SemaStmt.cpp revision 1417646ef5470549b2d889b5eb1663cca5c0a3e6
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               bool HasLeadingEmptyMacro) {
51  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOptions().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
96///
97/// Adding a cast to void (or other expression wrappers) will prevent the
98/// warning from firing.
99static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
100  SourceLocation Loc;
101  bool IsNotEqual, CanAssign;
102
103  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
104    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
105      return false;
106
107    Loc = Op->getOperatorLoc();
108    IsNotEqual = Op->getOpcode() == BO_NE;
109    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
110  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
111    if (Op->getOperator() != OO_EqualEqual &&
112        Op->getOperator() != OO_ExclaimEqual)
113      return false;
114
115    Loc = Op->getOperatorLoc();
116    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
117    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
118  } else {
119    // Not a typo-prone comparison.
120    return false;
121  }
122
123  // Suppress warnings when the operator, suspicious as it may be, comes from
124  // a macro expansion.
125  if (Loc.isMacroID())
126    return false;
127
128  S.Diag(Loc, diag::warn_unused_comparison)
129    << (unsigned)IsNotEqual << E->getSourceRange();
130
131  // If the LHS is a plausible entity to assign to, provide a fixit hint to
132  // correct common typos.
133  if (CanAssign) {
134    if (IsNotEqual)
135      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
136        << FixItHint::CreateReplacement(Loc, "|=");
137    else
138      S.Diag(Loc, diag::note_equality_comparison_to_assign)
139        << FixItHint::CreateReplacement(Loc, "=");
140  }
141
142  return true;
143}
144
145void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
146  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
147    return DiagnoseUnusedExprResult(Label->getSubStmt());
148
149  const Expr *E = dyn_cast_or_null<Expr>(S);
150  if (!E)
151    return;
152
153  SourceLocation Loc;
154  SourceRange R1, R2;
155  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
156    return;
157
158  // Okay, we have an unused result.  Depending on what the base expression is,
159  // we might want to make a more specific diagnostic.  Check for one of these
160  // cases now.
161  unsigned DiagID = diag::warn_unused_expr;
162  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
163    E = Temps->getSubExpr();
164  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
165    E = TempExpr->getSubExpr();
166
167  if (DiagnoseUnusedComparison(*this, E))
168    return;
169
170  E = E->IgnoreParenImpCasts();
171  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
172    if (E->getType()->isVoidType())
173      return;
174
175    // If the callee has attribute pure, const, or warn_unused_result, warn with
176    // a more specific message to make it clear what is happening.
177    if (const Decl *FD = CE->getCalleeDecl()) {
178      if (FD->getAttr<WarnUnusedResultAttr>()) {
179        Diag(Loc, diag::warn_unused_result) << R1 << R2;
180        return;
181      }
182      if (FD->getAttr<PureAttr>()) {
183        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
184        return;
185      }
186      if (FD->getAttr<ConstAttr>()) {
187        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
188        return;
189      }
190    }
191  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
192    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
193      Diag(Loc, diag::err_arc_unused_init_message) << R1;
194      return;
195    }
196    const ObjCMethodDecl *MD = ME->getMethodDecl();
197    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
198      Diag(Loc, diag::warn_unused_result) << R1 << R2;
199      return;
200    }
201  } else if (isa<ObjCPropertyRefExpr>(E)) {
202    DiagID = diag::warn_unused_property_expr;
203  } else if (const CXXFunctionalCastExpr *FC
204                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
205    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
206        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
207      return;
208  }
209  // Diagnose "(void*) blah" as a typo for "(void) blah".
210  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
211    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
212    QualType T = TI->getType();
213
214    // We really do want to use the non-canonical type here.
215    if (T == Context.VoidPtrTy) {
216      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
217
218      Diag(Loc, diag::warn_unused_voidptr)
219        << FixItHint::CreateRemoval(TL.getStarLoc());
220      return;
221    }
222  }
223
224  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
225}
226
227StmtResult
228Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
229                        MultiStmtArg elts, bool isStmtExpr) {
230  unsigned NumElts = elts.size();
231  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
232  // If we're in C89 mode, check that we don't have any decls after stmts.  If
233  // so, emit an extension diagnostic.
234  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
235    // Note that __extension__ can be around a decl.
236    unsigned i = 0;
237    // Skip over all declarations.
238    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
239      /*empty*/;
240
241    // We found the end of the list or a statement.  Scan for another declstmt.
242    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
243      /*empty*/;
244
245    if (i != NumElts) {
246      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
247      Diag(D->getLocation(), diag::ext_mixed_decls_code);
248    }
249  }
250  // Warn about unused expressions in statements.
251  for (unsigned i = 0; i != NumElts; ++i) {
252    // Ignore statements that are last in a statement expression.
253    if (isStmtExpr && i == NumElts - 1)
254      continue;
255
256    DiagnoseUnusedExprResult(Elts[i]);
257  }
258
259  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
260}
261
262StmtResult
263Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
264                    SourceLocation DotDotDotLoc, Expr *RHSVal,
265                    SourceLocation ColonLoc) {
266  assert((LHSVal != 0) && "missing expression in case statement");
267
268  // C99 6.8.4.2p3: The expression shall be an integer constant.
269  // However, GCC allows any evaluatable integer expression.
270  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
271      VerifyIntegerConstantExpression(LHSVal))
272    return StmtError();
273
274  // GCC extension: The expression shall be an integer constant.
275
276  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
277      VerifyIntegerConstantExpression(RHSVal)) {
278    RHSVal = 0;  // Recover by just forgetting about it.
279  }
280
281  if (getCurFunction()->SwitchStack.empty()) {
282    Diag(CaseLoc, diag::err_case_not_in_switch);
283    return StmtError();
284  }
285
286  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
287                                        ColonLoc);
288  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
289  return Owned(CS);
290}
291
292/// ActOnCaseStmtBody - This installs a statement as the body of a case.
293void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
294  DiagnoseUnusedExprResult(SubStmt);
295
296  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
297  CS->setSubStmt(SubStmt);
298}
299
300StmtResult
301Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
302                       Stmt *SubStmt, Scope *CurScope) {
303  DiagnoseUnusedExprResult(SubStmt);
304
305  if (getCurFunction()->SwitchStack.empty()) {
306    Diag(DefaultLoc, diag::err_default_not_in_switch);
307    return Owned(SubStmt);
308  }
309
310  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
311  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
312  return Owned(DS);
313}
314
315StmtResult
316Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
317                     SourceLocation ColonLoc, Stmt *SubStmt) {
318
319  // If the label was multiply defined, reject it now.
320  if (TheDecl->getStmt()) {
321    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
322    Diag(TheDecl->getLocation(), diag::note_previous_definition);
323    return Owned(SubStmt);
324  }
325
326  // Otherwise, things are good.  Fill in the declaration and return it.
327  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
328  TheDecl->setStmt(LS);
329  if (!TheDecl->isGnuLocal())
330    TheDecl->setLocation(IdentLoc);
331  return Owned(LS);
332}
333
334StmtResult
335Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
336                  Stmt *thenStmt, SourceLocation ElseLoc,
337                  Stmt *elseStmt) {
338  ExprResult CondResult(CondVal.release());
339
340  VarDecl *ConditionVar = 0;
341  if (CondVar) {
342    ConditionVar = cast<VarDecl>(CondVar);
343    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
344    if (CondResult.isInvalid())
345      return StmtError();
346  }
347  Expr *ConditionExpr = CondResult.takeAs<Expr>();
348  if (!ConditionExpr)
349    return StmtError();
350
351  DiagnoseUnusedExprResult(thenStmt);
352
353  // Warn if the if block has a null body without an else value.
354  // this helps prevent bugs due to typos, such as
355  // if (condition);
356  //   do_stuff();
357  //
358  if (!elseStmt) {
359    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
360      // But do not warn if the body is a macro that expands to nothing, e.g:
361      //
362      // #define CALL(x)
363      // if (condition)
364      //   CALL(0);
365      //
366      if (!stmt->hasLeadingEmptyMacro())
367        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
368  }
369
370  DiagnoseUnusedExprResult(elseStmt);
371
372  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
373                                    thenStmt, ElseLoc, elseStmt));
374}
375
376/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
377/// the specified width and sign.  If an overflow occurs, detect it and emit
378/// the specified diagnostic.
379void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
380                                              unsigned NewWidth, bool NewSign,
381                                              SourceLocation Loc,
382                                              unsigned DiagID) {
383  // Perform a conversion to the promoted condition type if needed.
384  if (NewWidth > Val.getBitWidth()) {
385    // If this is an extension, just do it.
386    Val = Val.extend(NewWidth);
387    Val.setIsSigned(NewSign);
388
389    // If the input was signed and negative and the output is
390    // unsigned, don't bother to warn: this is implementation-defined
391    // behavior.
392    // FIXME: Introduce a second, default-ignored warning for this case?
393  } else if (NewWidth < Val.getBitWidth()) {
394    // If this is a truncation, check for overflow.
395    llvm::APSInt ConvVal(Val);
396    ConvVal = ConvVal.trunc(NewWidth);
397    ConvVal.setIsSigned(NewSign);
398    ConvVal = ConvVal.extend(Val.getBitWidth());
399    ConvVal.setIsSigned(Val.isSigned());
400    if (ConvVal != Val)
401      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
402
403    // Regardless of whether a diagnostic was emitted, really do the
404    // truncation.
405    Val = Val.trunc(NewWidth);
406    Val.setIsSigned(NewSign);
407  } else if (NewSign != Val.isSigned()) {
408    // Convert the sign to match the sign of the condition.  This can cause
409    // overflow as well: unsigned(INTMIN)
410    // We don't diagnose this overflow, because it is implementation-defined
411    // behavior.
412    // FIXME: Introduce a second, default-ignored warning for this case?
413    llvm::APSInt OldVal(Val);
414    Val.setIsSigned(NewSign);
415  }
416}
417
418namespace {
419  struct CaseCompareFunctor {
420    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
421                    const llvm::APSInt &RHS) {
422      return LHS.first < RHS;
423    }
424    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
425                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
426      return LHS.first < RHS.first;
427    }
428    bool operator()(const llvm::APSInt &LHS,
429                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
430      return LHS < RHS.first;
431    }
432  };
433}
434
435/// CmpCaseVals - Comparison predicate for sorting case values.
436///
437static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
438                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
439  if (lhs.first < rhs.first)
440    return true;
441
442  if (lhs.first == rhs.first &&
443      lhs.second->getCaseLoc().getRawEncoding()
444       < rhs.second->getCaseLoc().getRawEncoding())
445    return true;
446  return false;
447}
448
449/// CmpEnumVals - Comparison predicate for sorting enumeration values.
450///
451static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
452                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
453{
454  return lhs.first < rhs.first;
455}
456
457/// EqEnumVals - Comparison preficate for uniqing enumeration values.
458///
459static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
460                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
461{
462  return lhs.first == rhs.first;
463}
464
465/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
466/// potentially integral-promoted expression @p expr.
467static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
468  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
469    expr = cleanups->getSubExpr();
470  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
471    if (impcast->getCastKind() != CK_IntegralCast) break;
472    expr = impcast->getSubExpr();
473  }
474  return expr->getType();
475}
476
477StmtResult
478Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
479                             Decl *CondVar) {
480  ExprResult CondResult;
481
482  VarDecl *ConditionVar = 0;
483  if (CondVar) {
484    ConditionVar = cast<VarDecl>(CondVar);
485    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
486    if (CondResult.isInvalid())
487      return StmtError();
488
489    Cond = CondResult.release();
490  }
491
492  if (!Cond)
493    return StmtError();
494
495  CondResult = CheckPlaceholderExpr(Cond);
496  if (CondResult.isInvalid())
497    return StmtError();
498
499  CondResult
500    = ConvertToIntegralOrEnumerationType(SwitchLoc, CondResult.take(),
501                          PDiag(diag::err_typecheck_statement_requires_integer),
502                                   PDiag(diag::err_switch_incomplete_class_type)
503                                     << Cond->getSourceRange(),
504                                   PDiag(diag::err_switch_explicit_conversion),
505                                         PDiag(diag::note_switch_conversion),
506                                   PDiag(diag::err_switch_multiple_conversions),
507                                         PDiag(diag::note_switch_conversion),
508                                         PDiag(0));
509  if (CondResult.isInvalid()) return StmtError();
510  Cond = CondResult.take();
511
512  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
513  CondResult = UsualUnaryConversions(Cond);
514  if (CondResult.isInvalid()) return StmtError();
515  Cond = CondResult.take();
516
517  if (!CondVar) {
518    CheckImplicitConversions(Cond, SwitchLoc);
519    CondResult = MaybeCreateExprWithCleanups(Cond);
520    if (CondResult.isInvalid())
521      return StmtError();
522    Cond = CondResult.take();
523  }
524
525  getCurFunction()->setHasBranchIntoScope();
526
527  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
528  getCurFunction()->SwitchStack.push_back(SS);
529  return Owned(SS);
530}
531
532static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
533  if (Val.getBitWidth() < BitWidth)
534    Val = Val.extend(BitWidth);
535  else if (Val.getBitWidth() > BitWidth)
536    Val = Val.trunc(BitWidth);
537  Val.setIsSigned(IsSigned);
538}
539
540StmtResult
541Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
542                            Stmt *BodyStmt) {
543  SwitchStmt *SS = cast<SwitchStmt>(Switch);
544  assert(SS == getCurFunction()->SwitchStack.back() &&
545         "switch stack missing push/pop!");
546
547  SS->setBody(BodyStmt, SwitchLoc);
548  getCurFunction()->SwitchStack.pop_back();
549
550  Expr *CondExpr = SS->getCond();
551  if (!CondExpr) return StmtError();
552
553  QualType CondType = CondExpr->getType();
554
555  Expr *CondExprBeforePromotion = CondExpr;
556  QualType CondTypeBeforePromotion =
557      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
558
559  // C++ 6.4.2.p2:
560  // Integral promotions are performed (on the switch condition).
561  //
562  // A case value unrepresentable by the original switch condition
563  // type (before the promotion) doesn't make sense, even when it can
564  // be represented by the promoted type.  Therefore we need to find
565  // the pre-promotion type of the switch condition.
566  if (!CondExpr->isTypeDependent()) {
567    // We have already converted the expression to an integral or enumeration
568    // type, when we started the switch statement. If we don't have an
569    // appropriate type now, just return an error.
570    if (!CondType->isIntegralOrEnumerationType())
571      return StmtError();
572
573    if (CondExpr->isKnownToHaveBooleanValue()) {
574      // switch(bool_expr) {...} is often a programmer error, e.g.
575      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
576      // One can always use an if statement instead of switch(bool_expr).
577      Diag(SwitchLoc, diag::warn_bool_switch_condition)
578          << CondExpr->getSourceRange();
579    }
580  }
581
582  // Get the bitwidth of the switched-on value before promotions.  We must
583  // convert the integer case values to this width before comparison.
584  bool HasDependentValue
585    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
586  unsigned CondWidth
587    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
588  bool CondIsSigned
589    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
590
591  // Accumulate all of the case values in a vector so that we can sort them
592  // and detect duplicates.  This vector contains the APInt for the case after
593  // it has been converted to the condition type.
594  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
595  CaseValsTy CaseVals;
596
597  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
598  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
599  CaseRangesTy CaseRanges;
600
601  DefaultStmt *TheDefaultStmt = 0;
602
603  bool CaseListIsErroneous = false;
604
605  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
606       SC = SC->getNextSwitchCase()) {
607
608    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
609      if (TheDefaultStmt) {
610        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
611        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
612
613        // FIXME: Remove the default statement from the switch block so that
614        // we'll return a valid AST.  This requires recursing down the AST and
615        // finding it, not something we are set up to do right now.  For now,
616        // just lop the entire switch stmt out of the AST.
617        CaseListIsErroneous = true;
618      }
619      TheDefaultStmt = DS;
620
621    } else {
622      CaseStmt *CS = cast<CaseStmt>(SC);
623
624      // We already verified that the expression has a i-c-e value (C99
625      // 6.8.4.2p3) - get that value now.
626      Expr *Lo = CS->getLHS();
627
628      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
629        HasDependentValue = true;
630        break;
631      }
632
633      llvm::APSInt LoVal = Lo->EvaluateKnownConstInt(Context);
634
635      // Convert the value to the same width/sign as the condition.
636      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
637                                         Lo->getLocStart(),
638                                         diag::warn_case_value_overflow);
639
640      // If the LHS is not the same type as the condition, insert an implicit
641      // cast.
642      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
643      CS->setLHS(Lo);
644
645      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
646      if (CS->getRHS()) {
647        if (CS->getRHS()->isTypeDependent() ||
648            CS->getRHS()->isValueDependent()) {
649          HasDependentValue = true;
650          break;
651        }
652        CaseRanges.push_back(std::make_pair(LoVal, CS));
653      } else
654        CaseVals.push_back(std::make_pair(LoVal, CS));
655    }
656  }
657
658  if (!HasDependentValue) {
659    // If we don't have a default statement, check whether the
660    // condition is constant.
661    llvm::APSInt ConstantCondValue;
662    bool HasConstantCond = false;
663    bool ShouldCheckConstantCond = false;
664    if (!HasDependentValue && !TheDefaultStmt) {
665      Expr::EvalResult Result;
666      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
667      if (HasConstantCond) {
668        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
669        ConstantCondValue = Result.Val.getInt();
670        ShouldCheckConstantCond = true;
671
672        assert(ConstantCondValue.getBitWidth() == CondWidth &&
673               ConstantCondValue.isSigned() == CondIsSigned);
674      }
675    }
676
677    // Sort all the scalar case values so we can easily detect duplicates.
678    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
679
680    if (!CaseVals.empty()) {
681      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
682        if (ShouldCheckConstantCond &&
683            CaseVals[i].first == ConstantCondValue)
684          ShouldCheckConstantCond = false;
685
686        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
687          // If we have a duplicate, report it.
688          Diag(CaseVals[i].second->getLHS()->getLocStart(),
689               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
690          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
691               diag::note_duplicate_case_prev);
692          // FIXME: We really want to remove the bogus case stmt from the
693          // substmt, but we have no way to do this right now.
694          CaseListIsErroneous = true;
695        }
696      }
697    }
698
699    // Detect duplicate case ranges, which usually don't exist at all in
700    // the first place.
701    if (!CaseRanges.empty()) {
702      // Sort all the case ranges by their low value so we can easily detect
703      // overlaps between ranges.
704      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
705
706      // Scan the ranges, computing the high values and removing empty ranges.
707      std::vector<llvm::APSInt> HiVals;
708      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
709        llvm::APSInt &LoVal = CaseRanges[i].first;
710        CaseStmt *CR = CaseRanges[i].second;
711        Expr *Hi = CR->getRHS();
712        llvm::APSInt HiVal = Hi->EvaluateKnownConstInt(Context);
713
714        // Convert the value to the same width/sign as the condition.
715        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
716                                           Hi->getLocStart(),
717                                           diag::warn_case_value_overflow);
718
719        // If the LHS is not the same type as the condition, insert an implicit
720        // cast.
721        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
722        CR->setRHS(Hi);
723
724        // If the low value is bigger than the high value, the case is empty.
725        if (LoVal > HiVal) {
726          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
727            << SourceRange(CR->getLHS()->getLocStart(),
728                           Hi->getLocEnd());
729          CaseRanges.erase(CaseRanges.begin()+i);
730          --i, --e;
731          continue;
732        }
733
734        if (ShouldCheckConstantCond &&
735            LoVal <= ConstantCondValue &&
736            ConstantCondValue <= HiVal)
737          ShouldCheckConstantCond = false;
738
739        HiVals.push_back(HiVal);
740      }
741
742      // Rescan the ranges, looking for overlap with singleton values and other
743      // ranges.  Since the range list is sorted, we only need to compare case
744      // ranges with their neighbors.
745      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
746        llvm::APSInt &CRLo = CaseRanges[i].first;
747        llvm::APSInt &CRHi = HiVals[i];
748        CaseStmt *CR = CaseRanges[i].second;
749
750        // Check to see whether the case range overlaps with any
751        // singleton cases.
752        CaseStmt *OverlapStmt = 0;
753        llvm::APSInt OverlapVal(32);
754
755        // Find the smallest value >= the lower bound.  If I is in the
756        // case range, then we have overlap.
757        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
758                                                  CaseVals.end(), CRLo,
759                                                  CaseCompareFunctor());
760        if (I != CaseVals.end() && I->first < CRHi) {
761          OverlapVal  = I->first;   // Found overlap with scalar.
762          OverlapStmt = I->second;
763        }
764
765        // Find the smallest value bigger than the upper bound.
766        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
767        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
768          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
769          OverlapStmt = (I-1)->second;
770        }
771
772        // Check to see if this case stmt overlaps with the subsequent
773        // case range.
774        if (i && CRLo <= HiVals[i-1]) {
775          OverlapVal  = HiVals[i-1];       // Found overlap with range.
776          OverlapStmt = CaseRanges[i-1].second;
777        }
778
779        if (OverlapStmt) {
780          // If we have a duplicate, report it.
781          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
782            << OverlapVal.toString(10);
783          Diag(OverlapStmt->getLHS()->getLocStart(),
784               diag::note_duplicate_case_prev);
785          // FIXME: We really want to remove the bogus case stmt from the
786          // substmt, but we have no way to do this right now.
787          CaseListIsErroneous = true;
788        }
789      }
790    }
791
792    // Complain if we have a constant condition and we didn't find a match.
793    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
794      // TODO: it would be nice if we printed enums as enums, chars as
795      // chars, etc.
796      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
797        << ConstantCondValue.toString(10)
798        << CondExpr->getSourceRange();
799    }
800
801    // Check to see if switch is over an Enum and handles all of its
802    // values.  We only issue a warning if there is not 'default:', but
803    // we still do the analysis to preserve this information in the AST
804    // (which can be used by flow-based analyes).
805    //
806    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
807
808    // If switch has default case, then ignore it.
809    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
810      const EnumDecl *ED = ET->getDecl();
811      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
812        EnumValsTy;
813      EnumValsTy EnumVals;
814
815      // Gather all enum values, set their type and sort them,
816      // allowing easier comparison with CaseVals.
817      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
818           EDI != ED->enumerator_end(); ++EDI) {
819        llvm::APSInt Val = EDI->getInitVal();
820        AdjustAPSInt(Val, CondWidth, CondIsSigned);
821        EnumVals.push_back(std::make_pair(Val, *EDI));
822      }
823      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
824      EnumValsTy::iterator EIend =
825        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
826
827      // See which case values aren't in enum.
828      // TODO: we might want to check whether case values are out of the
829      // enum even if we don't want to check whether all cases are handled.
830      if (!TheDefaultStmt) {
831        EnumValsTy::const_iterator EI = EnumVals.begin();
832        for (CaseValsTy::const_iterator CI = CaseVals.begin();
833             CI != CaseVals.end(); CI++) {
834          while (EI != EIend && EI->first < CI->first)
835            EI++;
836          if (EI == EIend || EI->first > CI->first)
837            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
838              << ED->getDeclName();
839        }
840        // See which of case ranges aren't in enum
841        EI = EnumVals.begin();
842        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
843             RI != CaseRanges.end() && EI != EIend; RI++) {
844          while (EI != EIend && EI->first < RI->first)
845            EI++;
846
847          if (EI == EIend || EI->first != RI->first) {
848            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
849              << ED->getDeclName();
850          }
851
852          llvm::APSInt Hi =
853            RI->second->getRHS()->EvaluateKnownConstInt(Context);
854          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
855          while (EI != EIend && EI->first < Hi)
856            EI++;
857          if (EI == EIend || EI->first != Hi)
858            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
859              << ED->getDeclName();
860        }
861      }
862
863      // Check which enum vals aren't in switch
864      CaseValsTy::const_iterator CI = CaseVals.begin();
865      CaseRangesTy::const_iterator RI = CaseRanges.begin();
866      bool hasCasesNotInSwitch = false;
867
868      SmallVector<DeclarationName,8> UnhandledNames;
869
870      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
871        // Drop unneeded case values
872        llvm::APSInt CIVal;
873        while (CI != CaseVals.end() && CI->first < EI->first)
874          CI++;
875
876        if (CI != CaseVals.end() && CI->first == EI->first)
877          continue;
878
879        // Drop unneeded case ranges
880        for (; RI != CaseRanges.end(); RI++) {
881          llvm::APSInt Hi =
882            RI->second->getRHS()->EvaluateKnownConstInt(Context);
883          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
884          if (EI->first <= Hi)
885            break;
886        }
887
888        if (RI == CaseRanges.end() || EI->first < RI->first) {
889          hasCasesNotInSwitch = true;
890          if (!TheDefaultStmt)
891            UnhandledNames.push_back(EI->second->getDeclName());
892        }
893      }
894
895      // Produce a nice diagnostic if multiple values aren't handled.
896      switch (UnhandledNames.size()) {
897      case 0: break;
898      case 1:
899        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
900          << UnhandledNames[0];
901        break;
902      case 2:
903        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
904          << UnhandledNames[0] << UnhandledNames[1];
905        break;
906      case 3:
907        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
908          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
909        break;
910      default:
911        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
912          << (unsigned)UnhandledNames.size()
913          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
914        break;
915      }
916
917      if (!hasCasesNotInSwitch)
918        SS->setAllEnumCasesCovered();
919    }
920  }
921
922  // FIXME: If the case list was broken is some way, we don't have a good system
923  // to patch it up.  Instead, just return the whole substmt as broken.
924  if (CaseListIsErroneous)
925    return StmtError();
926
927  return Owned(SS);
928}
929
930StmtResult
931Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
932                     Decl *CondVar, Stmt *Body) {
933  ExprResult CondResult(Cond.release());
934
935  VarDecl *ConditionVar = 0;
936  if (CondVar) {
937    ConditionVar = cast<VarDecl>(CondVar);
938    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
939    if (CondResult.isInvalid())
940      return StmtError();
941  }
942  Expr *ConditionExpr = CondResult.take();
943  if (!ConditionExpr)
944    return StmtError();
945
946  DiagnoseUnusedExprResult(Body);
947
948  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
949                                       Body, WhileLoc));
950}
951
952StmtResult
953Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
954                  SourceLocation WhileLoc, SourceLocation CondLParen,
955                  Expr *Cond, SourceLocation CondRParen) {
956  assert(Cond && "ActOnDoStmt(): missing expression");
957
958  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
959  if (CondResult.isInvalid() || CondResult.isInvalid())
960    return StmtError();
961  Cond = CondResult.take();
962
963  CheckImplicitConversions(Cond, DoLoc);
964  CondResult = MaybeCreateExprWithCleanups(Cond);
965  if (CondResult.isInvalid())
966    return StmtError();
967  Cond = CondResult.take();
968
969  DiagnoseUnusedExprResult(Body);
970
971  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
972}
973
974StmtResult
975Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
976                   Stmt *First, FullExprArg second, Decl *secondVar,
977                   FullExprArg third,
978                   SourceLocation RParenLoc, Stmt *Body) {
979  if (!getLangOptions().CPlusPlus) {
980    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
981      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
982      // declare identifiers for objects having storage class 'auto' or
983      // 'register'.
984      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
985           DI!=DE; ++DI) {
986        VarDecl *VD = dyn_cast<VarDecl>(*DI);
987        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
988          VD = 0;
989        if (VD == 0)
990          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
991        // FIXME: mark decl erroneous!
992      }
993    }
994  }
995
996  ExprResult SecondResult(second.release());
997  VarDecl *ConditionVar = 0;
998  if (secondVar) {
999    ConditionVar = cast<VarDecl>(secondVar);
1000    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1001    if (SecondResult.isInvalid())
1002      return StmtError();
1003  }
1004
1005  Expr *Third  = third.release().takeAs<Expr>();
1006
1007  DiagnoseUnusedExprResult(First);
1008  DiagnoseUnusedExprResult(Third);
1009  DiagnoseUnusedExprResult(Body);
1010
1011  return Owned(new (Context) ForStmt(Context, First,
1012                                     SecondResult.take(), ConditionVar,
1013                                     Third, Body, ForLoc, LParenLoc,
1014                                     RParenLoc));
1015}
1016
1017/// In an Objective C collection iteration statement:
1018///   for (x in y)
1019/// x can be an arbitrary l-value expression.  Bind it up as a
1020/// full-expression.
1021StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1022  CheckImplicitConversions(E);
1023  ExprResult Result = MaybeCreateExprWithCleanups(E);
1024  if (Result.isInvalid()) return StmtError();
1025  return Owned(static_cast<Stmt*>(Result.get()));
1026}
1027
1028ExprResult
1029Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1030  assert(collection);
1031
1032  // Bail out early if we've got a type-dependent expression.
1033  if (collection->isTypeDependent()) return Owned(collection);
1034
1035  // Perform normal l-value conversion.
1036  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1037  if (result.isInvalid())
1038    return ExprError();
1039  collection = result.take();
1040
1041  // The operand needs to have object-pointer type.
1042  // TODO: should we do a contextual conversion?
1043  const ObjCObjectPointerType *pointerType =
1044    collection->getType()->getAs<ObjCObjectPointerType>();
1045  if (!pointerType)
1046    return Diag(forLoc, diag::err_collection_expr_type)
1047             << collection->getType() << collection->getSourceRange();
1048
1049  // Check that the operand provides
1050  //   - countByEnumeratingWithState:objects:count:
1051  const ObjCObjectType *objectType = pointerType->getObjectType();
1052  ObjCInterfaceDecl *iface = objectType->getInterface();
1053
1054  // If we have a forward-declared type, we can't do this check.
1055  if (iface && iface->isForwardDecl()) {
1056    // This is ill-formed under ARC.
1057    if (getLangOptions().ObjCAutoRefCount) {
1058      Diag(forLoc, diag::err_arc_collection_forward)
1059        << pointerType->getPointeeType() << collection->getSourceRange();
1060    }
1061
1062    // Otherwise, if we have any useful type information, check that
1063    // the type declares the appropriate method.
1064  } else if (iface || !objectType->qual_empty()) {
1065    IdentifierInfo *selectorIdents[] = {
1066      &Context.Idents.get("countByEnumeratingWithState"),
1067      &Context.Idents.get("objects"),
1068      &Context.Idents.get("count")
1069    };
1070    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1071
1072    ObjCMethodDecl *method = 0;
1073
1074    // If there's an interface, look in both the public and private APIs.
1075    if (iface) {
1076      method = iface->lookupInstanceMethod(selector);
1077      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1078    }
1079
1080    // Also check protocol qualifiers.
1081    if (!method)
1082      method = LookupMethodInQualifiedType(selector, pointerType,
1083                                           /*instance*/ true);
1084
1085    // If we didn't find it anywhere, give up.
1086    if (!method) {
1087      Diag(forLoc, diag::warn_collection_expr_type)
1088        << collection->getType() << selector << collection->getSourceRange();
1089    }
1090
1091    // TODO: check for an incompatible signature?
1092  }
1093
1094  // Wrap up any cleanups in the expression.
1095  return Owned(MaybeCreateExprWithCleanups(collection));
1096}
1097
1098StmtResult
1099Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1100                                 SourceLocation LParenLoc,
1101                                 Stmt *First, Expr *Second,
1102                                 SourceLocation RParenLoc, Stmt *Body) {
1103  if (First) {
1104    QualType FirstType;
1105    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1106      if (!DS->isSingleDecl())
1107        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1108                         diag::err_toomany_element_decls));
1109
1110      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1111      FirstType = D->getType();
1112      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1113      // declare identifiers for objects having storage class 'auto' or
1114      // 'register'.
1115      if (!D->hasLocalStorage())
1116        return StmtError(Diag(D->getLocation(),
1117                              diag::err_non_variable_decl_in_for));
1118    } else {
1119      Expr *FirstE = cast<Expr>(First);
1120      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1121        return StmtError(Diag(First->getLocStart(),
1122                   diag::err_selector_element_not_lvalue)
1123          << First->getSourceRange());
1124
1125      FirstType = static_cast<Expr*>(First)->getType();
1126    }
1127    if (!FirstType->isDependentType() &&
1128        !FirstType->isObjCObjectPointerType() &&
1129        !FirstType->isBlockPointerType())
1130        Diag(ForLoc, diag::err_selector_element_type)
1131          << FirstType << First->getSourceRange();
1132  }
1133
1134  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1135                                                   ForLoc, RParenLoc));
1136}
1137
1138namespace {
1139
1140enum BeginEndFunction {
1141  BEF_begin,
1142  BEF_end
1143};
1144
1145/// Build a variable declaration for a for-range statement.
1146static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1147                                     QualType Type, const char *Name) {
1148  DeclContext *DC = SemaRef.CurContext;
1149  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1150  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1151  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1152                                  TInfo, SC_Auto, SC_None);
1153  Decl->setImplicit();
1154  return Decl;
1155}
1156
1157/// Finish building a variable declaration for a for-range statement.
1158/// \return true if an error occurs.
1159static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1160                                  SourceLocation Loc, int diag) {
1161  // Deduce the type for the iterator variable now rather than leaving it to
1162  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1163  TypeSourceInfo *InitTSI = 0;
1164  if (Init->getType()->isVoidType() ||
1165      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1166    SemaRef.Diag(Loc, diag) << Init->getType();
1167  if (!InitTSI) {
1168    Decl->setInvalidDecl();
1169    return true;
1170  }
1171  Decl->setTypeSourceInfo(InitTSI);
1172  Decl->setType(InitTSI->getType());
1173
1174  // In ARC, infer lifetime.
1175  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1176  // we're doing the equivalent of fast iteration.
1177  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1178      SemaRef.inferObjCARCLifetime(Decl))
1179    Decl->setInvalidDecl();
1180
1181  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1182                               /*TypeMayContainAuto=*/false);
1183  SemaRef.FinalizeDeclaration(Decl);
1184  SemaRef.CurContext->addHiddenDecl(Decl);
1185  return false;
1186}
1187
1188/// Produce a note indicating which begin/end function was implicitly called
1189/// by a C++0x for-range statement. This is often not obvious from the code,
1190/// nor from the diagnostics produced when analysing the implicit expressions
1191/// required in a for-range statement.
1192void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1193                                  BeginEndFunction BEF) {
1194  CallExpr *CE = dyn_cast<CallExpr>(E);
1195  if (!CE)
1196    return;
1197  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1198  if (!D)
1199    return;
1200  SourceLocation Loc = D->getLocation();
1201
1202  std::string Description;
1203  bool IsTemplate = false;
1204  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1205    Description = SemaRef.getTemplateArgumentBindingsText(
1206      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1207    IsTemplate = true;
1208  }
1209
1210  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1211    << BEF << IsTemplate << Description << E->getType();
1212}
1213
1214/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1215/// given LookupResult is non-empty, it is assumed to describe a member which
1216/// will be invoked. Otherwise, the function will be found via argument
1217/// dependent lookup.
1218static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1219                                            SourceLocation Loc,
1220                                            VarDecl *Decl,
1221                                            BeginEndFunction BEF,
1222                                            const DeclarationNameInfo &NameInfo,
1223                                            LookupResult &MemberLookup,
1224                                            Expr *Range) {
1225  ExprResult CallExpr;
1226  if (!MemberLookup.empty()) {
1227    ExprResult MemberRef =
1228      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1229                                       /*IsPtr=*/false, CXXScopeSpec(),
1230                                       /*Qualifier=*/0, MemberLookup,
1231                                       /*TemplateArgs=*/0);
1232    if (MemberRef.isInvalid())
1233      return ExprError();
1234    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1235                                     Loc, 0);
1236    if (CallExpr.isInvalid())
1237      return ExprError();
1238  } else {
1239    UnresolvedSet<0> FoundNames;
1240    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1241    // std is an associated namespace.
1242    UnresolvedLookupExpr *Fn =
1243      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1244                                   NestedNameSpecifierLoc(), NameInfo,
1245                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1246                                   FoundNames.begin(), FoundNames.end(),
1247                                   /*LookInStdNamespace=*/true);
1248    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1249                                               0);
1250    if (CallExpr.isInvalid()) {
1251      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1252        << Range->getType();
1253      return ExprError();
1254    }
1255  }
1256  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1257                            diag::err_for_range_iter_deduction_failure)) {
1258    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1259    return ExprError();
1260  }
1261  return CallExpr;
1262}
1263
1264}
1265
1266/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1267///
1268/// C++0x [stmt.ranged]:
1269///   A range-based for statement is equivalent to
1270///
1271///   {
1272///     auto && __range = range-init;
1273///     for ( auto __begin = begin-expr,
1274///           __end = end-expr;
1275///           __begin != __end;
1276///           ++__begin ) {
1277///       for-range-declaration = *__begin;
1278///       statement
1279///     }
1280///   }
1281///
1282/// The body of the loop is not available yet, since it cannot be analysed until
1283/// we have determined the type of the for-range-declaration.
1284StmtResult
1285Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1286                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1287                           SourceLocation RParenLoc) {
1288  if (!First || !Range)
1289    return StmtError();
1290
1291  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1292  assert(DS && "first part of for range not a decl stmt");
1293
1294  if (!DS->isSingleDecl()) {
1295    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1296    return StmtError();
1297  }
1298  if (DS->getSingleDecl()->isInvalidDecl())
1299    return StmtError();
1300
1301  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1302    return StmtError();
1303
1304  // Build  auto && __range = range-init
1305  SourceLocation RangeLoc = Range->getLocStart();
1306  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1307                                           Context.getAutoRRefDeductType(),
1308                                           "__range");
1309  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1310                            diag::err_for_range_deduction_failure))
1311    return StmtError();
1312
1313  // Claim the type doesn't contain auto: we've already done the checking.
1314  DeclGroupPtrTy RangeGroup =
1315    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1316  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1317  if (RangeDecl.isInvalid())
1318    return StmtError();
1319
1320  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1321                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1322                              RParenLoc);
1323}
1324
1325/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1326StmtResult
1327Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1328                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1329                           Expr *Inc, Stmt *LoopVarDecl,
1330                           SourceLocation RParenLoc) {
1331  Scope *S = getCurScope();
1332
1333  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1334  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1335  QualType RangeVarType = RangeVar->getType();
1336
1337  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1338  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1339
1340  StmtResult BeginEndDecl = BeginEnd;
1341  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1342
1343  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1344    SourceLocation RangeLoc = RangeVar->getLocation();
1345
1346    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1347
1348    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1349                                                VK_LValue, ColonLoc);
1350    if (BeginRangeRef.isInvalid())
1351      return StmtError();
1352
1353    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1354                                              VK_LValue, ColonLoc);
1355    if (EndRangeRef.isInvalid())
1356      return StmtError();
1357
1358    QualType AutoType = Context.getAutoDeductType();
1359    Expr *Range = RangeVar->getInit();
1360    if (!Range)
1361      return StmtError();
1362    QualType RangeType = Range->getType();
1363
1364    if (RequireCompleteType(RangeLoc, RangeType,
1365                            PDiag(diag::err_for_range_incomplete_type)))
1366      return StmtError();
1367
1368    // Build auto __begin = begin-expr, __end = end-expr.
1369    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1370                                             "__begin");
1371    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1372                                           "__end");
1373
1374    // Build begin-expr and end-expr and attach to __begin and __end variables.
1375    ExprResult BeginExpr, EndExpr;
1376    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1377      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1378      //   __range + __bound, respectively, where __bound is the array bound. If
1379      //   _RangeT is an array of unknown size or an array of incomplete type,
1380      //   the program is ill-formed;
1381
1382      // begin-expr is __range.
1383      BeginExpr = BeginRangeRef;
1384      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1385                                diag::err_for_range_iter_deduction_failure)) {
1386        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1387        return StmtError();
1388      }
1389
1390      // Find the array bound.
1391      ExprResult BoundExpr;
1392      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1393        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1394                                                 Context.getPointerDiffType(),
1395                                                 RangeLoc));
1396      else if (const VariableArrayType *VAT =
1397               dyn_cast<VariableArrayType>(UnqAT))
1398        BoundExpr = VAT->getSizeExpr();
1399      else {
1400        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1401        // UnqAT is not incomplete and Range is not type-dependent.
1402        llvm_unreachable("Unexpected array type in for-range");
1403      }
1404
1405      // end-expr is __range + __bound.
1406      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1407                           BoundExpr.get());
1408      if (EndExpr.isInvalid())
1409        return StmtError();
1410      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1411                                diag::err_for_range_iter_deduction_failure)) {
1412        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1413        return StmtError();
1414      }
1415    } else {
1416      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1417                                        ColonLoc);
1418      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1419                                      ColonLoc);
1420
1421      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1422      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1423
1424      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1425        // - if _RangeT is a class type, the unqualified-ids begin and end are
1426        //   looked up in the scope of class _RangeT as if by class member access
1427        //   lookup (3.4.5), and if either (or both) finds at least one
1428        //   declaration, begin-expr and end-expr are __range.begin() and
1429        //   __range.end(), respectively;
1430        LookupQualifiedName(BeginMemberLookup, D);
1431        LookupQualifiedName(EndMemberLookup, D);
1432
1433        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1434          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1435            << RangeType << BeginMemberLookup.empty();
1436          return StmtError();
1437        }
1438      } else {
1439        // - otherwise, begin-expr and end-expr are begin(__range) and
1440        //   end(__range), respectively, where begin and end are looked up with
1441        //   argument-dependent lookup (3.4.2). For the purposes of this name
1442        //   lookup, namespace std is an associated namespace.
1443      }
1444
1445      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1446                                            BEF_begin, BeginNameInfo,
1447                                            BeginMemberLookup,
1448                                            BeginRangeRef.get());
1449      if (BeginExpr.isInvalid())
1450        return StmtError();
1451
1452      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1453                                          BEF_end, EndNameInfo,
1454                                          EndMemberLookup, EndRangeRef.get());
1455      if (EndExpr.isInvalid())
1456        return StmtError();
1457    }
1458
1459    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1460    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1461    if (!Context.hasSameType(BeginType, EndType)) {
1462      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1463        << BeginType << EndType;
1464      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1465      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1466    }
1467
1468    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1469    // Claim the type doesn't contain auto: we've already done the checking.
1470    DeclGroupPtrTy BeginEndGroup =
1471      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1472    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1473
1474    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1475    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1476                                           VK_LValue, ColonLoc);
1477    if (BeginRef.isInvalid())
1478      return StmtError();
1479
1480    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1481                                         VK_LValue, ColonLoc);
1482    if (EndRef.isInvalid())
1483      return StmtError();
1484
1485    // Build and check __begin != __end expression.
1486    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1487                           BeginRef.get(), EndRef.get());
1488    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1489    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1490    if (NotEqExpr.isInvalid()) {
1491      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1492      if (!Context.hasSameType(BeginType, EndType))
1493        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1494      return StmtError();
1495    }
1496
1497    // Build and check ++__begin expression.
1498    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1499                                VK_LValue, ColonLoc);
1500    if (BeginRef.isInvalid())
1501      return StmtError();
1502
1503    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1504    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1505    if (IncrExpr.isInvalid()) {
1506      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1507      return StmtError();
1508    }
1509
1510    // Build and check *__begin  expression.
1511    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1512                                VK_LValue, ColonLoc);
1513    if (BeginRef.isInvalid())
1514      return StmtError();
1515
1516    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1517    if (DerefExpr.isInvalid()) {
1518      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1519      return StmtError();
1520    }
1521
1522    // Attach  *__begin  as initializer for VD.
1523    if (!LoopVar->isInvalidDecl()) {
1524      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1525                           /*TypeMayContainAuto=*/true);
1526      if (LoopVar->isInvalidDecl())
1527        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1528    }
1529  } else {
1530    // The range is implicitly used as a placeholder when it is dependent.
1531    RangeVar->setUsed();
1532  }
1533
1534  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1535                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1536                                             NotEqExpr.take(), IncrExpr.take(),
1537                                             LoopVarDS, /*Body=*/0, ForLoc,
1538                                             ColonLoc, RParenLoc));
1539}
1540
1541/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1542/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1543/// body cannot be performed until after the type of the range variable is
1544/// determined.
1545StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1546  if (!S || !B)
1547    return StmtError();
1548
1549  cast<CXXForRangeStmt>(S)->setBody(B);
1550  return S;
1551}
1552
1553StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1554                               SourceLocation LabelLoc,
1555                               LabelDecl *TheDecl) {
1556  getCurFunction()->setHasBranchIntoScope();
1557  TheDecl->setUsed();
1558  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1559}
1560
1561StmtResult
1562Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1563                            Expr *E) {
1564  // Convert operand to void*
1565  if (!E->isTypeDependent()) {
1566    QualType ETy = E->getType();
1567    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1568    ExprResult ExprRes = Owned(E);
1569    AssignConvertType ConvTy =
1570      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1571    if (ExprRes.isInvalid())
1572      return StmtError();
1573    E = ExprRes.take();
1574    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1575      return StmtError();
1576  }
1577
1578  getCurFunction()->setHasIndirectGoto();
1579
1580  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1581}
1582
1583StmtResult
1584Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1585  Scope *S = CurScope->getContinueParent();
1586  if (!S) {
1587    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1588    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1589  }
1590
1591  return Owned(new (Context) ContinueStmt(ContinueLoc));
1592}
1593
1594StmtResult
1595Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1596  Scope *S = CurScope->getBreakParent();
1597  if (!S) {
1598    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1599    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1600  }
1601
1602  return Owned(new (Context) BreakStmt(BreakLoc));
1603}
1604
1605/// \brief Determine whether the given expression is a candidate for
1606/// copy elision in either a return statement or a throw expression.
1607///
1608/// \param ReturnType If we're determining the copy elision candidate for
1609/// a return statement, this is the return type of the function. If we're
1610/// determining the copy elision candidate for a throw expression, this will
1611/// be a NULL type.
1612///
1613/// \param E The expression being returned from the function or block, or
1614/// being thrown.
1615///
1616/// \param AllowFunctionParameter Whether we allow function parameters to
1617/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1618/// we re-use this logic to determine whether we should try to move as part of
1619/// a return or throw (which does allow function parameters).
1620///
1621/// \returns The NRVO candidate variable, if the return statement may use the
1622/// NRVO, or NULL if there is no such candidate.
1623const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1624                                             Expr *E,
1625                                             bool AllowFunctionParameter) {
1626  QualType ExprType = E->getType();
1627  // - in a return statement in a function with ...
1628  // ... a class return type ...
1629  if (!ReturnType.isNull()) {
1630    if (!ReturnType->isRecordType())
1631      return 0;
1632    // ... the same cv-unqualified type as the function return type ...
1633    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1634      return 0;
1635  }
1636
1637  // ... the expression is the name of a non-volatile automatic object
1638  // (other than a function or catch-clause parameter)) ...
1639  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1640  if (!DR)
1641    return 0;
1642  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1643  if (!VD)
1644    return 0;
1645
1646  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1647      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1648      !VD->getType().isVolatileQualified() &&
1649      ((VD->getKind() == Decl::Var) ||
1650       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1651    return VD;
1652
1653  return 0;
1654}
1655
1656/// \brief Perform the initialization of a potentially-movable value, which
1657/// is the result of return value.
1658///
1659/// This routine implements C++0x [class.copy]p33, which attempts to treat
1660/// returned lvalues as rvalues in certain cases (to prefer move construction),
1661/// then falls back to treating them as lvalues if that failed.
1662ExprResult
1663Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1664                                      const VarDecl *NRVOCandidate,
1665                                      QualType ResultType,
1666                                      Expr *Value,
1667                                      bool AllowNRVO) {
1668  // C++0x [class.copy]p33:
1669  //   When the criteria for elision of a copy operation are met or would
1670  //   be met save for the fact that the source object is a function
1671  //   parameter, and the object to be copied is designated by an lvalue,
1672  //   overload resolution to select the constructor for the copy is first
1673  //   performed as if the object were designated by an rvalue.
1674  ExprResult Res = ExprError();
1675  if (AllowNRVO &&
1676      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1677    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1678                              Value->getType(), CK_LValueToRValue,
1679                              Value, VK_XValue);
1680
1681    Expr *InitExpr = &AsRvalue;
1682    InitializationKind Kind
1683      = InitializationKind::CreateCopy(Value->getLocStart(),
1684                                       Value->getLocStart());
1685    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1686
1687    //   [...] If overload resolution fails, or if the type of the first
1688    //   parameter of the selected constructor is not an rvalue reference
1689    //   to the object's type (possibly cv-qualified), overload resolution
1690    //   is performed again, considering the object as an lvalue.
1691    if (Seq) {
1692      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1693           StepEnd = Seq.step_end();
1694           Step != StepEnd; ++Step) {
1695        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1696          continue;
1697
1698        CXXConstructorDecl *Constructor
1699        = cast<CXXConstructorDecl>(Step->Function.Function);
1700
1701        const RValueReferenceType *RRefType
1702          = Constructor->getParamDecl(0)->getType()
1703                                                 ->getAs<RValueReferenceType>();
1704
1705        // If we don't meet the criteria, break out now.
1706        if (!RRefType ||
1707            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1708                            Context.getTypeDeclType(Constructor->getParent())))
1709          break;
1710
1711        // Promote "AsRvalue" to the heap, since we now need this
1712        // expression node to persist.
1713        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1714                                         CK_LValueToRValue, Value, 0,
1715                                         VK_XValue);
1716
1717        // Complete type-checking the initialization of the return type
1718        // using the constructor we found.
1719        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1720      }
1721    }
1722  }
1723
1724  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1725  // above, or overload resolution failed. Either way, we need to try
1726  // (again) now with the return value expression as written.
1727  if (Res.isInvalid())
1728    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1729
1730  return Res;
1731}
1732
1733/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1734///
1735StmtResult
1736Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1737  // If this is the first return we've seen in the block, infer the type of
1738  // the block from it.
1739  BlockScopeInfo *CurBlock = getCurBlock();
1740  if (CurBlock->ReturnType.isNull()) {
1741    if (RetValExp) {
1742      // Don't call UsualUnaryConversions(), since we don't want to do
1743      // integer promotions here.
1744      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1745      if (Result.isInvalid())
1746        return StmtError();
1747      RetValExp = Result.take();
1748
1749      if (!RetValExp->isTypeDependent()) {
1750        CurBlock->ReturnType = RetValExp->getType();
1751        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1752          // We have to remove a 'const' added to copied-in variable which was
1753          // part of the implementation spec. and not the actual qualifier for
1754          // the variable.
1755          if (CDRE->isConstQualAdded())
1756            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1757        }
1758      } else
1759        CurBlock->ReturnType = Context.DependentTy;
1760    } else
1761      CurBlock->ReturnType = Context.VoidTy;
1762  }
1763  QualType FnRetType = CurBlock->ReturnType;
1764
1765  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1766    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1767      << getCurFunctionOrMethodDecl()->getDeclName();
1768    return StmtError();
1769  }
1770
1771  // Otherwise, verify that this result type matches the previous one.  We are
1772  // pickier with blocks than for normal functions because we don't have GCC
1773  // compatibility to worry about here.
1774  const VarDecl *NRVOCandidate = 0;
1775  if (FnRetType->isDependentType()) {
1776    // Delay processing for now.  TODO: there are lots of dependent
1777    // types we can conclusively prove aren't void.
1778  } else if (FnRetType->isVoidType()) {
1779    if (RetValExp &&
1780        !(getLangOptions().CPlusPlus &&
1781          (RetValExp->isTypeDependent() ||
1782           RetValExp->getType()->isVoidType()))) {
1783      Diag(ReturnLoc, diag::err_return_block_has_expr);
1784      RetValExp = 0;
1785    }
1786  } else if (!RetValExp) {
1787    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1788  } else if (!RetValExp->isTypeDependent()) {
1789    // we have a non-void block with an expression, continue checking
1790
1791    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1792    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1793    // function return.
1794
1795    // In C++ the return statement is handled via a copy initialization.
1796    // the C version of which boils down to CheckSingleAssignmentConstraints.
1797    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1798    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1799                                                                   FnRetType,
1800                                                           NRVOCandidate != 0);
1801    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1802                                                     FnRetType, RetValExp);
1803    if (Res.isInvalid()) {
1804      // FIXME: Cleanup temporaries here, anyway?
1805      return StmtError();
1806    }
1807    RetValExp = Res.take();
1808    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1809  }
1810
1811  if (RetValExp) {
1812    CheckImplicitConversions(RetValExp, ReturnLoc);
1813    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1814  }
1815  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1816                                                NRVOCandidate);
1817
1818  // If we need to check for the named return value optimization, save the
1819  // return statement in our scope for later processing.
1820  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1821      !CurContext->isDependentContext())
1822    FunctionScopes.back()->Returns.push_back(Result);
1823
1824  return Owned(Result);
1825}
1826
1827StmtResult
1828Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1829  // Check for unexpanded parameter packs.
1830  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1831    return StmtError();
1832
1833  if (getCurBlock())
1834    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1835
1836  QualType FnRetType;
1837  QualType DeclaredRetType;
1838  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1839    FnRetType = FD->getResultType();
1840    DeclaredRetType = FnRetType;
1841    if (FD->hasAttr<NoReturnAttr>() ||
1842        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1843      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1844        << getCurFunctionOrMethodDecl()->getDeclName();
1845  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1846    DeclaredRetType = MD->getResultType();
1847    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1848      // In the implementation of a method with a related return type, the
1849      // type used to type-check the validity of return statements within the
1850      // method body is a pointer to the type of the class being implemented.
1851      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1852      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1853    } else {
1854      FnRetType = DeclaredRetType;
1855    }
1856  } else // If we don't have a function/method context, bail.
1857    return StmtError();
1858
1859  ReturnStmt *Result = 0;
1860  if (FnRetType->isVoidType()) {
1861    if (RetValExp) {
1862      if (!RetValExp->isTypeDependent()) {
1863        // C99 6.8.6.4p1 (ext_ since GCC warns)
1864        unsigned D = diag::ext_return_has_expr;
1865        if (RetValExp->getType()->isVoidType())
1866          D = diag::ext_return_has_void_expr;
1867        else {
1868          ExprResult Result = Owned(RetValExp);
1869          Result = IgnoredValueConversions(Result.take());
1870          if (Result.isInvalid())
1871            return StmtError();
1872          RetValExp = Result.take();
1873          RetValExp = ImpCastExprToType(RetValExp,
1874                                        Context.VoidTy, CK_ToVoid).take();
1875        }
1876
1877        // return (some void expression); is legal in C++.
1878        if (D != diag::ext_return_has_void_expr ||
1879            !getLangOptions().CPlusPlus) {
1880          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1881
1882          int FunctionKind = 0;
1883          if (isa<ObjCMethodDecl>(CurDecl))
1884            FunctionKind = 1;
1885          else if (isa<CXXConstructorDecl>(CurDecl))
1886            FunctionKind = 2;
1887          else if (isa<CXXDestructorDecl>(CurDecl))
1888            FunctionKind = 3;
1889
1890          Diag(ReturnLoc, D)
1891            << CurDecl->getDeclName() << FunctionKind
1892            << RetValExp->getSourceRange();
1893        }
1894      }
1895
1896      CheckImplicitConversions(RetValExp, ReturnLoc);
1897      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1898    }
1899
1900    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1901  } else if (!RetValExp && !FnRetType->isDependentType()) {
1902    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1903    // C99 6.8.6.4p1 (ext_ since GCC warns)
1904    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1905
1906    if (FunctionDecl *FD = getCurFunctionDecl())
1907      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1908    else
1909      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1910    Result = new (Context) ReturnStmt(ReturnLoc);
1911  } else {
1912    const VarDecl *NRVOCandidate = 0;
1913    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1914      // we have a non-void function with an expression, continue checking
1915
1916      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1917      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1918      // function return.
1919
1920      // In C++ the return statement is handled via a copy initialization,
1921      // the C version of which boils down to CheckSingleAssignmentConstraints.
1922      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1923      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1924                                                                     FnRetType,
1925                                                            NRVOCandidate != 0);
1926      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1927                                                       FnRetType, RetValExp);
1928      if (Res.isInvalid()) {
1929        // FIXME: Cleanup temporaries here, anyway?
1930        return StmtError();
1931      }
1932
1933      RetValExp = Res.takeAs<Expr>();
1934      if (RetValExp)
1935        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1936    }
1937
1938    if (RetValExp) {
1939      // If we type-checked an Objective-C method's return type based
1940      // on a related return type, we may need to adjust the return
1941      // type again. Do so now.
1942      if (DeclaredRetType != FnRetType) {
1943        ExprResult result = PerformImplicitConversion(RetValExp,
1944                                                      DeclaredRetType,
1945                                                      AA_Returning);
1946        if (result.isInvalid()) return StmtError();
1947        RetValExp = result.take();
1948      }
1949
1950      CheckImplicitConversions(RetValExp, ReturnLoc);
1951      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1952    }
1953    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1954  }
1955
1956  // If we need to check for the named return value optimization, save the
1957  // return statement in our scope for later processing.
1958  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1959      !CurContext->isDependentContext())
1960    FunctionScopes.back()->Returns.push_back(Result);
1961
1962  return Owned(Result);
1963}
1964
1965/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1966/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1967/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1968/// provide a strong guidance to not use it.
1969///
1970/// This method checks to see if the argument is an acceptable l-value and
1971/// returns false if it is a case we can handle.
1972static bool CheckAsmLValue(const Expr *E, Sema &S) {
1973  // Type dependent expressions will be checked during instantiation.
1974  if (E->isTypeDependent())
1975    return false;
1976
1977  if (E->isLValue())
1978    return false;  // Cool, this is an lvalue.
1979
1980  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1981  // are supposed to allow.
1982  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1983  if (E != E2 && E2->isLValue()) {
1984    if (!S.getLangOptions().HeinousExtensions)
1985      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1986        << E->getSourceRange();
1987    else
1988      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1989        << E->getSourceRange();
1990    // Accept, even if we emitted an error diagnostic.
1991    return false;
1992  }
1993
1994  // None of the above, just randomly invalid non-lvalue.
1995  return true;
1996}
1997
1998/// isOperandMentioned - Return true if the specified operand # is mentioned
1999/// anywhere in the decomposed asm string.
2000static bool isOperandMentioned(unsigned OpNo,
2001                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2002  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2003    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2004    if (!Piece.isOperand()) continue;
2005
2006    // If this is a reference to the input and if the input was the smaller
2007    // one, then we have to reject this asm.
2008    if (Piece.getOperandNo() == OpNo)
2009      return true;
2010  }
2011
2012  return false;
2013}
2014
2015StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2016                              bool IsVolatile, unsigned NumOutputs,
2017                              unsigned NumInputs, IdentifierInfo **Names,
2018                              MultiExprArg constraints, MultiExprArg exprs,
2019                              Expr *asmString, MultiExprArg clobbers,
2020                              SourceLocation RParenLoc, bool MSAsm) {
2021  unsigned NumClobbers = clobbers.size();
2022  StringLiteral **Constraints =
2023    reinterpret_cast<StringLiteral**>(constraints.get());
2024  Expr **Exprs = exprs.get();
2025  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2026  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2027
2028  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2029
2030  // The parser verifies that there is a string literal here.
2031  if (!AsmString->isAscii())
2032    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2033      << AsmString->getSourceRange());
2034
2035  for (unsigned i = 0; i != NumOutputs; i++) {
2036    StringLiteral *Literal = Constraints[i];
2037    if (!Literal->isAscii())
2038      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2039        << Literal->getSourceRange());
2040
2041    StringRef OutputName;
2042    if (Names[i])
2043      OutputName = Names[i]->getName();
2044
2045    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2046    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2047      return StmtError(Diag(Literal->getLocStart(),
2048                            diag::err_asm_invalid_output_constraint)
2049                       << Info.getConstraintStr());
2050
2051    // Check that the output exprs are valid lvalues.
2052    Expr *OutputExpr = Exprs[i];
2053    if (CheckAsmLValue(OutputExpr, *this)) {
2054      return StmtError(Diag(OutputExpr->getLocStart(),
2055                  diag::err_asm_invalid_lvalue_in_output)
2056        << OutputExpr->getSourceRange());
2057    }
2058
2059    OutputConstraintInfos.push_back(Info);
2060  }
2061
2062  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2063
2064  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2065    StringLiteral *Literal = Constraints[i];
2066    if (!Literal->isAscii())
2067      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2068        << Literal->getSourceRange());
2069
2070    StringRef InputName;
2071    if (Names[i])
2072      InputName = Names[i]->getName();
2073
2074    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2075    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2076                                                NumOutputs, Info)) {
2077      return StmtError(Diag(Literal->getLocStart(),
2078                            diag::err_asm_invalid_input_constraint)
2079                       << Info.getConstraintStr());
2080    }
2081
2082    Expr *InputExpr = Exprs[i];
2083
2084    // Only allow void types for memory constraints.
2085    if (Info.allowsMemory() && !Info.allowsRegister()) {
2086      if (CheckAsmLValue(InputExpr, *this))
2087        return StmtError(Diag(InputExpr->getLocStart(),
2088                              diag::err_asm_invalid_lvalue_in_input)
2089                         << Info.getConstraintStr()
2090                         << InputExpr->getSourceRange());
2091    }
2092
2093    if (Info.allowsRegister()) {
2094      if (InputExpr->getType()->isVoidType()) {
2095        return StmtError(Diag(InputExpr->getLocStart(),
2096                              diag::err_asm_invalid_type_in_input)
2097          << InputExpr->getType() << Info.getConstraintStr()
2098          << InputExpr->getSourceRange());
2099      }
2100    }
2101
2102    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2103    if (Result.isInvalid())
2104      return StmtError();
2105
2106    Exprs[i] = Result.take();
2107    InputConstraintInfos.push_back(Info);
2108  }
2109
2110  // Check that the clobbers are valid.
2111  for (unsigned i = 0; i != NumClobbers; i++) {
2112    StringLiteral *Literal = Clobbers[i];
2113    if (!Literal->isAscii())
2114      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2115        << Literal->getSourceRange());
2116
2117    StringRef Clobber = Literal->getString();
2118
2119    if (!Context.getTargetInfo().isValidClobber(Clobber))
2120      return StmtError(Diag(Literal->getLocStart(),
2121                  diag::err_asm_unknown_register_name) << Clobber);
2122  }
2123
2124  AsmStmt *NS =
2125    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2126                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2127                          AsmString, NumClobbers, Clobbers, RParenLoc);
2128  // Validate the asm string, ensuring it makes sense given the operands we
2129  // have.
2130  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2131  unsigned DiagOffs;
2132  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2133    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2134           << AsmString->getSourceRange();
2135    return StmtError();
2136  }
2137
2138  // Validate tied input operands for type mismatches.
2139  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2140    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2141
2142    // If this is a tied constraint, verify that the output and input have
2143    // either exactly the same type, or that they are int/ptr operands with the
2144    // same size (int/long, int*/long, are ok etc).
2145    if (!Info.hasTiedOperand()) continue;
2146
2147    unsigned TiedTo = Info.getTiedOperand();
2148    unsigned InputOpNo = i+NumOutputs;
2149    Expr *OutputExpr = Exprs[TiedTo];
2150    Expr *InputExpr = Exprs[InputOpNo];
2151
2152    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2153      continue;
2154
2155    QualType InTy = InputExpr->getType();
2156    QualType OutTy = OutputExpr->getType();
2157    if (Context.hasSameType(InTy, OutTy))
2158      continue;  // All types can be tied to themselves.
2159
2160    // Decide if the input and output are in the same domain (integer/ptr or
2161    // floating point.
2162    enum AsmDomain {
2163      AD_Int, AD_FP, AD_Other
2164    } InputDomain, OutputDomain;
2165
2166    if (InTy->isIntegerType() || InTy->isPointerType())
2167      InputDomain = AD_Int;
2168    else if (InTy->isRealFloatingType())
2169      InputDomain = AD_FP;
2170    else
2171      InputDomain = AD_Other;
2172
2173    if (OutTy->isIntegerType() || OutTy->isPointerType())
2174      OutputDomain = AD_Int;
2175    else if (OutTy->isRealFloatingType())
2176      OutputDomain = AD_FP;
2177    else
2178      OutputDomain = AD_Other;
2179
2180    // They are ok if they are the same size and in the same domain.  This
2181    // allows tying things like:
2182    //   void* to int*
2183    //   void* to int            if they are the same size.
2184    //   double to long double   if they are the same size.
2185    //
2186    uint64_t OutSize = Context.getTypeSize(OutTy);
2187    uint64_t InSize = Context.getTypeSize(InTy);
2188    if (OutSize == InSize && InputDomain == OutputDomain &&
2189        InputDomain != AD_Other)
2190      continue;
2191
2192    // If the smaller input/output operand is not mentioned in the asm string,
2193    // then we can promote the smaller one to a larger input and the asm string
2194    // won't notice.
2195    bool SmallerValueMentioned = false;
2196
2197    // If this is a reference to the input and if the input was the smaller
2198    // one, then we have to reject this asm.
2199    if (isOperandMentioned(InputOpNo, Pieces)) {
2200      // This is a use in the asm string of the smaller operand.  Since we
2201      // codegen this by promoting to a wider value, the asm will get printed
2202      // "wrong".
2203      SmallerValueMentioned |= InSize < OutSize;
2204    }
2205    if (isOperandMentioned(TiedTo, Pieces)) {
2206      // If this is a reference to the output, and if the output is the larger
2207      // value, then it's ok because we'll promote the input to the larger type.
2208      SmallerValueMentioned |= OutSize < InSize;
2209    }
2210
2211    // If the smaller value wasn't mentioned in the asm string, and if the
2212    // output was a register, just extend the shorter one to the size of the
2213    // larger one.
2214    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2215        OutputConstraintInfos[TiedTo].allowsRegister())
2216      continue;
2217
2218    // Either both of the operands were mentioned or the smaller one was
2219    // mentioned.  One more special case that we'll allow: if the tied input is
2220    // integer, unmentioned, and is a constant, then we'll allow truncating it
2221    // down to the size of the destination.
2222    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2223        !isOperandMentioned(InputOpNo, Pieces) &&
2224        InputExpr->isEvaluatable(Context)) {
2225      CastKind castKind =
2226        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2227      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2228      Exprs[InputOpNo] = InputExpr;
2229      NS->setInputExpr(i, InputExpr);
2230      continue;
2231    }
2232
2233    Diag(InputExpr->getLocStart(),
2234         diag::err_asm_tying_incompatible_types)
2235      << InTy << OutTy << OutputExpr->getSourceRange()
2236      << InputExpr->getSourceRange();
2237    return StmtError();
2238  }
2239
2240  return Owned(NS);
2241}
2242
2243StmtResult
2244Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2245                           SourceLocation RParen, Decl *Parm,
2246                           Stmt *Body) {
2247  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2248  if (Var && Var->isInvalidDecl())
2249    return StmtError();
2250
2251  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2252}
2253
2254StmtResult
2255Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2256  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2257}
2258
2259StmtResult
2260Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2261                         MultiStmtArg CatchStmts, Stmt *Finally) {
2262  if (!getLangOptions().ObjCExceptions)
2263    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2264
2265  getCurFunction()->setHasBranchProtectedScope();
2266  unsigned NumCatchStmts = CatchStmts.size();
2267  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2268                                     CatchStmts.release(),
2269                                     NumCatchStmts,
2270                                     Finally));
2271}
2272
2273StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2274                                                  Expr *Throw) {
2275  if (Throw) {
2276    Throw = MaybeCreateExprWithCleanups(Throw);
2277    ExprResult Result = DefaultLvalueConversion(Throw);
2278    if (Result.isInvalid())
2279      return StmtError();
2280
2281    Throw = Result.take();
2282    QualType ThrowType = Throw->getType();
2283    // Make sure the expression type is an ObjC pointer or "void *".
2284    if (!ThrowType->isDependentType() &&
2285        !ThrowType->isObjCObjectPointerType()) {
2286      const PointerType *PT = ThrowType->getAs<PointerType>();
2287      if (!PT || !PT->getPointeeType()->isVoidType())
2288        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2289                         << Throw->getType() << Throw->getSourceRange());
2290    }
2291  }
2292
2293  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2294}
2295
2296StmtResult
2297Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2298                           Scope *CurScope) {
2299  if (!getLangOptions().ObjCExceptions)
2300    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2301
2302  if (!Throw) {
2303    // @throw without an expression designates a rethrow (which much occur
2304    // in the context of an @catch clause).
2305    Scope *AtCatchParent = CurScope;
2306    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2307      AtCatchParent = AtCatchParent->getParent();
2308    if (!AtCatchParent)
2309      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2310  }
2311
2312  return BuildObjCAtThrowStmt(AtLoc, Throw);
2313}
2314
2315ExprResult
2316Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2317  ExprResult result = DefaultLvalueConversion(operand);
2318  if (result.isInvalid())
2319    return ExprError();
2320  operand = result.take();
2321
2322  // Make sure the expression type is an ObjC pointer or "void *".
2323  QualType type = operand->getType();
2324  if (!type->isDependentType() &&
2325      !type->isObjCObjectPointerType()) {
2326    const PointerType *pointerType = type->getAs<PointerType>();
2327    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2328      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2329               << type << operand->getSourceRange();
2330  }
2331
2332  // The operand to @synchronized is a full-expression.
2333  return MaybeCreateExprWithCleanups(operand);
2334}
2335
2336StmtResult
2337Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2338                                  Stmt *SyncBody) {
2339  // We can't jump into or indirect-jump out of a @synchronized block.
2340  getCurFunction()->setHasBranchProtectedScope();
2341  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2342}
2343
2344/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2345/// and creates a proper catch handler from them.
2346StmtResult
2347Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2348                         Stmt *HandlerBlock) {
2349  // There's nothing to test that ActOnExceptionDecl didn't already test.
2350  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2351                                          cast_or_null<VarDecl>(ExDecl),
2352                                          HandlerBlock));
2353}
2354
2355StmtResult
2356Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2357  getCurFunction()->setHasBranchProtectedScope();
2358  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2359}
2360
2361namespace {
2362
2363class TypeWithHandler {
2364  QualType t;
2365  CXXCatchStmt *stmt;
2366public:
2367  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2368  : t(type), stmt(statement) {}
2369
2370  // An arbitrary order is fine as long as it places identical
2371  // types next to each other.
2372  bool operator<(const TypeWithHandler &y) const {
2373    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2374      return true;
2375    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2376      return false;
2377    else
2378      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2379  }
2380
2381  bool operator==(const TypeWithHandler& other) const {
2382    return t == other.t;
2383  }
2384
2385  CXXCatchStmt *getCatchStmt() const { return stmt; }
2386  SourceLocation getTypeSpecStartLoc() const {
2387    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2388  }
2389};
2390
2391}
2392
2393/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2394/// handlers and creates a try statement from them.
2395StmtResult
2396Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2397                       MultiStmtArg RawHandlers) {
2398  // Don't report an error if 'try' is used in system headers.
2399  if (!getLangOptions().CXXExceptions &&
2400      !getSourceManager().isInSystemHeader(TryLoc))
2401      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2402
2403  unsigned NumHandlers = RawHandlers.size();
2404  assert(NumHandlers > 0 &&
2405         "The parser shouldn't call this if there are no handlers.");
2406  Stmt **Handlers = RawHandlers.get();
2407
2408  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2409
2410  for (unsigned i = 0; i < NumHandlers; ++i) {
2411    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2412    if (!Handler->getExceptionDecl()) {
2413      if (i < NumHandlers - 1)
2414        return StmtError(Diag(Handler->getLocStart(),
2415                              diag::err_early_catch_all));
2416
2417      continue;
2418    }
2419
2420    const QualType CaughtType = Handler->getCaughtType();
2421    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2422    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2423  }
2424
2425  // Detect handlers for the same type as an earlier one.
2426  if (NumHandlers > 1) {
2427    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2428
2429    TypeWithHandler prev = TypesWithHandlers[0];
2430    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2431      TypeWithHandler curr = TypesWithHandlers[i];
2432
2433      if (curr == prev) {
2434        Diag(curr.getTypeSpecStartLoc(),
2435             diag::warn_exception_caught_by_earlier_handler)
2436          << curr.getCatchStmt()->getCaughtType().getAsString();
2437        Diag(prev.getTypeSpecStartLoc(),
2438             diag::note_previous_exception_handler)
2439          << prev.getCatchStmt()->getCaughtType().getAsString();
2440      }
2441
2442      prev = curr;
2443    }
2444  }
2445
2446  getCurFunction()->setHasBranchProtectedScope();
2447
2448  // FIXME: We should detect handlers that cannot catch anything because an
2449  // earlier handler catches a superclass. Need to find a method that is not
2450  // quadratic for this.
2451  // Neither of these are explicitly forbidden, but every compiler detects them
2452  // and warns.
2453
2454  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2455                                  Handlers, NumHandlers));
2456}
2457
2458StmtResult
2459Sema::ActOnSEHTryBlock(bool IsCXXTry,
2460                       SourceLocation TryLoc,
2461                       Stmt *TryBlock,
2462                       Stmt *Handler) {
2463  assert(TryBlock && Handler);
2464
2465  getCurFunction()->setHasBranchProtectedScope();
2466
2467  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2468}
2469
2470StmtResult
2471Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2472                          Expr *FilterExpr,
2473                          Stmt *Block) {
2474  assert(FilterExpr && Block);
2475
2476  if(!FilterExpr->getType()->isIntegerType()) {
2477    return StmtError(Diag(FilterExpr->getExprLoc(),
2478                     diag::err_filter_expression_integral)
2479                     << FilterExpr->getType());
2480  }
2481
2482  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2483}
2484
2485StmtResult
2486Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2487                           Stmt *Block) {
2488  assert(Block);
2489  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2490}
2491
2492StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2493                                            bool IsIfExists,
2494                                            NestedNameSpecifierLoc QualifierLoc,
2495                                            DeclarationNameInfo NameInfo,
2496                                            Stmt *Nested)
2497{
2498  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2499                                             QualifierLoc, NameInfo,
2500                                             cast<CompoundStmt>(Nested));
2501}
2502
2503
2504StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2505                                            bool IsIfExists,
2506                                            CXXScopeSpec &SS,
2507                                            UnqualifiedId &Name,
2508                                            Stmt *Nested) {
2509  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2510                                    SS.getWithLocInContext(Context),
2511                                    GetNameFromUnqualifiedId(Name),
2512                                    Nested);
2513}
2514