SemaStmt.cpp revision 313c41696f1ab0f4ed13398c2f425eec421c304c
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/Basic/TargetInfo.h"
21using namespace clang;
22
23Sema::OwningStmtResult Sema::ActOnExprStmt(ExprArg expr) {
24  Expr *E = static_cast<Expr*>(expr.release());
25  assert(E && "ActOnExprStmt(): missing expression");
26
27  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
28  // void expression for its side effects.  Conversion to void allows any
29  // operand, even incomplete types.
30
31  // Same thing in for stmt first clause (when expr) and third clause.
32  return Owned(static_cast<Stmt*>(E));
33}
34
35
36Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
37  return Owned(new (Context) NullStmt(SemiLoc));
38}
39
40Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclTy *decl,
41                                           SourceLocation StartLoc,
42                                           SourceLocation EndLoc) {
43  if (decl == 0)
44    return StmtError();
45
46  Decl *D = static_cast<Decl *>(decl);
47
48  // This is a temporary hack until we are always passing around
49  // DeclGroupRefs.
50  llvm::SmallVector<Decl*, 10> decls;
51  while (D) {
52    Decl* d = D;
53    D = D->getNextDeclarator();
54    d->setNextDeclarator(0);
55    decls.push_back(d);
56  }
57
58  assert (!decls.empty());
59
60  if (decls.size() == 1) {
61    DeclGroupRef DG(*decls.begin());
62    return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
63  }
64  else {
65    DeclGroupRef DG(DeclGroup::Create(Context, decls.size(), &decls[0]));
66    return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
67  }
68}
69
70Action::OwningStmtResult
71Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
72                        MultiStmtArg elts, bool isStmtExpr) {
73  unsigned NumElts = elts.size();
74  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
75  // If we're in C89 mode, check that we don't have any decls after stmts.  If
76  // so, emit an extension diagnostic.
77  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
78    // Note that __extension__ can be around a decl.
79    unsigned i = 0;
80    // Skip over all declarations.
81    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
82      /*empty*/;
83
84    // We found the end of the list or a statement.  Scan for another declstmt.
85    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
86      /*empty*/;
87
88    if (i != NumElts) {
89      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
90      Diag(D->getLocation(), diag::ext_mixed_decls_code);
91    }
92  }
93  // Warn about unused expressions in statements.
94  for (unsigned i = 0; i != NumElts; ++i) {
95    Expr *E = dyn_cast<Expr>(Elts[i]);
96    if (!E) continue;
97
98    // Warn about expressions with unused results if they are non-void and if
99    // this not the last stmt in a stmt expr.
100    if (E->getType()->isVoidType() || (isStmtExpr && i == NumElts-1))
101      continue;
102
103    SourceLocation Loc;
104    SourceRange R1, R2;
105    if (!E->isUnusedResultAWarning(Loc, R1, R2))
106      continue;
107
108    Diag(Loc, diag::warn_unused_expr) << R1 << R2;
109  }
110
111  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
112}
113
114Action::OwningStmtResult
115Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
116                    SourceLocation DotDotDotLoc, ExprArg rhsval,
117                    SourceLocation ColonLoc, StmtArg subStmt) {
118  Stmt *SubStmt = static_cast<Stmt*>(subStmt.release());
119  assert((lhsval.get() != 0) && "missing expression in case statement");
120
121  // C99 6.8.4.2p3: The expression shall be an integer constant.
122  // However, GCC allows any evaluatable integer expression.
123
124  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
125  if (VerifyIntegerConstantExpression(LHSVal))
126    return Owned(SubStmt);
127
128  // GCC extension: The expression shall be an integer constant.
129
130  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
131  if (RHSVal && VerifyIntegerConstantExpression(RHSVal)) {
132    RHSVal = 0;  // Recover by just forgetting about it.
133    rhsval = 0;
134  }
135
136  if (SwitchStack.empty()) {
137    Diag(CaseLoc, diag::err_case_not_in_switch);
138    return Owned(SubStmt);
139  }
140
141  // Only now release the smart pointers.
142  lhsval.release();
143  rhsval.release();
144  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc);
145  SwitchStack.back()->addSwitchCase(CS);
146  return Owned(CS);
147}
148
149Action::OwningStmtResult
150Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
151                       StmtArg subStmt, Scope *CurScope) {
152  Stmt *SubStmt = static_cast<Stmt*>(subStmt.release());
153
154  if (SwitchStack.empty()) {
155    Diag(DefaultLoc, diag::err_default_not_in_switch);
156    return Owned(SubStmt);
157  }
158
159  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, SubStmt);
160  SwitchStack.back()->addSwitchCase(DS);
161  return Owned(DS);
162}
163
164Action::OwningStmtResult
165Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
166                     SourceLocation ColonLoc, StmtArg subStmt) {
167  Stmt *SubStmt = static_cast<Stmt*>(subStmt.release());
168
169  // Look up the record for this label identifier.
170  Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.find(II);
171
172  LabelStmt *LabelDecl;
173
174  // If not forward referenced or defined already, just create a new LabelStmt.
175  if (I == ActiveScope->LabelMap.end()) {
176    LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt);
177    ActiveScope->LabelMap.insert(std::make_pair(II, LabelDecl));
178    return Owned(LabelDecl);
179  } else
180    LabelDecl = static_cast<LabelStmt *>(I->second);
181
182  assert(LabelDecl->getID() == II && "Label mismatch!");
183
184  // Otherwise, this label was either forward reference or multiply defined.  If
185  // multiply defined, reject it now.
186  if (LabelDecl->getSubStmt()) {
187    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
188    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
189    return Owned(SubStmt);
190  }
191
192  // Otherwise, this label was forward declared, and we just found its real
193  // definition.  Fill in the forward definition and return it.
194  LabelDecl->setIdentLoc(IdentLoc);
195  LabelDecl->setSubStmt(SubStmt);
196  return Owned(LabelDecl);
197}
198
199Action::OwningStmtResult
200Sema::ActOnIfStmt(SourceLocation IfLoc, ExprArg CondVal,
201                  StmtArg ThenVal, SourceLocation ElseLoc,
202                  StmtArg ElseVal) {
203  Expr *condExpr = (Expr *)CondVal.release();
204
205  assert(condExpr && "ActOnIfStmt(): missing expression");
206
207  DefaultFunctionArrayConversion(condExpr);
208  // Take ownership again until we're past the error checking.
209  CondVal = condExpr;
210  QualType condType = condExpr->getType();
211
212  if (getLangOptions().CPlusPlus) {
213    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
214      return StmtError();
215  } else if (!condType->isScalarType()) // C99 6.8.4.1p1
216    return StmtError(Diag(IfLoc, diag::err_typecheck_statement_requires_scalar)
217      << condType << condExpr->getSourceRange());
218
219  Stmt *thenStmt = (Stmt *)ThenVal.release();
220
221  // Warn if the if block has a null body without an else value.
222  // this helps prevent bugs due to typos, such as
223  // if (condition);
224  //   do_stuff();
225  if (!ElseVal.get()) {
226    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
227      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
228  }
229
230  CondVal.release();
231  return Owned(new (Context) IfStmt(IfLoc, condExpr, thenStmt,
232                                    (Stmt*)ElseVal.release()));
233}
234
235Action::OwningStmtResult
236Sema::ActOnStartOfSwitchStmt(ExprArg cond) {
237  Expr *Cond = static_cast<Expr*>(cond.release());
238
239  if (getLangOptions().CPlusPlus) {
240    // C++ 6.4.2.p2:
241    // The condition shall be of integral type, enumeration type, or of a class
242    // type for which a single conversion function to integral or enumeration
243    // type exists (12.3). If the condition is of class type, the condition is
244    // converted by calling that conversion function, and the result of the
245    // conversion is used in place of the original condition for the remainder
246    // of this section. Integral promotions are performed.
247
248    QualType Ty = Cond->getType();
249
250    // FIXME: Handle class types.
251
252    // If the type is wrong a diagnostic will be emitted later at
253    // ActOnFinishSwitchStmt.
254    if (Ty->isIntegralType() || Ty->isEnumeralType()) {
255      // Integral promotions are performed.
256      // FIXME: Integral promotions for C++ are not complete.
257      UsualUnaryConversions(Cond);
258    }
259  } else {
260    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
261    UsualUnaryConversions(Cond);
262  }
263
264  SwitchStmt *SS = new (Context) SwitchStmt(Cond);
265  SwitchStack.push_back(SS);
266  return Owned(SS);
267}
268
269/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
270/// the specified width and sign.  If an overflow occurs, detect it and emit
271/// the specified diagnostic.
272void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
273                                              unsigned NewWidth, bool NewSign,
274                                              SourceLocation Loc,
275                                              unsigned DiagID) {
276  // Perform a conversion to the promoted condition type if needed.
277  if (NewWidth > Val.getBitWidth()) {
278    // If this is an extension, just do it.
279    llvm::APSInt OldVal(Val);
280    Val.extend(NewWidth);
281
282    // If the input was signed and negative and the output is unsigned,
283    // warn.
284    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
285      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
286
287    Val.setIsSigned(NewSign);
288  } else if (NewWidth < Val.getBitWidth()) {
289    // If this is a truncation, check for overflow.
290    llvm::APSInt ConvVal(Val);
291    ConvVal.trunc(NewWidth);
292    ConvVal.setIsSigned(NewSign);
293    ConvVal.extend(Val.getBitWidth());
294    ConvVal.setIsSigned(Val.isSigned());
295    if (ConvVal != Val)
296      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
297
298    // Regardless of whether a diagnostic was emitted, really do the
299    // truncation.
300    Val.trunc(NewWidth);
301    Val.setIsSigned(NewSign);
302  } else if (NewSign != Val.isSigned()) {
303    // Convert the sign to match the sign of the condition.  This can cause
304    // overflow as well: unsigned(INTMIN)
305    llvm::APSInt OldVal(Val);
306    Val.setIsSigned(NewSign);
307
308    if (Val.isNegative())  // Sign bit changes meaning.
309      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
310  }
311}
312
313namespace {
314  struct CaseCompareFunctor {
315    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
316                    const llvm::APSInt &RHS) {
317      return LHS.first < RHS;
318    }
319    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
320                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
321      return LHS.first < RHS.first;
322    }
323    bool operator()(const llvm::APSInt &LHS,
324                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
325      return LHS < RHS.first;
326    }
327  };
328}
329
330/// CmpCaseVals - Comparison predicate for sorting case values.
331///
332static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
333                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
334  if (lhs.first < rhs.first)
335    return true;
336
337  if (lhs.first == rhs.first &&
338      lhs.second->getCaseLoc().getRawEncoding()
339       < rhs.second->getCaseLoc().getRawEncoding())
340    return true;
341  return false;
342}
343
344Action::OwningStmtResult
345Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
346                            StmtArg Body) {
347  Stmt *BodyStmt = (Stmt*)Body.release();
348
349  SwitchStmt *SS = SwitchStack.back();
350  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
351
352  SS->setBody(BodyStmt, SwitchLoc);
353  SwitchStack.pop_back();
354
355  Expr *CondExpr = SS->getCond();
356  QualType CondType = CondExpr->getType();
357
358  if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
359    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
360      << CondType << CondExpr->getSourceRange();
361    return StmtError();
362  }
363
364  // Get the bitwidth of the switched-on value before promotions.  We must
365  // convert the integer case values to this width before comparison.
366  unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType));
367  bool CondIsSigned = CondType->isSignedIntegerType();
368
369  // Accumulate all of the case values in a vector so that we can sort them
370  // and detect duplicates.  This vector contains the APInt for the case after
371  // it has been converted to the condition type.
372  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
373  CaseValsTy CaseVals;
374
375  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
376  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
377
378  DefaultStmt *TheDefaultStmt = 0;
379
380  bool CaseListIsErroneous = false;
381
382  for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
383       SC = SC->getNextSwitchCase()) {
384
385    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
386      if (TheDefaultStmt) {
387        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
388        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
389
390        // FIXME: Remove the default statement from the switch block so that
391        // we'll return a valid AST.  This requires recursing down the
392        // AST and finding it, not something we are set up to do right now.  For
393        // now, just lop the entire switch stmt out of the AST.
394        CaseListIsErroneous = true;
395      }
396      TheDefaultStmt = DS;
397
398    } else {
399      CaseStmt *CS = cast<CaseStmt>(SC);
400
401      // We already verified that the expression has a i-c-e value (C99
402      // 6.8.4.2p3) - get that value now.
403      Expr *Lo = CS->getLHS();
404      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
405
406      // Convert the value to the same width/sign as the condition.
407      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
408                                         CS->getLHS()->getLocStart(),
409                                         diag::warn_case_value_overflow);
410
411      // If the LHS is not the same type as the condition, insert an implicit
412      // cast.
413      ImpCastExprToType(Lo, CondType);
414      CS->setLHS(Lo);
415
416      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
417      if (CS->getRHS())
418        CaseRanges.push_back(std::make_pair(LoVal, CS));
419      else
420        CaseVals.push_back(std::make_pair(LoVal, CS));
421    }
422  }
423
424  // Sort all the scalar case values so we can easily detect duplicates.
425  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
426
427  if (!CaseVals.empty()) {
428    for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
429      if (CaseVals[i].first == CaseVals[i+1].first) {
430        // If we have a duplicate, report it.
431        Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
432             diag::err_duplicate_case) << CaseVals[i].first.toString(10);
433        Diag(CaseVals[i].second->getLHS()->getLocStart(),
434             diag::note_duplicate_case_prev);
435        // FIXME: We really want to remove the bogus case stmt from the substmt,
436        // but we have no way to do this right now.
437        CaseListIsErroneous = true;
438      }
439    }
440  }
441
442  // Detect duplicate case ranges, which usually don't exist at all in the first
443  // place.
444  if (!CaseRanges.empty()) {
445    // Sort all the case ranges by their low value so we can easily detect
446    // overlaps between ranges.
447    std::stable_sort(CaseRanges.begin(), CaseRanges.end());
448
449    // Scan the ranges, computing the high values and removing empty ranges.
450    std::vector<llvm::APSInt> HiVals;
451    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
452      CaseStmt *CR = CaseRanges[i].second;
453      Expr *Hi = CR->getRHS();
454      llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
455
456      // Convert the value to the same width/sign as the condition.
457      ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
458                                         CR->getRHS()->getLocStart(),
459                                         diag::warn_case_value_overflow);
460
461      // If the LHS is not the same type as the condition, insert an implicit
462      // cast.
463      ImpCastExprToType(Hi, CondType);
464      CR->setRHS(Hi);
465
466      // If the low value is bigger than the high value, the case is empty.
467      if (CaseRanges[i].first > HiVal) {
468        Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
469          << SourceRange(CR->getLHS()->getLocStart(),
470                         CR->getRHS()->getLocEnd());
471        CaseRanges.erase(CaseRanges.begin()+i);
472        --i, --e;
473        continue;
474      }
475      HiVals.push_back(HiVal);
476    }
477
478    // Rescan the ranges, looking for overlap with singleton values and other
479    // ranges.  Since the range list is sorted, we only need to compare case
480    // ranges with their neighbors.
481    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
482      llvm::APSInt &CRLo = CaseRanges[i].first;
483      llvm::APSInt &CRHi = HiVals[i];
484      CaseStmt *CR = CaseRanges[i].second;
485
486      // Check to see whether the case range overlaps with any singleton cases.
487      CaseStmt *OverlapStmt = 0;
488      llvm::APSInt OverlapVal(32);
489
490      // Find the smallest value >= the lower bound.  If I is in the case range,
491      // then we have overlap.
492      CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
493                                                CaseVals.end(), CRLo,
494                                                CaseCompareFunctor());
495      if (I != CaseVals.end() && I->first < CRHi) {
496        OverlapVal  = I->first;   // Found overlap with scalar.
497        OverlapStmt = I->second;
498      }
499
500      // Find the smallest value bigger than the upper bound.
501      I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
502      if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
503        OverlapVal  = (I-1)->first;      // Found overlap with scalar.
504        OverlapStmt = (I-1)->second;
505      }
506
507      // Check to see if this case stmt overlaps with the subsequent case range.
508      if (i && CRLo <= HiVals[i-1]) {
509        OverlapVal  = HiVals[i-1];       // Found overlap with range.
510        OverlapStmt = CaseRanges[i-1].second;
511      }
512
513      if (OverlapStmt) {
514        // If we have a duplicate, report it.
515        Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
516          << OverlapVal.toString(10);
517        Diag(OverlapStmt->getLHS()->getLocStart(),
518             diag::note_duplicate_case_prev);
519        // FIXME: We really want to remove the bogus case stmt from the substmt,
520        // but we have no way to do this right now.
521        CaseListIsErroneous = true;
522      }
523    }
524  }
525
526  // FIXME: If the case list was broken is some way, we don't have a good system
527  // to patch it up.  Instead, just return the whole substmt as broken.
528  if (CaseListIsErroneous)
529    return StmtError();
530
531  Switch.release();
532  return Owned(SS);
533}
534
535Action::OwningStmtResult
536Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprArg Cond, StmtArg Body) {
537  Expr *condExpr = (Expr *)Cond.release();
538  assert(condExpr && "ActOnWhileStmt(): missing expression");
539
540  DefaultFunctionArrayConversion(condExpr);
541  Cond = condExpr;
542  QualType condType = condExpr->getType();
543
544  if (getLangOptions().CPlusPlus) {
545    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
546      return StmtError();
547  } else if (!condType->isScalarType()) // C99 6.8.5p2
548    return StmtError(Diag(WhileLoc,
549      diag::err_typecheck_statement_requires_scalar)
550      << condType << condExpr->getSourceRange());
551
552  Cond.release();
553  return Owned(new (Context) WhileStmt(condExpr, (Stmt*)Body.release(),
554                                       WhileLoc));
555}
556
557Action::OwningStmtResult
558Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
559                  SourceLocation WhileLoc, ExprArg Cond) {
560  Expr *condExpr = (Expr *)Cond.release();
561  assert(condExpr && "ActOnDoStmt(): missing expression");
562
563  DefaultFunctionArrayConversion(condExpr);
564  Cond = condExpr;
565  QualType condType = condExpr->getType();
566
567  if (getLangOptions().CPlusPlus) {
568    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
569      return StmtError();
570  } else if (!condType->isScalarType()) // C99 6.8.5p2
571    return StmtError(Diag(DoLoc, diag::err_typecheck_statement_requires_scalar)
572      << condType << condExpr->getSourceRange());
573
574  Cond.release();
575  return Owned(new (Context) DoStmt((Stmt*)Body.release(), condExpr, DoLoc));
576}
577
578Action::OwningStmtResult
579Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
580                   StmtArg first, ExprArg second, ExprArg third,
581                   SourceLocation RParenLoc, StmtArg body) {
582  Stmt *First  = static_cast<Stmt*>(first.get());
583  Expr *Second = static_cast<Expr*>(second.get());
584  Expr *Third  = static_cast<Expr*>(third.get());
585  Stmt *Body  = static_cast<Stmt*>(body.get());
586
587  if (!getLangOptions().CPlusPlus) {
588    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
589      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
590      // declare identifiers for objects having storage class 'auto' or
591      // 'register'.
592      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
593           DI!=DE; ++DI) {
594        VarDecl *VD = dyn_cast<VarDecl>(*DI);
595        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
596          VD = 0;
597        if (VD == 0)
598          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
599        // FIXME: mark decl erroneous!
600      }
601    }
602  }
603  if (Second) {
604    DefaultFunctionArrayConversion(Second);
605    QualType SecondType = Second->getType();
606
607    if (getLangOptions().CPlusPlus) {
608      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
609        return StmtError();
610    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
611      return StmtError(Diag(ForLoc,
612                            diag::err_typecheck_statement_requires_scalar)
613        << SecondType << Second->getSourceRange());
614  }
615  first.release();
616  second.release();
617  third.release();
618  body.release();
619  return Owned(new (Context) ForStmt(First, Second, Third, Body, ForLoc));
620}
621
622Action::OwningStmtResult
623Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
624                                 SourceLocation LParenLoc,
625                                 StmtArg first, ExprArg second,
626                                 SourceLocation RParenLoc, StmtArg body) {
627  Stmt *First  = static_cast<Stmt*>(first.get());
628  Expr *Second = static_cast<Expr*>(second.get());
629  Stmt *Body  = static_cast<Stmt*>(body.get());
630  if (First) {
631    QualType FirstType;
632    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
633      if (!DS->hasSolitaryDecl())
634        return StmtError(Diag((*DS->decl_begin())->getLocation(),
635                         diag::err_toomany_element_decls));
636
637      Decl *D = DS->getSolitaryDecl();
638      FirstType = cast<ValueDecl>(D)->getType();
639      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
640      // declare identifiers for objects having storage class 'auto' or
641      // 'register'.
642      VarDecl *VD = cast<VarDecl>(D);
643      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
644        return StmtError(Diag(VD->getLocation(),
645                              diag::err_non_variable_decl_in_for));
646    } else {
647      Expr::isLvalueResult lval = cast<Expr>(First)->isLvalue(Context);
648
649      if (lval != Expr::LV_Valid)
650        return StmtError(Diag(First->getLocStart(),
651                   diag::err_selector_element_not_lvalue)
652          << First->getSourceRange());
653
654      FirstType = static_cast<Expr*>(First)->getType();
655    }
656    if (!Context.isObjCObjectPointerType(FirstType))
657        Diag(ForLoc, diag::err_selector_element_type)
658          << FirstType << First->getSourceRange();
659  }
660  if (Second) {
661    DefaultFunctionArrayConversion(Second);
662    QualType SecondType = Second->getType();
663    if (!Context.isObjCObjectPointerType(SecondType))
664      Diag(ForLoc, diag::err_collection_expr_type)
665        << SecondType << Second->getSourceRange();
666  }
667  first.release();
668  second.release();
669  body.release();
670  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
671                                                   ForLoc, RParenLoc));
672}
673
674Action::OwningStmtResult
675Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
676                    IdentifierInfo *LabelII) {
677  // If we are in a block, reject all gotos for now.
678  if (CurBlock)
679    return StmtError(Diag(GotoLoc, diag::err_goto_in_block));
680
681  // Look up the record for this label identifier.
682  Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.find(LabelII);
683
684  LabelStmt *LabelDecl;
685
686  // If not forward referenced or defined already, just create a new LabelStmt.
687  if (I == ActiveScope->LabelMap.end()) {
688    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
689    ActiveScope->LabelMap.insert(std::make_pair(LabelII, LabelDecl));
690  } else
691    LabelDecl = static_cast<LabelStmt *>(I->second);
692
693  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
694}
695
696Action::OwningStmtResult
697Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,
698                            ExprArg DestExp) {
699  // FIXME: Verify that the operand is convertible to void*.
700
701  return Owned(new (Context) IndirectGotoStmt((Expr*)DestExp.release()));
702}
703
704Action::OwningStmtResult
705Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
706  Scope *S = CurScope->getContinueParent();
707  if (!S) {
708    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
709    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
710  }
711
712  return Owned(new (Context) ContinueStmt(ContinueLoc));
713}
714
715Action::OwningStmtResult
716Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
717  Scope *S = CurScope->getBreakParent();
718  if (!S) {
719    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
720    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
721  }
722
723  return Owned(new (Context) BreakStmt(BreakLoc));
724}
725
726/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
727///
728Action::OwningStmtResult
729Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
730
731  // If this is the first return we've seen in the block, infer the type of
732  // the block from it.
733  if (CurBlock->ReturnType == 0) {
734    if (RetValExp) {
735      // Don't call UsualUnaryConversions(), since we don't want to do
736      // integer promotions here.
737      DefaultFunctionArrayConversion(RetValExp);
738      CurBlock->ReturnType = RetValExp->getType().getTypePtr();
739    } else
740      CurBlock->ReturnType = Context.VoidTy.getTypePtr();
741  }
742  QualType FnRetType = QualType(CurBlock->ReturnType, 0);
743
744  // Otherwise, verify that this result type matches the previous one.  We are
745  // pickier with blocks than for normal functions because we don't have GCC
746  // compatibility to worry about here.
747  if (CurBlock->ReturnType->isVoidType()) {
748    if (RetValExp) {
749      Diag(ReturnLoc, diag::err_return_block_has_expr);
750      RetValExp->Destroy(Context);
751      RetValExp = 0;
752    }
753    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
754  }
755
756  if (!RetValExp)
757    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
758
759  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
760    // we have a non-void block with an expression, continue checking
761    QualType RetValType = RetValExp->getType();
762
763    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
764    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
765    // function return.
766
767    // In C++ the return statement is handled via a copy initialization.
768    // the C version of which boils down to CheckSingleAssignmentConstraints.
769    // FIXME: Leaks RetValExp.
770    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
771      return StmtError();
772
773    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
774  }
775
776  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
777}
778
779Action::OwningStmtResult
780Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
781  Expr *RetValExp = static_cast<Expr *>(rex.release());
782  if (CurBlock)
783    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
784
785  QualType FnRetType;
786  if (FunctionDecl *FD = getCurFunctionDecl())
787    FnRetType = FD->getResultType();
788  else
789    FnRetType = getCurMethodDecl()->getResultType();
790
791  if (FnRetType->isVoidType()) {
792    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
793      unsigned D = diag::ext_return_has_expr;
794      if (RetValExp->getType()->isVoidType())
795        D = diag::ext_return_has_void_expr;
796
797      // return (some void expression); is legal in C++.
798      if (D != diag::ext_return_has_void_expr ||
799          !getLangOptions().CPlusPlus) {
800        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
801        Diag(ReturnLoc, D)
802          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
803          << RetValExp->getSourceRange();
804      }
805    }
806    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
807  }
808
809  if (!RetValExp) {
810    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
811    // C99 6.8.6.4p1 (ext_ since GCC warns)
812    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
813
814    if (FunctionDecl *FD = getCurFunctionDecl())
815      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
816    else
817      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
818    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
819  }
820
821  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
822    // we have a non-void function with an expression, continue checking
823    QualType RetValType = RetValExp->getType();
824
825    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
826    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
827    // function return.
828
829    // In C++ the return statement is handled via a copy initialization.
830    // the C version of which boils down to CheckSingleAssignmentConstraints.
831    // FIXME: Leaks RetValExp.
832    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
833      return StmtError();
834
835    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
836  }
837
838  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
839}
840
841Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
842                                          bool IsSimple,
843                                          bool IsVolatile,
844                                          unsigned NumOutputs,
845                                          unsigned NumInputs,
846                                          std::string *Names,
847                                          MultiExprArg constraints,
848                                          MultiExprArg exprs,
849                                          ExprArg asmString,
850                                          MultiExprArg clobbers,
851                                          SourceLocation RParenLoc) {
852  unsigned NumClobbers = clobbers.size();
853  StringLiteral **Constraints =
854    reinterpret_cast<StringLiteral**>(constraints.get());
855  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
856  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
857  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
858
859  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
860
861  // The parser verifies that there is a string literal here.
862  if (AsmString->isWide())
863    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
864      << AsmString->getSourceRange());
865
866
867  for (unsigned i = 0; i != NumOutputs; i++) {
868    StringLiteral *Literal = Constraints[i];
869    if (Literal->isWide())
870      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
871        << Literal->getSourceRange());
872
873    std::string OutputConstraint(Literal->getStrData(),
874                                 Literal->getByteLength());
875
876    TargetInfo::ConstraintInfo info;
877    if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),info))
878      return StmtError(Diag(Literal->getLocStart(),
879                  diag::err_asm_invalid_output_constraint) << OutputConstraint);
880
881    // Check that the output exprs are valid lvalues.
882    ParenExpr *OutputExpr = cast<ParenExpr>(Exprs[i]);
883    Expr::isLvalueResult Result = OutputExpr->isLvalue(Context);
884    if (Result != Expr::LV_Valid) {
885      return StmtError(Diag(OutputExpr->getSubExpr()->getLocStart(),
886                  diag::err_asm_invalid_lvalue_in_output)
887        << OutputExpr->getSubExpr()->getSourceRange());
888    }
889
890    OutputConstraintInfos.push_back(info);
891  }
892
893  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
894    StringLiteral *Literal = Constraints[i];
895    if (Literal->isWide())
896      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
897        << Literal->getSourceRange());
898
899    std::string InputConstraint(Literal->getStrData(),
900                                Literal->getByteLength());
901
902    TargetInfo::ConstraintInfo info;
903    if (!Context.Target.validateInputConstraint(InputConstraint.c_str(),
904                                                &Names[0],
905                                                &Names[0] + NumOutputs,
906                                                &OutputConstraintInfos[0],
907                                                info)) {
908      return StmtError(Diag(Literal->getLocStart(),
909                  diag::err_asm_invalid_input_constraint) << InputConstraint);
910    }
911
912    ParenExpr *InputExpr = cast<ParenExpr>(Exprs[i]);
913
914    // Only allow void types for memory constraints.
915    if ((info & TargetInfo::CI_AllowsMemory)
916        && !(info & TargetInfo::CI_AllowsRegister)) {
917      if (InputExpr->isLvalue(Context) != Expr::LV_Valid)
918        return StmtError(Diag(InputExpr->getSubExpr()->getLocStart(),
919                              diag::err_asm_invalid_lvalue_in_input)
920          << InputConstraint << InputExpr->getSubExpr()->getSourceRange());
921    }
922
923    if (info & TargetInfo::CI_AllowsRegister) {
924      if (InputExpr->getType()->isVoidType()) {
925        return StmtError(Diag(InputExpr->getSubExpr()->getLocStart(),
926                              diag::err_asm_invalid_type_in_input)
927          << InputExpr->getType() << InputConstraint
928          << InputExpr->getSubExpr()->getSourceRange());
929      }
930    }
931
932    DefaultFunctionArrayConversion(Exprs[i]);
933  }
934
935  // Check that the clobbers are valid.
936  for (unsigned i = 0; i != NumClobbers; i++) {
937    StringLiteral *Literal = Clobbers[i];
938    if (Literal->isWide())
939      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
940        << Literal->getSourceRange());
941
942    llvm::SmallString<16> Clobber(Literal->getStrData(),
943                                  Literal->getStrData() +
944                                  Literal->getByteLength());
945
946    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
947      return StmtError(Diag(Literal->getLocStart(),
948                  diag::err_asm_unknown_register_name) << Clobber.c_str());
949  }
950
951  constraints.release();
952  exprs.release();
953  asmString.release();
954  clobbers.release();
955  return Owned(new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs,
956                                     NumInputs, Names, Constraints, Exprs,
957                                     AsmString, NumClobbers,
958                                     Clobbers, RParenLoc));
959}
960
961Action::OwningStmtResult
962Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
963                           SourceLocation RParen, StmtArg Parm,
964                           StmtArg Body, StmtArg catchList) {
965  Stmt *CatchList = static_cast<Stmt*>(catchList.release());
966  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
967    static_cast<Stmt*>(Parm.release()), static_cast<Stmt*>(Body.release()),
968    CatchList);
969  return Owned(CatchList ? CatchList : CS);
970}
971
972Action::OwningStmtResult
973Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
974  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
975                                           static_cast<Stmt*>(Body.release())));
976}
977
978Action::OwningStmtResult
979Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
980                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
981  return Owned(new (Context) ObjCAtTryStmt(AtLoc,
982                                        static_cast<Stmt*>(Try.release()),
983                                        static_cast<Stmt*>(Catch.release()),
984                                        static_cast<Stmt*>(Finally.release())));
985}
986
987Action::OwningStmtResult
988Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
989  Expr *ThrowExpr = static_cast<Expr*>(expr.release());
990  if (!ThrowExpr) {
991    // @throw without an expression designates a rethrow (which much occur
992    // in the context of an @catch clause).
993    Scope *AtCatchParent = CurScope;
994    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
995      AtCatchParent = AtCatchParent->getParent();
996    if (!AtCatchParent)
997      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
998  } else {
999    QualType ThrowType = ThrowExpr->getType();
1000    // Make sure the expression type is an ObjC pointer or "void *".
1001    if (!Context.isObjCObjectPointerType(ThrowType)) {
1002      const PointerType *PT = ThrowType->getAsPointerType();
1003      if (!PT || !PT->getPointeeType()->isVoidType())
1004        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1005                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
1006    }
1007  }
1008  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
1009}
1010
1011Action::OwningStmtResult
1012Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1013                                  StmtArg SynchBody) {
1014  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1015                     static_cast<Stmt*>(SynchExpr.release()),
1016                     static_cast<Stmt*>(SynchBody.release())));
1017}
1018
1019/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1020/// and creates a proper catch handler from them.
1021Action::OwningStmtResult
1022Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclTy *ExDecl,
1023                         StmtArg HandlerBlock) {
1024  // There's nothing to test that ActOnExceptionDecl didn't already test.
1025  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1026                                  static_cast<VarDecl*>(ExDecl),
1027                                  static_cast<Stmt*>(HandlerBlock.release())));
1028}
1029
1030/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1031/// handlers and creates a try statement from them.
1032Action::OwningStmtResult
1033Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1034                       MultiStmtArg RawHandlers) {
1035  unsigned NumHandlers = RawHandlers.size();
1036  assert(NumHandlers > 0 &&
1037         "The parser shouldn't call this if there are no handlers.");
1038  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1039
1040  for(unsigned i = 0; i < NumHandlers - 1; ++i) {
1041    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1042    if (!Handler->getExceptionDecl())
1043      return StmtError(Diag(Handler->getLocStart(), diag::err_early_catch_all));
1044  }
1045  // FIXME: We should detect handlers for the same type as an earlier one.
1046  // This one is rather easy.
1047  // FIXME: We should detect handlers that cannot catch anything because an
1048  // earlier handler catches a superclass. Need to find a method that is not
1049  // quadratic for this.
1050  // Neither of these are explicitly forbidden, but every compiler detects them
1051  // and warns.
1052
1053  RawHandlers.release();
1054  return Owned(new (Context) CXXTryStmt(TryLoc,
1055                                        static_cast<Stmt*>(TryBlock.release()),
1056                                        Handlers, NumHandlers));
1057}
1058