SemaStmt.cpp revision 0faede6f31b07bcec7b776f2b420c3ea9bb3e58c
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/StmtObjC.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Lex/Preprocessor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallVector.h"
27using namespace clang;
28
29Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
30  Expr *E = expr->takeAs<Expr>();
31  assert(E && "ActOnExprStmt(): missing expression");
32  if (E->getType()->isObjCInterfaceType()) {
33    if (LangOpts.ObjCNonFragileABI)
34      Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object)
35             << E->getType();
36    else
37      Diag(E->getLocEnd(), diag::err_direct_interface_unsupported)
38             << E->getType();
39    return StmtError();
40  }
41  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
42  // void expression for its side effects.  Conversion to void allows any
43  // operand, even incomplete types.
44
45  // Same thing in for stmt first clause (when expr) and third clause.
46  return Owned(static_cast<Stmt*>(E));
47}
48
49
50Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
51  return Owned(new (Context) NullStmt(SemiLoc));
52}
53
54Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
55                                           SourceLocation StartLoc,
56                                           SourceLocation EndLoc) {
57  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
58
59  // If we have an invalid decl, just return an error.
60  if (DG.isNull()) return StmtError();
61
62  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
63}
64
65void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
66  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
67
68  // If we have an invalid decl, just return.
69  if (DG.isNull() || !DG.isSingleDecl()) return;
70  // suppress any potential 'unused variable' warning.
71  DG.getSingleDecl()->setUsed();
72}
73
74void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
75  const Expr *E = dyn_cast_or_null<Expr>(S);
76  if (!E)
77    return;
78
79  SourceLocation Loc;
80  SourceRange R1, R2;
81  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
82    return;
83
84  // Okay, we have an unused result.  Depending on what the base expression is,
85  // we might want to make a more specific diagnostic.  Check for one of these
86  // cases now.
87  unsigned DiagID = diag::warn_unused_expr;
88  E = E->IgnoreParens();
89  if (isa<ObjCImplicitSetterGetterRefExpr>(E))
90    DiagID = diag::warn_unused_property_expr;
91
92  if (const CXXExprWithTemporaries *Temps = dyn_cast<CXXExprWithTemporaries>(E))
93    E = Temps->getSubExpr();
94  if (const CXXZeroInitValueExpr *Zero = dyn_cast<CXXZeroInitValueExpr>(E)) {
95    if (const RecordType *RecordT = Zero->getType()->getAs<RecordType>())
96      if (CXXRecordDecl *RecordD = dyn_cast<CXXRecordDecl>(RecordT->getDecl()))
97        if (!RecordD->hasTrivialDestructor())
98          return;
99  }
100
101  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
102    if (E->getType()->isVoidType())
103      return;
104
105    // If the callee has attribute pure, const, or warn_unused_result, warn with
106    // a more specific message to make it clear what is happening.
107    if (const Decl *FD = CE->getCalleeDecl()) {
108      if (FD->getAttr<WarnUnusedResultAttr>()) {
109        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
110        return;
111      }
112      if (FD->getAttr<PureAttr>()) {
113        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
114        return;
115      }
116      if (FD->getAttr<ConstAttr>()) {
117        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
118        return;
119      }
120    }
121  }
122
123  Diag(Loc, DiagID) << R1 << R2;
124}
125
126Action::OwningStmtResult
127Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
128                        MultiStmtArg elts, bool isStmtExpr) {
129  unsigned NumElts = elts.size();
130  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
131  // If we're in C89 mode, check that we don't have any decls after stmts.  If
132  // so, emit an extension diagnostic.
133  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
134    // Note that __extension__ can be around a decl.
135    unsigned i = 0;
136    // Skip over all declarations.
137    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
138      /*empty*/;
139
140    // We found the end of the list or a statement.  Scan for another declstmt.
141    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
142      /*empty*/;
143
144    if (i != NumElts) {
145      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
146      Diag(D->getLocation(), diag::ext_mixed_decls_code);
147    }
148  }
149  // Warn about unused expressions in statements.
150  for (unsigned i = 0; i != NumElts; ++i) {
151    // Ignore statements that are last in a statement expression.
152    if (isStmtExpr && i == NumElts - 1)
153      continue;
154
155    DiagnoseUnusedExprResult(Elts[i]);
156  }
157
158  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
159}
160
161Action::OwningStmtResult
162Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
163                    SourceLocation DotDotDotLoc, ExprArg rhsval,
164                    SourceLocation ColonLoc) {
165  assert((lhsval.get() != 0) && "missing expression in case statement");
166
167  // C99 6.8.4.2p3: The expression shall be an integer constant.
168  // However, GCC allows any evaluatable integer expression.
169  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
170  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
171      VerifyIntegerConstantExpression(LHSVal))
172    return StmtError();
173
174  // GCC extension: The expression shall be an integer constant.
175
176  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
177  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
178      VerifyIntegerConstantExpression(RHSVal)) {
179    RHSVal = 0;  // Recover by just forgetting about it.
180    rhsval = 0;
181  }
182
183  if (getSwitchStack().empty()) {
184    Diag(CaseLoc, diag::err_case_not_in_switch);
185    return StmtError();
186  }
187
188  // Only now release the smart pointers.
189  lhsval.release();
190  rhsval.release();
191  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
192                                        ColonLoc);
193  getSwitchStack().back()->addSwitchCase(CS);
194  return Owned(CS);
195}
196
197/// ActOnCaseStmtBody - This installs a statement as the body of a case.
198void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
199  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
200  Stmt *SubStmt = subStmt.takeAs<Stmt>();
201  CS->setSubStmt(SubStmt);
202}
203
204Action::OwningStmtResult
205Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
206                       StmtArg subStmt, Scope *CurScope) {
207  Stmt *SubStmt = subStmt.takeAs<Stmt>();
208
209  if (getSwitchStack().empty()) {
210    Diag(DefaultLoc, diag::err_default_not_in_switch);
211    return Owned(SubStmt);
212  }
213
214  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
215  getSwitchStack().back()->addSwitchCase(DS);
216  return Owned(DS);
217}
218
219Action::OwningStmtResult
220Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
221                     SourceLocation ColonLoc, StmtArg subStmt) {
222  Stmt *SubStmt = subStmt.takeAs<Stmt>();
223  // Look up the record for this label identifier.
224  LabelStmt *&LabelDecl = getLabelMap()[II];
225
226  // If not forward referenced or defined already, just create a new LabelStmt.
227  if (LabelDecl == 0)
228    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
229
230  assert(LabelDecl->getID() == II && "Label mismatch!");
231
232  // Otherwise, this label was either forward reference or multiply defined.  If
233  // multiply defined, reject it now.
234  if (LabelDecl->getSubStmt()) {
235    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
236    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
237    return Owned(SubStmt);
238  }
239
240  // Otherwise, this label was forward declared, and we just found its real
241  // definition.  Fill in the forward definition and return it.
242  LabelDecl->setIdentLoc(IdentLoc);
243  LabelDecl->setSubStmt(SubStmt);
244  return Owned(LabelDecl);
245}
246
247Action::OwningStmtResult
248Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, DeclPtrTy CondVar,
249                  StmtArg ThenVal, SourceLocation ElseLoc,
250                  StmtArg ElseVal) {
251  OwningExprResult CondResult(CondVal.release());
252
253  VarDecl *ConditionVar = 0;
254  if (CondVar.get()) {
255    ConditionVar = CondVar.getAs<VarDecl>();
256    CondResult = CheckConditionVariable(ConditionVar);
257    if (CondResult.isInvalid())
258      return StmtError();
259  }
260  Expr *ConditionExpr = CondResult.takeAs<Expr>();
261  if (!ConditionExpr)
262    return StmtError();
263
264  if (CheckBooleanCondition(ConditionExpr, IfLoc)) {
265    CondResult = ConditionExpr;
266    return StmtError();
267  }
268
269  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
270  DiagnoseUnusedExprResult(thenStmt);
271
272  // Warn if the if block has a null body without an else value.
273  // this helps prevent bugs due to typos, such as
274  // if (condition);
275  //   do_stuff();
276  if (!ElseVal.get()) {
277    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
278      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
279  }
280
281  Stmt *elseStmt = ElseVal.takeAs<Stmt>();
282  DiagnoseUnusedExprResult(elseStmt);
283
284  CondResult.release();
285  return Owned(new (Context) IfStmt(IfLoc, ConditionVar, ConditionExpr,
286                                    thenStmt, ElseLoc, elseStmt));
287}
288
289Action::OwningStmtResult
290Sema::ActOnStartOfSwitchStmt(FullExprArg cond, DeclPtrTy CondVar) {
291  OwningExprResult CondResult(cond.release());
292
293  VarDecl *ConditionVar = 0;
294  if (CondVar.get()) {
295    ConditionVar = CondVar.getAs<VarDecl>();
296    CondResult = CheckConditionVariable(ConditionVar);
297    if (CondResult.isInvalid())
298      return StmtError();
299  }
300  SwitchStmt *SS = new (Context) SwitchStmt(ConditionVar,
301                                            CondResult.takeAs<Expr>());
302  getSwitchStack().push_back(SS);
303  return Owned(SS);
304}
305
306/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
307/// the specified width and sign.  If an overflow occurs, detect it and emit
308/// the specified diagnostic.
309void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
310                                              unsigned NewWidth, bool NewSign,
311                                              SourceLocation Loc,
312                                              unsigned DiagID) {
313  // Perform a conversion to the promoted condition type if needed.
314  if (NewWidth > Val.getBitWidth()) {
315    // If this is an extension, just do it.
316    Val.extend(NewWidth);
317    Val.setIsSigned(NewSign);
318
319    // If the input was signed and negative and the output is
320    // unsigned, don't bother to warn: this is implementation-defined
321    // behavior.
322    // FIXME: Introduce a second, default-ignored warning for this case?
323  } else if (NewWidth < Val.getBitWidth()) {
324    // If this is a truncation, check for overflow.
325    llvm::APSInt ConvVal(Val);
326    ConvVal.trunc(NewWidth);
327    ConvVal.setIsSigned(NewSign);
328    ConvVal.extend(Val.getBitWidth());
329    ConvVal.setIsSigned(Val.isSigned());
330    if (ConvVal != Val)
331      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
332
333    // Regardless of whether a diagnostic was emitted, really do the
334    // truncation.
335    Val.trunc(NewWidth);
336    Val.setIsSigned(NewSign);
337  } else if (NewSign != Val.isSigned()) {
338    // Convert the sign to match the sign of the condition.  This can cause
339    // overflow as well: unsigned(INTMIN)
340    // We don't diagnose this overflow, because it is implementation-defined
341    // behavior.
342    // FIXME: Introduce a second, default-ignored warning for this case?
343    llvm::APSInt OldVal(Val);
344    Val.setIsSigned(NewSign);
345  }
346}
347
348namespace {
349  struct CaseCompareFunctor {
350    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
351                    const llvm::APSInt &RHS) {
352      return LHS.first < RHS;
353    }
354    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
355                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
356      return LHS.first < RHS.first;
357    }
358    bool operator()(const llvm::APSInt &LHS,
359                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
360      return LHS < RHS.first;
361    }
362  };
363}
364
365/// CmpCaseVals - Comparison predicate for sorting case values.
366///
367static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
368                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
369  if (lhs.first < rhs.first)
370    return true;
371
372  if (lhs.first == rhs.first &&
373      lhs.second->getCaseLoc().getRawEncoding()
374       < rhs.second->getCaseLoc().getRawEncoding())
375    return true;
376  return false;
377}
378
379/// CmpEnumVals - Comparison predicate for sorting enumeration values.
380///
381static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
382                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
383{
384  return lhs.first < rhs.first;
385}
386
387/// EqEnumVals - Comparison preficate for uniqing enumeration values.
388///
389static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
390                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
391{
392  return lhs.first == rhs.first;
393}
394
395/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
396/// potentially integral-promoted expression @p expr.
397static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
398  const ImplicitCastExpr *ImplicitCast =
399      dyn_cast_or_null<ImplicitCastExpr>(expr);
400  if (ImplicitCast != NULL) {
401    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
402    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
403    if (TypeBeforePromotion->isIntegralType()) {
404      return TypeBeforePromotion;
405    }
406  }
407  return expr->getType();
408}
409
410/// \brief Check (and possibly convert) the condition in a switch
411/// statement in C++.
412static bool CheckCXXSwitchCondition(Sema &S, SourceLocation SwitchLoc,
413                                    Expr *&CondExpr) {
414  if (CondExpr->isTypeDependent())
415    return false;
416
417  QualType CondType = CondExpr->getType();
418
419  // C++ 6.4.2.p2:
420  // The condition shall be of integral type, enumeration type, or of a class
421  // type for which a single conversion function to integral or enumeration
422  // type exists (12.3). If the condition is of class type, the condition is
423  // converted by calling that conversion function, and the result of the
424  // conversion is used in place of the original condition for the remainder
425  // of this section. Integral promotions are performed.
426
427  // Make sure that the condition expression has a complete type,
428  // otherwise we'll never find any conversions.
429  if (S.RequireCompleteType(SwitchLoc, CondType,
430                            PDiag(diag::err_switch_incomplete_class_type)
431                              << CondExpr->getSourceRange()))
432    return true;
433
434  llvm::SmallVector<CXXConversionDecl *, 4> ViableConversions;
435  llvm::SmallVector<CXXConversionDecl *, 4> ExplicitConversions;
436  if (const RecordType *RecordTy = CondType->getAs<RecordType>()) {
437    const UnresolvedSetImpl *Conversions
438      = cast<CXXRecordDecl>(RecordTy->getDecl())
439                                             ->getVisibleConversionFunctions();
440    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
441           E = Conversions->end(); I != E; ++I) {
442      if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(*I))
443        if (Conversion->getConversionType().getNonReferenceType()
444              ->isIntegralType()) {
445          if (Conversion->isExplicit())
446            ExplicitConversions.push_back(Conversion);
447          else
448          ViableConversions.push_back(Conversion);
449        }
450    }
451
452    switch (ViableConversions.size()) {
453    case 0:
454      if (ExplicitConversions.size() == 1) {
455        // The user probably meant to invoke the given explicit
456        // conversion; use it.
457        QualType ConvTy
458          = ExplicitConversions[0]->getConversionType()
459                        .getNonReferenceType();
460        std::string TypeStr;
461        ConvTy.getAsStringInternal(TypeStr, S.Context.PrintingPolicy);
462
463        S.Diag(SwitchLoc, diag::err_switch_explicit_conversion)
464          << CondType << ConvTy << CondExpr->getSourceRange()
465          << CodeModificationHint::CreateInsertion(CondExpr->getLocStart(),
466                                         "static_cast<" + TypeStr + ">(")
467          << CodeModificationHint::CreateInsertion(
468                            S.PP.getLocForEndOfToken(CondExpr->getLocEnd()),
469                               ")");
470        S.Diag(ExplicitConversions[0]->getLocation(),
471             diag::note_switch_conversion)
472          << ConvTy->isEnumeralType() << ConvTy;
473
474        // If we aren't in a SFINAE context, build a call to the
475        // explicit conversion function.
476        if (S.isSFINAEContext())
477          return true;
478
479        CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ExplicitConversions[0]);
480      }
481
482      // We'll complain below about a non-integral condition type.
483      break;
484
485    case 1:
486      // Apply this conversion.
487      CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ViableConversions[0]);
488      break;
489
490    default:
491      S.Diag(SwitchLoc, diag::err_switch_multiple_conversions)
492        << CondType << CondExpr->getSourceRange();
493      for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
494        QualType ConvTy
495          = ViableConversions[I]->getConversionType().getNonReferenceType();
496        S.Diag(ViableConversions[I]->getLocation(),
497             diag::note_switch_conversion)
498          << ConvTy->isEnumeralType() << ConvTy;
499      }
500      return true;
501    }
502  }
503
504  return false;
505}
506
507/// ActOnSwitchBodyError - This is called if there is an error parsing the
508/// body of the switch stmt instead of ActOnFinishSwitchStmt.
509void Sema::ActOnSwitchBodyError(SourceLocation SwitchLoc, StmtArg Switch,
510                                StmtArg Body) {
511  // Keep the switch stack balanced.
512  assert(getSwitchStack().back() == (SwitchStmt*)Switch.get() &&
513         "switch stack missing push/pop!");
514  getSwitchStack().pop_back();
515}
516
517Action::OwningStmtResult
518Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
519                            StmtArg Body) {
520  Stmt *BodyStmt = Body.takeAs<Stmt>();
521
522  SwitchStmt *SS = getSwitchStack().back();
523  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
524
525  SS->setBody(BodyStmt, SwitchLoc);
526  getSwitchStack().pop_back();
527
528  if (SS->getCond() == 0) {
529    SS->Destroy(Context);
530    return StmtError();
531  }
532
533  Expr *CondExpr = SS->getCond();
534  QualType CondTypeBeforePromotion =
535      GetTypeBeforeIntegralPromotion(CondExpr);
536
537  if (getLangOptions().CPlusPlus &&
538      CheckCXXSwitchCondition(*this, SwitchLoc, CondExpr))
539    return StmtError();
540
541  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
542  UsualUnaryConversions(CondExpr);
543  QualType CondType = CondExpr->getType();
544  SS->setCond(CondExpr);
545
546  // C++ 6.4.2.p2:
547  // Integral promotions are performed (on the switch condition).
548  //
549  // A case value unrepresentable by the original switch condition
550  // type (before the promotion) doesn't make sense, even when it can
551  // be represented by the promoted type.  Therefore we need to find
552  // the pre-promotion type of the switch condition.
553  if (!CondExpr->isTypeDependent()) {
554    if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
555      Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
556          << CondType << CondExpr->getSourceRange();
557      return StmtError();
558    }
559
560    if (CondTypeBeforePromotion->isBooleanType()) {
561      // switch(bool_expr) {...} is often a programmer error, e.g.
562      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
563      // One can always use an if statement instead of switch(bool_expr).
564      Diag(SwitchLoc, diag::warn_bool_switch_condition)
565          << CondExpr->getSourceRange();
566    }
567  }
568
569  // Get the bitwidth of the switched-on value before promotions.  We must
570  // convert the integer case values to this width before comparison.
571  bool HasDependentValue
572    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
573  unsigned CondWidth
574    = HasDependentValue? 0
575      : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
576  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
577
578  // Accumulate all of the case values in a vector so that we can sort them
579  // and detect duplicates.  This vector contains the APInt for the case after
580  // it has been converted to the condition type.
581  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
582  CaseValsTy CaseVals;
583
584  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
585  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
586  CaseRangesTy CaseRanges;
587
588  DefaultStmt *TheDefaultStmt = 0;
589
590  bool CaseListIsErroneous = false;
591
592  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
593       SC = SC->getNextSwitchCase()) {
594
595    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
596      if (TheDefaultStmt) {
597        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
598        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
599
600        // FIXME: Remove the default statement from the switch block so that
601        // we'll return a valid AST.  This requires recursing down the AST and
602        // finding it, not something we are set up to do right now.  For now,
603        // just lop the entire switch stmt out of the AST.
604        CaseListIsErroneous = true;
605      }
606      TheDefaultStmt = DS;
607
608    } else {
609      CaseStmt *CS = cast<CaseStmt>(SC);
610
611      // We already verified that the expression has a i-c-e value (C99
612      // 6.8.4.2p3) - get that value now.
613      Expr *Lo = CS->getLHS();
614
615      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
616        HasDependentValue = true;
617        break;
618      }
619
620      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
621
622      // Convert the value to the same width/sign as the condition.
623      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
624                                         CS->getLHS()->getLocStart(),
625                                         diag::warn_case_value_overflow);
626
627      // If the LHS is not the same type as the condition, insert an implicit
628      // cast.
629      ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast);
630      CS->setLHS(Lo);
631
632      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
633      if (CS->getRHS()) {
634        if (CS->getRHS()->isTypeDependent() ||
635            CS->getRHS()->isValueDependent()) {
636          HasDependentValue = true;
637          break;
638        }
639        CaseRanges.push_back(std::make_pair(LoVal, CS));
640      } else
641        CaseVals.push_back(std::make_pair(LoVal, CS));
642    }
643  }
644
645  if (!HasDependentValue) {
646    // Sort all the scalar case values so we can easily detect duplicates.
647    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
648
649    if (!CaseVals.empty()) {
650      for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
651        if (CaseVals[i].first == CaseVals[i+1].first) {
652          // If we have a duplicate, report it.
653          Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
654               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
655          Diag(CaseVals[i].second->getLHS()->getLocStart(),
656               diag::note_duplicate_case_prev);
657          // FIXME: We really want to remove the bogus case stmt from the
658          // substmt, but we have no way to do this right now.
659          CaseListIsErroneous = true;
660        }
661      }
662    }
663
664    // Detect duplicate case ranges, which usually don't exist at all in
665    // the first place.
666    if (!CaseRanges.empty()) {
667      // Sort all the case ranges by their low value so we can easily detect
668      // overlaps between ranges.
669      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
670
671      // Scan the ranges, computing the high values and removing empty ranges.
672      std::vector<llvm::APSInt> HiVals;
673      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
674        CaseStmt *CR = CaseRanges[i].second;
675        Expr *Hi = CR->getRHS();
676        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
677
678        // Convert the value to the same width/sign as the condition.
679        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
680                                           CR->getRHS()->getLocStart(),
681                                           diag::warn_case_value_overflow);
682
683        // If the LHS is not the same type as the condition, insert an implicit
684        // cast.
685        ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast);
686        CR->setRHS(Hi);
687
688        // If the low value is bigger than the high value, the case is empty.
689        if (CaseRanges[i].first > HiVal) {
690          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
691            << SourceRange(CR->getLHS()->getLocStart(),
692                           CR->getRHS()->getLocEnd());
693          CaseRanges.erase(CaseRanges.begin()+i);
694          --i, --e;
695          continue;
696        }
697        HiVals.push_back(HiVal);
698      }
699
700      // Rescan the ranges, looking for overlap with singleton values and other
701      // ranges.  Since the range list is sorted, we only need to compare case
702      // ranges with their neighbors.
703      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
704        llvm::APSInt &CRLo = CaseRanges[i].first;
705        llvm::APSInt &CRHi = HiVals[i];
706        CaseStmt *CR = CaseRanges[i].second;
707
708        // Check to see whether the case range overlaps with any
709        // singleton cases.
710        CaseStmt *OverlapStmt = 0;
711        llvm::APSInt OverlapVal(32);
712
713        // Find the smallest value >= the lower bound.  If I is in the
714        // case range, then we have overlap.
715        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
716                                                  CaseVals.end(), CRLo,
717                                                  CaseCompareFunctor());
718        if (I != CaseVals.end() && I->first < CRHi) {
719          OverlapVal  = I->first;   // Found overlap with scalar.
720          OverlapStmt = I->second;
721        }
722
723        // Find the smallest value bigger than the upper bound.
724        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
725        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
726          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
727          OverlapStmt = (I-1)->second;
728        }
729
730        // Check to see if this case stmt overlaps with the subsequent
731        // case range.
732        if (i && CRLo <= HiVals[i-1]) {
733          OverlapVal  = HiVals[i-1];       // Found overlap with range.
734          OverlapStmt = CaseRanges[i-1].second;
735        }
736
737        if (OverlapStmt) {
738          // If we have a duplicate, report it.
739          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
740            << OverlapVal.toString(10);
741          Diag(OverlapStmt->getLHS()->getLocStart(),
742               diag::note_duplicate_case_prev);
743          // FIXME: We really want to remove the bogus case stmt from the
744          // substmt, but we have no way to do this right now.
745          CaseListIsErroneous = true;
746        }
747      }
748    }
749
750    // Check to see if switch is over an Enum and handles all of its
751    // values
752    const EnumType* ET = CondTypeBeforePromotion->getAs<EnumType>();
753    // If switch has default case, then ignore it.
754    if (!CaseListIsErroneous && !TheDefaultStmt && ET) {
755      const EnumDecl *ED = ET->getDecl();
756      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
757      EnumValsTy EnumVals;
758
759      // Gather all enum values, set their type and sort them, allowing easier comparison
760      // with CaseVals.
761      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin(); EDI != ED->enumerator_end(); EDI++) {
762        llvm::APSInt Val = (*EDI)->getInitVal();
763        if(Val.getBitWidth() < CondWidth)
764          Val.extend(CondWidth);
765        Val.setIsSigned(CondIsSigned);
766        EnumVals.push_back(std::make_pair(Val, (*EDI)));
767      }
768      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
769      EnumValsTy::iterator EIend = std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
770      // See which case values aren't in enum
771      EnumValsTy::const_iterator EI = EnumVals.begin();
772      for (CaseValsTy::const_iterator CI = CaseVals.begin(); CI != CaseVals.end(); CI++) {
773        while (EI != EIend && EI->first < CI->first)
774          EI++;
775        if (EI == EIend || EI->first > CI->first)
776            Diag(CI->second->getLHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName();
777      }
778      // See which of case ranges aren't in enum
779      EI = EnumVals.begin();
780      for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); RI != CaseRanges.end() && EI != EIend; RI++) {
781        while (EI != EIend && EI->first < RI->first)
782          EI++;
783
784        if (EI == EIend || EI->first != RI->first) {
785          Diag(RI->second->getLHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName();
786        }
787
788        llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
789        while (EI != EIend && EI->first < Hi)
790          EI++;
791        if (EI == EIend || EI->first != Hi)
792          Diag(RI->second->getRHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName();
793      }
794      //Check which enum vals aren't in switch
795      CaseValsTy::const_iterator CI = CaseVals.begin();
796      CaseRangesTy::const_iterator RI = CaseRanges.begin();
797      EI = EnumVals.begin();
798      for (; EI != EIend; EI++) {
799        //Drop unneeded case values
800        llvm::APSInt CIVal;
801        while (CI != CaseVals.end() && CI->first < EI->first)
802          CI++;
803
804        if (CI != CaseVals.end() && CI->first == EI->first)
805          continue;
806
807        //Drop unneeded case ranges
808        for (; RI != CaseRanges.end(); RI++) {
809          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
810          if (EI->first <= Hi)
811            break;
812        }
813
814        if (RI == CaseRanges.end() || EI->first < RI->first)
815          Diag(CondExpr->getExprLoc(), diag::warn_missing_cases) << EI->second->getDeclName();
816      }
817    }
818  }
819
820  // FIXME: If the case list was broken is some way, we don't have a good system
821  // to patch it up.  Instead, just return the whole substmt as broken.
822  if (CaseListIsErroneous)
823    return StmtError();
824
825  Switch.release();
826  return Owned(SS);
827}
828
829Action::OwningStmtResult
830Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
831                     DeclPtrTy CondVar, StmtArg Body) {
832  OwningExprResult CondResult(Cond.release());
833
834  VarDecl *ConditionVar = 0;
835  if (CondVar.get()) {
836    ConditionVar = CondVar.getAs<VarDecl>();
837    CondResult = CheckConditionVariable(ConditionVar);
838    if (CondResult.isInvalid())
839      return StmtError();
840  }
841  Expr *ConditionExpr = CondResult.takeAs<Expr>();
842  if (!ConditionExpr)
843    return StmtError();
844
845  if (CheckBooleanCondition(ConditionExpr, WhileLoc)) {
846    CondResult = ConditionExpr;
847    return StmtError();
848  }
849
850  Stmt *bodyStmt = Body.takeAs<Stmt>();
851  DiagnoseUnusedExprResult(bodyStmt);
852
853  CondResult.release();
854  return Owned(new (Context) WhileStmt(ConditionVar, ConditionExpr, bodyStmt,
855                                       WhileLoc));
856}
857
858Action::OwningStmtResult
859Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
860                  SourceLocation WhileLoc, SourceLocation CondLParen,
861                  ExprArg Cond, SourceLocation CondRParen) {
862  Expr *condExpr = Cond.takeAs<Expr>();
863  assert(condExpr && "ActOnDoStmt(): missing expression");
864
865  if (CheckBooleanCondition(condExpr, DoLoc)) {
866    Cond = condExpr;
867    return StmtError();
868  }
869
870  Stmt *bodyStmt = Body.takeAs<Stmt>();
871  DiagnoseUnusedExprResult(bodyStmt);
872
873  Cond.release();
874  return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
875                                    WhileLoc, CondRParen));
876}
877
878Action::OwningStmtResult
879Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
880                   StmtArg first, FullExprArg second, DeclPtrTy secondVar,
881                   FullExprArg third,
882                   SourceLocation RParenLoc, StmtArg body) {
883  Stmt *First  = static_cast<Stmt*>(first.get());
884
885  if (!getLangOptions().CPlusPlus) {
886    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
887      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
888      // declare identifiers for objects having storage class 'auto' or
889      // 'register'.
890      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
891           DI!=DE; ++DI) {
892        VarDecl *VD = dyn_cast<VarDecl>(*DI);
893        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
894          VD = 0;
895        if (VD == 0)
896          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
897        // FIXME: mark decl erroneous!
898      }
899    }
900  }
901
902  OwningExprResult SecondResult(second.release());
903  VarDecl *ConditionVar = 0;
904  if (secondVar.get()) {
905    ConditionVar = secondVar.getAs<VarDecl>();
906    SecondResult = CheckConditionVariable(ConditionVar);
907    if (SecondResult.isInvalid())
908      return StmtError();
909  }
910
911  Expr *Second = SecondResult.takeAs<Expr>();
912  if (Second && CheckBooleanCondition(Second, ForLoc)) {
913    SecondResult = Second;
914    return StmtError();
915  }
916
917  Expr *Third  = third.release().takeAs<Expr>();
918  Stmt *Body  = static_cast<Stmt*>(body.get());
919
920  DiagnoseUnusedExprResult(First);
921  DiagnoseUnusedExprResult(Third);
922  DiagnoseUnusedExprResult(Body);
923
924  first.release();
925  body.release();
926  return Owned(new (Context) ForStmt(First, Second, ConditionVar, Third, Body,
927                                     ForLoc, LParenLoc, RParenLoc));
928}
929
930Action::OwningStmtResult
931Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
932                                 SourceLocation LParenLoc,
933                                 StmtArg first, ExprArg second,
934                                 SourceLocation RParenLoc, StmtArg body) {
935  Stmt *First  = static_cast<Stmt*>(first.get());
936  Expr *Second = static_cast<Expr*>(second.get());
937  Stmt *Body  = static_cast<Stmt*>(body.get());
938  if (First) {
939    QualType FirstType;
940    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
941      if (!DS->isSingleDecl())
942        return StmtError(Diag((*DS->decl_begin())->getLocation(),
943                         diag::err_toomany_element_decls));
944
945      Decl *D = DS->getSingleDecl();
946      FirstType = cast<ValueDecl>(D)->getType();
947      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
948      // declare identifiers for objects having storage class 'auto' or
949      // 'register'.
950      VarDecl *VD = cast<VarDecl>(D);
951      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
952        return StmtError(Diag(VD->getLocation(),
953                              diag::err_non_variable_decl_in_for));
954    } else {
955      if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
956        return StmtError(Diag(First->getLocStart(),
957                   diag::err_selector_element_not_lvalue)
958          << First->getSourceRange());
959
960      FirstType = static_cast<Expr*>(First)->getType();
961    }
962    if (!FirstType->isObjCObjectPointerType() &&
963        !FirstType->isBlockPointerType())
964        Diag(ForLoc, diag::err_selector_element_type)
965          << FirstType << First->getSourceRange();
966  }
967  if (Second) {
968    DefaultFunctionArrayLvalueConversion(Second);
969    QualType SecondType = Second->getType();
970    if (!SecondType->isObjCObjectPointerType())
971      Diag(ForLoc, diag::err_collection_expr_type)
972        << SecondType << Second->getSourceRange();
973  }
974  first.release();
975  second.release();
976  body.release();
977  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
978                                                   ForLoc, RParenLoc));
979}
980
981Action::OwningStmtResult
982Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
983                    IdentifierInfo *LabelII) {
984  // Look up the record for this label identifier.
985  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
986
987  // If we haven't seen this label yet, create a forward reference.
988  if (LabelDecl == 0)
989    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
990
991  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
992}
993
994Action::OwningStmtResult
995Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
996                            ExprArg DestExp) {
997  // Convert operand to void*
998  Expr* E = DestExp.takeAs<Expr>();
999  if (!E->isTypeDependent()) {
1000    QualType ETy = E->getType();
1001    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1002    AssignConvertType ConvTy =
1003      CheckSingleAssignmentConstraints(DestTy, E);
1004    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1005      return StmtError();
1006  }
1007  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1008}
1009
1010Action::OwningStmtResult
1011Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1012  Scope *S = CurScope->getContinueParent();
1013  if (!S) {
1014    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1015    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1016  }
1017
1018  return Owned(new (Context) ContinueStmt(ContinueLoc));
1019}
1020
1021Action::OwningStmtResult
1022Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1023  Scope *S = CurScope->getBreakParent();
1024  if (!S) {
1025    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1026    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1027  }
1028
1029  return Owned(new (Context) BreakStmt(BreakLoc));
1030}
1031
1032/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1033///
1034Action::OwningStmtResult
1035Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1036  // If this is the first return we've seen in the block, infer the type of
1037  // the block from it.
1038  BlockScopeInfo *CurBlock = getCurBlock();
1039  if (CurBlock->ReturnType.isNull()) {
1040    if (RetValExp) {
1041      // Don't call UsualUnaryConversions(), since we don't want to do
1042      // integer promotions here.
1043      DefaultFunctionArrayLvalueConversion(RetValExp);
1044      CurBlock->ReturnType = RetValExp->getType();
1045      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1046        // We have to remove a 'const' added to copied-in variable which was
1047        // part of the implementation spec. and not the actual qualifier for
1048        // the variable.
1049        if (CDRE->isConstQualAdded())
1050           CurBlock->ReturnType.removeConst();
1051      }
1052    } else
1053      CurBlock->ReturnType = Context.VoidTy;
1054  }
1055  QualType FnRetType = CurBlock->ReturnType;
1056
1057  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
1058    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1059      << getCurFunctionOrMethodDecl()->getDeclName();
1060    return StmtError();
1061  }
1062
1063  // Otherwise, verify that this result type matches the previous one.  We are
1064  // pickier with blocks than for normal functions because we don't have GCC
1065  // compatibility to worry about here.
1066  if (CurBlock->ReturnType->isVoidType()) {
1067    if (RetValExp) {
1068      Diag(ReturnLoc, diag::err_return_block_has_expr);
1069      RetValExp->Destroy(Context);
1070      RetValExp = 0;
1071    }
1072    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
1073  }
1074
1075  if (!RetValExp)
1076    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1077
1078  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1079    // we have a non-void block with an expression, continue checking
1080
1081    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1082    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1083    // function return.
1084
1085    // In C++ the return statement is handled via a copy initialization.
1086    // the C version of which boils down to CheckSingleAssignmentConstraints.
1087    OwningExprResult Res = PerformCopyInitialization(
1088                             InitializedEntity::InitializeResult(ReturnLoc,
1089                                                                 FnRetType),
1090                             SourceLocation(),
1091                             Owned(RetValExp));
1092    if (Res.isInvalid()) {
1093      // FIXME: Cleanup temporaries here, anyway?
1094      return StmtError();
1095    }
1096
1097    RetValExp = Res.takeAs<Expr>();
1098    if (RetValExp)
1099      CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1100  }
1101
1102  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
1103}
1104
1105/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
1106/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
1107static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
1108                                 Expr *RetExpr) {
1109  QualType ExprType = RetExpr->getType();
1110  // - in a return statement in a function with ...
1111  // ... a class return type ...
1112  if (!RetType->isRecordType())
1113    return false;
1114  // ... the same cv-unqualified type as the function return type ...
1115  if (!Ctx.hasSameUnqualifiedType(RetType, ExprType))
1116    return false;
1117  // ... the expression is the name of a non-volatile automatic object ...
1118  // We ignore parentheses here.
1119  // FIXME: Is this compliant?
1120  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
1121  if (!DR)
1122    return false;
1123  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1124  if (!VD)
1125    return false;
1126  return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
1127    && !VD->getType().isVolatileQualified();
1128}
1129
1130Action::OwningStmtResult
1131Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
1132  Expr *RetValExp = rex.takeAs<Expr>();
1133  if (getCurBlock())
1134    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1135
1136  QualType FnRetType;
1137  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1138    FnRetType = FD->getResultType();
1139    if (FD->hasAttr<NoReturnAttr>() ||
1140        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1141      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1142        << getCurFunctionOrMethodDecl()->getDeclName();
1143  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1144    FnRetType = MD->getResultType();
1145  else // If we don't have a function/method context, bail.
1146    return StmtError();
1147
1148  if (FnRetType->isVoidType()) {
1149    if (RetValExp && !RetValExp->isTypeDependent()) {
1150      // C99 6.8.6.4p1 (ext_ since GCC warns)
1151      unsigned D = diag::ext_return_has_expr;
1152      if (RetValExp->getType()->isVoidType())
1153        D = diag::ext_return_has_void_expr;
1154
1155      // return (some void expression); is legal in C++.
1156      if (D != diag::ext_return_has_void_expr ||
1157          !getLangOptions().CPlusPlus) {
1158        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1159        Diag(ReturnLoc, D)
1160          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1161          << RetValExp->getSourceRange();
1162      }
1163
1164      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1165    }
1166    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
1167  }
1168
1169  if (!RetValExp && !FnRetType->isDependentType()) {
1170    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1171    // C99 6.8.6.4p1 (ext_ since GCC warns)
1172    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1173
1174    if (FunctionDecl *FD = getCurFunctionDecl())
1175      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1176    else
1177      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1178    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
1179  }
1180
1181  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1182    // we have a non-void function with an expression, continue checking
1183
1184    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1185    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1186    // function return.
1187
1188    // C++0x 12.8p15: When certain criteria are met, an implementation is
1189    //   allowed to omit the copy construction of a class object, [...]
1190    //   - in a return statement in a function with a class return type, when
1191    //     the expression is the name of a non-volatile automatic object with
1192    //     the same cv-unqualified type as the function return type, the copy
1193    //     operation can be omitted [...]
1194    // C++0x 12.8p16: When the criteria for elision of a copy operation are met
1195    //   and the object to be copied is designated by an lvalue, overload
1196    //   resolution to select the constructor for the copy is first performed
1197    //   as if the object were designated by an rvalue.
1198    // Note that we only compute Elidable if we're in C++0x, since we don't
1199    // care otherwise.
1200    bool Elidable = getLangOptions().CPlusPlus0x ?
1201                      IsReturnCopyElidable(Context, FnRetType, RetValExp) :
1202                      false;
1203    // FIXME: Elidable
1204    (void)Elidable;
1205
1206    // In C++ the return statement is handled via a copy initialization.
1207    // the C version of which boils down to CheckSingleAssignmentConstraints.
1208    OwningExprResult Res = PerformCopyInitialization(
1209                             InitializedEntity::InitializeResult(ReturnLoc,
1210                                                                 FnRetType),
1211                             SourceLocation(),
1212                             Owned(RetValExp));
1213    if (Res.isInvalid()) {
1214      // FIXME: Cleanup temporaries here, anyway?
1215      return StmtError();
1216    }
1217
1218    RetValExp = Res.takeAs<Expr>();
1219    if (RetValExp)
1220      CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1221  }
1222
1223  if (RetValExp)
1224    RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1225  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
1226}
1227
1228/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1229/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1230/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1231/// provide a strong guidance to not use it.
1232///
1233/// This method checks to see if the argument is an acceptable l-value and
1234/// returns false if it is a case we can handle.
1235static bool CheckAsmLValue(const Expr *E, Sema &S) {
1236  // Type dependent expressions will be checked during instantiation.
1237  if (E->isTypeDependent())
1238    return false;
1239
1240  if (E->isLvalue(S.Context) == Expr::LV_Valid)
1241    return false;  // Cool, this is an lvalue.
1242
1243  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1244  // are supposed to allow.
1245  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1246  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
1247    if (!S.getLangOptions().HeinousExtensions)
1248      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1249        << E->getSourceRange();
1250    else
1251      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1252        << E->getSourceRange();
1253    // Accept, even if we emitted an error diagnostic.
1254    return false;
1255  }
1256
1257  // None of the above, just randomly invalid non-lvalue.
1258  return true;
1259}
1260
1261
1262Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
1263                                          bool IsSimple,
1264                                          bool IsVolatile,
1265                                          unsigned NumOutputs,
1266                                          unsigned NumInputs,
1267                                          IdentifierInfo **Names,
1268                                          MultiExprArg constraints,
1269                                          MultiExprArg exprs,
1270                                          ExprArg asmString,
1271                                          MultiExprArg clobbers,
1272                                          SourceLocation RParenLoc,
1273                                          bool MSAsm) {
1274  unsigned NumClobbers = clobbers.size();
1275  StringLiteral **Constraints =
1276    reinterpret_cast<StringLiteral**>(constraints.get());
1277  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
1278  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
1279  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1280
1281  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1282
1283  // The parser verifies that there is a string literal here.
1284  if (AsmString->isWide())
1285    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1286      << AsmString->getSourceRange());
1287
1288  for (unsigned i = 0; i != NumOutputs; i++) {
1289    StringLiteral *Literal = Constraints[i];
1290    if (Literal->isWide())
1291      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1292        << Literal->getSourceRange());
1293
1294    llvm::StringRef OutputName;
1295    if (Names[i])
1296      OutputName = Names[i]->getName();
1297
1298    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1299    if (!Context.Target.validateOutputConstraint(Info))
1300      return StmtError(Diag(Literal->getLocStart(),
1301                            diag::err_asm_invalid_output_constraint)
1302                       << Info.getConstraintStr());
1303
1304    // Check that the output exprs are valid lvalues.
1305    Expr *OutputExpr = Exprs[i];
1306    if (CheckAsmLValue(OutputExpr, *this)) {
1307      return StmtError(Diag(OutputExpr->getLocStart(),
1308                  diag::err_asm_invalid_lvalue_in_output)
1309        << OutputExpr->getSourceRange());
1310    }
1311
1312    OutputConstraintInfos.push_back(Info);
1313  }
1314
1315  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1316
1317  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1318    StringLiteral *Literal = Constraints[i];
1319    if (Literal->isWide())
1320      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1321        << Literal->getSourceRange());
1322
1323    llvm::StringRef InputName;
1324    if (Names[i])
1325      InputName = Names[i]->getName();
1326
1327    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1328    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1329                                                NumOutputs, Info)) {
1330      return StmtError(Diag(Literal->getLocStart(),
1331                            diag::err_asm_invalid_input_constraint)
1332                       << Info.getConstraintStr());
1333    }
1334
1335    Expr *InputExpr = Exprs[i];
1336
1337    // Only allow void types for memory constraints.
1338    if (Info.allowsMemory() && !Info.allowsRegister()) {
1339      if (CheckAsmLValue(InputExpr, *this))
1340        return StmtError(Diag(InputExpr->getLocStart(),
1341                              diag::err_asm_invalid_lvalue_in_input)
1342                         << Info.getConstraintStr()
1343                         << InputExpr->getSourceRange());
1344    }
1345
1346    if (Info.allowsRegister()) {
1347      if (InputExpr->getType()->isVoidType()) {
1348        return StmtError(Diag(InputExpr->getLocStart(),
1349                              diag::err_asm_invalid_type_in_input)
1350          << InputExpr->getType() << Info.getConstraintStr()
1351          << InputExpr->getSourceRange());
1352      }
1353    }
1354
1355    DefaultFunctionArrayLvalueConversion(Exprs[i]);
1356
1357    InputConstraintInfos.push_back(Info);
1358  }
1359
1360  // Check that the clobbers are valid.
1361  for (unsigned i = 0; i != NumClobbers; i++) {
1362    StringLiteral *Literal = Clobbers[i];
1363    if (Literal->isWide())
1364      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1365        << Literal->getSourceRange());
1366
1367    llvm::StringRef Clobber = Literal->getString();
1368
1369    if (!Context.Target.isValidGCCRegisterName(Clobber))
1370      return StmtError(Diag(Literal->getLocStart(),
1371                  diag::err_asm_unknown_register_name) << Clobber);
1372  }
1373
1374  constraints.release();
1375  exprs.release();
1376  asmString.release();
1377  clobbers.release();
1378  AsmStmt *NS =
1379    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1380                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1381                          AsmString, NumClobbers, Clobbers, RParenLoc);
1382  // Validate the asm string, ensuring it makes sense given the operands we
1383  // have.
1384  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1385  unsigned DiagOffs;
1386  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1387    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1388           << AsmString->getSourceRange();
1389    DeleteStmt(NS);
1390    return StmtError();
1391  }
1392
1393  // Validate tied input operands for type mismatches.
1394  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1395    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1396
1397    // If this is a tied constraint, verify that the output and input have
1398    // either exactly the same type, or that they are int/ptr operands with the
1399    // same size (int/long, int*/long, are ok etc).
1400    if (!Info.hasTiedOperand()) continue;
1401
1402    unsigned TiedTo = Info.getTiedOperand();
1403    Expr *OutputExpr = Exprs[TiedTo];
1404    Expr *InputExpr = Exprs[i+NumOutputs];
1405    QualType InTy = InputExpr->getType();
1406    QualType OutTy = OutputExpr->getType();
1407    if (Context.hasSameType(InTy, OutTy))
1408      continue;  // All types can be tied to themselves.
1409
1410    // Int/ptr operands have some special cases that we allow.
1411    if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
1412        (InTy->isIntegerType() || InTy->isPointerType())) {
1413
1414      // They are ok if they are the same size.  Tying void* to int is ok if
1415      // they are the same size, for example.  This also allows tying void* to
1416      // int*.
1417      uint64_t OutSize = Context.getTypeSize(OutTy);
1418      uint64_t InSize = Context.getTypeSize(InTy);
1419      if (OutSize == InSize)
1420        continue;
1421
1422      // If the smaller input/output operand is not mentioned in the asm string,
1423      // then we can promote it and the asm string won't notice.  Check this
1424      // case now.
1425      bool SmallerValueMentioned = false;
1426      for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1427        AsmStmt::AsmStringPiece &Piece = Pieces[p];
1428        if (!Piece.isOperand()) continue;
1429
1430        // If this is a reference to the input and if the input was the smaller
1431        // one, then we have to reject this asm.
1432        if (Piece.getOperandNo() == i+NumOutputs) {
1433          if (InSize < OutSize) {
1434            SmallerValueMentioned = true;
1435            break;
1436          }
1437        }
1438
1439        // If this is a reference to the input and if the input was the smaller
1440        // one, then we have to reject this asm.
1441        if (Piece.getOperandNo() == TiedTo) {
1442          if (InSize > OutSize) {
1443            SmallerValueMentioned = true;
1444            break;
1445          }
1446        }
1447      }
1448
1449      // If the smaller value wasn't mentioned in the asm string, and if the
1450      // output was a register, just extend the shorter one to the size of the
1451      // larger one.
1452      if (!SmallerValueMentioned &&
1453          OutputConstraintInfos[TiedTo].allowsRegister())
1454        continue;
1455    }
1456
1457    Diag(InputExpr->getLocStart(),
1458         diag::err_asm_tying_incompatible_types)
1459      << InTy << OutTy << OutputExpr->getSourceRange()
1460      << InputExpr->getSourceRange();
1461    DeleteStmt(NS);
1462    return StmtError();
1463  }
1464
1465  return Owned(NS);
1466}
1467
1468Action::OwningStmtResult
1469Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1470                           SourceLocation RParen, DeclPtrTy Parm,
1471                           StmtArg Body, StmtArg catchList) {
1472  Stmt *CatchList = catchList.takeAs<Stmt>();
1473  ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
1474
1475  // PVD == 0 implies @catch(...).
1476  if (PVD) {
1477    // If we already know the decl is invalid, reject it.
1478    if (PVD->isInvalidDecl())
1479      return StmtError();
1480
1481    if (!PVD->getType()->isObjCObjectPointerType())
1482      return StmtError(Diag(PVD->getLocation(),
1483                       diag::err_catch_param_not_objc_type));
1484    if (PVD->getType()->isObjCQualifiedIdType())
1485      return StmtError(Diag(PVD->getLocation(),
1486                       diag::err_illegal_qualifiers_on_catch_parm));
1487  }
1488
1489  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
1490    PVD, Body.takeAs<Stmt>(), CatchList);
1491  return Owned(CatchList ? CatchList : CS);
1492}
1493
1494Action::OwningStmtResult
1495Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1496  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1497                                           static_cast<Stmt*>(Body.release())));
1498}
1499
1500Action::OwningStmtResult
1501Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
1502                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
1503  FunctionNeedsScopeChecking() = true;
1504  return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
1505                                           Catch.takeAs<Stmt>(),
1506                                           Finally.takeAs<Stmt>()));
1507}
1508
1509Action::OwningStmtResult
1510Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
1511  Expr *ThrowExpr = expr.takeAs<Expr>();
1512  if (!ThrowExpr) {
1513    // @throw without an expression designates a rethrow (which much occur
1514    // in the context of an @catch clause).
1515    Scope *AtCatchParent = CurScope;
1516    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1517      AtCatchParent = AtCatchParent->getParent();
1518    if (!AtCatchParent)
1519      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1520  } else {
1521    QualType ThrowType = ThrowExpr->getType();
1522    // Make sure the expression type is an ObjC pointer or "void *".
1523    if (!ThrowType->isObjCObjectPointerType()) {
1524      const PointerType *PT = ThrowType->getAs<PointerType>();
1525      if (!PT || !PT->getPointeeType()->isVoidType())
1526        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1527                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
1528    }
1529  }
1530  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
1531}
1532
1533Action::OwningStmtResult
1534Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1535                                  StmtArg SynchBody) {
1536  FunctionNeedsScopeChecking() = true;
1537
1538  // Make sure the expression type is an ObjC pointer or "void *".
1539  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1540  if (!SyncExpr->getType()->isObjCObjectPointerType()) {
1541    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1542    if (!PT || !PT->getPointeeType()->isVoidType())
1543      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1544                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1545  }
1546
1547  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1548                                                    SynchExpr.takeAs<Stmt>(),
1549                                                    SynchBody.takeAs<Stmt>()));
1550}
1551
1552/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1553/// and creates a proper catch handler from them.
1554Action::OwningStmtResult
1555Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1556                         StmtArg HandlerBlock) {
1557  // There's nothing to test that ActOnExceptionDecl didn't already test.
1558  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1559                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1560                                          HandlerBlock.takeAs<Stmt>()));
1561}
1562
1563class TypeWithHandler {
1564  QualType t;
1565  CXXCatchStmt *stmt;
1566public:
1567  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1568  : t(type), stmt(statement) {}
1569
1570  // An arbitrary order is fine as long as it places identical
1571  // types next to each other.
1572  bool operator<(const TypeWithHandler &y) const {
1573    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
1574      return true;
1575    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
1576      return false;
1577    else
1578      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1579  }
1580
1581  bool operator==(const TypeWithHandler& other) const {
1582    return t == other.t;
1583  }
1584
1585  QualType getQualType() const { return t; }
1586  CXXCatchStmt *getCatchStmt() const { return stmt; }
1587  SourceLocation getTypeSpecStartLoc() const {
1588    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1589  }
1590};
1591
1592/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1593/// handlers and creates a try statement from them.
1594Action::OwningStmtResult
1595Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1596                       MultiStmtArg RawHandlers) {
1597  unsigned NumHandlers = RawHandlers.size();
1598  assert(NumHandlers > 0 &&
1599         "The parser shouldn't call this if there are no handlers.");
1600  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1601
1602  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1603
1604  for (unsigned i = 0; i < NumHandlers; ++i) {
1605    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1606    if (!Handler->getExceptionDecl()) {
1607      if (i < NumHandlers - 1)
1608        return StmtError(Diag(Handler->getLocStart(),
1609                              diag::err_early_catch_all));
1610
1611      continue;
1612    }
1613
1614    const QualType CaughtType = Handler->getCaughtType();
1615    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1616    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1617  }
1618
1619  // Detect handlers for the same type as an earlier one.
1620  if (NumHandlers > 1) {
1621    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1622
1623    TypeWithHandler prev = TypesWithHandlers[0];
1624    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1625      TypeWithHandler curr = TypesWithHandlers[i];
1626
1627      if (curr == prev) {
1628        Diag(curr.getTypeSpecStartLoc(),
1629             diag::warn_exception_caught_by_earlier_handler)
1630          << curr.getCatchStmt()->getCaughtType().getAsString();
1631        Diag(prev.getTypeSpecStartLoc(),
1632             diag::note_previous_exception_handler)
1633          << prev.getCatchStmt()->getCaughtType().getAsString();
1634      }
1635
1636      prev = curr;
1637    }
1638  }
1639
1640  // FIXME: We should detect handlers that cannot catch anything because an
1641  // earlier handler catches a superclass. Need to find a method that is not
1642  // quadratic for this.
1643  // Neither of these are explicitly forbidden, but every compiler detects them
1644  // and warns.
1645
1646  FunctionNeedsScopeChecking() = true;
1647  RawHandlers.release();
1648  return Owned(CXXTryStmt::Create(Context, TryLoc,
1649                                  static_cast<Stmt*>(TryBlock.release()),
1650                                  Handlers, NumHandlers));
1651}
1652