SemaStmt.cpp revision 31ceb61172bca7ebc3fb90e9125864c7a29c55c0
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               bool HasLeadingEmptyMacro) {
51  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOptions().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
96///
97/// Adding a cast to void (or other expression wrappers) will prevent the
98/// warning from firing.
99static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
100  SourceLocation Loc;
101  bool IsNotEqual, CanAssign;
102
103  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
104    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
105      return false;
106
107    Loc = Op->getOperatorLoc();
108    IsNotEqual = Op->getOpcode() == BO_NE;
109    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
110  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
111    if (Op->getOperator() != OO_EqualEqual &&
112        Op->getOperator() != OO_ExclaimEqual)
113      return false;
114
115    Loc = Op->getOperatorLoc();
116    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
117    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
118  } else {
119    // Not a typo-prone comparison.
120    return false;
121  }
122
123  // Suppress warnings when the operator, suspicious as it may be, comes from
124  // a macro expansion.
125  if (Loc.isMacroID())
126    return false;
127
128  S.Diag(Loc, diag::warn_unused_comparison)
129    << (unsigned)IsNotEqual << E->getSourceRange();
130
131  // If the LHS is a plausible entity to assign to, provide a fixit hint to
132  // correct common typos.
133  if (CanAssign) {
134    if (IsNotEqual)
135      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
136        << FixItHint::CreateReplacement(Loc, "|=");
137    else
138      S.Diag(Loc, diag::note_equality_comparison_to_assign)
139        << FixItHint::CreateReplacement(Loc, "=");
140  }
141
142  return true;
143}
144
145void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
146  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
147    return DiagnoseUnusedExprResult(Label->getSubStmt());
148
149  const Expr *E = dyn_cast_or_null<Expr>(S);
150  if (!E)
151    return;
152
153  SourceLocation Loc;
154  SourceRange R1, R2;
155  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
156      !E->isUnusedResultAWarning(Loc, R1, R2, Context))
157    return;
158
159  // Okay, we have an unused result.  Depending on what the base expression is,
160  // we might want to make a more specific diagnostic.  Check for one of these
161  // cases now.
162  unsigned DiagID = diag::warn_unused_expr;
163  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
164    E = Temps->getSubExpr();
165  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
166    E = TempExpr->getSubExpr();
167
168  if (DiagnoseUnusedComparison(*this, E))
169    return;
170
171  E = E->IgnoreParenImpCasts();
172  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
173    if (E->getType()->isVoidType())
174      return;
175
176    // If the callee has attribute pure, const, or warn_unused_result, warn with
177    // a more specific message to make it clear what is happening.
178    if (const Decl *FD = CE->getCalleeDecl()) {
179      if (FD->getAttr<WarnUnusedResultAttr>()) {
180        Diag(Loc, diag::warn_unused_result) << R1 << R2;
181        return;
182      }
183      if (FD->getAttr<PureAttr>()) {
184        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
185        return;
186      }
187      if (FD->getAttr<ConstAttr>()) {
188        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
189        return;
190      }
191    }
192  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
193    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
194      Diag(Loc, diag::err_arc_unused_init_message) << R1;
195      return;
196    }
197    const ObjCMethodDecl *MD = ME->getMethodDecl();
198    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
199      Diag(Loc, diag::warn_unused_result) << R1 << R2;
200      return;
201    }
202  } else if (isa<PseudoObjectExpr>(E)) {
203    DiagID = diag::warn_unused_property_expr;
204  } else if (const CXXFunctionalCastExpr *FC
205                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
206    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
207        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
208      return;
209  }
210  // Diagnose "(void*) blah" as a typo for "(void) blah".
211  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
212    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
213    QualType T = TI->getType();
214
215    // We really do want to use the non-canonical type here.
216    if (T == Context.VoidPtrTy) {
217      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
218
219      Diag(Loc, diag::warn_unused_voidptr)
220        << FixItHint::CreateRemoval(TL.getStarLoc());
221      return;
222    }
223  }
224
225  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
226}
227
228StmtResult
229Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
230                        MultiStmtArg elts, bool isStmtExpr) {
231  unsigned NumElts = elts.size();
232  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
233  // If we're in C89 mode, check that we don't have any decls after stmts.  If
234  // so, emit an extension diagnostic.
235  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
236    // Note that __extension__ can be around a decl.
237    unsigned i = 0;
238    // Skip over all declarations.
239    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
240      /*empty*/;
241
242    // We found the end of the list or a statement.  Scan for another declstmt.
243    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
244      /*empty*/;
245
246    if (i != NumElts) {
247      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
248      Diag(D->getLocation(), diag::ext_mixed_decls_code);
249    }
250  }
251  // Warn about unused expressions in statements.
252  for (unsigned i = 0; i != NumElts; ++i) {
253    // Ignore statements that are last in a statement expression.
254    if (isStmtExpr && i == NumElts - 1)
255      continue;
256
257    DiagnoseUnusedExprResult(Elts[i]);
258  }
259
260  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
261}
262
263StmtResult
264Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
265                    SourceLocation DotDotDotLoc, Expr *RHSVal,
266                    SourceLocation ColonLoc) {
267  assert((LHSVal != 0) && "missing expression in case statement");
268
269  if (getCurFunction()->SwitchStack.empty()) {
270    Diag(CaseLoc, diag::err_case_not_in_switch);
271    return StmtError();
272  }
273
274  if (!getLangOptions().CPlusPlus0x) {
275    // C99 6.8.4.2p3: The expression shall be an integer constant.
276    // However, GCC allows any evaluatable integer expression.
277    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
278        VerifyIntegerConstantExpression(LHSVal))
279      return StmtError();
280
281    // GCC extension: The expression shall be an integer constant.
282
283    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
284        VerifyIntegerConstantExpression(RHSVal)) {
285      RHSVal = 0;  // Recover by just forgetting about it.
286    }
287  }
288
289  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
290                                        ColonLoc);
291  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
292  return Owned(CS);
293}
294
295/// ActOnCaseStmtBody - This installs a statement as the body of a case.
296void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
297  DiagnoseUnusedExprResult(SubStmt);
298
299  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
300  CS->setSubStmt(SubStmt);
301}
302
303StmtResult
304Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
305                       Stmt *SubStmt, Scope *CurScope) {
306  DiagnoseUnusedExprResult(SubStmt);
307
308  if (getCurFunction()->SwitchStack.empty()) {
309    Diag(DefaultLoc, diag::err_default_not_in_switch);
310    return Owned(SubStmt);
311  }
312
313  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
314  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
315  return Owned(DS);
316}
317
318StmtResult
319Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
320                     SourceLocation ColonLoc, Stmt *SubStmt) {
321
322  // If the label was multiply defined, reject it now.
323  if (TheDecl->getStmt()) {
324    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
325    Diag(TheDecl->getLocation(), diag::note_previous_definition);
326    return Owned(SubStmt);
327  }
328
329  // Otherwise, things are good.  Fill in the declaration and return it.
330  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
331  TheDecl->setStmt(LS);
332  if (!TheDecl->isGnuLocal())
333    TheDecl->setLocation(IdentLoc);
334  return Owned(LS);
335}
336
337StmtResult
338Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
339                  Stmt *thenStmt, SourceLocation ElseLoc,
340                  Stmt *elseStmt) {
341  ExprResult CondResult(CondVal.release());
342
343  VarDecl *ConditionVar = 0;
344  if (CondVar) {
345    ConditionVar = cast<VarDecl>(CondVar);
346    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
347    if (CondResult.isInvalid())
348      return StmtError();
349  }
350  Expr *ConditionExpr = CondResult.takeAs<Expr>();
351  if (!ConditionExpr)
352    return StmtError();
353
354  DiagnoseUnusedExprResult(thenStmt);
355
356  // Warn if the if block has a null body without an else value.
357  // this helps prevent bugs due to typos, such as
358  // if (condition);
359  //   do_stuff();
360  //
361  if (!elseStmt) {
362    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
363      // But do not warn if the body is a macro that expands to nothing, e.g:
364      //
365      // #define CALL(x)
366      // if (condition)
367      //   CALL(0);
368      //
369      if (!stmt->hasLeadingEmptyMacro())
370        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
371  }
372
373  DiagnoseUnusedExprResult(elseStmt);
374
375  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
376                                    thenStmt, ElseLoc, elseStmt));
377}
378
379/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
380/// the specified width and sign.  If an overflow occurs, detect it and emit
381/// the specified diagnostic.
382void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
383                                              unsigned NewWidth, bool NewSign,
384                                              SourceLocation Loc,
385                                              unsigned DiagID) {
386  // Perform a conversion to the promoted condition type if needed.
387  if (NewWidth > Val.getBitWidth()) {
388    // If this is an extension, just do it.
389    Val = Val.extend(NewWidth);
390    Val.setIsSigned(NewSign);
391
392    // If the input was signed and negative and the output is
393    // unsigned, don't bother to warn: this is implementation-defined
394    // behavior.
395    // FIXME: Introduce a second, default-ignored warning for this case?
396  } else if (NewWidth < Val.getBitWidth()) {
397    // If this is a truncation, check for overflow.
398    llvm::APSInt ConvVal(Val);
399    ConvVal = ConvVal.trunc(NewWidth);
400    ConvVal.setIsSigned(NewSign);
401    ConvVal = ConvVal.extend(Val.getBitWidth());
402    ConvVal.setIsSigned(Val.isSigned());
403    if (ConvVal != Val)
404      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
405
406    // Regardless of whether a diagnostic was emitted, really do the
407    // truncation.
408    Val = Val.trunc(NewWidth);
409    Val.setIsSigned(NewSign);
410  } else if (NewSign != Val.isSigned()) {
411    // Convert the sign to match the sign of the condition.  This can cause
412    // overflow as well: unsigned(INTMIN)
413    // We don't diagnose this overflow, because it is implementation-defined
414    // behavior.
415    // FIXME: Introduce a second, default-ignored warning for this case?
416    llvm::APSInt OldVal(Val);
417    Val.setIsSigned(NewSign);
418  }
419}
420
421namespace {
422  struct CaseCompareFunctor {
423    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
424                    const llvm::APSInt &RHS) {
425      return LHS.first < RHS;
426    }
427    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
428                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
429      return LHS.first < RHS.first;
430    }
431    bool operator()(const llvm::APSInt &LHS,
432                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
433      return LHS < RHS.first;
434    }
435  };
436}
437
438/// CmpCaseVals - Comparison predicate for sorting case values.
439///
440static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
441                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
442  if (lhs.first < rhs.first)
443    return true;
444
445  if (lhs.first == rhs.first &&
446      lhs.second->getCaseLoc().getRawEncoding()
447       < rhs.second->getCaseLoc().getRawEncoding())
448    return true;
449  return false;
450}
451
452/// CmpEnumVals - Comparison predicate for sorting enumeration values.
453///
454static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
455                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
456{
457  return lhs.first < rhs.first;
458}
459
460/// EqEnumVals - Comparison preficate for uniqing enumeration values.
461///
462static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
463                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
464{
465  return lhs.first == rhs.first;
466}
467
468/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
469/// potentially integral-promoted expression @p expr.
470static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
471  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
472    expr = cleanups->getSubExpr();
473  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
474    if (impcast->getCastKind() != CK_IntegralCast) break;
475    expr = impcast->getSubExpr();
476  }
477  return expr->getType();
478}
479
480StmtResult
481Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
482                             Decl *CondVar) {
483  ExprResult CondResult;
484
485  VarDecl *ConditionVar = 0;
486  if (CondVar) {
487    ConditionVar = cast<VarDecl>(CondVar);
488    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
489    if (CondResult.isInvalid())
490      return StmtError();
491
492    Cond = CondResult.release();
493  }
494
495  if (!Cond)
496    return StmtError();
497
498  CondResult = CheckPlaceholderExpr(Cond);
499  if (CondResult.isInvalid())
500    return StmtError();
501
502  CondResult
503    = ConvertToIntegralOrEnumerationType(SwitchLoc, CondResult.take(),
504                          PDiag(diag::err_typecheck_statement_requires_integer),
505                                   PDiag(diag::err_switch_incomplete_class_type)
506                                     << Cond->getSourceRange(),
507                                   PDiag(diag::err_switch_explicit_conversion),
508                                         PDiag(diag::note_switch_conversion),
509                                   PDiag(diag::err_switch_multiple_conversions),
510                                         PDiag(diag::note_switch_conversion),
511                                         PDiag(0));
512  if (CondResult.isInvalid()) return StmtError();
513  Cond = CondResult.take();
514
515  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
516  CondResult = UsualUnaryConversions(Cond);
517  if (CondResult.isInvalid()) return StmtError();
518  Cond = CondResult.take();
519
520  if (!CondVar) {
521    CheckImplicitConversions(Cond, SwitchLoc);
522    CondResult = MaybeCreateExprWithCleanups(Cond);
523    if (CondResult.isInvalid())
524      return StmtError();
525    Cond = CondResult.take();
526  }
527
528  getCurFunction()->setHasBranchIntoScope();
529
530  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
531  getCurFunction()->SwitchStack.push_back(SS);
532  return Owned(SS);
533}
534
535static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
536  if (Val.getBitWidth() < BitWidth)
537    Val = Val.extend(BitWidth);
538  else if (Val.getBitWidth() > BitWidth)
539    Val = Val.trunc(BitWidth);
540  Val.setIsSigned(IsSigned);
541}
542
543StmtResult
544Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
545                            Stmt *BodyStmt) {
546  SwitchStmt *SS = cast<SwitchStmt>(Switch);
547  assert(SS == getCurFunction()->SwitchStack.back() &&
548         "switch stack missing push/pop!");
549
550  SS->setBody(BodyStmt, SwitchLoc);
551  getCurFunction()->SwitchStack.pop_back();
552
553  Expr *CondExpr = SS->getCond();
554  if (!CondExpr) return StmtError();
555
556  QualType CondType = CondExpr->getType();
557
558  Expr *CondExprBeforePromotion = CondExpr;
559  QualType CondTypeBeforePromotion =
560      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
561
562  // C++ 6.4.2.p2:
563  // Integral promotions are performed (on the switch condition).
564  //
565  // A case value unrepresentable by the original switch condition
566  // type (before the promotion) doesn't make sense, even when it can
567  // be represented by the promoted type.  Therefore we need to find
568  // the pre-promotion type of the switch condition.
569  if (!CondExpr->isTypeDependent()) {
570    // We have already converted the expression to an integral or enumeration
571    // type, when we started the switch statement. If we don't have an
572    // appropriate type now, just return an error.
573    if (!CondType->isIntegralOrEnumerationType())
574      return StmtError();
575
576    if (CondExpr->isKnownToHaveBooleanValue()) {
577      // switch(bool_expr) {...} is often a programmer error, e.g.
578      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
579      // One can always use an if statement instead of switch(bool_expr).
580      Diag(SwitchLoc, diag::warn_bool_switch_condition)
581          << CondExpr->getSourceRange();
582    }
583  }
584
585  // Get the bitwidth of the switched-on value before promotions.  We must
586  // convert the integer case values to this width before comparison.
587  bool HasDependentValue
588    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
589  unsigned CondWidth
590    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
591  bool CondIsSigned
592    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
593
594  // Accumulate all of the case values in a vector so that we can sort them
595  // and detect duplicates.  This vector contains the APInt for the case after
596  // it has been converted to the condition type.
597  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
598  CaseValsTy CaseVals;
599
600  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
601  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
602  CaseRangesTy CaseRanges;
603
604  DefaultStmt *TheDefaultStmt = 0;
605
606  bool CaseListIsErroneous = false;
607
608  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
609       SC = SC->getNextSwitchCase()) {
610
611    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
612      if (TheDefaultStmt) {
613        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
614        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
615
616        // FIXME: Remove the default statement from the switch block so that
617        // we'll return a valid AST.  This requires recursing down the AST and
618        // finding it, not something we are set up to do right now.  For now,
619        // just lop the entire switch stmt out of the AST.
620        CaseListIsErroneous = true;
621      }
622      TheDefaultStmt = DS;
623
624    } else {
625      CaseStmt *CS = cast<CaseStmt>(SC);
626
627      Expr *Lo = CS->getLHS();
628
629      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
630        HasDependentValue = true;
631        break;
632      }
633
634      llvm::APSInt LoVal;
635
636      if (getLangOptions().CPlusPlus0x) {
637        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
638        // constant expression of the promoted type of the switch condition.
639        ExprResult ConvLo =
640          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
641        if (ConvLo.isInvalid()) {
642          CaseListIsErroneous = true;
643          continue;
644        }
645        Lo = ConvLo.take();
646      } else {
647        // We already verified that the expression has a i-c-e value (C99
648        // 6.8.4.2p3) - get that value now.
649        LoVal = Lo->EvaluateKnownConstInt(Context);
650
651        // If the LHS is not the same type as the condition, insert an implicit
652        // cast.
653        Lo = DefaultLvalueConversion(Lo).take();
654        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
655      }
656
657      // Convert the value to the same width/sign as the condition had prior to
658      // integral promotions.
659      //
660      // FIXME: This causes us to reject valid code:
661      //   switch ((char)c) { case 256: case 0: return 0; }
662      // Here we claim there is a duplicated condition value, but there is not.
663      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
664                                         Lo->getLocStart(),
665                                         diag::warn_case_value_overflow);
666
667      CS->setLHS(Lo);
668
669      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
670      if (CS->getRHS()) {
671        if (CS->getRHS()->isTypeDependent() ||
672            CS->getRHS()->isValueDependent()) {
673          HasDependentValue = true;
674          break;
675        }
676        CaseRanges.push_back(std::make_pair(LoVal, CS));
677      } else
678        CaseVals.push_back(std::make_pair(LoVal, CS));
679    }
680  }
681
682  if (!HasDependentValue) {
683    // If we don't have a default statement, check whether the
684    // condition is constant.
685    llvm::APSInt ConstantCondValue;
686    bool HasConstantCond = false;
687    if (!HasDependentValue && !TheDefaultStmt) {
688      HasConstantCond
689        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
690                                                 Expr::SE_AllowSideEffects);
691      assert(!HasConstantCond ||
692             (ConstantCondValue.getBitWidth() == CondWidth &&
693              ConstantCondValue.isSigned() == CondIsSigned));
694    }
695    bool ShouldCheckConstantCond = HasConstantCond;
696
697    // Sort all the scalar case values so we can easily detect duplicates.
698    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
699
700    if (!CaseVals.empty()) {
701      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
702        if (ShouldCheckConstantCond &&
703            CaseVals[i].first == ConstantCondValue)
704          ShouldCheckConstantCond = false;
705
706        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
707          // If we have a duplicate, report it.
708          Diag(CaseVals[i].second->getLHS()->getLocStart(),
709               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
710          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
711               diag::note_duplicate_case_prev);
712          // FIXME: We really want to remove the bogus case stmt from the
713          // substmt, but we have no way to do this right now.
714          CaseListIsErroneous = true;
715        }
716      }
717    }
718
719    // Detect duplicate case ranges, which usually don't exist at all in
720    // the first place.
721    if (!CaseRanges.empty()) {
722      // Sort all the case ranges by their low value so we can easily detect
723      // overlaps between ranges.
724      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
725
726      // Scan the ranges, computing the high values and removing empty ranges.
727      std::vector<llvm::APSInt> HiVals;
728      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
729        llvm::APSInt &LoVal = CaseRanges[i].first;
730        CaseStmt *CR = CaseRanges[i].second;
731        Expr *Hi = CR->getRHS();
732        llvm::APSInt HiVal;
733
734        if (getLangOptions().CPlusPlus0x) {
735          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
736          // constant expression of the promoted type of the switch condition.
737          ExprResult ConvHi =
738            CheckConvertedConstantExpression(Hi, CondType, HiVal,
739                                             CCEK_CaseValue);
740          if (ConvHi.isInvalid()) {
741            CaseListIsErroneous = true;
742            continue;
743          }
744          Hi = ConvHi.take();
745        } else {
746          HiVal = Hi->EvaluateKnownConstInt(Context);
747
748          // If the RHS is not the same type as the condition, insert an
749          // implicit cast.
750          Hi = DefaultLvalueConversion(Hi).take();
751          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
752        }
753
754        // Convert the value to the same width/sign as the condition.
755        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
756                                           Hi->getLocStart(),
757                                           diag::warn_case_value_overflow);
758
759        CR->setRHS(Hi);
760
761        // If the low value is bigger than the high value, the case is empty.
762        if (LoVal > HiVal) {
763          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
764            << SourceRange(CR->getLHS()->getLocStart(),
765                           Hi->getLocEnd());
766          CaseRanges.erase(CaseRanges.begin()+i);
767          --i, --e;
768          continue;
769        }
770
771        if (ShouldCheckConstantCond &&
772            LoVal <= ConstantCondValue &&
773            ConstantCondValue <= HiVal)
774          ShouldCheckConstantCond = false;
775
776        HiVals.push_back(HiVal);
777      }
778
779      // Rescan the ranges, looking for overlap with singleton values and other
780      // ranges.  Since the range list is sorted, we only need to compare case
781      // ranges with their neighbors.
782      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
783        llvm::APSInt &CRLo = CaseRanges[i].first;
784        llvm::APSInt &CRHi = HiVals[i];
785        CaseStmt *CR = CaseRanges[i].second;
786
787        // Check to see whether the case range overlaps with any
788        // singleton cases.
789        CaseStmt *OverlapStmt = 0;
790        llvm::APSInt OverlapVal(32);
791
792        // Find the smallest value >= the lower bound.  If I is in the
793        // case range, then we have overlap.
794        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
795                                                  CaseVals.end(), CRLo,
796                                                  CaseCompareFunctor());
797        if (I != CaseVals.end() && I->first < CRHi) {
798          OverlapVal  = I->first;   // Found overlap with scalar.
799          OverlapStmt = I->second;
800        }
801
802        // Find the smallest value bigger than the upper bound.
803        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
804        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
805          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
806          OverlapStmt = (I-1)->second;
807        }
808
809        // Check to see if this case stmt overlaps with the subsequent
810        // case range.
811        if (i && CRLo <= HiVals[i-1]) {
812          OverlapVal  = HiVals[i-1];       // Found overlap with range.
813          OverlapStmt = CaseRanges[i-1].second;
814        }
815
816        if (OverlapStmt) {
817          // If we have a duplicate, report it.
818          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
819            << OverlapVal.toString(10);
820          Diag(OverlapStmt->getLHS()->getLocStart(),
821               diag::note_duplicate_case_prev);
822          // FIXME: We really want to remove the bogus case stmt from the
823          // substmt, but we have no way to do this right now.
824          CaseListIsErroneous = true;
825        }
826      }
827    }
828
829    // Complain if we have a constant condition and we didn't find a match.
830    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
831      // TODO: it would be nice if we printed enums as enums, chars as
832      // chars, etc.
833      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
834        << ConstantCondValue.toString(10)
835        << CondExpr->getSourceRange();
836    }
837
838    // Check to see if switch is over an Enum and handles all of its
839    // values.  We only issue a warning if there is not 'default:', but
840    // we still do the analysis to preserve this information in the AST
841    // (which can be used by flow-based analyes).
842    //
843    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
844
845    // If switch has default case, then ignore it.
846    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
847      const EnumDecl *ED = ET->getDecl();
848      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
849        EnumValsTy;
850      EnumValsTy EnumVals;
851
852      // Gather all enum values, set their type and sort them,
853      // allowing easier comparison with CaseVals.
854      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
855           EDI != ED->enumerator_end(); ++EDI) {
856        llvm::APSInt Val = EDI->getInitVal();
857        AdjustAPSInt(Val, CondWidth, CondIsSigned);
858        EnumVals.push_back(std::make_pair(Val, *EDI));
859      }
860      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
861      EnumValsTy::iterator EIend =
862        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
863
864      // See which case values aren't in enum.
865      // TODO: we might want to check whether case values are out of the
866      // enum even if we don't want to check whether all cases are handled.
867      if (!TheDefaultStmt) {
868        EnumValsTy::const_iterator EI = EnumVals.begin();
869        for (CaseValsTy::const_iterator CI = CaseVals.begin();
870             CI != CaseVals.end(); CI++) {
871          while (EI != EIend && EI->first < CI->first)
872            EI++;
873          if (EI == EIend || EI->first > CI->first)
874            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
875              << ED->getDeclName();
876        }
877        // See which of case ranges aren't in enum
878        EI = EnumVals.begin();
879        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
880             RI != CaseRanges.end() && EI != EIend; RI++) {
881          while (EI != EIend && EI->first < RI->first)
882            EI++;
883
884          if (EI == EIend || EI->first != RI->first) {
885            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
886              << ED->getDeclName();
887          }
888
889          llvm::APSInt Hi =
890            RI->second->getRHS()->EvaluateKnownConstInt(Context);
891          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
892          while (EI != EIend && EI->first < Hi)
893            EI++;
894          if (EI == EIend || EI->first != Hi)
895            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
896              << ED->getDeclName();
897        }
898      }
899
900      // Check which enum vals aren't in switch
901      CaseValsTy::const_iterator CI = CaseVals.begin();
902      CaseRangesTy::const_iterator RI = CaseRanges.begin();
903      bool hasCasesNotInSwitch = false;
904
905      SmallVector<DeclarationName,8> UnhandledNames;
906
907      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
908        // Drop unneeded case values
909        llvm::APSInt CIVal;
910        while (CI != CaseVals.end() && CI->first < EI->first)
911          CI++;
912
913        if (CI != CaseVals.end() && CI->first == EI->first)
914          continue;
915
916        // Drop unneeded case ranges
917        for (; RI != CaseRanges.end(); RI++) {
918          llvm::APSInt Hi =
919            RI->second->getRHS()->EvaluateKnownConstInt(Context);
920          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
921          if (EI->first <= Hi)
922            break;
923        }
924
925        if (RI == CaseRanges.end() || EI->first < RI->first) {
926          hasCasesNotInSwitch = true;
927          UnhandledNames.push_back(EI->second->getDeclName());
928        }
929      }
930
931      if (TheDefaultStmt) {
932        if (UnhandledNames.size() == 0)
933          Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
934        else
935          UnhandledNames.clear();
936      }
937
938      // Produce a nice diagnostic if multiple values aren't handled.
939      switch (UnhandledNames.size()) {
940      case 0: break;
941      case 1:
942        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
943          << UnhandledNames[0];
944        break;
945      case 2:
946        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
947          << UnhandledNames[0] << UnhandledNames[1];
948        break;
949      case 3:
950        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
951          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
952        break;
953      default:
954        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
955          << (unsigned)UnhandledNames.size()
956          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
957        break;
958      }
959
960      if (!hasCasesNotInSwitch)
961        SS->setAllEnumCasesCovered();
962    }
963  }
964
965  // FIXME: If the case list was broken is some way, we don't have a good system
966  // to patch it up.  Instead, just return the whole substmt as broken.
967  if (CaseListIsErroneous)
968    return StmtError();
969
970  return Owned(SS);
971}
972
973StmtResult
974Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
975                     Decl *CondVar, Stmt *Body) {
976  ExprResult CondResult(Cond.release());
977
978  VarDecl *ConditionVar = 0;
979  if (CondVar) {
980    ConditionVar = cast<VarDecl>(CondVar);
981    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
982    if (CondResult.isInvalid())
983      return StmtError();
984  }
985  Expr *ConditionExpr = CondResult.take();
986  if (!ConditionExpr)
987    return StmtError();
988
989  DiagnoseUnusedExprResult(Body);
990
991  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
992                                       Body, WhileLoc));
993}
994
995StmtResult
996Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
997                  SourceLocation WhileLoc, SourceLocation CondLParen,
998                  Expr *Cond, SourceLocation CondRParen) {
999  assert(Cond && "ActOnDoStmt(): missing expression");
1000
1001  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1002  if (CondResult.isInvalid() || CondResult.isInvalid())
1003    return StmtError();
1004  Cond = CondResult.take();
1005
1006  CheckImplicitConversions(Cond, DoLoc);
1007  CondResult = MaybeCreateExprWithCleanups(Cond);
1008  if (CondResult.isInvalid())
1009    return StmtError();
1010  Cond = CondResult.take();
1011
1012  DiagnoseUnusedExprResult(Body);
1013
1014  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1015}
1016
1017StmtResult
1018Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1019                   Stmt *First, FullExprArg second, Decl *secondVar,
1020                   FullExprArg third,
1021                   SourceLocation RParenLoc, Stmt *Body) {
1022  if (!getLangOptions().CPlusPlus) {
1023    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1024      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1025      // declare identifiers for objects having storage class 'auto' or
1026      // 'register'.
1027      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1028           DI!=DE; ++DI) {
1029        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1030        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1031          VD = 0;
1032        if (VD == 0)
1033          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1034        // FIXME: mark decl erroneous!
1035      }
1036    }
1037  }
1038
1039  ExprResult SecondResult(second.release());
1040  VarDecl *ConditionVar = 0;
1041  if (secondVar) {
1042    ConditionVar = cast<VarDecl>(secondVar);
1043    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1044    if (SecondResult.isInvalid())
1045      return StmtError();
1046  }
1047
1048  Expr *Third  = third.release().takeAs<Expr>();
1049
1050  DiagnoseUnusedExprResult(First);
1051  DiagnoseUnusedExprResult(Third);
1052  DiagnoseUnusedExprResult(Body);
1053
1054  return Owned(new (Context) ForStmt(Context, First,
1055                                     SecondResult.take(), ConditionVar,
1056                                     Third, Body, ForLoc, LParenLoc,
1057                                     RParenLoc));
1058}
1059
1060/// In an Objective C collection iteration statement:
1061///   for (x in y)
1062/// x can be an arbitrary l-value expression.  Bind it up as a
1063/// full-expression.
1064StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1065  CheckImplicitConversions(E);
1066  ExprResult Result = MaybeCreateExprWithCleanups(E);
1067  if (Result.isInvalid()) return StmtError();
1068  return Owned(static_cast<Stmt*>(Result.get()));
1069}
1070
1071ExprResult
1072Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1073  assert(collection);
1074
1075  // Bail out early if we've got a type-dependent expression.
1076  if (collection->isTypeDependent()) return Owned(collection);
1077
1078  // Perform normal l-value conversion.
1079  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1080  if (result.isInvalid())
1081    return ExprError();
1082  collection = result.take();
1083
1084  // The operand needs to have object-pointer type.
1085  // TODO: should we do a contextual conversion?
1086  const ObjCObjectPointerType *pointerType =
1087    collection->getType()->getAs<ObjCObjectPointerType>();
1088  if (!pointerType)
1089    return Diag(forLoc, diag::err_collection_expr_type)
1090             << collection->getType() << collection->getSourceRange();
1091
1092  // Check that the operand provides
1093  //   - countByEnumeratingWithState:objects:count:
1094  const ObjCObjectType *objectType = pointerType->getObjectType();
1095  ObjCInterfaceDecl *iface = objectType->getInterface();
1096
1097  // If we have a forward-declared type, we can't do this check.
1098  // Under ARC, it is an error not to have a forward-declared class.
1099  if (iface &&
1100      RequireCompleteType(forLoc, QualType(objectType, 0),
1101                          getLangOptions().ObjCAutoRefCount
1102                            ? PDiag(diag::err_arc_collection_forward)
1103                                << collection->getSourceRange()
1104                          : PDiag(0))) {
1105    // Otherwise, if we have any useful type information, check that
1106    // the type declares the appropriate method.
1107  } else if (iface || !objectType->qual_empty()) {
1108    IdentifierInfo *selectorIdents[] = {
1109      &Context.Idents.get("countByEnumeratingWithState"),
1110      &Context.Idents.get("objects"),
1111      &Context.Idents.get("count")
1112    };
1113    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1114
1115    ObjCMethodDecl *method = 0;
1116
1117    // If there's an interface, look in both the public and private APIs.
1118    if (iface) {
1119      method = iface->lookupInstanceMethod(selector);
1120      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1121    }
1122
1123    // Also check protocol qualifiers.
1124    if (!method)
1125      method = LookupMethodInQualifiedType(selector, pointerType,
1126                                           /*instance*/ true);
1127
1128    // If we didn't find it anywhere, give up.
1129    if (!method) {
1130      Diag(forLoc, diag::warn_collection_expr_type)
1131        << collection->getType() << selector << collection->getSourceRange();
1132    }
1133
1134    // TODO: check for an incompatible signature?
1135  }
1136
1137  // Wrap up any cleanups in the expression.
1138  return Owned(MaybeCreateExprWithCleanups(collection));
1139}
1140
1141StmtResult
1142Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1143                                 SourceLocation LParenLoc,
1144                                 Stmt *First, Expr *Second,
1145                                 SourceLocation RParenLoc, Stmt *Body) {
1146  if (First) {
1147    QualType FirstType;
1148    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1149      if (!DS->isSingleDecl())
1150        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1151                         diag::err_toomany_element_decls));
1152
1153      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1154      FirstType = D->getType();
1155      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1156      // declare identifiers for objects having storage class 'auto' or
1157      // 'register'.
1158      if (!D->hasLocalStorage())
1159        return StmtError(Diag(D->getLocation(),
1160                              diag::err_non_variable_decl_in_for));
1161    } else {
1162      Expr *FirstE = cast<Expr>(First);
1163      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1164        return StmtError(Diag(First->getLocStart(),
1165                   diag::err_selector_element_not_lvalue)
1166          << First->getSourceRange());
1167
1168      FirstType = static_cast<Expr*>(First)->getType();
1169    }
1170    if (!FirstType->isDependentType() &&
1171        !FirstType->isObjCObjectPointerType() &&
1172        !FirstType->isBlockPointerType())
1173        Diag(ForLoc, diag::err_selector_element_type)
1174          << FirstType << First->getSourceRange();
1175  }
1176
1177  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1178                                                   ForLoc, RParenLoc));
1179}
1180
1181namespace {
1182
1183enum BeginEndFunction {
1184  BEF_begin,
1185  BEF_end
1186};
1187
1188/// Build a variable declaration for a for-range statement.
1189static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1190                                     QualType Type, const char *Name) {
1191  DeclContext *DC = SemaRef.CurContext;
1192  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1193  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1194  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1195                                  TInfo, SC_Auto, SC_None);
1196  Decl->setImplicit();
1197  return Decl;
1198}
1199
1200/// Finish building a variable declaration for a for-range statement.
1201/// \return true if an error occurs.
1202static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1203                                  SourceLocation Loc, int diag) {
1204  // Deduce the type for the iterator variable now rather than leaving it to
1205  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1206  TypeSourceInfo *InitTSI = 0;
1207  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1208      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1209    SemaRef.Diag(Loc, diag) << Init->getType();
1210  if (!InitTSI) {
1211    Decl->setInvalidDecl();
1212    return true;
1213  }
1214  Decl->setTypeSourceInfo(InitTSI);
1215  Decl->setType(InitTSI->getType());
1216
1217  // In ARC, infer lifetime.
1218  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1219  // we're doing the equivalent of fast iteration.
1220  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1221      SemaRef.inferObjCARCLifetime(Decl))
1222    Decl->setInvalidDecl();
1223
1224  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1225                               /*TypeMayContainAuto=*/false);
1226  SemaRef.FinalizeDeclaration(Decl);
1227  SemaRef.CurContext->addHiddenDecl(Decl);
1228  return false;
1229}
1230
1231/// Produce a note indicating which begin/end function was implicitly called
1232/// by a C++0x for-range statement. This is often not obvious from the code,
1233/// nor from the diagnostics produced when analysing the implicit expressions
1234/// required in a for-range statement.
1235void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1236                                  BeginEndFunction BEF) {
1237  CallExpr *CE = dyn_cast<CallExpr>(E);
1238  if (!CE)
1239    return;
1240  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1241  if (!D)
1242    return;
1243  SourceLocation Loc = D->getLocation();
1244
1245  std::string Description;
1246  bool IsTemplate = false;
1247  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1248    Description = SemaRef.getTemplateArgumentBindingsText(
1249      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1250    IsTemplate = true;
1251  }
1252
1253  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1254    << BEF << IsTemplate << Description << E->getType();
1255}
1256
1257/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1258/// given LookupResult is non-empty, it is assumed to describe a member which
1259/// will be invoked. Otherwise, the function will be found via argument
1260/// dependent lookup.
1261static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1262                                            SourceLocation Loc,
1263                                            VarDecl *Decl,
1264                                            BeginEndFunction BEF,
1265                                            const DeclarationNameInfo &NameInfo,
1266                                            LookupResult &MemberLookup,
1267                                            Expr *Range) {
1268  ExprResult CallExpr;
1269  if (!MemberLookup.empty()) {
1270    ExprResult MemberRef =
1271      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1272                                       /*IsPtr=*/false, CXXScopeSpec(),
1273                                       /*Qualifier=*/0, MemberLookup,
1274                                       /*TemplateArgs=*/0);
1275    if (MemberRef.isInvalid())
1276      return ExprError();
1277    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1278                                     Loc, 0);
1279    if (CallExpr.isInvalid())
1280      return ExprError();
1281  } else {
1282    UnresolvedSet<0> FoundNames;
1283    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1284    // std is an associated namespace.
1285    UnresolvedLookupExpr *Fn =
1286      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1287                                   NestedNameSpecifierLoc(), NameInfo,
1288                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1289                                   FoundNames.begin(), FoundNames.end(),
1290                                   /*LookInStdNamespace=*/true);
1291    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1292                                               0);
1293    if (CallExpr.isInvalid()) {
1294      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1295        << Range->getType();
1296      return ExprError();
1297    }
1298  }
1299  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1300                            diag::err_for_range_iter_deduction_failure)) {
1301    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1302    return ExprError();
1303  }
1304  return CallExpr;
1305}
1306
1307}
1308
1309/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1310///
1311/// C++0x [stmt.ranged]:
1312///   A range-based for statement is equivalent to
1313///
1314///   {
1315///     auto && __range = range-init;
1316///     for ( auto __begin = begin-expr,
1317///           __end = end-expr;
1318///           __begin != __end;
1319///           ++__begin ) {
1320///       for-range-declaration = *__begin;
1321///       statement
1322///     }
1323///   }
1324///
1325/// The body of the loop is not available yet, since it cannot be analysed until
1326/// we have determined the type of the for-range-declaration.
1327StmtResult
1328Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1329                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1330                           SourceLocation RParenLoc) {
1331  if (!First || !Range)
1332    return StmtError();
1333
1334  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1335  assert(DS && "first part of for range not a decl stmt");
1336
1337  if (!DS->isSingleDecl()) {
1338    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1339    return StmtError();
1340  }
1341  if (DS->getSingleDecl()->isInvalidDecl())
1342    return StmtError();
1343
1344  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1345    return StmtError();
1346
1347  // Build  auto && __range = range-init
1348  SourceLocation RangeLoc = Range->getLocStart();
1349  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1350                                           Context.getAutoRRefDeductType(),
1351                                           "__range");
1352  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1353                            diag::err_for_range_deduction_failure))
1354    return StmtError();
1355
1356  // Claim the type doesn't contain auto: we've already done the checking.
1357  DeclGroupPtrTy RangeGroup =
1358    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1359  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1360  if (RangeDecl.isInvalid())
1361    return StmtError();
1362
1363  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1364                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1365                              RParenLoc);
1366}
1367
1368/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1369StmtResult
1370Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1371                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1372                           Expr *Inc, Stmt *LoopVarDecl,
1373                           SourceLocation RParenLoc) {
1374  Scope *S = getCurScope();
1375
1376  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1377  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1378  QualType RangeVarType = RangeVar->getType();
1379
1380  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1381  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1382
1383  StmtResult BeginEndDecl = BeginEnd;
1384  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1385
1386  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1387    SourceLocation RangeLoc = RangeVar->getLocation();
1388
1389    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1390
1391    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1392                                                VK_LValue, ColonLoc);
1393    if (BeginRangeRef.isInvalid())
1394      return StmtError();
1395
1396    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1397                                              VK_LValue, ColonLoc);
1398    if (EndRangeRef.isInvalid())
1399      return StmtError();
1400
1401    QualType AutoType = Context.getAutoDeductType();
1402    Expr *Range = RangeVar->getInit();
1403    if (!Range)
1404      return StmtError();
1405    QualType RangeType = Range->getType();
1406
1407    if (RequireCompleteType(RangeLoc, RangeType,
1408                            PDiag(diag::err_for_range_incomplete_type)))
1409      return StmtError();
1410
1411    // Build auto __begin = begin-expr, __end = end-expr.
1412    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1413                                             "__begin");
1414    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1415                                           "__end");
1416
1417    // Build begin-expr and end-expr and attach to __begin and __end variables.
1418    ExprResult BeginExpr, EndExpr;
1419    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1420      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1421      //   __range + __bound, respectively, where __bound is the array bound. If
1422      //   _RangeT is an array of unknown size or an array of incomplete type,
1423      //   the program is ill-formed;
1424
1425      // begin-expr is __range.
1426      BeginExpr = BeginRangeRef;
1427      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1428                                diag::err_for_range_iter_deduction_failure)) {
1429        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1430        return StmtError();
1431      }
1432
1433      // Find the array bound.
1434      ExprResult BoundExpr;
1435      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1436        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1437                                                 Context.getPointerDiffType(),
1438                                                 RangeLoc));
1439      else if (const VariableArrayType *VAT =
1440               dyn_cast<VariableArrayType>(UnqAT))
1441        BoundExpr = VAT->getSizeExpr();
1442      else {
1443        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1444        // UnqAT is not incomplete and Range is not type-dependent.
1445        llvm_unreachable("Unexpected array type in for-range");
1446      }
1447
1448      // end-expr is __range + __bound.
1449      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1450                           BoundExpr.get());
1451      if (EndExpr.isInvalid())
1452        return StmtError();
1453      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1454                                diag::err_for_range_iter_deduction_failure)) {
1455        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1456        return StmtError();
1457      }
1458    } else {
1459      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1460                                        ColonLoc);
1461      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1462                                      ColonLoc);
1463
1464      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1465      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1466
1467      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1468        // - if _RangeT is a class type, the unqualified-ids begin and end are
1469        //   looked up in the scope of class _RangeT as if by class member access
1470        //   lookup (3.4.5), and if either (or both) finds at least one
1471        //   declaration, begin-expr and end-expr are __range.begin() and
1472        //   __range.end(), respectively;
1473        LookupQualifiedName(BeginMemberLookup, D);
1474        LookupQualifiedName(EndMemberLookup, D);
1475
1476        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1477          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1478            << RangeType << BeginMemberLookup.empty();
1479          return StmtError();
1480        }
1481      } else {
1482        // - otherwise, begin-expr and end-expr are begin(__range) and
1483        //   end(__range), respectively, where begin and end are looked up with
1484        //   argument-dependent lookup (3.4.2). For the purposes of this name
1485        //   lookup, namespace std is an associated namespace.
1486      }
1487
1488      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1489                                            BEF_begin, BeginNameInfo,
1490                                            BeginMemberLookup,
1491                                            BeginRangeRef.get());
1492      if (BeginExpr.isInvalid())
1493        return StmtError();
1494
1495      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1496                                          BEF_end, EndNameInfo,
1497                                          EndMemberLookup, EndRangeRef.get());
1498      if (EndExpr.isInvalid())
1499        return StmtError();
1500    }
1501
1502    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1503    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1504    if (!Context.hasSameType(BeginType, EndType)) {
1505      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1506        << BeginType << EndType;
1507      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1508      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1509    }
1510
1511    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1512    // Claim the type doesn't contain auto: we've already done the checking.
1513    DeclGroupPtrTy BeginEndGroup =
1514      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1515    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1516
1517    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1518    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1519                                           VK_LValue, ColonLoc);
1520    if (BeginRef.isInvalid())
1521      return StmtError();
1522
1523    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1524                                         VK_LValue, ColonLoc);
1525    if (EndRef.isInvalid())
1526      return StmtError();
1527
1528    // Build and check __begin != __end expression.
1529    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1530                           BeginRef.get(), EndRef.get());
1531    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1532    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1533    if (NotEqExpr.isInvalid()) {
1534      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1535      if (!Context.hasSameType(BeginType, EndType))
1536        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1537      return StmtError();
1538    }
1539
1540    // Build and check ++__begin expression.
1541    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1542                                VK_LValue, ColonLoc);
1543    if (BeginRef.isInvalid())
1544      return StmtError();
1545
1546    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1547    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1548    if (IncrExpr.isInvalid()) {
1549      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1550      return StmtError();
1551    }
1552
1553    // Build and check *__begin  expression.
1554    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1555                                VK_LValue, ColonLoc);
1556    if (BeginRef.isInvalid())
1557      return StmtError();
1558
1559    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1560    if (DerefExpr.isInvalid()) {
1561      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1562      return StmtError();
1563    }
1564
1565    // Attach  *__begin  as initializer for VD.
1566    if (!LoopVar->isInvalidDecl()) {
1567      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1568                           /*TypeMayContainAuto=*/true);
1569      if (LoopVar->isInvalidDecl())
1570        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1571    }
1572  } else {
1573    // The range is implicitly used as a placeholder when it is dependent.
1574    RangeVar->setUsed();
1575  }
1576
1577  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1578                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1579                                             NotEqExpr.take(), IncrExpr.take(),
1580                                             LoopVarDS, /*Body=*/0, ForLoc,
1581                                             ColonLoc, RParenLoc));
1582}
1583
1584/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1585/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1586/// body cannot be performed until after the type of the range variable is
1587/// determined.
1588StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1589  if (!S || !B)
1590    return StmtError();
1591
1592  cast<CXXForRangeStmt>(S)->setBody(B);
1593  return S;
1594}
1595
1596StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1597                               SourceLocation LabelLoc,
1598                               LabelDecl *TheDecl) {
1599  getCurFunction()->setHasBranchIntoScope();
1600  TheDecl->setUsed();
1601  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1602}
1603
1604StmtResult
1605Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1606                            Expr *E) {
1607  // Convert operand to void*
1608  if (!E->isTypeDependent()) {
1609    QualType ETy = E->getType();
1610    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1611    ExprResult ExprRes = Owned(E);
1612    AssignConvertType ConvTy =
1613      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1614    if (ExprRes.isInvalid())
1615      return StmtError();
1616    E = ExprRes.take();
1617    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1618      return StmtError();
1619  }
1620
1621  getCurFunction()->setHasIndirectGoto();
1622
1623  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1624}
1625
1626StmtResult
1627Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1628  Scope *S = CurScope->getContinueParent();
1629  if (!S) {
1630    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1631    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1632  }
1633
1634  return Owned(new (Context) ContinueStmt(ContinueLoc));
1635}
1636
1637StmtResult
1638Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1639  Scope *S = CurScope->getBreakParent();
1640  if (!S) {
1641    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1642    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1643  }
1644
1645  return Owned(new (Context) BreakStmt(BreakLoc));
1646}
1647
1648/// \brief Determine whether the given expression is a candidate for
1649/// copy elision in either a return statement or a throw expression.
1650///
1651/// \param ReturnType If we're determining the copy elision candidate for
1652/// a return statement, this is the return type of the function. If we're
1653/// determining the copy elision candidate for a throw expression, this will
1654/// be a NULL type.
1655///
1656/// \param E The expression being returned from the function or block, or
1657/// being thrown.
1658///
1659/// \param AllowFunctionParameter Whether we allow function parameters to
1660/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1661/// we re-use this logic to determine whether we should try to move as part of
1662/// a return or throw (which does allow function parameters).
1663///
1664/// \returns The NRVO candidate variable, if the return statement may use the
1665/// NRVO, or NULL if there is no such candidate.
1666const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1667                                             Expr *E,
1668                                             bool AllowFunctionParameter) {
1669  QualType ExprType = E->getType();
1670  // - in a return statement in a function with ...
1671  // ... a class return type ...
1672  if (!ReturnType.isNull()) {
1673    if (!ReturnType->isRecordType())
1674      return 0;
1675    // ... the same cv-unqualified type as the function return type ...
1676    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1677      return 0;
1678  }
1679
1680  // ... the expression is the name of a non-volatile automatic object
1681  // (other than a function or catch-clause parameter)) ...
1682  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1683  if (!DR)
1684    return 0;
1685  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1686  if (!VD)
1687    return 0;
1688
1689  // ...object (other than a function or catch-clause parameter)...
1690  if (VD->getKind() != Decl::Var &&
1691      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
1692    return 0;
1693  if (VD->isExceptionVariable()) return 0;
1694
1695  // ...automatic...
1696  if (!VD->hasLocalStorage()) return 0;
1697
1698  // ...non-volatile...
1699  if (VD->getType().isVolatileQualified()) return 0;
1700  if (VD->getType()->isReferenceType()) return 0;
1701
1702  // __block variables can't be allocated in a way that permits NRVO.
1703  if (VD->hasAttr<BlocksAttr>()) return 0;
1704
1705  // Variables with higher required alignment than their type's ABI
1706  // alignment cannot use NRVO.
1707  if (VD->hasAttr<AlignedAttr>() &&
1708      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
1709    return 0;
1710
1711  return VD;
1712}
1713
1714/// \brief Perform the initialization of a potentially-movable value, which
1715/// is the result of return value.
1716///
1717/// This routine implements C++0x [class.copy]p33, which attempts to treat
1718/// returned lvalues as rvalues in certain cases (to prefer move construction),
1719/// then falls back to treating them as lvalues if that failed.
1720ExprResult
1721Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1722                                      const VarDecl *NRVOCandidate,
1723                                      QualType ResultType,
1724                                      Expr *Value,
1725                                      bool AllowNRVO) {
1726  // C++0x [class.copy]p33:
1727  //   When the criteria for elision of a copy operation are met or would
1728  //   be met save for the fact that the source object is a function
1729  //   parameter, and the object to be copied is designated by an lvalue,
1730  //   overload resolution to select the constructor for the copy is first
1731  //   performed as if the object were designated by an rvalue.
1732  ExprResult Res = ExprError();
1733  if (AllowNRVO &&
1734      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1735    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1736                              Value->getType(), CK_LValueToRValue,
1737                              Value, VK_XValue);
1738
1739    Expr *InitExpr = &AsRvalue;
1740    InitializationKind Kind
1741      = InitializationKind::CreateCopy(Value->getLocStart(),
1742                                       Value->getLocStart());
1743    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1744
1745    //   [...] If overload resolution fails, or if the type of the first
1746    //   parameter of the selected constructor is not an rvalue reference
1747    //   to the object's type (possibly cv-qualified), overload resolution
1748    //   is performed again, considering the object as an lvalue.
1749    if (Seq) {
1750      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1751           StepEnd = Seq.step_end();
1752           Step != StepEnd; ++Step) {
1753        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1754          continue;
1755
1756        CXXConstructorDecl *Constructor
1757        = cast<CXXConstructorDecl>(Step->Function.Function);
1758
1759        const RValueReferenceType *RRefType
1760          = Constructor->getParamDecl(0)->getType()
1761                                                 ->getAs<RValueReferenceType>();
1762
1763        // If we don't meet the criteria, break out now.
1764        if (!RRefType ||
1765            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1766                            Context.getTypeDeclType(Constructor->getParent())))
1767          break;
1768
1769        // Promote "AsRvalue" to the heap, since we now need this
1770        // expression node to persist.
1771        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1772                                         CK_LValueToRValue, Value, 0,
1773                                         VK_XValue);
1774
1775        // Complete type-checking the initialization of the return type
1776        // using the constructor we found.
1777        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1778      }
1779    }
1780  }
1781
1782  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1783  // above, or overload resolution failed. Either way, we need to try
1784  // (again) now with the return value expression as written.
1785  if (Res.isInvalid())
1786    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1787
1788  return Res;
1789}
1790
1791/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1792///
1793StmtResult
1794Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1795  // If this is the first return we've seen in the block, infer the type of
1796  // the block from it.
1797  BlockScopeInfo *CurBlock = getCurBlock();
1798  if (CurBlock->TheDecl->blockMissingReturnType()) {
1799    QualType BlockReturnT;
1800    if (RetValExp) {
1801      // Don't call UsualUnaryConversions(), since we don't want to do
1802      // integer promotions here.
1803      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1804      if (Result.isInvalid())
1805        return StmtError();
1806      RetValExp = Result.take();
1807
1808      if (!RetValExp->isTypeDependent()) {
1809        BlockReturnT = RetValExp->getType();
1810        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1811          // We have to remove a 'const' added to copied-in variable which was
1812          // part of the implementation spec. and not the actual qualifier for
1813          // the variable.
1814          if (CDRE->isConstQualAdded())
1815            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1816        }
1817      } else
1818        BlockReturnT = Context.DependentTy;
1819    } else
1820        BlockReturnT = Context.VoidTy;
1821    if (!CurBlock->ReturnType.isNull() && !CurBlock->ReturnType->isDependentType()
1822        && !BlockReturnT->isDependentType()
1823        // when block's return type is not specified, all return types
1824        // must strictly match.
1825        && !Context.hasSameType(BlockReturnT, CurBlock->ReturnType)) {
1826        Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
1827            << BlockReturnT << CurBlock->ReturnType;
1828        return StmtError();
1829    }
1830    CurBlock->ReturnType = BlockReturnT;
1831  }
1832  QualType FnRetType = CurBlock->ReturnType;
1833
1834  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1835    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
1836    return StmtError();
1837  }
1838
1839  // Otherwise, verify that this result type matches the previous one.  We are
1840  // pickier with blocks than for normal functions because we don't have GCC
1841  // compatibility to worry about here.
1842  const VarDecl *NRVOCandidate = 0;
1843  if (FnRetType->isDependentType()) {
1844    // Delay processing for now.  TODO: there are lots of dependent
1845    // types we can conclusively prove aren't void.
1846  } else if (FnRetType->isVoidType()) {
1847    if (RetValExp &&
1848        !(getLangOptions().CPlusPlus &&
1849          (RetValExp->isTypeDependent() ||
1850           RetValExp->getType()->isVoidType()))) {
1851      Diag(ReturnLoc, diag::err_return_block_has_expr);
1852      RetValExp = 0;
1853    }
1854  } else if (!RetValExp) {
1855    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1856  } else if (!RetValExp->isTypeDependent()) {
1857    // we have a non-void block with an expression, continue checking
1858
1859    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1860    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1861    // function return.
1862
1863    // In C++ the return statement is handled via a copy initialization.
1864    // the C version of which boils down to CheckSingleAssignmentConstraints.
1865    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1866    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1867                                                                   FnRetType,
1868                                                          NRVOCandidate != 0);
1869    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1870                                                     FnRetType, RetValExp);
1871    if (Res.isInvalid()) {
1872      // FIXME: Cleanup temporaries here, anyway?
1873      return StmtError();
1874    }
1875    RetValExp = Res.take();
1876    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1877  }
1878
1879  if (RetValExp) {
1880    CheckImplicitConversions(RetValExp, ReturnLoc);
1881    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1882  }
1883  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1884                                                NRVOCandidate);
1885
1886  // If we need to check for the named return value optimization, save the
1887  // return statement in our scope for later processing.
1888  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1889      !CurContext->isDependentContext())
1890    FunctionScopes.back()->Returns.push_back(Result);
1891
1892  return Owned(Result);
1893}
1894
1895StmtResult
1896Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1897  // Check for unexpanded parameter packs.
1898  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1899    return StmtError();
1900
1901  if (getCurBlock())
1902    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1903
1904  QualType FnRetType;
1905  QualType DeclaredRetType;
1906  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1907    FnRetType = FD->getResultType();
1908    DeclaredRetType = FnRetType;
1909    if (FD->hasAttr<NoReturnAttr>() ||
1910        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1911      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1912        << FD->getDeclName();
1913  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1914    DeclaredRetType = MD->getResultType();
1915    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1916      // In the implementation of a method with a related return type, the
1917      // type used to type-check the validity of return statements within the
1918      // method body is a pointer to the type of the class being implemented.
1919      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1920      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1921    } else {
1922      FnRetType = DeclaredRetType;
1923    }
1924  } else // If we don't have a function/method context, bail.
1925    return StmtError();
1926
1927  ReturnStmt *Result = 0;
1928  if (FnRetType->isVoidType()) {
1929    if (RetValExp) {
1930      if (!RetValExp->isTypeDependent()) {
1931        // C99 6.8.6.4p1 (ext_ since GCC warns)
1932        unsigned D = diag::ext_return_has_expr;
1933        if (RetValExp->getType()->isVoidType())
1934          D = diag::ext_return_has_void_expr;
1935        else {
1936          ExprResult Result = Owned(RetValExp);
1937          Result = IgnoredValueConversions(Result.take());
1938          if (Result.isInvalid())
1939            return StmtError();
1940          RetValExp = Result.take();
1941          RetValExp = ImpCastExprToType(RetValExp,
1942                                        Context.VoidTy, CK_ToVoid).take();
1943        }
1944
1945        // return (some void expression); is legal in C++.
1946        if (D != diag::ext_return_has_void_expr ||
1947            !getLangOptions().CPlusPlus) {
1948          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1949
1950          int FunctionKind = 0;
1951          if (isa<ObjCMethodDecl>(CurDecl))
1952            FunctionKind = 1;
1953          else if (isa<CXXConstructorDecl>(CurDecl))
1954            FunctionKind = 2;
1955          else if (isa<CXXDestructorDecl>(CurDecl))
1956            FunctionKind = 3;
1957
1958          Diag(ReturnLoc, D)
1959            << CurDecl->getDeclName() << FunctionKind
1960            << RetValExp->getSourceRange();
1961        }
1962      }
1963
1964      CheckImplicitConversions(RetValExp, ReturnLoc);
1965      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1966    }
1967
1968    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1969  } else if (!RetValExp && !FnRetType->isDependentType()) {
1970    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1971    // C99 6.8.6.4p1 (ext_ since GCC warns)
1972    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1973
1974    if (FunctionDecl *FD = getCurFunctionDecl())
1975      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1976    else
1977      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1978    Result = new (Context) ReturnStmt(ReturnLoc);
1979  } else {
1980    const VarDecl *NRVOCandidate = 0;
1981    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1982      // we have a non-void function with an expression, continue checking
1983
1984      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1985      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1986      // function return.
1987
1988      // In C++ the return statement is handled via a copy initialization,
1989      // the C version of which boils down to CheckSingleAssignmentConstraints.
1990      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1991      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1992                                                                     FnRetType,
1993                                                            NRVOCandidate != 0);
1994      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1995                                                       FnRetType, RetValExp);
1996      if (Res.isInvalid()) {
1997        // FIXME: Cleanup temporaries here, anyway?
1998        return StmtError();
1999      }
2000
2001      RetValExp = Res.takeAs<Expr>();
2002      if (RetValExp)
2003        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2004    }
2005
2006    if (RetValExp) {
2007      // If we type-checked an Objective-C method's return type based
2008      // on a related return type, we may need to adjust the return
2009      // type again. Do so now.
2010      if (DeclaredRetType != FnRetType) {
2011        ExprResult result = PerformImplicitConversion(RetValExp,
2012                                                      DeclaredRetType,
2013                                                      AA_Returning);
2014        if (result.isInvalid()) return StmtError();
2015        RetValExp = result.take();
2016      }
2017
2018      CheckImplicitConversions(RetValExp, ReturnLoc);
2019      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2020    }
2021    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2022  }
2023
2024  // If we need to check for the named return value optimization, save the
2025  // return statement in our scope for later processing.
2026  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
2027      !CurContext->isDependentContext())
2028    FunctionScopes.back()->Returns.push_back(Result);
2029
2030  return Owned(Result);
2031}
2032
2033/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2034/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2035/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2036/// provide a strong guidance to not use it.
2037///
2038/// This method checks to see if the argument is an acceptable l-value and
2039/// returns false if it is a case we can handle.
2040static bool CheckAsmLValue(const Expr *E, Sema &S) {
2041  // Type dependent expressions will be checked during instantiation.
2042  if (E->isTypeDependent())
2043    return false;
2044
2045  if (E->isLValue())
2046    return false;  // Cool, this is an lvalue.
2047
2048  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2049  // are supposed to allow.
2050  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2051  if (E != E2 && E2->isLValue()) {
2052    if (!S.getLangOptions().HeinousExtensions)
2053      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2054        << E->getSourceRange();
2055    else
2056      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2057        << E->getSourceRange();
2058    // Accept, even if we emitted an error diagnostic.
2059    return false;
2060  }
2061
2062  // None of the above, just randomly invalid non-lvalue.
2063  return true;
2064}
2065
2066/// isOperandMentioned - Return true if the specified operand # is mentioned
2067/// anywhere in the decomposed asm string.
2068static bool isOperandMentioned(unsigned OpNo,
2069                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2070  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2071    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2072    if (!Piece.isOperand()) continue;
2073
2074    // If this is a reference to the input and if the input was the smaller
2075    // one, then we have to reject this asm.
2076    if (Piece.getOperandNo() == OpNo)
2077      return true;
2078  }
2079
2080  return false;
2081}
2082
2083StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2084                              bool IsVolatile, unsigned NumOutputs,
2085                              unsigned NumInputs, IdentifierInfo **Names,
2086                              MultiExprArg constraints, MultiExprArg exprs,
2087                              Expr *asmString, MultiExprArg clobbers,
2088                              SourceLocation RParenLoc, bool MSAsm) {
2089  unsigned NumClobbers = clobbers.size();
2090  StringLiteral **Constraints =
2091    reinterpret_cast<StringLiteral**>(constraints.get());
2092  Expr **Exprs = exprs.get();
2093  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2094  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2095
2096  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2097
2098  // The parser verifies that there is a string literal here.
2099  if (!AsmString->isAscii())
2100    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2101      << AsmString->getSourceRange());
2102
2103  for (unsigned i = 0; i != NumOutputs; i++) {
2104    StringLiteral *Literal = Constraints[i];
2105    if (!Literal->isAscii())
2106      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2107        << Literal->getSourceRange());
2108
2109    StringRef OutputName;
2110    if (Names[i])
2111      OutputName = Names[i]->getName();
2112
2113    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2114    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2115      return StmtError(Diag(Literal->getLocStart(),
2116                            diag::err_asm_invalid_output_constraint)
2117                       << Info.getConstraintStr());
2118
2119    // Check that the output exprs are valid lvalues.
2120    Expr *OutputExpr = Exprs[i];
2121    if (CheckAsmLValue(OutputExpr, *this)) {
2122      return StmtError(Diag(OutputExpr->getLocStart(),
2123                  diag::err_asm_invalid_lvalue_in_output)
2124        << OutputExpr->getSourceRange());
2125    }
2126
2127    OutputConstraintInfos.push_back(Info);
2128  }
2129
2130  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2131
2132  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2133    StringLiteral *Literal = Constraints[i];
2134    if (!Literal->isAscii())
2135      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2136        << Literal->getSourceRange());
2137
2138    StringRef InputName;
2139    if (Names[i])
2140      InputName = Names[i]->getName();
2141
2142    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2143    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2144                                                NumOutputs, Info)) {
2145      return StmtError(Diag(Literal->getLocStart(),
2146                            diag::err_asm_invalid_input_constraint)
2147                       << Info.getConstraintStr());
2148    }
2149
2150    Expr *InputExpr = Exprs[i];
2151
2152    // Only allow void types for memory constraints.
2153    if (Info.allowsMemory() && !Info.allowsRegister()) {
2154      if (CheckAsmLValue(InputExpr, *this))
2155        return StmtError(Diag(InputExpr->getLocStart(),
2156                              diag::err_asm_invalid_lvalue_in_input)
2157                         << Info.getConstraintStr()
2158                         << InputExpr->getSourceRange());
2159    }
2160
2161    if (Info.allowsRegister()) {
2162      if (InputExpr->getType()->isVoidType()) {
2163        return StmtError(Diag(InputExpr->getLocStart(),
2164                              diag::err_asm_invalid_type_in_input)
2165          << InputExpr->getType() << Info.getConstraintStr()
2166          << InputExpr->getSourceRange());
2167      }
2168    }
2169
2170    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2171    if (Result.isInvalid())
2172      return StmtError();
2173
2174    Exprs[i] = Result.take();
2175    InputConstraintInfos.push_back(Info);
2176  }
2177
2178  // Check that the clobbers are valid.
2179  for (unsigned i = 0; i != NumClobbers; i++) {
2180    StringLiteral *Literal = Clobbers[i];
2181    if (!Literal->isAscii())
2182      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2183        << Literal->getSourceRange());
2184
2185    StringRef Clobber = Literal->getString();
2186
2187    if (!Context.getTargetInfo().isValidClobber(Clobber))
2188      return StmtError(Diag(Literal->getLocStart(),
2189                  diag::err_asm_unknown_register_name) << Clobber);
2190  }
2191
2192  AsmStmt *NS =
2193    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2194                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2195                          AsmString, NumClobbers, Clobbers, RParenLoc);
2196  // Validate the asm string, ensuring it makes sense given the operands we
2197  // have.
2198  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2199  unsigned DiagOffs;
2200  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2201    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2202           << AsmString->getSourceRange();
2203    return StmtError();
2204  }
2205
2206  // Validate tied input operands for type mismatches.
2207  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2208    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2209
2210    // If this is a tied constraint, verify that the output and input have
2211    // either exactly the same type, or that they are int/ptr operands with the
2212    // same size (int/long, int*/long, are ok etc).
2213    if (!Info.hasTiedOperand()) continue;
2214
2215    unsigned TiedTo = Info.getTiedOperand();
2216    unsigned InputOpNo = i+NumOutputs;
2217    Expr *OutputExpr = Exprs[TiedTo];
2218    Expr *InputExpr = Exprs[InputOpNo];
2219
2220    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2221      continue;
2222
2223    QualType InTy = InputExpr->getType();
2224    QualType OutTy = OutputExpr->getType();
2225    if (Context.hasSameType(InTy, OutTy))
2226      continue;  // All types can be tied to themselves.
2227
2228    // Decide if the input and output are in the same domain (integer/ptr or
2229    // floating point.
2230    enum AsmDomain {
2231      AD_Int, AD_FP, AD_Other
2232    } InputDomain, OutputDomain;
2233
2234    if (InTy->isIntegerType() || InTy->isPointerType())
2235      InputDomain = AD_Int;
2236    else if (InTy->isRealFloatingType())
2237      InputDomain = AD_FP;
2238    else
2239      InputDomain = AD_Other;
2240
2241    if (OutTy->isIntegerType() || OutTy->isPointerType())
2242      OutputDomain = AD_Int;
2243    else if (OutTy->isRealFloatingType())
2244      OutputDomain = AD_FP;
2245    else
2246      OutputDomain = AD_Other;
2247
2248    // They are ok if they are the same size and in the same domain.  This
2249    // allows tying things like:
2250    //   void* to int*
2251    //   void* to int            if they are the same size.
2252    //   double to long double   if they are the same size.
2253    //
2254    uint64_t OutSize = Context.getTypeSize(OutTy);
2255    uint64_t InSize = Context.getTypeSize(InTy);
2256    if (OutSize == InSize && InputDomain == OutputDomain &&
2257        InputDomain != AD_Other)
2258      continue;
2259
2260    // If the smaller input/output operand is not mentioned in the asm string,
2261    // then we can promote the smaller one to a larger input and the asm string
2262    // won't notice.
2263    bool SmallerValueMentioned = false;
2264
2265    // If this is a reference to the input and if the input was the smaller
2266    // one, then we have to reject this asm.
2267    if (isOperandMentioned(InputOpNo, Pieces)) {
2268      // This is a use in the asm string of the smaller operand.  Since we
2269      // codegen this by promoting to a wider value, the asm will get printed
2270      // "wrong".
2271      SmallerValueMentioned |= InSize < OutSize;
2272    }
2273    if (isOperandMentioned(TiedTo, Pieces)) {
2274      // If this is a reference to the output, and if the output is the larger
2275      // value, then it's ok because we'll promote the input to the larger type.
2276      SmallerValueMentioned |= OutSize < InSize;
2277    }
2278
2279    // If the smaller value wasn't mentioned in the asm string, and if the
2280    // output was a register, just extend the shorter one to the size of the
2281    // larger one.
2282    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2283        OutputConstraintInfos[TiedTo].allowsRegister())
2284      continue;
2285
2286    // Either both of the operands were mentioned or the smaller one was
2287    // mentioned.  One more special case that we'll allow: if the tied input is
2288    // integer, unmentioned, and is a constant, then we'll allow truncating it
2289    // down to the size of the destination.
2290    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2291        !isOperandMentioned(InputOpNo, Pieces) &&
2292        InputExpr->isEvaluatable(Context)) {
2293      CastKind castKind =
2294        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2295      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2296      Exprs[InputOpNo] = InputExpr;
2297      NS->setInputExpr(i, InputExpr);
2298      continue;
2299    }
2300
2301    Diag(InputExpr->getLocStart(),
2302         diag::err_asm_tying_incompatible_types)
2303      << InTy << OutTy << OutputExpr->getSourceRange()
2304      << InputExpr->getSourceRange();
2305    return StmtError();
2306  }
2307
2308  return Owned(NS);
2309}
2310
2311StmtResult
2312Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2313                           SourceLocation RParen, Decl *Parm,
2314                           Stmt *Body) {
2315  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2316  if (Var && Var->isInvalidDecl())
2317    return StmtError();
2318
2319  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2320}
2321
2322StmtResult
2323Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2324  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2325}
2326
2327StmtResult
2328Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2329                         MultiStmtArg CatchStmts, Stmt *Finally) {
2330  if (!getLangOptions().ObjCExceptions)
2331    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2332
2333  getCurFunction()->setHasBranchProtectedScope();
2334  unsigned NumCatchStmts = CatchStmts.size();
2335  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2336                                     CatchStmts.release(),
2337                                     NumCatchStmts,
2338                                     Finally));
2339}
2340
2341StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2342                                                  Expr *Throw) {
2343  if (Throw) {
2344    Throw = MaybeCreateExprWithCleanups(Throw);
2345    ExprResult Result = DefaultLvalueConversion(Throw);
2346    if (Result.isInvalid())
2347      return StmtError();
2348
2349    Throw = Result.take();
2350    QualType ThrowType = Throw->getType();
2351    // Make sure the expression type is an ObjC pointer or "void *".
2352    if (!ThrowType->isDependentType() &&
2353        !ThrowType->isObjCObjectPointerType()) {
2354      const PointerType *PT = ThrowType->getAs<PointerType>();
2355      if (!PT || !PT->getPointeeType()->isVoidType())
2356        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2357                         << Throw->getType() << Throw->getSourceRange());
2358    }
2359  }
2360
2361  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2362}
2363
2364StmtResult
2365Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2366                           Scope *CurScope) {
2367  if (!getLangOptions().ObjCExceptions)
2368    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2369
2370  if (!Throw) {
2371    // @throw without an expression designates a rethrow (which much occur
2372    // in the context of an @catch clause).
2373    Scope *AtCatchParent = CurScope;
2374    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2375      AtCatchParent = AtCatchParent->getParent();
2376    if (!AtCatchParent)
2377      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2378  }
2379
2380  return BuildObjCAtThrowStmt(AtLoc, Throw);
2381}
2382
2383ExprResult
2384Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2385  ExprResult result = DefaultLvalueConversion(operand);
2386  if (result.isInvalid())
2387    return ExprError();
2388  operand = result.take();
2389
2390  // Make sure the expression type is an ObjC pointer or "void *".
2391  QualType type = operand->getType();
2392  if (!type->isDependentType() &&
2393      !type->isObjCObjectPointerType()) {
2394    const PointerType *pointerType = type->getAs<PointerType>();
2395    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2396      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2397               << type << operand->getSourceRange();
2398  }
2399
2400  // The operand to @synchronized is a full-expression.
2401  return MaybeCreateExprWithCleanups(operand);
2402}
2403
2404StmtResult
2405Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2406                                  Stmt *SyncBody) {
2407  // We can't jump into or indirect-jump out of a @synchronized block.
2408  getCurFunction()->setHasBranchProtectedScope();
2409  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2410}
2411
2412/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2413/// and creates a proper catch handler from them.
2414StmtResult
2415Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2416                         Stmt *HandlerBlock) {
2417  // There's nothing to test that ActOnExceptionDecl didn't already test.
2418  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2419                                          cast_or_null<VarDecl>(ExDecl),
2420                                          HandlerBlock));
2421}
2422
2423StmtResult
2424Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2425  getCurFunction()->setHasBranchProtectedScope();
2426  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2427}
2428
2429namespace {
2430
2431class TypeWithHandler {
2432  QualType t;
2433  CXXCatchStmt *stmt;
2434public:
2435  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2436  : t(type), stmt(statement) {}
2437
2438  // An arbitrary order is fine as long as it places identical
2439  // types next to each other.
2440  bool operator<(const TypeWithHandler &y) const {
2441    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2442      return true;
2443    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2444      return false;
2445    else
2446      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2447  }
2448
2449  bool operator==(const TypeWithHandler& other) const {
2450    return t == other.t;
2451  }
2452
2453  CXXCatchStmt *getCatchStmt() const { return stmt; }
2454  SourceLocation getTypeSpecStartLoc() const {
2455    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2456  }
2457};
2458
2459}
2460
2461/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2462/// handlers and creates a try statement from them.
2463StmtResult
2464Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2465                       MultiStmtArg RawHandlers) {
2466  // Don't report an error if 'try' is used in system headers.
2467  if (!getLangOptions().CXXExceptions &&
2468      !getSourceManager().isInSystemHeader(TryLoc))
2469      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2470
2471  unsigned NumHandlers = RawHandlers.size();
2472  assert(NumHandlers > 0 &&
2473         "The parser shouldn't call this if there are no handlers.");
2474  Stmt **Handlers = RawHandlers.get();
2475
2476  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2477
2478  for (unsigned i = 0; i < NumHandlers; ++i) {
2479    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2480    if (!Handler->getExceptionDecl()) {
2481      if (i < NumHandlers - 1)
2482        return StmtError(Diag(Handler->getLocStart(),
2483                              diag::err_early_catch_all));
2484
2485      continue;
2486    }
2487
2488    const QualType CaughtType = Handler->getCaughtType();
2489    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2490    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2491  }
2492
2493  // Detect handlers for the same type as an earlier one.
2494  if (NumHandlers > 1) {
2495    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2496
2497    TypeWithHandler prev = TypesWithHandlers[0];
2498    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2499      TypeWithHandler curr = TypesWithHandlers[i];
2500
2501      if (curr == prev) {
2502        Diag(curr.getTypeSpecStartLoc(),
2503             diag::warn_exception_caught_by_earlier_handler)
2504          << curr.getCatchStmt()->getCaughtType().getAsString();
2505        Diag(prev.getTypeSpecStartLoc(),
2506             diag::note_previous_exception_handler)
2507          << prev.getCatchStmt()->getCaughtType().getAsString();
2508      }
2509
2510      prev = curr;
2511    }
2512  }
2513
2514  getCurFunction()->setHasBranchProtectedScope();
2515
2516  // FIXME: We should detect handlers that cannot catch anything because an
2517  // earlier handler catches a superclass. Need to find a method that is not
2518  // quadratic for this.
2519  // Neither of these are explicitly forbidden, but every compiler detects them
2520  // and warns.
2521
2522  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2523                                  Handlers, NumHandlers));
2524}
2525
2526StmtResult
2527Sema::ActOnSEHTryBlock(bool IsCXXTry,
2528                       SourceLocation TryLoc,
2529                       Stmt *TryBlock,
2530                       Stmt *Handler) {
2531  assert(TryBlock && Handler);
2532
2533  getCurFunction()->setHasBranchProtectedScope();
2534
2535  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2536}
2537
2538StmtResult
2539Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2540                          Expr *FilterExpr,
2541                          Stmt *Block) {
2542  assert(FilterExpr && Block);
2543
2544  if(!FilterExpr->getType()->isIntegerType()) {
2545    return StmtError(Diag(FilterExpr->getExprLoc(),
2546                     diag::err_filter_expression_integral)
2547                     << FilterExpr->getType());
2548  }
2549
2550  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2551}
2552
2553StmtResult
2554Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2555                           Stmt *Block) {
2556  assert(Block);
2557  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2558}
2559
2560StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2561                                            bool IsIfExists,
2562                                            NestedNameSpecifierLoc QualifierLoc,
2563                                            DeclarationNameInfo NameInfo,
2564                                            Stmt *Nested)
2565{
2566  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2567                                             QualifierLoc, NameInfo,
2568                                             cast<CompoundStmt>(Nested));
2569}
2570
2571
2572StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2573                                            bool IsIfExists,
2574                                            CXXScopeSpec &SS,
2575                                            UnqualifiedId &Name,
2576                                            Stmt *Nested) {
2577  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2578                                    SS.getWithLocInContext(Context),
2579                                    GetNameFromUnqualifiedId(Name),
2580                                    Nested);
2581}
2582