SemaStmt.cpp revision 08631c5fa053867146b5ee8be658c229f6bf127c
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/Basic/Diagnostic.h"
21using namespace clang;
22
23Sema::StmtResult Sema::ActOnExprStmt(ExprTy *expr) {
24  Expr *E = static_cast<Expr*>(expr);
25  assert(E && "ActOnExprStmt(): missing expression");
26
27  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
28  // void expression for its side effects.  Conversion to void allows any
29  // operand, even incomplete types.
30
31  // Same thing in for stmt first clause (when expr) and third clause.
32  return E;
33}
34
35
36Sema::StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
37  return new NullStmt(SemiLoc);
38}
39
40Sema::StmtResult Sema::ActOnDeclStmt(DeclTy *decl, SourceLocation StartLoc,
41                                     SourceLocation EndLoc) {
42  if (decl == 0)
43    return true;
44
45  ScopedDecl *SD = cast<ScopedDecl>(static_cast<Decl *>(decl));
46
47
48  // This is a temporary hack until we are always passing around
49  // DeclGroupRefs.
50  llvm::SmallVector<Decl*, 10> decls;
51  while (SD) {
52    ScopedDecl* d = SD;
53    SD = SD->getNextDeclarator();
54    d->setNextDeclarator(0);
55    decls.push_back(d);
56  }
57
58  assert (!decls.empty());
59
60  if (decls.size() == 1) {
61    DeclGroupOwningRef DG(*decls.begin());
62    return new DeclStmt(DG, StartLoc, EndLoc);
63  }
64  else {
65    DeclGroupOwningRef DG(DeclGroup::Create(Context, decls.size(), &decls[0]));
66    return new DeclStmt(DG, StartLoc, EndLoc);
67  }
68}
69
70Action::StmtResult
71Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
72                        StmtTy **elts, unsigned NumElts, bool isStmtExpr) {
73  Stmt **Elts = reinterpret_cast<Stmt**>(elts);
74  // If we're in C89 mode, check that we don't have any decls after stmts.  If
75  // so, emit an extension diagnostic.
76  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
77    // Note that __extension__ can be around a decl.
78    unsigned i = 0;
79    // Skip over all declarations.
80    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
81      /*empty*/;
82
83    // We found the end of the list or a statement.  Scan for another declstmt.
84    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
85      /*empty*/;
86
87    if (i != NumElts) {
88      ScopedDecl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
89      Diag(D->getLocation(), diag::ext_mixed_decls_code);
90    }
91  }
92  // Warn about unused expressions in statements.
93  for (unsigned i = 0; i != NumElts; ++i) {
94    Expr *E = dyn_cast<Expr>(Elts[i]);
95    if (!E) continue;
96
97    // Warn about expressions with unused results.
98    if (E->hasLocalSideEffect() || E->getType()->isVoidType())
99      continue;
100
101    // The last expr in a stmt expr really is used.
102    if (isStmtExpr && i == NumElts-1)
103      continue;
104
105    /// DiagnoseDeadExpr - This expression is side-effect free and evaluated in
106    /// a context where the result is unused.  Emit a diagnostic to warn about
107    /// this.
108    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
109      Diag(BO->getOperatorLoc(), diag::warn_unused_expr)
110        << BO->getLHS()->getSourceRange() << BO->getRHS()->getSourceRange();
111    else if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
112      Diag(UO->getOperatorLoc(), diag::warn_unused_expr)
113        << UO->getSubExpr()->getSourceRange();
114    else
115      Diag(E->getExprLoc(), diag::warn_unused_expr) << E->getSourceRange();
116  }
117
118  return new CompoundStmt(Elts, NumElts, L, R);
119}
120
121Action::StmtResult
122Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprTy *lhsval,
123                    SourceLocation DotDotDotLoc, ExprTy *rhsval,
124                    SourceLocation ColonLoc, StmtTy *subStmt) {
125  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
126  Expr *LHSVal = ((Expr *)lhsval), *RHSVal = ((Expr *)rhsval);
127  assert((LHSVal != 0) && "missing expression in case statement");
128
129  SourceLocation ExpLoc;
130  // C99 6.8.4.2p3: The expression shall be an integer constant.
131  // However, GCC allows any evaluatable integer expression.
132  // FIXME: Should we warn if this is evaluatable but not an I-C-E?
133  APValue Result;
134  bool isEvaluated;
135
136  if (!LHSVal->Evaluate(Result, Context, &isEvaluated) || !Result.isInt() ||
137      !isEvaluated) {
138    // FIXME: Evaluate doesn't return the SourceLocation that it failed to
139    // evaluate.
140    ExpLoc = LHSVal->getExprLoc();
141    Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr)
142      << LHSVal->getSourceRange();
143    return SubStmt;
144  }
145
146  // GCC extension: The expression shall be an integer constant.
147  if (RHSVal && !RHSVal->Evaluate(Result, Context, &isEvaluated) ||
148      !Result.isInt() || !isEvaluated) {
149    ExpLoc = RHSVal->getExprLoc();
150    Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr)
151      << RHSVal->getSourceRange();
152    RHSVal = 0;  // Recover by just forgetting about it.
153  }
154
155  if (SwitchStack.empty()) {
156    Diag(CaseLoc, diag::err_case_not_in_switch);
157    return SubStmt;
158  }
159
160  CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc);
161  SwitchStack.back()->addSwitchCase(CS);
162  return CS;
163}
164
165Action::StmtResult
166Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
167                       StmtTy *subStmt, Scope *CurScope) {
168  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
169
170  if (SwitchStack.empty()) {
171    Diag(DefaultLoc, diag::err_default_not_in_switch);
172    return SubStmt;
173  }
174
175  DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt);
176  SwitchStack.back()->addSwitchCase(DS);
177
178  return DS;
179}
180
181Action::StmtResult
182Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
183                     SourceLocation ColonLoc, StmtTy *subStmt) {
184  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
185  // Look up the record for this label identifier.
186  LabelStmt *&LabelDecl = LabelMap[II];
187
188  // If not forward referenced or defined already, just create a new LabelStmt.
189  if (LabelDecl == 0)
190    return LabelDecl = new LabelStmt(IdentLoc, II, SubStmt);
191
192  assert(LabelDecl->getID() == II && "Label mismatch!");
193
194  // Otherwise, this label was either forward reference or multiply defined.  If
195  // multiply defined, reject it now.
196  if (LabelDecl->getSubStmt()) {
197    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
198    Diag(LabelDecl->getIdentLoc(), diag::err_previous_definition);
199    return SubStmt;
200  }
201
202  // Otherwise, this label was forward declared, and we just found its real
203  // definition.  Fill in the forward definition and return it.
204  LabelDecl->setIdentLoc(IdentLoc);
205  LabelDecl->setSubStmt(SubStmt);
206  return LabelDecl;
207}
208
209Action::StmtResult
210Sema::ActOnIfStmt(SourceLocation IfLoc, ExprTy *CondVal,
211                  StmtTy *ThenVal, SourceLocation ElseLoc,
212                  StmtTy *ElseVal) {
213  Expr *condExpr = (Expr *)CondVal;
214  Stmt *thenStmt = (Stmt *)ThenVal;
215
216  assert(condExpr && "ActOnIfStmt(): missing expression");
217
218  DefaultFunctionArrayConversion(condExpr);
219  QualType condType = condExpr->getType();
220
221  if (getLangOptions().CPlusPlus) {
222    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
223      return true;
224  } else if (!condType->isScalarType()) // C99 6.8.4.1p1
225    return Diag(IfLoc, diag::err_typecheck_statement_requires_scalar)
226      << condType.getAsString() << condExpr->getSourceRange();
227
228  // Warn if the if block has a null body without an else value.
229  // this helps prevent bugs due to typos, such as
230  // if (condition);
231  //   do_stuff();
232  if (!ElseVal) {
233    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
234      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
235  }
236
237  return new IfStmt(IfLoc, condExpr, thenStmt, (Stmt*)ElseVal);
238}
239
240Action::StmtResult
241Sema::ActOnStartOfSwitchStmt(ExprTy *cond) {
242  Expr *Cond = static_cast<Expr*>(cond);
243
244  if (getLangOptions().CPlusPlus) {
245    // C++ 6.4.2.p2:
246    // The condition shall be of integral type, enumeration type, or of a class
247    // type for which a single conversion function to integral or enumeration
248    // type exists (12.3). If the condition is of class type, the condition is
249    // converted by calling that conversion function, and the result of the
250    // conversion is used in place of the original condition for the remainder
251    // of this section. Integral promotions are performed.
252
253    QualType Ty = Cond->getType();
254
255    // FIXME: Handle class types.
256
257    // If the type is wrong a diagnostic will be emitted later at
258    // ActOnFinishSwitchStmt.
259    if (Ty->isIntegralType() || Ty->isEnumeralType()) {
260      // Integral promotions are performed.
261      // FIXME: Integral promotions for C++ are not complete.
262      UsualUnaryConversions(Cond);
263    }
264  } else {
265    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
266    UsualUnaryConversions(Cond);
267  }
268
269  SwitchStmt *SS = new SwitchStmt(Cond);
270  SwitchStack.push_back(SS);
271  return SS;
272}
273
274/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
275/// the specified width and sign.  If an overflow occurs, detect it and emit
276/// the specified diagnostic.
277void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
278                                              unsigned NewWidth, bool NewSign,
279                                              SourceLocation Loc,
280                                              unsigned DiagID) {
281  // Perform a conversion to the promoted condition type if needed.
282  if (NewWidth > Val.getBitWidth()) {
283    // If this is an extension, just do it.
284    llvm::APSInt OldVal(Val);
285    Val.extend(NewWidth);
286
287    // If the input was signed and negative and the output is unsigned,
288    // warn.
289    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
290      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
291
292    Val.setIsSigned(NewSign);
293  } else if (NewWidth < Val.getBitWidth()) {
294    // If this is a truncation, check for overflow.
295    llvm::APSInt ConvVal(Val);
296    ConvVal.trunc(NewWidth);
297    ConvVal.setIsSigned(NewSign);
298    ConvVal.extend(Val.getBitWidth());
299    ConvVal.setIsSigned(Val.isSigned());
300    if (ConvVal != Val)
301      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
302
303    // Regardless of whether a diagnostic was emitted, really do the
304    // truncation.
305    Val.trunc(NewWidth);
306    Val.setIsSigned(NewSign);
307  } else if (NewSign != Val.isSigned()) {
308    // Convert the sign to match the sign of the condition.  This can cause
309    // overflow as well: unsigned(INTMIN)
310    llvm::APSInt OldVal(Val);
311    Val.setIsSigned(NewSign);
312
313    if (Val.isNegative())  // Sign bit changes meaning.
314      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
315  }
316}
317
318namespace {
319  struct CaseCompareFunctor {
320    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
321                    const llvm::APSInt &RHS) {
322      return LHS.first < RHS;
323    }
324    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
325                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
326      return LHS.first < RHS.first;
327    }
328    bool operator()(const llvm::APSInt &LHS,
329                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
330      return LHS < RHS.first;
331    }
332  };
333}
334
335/// CmpCaseVals - Comparison predicate for sorting case values.
336///
337static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
338                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
339  if (lhs.first < rhs.first)
340    return true;
341
342  if (lhs.first == rhs.first &&
343      lhs.second->getCaseLoc().getRawEncoding()
344       < rhs.second->getCaseLoc().getRawEncoding())
345    return true;
346  return false;
347}
348
349Action::StmtResult
350Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch,
351                            ExprTy *Body) {
352  Stmt *BodyStmt = (Stmt*)Body;
353
354  SwitchStmt *SS = SwitchStack.back();
355  assert(SS == (SwitchStmt*)Switch && "switch stack missing push/pop!");
356
357  SS->setBody(BodyStmt, SwitchLoc);
358  SwitchStack.pop_back();
359
360  Expr *CondExpr = SS->getCond();
361  QualType CondType = CondExpr->getType();
362
363  if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
364    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
365      << CondType.getAsString() << CondExpr->getSourceRange();
366    return true;
367  }
368
369  // Get the bitwidth of the switched-on value before promotions.  We must
370  // convert the integer case values to this width before comparison.
371  unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType));
372  bool CondIsSigned = CondType->isSignedIntegerType();
373
374  // Accumulate all of the case values in a vector so that we can sort them
375  // and detect duplicates.  This vector contains the APInt for the case after
376  // it has been converted to the condition type.
377  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
378  CaseValsTy CaseVals;
379
380  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
381  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
382
383  DefaultStmt *TheDefaultStmt = 0;
384
385  bool CaseListIsErroneous = false;
386
387  for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
388       SC = SC->getNextSwitchCase()) {
389
390    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
391      if (TheDefaultStmt) {
392        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
393        Diag(TheDefaultStmt->getDefaultLoc(), diag::err_first_label);
394
395        // FIXME: Remove the default statement from the switch block so that
396        // we'll return a valid AST.  This requires recursing down the
397        // AST and finding it, not something we are set up to do right now.  For
398        // now, just lop the entire switch stmt out of the AST.
399        CaseListIsErroneous = true;
400      }
401      TheDefaultStmt = DS;
402
403    } else {
404      CaseStmt *CS = cast<CaseStmt>(SC);
405
406      // We already verified that the expression has a i-c-e value (C99
407      // 6.8.4.2p3) - get that value now.
408      Expr *Lo = CS->getLHS();
409      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
410
411      // Convert the value to the same width/sign as the condition.
412      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
413                                         CS->getLHS()->getLocStart(),
414                                         diag::warn_case_value_overflow);
415
416      // If the LHS is not the same type as the condition, insert an implicit
417      // cast.
418      ImpCastExprToType(Lo, CondType);
419      CS->setLHS(Lo);
420
421      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
422      if (CS->getRHS())
423        CaseRanges.push_back(std::make_pair(LoVal, CS));
424      else
425        CaseVals.push_back(std::make_pair(LoVal, CS));
426    }
427  }
428
429  // Sort all the scalar case values so we can easily detect duplicates.
430  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
431
432  if (!CaseVals.empty()) {
433    for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
434      if (CaseVals[i].first == CaseVals[i+1].first) {
435        // If we have a duplicate, report it.
436        Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
437             diag::err_duplicate_case) << CaseVals[i].first.toString(10);
438        Diag(CaseVals[i].second->getLHS()->getLocStart(),
439             diag::err_duplicate_case_prev);
440        // FIXME: We really want to remove the bogus case stmt from the substmt,
441        // but we have no way to do this right now.
442        CaseListIsErroneous = true;
443      }
444    }
445  }
446
447  // Detect duplicate case ranges, which usually don't exist at all in the first
448  // place.
449  if (!CaseRanges.empty()) {
450    // Sort all the case ranges by their low value so we can easily detect
451    // overlaps between ranges.
452    std::stable_sort(CaseRanges.begin(), CaseRanges.end());
453
454    // Scan the ranges, computing the high values and removing empty ranges.
455    std::vector<llvm::APSInt> HiVals;
456    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
457      CaseStmt *CR = CaseRanges[i].second;
458      Expr *Hi = CR->getRHS();
459      llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
460
461      // Convert the value to the same width/sign as the condition.
462      ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
463                                         CR->getRHS()->getLocStart(),
464                                         diag::warn_case_value_overflow);
465
466      // If the LHS is not the same type as the condition, insert an implicit
467      // cast.
468      ImpCastExprToType(Hi, CondType);
469      CR->setRHS(Hi);
470
471      // If the low value is bigger than the high value, the case is empty.
472      if (CaseRanges[i].first > HiVal) {
473        Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
474          << SourceRange(CR->getLHS()->getLocStart(),
475                         CR->getRHS()->getLocEnd());
476        CaseRanges.erase(CaseRanges.begin()+i);
477        --i, --e;
478        continue;
479      }
480      HiVals.push_back(HiVal);
481    }
482
483    // Rescan the ranges, looking for overlap with singleton values and other
484    // ranges.  Since the range list is sorted, we only need to compare case
485    // ranges with their neighbors.
486    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
487      llvm::APSInt &CRLo = CaseRanges[i].first;
488      llvm::APSInt &CRHi = HiVals[i];
489      CaseStmt *CR = CaseRanges[i].second;
490
491      // Check to see whether the case range overlaps with any singleton cases.
492      CaseStmt *OverlapStmt = 0;
493      llvm::APSInt OverlapVal(32);
494
495      // Find the smallest value >= the lower bound.  If I is in the case range,
496      // then we have overlap.
497      CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
498                                                CaseVals.end(), CRLo,
499                                                CaseCompareFunctor());
500      if (I != CaseVals.end() && I->first < CRHi) {
501        OverlapVal  = I->first;   // Found overlap with scalar.
502        OverlapStmt = I->second;
503      }
504
505      // Find the smallest value bigger than the upper bound.
506      I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
507      if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
508        OverlapVal  = (I-1)->first;      // Found overlap with scalar.
509        OverlapStmt = (I-1)->second;
510      }
511
512      // Check to see if this case stmt overlaps with the subsequent case range.
513      if (i && CRLo <= HiVals[i-1]) {
514        OverlapVal  = HiVals[i-1];       // Found overlap with range.
515        OverlapStmt = CaseRanges[i-1].second;
516      }
517
518      if (OverlapStmt) {
519        // If we have a duplicate, report it.
520        Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
521          << OverlapVal.toString(10);
522        Diag(OverlapStmt->getLHS()->getLocStart(),
523             diag::err_duplicate_case_prev);
524        // FIXME: We really want to remove the bogus case stmt from the substmt,
525        // but we have no way to do this right now.
526        CaseListIsErroneous = true;
527      }
528    }
529  }
530
531  // FIXME: If the case list was broken is some way, we don't have a good system
532  // to patch it up.  Instead, just return the whole substmt as broken.
533  if (CaseListIsErroneous)
534    return true;
535
536  return SS;
537}
538
539Action::StmtResult
540Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body) {
541  Expr *condExpr = (Expr *)Cond;
542  assert(condExpr && "ActOnWhileStmt(): missing expression");
543
544  DefaultFunctionArrayConversion(condExpr);
545  QualType condType = condExpr->getType();
546
547  if (getLangOptions().CPlusPlus) {
548    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
549      return true;
550  } else if (!condType->isScalarType()) // C99 6.8.5p2
551    return Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar)
552      << condType.getAsString() << condExpr->getSourceRange();
553
554  return new WhileStmt(condExpr, (Stmt*)Body, WhileLoc);
555}
556
557Action::StmtResult
558Sema::ActOnDoStmt(SourceLocation DoLoc, StmtTy *Body,
559                  SourceLocation WhileLoc, ExprTy *Cond) {
560  Expr *condExpr = (Expr *)Cond;
561  assert(condExpr && "ActOnDoStmt(): missing expression");
562
563  DefaultFunctionArrayConversion(condExpr);
564  QualType condType = condExpr->getType();
565
566  if (getLangOptions().CPlusPlus) {
567    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
568      return true;
569  } else if (!condType->isScalarType()) // C99 6.8.5p2
570    return Diag(DoLoc, diag::err_typecheck_statement_requires_scalar)
571      << condType.getAsString() << condExpr->getSourceRange();
572
573  return new DoStmt((Stmt*)Body, condExpr, DoLoc);
574}
575
576Action::StmtResult
577Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
578                   StmtTy *first, ExprTy *second, ExprTy *third,
579                   SourceLocation RParenLoc, StmtTy *body) {
580  Stmt *First  = static_cast<Stmt*>(first);
581  Expr *Second = static_cast<Expr*>(second);
582  Expr *Third  = static_cast<Expr*>(third);
583  Stmt *Body  = static_cast<Stmt*>(body);
584
585  if (!getLangOptions().CPlusPlus) {
586    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
587      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
588      // declare identifiers for objects having storage class 'auto' or
589      // 'register'.
590      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
591           DI!=DE; ++DI) {
592        VarDecl *VD = dyn_cast<VarDecl>(*DI);
593        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
594          VD = 0;
595        if (VD == 0)
596          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
597        // FIXME: mark decl erroneous!
598      }
599    }
600  }
601  if (Second) {
602    DefaultFunctionArrayConversion(Second);
603    QualType SecondType = Second->getType();
604
605    if (getLangOptions().CPlusPlus) {
606      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
607        return true;
608    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
609      return Diag(ForLoc, diag::err_typecheck_statement_requires_scalar)
610        << SecondType.getAsString() << Second->getSourceRange();
611  }
612  return new ForStmt(First, Second, Third, Body, ForLoc);
613}
614
615Action::StmtResult
616Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
617                                 SourceLocation LParenLoc,
618                                 StmtTy *first, ExprTy *second,
619                                 SourceLocation RParenLoc, StmtTy *body) {
620  Stmt *First  = static_cast<Stmt*>(first);
621  Expr *Second = static_cast<Expr*>(second);
622  Stmt *Body  = static_cast<Stmt*>(body);
623  if (First) {
624    QualType FirstType;
625    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
626      if (!DS->hasSolitaryDecl())
627        return Diag((*DS->decl_begin())->getLocation(),
628                    diag::err_toomany_element_decls);
629
630      ScopedDecl *D = DS->getSolitaryDecl();
631      FirstType = cast<ValueDecl>(D)->getType();
632      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
633      // declare identifiers for objects having storage class 'auto' or
634      // 'register'.
635      VarDecl *VD = cast<VarDecl>(D);
636      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
637        return Diag(VD->getLocation(), diag::err_non_variable_decl_in_for);
638    } else {
639      Expr::isLvalueResult lval = cast<Expr>(First)->isLvalue(Context);
640
641      if (lval != Expr::LV_Valid)
642        return Diag(First->getLocStart(), diag::err_selector_element_not_lvalue)
643          << First->getSourceRange();
644
645      FirstType = static_cast<Expr*>(first)->getType();
646    }
647    if (!Context.isObjCObjectPointerType(FirstType))
648        Diag(ForLoc, diag::err_selector_element_type)
649          << FirstType.getAsString() << First->getSourceRange();
650  }
651  if (Second) {
652    DefaultFunctionArrayConversion(Second);
653    QualType SecondType = Second->getType();
654    if (!Context.isObjCObjectPointerType(SecondType))
655      Diag(ForLoc, diag::err_collection_expr_type)
656        << SecondType.getAsString() << Second->getSourceRange();
657  }
658  return new ObjCForCollectionStmt(First, Second, Body, ForLoc, RParenLoc);
659}
660
661Action::StmtResult
662Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
663                    IdentifierInfo *LabelII) {
664  // If we are in a block, reject all gotos for now.
665  if (CurBlock)
666    return Diag(GotoLoc, diag::err_goto_in_block);
667
668  // Look up the record for this label identifier.
669  LabelStmt *&LabelDecl = LabelMap[LabelII];
670
671  // If we haven't seen this label yet, create a forward reference.
672  if (LabelDecl == 0)
673    LabelDecl = new LabelStmt(LabelLoc, LabelII, 0);
674
675  return new GotoStmt(LabelDecl, GotoLoc, LabelLoc);
676}
677
678Action::StmtResult
679Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,
680                            ExprTy *DestExp) {
681  // FIXME: Verify that the operand is convertible to void*.
682
683  return new IndirectGotoStmt((Expr*)DestExp);
684}
685
686Action::StmtResult
687Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
688  Scope *S = CurScope->getContinueParent();
689  if (!S) {
690    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
691    Diag(ContinueLoc, diag::err_continue_not_in_loop);
692    return true;
693  }
694
695  return new ContinueStmt(ContinueLoc);
696}
697
698Action::StmtResult
699Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
700  Scope *S = CurScope->getBreakParent();
701  if (!S) {
702    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
703    Diag(BreakLoc, diag::err_break_not_in_loop_or_switch);
704    return true;
705  }
706
707  return new BreakStmt(BreakLoc);
708}
709
710/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
711///
712Action::StmtResult
713Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
714
715  // If this is the first return we've seen in the block, infer the type of
716  // the block from it.
717  if (CurBlock->ReturnType == 0) {
718    if (RetValExp) {
719      // Don't call UsualUnaryConversions(), since we don't want to do
720      // integer promotions here.
721      DefaultFunctionArrayConversion(RetValExp);
722      CurBlock->ReturnType = RetValExp->getType().getTypePtr();
723    } else
724      CurBlock->ReturnType = Context.VoidTy.getTypePtr();
725    return new ReturnStmt(ReturnLoc, RetValExp);
726  }
727
728  // Otherwise, verify that this result type matches the previous one.  We are
729  // pickier with blocks than for normal functions because we don't have GCC
730  // compatibility to worry about here.
731  if (CurBlock->ReturnType->isVoidType()) {
732    if (RetValExp) {
733      Diag(ReturnLoc, diag::err_return_block_has_expr);
734      delete RetValExp;
735      RetValExp = 0;
736    }
737    return new ReturnStmt(ReturnLoc, RetValExp);
738  }
739
740  if (!RetValExp) {
741    Diag(ReturnLoc, diag::err_block_return_missing_expr);
742    return true;
743  }
744
745  // we have a non-void block with an expression, continue checking
746  QualType RetValType = RetValExp->getType();
747
748  // For now, restrict multiple return statements in a block to have
749  // strict compatible types only.
750  QualType BlockQT = QualType(CurBlock->ReturnType, 0);
751  if (Context.getCanonicalType(BlockQT).getTypePtr()
752      != Context.getCanonicalType(RetValType).getTypePtr()) {
753    DiagnoseAssignmentResult(Incompatible, ReturnLoc, BlockQT,
754                             RetValType, RetValExp, "returning");
755    return true;
756  }
757
758  if (RetValExp) CheckReturnStackAddr(RetValExp, BlockQT, ReturnLoc);
759
760  return new ReturnStmt(ReturnLoc, (Expr*)RetValExp);
761}
762
763Action::StmtResult
764Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprTy *rex) {
765  Expr *RetValExp = static_cast<Expr *>(rex);
766  if (CurBlock)
767    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
768  QualType FnRetType =
769        getCurFunctionDecl() ? getCurFunctionDecl()->getResultType() :
770                               getCurMethodDecl()->getResultType();
771
772  if (FnRetType->isVoidType()) {
773    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
774      if (FunctionDecl *FD = getCurFunctionDecl())
775        Diag(ReturnLoc, diag::ext_return_has_expr)
776          << FD->getIdentifier() << 0/*function*/<< RetValExp->getSourceRange();
777      else
778        Diag(ReturnLoc, diag::ext_return_has_expr)
779          << getCurMethodDecl()->getDeclName() << 1 /*method*/
780          << RetValExp->getSourceRange();
781    }
782    return new ReturnStmt(ReturnLoc, RetValExp);
783  }
784
785  if (!RetValExp) {
786    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
787    // C99 6.8.6.4p1 (ext_ since GCC warns)
788    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
789
790    if (FunctionDecl *FD = getCurFunctionDecl())
791      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
792    else
793      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
794    return new ReturnStmt(ReturnLoc, (Expr*)0);
795  }
796
797  // we have a non-void function with an expression, continue checking
798  QualType RetValType = RetValExp->getType();
799
800  // C99 6.8.6.4p3(136): The return statement is not an assignment. The
801  // overlap restriction of subclause 6.5.16.1 does not apply to the case of
802  // function return.
803
804  // In C++ the return statement is handled via a copy initialization.
805  // the C version of which boils down to
806  // CheckSingleAssignmentConstraints.
807  if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
808    return true;
809
810  if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
811
812  return new ReturnStmt(ReturnLoc, (Expr*)RetValExp);
813}
814
815Sema::StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
816                                    bool IsSimple,
817                                    bool IsVolatile,
818                                    unsigned NumOutputs,
819                                    unsigned NumInputs,
820                                    std::string *Names,
821                                    ExprTy **constraints,
822                                    ExprTy **exprs,
823                                    ExprTy *asmString,
824                                    unsigned NumClobbers,
825                                    ExprTy **clobbers,
826                                    SourceLocation RParenLoc) {
827  StringLiteral **Constraints = reinterpret_cast<StringLiteral**>(constraints);
828  Expr **Exprs = reinterpret_cast<Expr **>(exprs);
829  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString);
830  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers);
831
832  // The parser verifies that there is a string literal here.
833  if (AsmString->isWide())
834    // FIXME: We currently leak memory here.
835    return Diag(AsmString->getLocStart(), diag::err_asm_wide_character)
836      << AsmString->getSourceRange();
837
838
839  for (unsigned i = 0; i != NumOutputs; i++) {
840    StringLiteral *Literal = Constraints[i];
841    if (Literal->isWide())
842      // FIXME: We currently leak memory here.
843      return Diag(Literal->getLocStart(), diag::err_asm_wide_character)
844        << Literal->getSourceRange();
845
846    std::string OutputConstraint(Literal->getStrData(),
847                                 Literal->getByteLength());
848
849    TargetInfo::ConstraintInfo info;
850    if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),info))
851      // FIXME: We currently leak memory here.
852      return Diag(Literal->getLocStart(),
853                  diag::err_asm_invalid_output_constraint) << OutputConstraint;
854
855    // Check that the output exprs are valid lvalues.
856    ParenExpr *OutputExpr = cast<ParenExpr>(Exprs[i]);
857    Expr::isLvalueResult Result = OutputExpr->isLvalue(Context);
858    if (Result != Expr::LV_Valid) {
859      // FIXME: We currently leak memory here.
860      return Diag(OutputExpr->getSubExpr()->getLocStart(),
861                  diag::err_asm_invalid_lvalue_in_output)
862        << OutputExpr->getSubExpr()->getSourceRange();
863    }
864  }
865
866  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
867    StringLiteral *Literal = Constraints[i];
868    if (Literal->isWide())
869      // FIXME: We currently leak memory here.
870      return Diag(Literal->getLocStart(), diag::err_asm_wide_character)
871        << Literal->getSourceRange();
872
873    std::string InputConstraint(Literal->getStrData(),
874                                Literal->getByteLength());
875
876    TargetInfo::ConstraintInfo info;
877    if (!Context.Target.validateInputConstraint(InputConstraint.c_str(),
878                                                NumOutputs, info)) {
879      // FIXME: We currently leak memory here.
880      return Diag(Literal->getLocStart(),
881                  diag::err_asm_invalid_input_constraint) << InputConstraint;
882    }
883
884    // Check that the input exprs aren't of type void.
885    ParenExpr *InputExpr = cast<ParenExpr>(Exprs[i]);
886    if (InputExpr->getType()->isVoidType()) {
887
888      // FIXME: We currently leak memory here.
889      return Diag(InputExpr->getSubExpr()->getLocStart(),
890                  diag::err_asm_invalid_type_in_input)
891        << InputExpr->getType().getAsString() << InputConstraint
892        << InputExpr->getSubExpr()->getSourceRange();
893    }
894  }
895
896  // Check that the clobbers are valid.
897  for (unsigned i = 0; i != NumClobbers; i++) {
898    StringLiteral *Literal = Clobbers[i];
899    if (Literal->isWide())
900      // FIXME: We currently leak memory here.
901      return Diag(Literal->getLocStart(), diag::err_asm_wide_character)
902        << Literal->getSourceRange();
903
904    llvm::SmallString<16> Clobber(Literal->getStrData(),
905                                  Literal->getStrData() +
906                                  Literal->getByteLength());
907
908    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
909      // FIXME: We currently leak memory here.
910      return Diag(Literal->getLocStart(),
911                  diag::err_asm_unknown_register_name) << Clobber.c_str();
912  }
913
914  return new AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
915                     Names, Constraints, Exprs, AsmString, NumClobbers,
916                     Clobbers, RParenLoc);
917}
918
919Action::StmtResult
920Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
921                           SourceLocation RParen, StmtTy *Parm,
922                           StmtTy *Body, StmtTy *CatchList) {
923  ObjCAtCatchStmt *CS = new ObjCAtCatchStmt(AtLoc, RParen,
924    static_cast<Stmt*>(Parm), static_cast<Stmt*>(Body),
925    static_cast<Stmt*>(CatchList));
926  return CatchList ? CatchList : CS;
927}
928
929Action::StmtResult
930Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtTy *Body) {
931  ObjCAtFinallyStmt *FS = new ObjCAtFinallyStmt(AtLoc,
932                                                static_cast<Stmt*>(Body));
933  return FS;
934}
935
936Action::StmtResult
937Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
938                         StmtTy *Try, StmtTy *Catch, StmtTy *Finally) {
939  ObjCAtTryStmt *TS = new ObjCAtTryStmt(AtLoc, static_cast<Stmt*>(Try),
940                                        static_cast<Stmt*>(Catch),
941                                        static_cast<Stmt*>(Finally));
942  return TS;
943}
944
945Action::StmtResult
946Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, StmtTy *Throw) {
947  ObjCAtThrowStmt *TS = new ObjCAtThrowStmt(AtLoc, static_cast<Stmt*>(Throw));
948  return TS;
949}
950
951Action::StmtResult
952Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprTy *SynchExpr,
953                                  StmtTy *SynchBody) {
954  ObjCAtSynchronizedStmt *SS = new ObjCAtSynchronizedStmt(AtLoc,
955    static_cast<Stmt*>(SynchExpr), static_cast<Stmt*>(SynchBody));
956  return SS;
957}
958