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
5475    // volatile T& operator=(volatile T&, T)
5476    ParamTypes[0]
5477      = S.Context.getLValueReferenceType(S.Context.getVolatileType(T));
5478    ParamTypes[1] = T;
5479    S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
5480                          /*IsAssignmentOperator=*/true);
5481  }
5482}
5483
5484/// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
5485/// if any, found in visible type conversion functions found in ArgExpr's type.
5486static  Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
5487    Qualifiers VRQuals;
5488    const RecordType *TyRec;
5489    if (const MemberPointerType *RHSMPType =
5490        ArgExpr->getType()->getAs<MemberPointerType>())
5491      TyRec = RHSMPType->getClass()->getAs<RecordType>();
5492    else
5493      TyRec = ArgExpr->getType()->getAs<RecordType>();
5494    if (!TyRec) {
5495      // Just to be safe, assume the worst case.
5496      VRQuals.addVolatile();
5497      VRQuals.addRestrict();
5498      return VRQuals;
5499    }
5500
5501    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
5502    if (!ClassDecl->hasDefinition())
5503      return VRQuals;
5504
5505    const UnresolvedSetImpl *Conversions =
5506      ClassDecl->getVisibleConversionFunctions();
5507
5508    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
5509           E = Conversions->end(); I != E; ++I) {
5510      NamedDecl *D = I.getDecl();
5511      if (isa<UsingShadowDecl>(D))
5512        D = cast<UsingShadowDecl>(D)->getTargetDecl();
5513      if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
5514        QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
5515        if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
5516          CanTy = ResTypeRef->getPointeeType();
5517        // Need to go down the pointer/mempointer chain and add qualifiers
5518        // as see them.
5519        bool done = false;
5520        while (!done) {
5521          if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
5522            CanTy = ResTypePtr->getPointeeType();
5523          else if (const MemberPointerType *ResTypeMPtr =
5524                CanTy->getAs<MemberPointerType>())
5525            CanTy = ResTypeMPtr->getPointeeType();
5526          else
5527            done = true;
5528          if (CanTy.isVolatileQualified())
5529            VRQuals.addVolatile();
5530          if (CanTy.isRestrictQualified())
5531            VRQuals.addRestrict();
5532          if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
5533            return VRQuals;
5534        }
5535      }
5536    }
5537    return VRQuals;
5538}
5539
5540namespace {
5541
5542/// \brief Helper class to manage the addition of builtin operator overload
5543/// candidates. It provides shared state and utility methods used throughout
5544/// the process, as well as a helper method to add each group of builtin
5545/// operator overloads from the standard to a candidate set.
5546class BuiltinOperatorOverloadBuilder {
5547  // Common instance state available to all overload candidate addition methods.
5548  Sema &S;
5549  Expr **Args;
5550  unsigned NumArgs;
5551  Qualifiers VisibleTypeConversionsQuals;
5552  bool HasArithmeticOrEnumeralCandidateType;
5553  SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
5554  OverloadCandidateSet &CandidateSet;
5555
5556  // Define some constants used to index and iterate over the arithemetic types
5557  // provided via the getArithmeticType() method below.
5558  // The "promoted arithmetic types" are the arithmetic
5559  // types are that preserved by promotion (C++ [over.built]p2).
5560  static const unsigned FirstIntegralType = 3;
5561  static const unsigned LastIntegralType = 18;
5562  static const unsigned FirstPromotedIntegralType = 3,
5563                        LastPromotedIntegralType = 9;
5564  static const unsigned FirstPromotedArithmeticType = 0,
5565                        LastPromotedArithmeticType = 9;
5566  static const unsigned NumArithmeticTypes = 18;
5567
5568  /// \brief Get the canonical type for a given arithmetic type index.
5569  CanQualType getArithmeticType(unsigned index) {
5570    assert(index < NumArithmeticTypes);
5571    static CanQualType ASTContext::* const
5572      ArithmeticTypes[NumArithmeticTypes] = {
5573      // Start of promoted types.
5574      &ASTContext::FloatTy,
5575      &ASTContext::DoubleTy,
5576      &ASTContext::LongDoubleTy,
5577
5578      // Start of integral types.
5579      &ASTContext::IntTy,
5580      &ASTContext::LongTy,
5581      &ASTContext::LongLongTy,
5582      &ASTContext::UnsignedIntTy,
5583      &ASTContext::UnsignedLongTy,
5584      &ASTContext::UnsignedLongLongTy,
5585      // End of promoted types.
5586
5587      &ASTContext::BoolTy,
5588      &ASTContext::CharTy,
5589      &ASTContext::WCharTy,
5590      &ASTContext::Char16Ty,
5591      &ASTContext::Char32Ty,
5592      &ASTContext::SignedCharTy,
5593      &ASTContext::ShortTy,
5594      &ASTContext::UnsignedCharTy,
5595      &ASTContext::UnsignedShortTy,
5596      // End of integral types.
5597      // FIXME: What about complex?
5598    };
5599    return S.Context.*ArithmeticTypes[index];
5600  }
5601
5602  /// \brief Gets the canonical type resulting from the usual arithemetic
5603  /// converions for the given arithmetic types.
5604  CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) {
5605    // Accelerator table for performing the usual arithmetic conversions.
5606    // The rules are basically:
5607    //   - if either is floating-point, use the wider floating-point
5608    //   - if same signedness, use the higher rank
5609    //   - if same size, use unsigned of the higher rank
5610    //   - use the larger type
5611    // These rules, together with the axiom that higher ranks are
5612    // never smaller, are sufficient to precompute all of these results
5613    // *except* when dealing with signed types of higher rank.
5614    // (we could precompute SLL x UI for all known platforms, but it's
5615    // better not to make any assumptions).
5616    enum PromotedType {
5617                  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL, Dep=-1
5618    };
5619    static PromotedType ConversionsTable[LastPromotedArithmeticType]
5620                                        [LastPromotedArithmeticType] = {
5621      /* Flt*/ {  Flt,  Dbl, LDbl,  Flt,  Flt,  Flt,  Flt,  Flt,  Flt },
5622      /* Dbl*/ {  Dbl,  Dbl, LDbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl,  Dbl },
5623      /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl },
5624      /*  SI*/ {  Flt,  Dbl, LDbl,   SI,   SL,  SLL,   UI,   UL,  ULL },
5625      /*  SL*/ {  Flt,  Dbl, LDbl,   SL,   SL,  SLL,  Dep,   UL,  ULL },
5626      /* SLL*/ {  Flt,  Dbl, LDbl,  SLL,  SLL,  SLL,  Dep,  Dep,  ULL },
5627      /*  UI*/ {  Flt,  Dbl, LDbl,   UI,  Dep,  Dep,   UI,   UL,  ULL },
5628      /*  UL*/ {  Flt,  Dbl, LDbl,   UL,   UL,  Dep,   UL,   UL,  ULL },
5629      /* ULL*/ {  Flt,  Dbl, LDbl,  ULL,  ULL,  ULL,  ULL,  ULL,  ULL },
5630    };
5631
5632    assert(L < LastPromotedArithmeticType);
5633    assert(R < LastPromotedArithmeticType);
5634    int Idx = ConversionsTable[L][R];
5635
5636    // Fast path: the table gives us a concrete answer.
5637    if (Idx != Dep) return getArithmeticType(Idx);
5638
5639    // Slow path: we need to compare widths.
5640    // An invariant is that the signed type has higher rank.
5641    CanQualType LT = getArithmeticType(L),
5642                RT = getArithmeticType(R);
5643    unsigned LW = S.Context.getIntWidth(LT),
5644             RW = S.Context.getIntWidth(RT);
5645
5646    // If they're different widths, use the signed type.
5647    if (LW > RW) return LT;
5648    else if (LW < RW) return RT;
5649
5650    // Otherwise, use the unsigned type of the signed type's rank.
5651    if (L == SL || R == SL) return S.Context.UnsignedLongTy;
5652    assert(L == SLL || R == SLL);
5653    return S.Context.UnsignedLongLongTy;
5654  }
5655
5656  /// \brief Helper method to factor out the common pattern of adding overloads
5657  /// for '++' and '--' builtin operators.
5658  void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
5659                                           bool HasVolatile) {
5660    QualType ParamTypes[2] = {
5661      S.Context.getLValueReferenceType(CandidateTy),
5662      S.Context.IntTy
5663    };
5664
5665    // Non-volatile version.
5666    if (NumArgs == 1)
5667      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5668    else
5669      S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5670
5671    // Use a heuristic to reduce number of builtin candidates in the set:
5672    // add volatile version only if there are conversions to a volatile type.
5673    if (HasVolatile) {
5674      ParamTypes[0] =
5675        S.Context.getLValueReferenceType(
5676          S.Context.getVolatileType(CandidateTy));
5677      if (NumArgs == 1)
5678        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
5679      else
5680        S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet);
5681    }
5682  }
5683
5684public:
5685  BuiltinOperatorOverloadBuilder(
5686    Sema &S, Expr **Args, unsigned NumArgs,
5687    Qualifiers VisibleTypeConversionsQuals,
5688    bool HasArithmeticOrEnumeralCandidateType,
5689    SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
5690    OverloadCandidateSet &CandidateSet)
5691    : S(S), Args(Args), NumArgs(NumArgs),
5692      VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
5693      HasArithmeticOrEnumeralCandidateType(
5694        HasArithmeticOrEnumeralCandidateType),
5695      CandidateTypes(CandidateTypes),
5696      CandidateSet(CandidateSet) {
5697    // Validate some of our static helper constants in debug builds.
5698    assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy &&
5699           "Invalid first promoted integral type");
5700    assert(getArithmeticType(LastPromotedIntegralType - 1)
5701             == S.Context.UnsignedLongLongTy &&
5702           "Invalid last promoted integral type");
5703    assert(getArithmeticType(FirstPromotedArithmeticType)
5704             == S.Context.FloatTy &&
5705           "Invalid first promoted arithmetic type");
5706    assert(getArithmeticType(LastPromotedArithmeticType - 1)
5707             == S.Context.UnsignedLongLongTy &&
5708           "Invalid last promoted arithmetic type");
5709  }
5710
5711  // C++ [over.built]p3:
5712  //
5713  //   For every pair (T, VQ), where T is an arithmetic type, and VQ
5714  //   is either volatile or empty, there exist candidate operator
5715  //   functions of the form
5716  //
5717  //       VQ T&      operator++(VQ T&);
5718  //       T          operator++(VQ T&, int);
5719  //
5720  // C++ [over.built]p4:
5721  //
5722  //   For every pair (T, VQ), where T is an arithmetic type other
5723  //   than bool, and VQ is either volatile or empty, there exist
5724  //   candidate operator functions of the form
5725  //
5726  //       VQ T&      operator--(VQ T&);
5727  //       T          operator--(VQ T&, int);
5728  void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
5729    if (!HasArithmeticOrEnumeralCandidateType)
5730      return;
5731
5732    for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
5733         Arith < NumArithmeticTypes; ++Arith) {
5734      addPlusPlusMinusMinusStyleOverloads(
5735        getArithmeticType(Arith),
5736        VisibleTypeConversionsQuals.hasVolatile());
5737    }
5738  }
5739
5740  // C++ [over.built]p5:
5741  //
5742  //   For every pair (T, VQ), where T is a cv-qualified or
5743  //   cv-unqualified object type, and VQ is either volatile or
5744  //   empty, there exist candidate operator functions of the form
5745  //
5746  //       T*VQ&      operator++(T*VQ&);
5747  //       T*VQ&      operator--(T*VQ&);
5748  //       T*         operator++(T*VQ&, int);
5749  //       T*         operator--(T*VQ&, int);
5750  void addPlusPlusMinusMinusPointerOverloads() {
5751    for (BuiltinCandidateTypeSet::iterator
5752              Ptr = CandidateTypes[0].pointer_begin(),
5753           PtrEnd = CandidateTypes[0].pointer_end();
5754         Ptr != PtrEnd; ++Ptr) {
5755      // Skip pointer types that aren't pointers to object types.
5756      if (!(*Ptr)->getPointeeType()->isObjectType())
5757        continue;
5758
5759      addPlusPlusMinusMinusStyleOverloads(*Ptr,
5760        (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
5761         VisibleTypeConversionsQuals.hasVolatile()));
5762    }
5763  }
5764
5765  // C++ [over.built]p6:
5766  //   For every cv-qualified or cv-unqualified object type T, there
5767  //   exist candidate operator functions of the form
5768  //
5769  //       T&         operator*(T*);
5770  //
5771  // C++ [over.built]p7:
5772  //   For every function type T that does not have cv-qualifiers or a
5773  //   ref-qualifier, there exist candidate operator functions of the form
5774  //       T&         operator*(T*);
5775  void addUnaryStarPointerOverloads() {
5776    for (BuiltinCandidateTypeSet::iterator
5777              Ptr = CandidateTypes[0].pointer_begin(),
5778           PtrEnd = CandidateTypes[0].pointer_end();
5779         Ptr != PtrEnd; ++Ptr) {
5780      QualType ParamTy = *Ptr;
5781      QualType PointeeTy = ParamTy->getPointeeType();
5782      if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
5783        continue;
5784
5785      if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
5786        if (Proto->getTypeQuals() || Proto->getRefQualifier())
5787          continue;
5788
5789      S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy),
5790                            &ParamTy, Args, 1, CandidateSet);
5791    }
5792  }
5793
5794  // C++ [over.built]p9:
5795  //  For every promoted arithmetic type T, there exist candidate
5796  //  operator functions of the form
5797  //
5798  //       T         operator+(T);
5799  //       T         operator-(T);
5800  void addUnaryPlusOrMinusArithmeticOverloads() {
5801    if (!HasArithmeticOrEnumeralCandidateType)
5802      return;
5803
5804    for (unsigned Arith = FirstPromotedArithmeticType;
5805         Arith < LastPromotedArithmeticType; ++Arith) {
5806      QualType ArithTy = getArithmeticType(Arith);
5807      S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
5808    }
5809
5810    // Extension: We also add these operators for vector types.
5811    for (BuiltinCandidateTypeSet::iterator
5812              Vec = CandidateTypes[0].vector_begin(),
5813           VecEnd = CandidateTypes[0].vector_end();
5814         Vec != VecEnd; ++Vec) {
5815      QualType VecTy = *Vec;
5816      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5817    }
5818  }
5819
5820  // C++ [over.built]p8:
5821  //   For every type T, there exist candidate operator functions of
5822  //   the form
5823  //
5824  //       T*         operator+(T*);
5825  void addUnaryPlusPointerOverloads() {
5826    for (BuiltinCandidateTypeSet::iterator
5827              Ptr = CandidateTypes[0].pointer_begin(),
5828           PtrEnd = CandidateTypes[0].pointer_end();
5829         Ptr != PtrEnd; ++Ptr) {
5830      QualType ParamTy = *Ptr;
5831      S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
5832    }
5833  }
5834
5835  // C++ [over.built]p10:
5836  //   For every promoted integral type T, there exist candidate
5837  //   operator functions of the form
5838  //
5839  //        T         operator~(T);
5840  void addUnaryTildePromotedIntegralOverloads() {
5841    if (!HasArithmeticOrEnumeralCandidateType)
5842      return;
5843
5844    for (unsigned Int = FirstPromotedIntegralType;
5845         Int < LastPromotedIntegralType; ++Int) {
5846      QualType IntTy = getArithmeticType(Int);
5847      S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
5848    }
5849
5850    // Extension: We also add this operator for vector types.
5851    for (BuiltinCandidateTypeSet::iterator
5852              Vec = CandidateTypes[0].vector_begin(),
5853           VecEnd = CandidateTypes[0].vector_end();
5854         Vec != VecEnd; ++Vec) {
5855      QualType VecTy = *Vec;
5856      S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet);
5857    }
5858  }
5859
5860  // C++ [over.match.oper]p16:
5861  //   For every pointer to member type T, there exist candidate operator
5862  //   functions of the form
5863  //
5864  //        bool operator==(T,T);
5865  //        bool operator!=(T,T);
5866  void addEqualEqualOrNotEqualMemberPointerOverloads() {
5867    /// Set of (canonical) types that we've already handled.
5868    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5869
5870    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5871      for (BuiltinCandidateTypeSet::iterator
5872                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
5873             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
5874           MemPtr != MemPtrEnd;
5875           ++MemPtr) {
5876        // Don't add the same builtin candidate twice.
5877        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
5878          continue;
5879
5880        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
5881        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5882                              CandidateSet);
5883      }
5884    }
5885  }
5886
5887  // C++ [over.built]p15:
5888  //
5889  //   For every T, where T is an enumeration type, a pointer type, or
5890  //   std::nullptr_t, there exist candidate operator functions of the form
5891  //
5892  //        bool       operator<(T, T);
5893  //        bool       operator>(T, T);
5894  //        bool       operator<=(T, T);
5895  //        bool       operator>=(T, T);
5896  //        bool       operator==(T, T);
5897  //        bool       operator!=(T, T);
5898  void addRelationalPointerOrEnumeralOverloads() {
5899    // C++ [over.built]p1:
5900    //   If there is a user-written candidate with the same name and parameter
5901    //   types as a built-in candidate operator function, the built-in operator
5902    //   function is hidden and is not included in the set of candidate
5903    //   functions.
5904    //
5905    // The text is actually in a note, but if we don't implement it then we end
5906    // up with ambiguities when the user provides an overloaded operator for
5907    // an enumeration type. Note that only enumeration types have this problem,
5908    // so we track which enumeration types we've seen operators for. Also, the
5909    // only other overloaded operator with enumeration argumenst, operator=,
5910    // cannot be overloaded for enumeration types, so this is the only place
5911    // where we must suppress candidates like this.
5912    llvm::DenseSet<std::pair<CanQualType, CanQualType> >
5913      UserDefinedBinaryOperators;
5914
5915    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5916      if (CandidateTypes[ArgIdx].enumeration_begin() !=
5917          CandidateTypes[ArgIdx].enumeration_end()) {
5918        for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
5919                                         CEnd = CandidateSet.end();
5920             C != CEnd; ++C) {
5921          if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
5922            continue;
5923
5924          QualType FirstParamType =
5925            C->Function->getParamDecl(0)->getType().getUnqualifiedType();
5926          QualType SecondParamType =
5927            C->Function->getParamDecl(1)->getType().getUnqualifiedType();
5928
5929          // Skip if either parameter isn't of enumeral type.
5930          if (!FirstParamType->isEnumeralType() ||
5931              !SecondParamType->isEnumeralType())
5932            continue;
5933
5934          // Add this operator to the set of known user-defined operators.
5935          UserDefinedBinaryOperators.insert(
5936            std::make_pair(S.Context.getCanonicalType(FirstParamType),
5937                           S.Context.getCanonicalType(SecondParamType)));
5938        }
5939      }
5940    }
5941
5942    /// Set of (canonical) types that we've already handled.
5943    llvm::SmallPtrSet<QualType, 8> AddedTypes;
5944
5945    for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
5946      for (BuiltinCandidateTypeSet::iterator
5947                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
5948             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
5949           Ptr != PtrEnd; ++Ptr) {
5950        // Don't add the same builtin candidate twice.
5951        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
5952          continue;
5953
5954        QualType ParamTypes[2] = { *Ptr, *Ptr };
5955        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5956                              CandidateSet);
5957      }
5958      for (BuiltinCandidateTypeSet::iterator
5959                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
5960             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
5961           Enum != EnumEnd; ++Enum) {
5962        CanQualType CanonType = S.Context.getCanonicalType(*Enum);
5963
5964        // Don't add the same builtin candidate twice, or if a user defined
5965        // candidate exists.
5966        if (!AddedTypes.insert(CanonType) ||
5967            UserDefinedBinaryOperators.count(std::make_pair(CanonType,
5968                                                            CanonType)))
5969          continue;
5970
5971        QualType ParamTypes[2] = { *Enum, *Enum };
5972        S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5973                              CandidateSet);
5974      }
5975
5976      if (CandidateTypes[ArgIdx].hasNullPtrType()) {
5977        CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
5978        if (AddedTypes.insert(NullPtrTy) &&
5979            !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy,
5980                                                             NullPtrTy))) {
5981          QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
5982          S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2,
5983                                CandidateSet);
5984        }
5985      }
5986    }
5987  }
5988
5989  // C++ [over.built]p13:
5990  //
5991  //   For every cv-qualified or cv-unqualified object type T
5992  //   there exist candidate operator functions of the form
5993  //
5994  //      T*         operator+(T*, ptrdiff_t);
5995  //      T&         operator[](T*, ptrdiff_t);    [BELOW]
5996  //      T*         operator-(T*, ptrdiff_t);
5997  //      T*         operator+(ptrdiff_t, T*);
5998  //      T&         operator[](ptrdiff_t, T*);    [BELOW]
5999  //
6000  // C++ [over.built]p14:
6001  //
6002  //   For every T, where T is a pointer to object type, there
6003  //   exist candidate operator functions of the form
6004  //
6005  //      ptrdiff_t  operator-(T, T);
6006  void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
6007    /// Set of (canonical) types that we've already handled.
6008    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6009
6010    for (int Arg = 0; Arg < 2; ++Arg) {
6011      QualType AsymetricParamTypes[2] = {
6012        S.Context.getPointerDiffType(),
6013        S.Context.getPointerDiffType(),
6014      };
6015      for (BuiltinCandidateTypeSet::iterator
6016                Ptr = CandidateTypes[Arg].pointer_begin(),
6017             PtrEnd = CandidateTypes[Arg].pointer_end();
6018           Ptr != PtrEnd; ++Ptr) {
6019        QualType PointeeTy = (*Ptr)->getPointeeType();
6020        if (!PointeeTy->isObjectType())
6021          continue;
6022
6023        AsymetricParamTypes[Arg] = *Ptr;
6024        if (Arg == 0 || Op == OO_Plus) {
6025          // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
6026          // T* operator+(ptrdiff_t, T*);
6027          S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2,
6028                                CandidateSet);
6029        }
6030        if (Op == OO_Minus) {
6031          // ptrdiff_t operator-(T, T);
6032          if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6033            continue;
6034
6035          QualType ParamTypes[2] = { *Ptr, *Ptr };
6036          S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes,
6037                                Args, 2, CandidateSet);
6038        }
6039      }
6040    }
6041  }
6042
6043  // C++ [over.built]p12:
6044  //
6045  //   For every pair of promoted arithmetic types L and R, there
6046  //   exist candidate operator functions of the form
6047  //
6048  //        LR         operator*(L, R);
6049  //        LR         operator/(L, R);
6050  //        LR         operator+(L, R);
6051  //        LR         operator-(L, R);
6052  //        bool       operator<(L, R);
6053  //        bool       operator>(L, R);
6054  //        bool       operator<=(L, R);
6055  //        bool       operator>=(L, R);
6056  //        bool       operator==(L, R);
6057  //        bool       operator!=(L, R);
6058  //
6059  //   where LR is the result of the usual arithmetic conversions
6060  //   between types L and R.
6061  //
6062  // C++ [over.built]p24:
6063  //
6064  //   For every pair of promoted arithmetic types L and R, there exist
6065  //   candidate operator functions of the form
6066  //
6067  //        LR       operator?(bool, L, R);
6068  //
6069  //   where LR is the result of the usual arithmetic conversions
6070  //   between types L and R.
6071  // Our candidates ignore the first parameter.
6072  void addGenericBinaryArithmeticOverloads(bool isComparison) {
6073    if (!HasArithmeticOrEnumeralCandidateType)
6074      return;
6075
6076    for (unsigned Left = FirstPromotedArithmeticType;
6077         Left < LastPromotedArithmeticType; ++Left) {
6078      for (unsigned Right = FirstPromotedArithmeticType;
6079           Right < LastPromotedArithmeticType; ++Right) {
6080        QualType LandR[2] = { getArithmeticType(Left),
6081                              getArithmeticType(Right) };
6082        QualType Result =
6083          isComparison ? S.Context.BoolTy
6084                       : getUsualArithmeticConversions(Left, Right);
6085        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6086      }
6087    }
6088
6089    // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
6090    // conditional operator for vector types.
6091    for (BuiltinCandidateTypeSet::iterator
6092              Vec1 = CandidateTypes[0].vector_begin(),
6093           Vec1End = CandidateTypes[0].vector_end();
6094         Vec1 != Vec1End; ++Vec1) {
6095      for (BuiltinCandidateTypeSet::iterator
6096                Vec2 = CandidateTypes[1].vector_begin(),
6097             Vec2End = CandidateTypes[1].vector_end();
6098           Vec2 != Vec2End; ++Vec2) {
6099        QualType LandR[2] = { *Vec1, *Vec2 };
6100        QualType Result = S.Context.BoolTy;
6101        if (!isComparison) {
6102          if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType())
6103            Result = *Vec1;
6104          else
6105            Result = *Vec2;
6106        }
6107
6108        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6109      }
6110    }
6111  }
6112
6113  // C++ [over.built]p17:
6114  //
6115  //   For every pair of promoted integral types L and R, there
6116  //   exist candidate operator functions of the form
6117  //
6118  //      LR         operator%(L, R);
6119  //      LR         operator&(L, R);
6120  //      LR         operator^(L, R);
6121  //      LR         operator|(L, R);
6122  //      L          operator<<(L, R);
6123  //      L          operator>>(L, R);
6124  //
6125  //   where LR is the result of the usual arithmetic conversions
6126  //   between types L and R.
6127  void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
6128    if (!HasArithmeticOrEnumeralCandidateType)
6129      return;
6130
6131    for (unsigned Left = FirstPromotedIntegralType;
6132         Left < LastPromotedIntegralType; ++Left) {
6133      for (unsigned Right = FirstPromotedIntegralType;
6134           Right < LastPromotedIntegralType; ++Right) {
6135        QualType LandR[2] = { getArithmeticType(Left),
6136                              getArithmeticType(Right) };
6137        QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
6138            ? LandR[0]
6139            : getUsualArithmeticConversions(Left, Right);
6140        S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
6141      }
6142    }
6143  }
6144
6145  // C++ [over.built]p20:
6146  //
6147  //   For every pair (T, VQ), where T is an enumeration or
6148  //   pointer to member type and VQ is either volatile or
6149  //   empty, there exist candidate operator functions of the form
6150  //
6151  //        VQ T&      operator=(VQ T&, T);
6152  void addAssignmentMemberPointerOrEnumeralOverloads() {
6153    /// Set of (canonical) types that we've already handled.
6154    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6155
6156    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
6157      for (BuiltinCandidateTypeSet::iterator
6158                Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6159             EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6160           Enum != EnumEnd; ++Enum) {
6161        if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
6162          continue;
6163
6164        AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2,
6165                                               CandidateSet);
6166      }
6167
6168      for (BuiltinCandidateTypeSet::iterator
6169                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6170             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6171           MemPtr != MemPtrEnd; ++MemPtr) {
6172        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6173          continue;
6174
6175        AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2,
6176                                               CandidateSet);
6177      }
6178    }
6179  }
6180
6181  // C++ [over.built]p19:
6182  //
6183  //   For every pair (T, VQ), where T is any type and VQ is either
6184  //   volatile or empty, there exist candidate operator functions
6185  //   of the form
6186  //
6187  //        T*VQ&      operator=(T*VQ&, T*);
6188  //
6189  // C++ [over.built]p21:
6190  //
6191  //   For every pair (T, VQ), where T is a cv-qualified or
6192  //   cv-unqualified object type and VQ is either volatile or
6193  //   empty, there exist candidate operator functions of the form
6194  //
6195  //        T*VQ&      operator+=(T*VQ&, ptrdiff_t);
6196  //        T*VQ&      operator-=(T*VQ&, ptrdiff_t);
6197  void addAssignmentPointerOverloads(bool isEqualOp) {
6198    /// Set of (canonical) types that we've already handled.
6199    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6200
6201    for (BuiltinCandidateTypeSet::iterator
6202              Ptr = CandidateTypes[0].pointer_begin(),
6203           PtrEnd = CandidateTypes[0].pointer_end();
6204         Ptr != PtrEnd; ++Ptr) {
6205      // If this is operator=, keep track of the builtin candidates we added.
6206      if (isEqualOp)
6207        AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
6208      else if (!(*Ptr)->getPointeeType()->isObjectType())
6209        continue;
6210
6211      // non-volatile version
6212      QualType ParamTypes[2] = {
6213        S.Context.getLValueReferenceType(*Ptr),
6214        isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
6215      };
6216      S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6217                            /*IsAssigmentOperator=*/ isEqualOp);
6218
6219      if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6220          VisibleTypeConversionsQuals.hasVolatile()) {
6221        // volatile version
6222        ParamTypes[0] =
6223          S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
6224        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6225                              /*IsAssigmentOperator=*/isEqualOp);
6226      }
6227    }
6228
6229    if (isEqualOp) {
6230      for (BuiltinCandidateTypeSet::iterator
6231                Ptr = CandidateTypes[1].pointer_begin(),
6232             PtrEnd = CandidateTypes[1].pointer_end();
6233           Ptr != PtrEnd; ++Ptr) {
6234        // Make sure we don't add the same candidate twice.
6235        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6236          continue;
6237
6238        QualType ParamTypes[2] = {
6239          S.Context.getLValueReferenceType(*Ptr),
6240          *Ptr,
6241        };
6242
6243        // non-volatile version
6244        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6245                              /*IsAssigmentOperator=*/true);
6246
6247        if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() &&
6248            VisibleTypeConversionsQuals.hasVolatile()) {
6249          // volatile version
6250          ParamTypes[0] =
6251            S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
6252          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6253                                CandidateSet, /*IsAssigmentOperator=*/true);
6254        }
6255      }
6256    }
6257  }
6258
6259  // C++ [over.built]p18:
6260  //
6261  //   For every triple (L, VQ, R), where L is an arithmetic type,
6262  //   VQ is either volatile or empty, and R is a promoted
6263  //   arithmetic type, there exist candidate operator functions of
6264  //   the form
6265  //
6266  //        VQ L&      operator=(VQ L&, R);
6267  //        VQ L&      operator*=(VQ L&, R);
6268  //        VQ L&      operator/=(VQ L&, R);
6269  //        VQ L&      operator+=(VQ L&, R);
6270  //        VQ L&      operator-=(VQ L&, R);
6271  void addAssignmentArithmeticOverloads(bool isEqualOp) {
6272    if (!HasArithmeticOrEnumeralCandidateType)
6273      return;
6274
6275    for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
6276      for (unsigned Right = FirstPromotedArithmeticType;
6277           Right < LastPromotedArithmeticType; ++Right) {
6278        QualType ParamTypes[2];
6279        ParamTypes[1] = getArithmeticType(Right);
6280
6281        // Add this built-in operator as a candidate (VQ is empty).
6282        ParamTypes[0] =
6283          S.Context.getLValueReferenceType(getArithmeticType(Left));
6284        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6285                              /*IsAssigmentOperator=*/isEqualOp);
6286
6287        // Add this built-in operator as a candidate (VQ is 'volatile').
6288        if (VisibleTypeConversionsQuals.hasVolatile()) {
6289          ParamTypes[0] =
6290            S.Context.getVolatileType(getArithmeticType(Left));
6291          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6292          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6293                                CandidateSet,
6294                                /*IsAssigmentOperator=*/isEqualOp);
6295        }
6296      }
6297    }
6298
6299    // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
6300    for (BuiltinCandidateTypeSet::iterator
6301              Vec1 = CandidateTypes[0].vector_begin(),
6302           Vec1End = CandidateTypes[0].vector_end();
6303         Vec1 != Vec1End; ++Vec1) {
6304      for (BuiltinCandidateTypeSet::iterator
6305                Vec2 = CandidateTypes[1].vector_begin(),
6306             Vec2End = CandidateTypes[1].vector_end();
6307           Vec2 != Vec2End; ++Vec2) {
6308        QualType ParamTypes[2];
6309        ParamTypes[1] = *Vec2;
6310        // Add this built-in operator as a candidate (VQ is empty).
6311        ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
6312        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
6313                              /*IsAssigmentOperator=*/isEqualOp);
6314
6315        // Add this built-in operator as a candidate (VQ is 'volatile').
6316        if (VisibleTypeConversionsQuals.hasVolatile()) {
6317          ParamTypes[0] = S.Context.getVolatileType(*Vec1);
6318          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6319          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6320                                CandidateSet,
6321                                /*IsAssigmentOperator=*/isEqualOp);
6322        }
6323      }
6324    }
6325  }
6326
6327  // C++ [over.built]p22:
6328  //
6329  //   For every triple (L, VQ, R), where L is an integral type, VQ
6330  //   is either volatile or empty, and R is a promoted integral
6331  //   type, there exist candidate operator functions of the form
6332  //
6333  //        VQ L&       operator%=(VQ L&, R);
6334  //        VQ L&       operator<<=(VQ L&, R);
6335  //        VQ L&       operator>>=(VQ L&, R);
6336  //        VQ L&       operator&=(VQ L&, R);
6337  //        VQ L&       operator^=(VQ L&, R);
6338  //        VQ L&       operator|=(VQ L&, R);
6339  void addAssignmentIntegralOverloads() {
6340    if (!HasArithmeticOrEnumeralCandidateType)
6341      return;
6342
6343    for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
6344      for (unsigned Right = FirstPromotedIntegralType;
6345           Right < LastPromotedIntegralType; ++Right) {
6346        QualType ParamTypes[2];
6347        ParamTypes[1] = getArithmeticType(Right);
6348
6349        // Add this built-in operator as a candidate (VQ is empty).
6350        ParamTypes[0] =
6351          S.Context.getLValueReferenceType(getArithmeticType(Left));
6352        S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
6353        if (VisibleTypeConversionsQuals.hasVolatile()) {
6354          // Add this built-in operator as a candidate (VQ is 'volatile').
6355          ParamTypes[0] = getArithmeticType(Left);
6356          ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
6357          ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
6358          S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2,
6359                                CandidateSet);
6360        }
6361      }
6362    }
6363  }
6364
6365  // C++ [over.operator]p23:
6366  //
6367  //   There also exist candidate operator functions of the form
6368  //
6369  //        bool        operator!(bool);
6370  //        bool        operator&&(bool, bool);
6371  //        bool        operator||(bool, bool);
6372  void addExclaimOverload() {
6373    QualType ParamTy = S.Context.BoolTy;
6374    S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
6375                          /*IsAssignmentOperator=*/false,
6376                          /*NumContextualBoolArguments=*/1);
6377  }
6378  void addAmpAmpOrPipePipeOverload() {
6379    QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
6380    S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
6381                          /*IsAssignmentOperator=*/false,
6382                          /*NumContextualBoolArguments=*/2);
6383  }
6384
6385  // C++ [over.built]p13:
6386  //
6387  //   For every cv-qualified or cv-unqualified object type T there
6388  //   exist candidate operator functions of the form
6389  //
6390  //        T*         operator+(T*, ptrdiff_t);     [ABOVE]
6391  //        T&         operator[](T*, ptrdiff_t);
6392  //        T*         operator-(T*, ptrdiff_t);     [ABOVE]
6393  //        T*         operator+(ptrdiff_t, T*);     [ABOVE]
6394  //        T&         operator[](ptrdiff_t, T*);
6395  void addSubscriptOverloads() {
6396    for (BuiltinCandidateTypeSet::iterator
6397              Ptr = CandidateTypes[0].pointer_begin(),
6398           PtrEnd = CandidateTypes[0].pointer_end();
6399         Ptr != PtrEnd; ++Ptr) {
6400      QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
6401      QualType PointeeType = (*Ptr)->getPointeeType();
6402      if (!PointeeType->isObjectType())
6403        continue;
6404
6405      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6406
6407      // T& operator[](T*, ptrdiff_t)
6408      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6409    }
6410
6411    for (BuiltinCandidateTypeSet::iterator
6412              Ptr = CandidateTypes[1].pointer_begin(),
6413           PtrEnd = CandidateTypes[1].pointer_end();
6414         Ptr != PtrEnd; ++Ptr) {
6415      QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
6416      QualType PointeeType = (*Ptr)->getPointeeType();
6417      if (!PointeeType->isObjectType())
6418        continue;
6419
6420      QualType ResultTy = S.Context.getLValueReferenceType(PointeeType);
6421
6422      // T& operator[](ptrdiff_t, T*)
6423      S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6424    }
6425  }
6426
6427  // C++ [over.built]p11:
6428  //    For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
6429  //    C1 is the same type as C2 or is a derived class of C2, T is an object
6430  //    type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
6431  //    there exist candidate operator functions of the form
6432  //
6433  //      CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
6434  //
6435  //    where CV12 is the union of CV1 and CV2.
6436  void addArrowStarOverloads() {
6437    for (BuiltinCandidateTypeSet::iterator
6438             Ptr = CandidateTypes[0].pointer_begin(),
6439           PtrEnd = CandidateTypes[0].pointer_end();
6440         Ptr != PtrEnd; ++Ptr) {
6441      QualType C1Ty = (*Ptr);
6442      QualType C1;
6443      QualifierCollector Q1;
6444      C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
6445      if (!isa<RecordType>(C1))
6446        continue;
6447      // heuristic to reduce number of builtin candidates in the set.
6448      // Add volatile/restrict version only if there are conversions to a
6449      // volatile/restrict type.
6450      if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
6451        continue;
6452      if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
6453        continue;
6454      for (BuiltinCandidateTypeSet::iterator
6455                MemPtr = CandidateTypes[1].member_pointer_begin(),
6456             MemPtrEnd = CandidateTypes[1].member_pointer_end();
6457           MemPtr != MemPtrEnd; ++MemPtr) {
6458        const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
6459        QualType C2 = QualType(mptr->getClass(), 0);
6460        C2 = C2.getUnqualifiedType();
6461        if (C1 != C2 && !S.IsDerivedFrom(C1, C2))
6462          break;
6463        QualType ParamTypes[2] = { *Ptr, *MemPtr };
6464        // build CV12 T&
6465        QualType T = mptr->getPointeeType();
6466        if (!VisibleTypeConversionsQuals.hasVolatile() &&
6467            T.isVolatileQualified())
6468          continue;
6469        if (!VisibleTypeConversionsQuals.hasRestrict() &&
6470            T.isRestrictQualified())
6471          continue;
6472        T = Q1.apply(S.Context, T);
6473        QualType ResultTy = S.Context.getLValueReferenceType(T);
6474        S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
6475      }
6476    }
6477  }
6478
6479  // Note that we don't consider the first argument, since it has been
6480  // contextually converted to bool long ago. The candidates below are
6481  // therefore added as binary.
6482  //
6483  // C++ [over.built]p25:
6484  //   For every type T, where T is a pointer, pointer-to-member, or scoped
6485  //   enumeration type, there exist candidate operator functions of the form
6486  //
6487  //        T        operator?(bool, T, T);
6488  //
6489  void addConditionalOperatorOverloads() {
6490    /// Set of (canonical) types that we've already handled.
6491    llvm::SmallPtrSet<QualType, 8> AddedTypes;
6492
6493    for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
6494      for (BuiltinCandidateTypeSet::iterator
6495                Ptr = CandidateTypes[ArgIdx].pointer_begin(),
6496             PtrEnd = CandidateTypes[ArgIdx].pointer_end();
6497           Ptr != PtrEnd; ++Ptr) {
6498        if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)))
6499          continue;
6500
6501        QualType ParamTypes[2] = { *Ptr, *Ptr };
6502        S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
6503      }
6504
6505      for (BuiltinCandidateTypeSet::iterator
6506                MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
6507             MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
6508           MemPtr != MemPtrEnd; ++MemPtr) {
6509        if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)))
6510          continue;
6511
6512        QualType ParamTypes[2] = { *MemPtr, *MemPtr };
6513        S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
6514      }
6515
6516      if (S.getLangOptions().CPlusPlus0x) {
6517        for (BuiltinCandidateTypeSet::iterator
6518                  Enum = CandidateTypes[ArgIdx].enumeration_begin(),
6519               EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
6520             Enum != EnumEnd; ++Enum) {
6521          if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped())
6522            continue;
6523
6524          if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)))
6525            continue;
6526
6527          QualType ParamTypes[2] = { *Enum, *Enum };
6528          S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet);
6529        }
6530      }
6531    }
6532  }
6533};
6534
6535} // end anonymous namespace
6536
6537/// AddBuiltinOperatorCandidates - Add the appropriate built-in
6538/// operator overloads to the candidate set (C++ [over.built]), based
6539/// on the operator @p Op and the arguments given. For example, if the
6540/// operator is a binary '+', this routine might add "int
6541/// operator+(int, int)" to cover integer addition.
6542void
6543Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
6544                                   SourceLocation OpLoc,
6545                                   Expr **Args, unsigned NumArgs,
6546                                   OverloadCandidateSet& CandidateSet) {
6547  // Find all of the types that the arguments can convert to, but only
6548  // if the operator we're looking at has built-in operator candidates
6549  // that make use of these types. Also record whether we encounter non-record
6550  // candidate types or either arithmetic or enumeral candidate types.
6551  Qualifiers VisibleTypeConversionsQuals;
6552  VisibleTypeConversionsQuals.addConst();
6553  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
6554    VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
6555
6556  bool HasNonRecordCandidateType = false;
6557  bool HasArithmeticOrEnumeralCandidateType = false;
6558  SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
6559  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
6560    CandidateTypes.push_back(BuiltinCandidateTypeSet(*this));
6561    CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
6562                                                 OpLoc,
6563                                                 true,
6564                                                 (Op == OO_Exclaim ||
6565                                                  Op == OO_AmpAmp ||
6566                                                  Op == OO_PipePipe),
6567                                                 VisibleTypeConversionsQuals);
6568    HasNonRecordCandidateType = HasNonRecordCandidateType ||
6569        CandidateTypes[ArgIdx].hasNonRecordTypes();
6570    HasArithmeticOrEnumeralCandidateType =
6571        HasArithmeticOrEnumeralCandidateType ||
6572        CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
6573  }
6574
6575  // Exit early when no non-record types have been added to the candidate set
6576  // for any of the arguments to the operator.
6577  //
6578  // We can't exit early for !, ||, or &&, since there we have always have
6579  // 'bool' overloads.
6580  if (!HasNonRecordCandidateType &&
6581      !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
6582    return;
6583
6584  // Setup an object to manage the common state for building overloads.
6585  BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs,
6586                                           VisibleTypeConversionsQuals,
6587                                           HasArithmeticOrEnumeralCandidateType,
6588                                           CandidateTypes, CandidateSet);
6589
6590  // Dispatch over the operation to add in only those overloads which apply.
6591  switch (Op) {
6592  case OO_None:
6593  case NUM_OVERLOADED_OPERATORS:
6594    llvm_unreachable("Expected an overloaded operator");
6595
6596  case OO_New:
6597  case OO_Delete:
6598  case OO_Array_New:
6599  case OO_Array_Delete:
6600  case OO_Call:
6601    llvm_unreachable(
6602                    "Special operators don't use AddBuiltinOperatorCandidates");
6603
6604  case OO_Comma:
6605  case OO_Arrow:
6606    // C++ [over.match.oper]p3:
6607    //   -- For the operator ',', the unary operator '&', or the
6608    //      operator '->', the built-in candidates set is empty.
6609    break;
6610
6611  case OO_Plus: // '+' is either unary or binary
6612    if (NumArgs == 1)
6613      OpBuilder.addUnaryPlusPointerOverloads();
6614    // Fall through.
6615
6616  case OO_Minus: // '-' is either unary or binary
6617    if (NumArgs == 1) {
6618      OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
6619    } else {
6620      OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
6621      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6622    }
6623    break;
6624
6625  case OO_Star: // '*' is either unary or binary
6626    if (NumArgs == 1)
6627      OpBuilder.addUnaryStarPointerOverloads();
6628    else
6629      OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6630    break;
6631
6632  case OO_Slash:
6633    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6634    break;
6635
6636  case OO_PlusPlus:
6637  case OO_MinusMinus:
6638    OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
6639    OpBuilder.addPlusPlusMinusMinusPointerOverloads();
6640    break;
6641
6642  case OO_EqualEqual:
6643  case OO_ExclaimEqual:
6644    OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads();
6645    // Fall through.
6646
6647  case OO_Less:
6648  case OO_Greater:
6649  case OO_LessEqual:
6650  case OO_GreaterEqual:
6651    OpBuilder.addRelationalPointerOrEnumeralOverloads();
6652    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true);
6653    break;
6654
6655  case OO_Percent:
6656  case OO_Caret:
6657  case OO_Pipe:
6658  case OO_LessLess:
6659  case OO_GreaterGreater:
6660    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6661    break;
6662
6663  case OO_Amp: // '&' is either unary or binary
6664    if (NumArgs == 1)
6665      // C++ [over.match.oper]p3:
6666      //   -- For the operator ',', the unary operator '&', or the
6667      //      operator '->', the built-in candidates set is empty.
6668      break;
6669
6670    OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
6671    break;
6672
6673  case OO_Tilde:
6674    OpBuilder.addUnaryTildePromotedIntegralOverloads();
6675    break;
6676
6677  case OO_Equal:
6678    OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
6679    // Fall through.
6680
6681  case OO_PlusEqual:
6682  case OO_MinusEqual:
6683    OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
6684    // Fall through.
6685
6686  case OO_StarEqual:
6687  case OO_SlashEqual:
6688    OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
6689    break;
6690
6691  case OO_PercentEqual:
6692  case OO_LessLessEqual:
6693  case OO_GreaterGreaterEqual:
6694  case OO_AmpEqual:
6695  case OO_CaretEqual:
6696  case OO_PipeEqual:
6697    OpBuilder.addAssignmentIntegralOverloads();
6698    break;
6699
6700  case OO_Exclaim:
6701    OpBuilder.addExclaimOverload();
6702    break;
6703
6704  case OO_AmpAmp:
6705  case OO_PipePipe:
6706    OpBuilder.addAmpAmpOrPipePipeOverload();
6707    break;
6708
6709  case OO_Subscript:
6710    OpBuilder.addSubscriptOverloads();
6711    break;
6712
6713  case OO_ArrowStar:
6714    OpBuilder.addArrowStarOverloads();
6715    break;
6716
6717  case OO_Conditional:
6718    OpBuilder.addConditionalOperatorOverloads();
6719    OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false);
6720    break;
6721  }
6722}
6723
6724/// \brief Add function candidates found via argument-dependent lookup
6725/// to the set of overloading candidates.
6726///
6727/// This routine performs argument-dependent name lookup based on the
6728/// given function name (which may also be an operator name) and adds
6729/// all of the overload candidates found by ADL to the overload
6730/// candidate set (C++ [basic.lookup.argdep]).
6731void
6732Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
6733                                           bool Operator,
6734                                           Expr **Args, unsigned NumArgs,
6735                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
6736                                           OverloadCandidateSet& CandidateSet,
6737                                           bool PartialOverloading,
6738                                           bool StdNamespaceIsAssociated) {
6739  ADLResult Fns;
6740
6741  // FIXME: This approach for uniquing ADL results (and removing
6742  // redundant candidates from the set) relies on pointer-equality,
6743  // which means we need to key off the canonical decl.  However,
6744  // always going back to the canonical decl might not get us the
6745  // right set of default arguments.  What default arguments are
6746  // we supposed to consider on ADL candidates, anyway?
6747
6748  // FIXME: Pass in the explicit template arguments?
6749  ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns,
6750                          StdNamespaceIsAssociated);
6751
6752  // Erase all of the candidates we already knew about.
6753  for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
6754                                   CandEnd = CandidateSet.end();
6755       Cand != CandEnd; ++Cand)
6756    if (Cand->Function) {
6757      Fns.erase(Cand->Function);
6758      if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
6759        Fns.erase(FunTmpl);
6760    }
6761
6762  // For each of the ADL candidates we found, add it to the overload
6763  // set.
6764  for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
6765    DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
6766    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
6767      if (ExplicitTemplateArgs)
6768        continue;
6769
6770      AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
6771                           false, PartialOverloading);
6772    } else
6773      AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
6774                                   FoundDecl, ExplicitTemplateArgs,
6775                                   Args, NumArgs, CandidateSet);
6776  }
6777}
6778
6779/// isBetterOverloadCandidate - Determines whether the first overload
6780/// candidate is a better candidate than the second (C++ 13.3.3p1).
6781bool
6782isBetterOverloadCandidate(Sema &S,
6783                          const OverloadCandidate &Cand1,
6784                          const OverloadCandidate &Cand2,
6785                          SourceLocation Loc,
6786                          bool UserDefinedConversion) {
6787  // Define viable functions to be better candidates than non-viable
6788  // functions.
6789  if (!Cand2.Viable)
6790    return Cand1.Viable;
6791  else if (!Cand1.Viable)
6792    return false;
6793
6794  // C++ [over.match.best]p1:
6795  //
6796  //   -- if F is a static member function, ICS1(F) is defined such
6797  //      that ICS1(F) is neither better nor worse than ICS1(G) for
6798  //      any function G, and, symmetrically, ICS1(G) is neither
6799  //      better nor worse than ICS1(F).
6800  unsigned StartArg = 0;
6801  if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
6802    StartArg = 1;
6803
6804  // C++ [over.match.best]p1:
6805  //   A viable function F1 is defined to be a better function than another
6806  //   viable function F2 if for all arguments i, ICSi(F1) is not a worse
6807  //   conversion sequence than ICSi(F2), and then...
6808  unsigned NumArgs = Cand1.Conversions.size();
6809  assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
6810  bool HasBetterConversion = false;
6811  for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
6812    switch (CompareImplicitConversionSequences(S,
6813                                               Cand1.Conversions[ArgIdx],
6814                                               Cand2.Conversions[ArgIdx])) {
6815    case ImplicitConversionSequence::Better:
6816      // Cand1 has a better conversion sequence.
6817      HasBetterConversion = true;
6818      break;
6819
6820    case ImplicitConversionSequence::Worse:
6821      // Cand1 can't be better than Cand2.
6822      return false;
6823
6824    case ImplicitConversionSequence::Indistinguishable:
6825      // Do nothing.
6826      break;
6827    }
6828  }
6829
6830  //    -- for some argument j, ICSj(F1) is a better conversion sequence than
6831  //       ICSj(F2), or, if not that,
6832  if (HasBetterConversion)
6833    return true;
6834
6835  //     - F1 is a non-template function and F2 is a function template
6836  //       specialization, or, if not that,
6837  if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) &&
6838      Cand2.Function && Cand2.Function->getPrimaryTemplate())
6839    return true;
6840
6841  //   -- F1 and F2 are function template specializations, and the function
6842  //      template for F1 is more specialized than the template for F2
6843  //      according to the partial ordering rules described in 14.5.5.2, or,
6844  //      if not that,
6845  if (Cand1.Function && Cand1.Function->getPrimaryTemplate() &&
6846      Cand2.Function && Cand2.Function->getPrimaryTemplate()) {
6847    if (FunctionTemplateDecl *BetterTemplate
6848          = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
6849                                         Cand2.Function->getPrimaryTemplate(),
6850                                         Loc,
6851                       isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
6852                                                             : TPOC_Call,
6853                                         Cand1.ExplicitCallArguments))
6854      return BetterTemplate == Cand1.Function->getPrimaryTemplate();
6855  }
6856
6857  //   -- the context is an initialization by user-defined conversion
6858  //      (see 8.5, 13.3.1.5) and the standard conversion sequence
6859  //      from the return type of F1 to the destination type (i.e.,
6860  //      the type of the entity being initialized) is a better
6861  //      conversion sequence than the standard conversion sequence
6862  //      from the return type of F2 to the destination type.
6863  if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
6864      isa<CXXConversionDecl>(Cand1.Function) &&
6865      isa<CXXConversionDecl>(Cand2.Function)) {
6866    switch (CompareStandardConversionSequences(S,
6867                                               Cand1.FinalConversion,
6868                                               Cand2.FinalConversion)) {
6869    case ImplicitConversionSequence::Better:
6870      // Cand1 has a better conversion sequence.
6871      return true;
6872
6873    case ImplicitConversionSequence::Worse:
6874      // Cand1 can't be better than Cand2.
6875      return false;
6876
6877    case ImplicitConversionSequence::Indistinguishable:
6878      // Do nothing
6879      break;
6880    }
6881  }
6882
6883  return false;
6884}
6885
6886/// \brief Computes the best viable function (C++ 13.3.3)
6887/// within an overload candidate set.
6888///
6889/// \param CandidateSet the set of candidate functions.
6890///
6891/// \param Loc the location of the function name (or operator symbol) for
6892/// which overload resolution occurs.
6893///
6894/// \param Best f overload resolution was successful or found a deleted
6895/// function, Best points to the candidate function found.
6896///
6897/// \returns The result of overload resolution.
6898OverloadingResult
6899OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
6900                                         iterator &Best,
6901                                         bool UserDefinedConversion) {
6902  // Find the best viable function.
6903  Best = end();
6904  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6905    if (Cand->Viable)
6906      if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc,
6907                                                     UserDefinedConversion))
6908        Best = Cand;
6909  }
6910
6911  // If we didn't find any viable functions, abort.
6912  if (Best == end())
6913    return OR_No_Viable_Function;
6914
6915  // Make sure that this function is better than every other viable
6916  // function. If not, we have an ambiguity.
6917  for (iterator Cand = begin(); Cand != end(); ++Cand) {
6918    if (Cand->Viable &&
6919        Cand != Best &&
6920        !isBetterOverloadCandidate(S, *Best, *Cand, Loc,
6921                                   UserDefinedConversion)) {
6922      Best = end();
6923      return OR_Ambiguous;
6924    }
6925  }
6926
6927  // Best is the best viable function.
6928  if (Best->Function &&
6929      (Best->Function->isDeleted() ||
6930       S.isFunctionConsideredUnavailable(Best->Function)))
6931    return OR_Deleted;
6932
6933  return OR_Success;
6934}
6935
6936namespace {
6937
6938enum OverloadCandidateKind {
6939  oc_function,
6940  oc_method,
6941  oc_constructor,
6942  oc_function_template,
6943  oc_method_template,
6944  oc_constructor_template,
6945  oc_implicit_default_constructor,
6946  oc_implicit_copy_constructor,
6947  oc_implicit_move_constructor,
6948  oc_implicit_copy_assignment,
6949  oc_implicit_move_assignment,
6950  oc_implicit_inherited_constructor
6951};
6952
6953OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
6954                                                FunctionDecl *Fn,
6955                                                std::string &Description) {
6956  bool isTemplate = false;
6957
6958  if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
6959    isTemplate = true;
6960    Description = S.getTemplateArgumentBindingsText(
6961      FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
6962  }
6963
6964  if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
6965    if (!Ctor->isImplicit())
6966      return isTemplate ? oc_constructor_template : oc_constructor;
6967
6968    if (Ctor->getInheritedConstructor())
6969      return oc_implicit_inherited_constructor;
6970
6971    if (Ctor->isDefaultConstructor())
6972      return oc_implicit_default_constructor;
6973
6974    if (Ctor->isMoveConstructor())
6975      return oc_implicit_move_constructor;
6976
6977    assert(Ctor->isCopyConstructor() &&
6978           "unexpected sort of implicit constructor");
6979    return oc_implicit_copy_constructor;
6980  }
6981
6982  if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
6983    // This actually gets spelled 'candidate function' for now, but
6984    // it doesn't hurt to split it out.
6985    if (!Meth->isImplicit())
6986      return isTemplate ? oc_method_template : oc_method;
6987
6988    if (Meth->isMoveAssignmentOperator())
6989      return oc_implicit_move_assignment;
6990
6991    assert(Meth->isCopyAssignmentOperator()
6992           && "implicit method is not copy assignment operator?");
6993    return oc_implicit_copy_assignment;
6994  }
6995
6996  return isTemplate ? oc_function_template : oc_function;
6997}
6998
6999void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
7000  const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn);
7001  if (!Ctor) return;
7002
7003  Ctor = Ctor->getInheritedConstructor();
7004  if (!Ctor) return;
7005
7006  S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor);
7007}
7008
7009} // end anonymous namespace
7010
7011// Notes the location of an overload candidate.
7012void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
7013  std::string FnDesc;
7014  OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
7015  Diag(Fn->getLocation(), diag::note_ovl_candidate)
7016    << (unsigned) K << FnDesc;
7017  MaybeEmitInheritedConstructorNote(*this, Fn);
7018}
7019
7020//Notes the location of all overload candidates designated through
7021// OverloadedExpr
7022void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) {
7023  assert(OverloadedExpr->getType() == Context.OverloadTy);
7024
7025  OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
7026  OverloadExpr *OvlExpr = Ovl.Expression;
7027
7028  for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
7029                            IEnd = OvlExpr->decls_end();
7030       I != IEnd; ++I) {
7031    if (FunctionTemplateDecl *FunTmpl =
7032                dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
7033      NoteOverloadCandidate(FunTmpl->getTemplatedDecl());
7034    } else if (FunctionDecl *Fun
7035                      = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
7036      NoteOverloadCandidate(Fun);
7037    }
7038  }
7039}
7040
7041/// Diagnoses an ambiguous conversion.  The partial diagnostic is the
7042/// "lead" diagnostic; it will be given two arguments, the source and
7043/// target types of the conversion.
7044void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
7045                                 Sema &S,
7046                                 SourceLocation CaretLoc,
7047                                 const PartialDiagnostic &PDiag) const {
7048  S.Diag(CaretLoc, PDiag)
7049    << Ambiguous.getFromType() << Ambiguous.getToType();
7050  for (AmbiguousConversionSequence::const_iterator
7051         I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
7052    S.NoteOverloadCandidate(*I);
7053  }
7054}
7055
7056namespace {
7057
7058void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
7059  const ImplicitConversionSequence &Conv = Cand->Conversions[I];
7060  assert(Conv.isBad());
7061  assert(Cand->Function && "for now, candidate must be a function");
7062  FunctionDecl *Fn = Cand->Function;
7063
7064  // There's a conversion slot for the object argument if this is a
7065  // non-constructor method.  Note that 'I' corresponds the
7066  // conversion-slot index.
7067  bool isObjectArgument = false;
7068  if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
7069    if (I == 0)
7070      isObjectArgument = true;
7071    else
7072      I--;
7073  }
7074
7075  std::string FnDesc;
7076  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
7077
7078  Expr *FromExpr = Conv.Bad.FromExpr;
7079  QualType FromTy = Conv.Bad.getFromType();
7080  QualType ToTy = Conv.Bad.getToType();
7081
7082  if (FromTy == S.Context.OverloadTy) {
7083    assert(FromExpr && "overload set argument came from implicit argument?");
7084    Expr *E = FromExpr->IgnoreParens();
7085    if (isa<UnaryOperator>(E))
7086      E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
7087    DeclarationName Name = cast<OverloadExpr>(E)->getName();
7088
7089    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
7090      << (unsigned) FnKind << FnDesc
7091      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7092      << ToTy << Name << I+1;
7093    MaybeEmitInheritedConstructorNote(S, Fn);
7094    return;
7095  }
7096
7097  // Do some hand-waving analysis to see if the non-viability is due
7098  // to a qualifier mismatch.
7099  CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
7100  CanQualType CToTy = S.Context.getCanonicalType(ToTy);
7101  if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
7102    CToTy = RT->getPointeeType();
7103  else {
7104    // TODO: detect and diagnose the full richness of const mismatches.
7105    if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
7106      if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>())
7107        CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType();
7108  }
7109
7110  if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
7111      !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
7112    // It is dumb that we have to do this here.
7113    while (isa<ArrayType>(CFromTy))
7114      CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
7115    while (isa<ArrayType>(CToTy))
7116      CToTy = CFromTy->getAs<ArrayType>()->getElementType();
7117
7118    Qualifiers FromQs = CFromTy.getQualifiers();
7119    Qualifiers ToQs = CToTy.getQualifiers();
7120
7121    if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
7122      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
7123        << (unsigned) FnKind << FnDesc
7124        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7125        << FromTy
7126        << FromQs.getAddressSpace() << ToQs.getAddressSpace()
7127        << (unsigned) isObjectArgument << I+1;
7128      MaybeEmitInheritedConstructorNote(S, Fn);
7129      return;
7130    }
7131
7132    if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
7133      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
7134        << (unsigned) FnKind << FnDesc
7135        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7136        << FromTy
7137        << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
7138        << (unsigned) isObjectArgument << I+1;
7139      MaybeEmitInheritedConstructorNote(S, Fn);
7140      return;
7141    }
7142
7143    if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
7144      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
7145      << (unsigned) FnKind << FnDesc
7146      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7147      << FromTy
7148      << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
7149      << (unsigned) isObjectArgument << I+1;
7150      MaybeEmitInheritedConstructorNote(S, Fn);
7151      return;
7152    }
7153
7154    unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
7155    assert(CVR && "unexpected qualifiers mismatch");
7156
7157    if (isObjectArgument) {
7158      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
7159        << (unsigned) FnKind << FnDesc
7160        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7161        << FromTy << (CVR - 1);
7162    } else {
7163      S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
7164        << (unsigned) FnKind << FnDesc
7165        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7166        << FromTy << (CVR - 1) << I+1;
7167    }
7168    MaybeEmitInheritedConstructorNote(S, Fn);
7169    return;
7170  }
7171
7172  // Special diagnostic for failure to convert an initializer list, since
7173  // telling the user that it has type void is not useful.
7174  if (FromExpr && isa<InitListExpr>(FromExpr)) {
7175    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
7176      << (unsigned) FnKind << FnDesc
7177      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7178      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7179    MaybeEmitInheritedConstructorNote(S, Fn);
7180    return;
7181  }
7182
7183  // Diagnose references or pointers to incomplete types differently,
7184  // since it's far from impossible that the incompleteness triggered
7185  // the failure.
7186  QualType TempFromTy = FromTy.getNonReferenceType();
7187  if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
7188    TempFromTy = PTy->getPointeeType();
7189  if (TempFromTy->isIncompleteType()) {
7190    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
7191      << (unsigned) FnKind << FnDesc
7192      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7193      << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7194    MaybeEmitInheritedConstructorNote(S, Fn);
7195    return;
7196  }
7197
7198  // Diagnose base -> derived pointer conversions.
7199  unsigned BaseToDerivedConversion = 0;
7200  if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
7201    if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
7202      if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
7203                                               FromPtrTy->getPointeeType()) &&
7204          !FromPtrTy->getPointeeType()->isIncompleteType() &&
7205          !ToPtrTy->getPointeeType()->isIncompleteType() &&
7206          S.IsDerivedFrom(ToPtrTy->getPointeeType(),
7207                          FromPtrTy->getPointeeType()))
7208        BaseToDerivedConversion = 1;
7209    }
7210  } else if (const ObjCObjectPointerType *FromPtrTy
7211                                    = FromTy->getAs<ObjCObjectPointerType>()) {
7212    if (const ObjCObjectPointerType *ToPtrTy
7213                                        = ToTy->getAs<ObjCObjectPointerType>())
7214      if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
7215        if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
7216          if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
7217                                                FromPtrTy->getPointeeType()) &&
7218              FromIface->isSuperClassOf(ToIface))
7219            BaseToDerivedConversion = 2;
7220  } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
7221      if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
7222          !FromTy->isIncompleteType() &&
7223          !ToRefTy->getPointeeType()->isIncompleteType() &&
7224          S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy))
7225        BaseToDerivedConversion = 3;
7226    }
7227
7228  if (BaseToDerivedConversion) {
7229    S.Diag(Fn->getLocation(),
7230           diag::note_ovl_candidate_bad_base_to_derived_conv)
7231      << (unsigned) FnKind << FnDesc
7232      << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7233      << (BaseToDerivedConversion - 1)
7234      << FromTy << ToTy << I+1;
7235    MaybeEmitInheritedConstructorNote(S, Fn);
7236    return;
7237  }
7238
7239  if (isa<ObjCObjectPointerType>(CFromTy) &&
7240      isa<PointerType>(CToTy)) {
7241      Qualifiers FromQs = CFromTy.getQualifiers();
7242      Qualifiers ToQs = CToTy.getQualifiers();
7243      if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
7244        S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
7245        << (unsigned) FnKind << FnDesc
7246        << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7247        << FromTy << ToTy << (unsigned) isObjectArgument << I+1;
7248        MaybeEmitInheritedConstructorNote(S, Fn);
7249        return;
7250      }
7251  }
7252
7253  // Emit the generic diagnostic and, optionally, add the hints to it.
7254  PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
7255  FDiag << (unsigned) FnKind << FnDesc
7256    << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
7257    << FromTy << ToTy << (unsigned) isObjectArgument << I + 1
7258    << (unsigned) (Cand->Fix.Kind);
7259
7260  // If we can fix the conversion, suggest the FixIts.
7261  for (SmallVector<FixItHint, 1>::iterator
7262      HI = Cand->Fix.Hints.begin(), HE = Cand->Fix.Hints.end();
7263      HI != HE; ++HI)
7264    FDiag << *HI;
7265  S.Diag(Fn->getLocation(), FDiag);
7266
7267  MaybeEmitInheritedConstructorNote(S, Fn);
7268}
7269
7270void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
7271                           unsigned NumFormalArgs) {
7272  // TODO: treat calls to a missing default constructor as a special case
7273
7274  FunctionDecl *Fn = Cand->Function;
7275  const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
7276
7277  unsigned MinParams = Fn->getMinRequiredArguments();
7278
7279  // With invalid overloaded operators, it's possible that we think we
7280  // have an arity mismatch when it fact it looks like we have the
7281  // right number of arguments, because only overloaded operators have
7282  // the weird behavior of overloading member and non-member functions.
7283  // Just don't report anything.
7284  if (Fn->isInvalidDecl() &&
7285      Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
7286    return;
7287
7288  // at least / at most / exactly
7289  unsigned mode, modeCount;
7290  if (NumFormalArgs < MinParams) {
7291    assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
7292           (Cand->FailureKind == ovl_fail_bad_deduction &&
7293            Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
7294    if (MinParams != FnTy->getNumArgs() ||
7295        FnTy->isVariadic() || FnTy->isTemplateVariadic())
7296      mode = 0; // "at least"
7297    else
7298      mode = 2; // "exactly"
7299    modeCount = MinParams;
7300  } else {
7301    assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
7302           (Cand->FailureKind == ovl_fail_bad_deduction &&
7303            Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
7304    if (MinParams != FnTy->getNumArgs())
7305      mode = 1; // "at most"
7306    else
7307      mode = 2; // "exactly"
7308    modeCount = FnTy->getNumArgs();
7309  }
7310
7311  std::string Description;
7312  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description);
7313
7314  S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
7315    << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode
7316    << modeCount << NumFormalArgs;
7317  MaybeEmitInheritedConstructorNote(S, Fn);
7318}
7319
7320/// Diagnose a failed template-argument deduction.
7321void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
7322                          Expr **Args, unsigned NumArgs) {
7323  FunctionDecl *Fn = Cand->Function; // pattern
7324
7325  TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
7326  NamedDecl *ParamD;
7327  (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
7328  (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
7329  (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
7330  switch (Cand->DeductionFailure.Result) {
7331  case Sema::TDK_Success:
7332    llvm_unreachable("TDK_success while diagnosing bad deduction");
7333
7334  case Sema::TDK_Incomplete: {
7335    assert(ParamD && "no parameter found for incomplete deduction result");
7336    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction)
7337      << ParamD->getDeclName();
7338    MaybeEmitInheritedConstructorNote(S, Fn);
7339    return;
7340  }
7341
7342  case Sema::TDK_Underqualified: {
7343    assert(ParamD && "no parameter found for bad qualifiers deduction result");
7344    TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
7345
7346    QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType();
7347
7348    // Param will have been canonicalized, but it should just be a
7349    // qualified version of ParamD, so move the qualifiers to that.
7350    QualifierCollector Qs;
7351    Qs.strip(Param);
7352    QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
7353    assert(S.Context.hasSameType(Param, NonCanonParam));
7354
7355    // Arg has also been canonicalized, but there's nothing we can do
7356    // about that.  It also doesn't matter as much, because it won't
7357    // have any template parameters in it (because deduction isn't
7358    // done on dependent types).
7359    QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType();
7360
7361    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified)
7362      << ParamD->getDeclName() << Arg << NonCanonParam;
7363    MaybeEmitInheritedConstructorNote(S, Fn);
7364    return;
7365  }
7366
7367  case Sema::TDK_Inconsistent: {
7368    assert(ParamD && "no parameter found for inconsistent deduction result");
7369    int which = 0;
7370    if (isa<TemplateTypeParmDecl>(ParamD))
7371      which = 0;
7372    else if (isa<NonTypeTemplateParmDecl>(ParamD))
7373      which = 1;
7374    else {
7375      which = 2;
7376    }
7377
7378    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction)
7379      << which << ParamD->getDeclName()
7380      << *Cand->DeductionFailure.getFirstArg()
7381      << *Cand->DeductionFailure.getSecondArg();
7382    MaybeEmitInheritedConstructorNote(S, Fn);
7383    return;
7384  }
7385
7386  case Sema::TDK_InvalidExplicitArguments:
7387    assert(ParamD && "no parameter found for invalid explicit arguments");
7388    if (ParamD->getDeclName())
7389      S.Diag(Fn->getLocation(),
7390             diag::note_ovl_candidate_explicit_arg_mismatch_named)
7391        << ParamD->getDeclName();
7392    else {
7393      int index = 0;
7394      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
7395        index = TTP->getIndex();
7396      else if (NonTypeTemplateParmDecl *NTTP
7397                                  = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
7398        index = NTTP->getIndex();
7399      else
7400        index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
7401      S.Diag(Fn->getLocation(),
7402             diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
7403        << (index + 1);
7404    }
7405    MaybeEmitInheritedConstructorNote(S, Fn);
7406    return;
7407
7408  case Sema::TDK_TooManyArguments:
7409  case Sema::TDK_TooFewArguments:
7410    DiagnoseArityMismatch(S, Cand, NumArgs);
7411    return;
7412
7413  case Sema::TDK_InstantiationDepth:
7414    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth);
7415    MaybeEmitInheritedConstructorNote(S, Fn);
7416    return;
7417
7418  case Sema::TDK_SubstitutionFailure: {
7419    std::string ArgString;
7420    if (TemplateArgumentList *Args
7421                            = Cand->DeductionFailure.getTemplateArgumentList())
7422      ArgString = S.getTemplateArgumentBindingsText(
7423                    Fn->getDescribedFunctionTemplate()->getTemplateParameters(),
7424                                                    *Args);
7425    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure)
7426      << ArgString;
7427    MaybeEmitInheritedConstructorNote(S, Fn);
7428    return;
7429  }
7430
7431  // TODO: diagnose these individually, then kill off
7432  // note_ovl_candidate_bad_deduction, which is uselessly vague.
7433  case Sema::TDK_NonDeducedMismatch:
7434  case Sema::TDK_FailedOverloadResolution:
7435    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction);
7436    MaybeEmitInheritedConstructorNote(S, Fn);
7437    return;
7438  }
7439}
7440
7441/// CUDA: diagnose an invalid call across targets.
7442void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
7443  FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
7444  FunctionDecl *Callee = Cand->Function;
7445
7446  Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
7447                           CalleeTarget = S.IdentifyCUDATarget(Callee);
7448
7449  std::string FnDesc;
7450  OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc);
7451
7452  S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
7453      << (unsigned) FnKind << CalleeTarget << CallerTarget;
7454}
7455
7456/// Generates a 'note' diagnostic for an overload candidate.  We've
7457/// already generated a primary error at the call site.
7458///
7459/// It really does need to be a single diagnostic with its caret
7460/// pointed at the candidate declaration.  Yes, this creates some
7461/// major challenges of technical writing.  Yes, this makes pointing
7462/// out problems with specific arguments quite awkward.  It's still
7463/// better than generating twenty screens of text for every failed
7464/// overload.
7465///
7466/// It would be great to be able to express per-candidate problems
7467/// more richly for those diagnostic clients that cared, but we'd
7468/// still have to be just as careful with the default diagnostics.
7469void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
7470                           Expr **Args, unsigned NumArgs) {
7471  FunctionDecl *Fn = Cand->Function;
7472
7473  // Note deleted candidates, but only if they're viable.
7474  if (Cand->Viable && (Fn->isDeleted() ||
7475      S.isFunctionConsideredUnavailable(Fn))) {
7476    std::string FnDesc;
7477    OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
7478
7479    S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
7480      << FnKind << FnDesc << Fn->isDeleted();
7481    MaybeEmitInheritedConstructorNote(S, Fn);
7482    return;
7483  }
7484
7485  // We don't really have anything else to say about viable candidates.
7486  if (Cand->Viable) {
7487    S.NoteOverloadCandidate(Fn);
7488    return;
7489  }
7490
7491  switch (Cand->FailureKind) {
7492  case ovl_fail_too_many_arguments:
7493  case ovl_fail_too_few_arguments:
7494    return DiagnoseArityMismatch(S, Cand, NumArgs);
7495
7496  case ovl_fail_bad_deduction:
7497    return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
7498
7499  case ovl_fail_trivial_conversion:
7500  case ovl_fail_bad_final_conversion:
7501  case ovl_fail_final_conversion_not_exact:
7502    return S.NoteOverloadCandidate(Fn);
7503
7504  case ovl_fail_bad_conversion: {
7505    unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
7506    for (unsigned N = Cand->Conversions.size(); I != N; ++I)
7507      if (Cand->Conversions[I].isBad())
7508        return DiagnoseBadConversion(S, Cand, I);
7509
7510    // FIXME: this currently happens when we're called from SemaInit
7511    // when user-conversion overload fails.  Figure out how to handle
7512    // those conditions and diagnose them well.
7513    return S.NoteOverloadCandidate(Fn);
7514  }
7515
7516  case ovl_fail_bad_target:
7517    return DiagnoseBadTarget(S, Cand);
7518  }
7519}
7520
7521void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
7522  // Desugar the type of the surrogate down to a function type,
7523  // retaining as many typedefs as possible while still showing
7524  // the function type (and, therefore, its parameter types).
7525  QualType FnType = Cand->Surrogate->getConversionType();
7526  bool isLValueReference = false;
7527  bool isRValueReference = false;
7528  bool isPointer = false;
7529  if (const LValueReferenceType *FnTypeRef =
7530        FnType->getAs<LValueReferenceType>()) {
7531    FnType = FnTypeRef->getPointeeType();
7532    isLValueReference = true;
7533  } else if (const RValueReferenceType *FnTypeRef =
7534               FnType->getAs<RValueReferenceType>()) {
7535    FnType = FnTypeRef->getPointeeType();
7536    isRValueReference = true;
7537  }
7538  if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
7539    FnType = FnTypePtr->getPointeeType();
7540    isPointer = true;
7541  }
7542  // Desugar down to a function type.
7543  FnType = QualType(FnType->getAs<FunctionType>(), 0);
7544  // Reconstruct the pointer/reference as appropriate.
7545  if (isPointer) FnType = S.Context.getPointerType(FnType);
7546  if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
7547  if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
7548
7549  S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
7550    << FnType;
7551  MaybeEmitInheritedConstructorNote(S, Cand->Surrogate);
7552}
7553
7554void NoteBuiltinOperatorCandidate(Sema &S,
7555                                  const char *Opc,
7556                                  SourceLocation OpLoc,
7557                                  OverloadCandidate *Cand) {
7558  assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
7559  std::string TypeStr("operator");
7560  TypeStr += Opc;
7561  TypeStr += "(";
7562  TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
7563  if (Cand->Conversions.size() == 1) {
7564    TypeStr += ")";
7565    S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
7566  } else {
7567    TypeStr += ", ";
7568    TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString();
7569    TypeStr += ")";
7570    S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr;
7571  }
7572}
7573
7574void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
7575                                  OverloadCandidate *Cand) {
7576  unsigned NoOperands = Cand->Conversions.size();
7577  for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
7578    const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
7579    if (ICS.isBad()) break; // all meaningless after first invalid
7580    if (!ICS.isAmbiguous()) continue;
7581
7582    ICS.DiagnoseAmbiguousConversion(S, OpLoc,
7583                              S.PDiag(diag::note_ambiguous_type_conversion));
7584  }
7585}
7586
7587SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
7588  if (Cand->Function)
7589    return Cand->Function->getLocation();
7590  if (Cand->IsSurrogate)
7591    return Cand->Surrogate->getLocation();
7592  return SourceLocation();
7593}
7594
7595static unsigned
7596RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) {
7597  switch ((Sema::TemplateDeductionResult)DFI.Result) {
7598  case Sema::TDK_Success:
7599    llvm_unreachable("TDK_success while diagnosing bad deduction");
7600
7601  case Sema::TDK_Incomplete:
7602    return 1;
7603
7604  case Sema::TDK_Underqualified:
7605  case Sema::TDK_Inconsistent:
7606    return 2;
7607
7608  case Sema::TDK_SubstitutionFailure:
7609  case Sema::TDK_NonDeducedMismatch:
7610    return 3;
7611
7612  case Sema::TDK_InstantiationDepth:
7613  case Sema::TDK_FailedOverloadResolution:
7614    return 4;
7615
7616  case Sema::TDK_InvalidExplicitArguments:
7617    return 5;
7618
7619  case Sema::TDK_TooManyArguments:
7620  case Sema::TDK_TooFewArguments:
7621    return 6;
7622  }
7623  llvm_unreachable("Unhandled deduction result");
7624}
7625
7626struct CompareOverloadCandidatesForDisplay {
7627  Sema &S;
7628  CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {}
7629
7630  bool operator()(const OverloadCandidate *L,
7631                  const OverloadCandidate *R) {
7632    // Fast-path this check.
7633    if (L == R) return false;
7634
7635    // Order first by viability.
7636    if (L->Viable) {
7637      if (!R->Viable) return true;
7638
7639      // TODO: introduce a tri-valued comparison for overload
7640      // candidates.  Would be more worthwhile if we had a sort
7641      // that could exploit it.
7642      if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true;
7643      if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false;
7644    } else if (R->Viable)
7645      return false;
7646
7647    assert(L->Viable == R->Viable);
7648
7649    // Criteria by which we can sort non-viable candidates:
7650    if (!L->Viable) {
7651      // 1. Arity mismatches come after other candidates.
7652      if (L->FailureKind == ovl_fail_too_many_arguments ||
7653          L->FailureKind == ovl_fail_too_few_arguments)
7654        return false;
7655      if (R->FailureKind == ovl_fail_too_many_arguments ||
7656          R->FailureKind == ovl_fail_too_few_arguments)
7657        return true;
7658
7659      // 2. Bad conversions come first and are ordered by the number
7660      // of bad conversions and quality of good conversions.
7661      if (L->FailureKind == ovl_fail_bad_conversion) {
7662        if (R->FailureKind != ovl_fail_bad_conversion)
7663          return true;
7664
7665        // The conversion that can be fixed with a smaller number of changes,
7666        // comes first.
7667        unsigned numLFixes = L->Fix.NumConversionsFixed;
7668        unsigned numRFixes = R->Fix.NumConversionsFixed;
7669        numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
7670        numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
7671        if (numLFixes != numRFixes) {
7672          if (numLFixes < numRFixes)
7673            return true;
7674          else
7675            return false;
7676        }
7677
7678        // If there's any ordering between the defined conversions...
7679        // FIXME: this might not be transitive.
7680        assert(L->Conversions.size() == R->Conversions.size());
7681
7682        int leftBetter = 0;
7683        unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
7684        for (unsigned E = L->Conversions.size(); I != E; ++I) {
7685          switch (CompareImplicitConversionSequences(S,
7686                                                     L->Conversions[I],
7687                                                     R->Conversions[I])) {
7688          case ImplicitConversionSequence::Better:
7689            leftBetter++;
7690            break;
7691
7692          case ImplicitConversionSequence::Worse:
7693            leftBetter--;
7694            break;
7695
7696          case ImplicitConversionSequence::Indistinguishable:
7697            break;
7698          }
7699        }
7700        if (leftBetter > 0) return true;
7701        if (leftBetter < 0) return false;
7702
7703      } else if (R->FailureKind == ovl_fail_bad_conversion)
7704        return false;
7705
7706      if (L->FailureKind == ovl_fail_bad_deduction) {
7707        if (R->FailureKind != ovl_fail_bad_deduction)
7708          return true;
7709
7710        if (L->DeductionFailure.Result != R->DeductionFailure.Result)
7711          return RankDeductionFailure(L->DeductionFailure)
7712               < RankDeductionFailure(R->DeductionFailure);
7713      } else if (R->FailureKind == ovl_fail_bad_deduction)
7714        return false;
7715
7716      // TODO: others?
7717    }
7718
7719    // Sort everything else by location.
7720    SourceLocation LLoc = GetLocationForCandidate(L);
7721    SourceLocation RLoc = GetLocationForCandidate(R);
7722
7723    // Put candidates without locations (e.g. builtins) at the end.
7724    if (LLoc.isInvalid()) return false;
7725    if (RLoc.isInvalid()) return true;
7726
7727    return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
7728  }
7729};
7730
7731/// CompleteNonViableCandidate - Normally, overload resolution only
7732/// computes up to the first. Produces the FixIt set if possible.
7733void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
7734                                Expr **Args, unsigned NumArgs) {
7735  assert(!Cand->Viable);
7736
7737  // Don't do anything on failures other than bad conversion.
7738  if (Cand->FailureKind != ovl_fail_bad_conversion) return;
7739
7740  // We only want the FixIts if all the arguments can be corrected.
7741  bool Unfixable = false;
7742  // Use a implicit copy initialization to check conversion fixes.
7743  Cand->Fix.setConversionChecker(TryCopyInitialization);
7744
7745  // Skip forward to the first bad conversion.
7746  unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
7747  unsigned ConvCount = Cand->Conversions.size();
7748  while (true) {
7749    assert(ConvIdx != ConvCount && "no bad conversion in candidate");
7750    ConvIdx++;
7751    if (Cand->Conversions[ConvIdx - 1].isBad()) {
7752      Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S);
7753      break;
7754    }
7755  }
7756
7757  if (ConvIdx == ConvCount)
7758    return;
7759
7760  assert(!Cand->Conversions[ConvIdx].isInitialized() &&
7761         "remaining conversion is initialized?");
7762
7763  // FIXME: this should probably be preserved from the overload
7764  // operation somehow.
7765  bool SuppressUserConversions = false;
7766
7767  const FunctionProtoType* Proto;
7768  unsigned ArgIdx = ConvIdx;
7769
7770  if (Cand->IsSurrogate) {
7771    QualType ConvType
7772      = Cand->Surrogate->getConversionType().getNonReferenceType();
7773    if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
7774      ConvType = ConvPtrType->getPointeeType();
7775    Proto = ConvType->getAs<FunctionProtoType>();
7776    ArgIdx--;
7777  } else if (Cand->Function) {
7778    Proto = Cand->Function->getType()->getAs<FunctionProtoType>();
7779    if (isa<CXXMethodDecl>(Cand->Function) &&
7780        !isa<CXXConstructorDecl>(Cand->Function))
7781      ArgIdx--;
7782  } else {
7783    // Builtin binary operator with a bad first conversion.
7784    assert(ConvCount <= 3);
7785    for (; ConvIdx != ConvCount; ++ConvIdx)
7786      Cand->Conversions[ConvIdx]
7787        = TryCopyInitialization(S, Args[ConvIdx],
7788                                Cand->BuiltinTypes.ParamTypes[ConvIdx],
7789                                SuppressUserConversions,
7790                                /*InOverloadResolution*/ true,
7791                                /*AllowObjCWritebackConversion=*/
7792                                  S.getLangOptions().ObjCAutoRefCount);
7793    return;
7794  }
7795
7796  // Fill in the rest of the conversions.
7797  unsigned NumArgsInProto = Proto->getNumArgs();
7798  for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) {
7799    if (ArgIdx < NumArgsInProto) {
7800      Cand->Conversions[ConvIdx]
7801        = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx),
7802                                SuppressUserConversions,
7803                                /*InOverloadResolution=*/true,
7804                                /*AllowObjCWritebackConversion=*/
7805                                  S.getLangOptions().ObjCAutoRefCount);
7806      // Store the FixIt in the candidate if it exists.
7807      if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
7808        Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
7809    }
7810    else
7811      Cand->Conversions[ConvIdx].setEllipsis();
7812  }
7813}
7814
7815} // end anonymous namespace
7816
7817/// PrintOverloadCandidates - When overload resolution fails, prints
7818/// diagnostic messages containing the candidates in the candidate
7819/// set.
7820void OverloadCandidateSet::NoteCandidates(Sema &S,
7821                                          OverloadCandidateDisplayKind OCD,
7822                                          Expr **Args, unsigned NumArgs,
7823                                          const char *Opc,
7824                                          SourceLocation OpLoc) {
7825  // Sort the candidates by viability and position.  Sorting directly would
7826  // be prohibitive, so we make a set of pointers and sort those.
7827  SmallVector<OverloadCandidate*, 32> Cands;
7828  if (OCD == OCD_AllCandidates) Cands.reserve(size());
7829  for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
7830    if (Cand->Viable)
7831      Cands.push_back(Cand);
7832    else if (OCD == OCD_AllCandidates) {
7833      CompleteNonViableCandidate(S, Cand, Args, NumArgs);
7834      if (Cand->Function || Cand->IsSurrogate)
7835        Cands.push_back(Cand);
7836      // Otherwise, this a non-viable builtin candidate.  We do not, in general,
7837      // want to list every possible builtin candidate.
7838    }
7839  }
7840
7841  std::sort(Cands.begin(), Cands.end(),
7842            CompareOverloadCandidatesForDisplay(S));
7843
7844  bool ReportedAmbiguousConversions = false;
7845
7846  SmallVectorImpl<OverloadCandidate*>::iterator I, E;
7847  const DiagnosticsEngine::OverloadsShown ShowOverloads =
7848      S.Diags.getShowOverloads();
7849  unsigned CandsShown = 0;
7850  for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
7851    OverloadCandidate *Cand = *I;
7852
7853    // Set an arbitrary limit on the number of candidate functions we'll spam
7854    // the user with.  FIXME: This limit should depend on details of the
7855    // candidate list.
7856    if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) {
7857      break;
7858    }
7859    ++CandsShown;
7860
7861    if (Cand->Function)
7862      NoteFunctionCandidate(S, Cand, Args, NumArgs);
7863    else if (Cand->IsSurrogate)
7864      NoteSurrogateCandidate(S, Cand);
7865    else {
7866      assert(Cand->Viable &&
7867             "Non-viable built-in candidates are not added to Cands.");
7868      // Generally we only see ambiguities including viable builtin
7869      // operators if overload resolution got screwed up by an
7870      // ambiguous user-defined conversion.
7871      //
7872      // FIXME: It's quite possible for different conversions to see
7873      // different ambiguities, though.
7874      if (!ReportedAmbiguousConversions) {
7875        NoteAmbiguousUserConversions(S, OpLoc, Cand);
7876        ReportedAmbiguousConversions = true;
7877      }
7878
7879      // If this is a viable builtin, print it.
7880      NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
7881    }
7882  }
7883
7884  if (I != E)
7885    S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
7886}
7887
7888// [PossiblyAFunctionType]  -->   [Return]
7889// NonFunctionType --> NonFunctionType
7890// R (A) --> R(A)
7891// R (*)(A) --> R (A)
7892// R (&)(A) --> R (A)
7893// R (S::*)(A) --> R (A)
7894QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
7895  QualType Ret = PossiblyAFunctionType;
7896  if (const PointerType *ToTypePtr =
7897    PossiblyAFunctionType->getAs<PointerType>())
7898    Ret = ToTypePtr->getPointeeType();
7899  else if (const ReferenceType *ToTypeRef =
7900    PossiblyAFunctionType->getAs<ReferenceType>())
7901    Ret = ToTypeRef->getPointeeType();
7902  else if (const MemberPointerType *MemTypePtr =
7903    PossiblyAFunctionType->getAs<MemberPointerType>())
7904    Ret = MemTypePtr->getPointeeType();
7905  Ret =
7906    Context.getCanonicalType(Ret).getUnqualifiedType();
7907  return Ret;
7908}
7909
7910// A helper class to help with address of function resolution
7911// - allows us to avoid passing around all those ugly parameters
7912class AddressOfFunctionResolver
7913{
7914  Sema& S;
7915  Expr* SourceExpr;
7916  const QualType& TargetType;
7917  QualType TargetFunctionType; // Extracted function type from target type
7918
7919  bool Complain;
7920  //DeclAccessPair& ResultFunctionAccessPair;
7921  ASTContext& Context;
7922
7923  bool TargetTypeIsNonStaticMemberFunction;
7924  bool FoundNonTemplateFunction;
7925
7926  OverloadExpr::FindResult OvlExprInfo;
7927  OverloadExpr *OvlExpr;
7928  TemplateArgumentListInfo OvlExplicitTemplateArgs;
7929  SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
7930
7931public:
7932  AddressOfFunctionResolver(Sema &S, Expr* SourceExpr,
7933                            const QualType& TargetType, bool Complain)
7934    : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
7935      Complain(Complain), Context(S.getASTContext()),
7936      TargetTypeIsNonStaticMemberFunction(
7937                                    !!TargetType->getAs<MemberPointerType>()),
7938      FoundNonTemplateFunction(false),
7939      OvlExprInfo(OverloadExpr::find(SourceExpr)),
7940      OvlExpr(OvlExprInfo.Expression)
7941  {
7942    ExtractUnqualifiedFunctionTypeFromTargetType();
7943
7944    if (!TargetFunctionType->isFunctionType()) {
7945      if (OvlExpr->hasExplicitTemplateArgs()) {
7946        DeclAccessPair dap;
7947        if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization(
7948                                            OvlExpr, false, &dap) ) {
7949
7950          if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
7951            if (!Method->isStatic()) {
7952              // If the target type is a non-function type and the function
7953              // found is a non-static member function, pretend as if that was
7954              // the target, it's the only possible type to end up with.
7955              TargetTypeIsNonStaticMemberFunction = true;
7956
7957              // And skip adding the function if its not in the proper form.
7958              // We'll diagnose this due to an empty set of functions.
7959              if (!OvlExprInfo.HasFormOfMemberPointer)
7960                return;
7961            }
7962          }
7963
7964          Matches.push_back(std::make_pair(dap,Fn));
7965        }
7966      }
7967      return;
7968    }
7969
7970    if (OvlExpr->hasExplicitTemplateArgs())
7971      OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs);
7972
7973    if (FindAllFunctionsThatMatchTargetTypeExactly()) {
7974      // C++ [over.over]p4:
7975      //   If more than one function is selected, [...]
7976      if (Matches.size() > 1) {
7977        if (FoundNonTemplateFunction)
7978          EliminateAllTemplateMatches();
7979        else
7980          EliminateAllExceptMostSpecializedTemplate();
7981      }
7982    }
7983  }
7984
7985private:
7986  bool isTargetTypeAFunction() const {
7987    return TargetFunctionType->isFunctionType();
7988  }
7989
7990  // [ToType]     [Return]
7991
7992  // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
7993  // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
7994  // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
7995  void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
7996    TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
7997  }
7998
7999  // return true if any matching specializations were found
8000  bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
8001                                   const DeclAccessPair& CurAccessFunPair) {
8002    if (CXXMethodDecl *Method
8003              = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
8004      // Skip non-static function templates when converting to pointer, and
8005      // static when converting to member pointer.
8006      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8007        return false;
8008    }
8009    else if (TargetTypeIsNonStaticMemberFunction)
8010      return false;
8011
8012    // C++ [over.over]p2:
8013    //   If the name is a function template, template argument deduction is
8014    //   done (14.8.2.2), and if the argument deduction succeeds, the
8015    //   resulting template argument list is used to generate a single
8016    //   function template specialization, which is added to the set of
8017    //   overloaded functions considered.
8018    FunctionDecl *Specialization = 0;
8019    TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc());
8020    if (Sema::TemplateDeductionResult Result
8021          = S.DeduceTemplateArguments(FunctionTemplate,
8022                                      &OvlExplicitTemplateArgs,
8023                                      TargetFunctionType, Specialization,
8024                                      Info)) {
8025      // FIXME: make a note of the failed deduction for diagnostics.
8026      (void)Result;
8027      return false;
8028    }
8029
8030    // Template argument deduction ensures that we have an exact match.
8031    // This function template specicalization works.
8032    Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl());
8033    assert(TargetFunctionType
8034                      == Context.getCanonicalType(Specialization->getType()));
8035    Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
8036    return true;
8037  }
8038
8039  bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
8040                                      const DeclAccessPair& CurAccessFunPair) {
8041    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
8042      // Skip non-static functions when converting to pointer, and static
8043      // when converting to member pointer.
8044      if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
8045        return false;
8046    }
8047    else if (TargetTypeIsNonStaticMemberFunction)
8048      return false;
8049
8050    if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
8051      if (S.getLangOptions().CUDA)
8052        if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
8053          if (S.CheckCUDATarget(Caller, FunDecl))
8054            return false;
8055
8056      QualType ResultTy;
8057      if (Context.hasSameUnqualifiedType(TargetFunctionType,
8058                                         FunDecl->getType()) ||
8059          S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType,
8060                                 ResultTy)) {
8061        Matches.push_back(std::make_pair(CurAccessFunPair,
8062          cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
8063        FoundNonTemplateFunction = true;
8064        return true;
8065      }
8066    }
8067
8068    return false;
8069  }
8070
8071  bool FindAllFunctionsThatMatchTargetTypeExactly() {
8072    bool Ret = false;
8073
8074    // If the overload expression doesn't have the form of a pointer to
8075    // member, don't try to convert it to a pointer-to-member type.
8076    if (IsInvalidFormOfPointerToMemberFunction())
8077      return false;
8078
8079    for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
8080                               E = OvlExpr->decls_end();
8081         I != E; ++I) {
8082      // Look through any using declarations to find the underlying function.
8083      NamedDecl *Fn = (*I)->getUnderlyingDecl();
8084
8085      // C++ [over.over]p3:
8086      //   Non-member functions and static member functions match
8087      //   targets of type "pointer-to-function" or "reference-to-function."
8088      //   Nonstatic member functions match targets of
8089      //   type "pointer-to-member-function."
8090      // Note that according to DR 247, the containing class does not matter.
8091      if (FunctionTemplateDecl *FunctionTemplate
8092                                        = dyn_cast<FunctionTemplateDecl>(Fn)) {
8093        if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
8094          Ret = true;
8095      }
8096      // If we have explicit template arguments supplied, skip non-templates.
8097      else if (!OvlExpr->hasExplicitTemplateArgs() &&
8098               AddMatchingNonTemplateFunction(Fn, I.getPair()))
8099        Ret = true;
8100    }
8101    assert(Ret || Matches.empty());
8102    return Ret;
8103  }
8104
8105  void EliminateAllExceptMostSpecializedTemplate() {
8106    //   [...] and any given function template specialization F1 is
8107    //   eliminated if the set contains a second function template
8108    //   specialization whose function template is more specialized
8109    //   than the function template of F1 according to the partial
8110    //   ordering rules of 14.5.5.2.
8111
8112    // The algorithm specified above is quadratic. We instead use a
8113    // two-pass algorithm (similar to the one used to identify the
8114    // best viable function in an overload set) that identifies the
8115    // best function template (if it exists).
8116
8117    UnresolvedSet<4> MatchesCopy; // TODO: avoid!
8118    for (unsigned I = 0, E = Matches.size(); I != E; ++I)
8119      MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
8120
8121    UnresolvedSetIterator Result =
8122      S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(),
8123                           TPOC_Other, 0, SourceExpr->getLocStart(),
8124                           S.PDiag(),
8125                           S.PDiag(diag::err_addr_ovl_ambiguous)
8126                             << Matches[0].second->getDeclName(),
8127                           S.PDiag(diag::note_ovl_candidate)
8128                             << (unsigned) oc_function_template,
8129                           Complain);
8130
8131    if (Result != MatchesCopy.end()) {
8132      // Make it the first and only element
8133      Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
8134      Matches[0].second = cast<FunctionDecl>(*Result);
8135      Matches.resize(1);
8136    }
8137  }
8138
8139  void EliminateAllTemplateMatches() {
8140    //   [...] any function template specializations in the set are
8141    //   eliminated if the set also contains a non-template function, [...]
8142    for (unsigned I = 0, N = Matches.size(); I != N; ) {
8143      if (Matches[I].second->getPrimaryTemplate() == 0)
8144        ++I;
8145      else {
8146        Matches[I] = Matches[--N];
8147        Matches.set_size(N);
8148      }
8149    }
8150  }
8151
8152public:
8153  void ComplainNoMatchesFound() const {
8154    assert(Matches.empty());
8155    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
8156        << OvlExpr->getName() << TargetFunctionType
8157        << OvlExpr->getSourceRange();
8158    S.NoteAllOverloadCandidates(OvlExpr);
8159  }
8160
8161  bool IsInvalidFormOfPointerToMemberFunction() const {
8162    return TargetTypeIsNonStaticMemberFunction &&
8163      !OvlExprInfo.HasFormOfMemberPointer;
8164  }
8165
8166  void ComplainIsInvalidFormOfPointerToMemberFunction() const {
8167      // TODO: Should we condition this on whether any functions might
8168      // have matched, or is it more appropriate to do that in callers?
8169      // TODO: a fixit wouldn't hurt.
8170      S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
8171        << TargetType << OvlExpr->getSourceRange();
8172  }
8173
8174  void ComplainOfInvalidConversion() const {
8175    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref)
8176      << OvlExpr->getName() << TargetType;
8177  }
8178
8179  void ComplainMultipleMatchesFound() const {
8180    assert(Matches.size() > 1);
8181    S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
8182      << OvlExpr->getName()
8183      << OvlExpr->getSourceRange();
8184    S.NoteAllOverloadCandidates(OvlExpr);
8185  }
8186
8187  int getNumMatches() const { return Matches.size(); }
8188
8189  FunctionDecl* getMatchingFunctionDecl() const {
8190    if (Matches.size() != 1) return 0;
8191    return Matches[0].second;
8192  }
8193
8194  const DeclAccessPair* getMatchingFunctionAccessPair() const {
8195    if (Matches.size() != 1) return 0;
8196    return &Matches[0].first;
8197  }
8198};
8199
8200/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
8201/// an overloaded function (C++ [over.over]), where @p From is an
8202/// expression with overloaded function type and @p ToType is the type
8203/// we're trying to resolve to. For example:
8204///
8205/// @code
8206/// int f(double);
8207/// int f(int);
8208///
8209/// int (*pfd)(double) = f; // selects f(double)
8210/// @endcode
8211///
8212/// This routine returns the resulting FunctionDecl if it could be
8213/// resolved, and NULL otherwise. When @p Complain is true, this
8214/// routine will emit diagnostics if there is an error.
8215FunctionDecl *
8216Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType,
8217                                    bool Complain,
8218                                    DeclAccessPair &FoundResult) {
8219
8220  assert(AddressOfExpr->getType() == Context.OverloadTy);
8221
8222  AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain);
8223  int NumMatches = Resolver.getNumMatches();
8224  FunctionDecl* Fn = 0;
8225  if ( NumMatches == 0 && Complain) {
8226    if (Resolver.IsInvalidFormOfPointerToMemberFunction())
8227      Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
8228    else
8229      Resolver.ComplainNoMatchesFound();
8230  }
8231  else if (NumMatches > 1 && Complain)
8232    Resolver.ComplainMultipleMatchesFound();
8233  else if (NumMatches == 1) {
8234    Fn = Resolver.getMatchingFunctionDecl();
8235    assert(Fn);
8236    FoundResult = *Resolver.getMatchingFunctionAccessPair();
8237    MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn);
8238    if (Complain)
8239      CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
8240  }
8241
8242  return Fn;
8243}
8244
8245/// \brief Given an expression that refers to an overloaded function, try to
8246/// resolve that overloaded function expression down to a single function.
8247///
8248/// This routine can only resolve template-ids that refer to a single function
8249/// template, where that template-id refers to a single template whose template
8250/// arguments are either provided by the template-id or have defaults,
8251/// as described in C++0x [temp.arg.explicit]p3.
8252FunctionDecl *
8253Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
8254                                                  bool Complain,
8255                                                  DeclAccessPair *FoundResult) {
8256  // C++ [over.over]p1:
8257  //   [...] [Note: any redundant set of parentheses surrounding the
8258  //   overloaded function name is ignored (5.1). ]
8259  // C++ [over.over]p1:
8260  //   [...] The overloaded function name can be preceded by the &
8261  //   operator.
8262
8263  // If we didn't actually find any template-ids, we're done.
8264  if (!ovl->hasExplicitTemplateArgs())
8265    return 0;
8266
8267  TemplateArgumentListInfo ExplicitTemplateArgs;
8268  ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
8269
8270  // Look through all of the overloaded functions, searching for one
8271  // whose type matches exactly.
8272  FunctionDecl *Matched = 0;
8273  for (UnresolvedSetIterator I = ovl->decls_begin(),
8274         E = ovl->decls_end(); I != E; ++I) {
8275    // C++0x [temp.arg.explicit]p3:
8276    //   [...] In contexts where deduction is done and fails, or in contexts
8277    //   where deduction is not done, if a template argument list is
8278    //   specified and it, along with any default template arguments,
8279    //   identifies a single function template specialization, then the
8280    //   template-id is an lvalue for the function template specialization.
8281    FunctionTemplateDecl *FunctionTemplate
8282      = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
8283
8284    // C++ [over.over]p2:
8285    //   If the name is a function template, template argument deduction is
8286    //   done (14.8.2.2), and if the argument deduction succeeds, the
8287    //   resulting template argument list is used to generate a single
8288    //   function template specialization, which is added to the set of
8289    //   overloaded functions considered.
8290    FunctionDecl *Specialization = 0;
8291    TemplateDeductionInfo Info(Context, ovl->getNameLoc());
8292    if (TemplateDeductionResult Result
8293          = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
8294                                    Specialization, Info)) {
8295      // FIXME: make a note of the failed deduction for diagnostics.
8296      (void)Result;
8297      continue;
8298    }
8299
8300    assert(Specialization && "no specialization and no error?");
8301
8302    // Multiple matches; we can't resolve to a single declaration.
8303    if (Matched) {
8304      if (Complain) {
8305        Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
8306          << ovl->getName();
8307        NoteAllOverloadCandidates(ovl);
8308      }
8309      return 0;
8310    }
8311
8312    Matched = Specialization;
8313    if (FoundResult) *FoundResult = I.getPair();
8314  }
8315
8316  return Matched;
8317}
8318
8319
8320
8321
8322// Resolve and fix an overloaded expression that can be resolved
8323// because it identifies a single function template specialization.
8324//
8325// Last three arguments should only be supplied if Complain = true
8326//
8327// Return true if it was logically possible to so resolve the
8328// expression, regardless of whether or not it succeeded.  Always
8329// returns true if 'complain' is set.
8330bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
8331                      ExprResult &SrcExpr, bool doFunctionPointerConverion,
8332                   bool complain, const SourceRange& OpRangeForComplaining,
8333                                           QualType DestTypeForComplaining,
8334                                            unsigned DiagIDForComplaining) {
8335  assert(SrcExpr.get()->getType() == Context.OverloadTy);
8336
8337  OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
8338
8339  DeclAccessPair found;
8340  ExprResult SingleFunctionExpression;
8341  if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
8342                           ovl.Expression, /*complain*/ false, &found)) {
8343    if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getSourceRange().getBegin())) {
8344      SrcExpr = ExprError();
8345      return true;
8346    }
8347
8348    // It is only correct to resolve to an instance method if we're
8349    // resolving a form that's permitted to be a pointer to member.
8350    // Otherwise we'll end up making a bound member expression, which
8351    // is illegal in all the contexts we resolve like this.
8352    if (!ovl.HasFormOfMemberPointer &&
8353        isa<CXXMethodDecl>(fn) &&
8354        cast<CXXMethodDecl>(fn)->isInstance()) {
8355      if (!complain) return false;
8356
8357      Diag(ovl.Expression->getExprLoc(),
8358           diag::err_bound_member_function)
8359        << 0 << ovl.Expression->getSourceRange();
8360
8361      // TODO: I believe we only end up here if there's a mix of
8362      // static and non-static candidates (otherwise the expression
8363      // would have 'bound member' type, not 'overload' type).
8364      // Ideally we would note which candidate was chosen and why
8365      // the static candidates were rejected.
8366      SrcExpr = ExprError();
8367      return true;
8368    }
8369
8370    // Fix the expresion to refer to 'fn'.
8371    SingleFunctionExpression =
8372      Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn));
8373
8374    // If desired, do function-to-pointer decay.
8375    if (doFunctionPointerConverion) {
8376      SingleFunctionExpression =
8377        DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take());
8378      if (SingleFunctionExpression.isInvalid()) {
8379        SrcExpr = ExprError();
8380        return true;
8381      }
8382    }
8383  }
8384
8385  if (!SingleFunctionExpression.isUsable()) {
8386    if (complain) {
8387      Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
8388        << ovl.Expression->getName()
8389        << DestTypeForComplaining
8390        << OpRangeForComplaining
8391        << ovl.Expression->getQualifierLoc().getSourceRange();
8392      NoteAllOverloadCandidates(SrcExpr.get());
8393
8394      SrcExpr = ExprError();
8395      return true;
8396    }
8397
8398    return false;
8399  }
8400
8401  SrcExpr = SingleFunctionExpression;
8402  return true;
8403}
8404
8405/// \brief Add a single candidate to the overload set.
8406static void AddOverloadedCallCandidate(Sema &S,
8407                                       DeclAccessPair FoundDecl,
8408                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
8409                                       Expr **Args, unsigned NumArgs,
8410                                       OverloadCandidateSet &CandidateSet,
8411                                       bool PartialOverloading,
8412                                       bool KnownValid) {
8413  NamedDecl *Callee = FoundDecl.getDecl();
8414  if (isa<UsingShadowDecl>(Callee))
8415    Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
8416
8417  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
8418    if (ExplicitTemplateArgs) {
8419      assert(!KnownValid && "Explicit template arguments?");
8420      return;
8421    }
8422    S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
8423                           false, PartialOverloading);
8424    return;
8425  }
8426
8427  if (FunctionTemplateDecl *FuncTemplate
8428      = dyn_cast<FunctionTemplateDecl>(Callee)) {
8429    S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
8430                                   ExplicitTemplateArgs,
8431                                   Args, NumArgs, CandidateSet);
8432    return;
8433  }
8434
8435  assert(!KnownValid && "unhandled case in overloaded call candidate");
8436}
8437
8438/// \brief Add the overload candidates named by callee and/or found by argument
8439/// dependent lookup to the given overload set.
8440void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
8441                                       Expr **Args, unsigned NumArgs,
8442                                       OverloadCandidateSet &CandidateSet,
8443                                       bool PartialOverloading) {
8444
8445#ifndef NDEBUG
8446  // Verify that ArgumentDependentLookup is consistent with the rules
8447  // in C++0x [basic.lookup.argdep]p3:
8448  //
8449  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
8450  //   and let Y be the lookup set produced by argument dependent
8451  //   lookup (defined as follows). If X contains
8452  //
8453  //     -- a declaration of a class member, or
8454  //
8455  //     -- a block-scope function declaration that is not a
8456  //        using-declaration, or
8457  //
8458  //     -- a declaration that is neither a function or a function
8459  //        template
8460  //
8461  //   then Y is empty.
8462
8463  if (ULE->requiresADL()) {
8464    for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
8465           E = ULE->decls_end(); I != E; ++I) {
8466      assert(!(*I)->getDeclContext()->isRecord());
8467      assert(isa<UsingShadowDecl>(*I) ||
8468             !(*I)->getDeclContext()->isFunctionOrMethod());
8469      assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
8470    }
8471  }
8472#endif
8473
8474  // It would be nice to avoid this copy.
8475  TemplateArgumentListInfo TABuffer;
8476  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
8477  if (ULE->hasExplicitTemplateArgs()) {
8478    ULE->copyTemplateArgumentsInto(TABuffer);
8479    ExplicitTemplateArgs = &TABuffer;
8480  }
8481
8482  for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
8483         E = ULE->decls_end(); I != E; ++I)
8484    AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
8485                               Args, NumArgs, CandidateSet,
8486                               PartialOverloading, /*KnownValid*/ true);
8487
8488  if (ULE->requiresADL())
8489    AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
8490                                         Args, NumArgs,
8491                                         ExplicitTemplateArgs,
8492                                         CandidateSet,
8493                                         PartialOverloading,
8494                                         ULE->isStdAssociatedNamespace());
8495}
8496
8497/// Attempt to recover from an ill-formed use of a non-dependent name in a
8498/// template, where the non-dependent name was declared after the template
8499/// was defined. This is common in code written for a compilers which do not
8500/// correctly implement two-stage name lookup.
8501///
8502/// Returns true if a viable candidate was found and a diagnostic was issued.
8503static bool
8504DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
8505                       const CXXScopeSpec &SS, LookupResult &R,
8506                       TemplateArgumentListInfo *ExplicitTemplateArgs,
8507                       Expr **Args, unsigned NumArgs) {
8508  if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
8509    return false;
8510
8511  for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
8512    SemaRef.LookupQualifiedName(R, DC);
8513
8514    if (!R.empty()) {
8515      R.suppressDiagnostics();
8516
8517      if (isa<CXXRecordDecl>(DC)) {
8518        // Don't diagnose names we find in classes; we get much better
8519        // diagnostics for these from DiagnoseEmptyLookup.
8520        R.clear();
8521        return false;
8522      }
8523
8524      OverloadCandidateSet Candidates(FnLoc);
8525      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
8526        AddOverloadedCallCandidate(SemaRef, I.getPair(),
8527                                   ExplicitTemplateArgs, Args, NumArgs,
8528                                   Candidates, false, /*KnownValid*/ false);
8529
8530      OverloadCandidateSet::iterator Best;
8531      if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
8532        // No viable functions. Don't bother the user with notes for functions
8533        // which don't work and shouldn't be found anyway.
8534        R.clear();
8535        return false;
8536      }
8537
8538      // Find the namespaces where ADL would have looked, and suggest
8539      // declaring the function there instead.
8540      Sema::AssociatedNamespaceSet AssociatedNamespaces;
8541      Sema::AssociatedClassSet AssociatedClasses;
8542      SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs,
8543                                                 AssociatedNamespaces,
8544                                                 AssociatedClasses);
8545      // Never suggest declaring a function within namespace 'std'.
8546      Sema::AssociatedNamespaceSet SuggestedNamespaces;
8547      if (DeclContext *Std = SemaRef.getStdNamespace()) {
8548        for (Sema::AssociatedNamespaceSet::iterator
8549               it = AssociatedNamespaces.begin(),
8550               end = AssociatedNamespaces.end(); it != end; ++it) {
8551          if (!Std->Encloses(*it))
8552            SuggestedNamespaces.insert(*it);
8553        }
8554      } else {
8555        // Lacking the 'std::' namespace, use all of the associated namespaces.
8556        SuggestedNamespaces = AssociatedNamespaces;
8557      }
8558
8559      SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
8560        << R.getLookupName();
8561      if (SuggestedNamespaces.empty()) {
8562        SemaRef.Diag(Best->Function->getLocation(),
8563                     diag::note_not_found_by_two_phase_lookup)
8564          << R.getLookupName() << 0;
8565      } else if (SuggestedNamespaces.size() == 1) {
8566        SemaRef.Diag(Best->Function->getLocation(),
8567                     diag::note_not_found_by_two_phase_lookup)
8568          << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
8569      } else {
8570        // FIXME: It would be useful to list the associated namespaces here,
8571        // but the diagnostics infrastructure doesn't provide a way to produce
8572        // a localized representation of a list of items.
8573        SemaRef.Diag(Best->Function->getLocation(),
8574                     diag::note_not_found_by_two_phase_lookup)
8575          << R.getLookupName() << 2;
8576      }
8577
8578      // Try to recover by calling this function.
8579      return true;
8580    }
8581
8582    R.clear();
8583  }
8584
8585  return false;
8586}
8587
8588/// Attempt to recover from ill-formed use of a non-dependent operator in a
8589/// template, where the non-dependent operator was declared after the template
8590/// was defined.
8591///
8592/// Returns true if a viable candidate was found and a diagnostic was issued.
8593static bool
8594DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
8595                               SourceLocation OpLoc,
8596                               Expr **Args, unsigned NumArgs) {
8597  DeclarationName OpName =
8598    SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
8599  LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
8600  return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
8601                                /*ExplicitTemplateArgs=*/0, Args, NumArgs);
8602}
8603
8604/// Attempts to recover from a call where no functions were found.
8605///
8606/// Returns true if new candidates were found.
8607static ExprResult
8608BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
8609                      UnresolvedLookupExpr *ULE,
8610                      SourceLocation LParenLoc,
8611                      Expr **Args, unsigned NumArgs,
8612                      SourceLocation RParenLoc,
8613                      bool EmptyLookup) {
8614
8615  CXXScopeSpec SS;
8616  SS.Adopt(ULE->getQualifierLoc());
8617
8618  TemplateArgumentListInfo TABuffer;
8619  TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
8620  if (ULE->hasExplicitTemplateArgs()) {
8621    ULE->copyTemplateArgumentsInto(TABuffer);
8622    ExplicitTemplateArgs = &TABuffer;
8623  }
8624
8625  LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
8626                 Sema::LookupOrdinaryName);
8627  if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
8628                              ExplicitTemplateArgs, Args, NumArgs) &&
8629      (!EmptyLookup ||
8630       SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression,
8631                                   ExplicitTemplateArgs, Args, NumArgs)))
8632    return ExprError();
8633
8634  assert(!R.empty() && "lookup results empty despite recovery");
8635
8636  // Build an implicit member call if appropriate.  Just drop the
8637  // casts and such from the call, we don't really care.
8638  ExprResult NewFn = ExprError();
8639  if ((*R.begin())->isCXXClassMember())
8640    NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
8641                                                    ExplicitTemplateArgs);
8642  else if (ExplicitTemplateArgs)
8643    NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
8644  else
8645    NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
8646
8647  if (NewFn.isInvalid())
8648    return ExprError();
8649
8650  // This shouldn't cause an infinite loop because we're giving it
8651  // an expression with viable lookup results, which should never
8652  // end up here.
8653  return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
8654                               MultiExprArg(Args, NumArgs), RParenLoc);
8655}
8656
8657/// ResolveOverloadedCallFn - Given the call expression that calls Fn
8658/// (which eventually refers to the declaration Func) and the call
8659/// arguments Args/NumArgs, attempt to resolve the function call down
8660/// to a specific function. If overload resolution succeeds, returns
8661/// the function declaration produced by overload
8662/// resolution. Otherwise, emits diagnostics, deletes all of the
8663/// arguments and Fn, and returns NULL.
8664ExprResult
8665Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
8666                              SourceLocation LParenLoc,
8667                              Expr **Args, unsigned NumArgs,
8668                              SourceLocation RParenLoc,
8669                              Expr *ExecConfig) {
8670#ifndef NDEBUG
8671  if (ULE->requiresADL()) {
8672    // To do ADL, we must have found an unqualified name.
8673    assert(!ULE->getQualifier() && "qualified name with ADL");
8674
8675    // We don't perform ADL for implicit declarations of builtins.
8676    // Verify that this was correctly set up.
8677    FunctionDecl *F;
8678    if (ULE->decls_begin() + 1 == ULE->decls_end() &&
8679        (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
8680        F->getBuiltinID() && F->isImplicit())
8681      llvm_unreachable("performing ADL for builtin");
8682
8683    // We don't perform ADL in C.
8684    assert(getLangOptions().CPlusPlus && "ADL enabled in C");
8685  } else
8686    assert(!ULE->isStdAssociatedNamespace() &&
8687           "std is associated namespace but not doing ADL");
8688#endif
8689
8690  UnbridgedCastsSet UnbridgedCasts;
8691  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
8692    return ExprError();
8693
8694  OverloadCandidateSet CandidateSet(Fn->getExprLoc());
8695
8696  // Add the functions denoted by the callee to the set of candidate
8697  // functions, including those from argument-dependent lookup.
8698  AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
8699
8700  // If we found nothing, try to recover.
8701  // BuildRecoveryCallExpr diagnoses the error itself, so we just bail
8702  // out if it fails.
8703  if (CandidateSet.empty()) {
8704    // In Microsoft mode, if we are inside a template class member function then
8705    // create a type dependent CallExpr. The goal is to postpone name lookup
8706    // to instantiation time to be able to search into type dependent base
8707    // classes.
8708    if (getLangOptions().MicrosoftExt && CurContext->isDependentContext() &&
8709        isa<CXXMethodDecl>(CurContext)) {
8710      CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs,
8711                                          Context.DependentTy, VK_RValue,
8712                                          RParenLoc);
8713      CE->setTypeDependent(true);
8714      return Owned(CE);
8715    }
8716    return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
8717                                 RParenLoc, /*EmptyLookup=*/true);
8718  }
8719
8720  UnbridgedCasts.restore();
8721
8722  OverloadCandidateSet::iterator Best;
8723  switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
8724  case OR_Success: {
8725    FunctionDecl *FDecl = Best->Function;
8726    MarkDeclarationReferenced(Fn->getExprLoc(), FDecl);
8727    CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
8728    DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
8729    Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
8730    return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
8731                                 ExecConfig);
8732  }
8733
8734  case OR_No_Viable_Function: {
8735    // Try to recover by looking for viable functions which the user might
8736    // have meant to call.
8737    ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
8738                                                Args, NumArgs, RParenLoc,
8739                                                /*EmptyLookup=*/false);
8740    if (!Recovery.isInvalid())
8741      return Recovery;
8742
8743    Diag(Fn->getSourceRange().getBegin(),
8744         diag::err_ovl_no_viable_function_in_call)
8745      << ULE->getName() << Fn->getSourceRange();
8746    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8747    break;
8748  }
8749
8750  case OR_Ambiguous:
8751    Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
8752      << ULE->getName() << Fn->getSourceRange();
8753    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
8754    break;
8755
8756  case OR_Deleted:
8757    {
8758      Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
8759        << Best->Function->isDeleted()
8760        << ULE->getName()
8761        << getDeletedOrUnavailableSuffix(Best->Function)
8762        << Fn->getSourceRange();
8763      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
8764
8765      // We emitted an error for the unvailable/deleted function call but keep
8766      // the call in the AST.
8767      FunctionDecl *FDecl = Best->Function;
8768      Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
8769      return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
8770                                   RParenLoc, ExecConfig);
8771    }
8772    break;
8773  }
8774
8775  // Overload resolution failed.
8776  return ExprError();
8777}
8778
8779static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
8780  return Functions.size() > 1 ||
8781    (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
8782}
8783
8784/// \brief Create a unary operation that may resolve to an overloaded
8785/// operator.
8786///
8787/// \param OpLoc The location of the operator itself (e.g., '*').
8788///
8789/// \param OpcIn The UnaryOperator::Opcode that describes this
8790/// operator.
8791///
8792/// \param Functions The set of non-member functions that will be
8793/// considered by overload resolution. The caller needs to build this
8794/// set based on the context using, e.g.,
8795/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8796/// set should not contain any member functions; those will be added
8797/// by CreateOverloadedUnaryOp().
8798///
8799/// \param input The input argument.
8800ExprResult
8801Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
8802                              const UnresolvedSetImpl &Fns,
8803                              Expr *Input) {
8804  UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn);
8805
8806  OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
8807  assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
8808  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
8809  // TODO: provide better source location info.
8810  DeclarationNameInfo OpNameInfo(OpName, OpLoc);
8811
8812  if (checkPlaceholderForOverload(*this, Input))
8813    return ExprError();
8814
8815  Expr *Args[2] = { Input, 0 };
8816  unsigned NumArgs = 1;
8817
8818  // For post-increment and post-decrement, add the implicit '0' as
8819  // the second argument, so that we know this is a post-increment or
8820  // post-decrement.
8821  if (Opc == UO_PostInc || Opc == UO_PostDec) {
8822    llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
8823    Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
8824                                     SourceLocation());
8825    NumArgs = 2;
8826  }
8827
8828  if (Input->isTypeDependent()) {
8829    if (Fns.empty())
8830      return Owned(new (Context) UnaryOperator(Input,
8831                                               Opc,
8832                                               Context.DependentTy,
8833                                               VK_RValue, OK_Ordinary,
8834                                               OpLoc));
8835
8836    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
8837    UnresolvedLookupExpr *Fn
8838      = UnresolvedLookupExpr::Create(Context, NamingClass,
8839                                     NestedNameSpecifierLoc(), OpNameInfo,
8840                                     /*ADL*/ true, IsOverloaded(Fns),
8841                                     Fns.begin(), Fns.end());
8842    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
8843                                                  &Args[0], NumArgs,
8844                                                   Context.DependentTy,
8845                                                   VK_RValue,
8846                                                   OpLoc));
8847  }
8848
8849  // Build an empty overload set.
8850  OverloadCandidateSet CandidateSet(OpLoc);
8851
8852  // Add the candidates from the given function set.
8853  AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
8854
8855  // Add operator candidates that are member functions.
8856  AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8857
8858  // Add candidates from ADL.
8859  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
8860                                       Args, NumArgs,
8861                                       /*ExplicitTemplateArgs*/ 0,
8862                                       CandidateSet);
8863
8864  // Add builtin operator candidates.
8865  AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
8866
8867  bool HadMultipleCandidates = (CandidateSet.size() > 1);
8868
8869  // Perform overload resolution.
8870  OverloadCandidateSet::iterator Best;
8871  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
8872  case OR_Success: {
8873    // We found a built-in operator or an overloaded operator.
8874    FunctionDecl *FnDecl = Best->Function;
8875
8876    if (FnDecl) {
8877      // We matched an overloaded operator. Build a call to that
8878      // operator.
8879
8880      MarkDeclarationReferenced(OpLoc, FnDecl);
8881
8882      // Convert the arguments.
8883      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
8884        CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl);
8885
8886        ExprResult InputRes =
8887          PerformObjectArgumentInitialization(Input, /*Qualifier=*/0,
8888                                              Best->FoundDecl, Method);
8889        if (InputRes.isInvalid())
8890          return ExprError();
8891        Input = InputRes.take();
8892      } else {
8893        // Convert the arguments.
8894        ExprResult InputInit
8895          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
8896                                                      Context,
8897                                                      FnDecl->getParamDecl(0)),
8898                                      SourceLocation(),
8899                                      Input);
8900        if (InputInit.isInvalid())
8901          return ExprError();
8902        Input = InputInit.take();
8903      }
8904
8905      DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
8906
8907      // Determine the result type.
8908      QualType ResultTy = FnDecl->getResultType();
8909      ExprValueKind VK = Expr::getValueKindForType(ResultTy);
8910      ResultTy = ResultTy.getNonLValueExprType(Context);
8911
8912      // Build the actual expression node.
8913      ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
8914                                                HadMultipleCandidates);
8915      if (FnExpr.isInvalid())
8916        return ExprError();
8917
8918      Args[0] = Input;
8919      CallExpr *TheCall =
8920        new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
8921                                          Args, NumArgs, ResultTy, VK, OpLoc);
8922
8923      if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
8924                              FnDecl))
8925        return ExprError();
8926
8927      return MaybeBindToTemporary(TheCall);
8928    } else {
8929      // We matched a built-in operator. Convert the arguments, then
8930      // break out so that we will build the appropriate built-in
8931      // operator node.
8932      ExprResult InputRes =
8933        PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0],
8934                                  Best->Conversions[0], AA_Passing);
8935      if (InputRes.isInvalid())
8936        return ExprError();
8937      Input = InputRes.take();
8938      break;
8939    }
8940  }
8941
8942  case OR_No_Viable_Function:
8943    // This is an erroneous use of an operator which can be overloaded by
8944    // a non-member function. Check for non-member operators which were
8945    // defined too late to be candidates.
8946    if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs))
8947      // FIXME: Recover by calling the found function.
8948      return ExprError();
8949
8950    // No viable function; fall through to handling this as a
8951    // built-in operator, which will produce an error message for us.
8952    break;
8953
8954  case OR_Ambiguous:
8955    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
8956        << UnaryOperator::getOpcodeStr(Opc)
8957        << Input->getType()
8958        << Input->getSourceRange();
8959    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs,
8960                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
8961    return ExprError();
8962
8963  case OR_Deleted:
8964    Diag(OpLoc, diag::err_ovl_deleted_oper)
8965      << Best->Function->isDeleted()
8966      << UnaryOperator::getOpcodeStr(Opc)
8967      << getDeletedOrUnavailableSuffix(Best->Function)
8968      << Input->getSourceRange();
8969    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs,
8970                                UnaryOperator::getOpcodeStr(Opc), OpLoc);
8971    return ExprError();
8972  }
8973
8974  // Either we found no viable overloaded operator or we matched a
8975  // built-in operator. In either case, fall through to trying to
8976  // build a built-in operation.
8977  return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
8978}
8979
8980/// \brief Create a binary operation that may resolve to an overloaded
8981/// operator.
8982///
8983/// \param OpLoc The location of the operator itself (e.g., '+').
8984///
8985/// \param OpcIn The BinaryOperator::Opcode that describes this
8986/// operator.
8987///
8988/// \param Functions The set of non-member functions that will be
8989/// considered by overload resolution. The caller needs to build this
8990/// set based on the context using, e.g.,
8991/// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
8992/// set should not contain any member functions; those will be added
8993/// by CreateOverloadedBinOp().
8994///
8995/// \param LHS Left-hand argument.
8996/// \param RHS Right-hand argument.
8997ExprResult
8998Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
8999                            unsigned OpcIn,
9000                            const UnresolvedSetImpl &Fns,
9001                            Expr *LHS, Expr *RHS) {
9002  Expr *Args[2] = { LHS, RHS };
9003  LHS=RHS=0; //Please use only Args instead of LHS/RHS couple
9004
9005  BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn);
9006  OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
9007  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
9008
9009  // If either side is type-dependent, create an appropriate dependent
9010  // expression.
9011  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
9012    if (Fns.empty()) {
9013      // If there are no functions to store, just build a dependent
9014      // BinaryOperator or CompoundAssignment.
9015      if (Opc <= BO_Assign || Opc > BO_OrAssign)
9016        return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc,
9017                                                  Context.DependentTy,
9018                                                  VK_RValue, OK_Ordinary,
9019                                                  OpLoc));
9020
9021      return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc,
9022                                                        Context.DependentTy,
9023                                                        VK_LValue,
9024                                                        OK_Ordinary,
9025                                                        Context.DependentTy,
9026                                                        Context.DependentTy,
9027                                                        OpLoc));
9028    }
9029
9030    // FIXME: save results of ADL from here?
9031    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9032    // TODO: provide better source location info in DNLoc component.
9033    DeclarationNameInfo OpNameInfo(OpName, OpLoc);
9034    UnresolvedLookupExpr *Fn
9035      = UnresolvedLookupExpr::Create(Context, NamingClass,
9036                                     NestedNameSpecifierLoc(), OpNameInfo,
9037                                     /*ADL*/ true, IsOverloaded(Fns),
9038                                     Fns.begin(), Fns.end());
9039    return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn,
9040                                                   Args, 2,
9041                                                   Context.DependentTy,
9042                                                   VK_RValue,
9043                                                   OpLoc));
9044  }
9045
9046  // Always do placeholder-like conversions on the RHS.
9047  if (checkPlaceholderForOverload(*this, Args[1]))
9048    return ExprError();
9049
9050  // Do placeholder-like conversion on the LHS; note that we should
9051  // not get here with a PseudoObject LHS.
9052  assert(Args[0]->getObjectKind() != OK_ObjCProperty);
9053  if (checkPlaceholderForOverload(*this, Args[0]))
9054    return ExprError();
9055
9056  // If this is the assignment operator, we only perform overload resolution
9057  // if the left-hand side is a class or enumeration type. This is actually
9058  // a hack. The standard requires that we do overload resolution between the
9059  // various built-in candidates, but as DR507 points out, this can lead to
9060  // problems. So we do it this way, which pretty much follows what GCC does.
9061  // Note that we go the traditional code path for compound assignment forms.
9062  if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
9063    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9064
9065  // If this is the .* operator, which is not overloadable, just
9066  // create a built-in binary operator.
9067  if (Opc == BO_PtrMemD)
9068    return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9069
9070  // Build an empty overload set.
9071  OverloadCandidateSet CandidateSet(OpLoc);
9072
9073  // Add the candidates from the given function set.
9074  AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
9075
9076  // Add operator candidates that are member functions.
9077  AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
9078
9079  // Add candidates from ADL.
9080  AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
9081                                       Args, 2,
9082                                       /*ExplicitTemplateArgs*/ 0,
9083                                       CandidateSet);
9084
9085  // Add builtin operator candidates.
9086  AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
9087
9088  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9089
9090  // Perform overload resolution.
9091  OverloadCandidateSet::iterator Best;
9092  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9093    case OR_Success: {
9094      // We found a built-in operator or an overloaded operator.
9095      FunctionDecl *FnDecl = Best->Function;
9096
9097      if (FnDecl) {
9098        // We matched an overloaded operator. Build a call to that
9099        // operator.
9100
9101        MarkDeclarationReferenced(OpLoc, FnDecl);
9102
9103        // Convert the arguments.
9104        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
9105          // Best->Access is only meaningful for class members.
9106          CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
9107
9108          ExprResult Arg1 =
9109            PerformCopyInitialization(
9110              InitializedEntity::InitializeParameter(Context,
9111                                                     FnDecl->getParamDecl(0)),
9112              SourceLocation(), Owned(Args[1]));
9113          if (Arg1.isInvalid())
9114            return ExprError();
9115
9116          ExprResult Arg0 =
9117            PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
9118                                                Best->FoundDecl, Method);
9119          if (Arg0.isInvalid())
9120            return ExprError();
9121          Args[0] = Arg0.takeAs<Expr>();
9122          Args[1] = RHS = Arg1.takeAs<Expr>();
9123        } else {
9124          // Convert the arguments.
9125          ExprResult Arg0 = PerformCopyInitialization(
9126            InitializedEntity::InitializeParameter(Context,
9127                                                   FnDecl->getParamDecl(0)),
9128            SourceLocation(), Owned(Args[0]));
9129          if (Arg0.isInvalid())
9130            return ExprError();
9131
9132          ExprResult Arg1 =
9133            PerformCopyInitialization(
9134              InitializedEntity::InitializeParameter(Context,
9135                                                     FnDecl->getParamDecl(1)),
9136              SourceLocation(), Owned(Args[1]));
9137          if (Arg1.isInvalid())
9138            return ExprError();
9139          Args[0] = LHS = Arg0.takeAs<Expr>();
9140          Args[1] = RHS = Arg1.takeAs<Expr>();
9141        }
9142
9143        DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
9144
9145        // Determine the result type.
9146        QualType ResultTy = FnDecl->getResultType();
9147        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9148        ResultTy = ResultTy.getNonLValueExprType(Context);
9149
9150        // Build the actual expression node.
9151        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9152                                                  HadMultipleCandidates, OpLoc);
9153        if (FnExpr.isInvalid())
9154          return ExprError();
9155
9156        CXXOperatorCallExpr *TheCall =
9157          new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(),
9158                                            Args, 2, ResultTy, VK, OpLoc);
9159
9160        if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall,
9161                                FnDecl))
9162          return ExprError();
9163
9164        return MaybeBindToTemporary(TheCall);
9165      } else {
9166        // We matched a built-in operator. Convert the arguments, then
9167        // break out so that we will build the appropriate built-in
9168        // operator node.
9169        ExprResult ArgsRes0 =
9170          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
9171                                    Best->Conversions[0], AA_Passing);
9172        if (ArgsRes0.isInvalid())
9173          return ExprError();
9174        Args[0] = ArgsRes0.take();
9175
9176        ExprResult ArgsRes1 =
9177          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
9178                                    Best->Conversions[1], AA_Passing);
9179        if (ArgsRes1.isInvalid())
9180          return ExprError();
9181        Args[1] = ArgsRes1.take();
9182        break;
9183      }
9184    }
9185
9186    case OR_No_Viable_Function: {
9187      // C++ [over.match.oper]p9:
9188      //   If the operator is the operator , [...] and there are no
9189      //   viable functions, then the operator is assumed to be the
9190      //   built-in operator and interpreted according to clause 5.
9191      if (Opc == BO_Comma)
9192        break;
9193
9194      // For class as left operand for assignment or compound assigment
9195      // operator do not fall through to handling in built-in, but report that
9196      // no overloaded assignment operator found
9197      ExprResult Result = ExprError();
9198      if (Args[0]->getType()->isRecordType() &&
9199          Opc >= BO_Assign && Opc <= BO_OrAssign) {
9200        Diag(OpLoc,  diag::err_ovl_no_viable_oper)
9201             << BinaryOperator::getOpcodeStr(Opc)
9202             << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9203      } else {
9204        // This is an erroneous use of an operator which can be overloaded by
9205        // a non-member function. Check for non-member operators which were
9206        // defined too late to be candidates.
9207        if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2))
9208          // FIXME: Recover by calling the found function.
9209          return ExprError();
9210
9211        // No viable function; try to create a built-in operation, which will
9212        // produce an error. Then, show the non-viable candidates.
9213        Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9214      }
9215      assert(Result.isInvalid() &&
9216             "C++ binary operator overloading is missing candidates!");
9217      if (Result.isInvalid())
9218        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9219                                    BinaryOperator::getOpcodeStr(Opc), OpLoc);
9220      return move(Result);
9221    }
9222
9223    case OR_Ambiguous:
9224      Diag(OpLoc,  diag::err_ovl_ambiguous_oper_binary)
9225          << BinaryOperator::getOpcodeStr(Opc)
9226          << Args[0]->getType() << Args[1]->getType()
9227          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9228      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
9229                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
9230      return ExprError();
9231
9232    case OR_Deleted:
9233      Diag(OpLoc, diag::err_ovl_deleted_oper)
9234        << Best->Function->isDeleted()
9235        << BinaryOperator::getOpcodeStr(Opc)
9236        << getDeletedOrUnavailableSuffix(Best->Function)
9237        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9238      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9239                                  BinaryOperator::getOpcodeStr(Opc), OpLoc);
9240      return ExprError();
9241  }
9242
9243  // We matched a built-in operator; build it.
9244  return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
9245}
9246
9247ExprResult
9248Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
9249                                         SourceLocation RLoc,
9250                                         Expr *Base, Expr *Idx) {
9251  Expr *Args[2] = { Base, Idx };
9252  DeclarationName OpName =
9253      Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
9254
9255  // If either side is type-dependent, create an appropriate dependent
9256  // expression.
9257  if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
9258
9259    CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators
9260    // CHECKME: no 'operator' keyword?
9261    DeclarationNameInfo OpNameInfo(OpName, LLoc);
9262    OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
9263    UnresolvedLookupExpr *Fn
9264      = UnresolvedLookupExpr::Create(Context, NamingClass,
9265                                     NestedNameSpecifierLoc(), OpNameInfo,
9266                                     /*ADL*/ true, /*Overloaded*/ false,
9267                                     UnresolvedSetIterator(),
9268                                     UnresolvedSetIterator());
9269    // Can't add any actual overloads yet
9270
9271    return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn,
9272                                                   Args, 2,
9273                                                   Context.DependentTy,
9274                                                   VK_RValue,
9275                                                   RLoc));
9276  }
9277
9278  // Handle placeholders on both operands.
9279  if (checkPlaceholderForOverload(*this, Args[0]))
9280    return ExprError();
9281  if (checkPlaceholderForOverload(*this, Args[1]))
9282    return ExprError();
9283
9284  // Build an empty overload set.
9285  OverloadCandidateSet CandidateSet(LLoc);
9286
9287  // Subscript can only be overloaded as a member function.
9288
9289  // Add operator candidates that are member functions.
9290  AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
9291
9292  // Add builtin operator candidates.
9293  AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet);
9294
9295  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9296
9297  // Perform overload resolution.
9298  OverloadCandidateSet::iterator Best;
9299  switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
9300    case OR_Success: {
9301      // We found a built-in operator or an overloaded operator.
9302      FunctionDecl *FnDecl = Best->Function;
9303
9304      if (FnDecl) {
9305        // We matched an overloaded operator. Build a call to that
9306        // operator.
9307
9308        MarkDeclarationReferenced(LLoc, FnDecl);
9309
9310        CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
9311        DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
9312
9313        // Convert the arguments.
9314        CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
9315        ExprResult Arg0 =
9316          PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0,
9317                                              Best->FoundDecl, Method);
9318        if (Arg0.isInvalid())
9319          return ExprError();
9320        Args[0] = Arg0.take();
9321
9322        // Convert the arguments.
9323        ExprResult InputInit
9324          = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9325                                                      Context,
9326                                                      FnDecl->getParamDecl(0)),
9327                                      SourceLocation(),
9328                                      Owned(Args[1]));
9329        if (InputInit.isInvalid())
9330          return ExprError();
9331
9332        Args[1] = InputInit.takeAs<Expr>();
9333
9334        // Determine the result type
9335        QualType ResultTy = FnDecl->getResultType();
9336        ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9337        ResultTy = ResultTy.getNonLValueExprType(Context);
9338
9339        // Build the actual expression node.
9340        DeclarationNameLoc LocInfo;
9341        LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding();
9342        LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding();
9343        ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
9344                                                  HadMultipleCandidates,
9345                                                  LLoc, LocInfo);
9346        if (FnExpr.isInvalid())
9347          return ExprError();
9348
9349        CXXOperatorCallExpr *TheCall =
9350          new (Context) CXXOperatorCallExpr(Context, OO_Subscript,
9351                                            FnExpr.take(), Args, 2,
9352                                            ResultTy, VK, RLoc);
9353
9354        if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall,
9355                                FnDecl))
9356          return ExprError();
9357
9358        return MaybeBindToTemporary(TheCall);
9359      } else {
9360        // We matched a built-in operator. Convert the arguments, then
9361        // break out so that we will build the appropriate built-in
9362        // operator node.
9363        ExprResult ArgsRes0 =
9364          PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0],
9365                                    Best->Conversions[0], AA_Passing);
9366        if (ArgsRes0.isInvalid())
9367          return ExprError();
9368        Args[0] = ArgsRes0.take();
9369
9370        ExprResult ArgsRes1 =
9371          PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1],
9372                                    Best->Conversions[1], AA_Passing);
9373        if (ArgsRes1.isInvalid())
9374          return ExprError();
9375        Args[1] = ArgsRes1.take();
9376
9377        break;
9378      }
9379    }
9380
9381    case OR_No_Viable_Function: {
9382      if (CandidateSet.empty())
9383        Diag(LLoc, diag::err_ovl_no_oper)
9384          << Args[0]->getType() << /*subscript*/ 0
9385          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9386      else
9387        Diag(LLoc, diag::err_ovl_no_viable_subscript)
9388          << Args[0]->getType()
9389          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9390      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9391                                  "[]", LLoc);
9392      return ExprError();
9393    }
9394
9395    case OR_Ambiguous:
9396      Diag(LLoc,  diag::err_ovl_ambiguous_oper_binary)
9397          << "[]"
9398          << Args[0]->getType() << Args[1]->getType()
9399          << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9400      CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
9401                                  "[]", LLoc);
9402      return ExprError();
9403
9404    case OR_Deleted:
9405      Diag(LLoc, diag::err_ovl_deleted_oper)
9406        << Best->Function->isDeleted() << "[]"
9407        << getDeletedOrUnavailableSuffix(Best->Function)
9408        << Args[0]->getSourceRange() << Args[1]->getSourceRange();
9409      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
9410                                  "[]", LLoc);
9411      return ExprError();
9412    }
9413
9414  // We matched a built-in operator; build it.
9415  return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
9416}
9417
9418/// BuildCallToMemberFunction - Build a call to a member
9419/// function. MemExpr is the expression that refers to the member
9420/// function (and includes the object parameter), Args/NumArgs are the
9421/// arguments to the function call (not including the object
9422/// parameter). The caller needs to validate that the member
9423/// expression refers to a non-static member function or an overloaded
9424/// member function.
9425ExprResult
9426Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
9427                                SourceLocation LParenLoc, Expr **Args,
9428                                unsigned NumArgs, SourceLocation RParenLoc) {
9429  assert(MemExprE->getType() == Context.BoundMemberTy ||
9430         MemExprE->getType() == Context.OverloadTy);
9431
9432  // Dig out the member expression. This holds both the object
9433  // argument and the member function we're referring to.
9434  Expr *NakedMemExpr = MemExprE->IgnoreParens();
9435
9436  // Determine whether this is a call to a pointer-to-member function.
9437  if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
9438    assert(op->getType() == Context.BoundMemberTy);
9439    assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
9440
9441    QualType fnType =
9442      op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
9443
9444    const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
9445    QualType resultType = proto->getCallResultType(Context);
9446    ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType());
9447
9448    // Check that the object type isn't more qualified than the
9449    // member function we're calling.
9450    Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals());
9451
9452    QualType objectType = op->getLHS()->getType();
9453    if (op->getOpcode() == BO_PtrMemI)
9454      objectType = objectType->castAs<PointerType>()->getPointeeType();
9455    Qualifiers objectQuals = objectType.getQualifiers();
9456
9457    Qualifiers difference = objectQuals - funcQuals;
9458    difference.removeObjCGCAttr();
9459    difference.removeAddressSpace();
9460    if (difference) {
9461      std::string qualsString = difference.getAsString();
9462      Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
9463        << fnType.getUnqualifiedType()
9464        << qualsString
9465        << (qualsString.find(' ') == std::string::npos ? 1 : 2);
9466    }
9467
9468    CXXMemberCallExpr *call
9469      = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
9470                                        resultType, valueKind, RParenLoc);
9471
9472    if (CheckCallReturnType(proto->getResultType(),
9473                            op->getRHS()->getSourceRange().getBegin(),
9474                            call, 0))
9475      return ExprError();
9476
9477    if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc))
9478      return ExprError();
9479
9480    return MaybeBindToTemporary(call);
9481  }
9482
9483  UnbridgedCastsSet UnbridgedCasts;
9484  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
9485    return ExprError();
9486
9487  MemberExpr *MemExpr;
9488  CXXMethodDecl *Method = 0;
9489  DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
9490  NestedNameSpecifier *Qualifier = 0;
9491  if (isa<MemberExpr>(NakedMemExpr)) {
9492    MemExpr = cast<MemberExpr>(NakedMemExpr);
9493    Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
9494    FoundDecl = MemExpr->getFoundDecl();
9495    Qualifier = MemExpr->getQualifier();
9496    UnbridgedCasts.restore();
9497  } else {
9498    UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
9499    Qualifier = UnresExpr->getQualifier();
9500
9501    QualType ObjectType = UnresExpr->getBaseType();
9502    Expr::Classification ObjectClassification
9503      = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
9504                            : UnresExpr->getBase()->Classify(Context);
9505
9506    // Add overload candidates
9507    OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc());
9508
9509    // FIXME: avoid copy.
9510    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
9511    if (UnresExpr->hasExplicitTemplateArgs()) {
9512      UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
9513      TemplateArgs = &TemplateArgsBuffer;
9514    }
9515
9516    for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
9517           E = UnresExpr->decls_end(); I != E; ++I) {
9518
9519      NamedDecl *Func = *I;
9520      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
9521      if (isa<UsingShadowDecl>(Func))
9522        Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
9523
9524
9525      // Microsoft supports direct constructor calls.
9526      if (getLangOptions().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
9527        AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
9528                             CandidateSet);
9529      } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
9530        // If explicit template arguments were provided, we can't call a
9531        // non-template member function.
9532        if (TemplateArgs)
9533          continue;
9534
9535        AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
9536                           ObjectClassification,
9537                           Args, NumArgs, CandidateSet,
9538                           /*SuppressUserConversions=*/false);
9539      } else {
9540        AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
9541                                   I.getPair(), ActingDC, TemplateArgs,
9542                                   ObjectType,  ObjectClassification,
9543                                   Args, NumArgs, CandidateSet,
9544                                   /*SuppressUsedConversions=*/false);
9545      }
9546    }
9547
9548    DeclarationName DeclName = UnresExpr->getMemberName();
9549
9550    UnbridgedCasts.restore();
9551
9552    OverloadCandidateSet::iterator Best;
9553    switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
9554                                            Best)) {
9555    case OR_Success:
9556      Method = cast<CXXMethodDecl>(Best->Function);
9557      MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method);
9558      FoundDecl = Best->FoundDecl;
9559      CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
9560      DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
9561      break;
9562
9563    case OR_No_Viable_Function:
9564      Diag(UnresExpr->getMemberLoc(),
9565           diag::err_ovl_no_viable_member_function_in_call)
9566        << DeclName << MemExprE->getSourceRange();
9567      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9568      // FIXME: Leaking incoming expressions!
9569      return ExprError();
9570
9571    case OR_Ambiguous:
9572      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
9573        << DeclName << MemExprE->getSourceRange();
9574      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9575      // FIXME: Leaking incoming expressions!
9576      return ExprError();
9577
9578    case OR_Deleted:
9579      Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call)
9580        << Best->Function->isDeleted()
9581        << DeclName
9582        << getDeletedOrUnavailableSuffix(Best->Function)
9583        << MemExprE->getSourceRange();
9584      CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9585      // FIXME: Leaking incoming expressions!
9586      return ExprError();
9587    }
9588
9589    MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
9590
9591    // If overload resolution picked a static member, build a
9592    // non-member call based on that function.
9593    if (Method->isStatic()) {
9594      return BuildResolvedCallExpr(MemExprE, Method, LParenLoc,
9595                                   Args, NumArgs, RParenLoc);
9596    }
9597
9598    MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
9599  }
9600
9601  QualType ResultType = Method->getResultType();
9602  ExprValueKind VK = Expr::getValueKindForType(ResultType);
9603  ResultType = ResultType.getNonLValueExprType(Context);
9604
9605  assert(Method && "Member call to something that isn't a method?");
9606  CXXMemberCallExpr *TheCall =
9607    new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs,
9608                                    ResultType, VK, RParenLoc);
9609
9610  // Check for a valid return type.
9611  if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(),
9612                          TheCall, Method))
9613    return ExprError();
9614
9615  // Convert the object argument (for a non-static member function call).
9616  // We only need to do this if there was actually an overload; otherwise
9617  // it was done at lookup.
9618  if (!Method->isStatic()) {
9619    ExprResult ObjectArg =
9620      PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
9621                                          FoundDecl, Method);
9622    if (ObjectArg.isInvalid())
9623      return ExprError();
9624    MemExpr->setBase(ObjectArg.take());
9625  }
9626
9627  // Convert the rest of the arguments
9628  const FunctionProtoType *Proto =
9629    Method->getType()->getAs<FunctionProtoType>();
9630  if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs,
9631                              RParenLoc))
9632    return ExprError();
9633
9634  if (CheckFunctionCall(Method, TheCall))
9635    return ExprError();
9636
9637  if ((isa<CXXConstructorDecl>(CurContext) ||
9638       isa<CXXDestructorDecl>(CurContext)) &&
9639      TheCall->getMethodDecl()->isPure()) {
9640    const CXXMethodDecl *MD = TheCall->getMethodDecl();
9641
9642    if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) {
9643      Diag(MemExpr->getLocStart(),
9644           diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
9645        << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
9646        << MD->getParent()->getDeclName();
9647
9648      Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName();
9649    }
9650  }
9651  return MaybeBindToTemporary(TheCall);
9652}
9653
9654/// BuildCallToObjectOfClassType - Build a call to an object of class
9655/// type (C++ [over.call.object]), which can end up invoking an
9656/// overloaded function call operator (@c operator()) or performing a
9657/// user-defined conversion on the object argument.
9658ExprResult
9659Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
9660                                   SourceLocation LParenLoc,
9661                                   Expr **Args, unsigned NumArgs,
9662                                   SourceLocation RParenLoc) {
9663  if (checkPlaceholderForOverload(*this, Obj))
9664    return ExprError();
9665  ExprResult Object = Owned(Obj);
9666
9667  UnbridgedCastsSet UnbridgedCasts;
9668  if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
9669    return ExprError();
9670
9671  assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
9672  const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
9673
9674  // C++ [over.call.object]p1:
9675  //  If the primary-expression E in the function call syntax
9676  //  evaluates to a class object of type "cv T", then the set of
9677  //  candidate functions includes at least the function call
9678  //  operators of T. The function call operators of T are obtained by
9679  //  ordinary lookup of the name operator() in the context of
9680  //  (E).operator().
9681  OverloadCandidateSet CandidateSet(LParenLoc);
9682  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
9683
9684  if (RequireCompleteType(LParenLoc, Object.get()->getType(),
9685                          PDiag(diag::err_incomplete_object_call)
9686                          << Object.get()->getSourceRange()))
9687    return true;
9688
9689  LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
9690  LookupQualifiedName(R, Record->getDecl());
9691  R.suppressDiagnostics();
9692
9693  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9694       Oper != OperEnd; ++Oper) {
9695    AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
9696                       Object.get()->Classify(Context), Args, NumArgs, CandidateSet,
9697                       /*SuppressUserConversions=*/ false);
9698  }
9699
9700  // C++ [over.call.object]p2:
9701  //   In addition, for each (non-explicit in C++0x) conversion function
9702  //   declared in T of the form
9703  //
9704  //        operator conversion-type-id () cv-qualifier;
9705  //
9706  //   where cv-qualifier is the same cv-qualification as, or a
9707  //   greater cv-qualification than, cv, and where conversion-type-id
9708  //   denotes the type "pointer to function of (P1,...,Pn) returning
9709  //   R", or the type "reference to pointer to function of
9710  //   (P1,...,Pn) returning R", or the type "reference to function
9711  //   of (P1,...,Pn) returning R", a surrogate call function [...]
9712  //   is also considered as a candidate function. Similarly,
9713  //   surrogate call functions are added to the set of candidate
9714  //   functions for each conversion function declared in an
9715  //   accessible base class provided the function is not hidden
9716  //   within T by another intervening declaration.
9717  const UnresolvedSetImpl *Conversions
9718    = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
9719  for (UnresolvedSetImpl::iterator I = Conversions->begin(),
9720         E = Conversions->end(); I != E; ++I) {
9721    NamedDecl *D = *I;
9722    CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
9723    if (isa<UsingShadowDecl>(D))
9724      D = cast<UsingShadowDecl>(D)->getTargetDecl();
9725
9726    // Skip over templated conversion functions; they aren't
9727    // surrogates.
9728    if (isa<FunctionTemplateDecl>(D))
9729      continue;
9730
9731    CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
9732    if (!Conv->isExplicit()) {
9733      // Strip the reference type (if any) and then the pointer type (if
9734      // any) to get down to what might be a function type.
9735      QualType ConvType = Conv->getConversionType().getNonReferenceType();
9736      if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
9737        ConvType = ConvPtrType->getPointeeType();
9738
9739      if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
9740      {
9741        AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
9742                              Object.get(), Args, NumArgs, CandidateSet);
9743      }
9744    }
9745  }
9746
9747  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9748
9749  // Perform overload resolution.
9750  OverloadCandidateSet::iterator Best;
9751  switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(),
9752                             Best)) {
9753  case OR_Success:
9754    // Overload resolution succeeded; we'll build the appropriate call
9755    // below.
9756    break;
9757
9758  case OR_No_Viable_Function:
9759    if (CandidateSet.empty())
9760      Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper)
9761        << Object.get()->getType() << /*call*/ 1
9762        << Object.get()->getSourceRange();
9763    else
9764      Diag(Object.get()->getSourceRange().getBegin(),
9765           diag::err_ovl_no_viable_object_call)
9766        << Object.get()->getType() << Object.get()->getSourceRange();
9767    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9768    break;
9769
9770  case OR_Ambiguous:
9771    Diag(Object.get()->getSourceRange().getBegin(),
9772         diag::err_ovl_ambiguous_object_call)
9773      << Object.get()->getType() << Object.get()->getSourceRange();
9774    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
9775    break;
9776
9777  case OR_Deleted:
9778    Diag(Object.get()->getSourceRange().getBegin(),
9779         diag::err_ovl_deleted_object_call)
9780      << Best->Function->isDeleted()
9781      << Object.get()->getType()
9782      << getDeletedOrUnavailableSuffix(Best->Function)
9783      << Object.get()->getSourceRange();
9784    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
9785    break;
9786  }
9787
9788  if (Best == CandidateSet.end())
9789    return true;
9790
9791  UnbridgedCasts.restore();
9792
9793  if (Best->Function == 0) {
9794    // Since there is no function declaration, this is one of the
9795    // surrogate candidates. Dig out the conversion function.
9796    CXXConversionDecl *Conv
9797      = cast<CXXConversionDecl>(
9798                         Best->Conversions[0].UserDefined.ConversionFunction);
9799
9800    CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
9801    DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
9802
9803    // We selected one of the surrogate functions that converts the
9804    // object parameter to a function pointer. Perform the conversion
9805    // on the object argument, then let ActOnCallExpr finish the job.
9806
9807    // Create an implicit member expr to refer to the conversion operator.
9808    // and then call it.
9809    ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
9810                                             Conv, HadMultipleCandidates);
9811    if (Call.isInvalid())
9812      return ExprError();
9813
9814    return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
9815                         RParenLoc);
9816  }
9817
9818  MarkDeclarationReferenced(LParenLoc, Best->Function);
9819  CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
9820  DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
9821
9822  // We found an overloaded operator(). Build a CXXOperatorCallExpr
9823  // that calls this method, using Object for the implicit object
9824  // parameter and passing along the remaining arguments.
9825  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
9826  const FunctionProtoType *Proto =
9827    Method->getType()->getAs<FunctionProtoType>();
9828
9829  unsigned NumArgsInProto = Proto->getNumArgs();
9830  unsigned NumArgsToCheck = NumArgs;
9831
9832  // Build the full argument list for the method call (the
9833  // implicit object parameter is placed at the beginning of the
9834  // list).
9835  Expr **MethodArgs;
9836  if (NumArgs < NumArgsInProto) {
9837    NumArgsToCheck = NumArgsInProto;
9838    MethodArgs = new Expr*[NumArgsInProto + 1];
9839  } else {
9840    MethodArgs = new Expr*[NumArgs + 1];
9841  }
9842  MethodArgs[0] = Object.get();
9843  for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
9844    MethodArgs[ArgIdx + 1] = Args[ArgIdx];
9845
9846  ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
9847                                           HadMultipleCandidates);
9848  if (NewFn.isInvalid())
9849    return true;
9850
9851  // Once we've built TheCall, all of the expressions are properly
9852  // owned.
9853  QualType ResultTy = Method->getResultType();
9854  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
9855  ResultTy = ResultTy.getNonLValueExprType(Context);
9856
9857  CXXOperatorCallExpr *TheCall =
9858    new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(),
9859                                      MethodArgs, NumArgs + 1,
9860                                      ResultTy, VK, RParenLoc);
9861  delete [] MethodArgs;
9862
9863  if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall,
9864                          Method))
9865    return true;
9866
9867  // We may have default arguments. If so, we need to allocate more
9868  // slots in the call for them.
9869  if (NumArgs < NumArgsInProto)
9870    TheCall->setNumArgs(Context, NumArgsInProto + 1);
9871  else if (NumArgs > NumArgsInProto)
9872    NumArgsToCheck = NumArgsInProto;
9873
9874  bool IsError = false;
9875
9876  // Initialize the implicit object parameter.
9877  ExprResult ObjRes =
9878    PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0,
9879                                        Best->FoundDecl, Method);
9880  if (ObjRes.isInvalid())
9881    IsError = true;
9882  else
9883    Object = move(ObjRes);
9884  TheCall->setArg(0, Object.take());
9885
9886  // Check the argument types.
9887  for (unsigned i = 0; i != NumArgsToCheck; i++) {
9888    Expr *Arg;
9889    if (i < NumArgs) {
9890      Arg = Args[i];
9891
9892      // Pass the argument.
9893
9894      ExprResult InputInit
9895        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
9896                                                    Context,
9897                                                    Method->getParamDecl(i)),
9898                                    SourceLocation(), Arg);
9899
9900      IsError |= InputInit.isInvalid();
9901      Arg = InputInit.takeAs<Expr>();
9902    } else {
9903      ExprResult DefArg
9904        = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
9905      if (DefArg.isInvalid()) {
9906        IsError = true;
9907        break;
9908      }
9909
9910      Arg = DefArg.takeAs<Expr>();
9911    }
9912
9913    TheCall->setArg(i + 1, Arg);
9914  }
9915
9916  // If this is a variadic call, handle args passed through "...".
9917  if (Proto->isVariadic()) {
9918    // Promote the arguments (C99 6.5.2.2p7).
9919    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
9920      ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0);
9921      IsError |= Arg.isInvalid();
9922      TheCall->setArg(i + 1, Arg.take());
9923    }
9924  }
9925
9926  if (IsError) return true;
9927
9928  if (CheckFunctionCall(Method, TheCall))
9929    return true;
9930
9931  return MaybeBindToTemporary(TheCall);
9932}
9933
9934/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
9935///  (if one exists), where @c Base is an expression of class type and
9936/// @c Member is the name of the member we're trying to find.
9937ExprResult
9938Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
9939  assert(Base->getType()->isRecordType() &&
9940         "left-hand side must have class type");
9941
9942  if (checkPlaceholderForOverload(*this, Base))
9943    return ExprError();
9944
9945  SourceLocation Loc = Base->getExprLoc();
9946
9947  // C++ [over.ref]p1:
9948  //
9949  //   [...] An expression x->m is interpreted as (x.operator->())->m
9950  //   for a class object x of type T if T::operator->() exists and if
9951  //   the operator is selected as the best match function by the
9952  //   overload resolution mechanism (13.3).
9953  DeclarationName OpName =
9954    Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
9955  OverloadCandidateSet CandidateSet(Loc);
9956  const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
9957
9958  if (RequireCompleteType(Loc, Base->getType(),
9959                          PDiag(diag::err_typecheck_incomplete_tag)
9960                            << Base->getSourceRange()))
9961    return ExprError();
9962
9963  LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
9964  LookupQualifiedName(R, BaseRecord->getDecl());
9965  R.suppressDiagnostics();
9966
9967  for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
9968       Oper != OperEnd; ++Oper) {
9969    AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
9970                       0, 0, CandidateSet, /*SuppressUserConversions=*/false);
9971  }
9972
9973  bool HadMultipleCandidates = (CandidateSet.size() > 1);
9974
9975  // Perform overload resolution.
9976  OverloadCandidateSet::iterator Best;
9977  switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
9978  case OR_Success:
9979    // Overload resolution succeeded; we'll build the call below.
9980    break;
9981
9982  case OR_No_Viable_Function:
9983    if (CandidateSet.empty())
9984      Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
9985        << Base->getType() << Base->getSourceRange();
9986    else
9987      Diag(OpLoc, diag::err_ovl_no_viable_oper)
9988        << "operator->" << Base->getSourceRange();
9989    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
9990    return ExprError();
9991
9992  case OR_Ambiguous:
9993    Diag(OpLoc,  diag::err_ovl_ambiguous_oper_unary)
9994      << "->" << Base->getType() << Base->getSourceRange();
9995    CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
9996    return ExprError();
9997
9998  case OR_Deleted:
9999    Diag(OpLoc,  diag::err_ovl_deleted_oper)
10000      << Best->Function->isDeleted()
10001      << "->"
10002      << getDeletedOrUnavailableSuffix(Best->Function)
10003      << Base->getSourceRange();
10004    CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
10005    return ExprError();
10006  }
10007
10008  MarkDeclarationReferenced(OpLoc, Best->Function);
10009  CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
10010  DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
10011
10012  // Convert the object parameter.
10013  CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
10014  ExprResult BaseResult =
10015    PerformObjectArgumentInitialization(Base, /*Qualifier=*/0,
10016                                        Best->FoundDecl, Method);
10017  if (BaseResult.isInvalid())
10018    return ExprError();
10019  Base = BaseResult.take();
10020
10021  // Build the operator call.
10022  ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
10023                                            HadMultipleCandidates);
10024  if (FnExpr.isInvalid())
10025    return ExprError();
10026
10027  QualType ResultTy = Method->getResultType();
10028  ExprValueKind VK = Expr::getValueKindForType(ResultTy);
10029  ResultTy = ResultTy.getNonLValueExprType(Context);
10030  CXXOperatorCallExpr *TheCall =
10031    new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(),
10032                                      &Base, 1, ResultTy, VK, OpLoc);
10033
10034  if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall,
10035                          Method))
10036          return ExprError();
10037
10038  return MaybeBindToTemporary(TheCall);
10039}
10040
10041/// FixOverloadedFunctionReference - E is an expression that refers to
10042/// a C++ overloaded function (possibly with some parentheses and
10043/// perhaps a '&' around it). We have resolved the overloaded function
10044/// to the function declaration Fn, so patch up the expression E to
10045/// refer (possibly indirectly) to Fn. Returns the new expr.
10046Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
10047                                           FunctionDecl *Fn) {
10048  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
10049    Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
10050                                                   Found, Fn);
10051    if (SubExpr == PE->getSubExpr())
10052      return PE;
10053
10054    return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
10055  }
10056
10057  if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10058    Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
10059                                                   Found, Fn);
10060    assert(Context.hasSameType(ICE->getSubExpr()->getType(),
10061                               SubExpr->getType()) &&
10062           "Implicit cast type cannot be determined from overload");
10063    assert(ICE->path_empty() && "fixing up hierarchy conversion?");
10064    if (SubExpr == ICE->getSubExpr())
10065      return ICE;
10066
10067    return ImplicitCastExpr::Create(Context, ICE->getType(),
10068                                    ICE->getCastKind(),
10069                                    SubExpr, 0,
10070                                    ICE->getValueKind());
10071  }
10072
10073  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
10074    assert(UnOp->getOpcode() == UO_AddrOf &&
10075           "Can only take the address of an overloaded function");
10076    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
10077      if (Method->isStatic()) {
10078        // Do nothing: static member functions aren't any different
10079        // from non-member functions.
10080      } else {
10081        // Fix the sub expression, which really has to be an
10082        // UnresolvedLookupExpr holding an overloaded member function
10083        // or template.
10084        Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
10085                                                       Found, Fn);
10086        if (SubExpr == UnOp->getSubExpr())
10087          return UnOp;
10088
10089        assert(isa<DeclRefExpr>(SubExpr)
10090               && "fixed to something other than a decl ref");
10091        assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
10092               && "fixed to a member ref with no nested name qualifier");
10093
10094        // We have taken the address of a pointer to member
10095        // function. Perform the computation here so that we get the
10096        // appropriate pointer to member type.
10097        QualType ClassType
10098          = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
10099        QualType MemPtrType
10100          = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
10101
10102        return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
10103                                           VK_RValue, OK_Ordinary,
10104                                           UnOp->getOperatorLoc());
10105      }
10106    }
10107    Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
10108                                                   Found, Fn);
10109    if (SubExpr == UnOp->getSubExpr())
10110      return UnOp;
10111
10112    return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
10113                                     Context.getPointerType(SubExpr->getType()),
10114                                       VK_RValue, OK_Ordinary,
10115                                       UnOp->getOperatorLoc());
10116  }
10117
10118  if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
10119    // FIXME: avoid copy.
10120    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10121    if (ULE->hasExplicitTemplateArgs()) {
10122      ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
10123      TemplateArgs = &TemplateArgsBuffer;
10124    }
10125
10126    DeclRefExpr *DRE = DeclRefExpr::Create(Context,
10127                                           ULE->getQualifierLoc(),
10128                                           Fn,
10129                                           ULE->getNameLoc(),
10130                                           Fn->getType(),
10131                                           VK_LValue,
10132                                           Found.getDecl(),
10133                                           TemplateArgs);
10134    DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
10135    return DRE;
10136  }
10137
10138  if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
10139    // FIXME: avoid copy.
10140    TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0;
10141    if (MemExpr->hasExplicitTemplateArgs()) {
10142      MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
10143      TemplateArgs = &TemplateArgsBuffer;
10144    }
10145
10146    Expr *Base;
10147
10148    // If we're filling in a static method where we used to have an
10149    // implicit member access, rewrite to a simple decl ref.
10150    if (MemExpr->isImplicitAccess()) {
10151      if (cast<CXXMethodDecl>(Fn)->isStatic()) {
10152        DeclRefExpr *DRE = DeclRefExpr::Create(Context,
10153                                               MemExpr->getQualifierLoc(),
10154                                               Fn,
10155                                               MemExpr->getMemberLoc(),
10156                                               Fn->getType(),
10157                                               VK_LValue,
10158                                               Found.getDecl(),
10159                                               TemplateArgs);
10160        DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
10161        return DRE;
10162      } else {
10163        SourceLocation Loc = MemExpr->getMemberLoc();
10164        if (MemExpr->getQualifier())
10165          Loc = MemExpr->getQualifierLoc().getBeginLoc();
10166        Base = new (Context) CXXThisExpr(Loc,
10167                                         MemExpr->getBaseType(),
10168                                         /*isImplicit=*/true);
10169      }
10170    } else
10171      Base = MemExpr->getBase();
10172
10173    ExprValueKind valueKind;
10174    QualType type;
10175    if (cast<CXXMethodDecl>(Fn)->isStatic()) {
10176      valueKind = VK_LValue;
10177      type = Fn->getType();
10178    } else {
10179      valueKind = VK_RValue;
10180      type = Context.BoundMemberTy;
10181    }
10182
10183    MemberExpr *ME = MemberExpr::Create(Context, Base,
10184                                        MemExpr->isArrow(),
10185                                        MemExpr->getQualifierLoc(),
10186                                        Fn,
10187                                        Found,
10188                                        MemExpr->getMemberNameInfo(),
10189                                        TemplateArgs,
10190                                        type, valueKind, OK_Ordinary);
10191    ME->setHadMultipleCandidates(true);
10192    return ME;
10193  }
10194
10195  llvm_unreachable("Invalid reference to overloaded function");
10196  return E;
10197}
10198
10199ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
10200                                                DeclAccessPair Found,
10201                                                FunctionDecl *Fn) {
10202  return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn));
10203}
10204
10205} // end namespace clang
10206