SemaStmt.cpp revision 0953e767ff7817f97b3ab20896b229891eeff45b
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/StmtObjC.h"
20#include "clang/AST/StmtCXX.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24using namespace clang;
25
26Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
27  Expr *E = expr->takeAs<Expr>();
28  assert(E && "ActOnExprStmt(): missing expression");
29  if (E->getType()->isObjCInterfaceType()) {
30    if (LangOpts.ObjCNonFragileABI)
31      Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object)
32             << E->getType();
33    else
34      Diag(E->getLocEnd(), diag::err_direct_interface_unsupported)
35             << E->getType();
36    return StmtError();
37  }
38  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
39  // void expression for its side effects.  Conversion to void allows any
40  // operand, even incomplete types.
41
42  // Same thing in for stmt first clause (when expr) and third clause.
43  return Owned(static_cast<Stmt*>(E));
44}
45
46
47Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
48  return Owned(new (Context) NullStmt(SemiLoc));
49}
50
51Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
52                                           SourceLocation StartLoc,
53                                           SourceLocation EndLoc) {
54  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
55
56  // If we have an invalid decl, just return an error.
57  if (DG.isNull()) return StmtError();
58
59  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
60}
61
62void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
63  const Expr *E = dyn_cast_or_null<Expr>(S);
64  if (!E)
65    return;
66
67  // Ignore expressions that have void type.
68  if (E->getType()->isVoidType())
69    return;
70
71  SourceLocation Loc;
72  SourceRange R1, R2;
73  if (!E->isUnusedResultAWarning(Loc, R1, R2))
74    return;
75
76  // Okay, we have an unused result.  Depending on what the base expression is,
77  // we might want to make a more specific diagnostic.  Check for one of these
78  // cases now.
79  unsigned DiagID = diag::warn_unused_expr;
80  E = E->IgnoreParens();
81  if (isa<ObjCImplicitSetterGetterRefExpr>(E))
82    DiagID = diag::warn_unused_property_expr;
83
84  Diag(Loc, DiagID) << R1 << R2;
85}
86
87Action::OwningStmtResult
88Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
89                        MultiStmtArg elts, bool isStmtExpr) {
90  unsigned NumElts = elts.size();
91  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
92  // If we're in C89 mode, check that we don't have any decls after stmts.  If
93  // so, emit an extension diagnostic.
94  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
95    // Note that __extension__ can be around a decl.
96    unsigned i = 0;
97    // Skip over all declarations.
98    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
99      /*empty*/;
100
101    // We found the end of the list or a statement.  Scan for another declstmt.
102    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
103      /*empty*/;
104
105    if (i != NumElts) {
106      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
107      Diag(D->getLocation(), diag::ext_mixed_decls_code);
108    }
109  }
110  // Warn about unused expressions in statements.
111  for (unsigned i = 0; i != NumElts; ++i) {
112    // Ignore statements that are last in a statement expression.
113    if (isStmtExpr && i == NumElts - 1)
114      continue;
115
116    DiagnoseUnusedExprResult(Elts[i]);
117  }
118
119  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
120}
121
122Action::OwningStmtResult
123Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
124                    SourceLocation DotDotDotLoc, ExprArg rhsval,
125                    SourceLocation ColonLoc) {
126  assert((lhsval.get() != 0) && "missing expression in case statement");
127
128  // C99 6.8.4.2p3: The expression shall be an integer constant.
129  // However, GCC allows any evaluatable integer expression.
130  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
131  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
132      VerifyIntegerConstantExpression(LHSVal))
133    return StmtError();
134
135  // GCC extension: The expression shall be an integer constant.
136
137  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
138  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
139      VerifyIntegerConstantExpression(RHSVal)) {
140    RHSVal = 0;  // Recover by just forgetting about it.
141    rhsval = 0;
142  }
143
144  if (getSwitchStack().empty()) {
145    Diag(CaseLoc, diag::err_case_not_in_switch);
146    return StmtError();
147  }
148
149  // Only now release the smart pointers.
150  lhsval.release();
151  rhsval.release();
152  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
153                                        ColonLoc);
154  getSwitchStack().back()->addSwitchCase(CS);
155  return Owned(CS);
156}
157
158/// ActOnCaseStmtBody - This installs a statement as the body of a case.
159void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
160  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
161  Stmt *SubStmt = subStmt.takeAs<Stmt>();
162  CS->setSubStmt(SubStmt);
163}
164
165Action::OwningStmtResult
166Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
167                       StmtArg subStmt, Scope *CurScope) {
168  Stmt *SubStmt = subStmt.takeAs<Stmt>();
169
170  if (getSwitchStack().empty()) {
171    Diag(DefaultLoc, diag::err_default_not_in_switch);
172    return Owned(SubStmt);
173  }
174
175  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
176  getSwitchStack().back()->addSwitchCase(DS);
177  return Owned(DS);
178}
179
180Action::OwningStmtResult
181Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
182                     SourceLocation ColonLoc, StmtArg subStmt) {
183  Stmt *SubStmt = subStmt.takeAs<Stmt>();
184  // Look up the record for this label identifier.
185  LabelStmt *&LabelDecl = getLabelMap()[II];
186
187  // If not forward referenced or defined already, just create a new LabelStmt.
188  if (LabelDecl == 0)
189    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
190
191  assert(LabelDecl->getID() == II && "Label mismatch!");
192
193  // Otherwise, this label was either forward reference or multiply defined.  If
194  // multiply defined, reject it now.
195  if (LabelDecl->getSubStmt()) {
196    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
197    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
198    return Owned(SubStmt);
199  }
200
201  // Otherwise, this label was forward declared, and we just found its real
202  // definition.  Fill in the forward definition and return it.
203  LabelDecl->setIdentLoc(IdentLoc);
204  LabelDecl->setSubStmt(SubStmt);
205  return Owned(LabelDecl);
206}
207
208Action::OwningStmtResult
209Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal,
210                  StmtArg ThenVal, SourceLocation ElseLoc,
211                  StmtArg ElseVal) {
212  OwningExprResult CondResult(CondVal.release());
213
214  Expr *condExpr = CondResult.takeAs<Expr>();
215
216  assert(condExpr && "ActOnIfStmt(): missing expression");
217
218  if (!condExpr->isTypeDependent()) {
219    DefaultFunctionArrayConversion(condExpr);
220    // Take ownership again until we're past the error checking.
221    CondResult = condExpr;
222    QualType condType = condExpr->getType();
223
224    if (getLangOptions().CPlusPlus) {
225      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
226        return StmtError();
227    } else if (!condType->isScalarType()) // C99 6.8.4.1p1
228      return StmtError(Diag(IfLoc,
229                            diag::err_typecheck_statement_requires_scalar)
230                       << condType << condExpr->getSourceRange());
231  }
232
233  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
234  DiagnoseUnusedExprResult(thenStmt);
235
236  // Warn if the if block has a null body without an else value.
237  // this helps prevent bugs due to typos, such as
238  // if (condition);
239  //   do_stuff();
240  if (!ElseVal.get()) {
241    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
242      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
243  }
244
245  Stmt *elseStmt = ElseVal.takeAs<Stmt>();
246  DiagnoseUnusedExprResult(elseStmt);
247
248  CondResult.release();
249  return Owned(new (Context) IfStmt(IfLoc, condExpr, thenStmt,
250                                    ElseLoc, elseStmt));
251}
252
253Action::OwningStmtResult
254Sema::ActOnStartOfSwitchStmt(ExprArg cond) {
255  Expr *Cond = cond.takeAs<Expr>();
256
257  if (getLangOptions().CPlusPlus) {
258    // C++ 6.4.2.p2:
259    // The condition shall be of integral type, enumeration type, or of a class
260    // type for which a single conversion function to integral or enumeration
261    // type exists (12.3). If the condition is of class type, the condition is
262    // converted by calling that conversion function, and the result of the
263    // conversion is used in place of the original condition for the remainder
264    // of this section. Integral promotions are performed.
265    if (!Cond->isTypeDependent()) {
266      QualType Ty = Cond->getType();
267
268      // FIXME: Handle class types.
269
270      // If the type is wrong a diagnostic will be emitted later at
271      // ActOnFinishSwitchStmt.
272      if (Ty->isIntegralType() || Ty->isEnumeralType()) {
273        // Integral promotions are performed.
274        // FIXME: Integral promotions for C++ are not complete.
275        UsualUnaryConversions(Cond);
276      }
277    }
278  } else {
279    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
280    UsualUnaryConversions(Cond);
281  }
282
283  SwitchStmt *SS = new (Context) SwitchStmt(Cond);
284  getSwitchStack().push_back(SS);
285  return Owned(SS);
286}
287
288/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
289/// the specified width and sign.  If an overflow occurs, detect it and emit
290/// the specified diagnostic.
291void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
292                                              unsigned NewWidth, bool NewSign,
293                                              SourceLocation Loc,
294                                              unsigned DiagID) {
295  // Perform a conversion to the promoted condition type if needed.
296  if (NewWidth > Val.getBitWidth()) {
297    // If this is an extension, just do it.
298    llvm::APSInt OldVal(Val);
299    Val.extend(NewWidth);
300
301    // If the input was signed and negative and the output is unsigned,
302    // warn.
303    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
304      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
305
306    Val.setIsSigned(NewSign);
307  } else if (NewWidth < Val.getBitWidth()) {
308    // If this is a truncation, check for overflow.
309    llvm::APSInt ConvVal(Val);
310    ConvVal.trunc(NewWidth);
311    ConvVal.setIsSigned(NewSign);
312    ConvVal.extend(Val.getBitWidth());
313    ConvVal.setIsSigned(Val.isSigned());
314    if (ConvVal != Val)
315      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
316
317    // Regardless of whether a diagnostic was emitted, really do the
318    // truncation.
319    Val.trunc(NewWidth);
320    Val.setIsSigned(NewSign);
321  } else if (NewSign != Val.isSigned()) {
322    // Convert the sign to match the sign of the condition.  This can cause
323    // overflow as well: unsigned(INTMIN)
324    llvm::APSInt OldVal(Val);
325    Val.setIsSigned(NewSign);
326
327    if (Val.isNegative())  // Sign bit changes meaning.
328      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
329  }
330}
331
332namespace {
333  struct CaseCompareFunctor {
334    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
335                    const llvm::APSInt &RHS) {
336      return LHS.first < RHS;
337    }
338    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
339                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
340      return LHS.first < RHS.first;
341    }
342    bool operator()(const llvm::APSInt &LHS,
343                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
344      return LHS < RHS.first;
345    }
346  };
347}
348
349/// CmpCaseVals - Comparison predicate for sorting case values.
350///
351static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
352                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
353  if (lhs.first < rhs.first)
354    return true;
355
356  if (lhs.first == rhs.first &&
357      lhs.second->getCaseLoc().getRawEncoding()
358       < rhs.second->getCaseLoc().getRawEncoding())
359    return true;
360  return false;
361}
362
363Action::OwningStmtResult
364Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
365                            StmtArg Body) {
366  Stmt *BodyStmt = Body.takeAs<Stmt>();
367
368  SwitchStmt *SS = getSwitchStack().back();
369  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
370
371  SS->setBody(BodyStmt, SwitchLoc);
372  getSwitchStack().pop_back();
373
374  Expr *CondExpr = SS->getCond();
375  QualType CondType = CondExpr->getType();
376
377  if (!CondExpr->isTypeDependent() &&
378      !CondType->isIntegerType()) { // C99 6.8.4.2p1
379    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
380      << CondType << CondExpr->getSourceRange();
381    return StmtError();
382  }
383
384  // Get the bitwidth of the switched-on value before promotions.  We must
385  // convert the integer case values to this width before comparison.
386  bool HasDependentValue
387    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
388  unsigned CondWidth
389    = HasDependentValue? 0
390                       : static_cast<unsigned>(Context.getTypeSize(CondType));
391  bool CondIsSigned = CondType->isSignedIntegerType();
392
393  // Accumulate all of the case values in a vector so that we can sort them
394  // and detect duplicates.  This vector contains the APInt for the case after
395  // it has been converted to the condition type.
396  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
397  CaseValsTy CaseVals;
398
399  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
400  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
401
402  DefaultStmt *TheDefaultStmt = 0;
403
404  bool CaseListIsErroneous = false;
405
406  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
407       SC = SC->getNextSwitchCase()) {
408
409    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
410      if (TheDefaultStmt) {
411        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
412        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
413
414        // FIXME: Remove the default statement from the switch block so that
415        // we'll return a valid AST.  This requires recursing down the AST and
416        // finding it, not something we are set up to do right now.  For now,
417        // just lop the entire switch stmt out of the AST.
418        CaseListIsErroneous = true;
419      }
420      TheDefaultStmt = DS;
421
422    } else {
423      CaseStmt *CS = cast<CaseStmt>(SC);
424
425      // We already verified that the expression has a i-c-e value (C99
426      // 6.8.4.2p3) - get that value now.
427      Expr *Lo = CS->getLHS();
428
429      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
430        HasDependentValue = true;
431        break;
432      }
433
434      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
435
436      // Convert the value to the same width/sign as the condition.
437      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
438                                         CS->getLHS()->getLocStart(),
439                                         diag::warn_case_value_overflow);
440
441      // If the LHS is not the same type as the condition, insert an implicit
442      // cast.
443      ImpCastExprToType(Lo, CondType);
444      CS->setLHS(Lo);
445
446      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
447      if (CS->getRHS()) {
448        if (CS->getRHS()->isTypeDependent() ||
449            CS->getRHS()->isValueDependent()) {
450          HasDependentValue = true;
451          break;
452        }
453        CaseRanges.push_back(std::make_pair(LoVal, CS));
454      } else
455        CaseVals.push_back(std::make_pair(LoVal, CS));
456    }
457  }
458
459  if (!HasDependentValue) {
460    // Sort all the scalar case values so we can easily detect duplicates.
461    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
462
463    if (!CaseVals.empty()) {
464      for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
465        if (CaseVals[i].first == CaseVals[i+1].first) {
466          // If we have a duplicate, report it.
467          Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
468               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
469          Diag(CaseVals[i].second->getLHS()->getLocStart(),
470               diag::note_duplicate_case_prev);
471          // FIXME: We really want to remove the bogus case stmt from the
472          // substmt, but we have no way to do this right now.
473          CaseListIsErroneous = true;
474        }
475      }
476    }
477
478    // Detect duplicate case ranges, which usually don't exist at all in
479    // the first place.
480    if (!CaseRanges.empty()) {
481      // Sort all the case ranges by their low value so we can easily detect
482      // overlaps between ranges.
483      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
484
485      // Scan the ranges, computing the high values and removing empty ranges.
486      std::vector<llvm::APSInt> HiVals;
487      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
488        CaseStmt *CR = CaseRanges[i].second;
489        Expr *Hi = CR->getRHS();
490        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
491
492        // Convert the value to the same width/sign as the condition.
493        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
494                                           CR->getRHS()->getLocStart(),
495                                           diag::warn_case_value_overflow);
496
497        // If the LHS is not the same type as the condition, insert an implicit
498        // cast.
499        ImpCastExprToType(Hi, CondType);
500        CR->setRHS(Hi);
501
502        // If the low value is bigger than the high value, the case is empty.
503        if (CaseRanges[i].first > HiVal) {
504          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
505            << SourceRange(CR->getLHS()->getLocStart(),
506                           CR->getRHS()->getLocEnd());
507          CaseRanges.erase(CaseRanges.begin()+i);
508          --i, --e;
509          continue;
510        }
511        HiVals.push_back(HiVal);
512      }
513
514      // Rescan the ranges, looking for overlap with singleton values and other
515      // ranges.  Since the range list is sorted, we only need to compare case
516      // ranges with their neighbors.
517      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
518        llvm::APSInt &CRLo = CaseRanges[i].first;
519        llvm::APSInt &CRHi = HiVals[i];
520        CaseStmt *CR = CaseRanges[i].second;
521
522        // Check to see whether the case range overlaps with any
523        // singleton cases.
524        CaseStmt *OverlapStmt = 0;
525        llvm::APSInt OverlapVal(32);
526
527        // Find the smallest value >= the lower bound.  If I is in the
528        // case range, then we have overlap.
529        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
530                                                  CaseVals.end(), CRLo,
531                                                  CaseCompareFunctor());
532        if (I != CaseVals.end() && I->first < CRHi) {
533          OverlapVal  = I->first;   // Found overlap with scalar.
534          OverlapStmt = I->second;
535        }
536
537        // Find the smallest value bigger than the upper bound.
538        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
539        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
540          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
541          OverlapStmt = (I-1)->second;
542        }
543
544        // Check to see if this case stmt overlaps with the subsequent
545        // case range.
546        if (i && CRLo <= HiVals[i-1]) {
547          OverlapVal  = HiVals[i-1];       // Found overlap with range.
548          OverlapStmt = CaseRanges[i-1].second;
549        }
550
551        if (OverlapStmt) {
552          // If we have a duplicate, report it.
553          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
554            << OverlapVal.toString(10);
555          Diag(OverlapStmt->getLHS()->getLocStart(),
556               diag::note_duplicate_case_prev);
557          // FIXME: We really want to remove the bogus case stmt from the
558          // substmt, but we have no way to do this right now.
559          CaseListIsErroneous = true;
560        }
561      }
562    }
563  }
564
565  // FIXME: If the case list was broken is some way, we don't have a good system
566  // to patch it up.  Instead, just return the whole substmt as broken.
567  if (CaseListIsErroneous)
568    return StmtError();
569
570  Switch.release();
571  return Owned(SS);
572}
573
574Action::OwningStmtResult
575Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, StmtArg Body) {
576  ExprArg CondArg(Cond.release());
577  Expr *condExpr = CondArg.takeAs<Expr>();
578  assert(condExpr && "ActOnWhileStmt(): missing expression");
579
580  if (!condExpr->isTypeDependent()) {
581    DefaultFunctionArrayConversion(condExpr);
582    CondArg = condExpr;
583    QualType condType = condExpr->getType();
584
585    if (getLangOptions().CPlusPlus) {
586      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
587        return StmtError();
588    } else if (!condType->isScalarType()) // C99 6.8.5p2
589      return StmtError(Diag(WhileLoc,
590                            diag::err_typecheck_statement_requires_scalar)
591                       << condType << condExpr->getSourceRange());
592  }
593
594  Stmt *bodyStmt = Body.takeAs<Stmt>();
595  DiagnoseUnusedExprResult(bodyStmt);
596
597  CondArg.release();
598  return Owned(new (Context) WhileStmt(condExpr, bodyStmt, WhileLoc));
599}
600
601Action::OwningStmtResult
602Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
603                  SourceLocation WhileLoc, SourceLocation CondLParen,
604                  ExprArg Cond, SourceLocation CondRParen) {
605  Expr *condExpr = Cond.takeAs<Expr>();
606  assert(condExpr && "ActOnDoStmt(): missing expression");
607
608  if (!condExpr->isTypeDependent()) {
609    DefaultFunctionArrayConversion(condExpr);
610    Cond = condExpr;
611    QualType condType = condExpr->getType();
612
613    if (getLangOptions().CPlusPlus) {
614      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
615        return StmtError();
616    } else if (!condType->isScalarType()) // C99 6.8.5p2
617      return StmtError(Diag(DoLoc,
618                            diag::err_typecheck_statement_requires_scalar)
619                       << condType << condExpr->getSourceRange());
620  }
621
622  Stmt *bodyStmt = Body.takeAs<Stmt>();
623  DiagnoseUnusedExprResult(bodyStmt);
624
625  Cond.release();
626  return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
627                                    WhileLoc, CondRParen));
628}
629
630Action::OwningStmtResult
631Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
632                   StmtArg first, ExprArg second, ExprArg third,
633                   SourceLocation RParenLoc, StmtArg body) {
634  Stmt *First  = static_cast<Stmt*>(first.get());
635  Expr *Second = static_cast<Expr*>(second.get());
636  Expr *Third  = static_cast<Expr*>(third.get());
637  Stmt *Body  = static_cast<Stmt*>(body.get());
638
639  if (!getLangOptions().CPlusPlus) {
640    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
641      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
642      // declare identifiers for objects having storage class 'auto' or
643      // 'register'.
644      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
645           DI!=DE; ++DI) {
646        VarDecl *VD = dyn_cast<VarDecl>(*DI);
647        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
648          VD = 0;
649        if (VD == 0)
650          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
651        // FIXME: mark decl erroneous!
652      }
653    }
654  }
655  if (Second && !Second->isTypeDependent()) {
656    DefaultFunctionArrayConversion(Second);
657    QualType SecondType = Second->getType();
658
659    if (getLangOptions().CPlusPlus) {
660      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
661        return StmtError();
662    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
663      return StmtError(Diag(ForLoc,
664                            diag::err_typecheck_statement_requires_scalar)
665        << SecondType << Second->getSourceRange());
666  }
667
668  DiagnoseUnusedExprResult(First);
669  DiagnoseUnusedExprResult(Third);
670  DiagnoseUnusedExprResult(Body);
671
672  first.release();
673  second.release();
674  third.release();
675  body.release();
676  return Owned(new (Context) ForStmt(First, Second, Third, Body, ForLoc,
677                                     LParenLoc, RParenLoc));
678}
679
680Action::OwningStmtResult
681Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
682                                 SourceLocation LParenLoc,
683                                 StmtArg first, ExprArg second,
684                                 SourceLocation RParenLoc, StmtArg body) {
685  Stmt *First  = static_cast<Stmt*>(first.get());
686  Expr *Second = static_cast<Expr*>(second.get());
687  Stmt *Body  = static_cast<Stmt*>(body.get());
688  if (First) {
689    QualType FirstType;
690    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
691      if (!DS->isSingleDecl())
692        return StmtError(Diag((*DS->decl_begin())->getLocation(),
693                         diag::err_toomany_element_decls));
694
695      Decl *D = DS->getSingleDecl();
696      FirstType = cast<ValueDecl>(D)->getType();
697      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
698      // declare identifiers for objects having storage class 'auto' or
699      // 'register'.
700      VarDecl *VD = cast<VarDecl>(D);
701      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
702        return StmtError(Diag(VD->getLocation(),
703                              diag::err_non_variable_decl_in_for));
704    } else {
705      if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
706        return StmtError(Diag(First->getLocStart(),
707                   diag::err_selector_element_not_lvalue)
708          << First->getSourceRange());
709
710      FirstType = static_cast<Expr*>(First)->getType();
711    }
712    if (!FirstType->isObjCObjectPointerType() &&
713        !FirstType->isBlockPointerType())
714        Diag(ForLoc, diag::err_selector_element_type)
715          << FirstType << First->getSourceRange();
716  }
717  if (Second) {
718    DefaultFunctionArrayConversion(Second);
719    QualType SecondType = Second->getType();
720    if (!SecondType->isObjCObjectPointerType())
721      Diag(ForLoc, diag::err_collection_expr_type)
722        << SecondType << Second->getSourceRange();
723  }
724  first.release();
725  second.release();
726  body.release();
727  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
728                                                   ForLoc, RParenLoc));
729}
730
731Action::OwningStmtResult
732Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
733                    IdentifierInfo *LabelII) {
734  // If we are in a block, reject all gotos for now.
735  if (CurBlock)
736    return StmtError(Diag(GotoLoc, diag::err_goto_in_block));
737
738  // Look up the record for this label identifier.
739  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
740
741  // If we haven't seen this label yet, create a forward reference.
742  if (LabelDecl == 0)
743    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
744
745  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
746}
747
748Action::OwningStmtResult
749Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
750                            ExprArg DestExp) {
751  // Convert operand to void*
752  Expr* E = DestExp.takeAs<Expr>();
753  if (!E->isTypeDependent()) {
754    QualType ETy = E->getType();
755    AssignConvertType ConvTy =
756      CheckSingleAssignmentConstraints(Context.VoidPtrTy, E);
757    if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy,
758                                 E, "passing"))
759      return StmtError();
760  }
761  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
762}
763
764Action::OwningStmtResult
765Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
766  Scope *S = CurScope->getContinueParent();
767  if (!S) {
768    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
769    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
770  }
771
772  return Owned(new (Context) ContinueStmt(ContinueLoc));
773}
774
775Action::OwningStmtResult
776Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
777  Scope *S = CurScope->getBreakParent();
778  if (!S) {
779    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
780    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
781  }
782
783  return Owned(new (Context) BreakStmt(BreakLoc));
784}
785
786/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
787///
788Action::OwningStmtResult
789Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
790  // If this is the first return we've seen in the block, infer the type of
791  // the block from it.
792  if (CurBlock->ReturnType.isNull()) {
793    if (RetValExp) {
794      // Don't call UsualUnaryConversions(), since we don't want to do
795      // integer promotions here.
796      DefaultFunctionArrayConversion(RetValExp);
797      CurBlock->ReturnType = RetValExp->getType();
798      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
799        // We have to remove a 'const' added to copied-in variable which was
800        // part of the implementation spec. and not the actual qualifier for
801        // the variable.
802        if (CDRE->isConstQualAdded())
803           CurBlock->ReturnType.removeConst();
804      }
805    } else
806      CurBlock->ReturnType = Context.VoidTy;
807  }
808  QualType FnRetType = CurBlock->ReturnType;
809
810  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
811    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
812      << getCurFunctionOrMethodDecl()->getDeclName();
813    return StmtError();
814  }
815
816  // Otherwise, verify that this result type matches the previous one.  We are
817  // pickier with blocks than for normal functions because we don't have GCC
818  // compatibility to worry about here.
819  if (CurBlock->ReturnType->isVoidType()) {
820    if (RetValExp) {
821      Diag(ReturnLoc, diag::err_return_block_has_expr);
822      RetValExp->Destroy(Context);
823      RetValExp = 0;
824    }
825    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
826  }
827
828  if (!RetValExp)
829    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
830
831  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
832    // we have a non-void block with an expression, continue checking
833    QualType RetValType = RetValExp->getType();
834
835    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
836    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
837    // function return.
838
839    // In C++ the return statement is handled via a copy initialization.
840    // the C version of which boils down to CheckSingleAssignmentConstraints.
841    // FIXME: Leaks RetValExp.
842    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
843      return StmtError();
844
845    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
846  }
847
848  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
849}
850
851/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
852/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
853static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
854                                 Expr *RetExpr) {
855  QualType ExprType = RetExpr->getType();
856  // - in a return statement in a function with ...
857  // ... a class return type ...
858  if (!RetType->isRecordType())
859    return false;
860  // ... the same cv-unqualified type as the function return type ...
861  if (Ctx.getCanonicalType(RetType).getUnqualifiedType() !=
862      Ctx.getCanonicalType(ExprType).getUnqualifiedType())
863    return false;
864  // ... the expression is the name of a non-volatile automatic object ...
865  // We ignore parentheses here.
866  // FIXME: Is this compliant?
867  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
868  if (!DR)
869    return false;
870  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
871  if (!VD)
872    return false;
873  return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
874    && !VD->getType().isVolatileQualified();
875}
876
877Action::OwningStmtResult
878Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
879  Expr *RetValExp = rex.takeAs<Expr>();
880  if (CurBlock)
881    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
882
883  QualType FnRetType;
884  if (const FunctionDecl *FD = getCurFunctionDecl()) {
885    FnRetType = FD->getResultType();
886    if (FD->hasAttr<NoReturnAttr>())
887      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
888        << getCurFunctionOrMethodDecl()->getDeclName();
889  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
890    FnRetType = MD->getResultType();
891  else // If we don't have a function/method context, bail.
892    return StmtError();
893
894  if (FnRetType->isVoidType()) {
895    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
896      unsigned D = diag::ext_return_has_expr;
897      if (RetValExp->getType()->isVoidType())
898        D = diag::ext_return_has_void_expr;
899
900      // return (some void expression); is legal in C++.
901      if (D != diag::ext_return_has_void_expr ||
902          !getLangOptions().CPlusPlus) {
903        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
904        Diag(ReturnLoc, D)
905          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
906          << RetValExp->getSourceRange();
907      }
908
909      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp, true);
910    }
911    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
912  }
913
914  if (!RetValExp && !FnRetType->isDependentType()) {
915    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
916    // C99 6.8.6.4p1 (ext_ since GCC warns)
917    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
918
919    if (FunctionDecl *FD = getCurFunctionDecl())
920      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
921    else
922      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
923    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
924  }
925
926  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
927    // we have a non-void function with an expression, continue checking
928
929    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
930    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
931    // function return.
932
933    // C++0x 12.8p15: When certain criteria are met, an implementation is
934    //   allowed to omit the copy construction of a class object, [...]
935    //   - in a return statement in a function with a class return type, when
936    //     the expression is the name of a non-volatile automatic object with
937    //     the same cv-unqualified type as the function return type, the copy
938    //     operation can be omitted [...]
939    // C++0x 12.8p16: When the criteria for elision of a copy operation are met
940    //   and the object to be copied is designated by an lvalue, overload
941    //   resolution to select the constructor for the copy is first performed
942    //   as if the object were designated by an rvalue.
943    // Note that we only compute Elidable if we're in C++0x, since we don't
944    // care otherwise.
945    bool Elidable = getLangOptions().CPlusPlus0x ?
946                      IsReturnCopyElidable(Context, FnRetType, RetValExp) :
947                      false;
948
949    // In C++ the return statement is handled via a copy initialization.
950    // the C version of which boils down to CheckSingleAssignmentConstraints.
951    // FIXME: Leaks RetValExp on error.
952    if (PerformCopyInitialization(RetValExp, FnRetType, "returning", Elidable))
953      return StmtError();
954
955    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
956  }
957
958  if (RetValExp)
959    RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp, true);
960  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
961}
962
963/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
964/// ignore "noop" casts in places where an lvalue is required by an inline asm.
965/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
966/// provide a strong guidance to not use it.
967///
968/// This method checks to see if the argument is an acceptable l-value and
969/// returns false if it is a case we can handle.
970static bool CheckAsmLValue(const Expr *E, Sema &S) {
971  if (E->isLvalue(S.Context) == Expr::LV_Valid)
972    return false;  // Cool, this is an lvalue.
973
974  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
975  // are supposed to allow.
976  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
977  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
978    if (!S.getLangOptions().HeinousExtensions)
979      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
980        << E->getSourceRange();
981    else
982      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
983        << E->getSourceRange();
984    // Accept, even if we emitted an error diagnostic.
985    return false;
986  }
987
988  // None of the above, just randomly invalid non-lvalue.
989  return true;
990}
991
992
993Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
994                                          bool IsSimple,
995                                          bool IsVolatile,
996                                          unsigned NumOutputs,
997                                          unsigned NumInputs,
998                                          std::string *Names,
999                                          MultiExprArg constraints,
1000                                          MultiExprArg exprs,
1001                                          ExprArg asmString,
1002                                          MultiExprArg clobbers,
1003                                          SourceLocation RParenLoc) {
1004  unsigned NumClobbers = clobbers.size();
1005  StringLiteral **Constraints =
1006    reinterpret_cast<StringLiteral**>(constraints.get());
1007  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
1008  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
1009  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1010
1011  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1012
1013  // The parser verifies that there is a string literal here.
1014  if (AsmString->isWide())
1015    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1016      << AsmString->getSourceRange());
1017
1018  for (unsigned i = 0; i != NumOutputs; i++) {
1019    StringLiteral *Literal = Constraints[i];
1020    if (Literal->isWide())
1021      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1022        << Literal->getSourceRange());
1023
1024    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
1025                                    Literal->getByteLength(),
1026                                    Names[i]);
1027    if (!Context.Target.validateOutputConstraint(Info))
1028      return StmtError(Diag(Literal->getLocStart(),
1029                            diag::err_asm_invalid_output_constraint)
1030                       << Info.getConstraintStr());
1031
1032    // Check that the output exprs are valid lvalues.
1033    Expr *OutputExpr = Exprs[i];
1034    if (CheckAsmLValue(OutputExpr, *this)) {
1035      return StmtError(Diag(OutputExpr->getLocStart(),
1036                  diag::err_asm_invalid_lvalue_in_output)
1037        << OutputExpr->getSourceRange());
1038    }
1039
1040    OutputConstraintInfos.push_back(Info);
1041  }
1042
1043  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1044
1045  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1046    StringLiteral *Literal = Constraints[i];
1047    if (Literal->isWide())
1048      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1049        << Literal->getSourceRange());
1050
1051    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
1052                                    Literal->getByteLength(),
1053                                    Names[i]);
1054    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1055                                                NumOutputs, Info)) {
1056      return StmtError(Diag(Literal->getLocStart(),
1057                            diag::err_asm_invalid_input_constraint)
1058                       << Info.getConstraintStr());
1059    }
1060
1061    Expr *InputExpr = Exprs[i];
1062
1063    // Only allow void types for memory constraints.
1064    if (Info.allowsMemory() && !Info.allowsRegister()) {
1065      if (CheckAsmLValue(InputExpr, *this))
1066        return StmtError(Diag(InputExpr->getLocStart(),
1067                              diag::err_asm_invalid_lvalue_in_input)
1068                         << Info.getConstraintStr()
1069                         << InputExpr->getSourceRange());
1070    }
1071
1072    if (Info.allowsRegister()) {
1073      if (InputExpr->getType()->isVoidType()) {
1074        return StmtError(Diag(InputExpr->getLocStart(),
1075                              diag::err_asm_invalid_type_in_input)
1076          << InputExpr->getType() << Info.getConstraintStr()
1077          << InputExpr->getSourceRange());
1078      }
1079    }
1080
1081    DefaultFunctionArrayConversion(Exprs[i]);
1082
1083    InputConstraintInfos.push_back(Info);
1084  }
1085
1086  // Check that the clobbers are valid.
1087  for (unsigned i = 0; i != NumClobbers; i++) {
1088    StringLiteral *Literal = Clobbers[i];
1089    if (Literal->isWide())
1090      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1091        << Literal->getSourceRange());
1092
1093    std::string Clobber(Literal->getStrData(),
1094                        Literal->getStrData() +
1095                        Literal->getByteLength());
1096
1097    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
1098      return StmtError(Diag(Literal->getLocStart(),
1099                  diag::err_asm_unknown_register_name) << Clobber);
1100  }
1101
1102  constraints.release();
1103  exprs.release();
1104  asmString.release();
1105  clobbers.release();
1106  AsmStmt *NS =
1107    new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
1108                          Names, Constraints, Exprs, AsmString, NumClobbers,
1109                          Clobbers, RParenLoc);
1110  // Validate the asm string, ensuring it makes sense given the operands we
1111  // have.
1112  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1113  unsigned DiagOffs;
1114  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1115    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1116           << AsmString->getSourceRange();
1117    DeleteStmt(NS);
1118    return StmtError();
1119  }
1120
1121  // Validate tied input operands for type mismatches.
1122  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1123    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1124
1125    // If this is a tied constraint, verify that the output and input have
1126    // either exactly the same type, or that they are int/ptr operands with the
1127    // same size (int/long, int*/long, are ok etc).
1128    if (!Info.hasTiedOperand()) continue;
1129
1130    unsigned TiedTo = Info.getTiedOperand();
1131    Expr *OutputExpr = Exprs[TiedTo];
1132    Expr *InputExpr = Exprs[i+NumOutputs];
1133    QualType InTy = InputExpr->getType();
1134    QualType OutTy = OutputExpr->getType();
1135    if (Context.hasSameType(InTy, OutTy))
1136      continue;  // All types can be tied to themselves.
1137
1138    // Int/ptr operands have some special cases that we allow.
1139    if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
1140        (InTy->isIntegerType() || InTy->isPointerType())) {
1141
1142      // They are ok if they are the same size.  Tying void* to int is ok if
1143      // they are the same size, for example.  This also allows tying void* to
1144      // int*.
1145      uint64_t OutSize = Context.getTypeSize(OutTy);
1146      uint64_t InSize = Context.getTypeSize(InTy);
1147      if (OutSize == InSize)
1148        continue;
1149
1150      // If the smaller input/output operand is not mentioned in the asm string,
1151      // then we can promote it and the asm string won't notice.  Check this
1152      // case now.
1153      bool SmallerValueMentioned = false;
1154      for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1155        AsmStmt::AsmStringPiece &Piece = Pieces[p];
1156        if (!Piece.isOperand()) continue;
1157
1158        // If this is a reference to the input and if the input was the smaller
1159        // one, then we have to reject this asm.
1160        if (Piece.getOperandNo() == i+NumOutputs) {
1161          if (InSize < OutSize) {
1162            SmallerValueMentioned = true;
1163            break;
1164          }
1165        }
1166
1167        // If this is a reference to the input and if the input was the smaller
1168        // one, then we have to reject this asm.
1169        if (Piece.getOperandNo() == TiedTo) {
1170          if (InSize > OutSize) {
1171            SmallerValueMentioned = true;
1172            break;
1173          }
1174        }
1175      }
1176
1177      // If the smaller value wasn't mentioned in the asm string, and if the
1178      // output was a register, just extend the shorter one to the size of the
1179      // larger one.
1180      if (!SmallerValueMentioned &&
1181          OutputConstraintInfos[TiedTo].allowsRegister())
1182        continue;
1183    }
1184
1185    Diag(InputExpr->getLocStart(),
1186         diag::err_asm_tying_incompatible_types)
1187      << InTy << OutTy << OutputExpr->getSourceRange()
1188      << InputExpr->getSourceRange();
1189    DeleteStmt(NS);
1190    return StmtError();
1191  }
1192
1193  return Owned(NS);
1194}
1195
1196Action::OwningStmtResult
1197Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1198                           SourceLocation RParen, DeclPtrTy Parm,
1199                           StmtArg Body, StmtArg catchList) {
1200  Stmt *CatchList = catchList.takeAs<Stmt>();
1201  ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
1202
1203  // PVD == 0 implies @catch(...).
1204  if (PVD) {
1205    // If we already know the decl is invalid, reject it.
1206    if (PVD->isInvalidDecl())
1207      return StmtError();
1208
1209    if (!PVD->getType()->isObjCObjectPointerType())
1210      return StmtError(Diag(PVD->getLocation(),
1211                       diag::err_catch_param_not_objc_type));
1212    if (PVD->getType()->isObjCQualifiedIdType())
1213      return StmtError(Diag(PVD->getLocation(),
1214                       diag::err_illegal_qualifiers_on_catch_parm));
1215  }
1216
1217  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
1218    PVD, Body.takeAs<Stmt>(), CatchList);
1219  return Owned(CatchList ? CatchList : CS);
1220}
1221
1222Action::OwningStmtResult
1223Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1224  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1225                                           static_cast<Stmt*>(Body.release())));
1226}
1227
1228Action::OwningStmtResult
1229Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
1230                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
1231  CurFunctionNeedsScopeChecking = true;
1232  return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
1233                                           Catch.takeAs<Stmt>(),
1234                                           Finally.takeAs<Stmt>()));
1235}
1236
1237Action::OwningStmtResult
1238Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
1239  Expr *ThrowExpr = expr.takeAs<Expr>();
1240  if (!ThrowExpr) {
1241    // @throw without an expression designates a rethrow (which much occur
1242    // in the context of an @catch clause).
1243    Scope *AtCatchParent = CurScope;
1244    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1245      AtCatchParent = AtCatchParent->getParent();
1246    if (!AtCatchParent)
1247      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1248  } else {
1249    QualType ThrowType = ThrowExpr->getType();
1250    // Make sure the expression type is an ObjC pointer or "void *".
1251    if (!ThrowType->isObjCObjectPointerType()) {
1252      const PointerType *PT = ThrowType->getAs<PointerType>();
1253      if (!PT || !PT->getPointeeType()->isVoidType())
1254        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1255                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
1256    }
1257  }
1258  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
1259}
1260
1261Action::OwningStmtResult
1262Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1263                                  StmtArg SynchBody) {
1264  CurFunctionNeedsScopeChecking = true;
1265
1266  // Make sure the expression type is an ObjC pointer or "void *".
1267  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1268  if (!SyncExpr->getType()->isObjCObjectPointerType()) {
1269    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1270    if (!PT || !PT->getPointeeType()->isVoidType())
1271      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1272                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1273  }
1274
1275  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1276                                                    SynchExpr.takeAs<Stmt>(),
1277                                                    SynchBody.takeAs<Stmt>()));
1278}
1279
1280/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1281/// and creates a proper catch handler from them.
1282Action::OwningStmtResult
1283Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1284                         StmtArg HandlerBlock) {
1285  // There's nothing to test that ActOnExceptionDecl didn't already test.
1286  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1287                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1288                                          HandlerBlock.takeAs<Stmt>()));
1289}
1290
1291class TypeWithHandler {
1292  QualType t;
1293  CXXCatchStmt *stmt;
1294public:
1295  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1296  : t(type), stmt(statement) {}
1297
1298  // An arbitrary order is fine as long as it places identical
1299  // types next to each other.
1300  bool operator<(const TypeWithHandler &y) const {
1301    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
1302      return true;
1303    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
1304      return false;
1305    else
1306      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1307  }
1308
1309  bool operator==(const TypeWithHandler& other) const {
1310    return t == other.t;
1311  }
1312
1313  QualType getQualType() const { return t; }
1314  CXXCatchStmt *getCatchStmt() const { return stmt; }
1315  SourceLocation getTypeSpecStartLoc() const {
1316    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1317  }
1318};
1319
1320/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1321/// handlers and creates a try statement from them.
1322Action::OwningStmtResult
1323Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1324                       MultiStmtArg RawHandlers) {
1325  unsigned NumHandlers = RawHandlers.size();
1326  assert(NumHandlers > 0 &&
1327         "The parser shouldn't call this if there are no handlers.");
1328  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1329
1330  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1331
1332  for (unsigned i = 0; i < NumHandlers; ++i) {
1333    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1334    if (!Handler->getExceptionDecl()) {
1335      if (i < NumHandlers - 1)
1336        return StmtError(Diag(Handler->getLocStart(),
1337                              diag::err_early_catch_all));
1338
1339      continue;
1340    }
1341
1342    const QualType CaughtType = Handler->getCaughtType();
1343    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1344    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1345  }
1346
1347  // Detect handlers for the same type as an earlier one.
1348  if (NumHandlers > 1) {
1349    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1350
1351    TypeWithHandler prev = TypesWithHandlers[0];
1352    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1353      TypeWithHandler curr = TypesWithHandlers[i];
1354
1355      if (curr == prev) {
1356        Diag(curr.getTypeSpecStartLoc(),
1357             diag::warn_exception_caught_by_earlier_handler)
1358          << curr.getCatchStmt()->getCaughtType().getAsString();
1359        Diag(prev.getTypeSpecStartLoc(),
1360             diag::note_previous_exception_handler)
1361          << prev.getCatchStmt()->getCaughtType().getAsString();
1362      }
1363
1364      prev = curr;
1365    }
1366  }
1367
1368  // FIXME: We should detect handlers that cannot catch anything because an
1369  // earlier handler catches a superclass. Need to find a method that is not
1370  // quadratic for this.
1371  // Neither of these are explicitly forbidden, but every compiler detects them
1372  // and warns.
1373
1374  CurFunctionNeedsScopeChecking = true;
1375  RawHandlers.release();
1376  return Owned(new (Context) CXXTryStmt(TryLoc,
1377                                        static_cast<Stmt*>(TryBlock.release()),
1378                                        Handlers, NumHandlers));
1379}
1380