SemaStmt.cpp revision 39e6ab4be93d9c5e729a578ddd9d415cd2d49872
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/EvaluatedExprVisitor.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/AST/StmtObjC.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Sema/Initialization.h"
28#include "clang/Sema/Lookup.h"
29#include "clang/Sema/Scope.h"
30#include "clang/Sema/ScopeInfo.h"
31#include "llvm/ADT/ArrayRef.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/SmallVector.h"
36using namespace clang;
37using namespace sema;
38
39StmtResult Sema::ActOnExprStmt(ExprResult FE) {
40  if (FE.isInvalid())
41    return StmtError();
42
43  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
44                           /*DiscardedValue*/ true);
45  if (FE.isInvalid())
46    return StmtError();
47
48  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
49  // void expression for its side effects.  Conversion to void allows any
50  // operand, even incomplete types.
51
52  // Same thing in for stmt first clause (when expr) and third clause.
53  return Owned(static_cast<Stmt*>(FE.take()));
54}
55
56
57StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
58                               bool HasLeadingEmptyMacro) {
59  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
60}
61
62StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
63                               SourceLocation EndLoc) {
64  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
65
66  // If we have an invalid decl, just return an error.
67  if (DG.isNull()) return StmtError();
68
69  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
70}
71
72void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
73  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
74
75  // If we have an invalid decl, just return.
76  if (DG.isNull() || !DG.isSingleDecl()) return;
77  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
78
79  // suppress any potential 'unused variable' warning.
80  var->setUsed();
81
82  // foreach variables are never actually initialized in the way that
83  // the parser came up with.
84  var->setInit(0);
85
86  // In ARC, we don't need to retain the iteration variable of a fast
87  // enumeration loop.  Rather than actually trying to catch that
88  // during declaration processing, we remove the consequences here.
89  if (getLangOpts().ObjCAutoRefCount) {
90    QualType type = var->getType();
91
92    // Only do this if we inferred the lifetime.  Inferred lifetime
93    // will show up as a local qualifier because explicit lifetime
94    // should have shown up as an AttributedType instead.
95    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
96      // Add 'const' and mark the variable as pseudo-strong.
97      var->setType(type.withConst());
98      var->setARCPseudoStrong(true);
99    }
100  }
101}
102
103/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
104///
105/// Adding a cast to void (or other expression wrappers) will prevent the
106/// warning from firing.
107static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
108  SourceLocation Loc;
109  bool IsNotEqual, CanAssign;
110
111  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
112    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
113      return false;
114
115    Loc = Op->getOperatorLoc();
116    IsNotEqual = Op->getOpcode() == BO_NE;
117    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
118  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
119    if (Op->getOperator() != OO_EqualEqual &&
120        Op->getOperator() != OO_ExclaimEqual)
121      return false;
122
123    Loc = Op->getOperatorLoc();
124    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
125    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
126  } else {
127    // Not a typo-prone comparison.
128    return false;
129  }
130
131  // Suppress warnings when the operator, suspicious as it may be, comes from
132  // a macro expansion.
133  if (S.SourceMgr.isMacroBodyExpansion(Loc))
134    return false;
135
136  S.Diag(Loc, diag::warn_unused_comparison)
137    << (unsigned)IsNotEqual << E->getSourceRange();
138
139  // If the LHS is a plausible entity to assign to, provide a fixit hint to
140  // correct common typos.
141  if (CanAssign) {
142    if (IsNotEqual)
143      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
144        << FixItHint::CreateReplacement(Loc, "|=");
145    else
146      S.Diag(Loc, diag::note_equality_comparison_to_assign)
147        << FixItHint::CreateReplacement(Loc, "=");
148  }
149
150  return true;
151}
152
153void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
154  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
155    return DiagnoseUnusedExprResult(Label->getSubStmt());
156
157  const Expr *E = dyn_cast_or_null<Expr>(S);
158  if (!E)
159    return;
160  SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
161  if (SourceMgr.isInSystemMacro(ExprLoc) ||
162      SourceMgr.isMacroBodyExpansion(ExprLoc))
163    return;
164
165  const Expr *WarnExpr;
166  SourceLocation Loc;
167  SourceRange R1, R2;
168  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
169    return;
170
171  // If this is a GNU statement expression expanded from a macro, it is probably
172  // unused because it is a function-like macro that can be used as either an
173  // expression or statement.  Don't warn, because it is almost certainly a
174  // false positive.
175  if (isa<StmtExpr>(E) && Loc.isMacroID())
176    return;
177
178  // Okay, we have an unused result.  Depending on what the base expression is,
179  // we might want to make a more specific diagnostic.  Check for one of these
180  // cases now.
181  unsigned DiagID = diag::warn_unused_expr;
182  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
183    E = Temps->getSubExpr();
184  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
185    E = TempExpr->getSubExpr();
186
187  if (DiagnoseUnusedComparison(*this, E))
188    return;
189
190  E = WarnExpr;
191  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
192    if (E->getType()->isVoidType())
193      return;
194
195    // If the callee has attribute pure, const, or warn_unused_result, warn with
196    // a more specific message to make it clear what is happening.
197    if (const Decl *FD = CE->getCalleeDecl()) {
198      if (FD->getAttr<WarnUnusedResultAttr>()) {
199        Diag(Loc, diag::warn_unused_result) << R1 << R2;
200        return;
201      }
202      if (FD->getAttr<PureAttr>()) {
203        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
204        return;
205      }
206      if (FD->getAttr<ConstAttr>()) {
207        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
208        return;
209      }
210    }
211  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
212    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
213      Diag(Loc, diag::err_arc_unused_init_message) << R1;
214      return;
215    }
216    const ObjCMethodDecl *MD = ME->getMethodDecl();
217    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
218      Diag(Loc, diag::warn_unused_result) << R1 << R2;
219      return;
220    }
221  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
222    const Expr *Source = POE->getSyntacticForm();
223    if (isa<ObjCSubscriptRefExpr>(Source))
224      DiagID = diag::warn_unused_container_subscript_expr;
225    else
226      DiagID = diag::warn_unused_property_expr;
227  } else if (const CXXFunctionalCastExpr *FC
228                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
229    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
230        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
231      return;
232  }
233  // Diagnose "(void*) blah" as a typo for "(void) blah".
234  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
235    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
236    QualType T = TI->getType();
237
238    // We really do want to use the non-canonical type here.
239    if (T == Context.VoidPtrTy) {
240      PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
241
242      Diag(Loc, diag::warn_unused_voidptr)
243        << FixItHint::CreateRemoval(TL.getStarLoc());
244      return;
245    }
246  }
247
248  if (E->isGLValue() && E->getType().isVolatileQualified()) {
249    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
250    return;
251  }
252
253  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
254}
255
256void Sema::ActOnStartOfCompoundStmt() {
257  PushCompoundScope();
258}
259
260void Sema::ActOnFinishOfCompoundStmt() {
261  PopCompoundScope();
262}
263
264sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
265  return getCurFunction()->CompoundScopes.back();
266}
267
268StmtResult
269Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
270                        MultiStmtArg elts, bool isStmtExpr) {
271  unsigned NumElts = elts.size();
272  Stmt **Elts = elts.data();
273  // If we're in C89 mode, check that we don't have any decls after stmts.  If
274  // so, emit an extension diagnostic.
275  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
276    // Note that __extension__ can be around a decl.
277    unsigned i = 0;
278    // Skip over all declarations.
279    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
280      /*empty*/;
281
282    // We found the end of the list or a statement.  Scan for another declstmt.
283    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
284      /*empty*/;
285
286    if (i != NumElts) {
287      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
288      Diag(D->getLocation(), diag::ext_mixed_decls_code);
289    }
290  }
291  // Warn about unused expressions in statements.
292  for (unsigned i = 0; i != NumElts; ++i) {
293    // Ignore statements that are last in a statement expression.
294    if (isStmtExpr && i == NumElts - 1)
295      continue;
296
297    DiagnoseUnusedExprResult(Elts[i]);
298  }
299
300  // Check for suspicious empty body (null statement) in `for' and `while'
301  // statements.  Don't do anything for template instantiations, this just adds
302  // noise.
303  if (NumElts != 0 && !CurrentInstantiationScope &&
304      getCurCompoundScope().HasEmptyLoopBodies) {
305    for (unsigned i = 0; i != NumElts - 1; ++i)
306      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
307  }
308
309  return Owned(new (Context) CompoundStmt(Context,
310                                          llvm::makeArrayRef(Elts, NumElts),
311                                          L, R));
312}
313
314StmtResult
315Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
316                    SourceLocation DotDotDotLoc, Expr *RHSVal,
317                    SourceLocation ColonLoc) {
318  assert((LHSVal != 0) && "missing expression in case statement");
319
320  if (getCurFunction()->SwitchStack.empty()) {
321    Diag(CaseLoc, diag::err_case_not_in_switch);
322    return StmtError();
323  }
324
325  if (!getLangOpts().CPlusPlus11) {
326    // C99 6.8.4.2p3: The expression shall be an integer constant.
327    // However, GCC allows any evaluatable integer expression.
328    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
329      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
330      if (!LHSVal)
331        return StmtError();
332    }
333
334    // GCC extension: The expression shall be an integer constant.
335
336    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
337      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
338      // Recover from an error by just forgetting about it.
339    }
340  }
341
342  LHSVal = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
343                               getLangOpts().CPlusPlus11).take();
344  if (RHSVal)
345    RHSVal = ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
346                                 getLangOpts().CPlusPlus11).take();
347
348  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
349                                        ColonLoc);
350  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
351  return Owned(CS);
352}
353
354/// ActOnCaseStmtBody - This installs a statement as the body of a case.
355void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
356  DiagnoseUnusedExprResult(SubStmt);
357
358  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
359  CS->setSubStmt(SubStmt);
360}
361
362StmtResult
363Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
364                       Stmt *SubStmt, Scope *CurScope) {
365  DiagnoseUnusedExprResult(SubStmt);
366
367  if (getCurFunction()->SwitchStack.empty()) {
368    Diag(DefaultLoc, diag::err_default_not_in_switch);
369    return Owned(SubStmt);
370  }
371
372  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
373  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
374  return Owned(DS);
375}
376
377StmtResult
378Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
379                     SourceLocation ColonLoc, Stmt *SubStmt) {
380  // If the label was multiply defined, reject it now.
381  if (TheDecl->getStmt()) {
382    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
383    Diag(TheDecl->getLocation(), diag::note_previous_definition);
384    return Owned(SubStmt);
385  }
386
387  // Otherwise, things are good.  Fill in the declaration and return it.
388  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
389  TheDecl->setStmt(LS);
390  if (!TheDecl->isGnuLocal()) {
391    TheDecl->setLocStart(IdentLoc);
392    TheDecl->setLocation(IdentLoc);
393  }
394  return Owned(LS);
395}
396
397StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
398                                     ArrayRef<const Attr*> Attrs,
399                                     Stmt *SubStmt) {
400  // Fill in the declaration and return it.
401  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
402  return Owned(LS);
403}
404
405StmtResult
406Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
407                  Stmt *thenStmt, SourceLocation ElseLoc,
408                  Stmt *elseStmt) {
409  // If the condition was invalid, discard the if statement.  We could recover
410  // better by replacing it with a valid expr, but don't do that yet.
411  if (!CondVal.get() && !CondVar) {
412    getCurFunction()->setHasDroppedStmt();
413    return StmtError();
414  }
415
416  ExprResult CondResult(CondVal.release());
417
418  VarDecl *ConditionVar = 0;
419  if (CondVar) {
420    ConditionVar = cast<VarDecl>(CondVar);
421    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
422    if (CondResult.isInvalid())
423      return StmtError();
424  }
425  Expr *ConditionExpr = CondResult.takeAs<Expr>();
426  if (!ConditionExpr)
427    return StmtError();
428
429  DiagnoseUnusedExprResult(thenStmt);
430
431  if (!elseStmt) {
432    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
433                          diag::warn_empty_if_body);
434  }
435
436  DiagnoseUnusedExprResult(elseStmt);
437
438  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
439                                    thenStmt, ElseLoc, elseStmt));
440}
441
442/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
443/// the specified width and sign.  If an overflow occurs, detect it and emit
444/// the specified diagnostic.
445void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
446                                              unsigned NewWidth, bool NewSign,
447                                              SourceLocation Loc,
448                                              unsigned DiagID) {
449  // Perform a conversion to the promoted condition type if needed.
450  if (NewWidth > Val.getBitWidth()) {
451    // If this is an extension, just do it.
452    Val = Val.extend(NewWidth);
453    Val.setIsSigned(NewSign);
454
455    // If the input was signed and negative and the output is
456    // unsigned, don't bother to warn: this is implementation-defined
457    // behavior.
458    // FIXME: Introduce a second, default-ignored warning for this case?
459  } else if (NewWidth < Val.getBitWidth()) {
460    // If this is a truncation, check for overflow.
461    llvm::APSInt ConvVal(Val);
462    ConvVal = ConvVal.trunc(NewWidth);
463    ConvVal.setIsSigned(NewSign);
464    ConvVal = ConvVal.extend(Val.getBitWidth());
465    ConvVal.setIsSigned(Val.isSigned());
466    if (ConvVal != Val)
467      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
468
469    // Regardless of whether a diagnostic was emitted, really do the
470    // truncation.
471    Val = Val.trunc(NewWidth);
472    Val.setIsSigned(NewSign);
473  } else if (NewSign != Val.isSigned()) {
474    // Convert the sign to match the sign of the condition.  This can cause
475    // overflow as well: unsigned(INTMIN)
476    // We don't diagnose this overflow, because it is implementation-defined
477    // behavior.
478    // FIXME: Introduce a second, default-ignored warning for this case?
479    llvm::APSInt OldVal(Val);
480    Val.setIsSigned(NewSign);
481  }
482}
483
484namespace {
485  struct CaseCompareFunctor {
486    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
487                    const llvm::APSInt &RHS) {
488      return LHS.first < RHS;
489    }
490    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
491                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
492      return LHS.first < RHS.first;
493    }
494    bool operator()(const llvm::APSInt &LHS,
495                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
496      return LHS < RHS.first;
497    }
498  };
499}
500
501/// CmpCaseVals - Comparison predicate for sorting case values.
502///
503static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
504                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
505  if (lhs.first < rhs.first)
506    return true;
507
508  if (lhs.first == rhs.first &&
509      lhs.second->getCaseLoc().getRawEncoding()
510       < rhs.second->getCaseLoc().getRawEncoding())
511    return true;
512  return false;
513}
514
515/// CmpEnumVals - Comparison predicate for sorting enumeration values.
516///
517static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
518                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
519{
520  return lhs.first < rhs.first;
521}
522
523/// EqEnumVals - Comparison preficate for uniqing enumeration values.
524///
525static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
526                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
527{
528  return lhs.first == rhs.first;
529}
530
531/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
532/// potentially integral-promoted expression @p expr.
533static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
534  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
535    expr = cleanups->getSubExpr();
536  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
537    if (impcast->getCastKind() != CK_IntegralCast) break;
538    expr = impcast->getSubExpr();
539  }
540  return expr->getType();
541}
542
543StmtResult
544Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
545                             Decl *CondVar) {
546  ExprResult CondResult;
547
548  VarDecl *ConditionVar = 0;
549  if (CondVar) {
550    ConditionVar = cast<VarDecl>(CondVar);
551    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
552    if (CondResult.isInvalid())
553      return StmtError();
554
555    Cond = CondResult.release();
556  }
557
558  if (!Cond)
559    return StmtError();
560
561  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
562    Expr *Cond;
563
564  public:
565    SwitchConvertDiagnoser(Expr *Cond)
566      : ICEConvertDiagnoser(false, true), Cond(Cond) { }
567
568    virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
569                                             QualType T) {
570      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
571    }
572
573    virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
574                                                 QualType T) {
575      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
576               << T << Cond->getSourceRange();
577    }
578
579    virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
580                                                   QualType T,
581                                                   QualType ConvTy) {
582      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
583    }
584
585    virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
586                                               QualType ConvTy) {
587      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
588        << ConvTy->isEnumeralType() << ConvTy;
589    }
590
591    virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
592                                                QualType T) {
593      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
594    }
595
596    virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
597                                            QualType ConvTy) {
598      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
599      << ConvTy->isEnumeralType() << ConvTy;
600    }
601
602    virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
603                                                 QualType T,
604                                                 QualType ConvTy) {
605      return DiagnosticBuilder::getEmpty();
606    }
607  } SwitchDiagnoser(Cond);
608
609  CondResult
610    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
611                                         /*AllowScopedEnumerations*/ true);
612  if (CondResult.isInvalid()) return StmtError();
613  Cond = CondResult.take();
614
615  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
616  CondResult = UsualUnaryConversions(Cond);
617  if (CondResult.isInvalid()) return StmtError();
618  Cond = CondResult.take();
619
620  if (!CondVar) {
621    CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
622    if (CondResult.isInvalid())
623      return StmtError();
624    Cond = CondResult.take();
625  }
626
627  getCurFunction()->setHasBranchIntoScope();
628
629  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
630  getCurFunction()->SwitchStack.push_back(SS);
631  return Owned(SS);
632}
633
634static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
635  if (Val.getBitWidth() < BitWidth)
636    Val = Val.extend(BitWidth);
637  else if (Val.getBitWidth() > BitWidth)
638    Val = Val.trunc(BitWidth);
639  Val.setIsSigned(IsSigned);
640}
641
642StmtResult
643Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
644                            Stmt *BodyStmt) {
645  SwitchStmt *SS = cast<SwitchStmt>(Switch);
646  assert(SS == getCurFunction()->SwitchStack.back() &&
647         "switch stack missing push/pop!");
648
649  SS->setBody(BodyStmt, SwitchLoc);
650  getCurFunction()->SwitchStack.pop_back();
651
652  Expr *CondExpr = SS->getCond();
653  if (!CondExpr) return StmtError();
654
655  QualType CondType = CondExpr->getType();
656
657  Expr *CondExprBeforePromotion = CondExpr;
658  QualType CondTypeBeforePromotion =
659      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
660
661  // C++ 6.4.2.p2:
662  // Integral promotions are performed (on the switch condition).
663  //
664  // A case value unrepresentable by the original switch condition
665  // type (before the promotion) doesn't make sense, even when it can
666  // be represented by the promoted type.  Therefore we need to find
667  // the pre-promotion type of the switch condition.
668  if (!CondExpr->isTypeDependent()) {
669    // We have already converted the expression to an integral or enumeration
670    // type, when we started the switch statement. If we don't have an
671    // appropriate type now, just return an error.
672    if (!CondType->isIntegralOrEnumerationType())
673      return StmtError();
674
675    if (CondExpr->isKnownToHaveBooleanValue()) {
676      // switch(bool_expr) {...} is often a programmer error, e.g.
677      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
678      // One can always use an if statement instead of switch(bool_expr).
679      Diag(SwitchLoc, diag::warn_bool_switch_condition)
680          << CondExpr->getSourceRange();
681    }
682  }
683
684  // Get the bitwidth of the switched-on value before promotions.  We must
685  // convert the integer case values to this width before comparison.
686  bool HasDependentValue
687    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
688  unsigned CondWidth
689    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
690  bool CondIsSigned
691    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
692
693  // Accumulate all of the case values in a vector so that we can sort them
694  // and detect duplicates.  This vector contains the APInt for the case after
695  // it has been converted to the condition type.
696  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
697  CaseValsTy CaseVals;
698
699  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
700  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
701  CaseRangesTy CaseRanges;
702
703  DefaultStmt *TheDefaultStmt = 0;
704
705  bool CaseListIsErroneous = false;
706
707  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
708       SC = SC->getNextSwitchCase()) {
709
710    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
711      if (TheDefaultStmt) {
712        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
713        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
714
715        // FIXME: Remove the default statement from the switch block so that
716        // we'll return a valid AST.  This requires recursing down the AST and
717        // finding it, not something we are set up to do right now.  For now,
718        // just lop the entire switch stmt out of the AST.
719        CaseListIsErroneous = true;
720      }
721      TheDefaultStmt = DS;
722
723    } else {
724      CaseStmt *CS = cast<CaseStmt>(SC);
725
726      Expr *Lo = CS->getLHS();
727
728      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
729        HasDependentValue = true;
730        break;
731      }
732
733      llvm::APSInt LoVal;
734
735      if (getLangOpts().CPlusPlus11) {
736        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
737        // constant expression of the promoted type of the switch condition.
738        ExprResult ConvLo =
739          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
740        if (ConvLo.isInvalid()) {
741          CaseListIsErroneous = true;
742          continue;
743        }
744        Lo = ConvLo.take();
745      } else {
746        // We already verified that the expression has a i-c-e value (C99
747        // 6.8.4.2p3) - get that value now.
748        LoVal = Lo->EvaluateKnownConstInt(Context);
749
750        // If the LHS is not the same type as the condition, insert an implicit
751        // cast.
752        Lo = DefaultLvalueConversion(Lo).take();
753        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
754      }
755
756      // Convert the value to the same width/sign as the condition had prior to
757      // integral promotions.
758      //
759      // FIXME: This causes us to reject valid code:
760      //   switch ((char)c) { case 256: case 0: return 0; }
761      // Here we claim there is a duplicated condition value, but there is not.
762      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
763                                         Lo->getLocStart(),
764                                         diag::warn_case_value_overflow);
765
766      CS->setLHS(Lo);
767
768      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
769      if (CS->getRHS()) {
770        if (CS->getRHS()->isTypeDependent() ||
771            CS->getRHS()->isValueDependent()) {
772          HasDependentValue = true;
773          break;
774        }
775        CaseRanges.push_back(std::make_pair(LoVal, CS));
776      } else
777        CaseVals.push_back(std::make_pair(LoVal, CS));
778    }
779  }
780
781  if (!HasDependentValue) {
782    // If we don't have a default statement, check whether the
783    // condition is constant.
784    llvm::APSInt ConstantCondValue;
785    bool HasConstantCond = false;
786    if (!HasDependentValue && !TheDefaultStmt) {
787      HasConstantCond
788        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
789                                                 Expr::SE_AllowSideEffects);
790      assert(!HasConstantCond ||
791             (ConstantCondValue.getBitWidth() == CondWidth &&
792              ConstantCondValue.isSigned() == CondIsSigned));
793    }
794    bool ShouldCheckConstantCond = HasConstantCond;
795
796    // Sort all the scalar case values so we can easily detect duplicates.
797    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
798
799    if (!CaseVals.empty()) {
800      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
801        if (ShouldCheckConstantCond &&
802            CaseVals[i].first == ConstantCondValue)
803          ShouldCheckConstantCond = false;
804
805        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
806          // If we have a duplicate, report it.
807          // First, determine if either case value has a name
808          StringRef PrevString, CurrString;
809          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
810          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
811          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
812            PrevString = DeclRef->getDecl()->getName();
813          }
814          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
815            CurrString = DeclRef->getDecl()->getName();
816          }
817          SmallString<16> CaseValStr;
818          CaseVals[i-1].first.toString(CaseValStr);
819
820          if (PrevString == CurrString)
821            Diag(CaseVals[i].second->getLHS()->getLocStart(),
822                 diag::err_duplicate_case) <<
823                 (PrevString.empty() ? CaseValStr.str() : PrevString);
824          else
825            Diag(CaseVals[i].second->getLHS()->getLocStart(),
826                 diag::err_duplicate_case_differing_expr) <<
827                 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
828                 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
829                 CaseValStr;
830
831          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
832               diag::note_duplicate_case_prev);
833          // FIXME: We really want to remove the bogus case stmt from the
834          // substmt, but we have no way to do this right now.
835          CaseListIsErroneous = true;
836        }
837      }
838    }
839
840    // Detect duplicate case ranges, which usually don't exist at all in
841    // the first place.
842    if (!CaseRanges.empty()) {
843      // Sort all the case ranges by their low value so we can easily detect
844      // overlaps between ranges.
845      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
846
847      // Scan the ranges, computing the high values and removing empty ranges.
848      std::vector<llvm::APSInt> HiVals;
849      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
850        llvm::APSInt &LoVal = CaseRanges[i].first;
851        CaseStmt *CR = CaseRanges[i].second;
852        Expr *Hi = CR->getRHS();
853        llvm::APSInt HiVal;
854
855        if (getLangOpts().CPlusPlus11) {
856          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
857          // constant expression of the promoted type of the switch condition.
858          ExprResult ConvHi =
859            CheckConvertedConstantExpression(Hi, CondType, HiVal,
860                                             CCEK_CaseValue);
861          if (ConvHi.isInvalid()) {
862            CaseListIsErroneous = true;
863            continue;
864          }
865          Hi = ConvHi.take();
866        } else {
867          HiVal = Hi->EvaluateKnownConstInt(Context);
868
869          // If the RHS is not the same type as the condition, insert an
870          // implicit cast.
871          Hi = DefaultLvalueConversion(Hi).take();
872          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
873        }
874
875        // Convert the value to the same width/sign as the condition.
876        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
877                                           Hi->getLocStart(),
878                                           diag::warn_case_value_overflow);
879
880        CR->setRHS(Hi);
881
882        // If the low value is bigger than the high value, the case is empty.
883        if (LoVal > HiVal) {
884          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
885            << SourceRange(CR->getLHS()->getLocStart(),
886                           Hi->getLocEnd());
887          CaseRanges.erase(CaseRanges.begin()+i);
888          --i, --e;
889          continue;
890        }
891
892        if (ShouldCheckConstantCond &&
893            LoVal <= ConstantCondValue &&
894            ConstantCondValue <= HiVal)
895          ShouldCheckConstantCond = false;
896
897        HiVals.push_back(HiVal);
898      }
899
900      // Rescan the ranges, looking for overlap with singleton values and other
901      // ranges.  Since the range list is sorted, we only need to compare case
902      // ranges with their neighbors.
903      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
904        llvm::APSInt &CRLo = CaseRanges[i].first;
905        llvm::APSInt &CRHi = HiVals[i];
906        CaseStmt *CR = CaseRanges[i].second;
907
908        // Check to see whether the case range overlaps with any
909        // singleton cases.
910        CaseStmt *OverlapStmt = 0;
911        llvm::APSInt OverlapVal(32);
912
913        // Find the smallest value >= the lower bound.  If I is in the
914        // case range, then we have overlap.
915        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
916                                                  CaseVals.end(), CRLo,
917                                                  CaseCompareFunctor());
918        if (I != CaseVals.end() && I->first < CRHi) {
919          OverlapVal  = I->first;   // Found overlap with scalar.
920          OverlapStmt = I->second;
921        }
922
923        // Find the smallest value bigger than the upper bound.
924        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
925        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
926          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
927          OverlapStmt = (I-1)->second;
928        }
929
930        // Check to see if this case stmt overlaps with the subsequent
931        // case range.
932        if (i && CRLo <= HiVals[i-1]) {
933          OverlapVal  = HiVals[i-1];       // Found overlap with range.
934          OverlapStmt = CaseRanges[i-1].second;
935        }
936
937        if (OverlapStmt) {
938          // If we have a duplicate, report it.
939          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
940            << OverlapVal.toString(10);
941          Diag(OverlapStmt->getLHS()->getLocStart(),
942               diag::note_duplicate_case_prev);
943          // FIXME: We really want to remove the bogus case stmt from the
944          // substmt, but we have no way to do this right now.
945          CaseListIsErroneous = true;
946        }
947      }
948    }
949
950    // Complain if we have a constant condition and we didn't find a match.
951    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
952      // TODO: it would be nice if we printed enums as enums, chars as
953      // chars, etc.
954      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
955        << ConstantCondValue.toString(10)
956        << CondExpr->getSourceRange();
957    }
958
959    // Check to see if switch is over an Enum and handles all of its
960    // values.  We only issue a warning if there is not 'default:', but
961    // we still do the analysis to preserve this information in the AST
962    // (which can be used by flow-based analyes).
963    //
964    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
965
966    // If switch has default case, then ignore it.
967    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
968      const EnumDecl *ED = ET->getDecl();
969      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
970        EnumValsTy;
971      EnumValsTy EnumVals;
972
973      // Gather all enum values, set their type and sort them,
974      // allowing easier comparison with CaseVals.
975      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
976           EDI != ED->enumerator_end(); ++EDI) {
977        llvm::APSInt Val = EDI->getInitVal();
978        AdjustAPSInt(Val, CondWidth, CondIsSigned);
979        EnumVals.push_back(std::make_pair(Val, *EDI));
980      }
981      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
982      EnumValsTy::iterator EIend =
983        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
984
985      // See which case values aren't in enum.
986      EnumValsTy::const_iterator EI = EnumVals.begin();
987      for (CaseValsTy::const_iterator CI = CaseVals.begin();
988           CI != CaseVals.end(); CI++) {
989        while (EI != EIend && EI->first < CI->first)
990          EI++;
991        if (EI == EIend || EI->first > CI->first)
992          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
993            << CondTypeBeforePromotion;
994      }
995      // See which of case ranges aren't in enum
996      EI = EnumVals.begin();
997      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
998           RI != CaseRanges.end() && EI != EIend; RI++) {
999        while (EI != EIend && EI->first < RI->first)
1000          EI++;
1001
1002        if (EI == EIend || EI->first != RI->first) {
1003          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1004            << CondTypeBeforePromotion;
1005        }
1006
1007        llvm::APSInt Hi =
1008          RI->second->getRHS()->EvaluateKnownConstInt(Context);
1009        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1010        while (EI != EIend && EI->first < Hi)
1011          EI++;
1012        if (EI == EIend || EI->first != Hi)
1013          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
1014            << CondTypeBeforePromotion;
1015      }
1016
1017      // Check which enum vals aren't in switch
1018      CaseValsTy::const_iterator CI = CaseVals.begin();
1019      CaseRangesTy::const_iterator RI = CaseRanges.begin();
1020      bool hasCasesNotInSwitch = false;
1021
1022      SmallVector<DeclarationName,8> UnhandledNames;
1023
1024      for (EI = EnumVals.begin(); EI != EIend; EI++){
1025        // Drop unneeded case values
1026        llvm::APSInt CIVal;
1027        while (CI != CaseVals.end() && CI->first < EI->first)
1028          CI++;
1029
1030        if (CI != CaseVals.end() && CI->first == EI->first)
1031          continue;
1032
1033        // Drop unneeded case ranges
1034        for (; RI != CaseRanges.end(); RI++) {
1035          llvm::APSInt Hi =
1036            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1037          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1038          if (EI->first <= Hi)
1039            break;
1040        }
1041
1042        if (RI == CaseRanges.end() || EI->first < RI->first) {
1043          hasCasesNotInSwitch = true;
1044          UnhandledNames.push_back(EI->second->getDeclName());
1045        }
1046      }
1047
1048      if (TheDefaultStmt && UnhandledNames.empty())
1049        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1050
1051      // Produce a nice diagnostic if multiple values aren't handled.
1052      switch (UnhandledNames.size()) {
1053      case 0: break;
1054      case 1:
1055        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1056          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1057          << UnhandledNames[0];
1058        break;
1059      case 2:
1060        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1061          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1062          << UnhandledNames[0] << UnhandledNames[1];
1063        break;
1064      case 3:
1065        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1066          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1067          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1068        break;
1069      default:
1070        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1071          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1072          << (unsigned)UnhandledNames.size()
1073          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1074        break;
1075      }
1076
1077      if (!hasCasesNotInSwitch)
1078        SS->setAllEnumCasesCovered();
1079    }
1080  }
1081
1082  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1083                        diag::warn_empty_switch_body);
1084
1085  // FIXME: If the case list was broken is some way, we don't have a good system
1086  // to patch it up.  Instead, just return the whole substmt as broken.
1087  if (CaseListIsErroneous)
1088    return StmtError();
1089
1090  return Owned(SS);
1091}
1092
1093void
1094Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1095                             Expr *SrcExpr) {
1096  unsigned DIAG = diag::warn_not_in_enum_assignement;
1097  if (Diags.getDiagnosticLevel(DIAG, SrcExpr->getExprLoc())
1098      == DiagnosticsEngine::Ignored)
1099    return;
1100
1101  if (const EnumType *ET = DstType->getAs<EnumType>())
1102    if (!Context.hasSameType(SrcType, DstType) &&
1103        SrcType->isIntegerType()) {
1104      if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1105          SrcExpr->isIntegerConstantExpr(Context)) {
1106        // Get the bitwidth of the enum value before promotions.
1107        unsigned DstWith = Context.getIntWidth(DstType);
1108        bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1109
1110        llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1111        const EnumDecl *ED = ET->getDecl();
1112        typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
1113        EnumValsTy;
1114        EnumValsTy EnumVals;
1115
1116        // Gather all enum values, set their type and sort them,
1117        // allowing easier comparison with rhs constant.
1118        for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1119             EDI != ED->enumerator_end(); ++EDI) {
1120          llvm::APSInt Val = EDI->getInitVal();
1121          AdjustAPSInt(Val, DstWith, DstIsSigned);
1122          EnumVals.push_back(std::make_pair(Val, *EDI));
1123        }
1124        if (EnumVals.empty())
1125          return;
1126        std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1127        EnumValsTy::iterator EIend =
1128        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1129
1130        // See which case values aren't in enum.
1131        EnumValsTy::const_iterator EI = EnumVals.begin();
1132        while (EI != EIend && EI->first < RhsVal)
1133          EI++;
1134        if (EI == EIend || EI->first != RhsVal) {
1135          Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignement)
1136          << DstType;
1137        }
1138      }
1139    }
1140}
1141
1142StmtResult
1143Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1144                     Decl *CondVar, Stmt *Body) {
1145  ExprResult CondResult(Cond.release());
1146
1147  VarDecl *ConditionVar = 0;
1148  if (CondVar) {
1149    ConditionVar = cast<VarDecl>(CondVar);
1150    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1151    if (CondResult.isInvalid())
1152      return StmtError();
1153  }
1154  Expr *ConditionExpr = CondResult.take();
1155  if (!ConditionExpr)
1156    return StmtError();
1157
1158  DiagnoseUnusedExprResult(Body);
1159
1160  if (isa<NullStmt>(Body))
1161    getCurCompoundScope().setHasEmptyLoopBodies();
1162
1163  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1164                                       Body, WhileLoc));
1165}
1166
1167StmtResult
1168Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1169                  SourceLocation WhileLoc, SourceLocation CondLParen,
1170                  Expr *Cond, SourceLocation CondRParen) {
1171  assert(Cond && "ActOnDoStmt(): missing expression");
1172
1173  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1174  if (CondResult.isInvalid())
1175    return StmtError();
1176  Cond = CondResult.take();
1177
1178  CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1179  if (CondResult.isInvalid())
1180    return StmtError();
1181  Cond = CondResult.take();
1182
1183  DiagnoseUnusedExprResult(Body);
1184
1185  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1186}
1187
1188namespace {
1189  // This visitor will traverse a conditional statement and store all
1190  // the evaluated decls into a vector.  Simple is set to true if none
1191  // of the excluded constructs are used.
1192  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1193    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1194    SmallVector<SourceRange, 10> &Ranges;
1195    bool Simple;
1196public:
1197  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1198
1199  DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1200                SmallVector<SourceRange, 10> &Ranges) :
1201      Inherited(S.Context),
1202      Decls(Decls),
1203      Ranges(Ranges),
1204      Simple(true) {}
1205
1206  bool isSimple() { return Simple; }
1207
1208  // Replaces the method in EvaluatedExprVisitor.
1209  void VisitMemberExpr(MemberExpr* E) {
1210    Simple = false;
1211  }
1212
1213  // Any Stmt not whitelisted will cause the condition to be marked complex.
1214  void VisitStmt(Stmt *S) {
1215    Simple = false;
1216  }
1217
1218  void VisitBinaryOperator(BinaryOperator *E) {
1219    Visit(E->getLHS());
1220    Visit(E->getRHS());
1221  }
1222
1223  void VisitCastExpr(CastExpr *E) {
1224    Visit(E->getSubExpr());
1225  }
1226
1227  void VisitUnaryOperator(UnaryOperator *E) {
1228    // Skip checking conditionals with derefernces.
1229    if (E->getOpcode() == UO_Deref)
1230      Simple = false;
1231    else
1232      Visit(E->getSubExpr());
1233  }
1234
1235  void VisitConditionalOperator(ConditionalOperator *E) {
1236    Visit(E->getCond());
1237    Visit(E->getTrueExpr());
1238    Visit(E->getFalseExpr());
1239  }
1240
1241  void VisitParenExpr(ParenExpr *E) {
1242    Visit(E->getSubExpr());
1243  }
1244
1245  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1246    Visit(E->getOpaqueValue()->getSourceExpr());
1247    Visit(E->getFalseExpr());
1248  }
1249
1250  void VisitIntegerLiteral(IntegerLiteral *E) { }
1251  void VisitFloatingLiteral(FloatingLiteral *E) { }
1252  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1253  void VisitCharacterLiteral(CharacterLiteral *E) { }
1254  void VisitGNUNullExpr(GNUNullExpr *E) { }
1255  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1256
1257  void VisitDeclRefExpr(DeclRefExpr *E) {
1258    VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1259    if (!VD) return;
1260
1261    Ranges.push_back(E->getSourceRange());
1262
1263    Decls.insert(VD);
1264  }
1265
1266  }; // end class DeclExtractor
1267
1268  // DeclMatcher checks to see if the decls are used in a non-evauluated
1269  // context.
1270  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1271    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1272    bool FoundDecl;
1273
1274public:
1275  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1276
1277  DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1278      Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1279    if (!Statement) return;
1280
1281    Visit(Statement);
1282  }
1283
1284  void VisitReturnStmt(ReturnStmt *S) {
1285    FoundDecl = true;
1286  }
1287
1288  void VisitBreakStmt(BreakStmt *S) {
1289    FoundDecl = true;
1290  }
1291
1292  void VisitGotoStmt(GotoStmt *S) {
1293    FoundDecl = true;
1294  }
1295
1296  void VisitCastExpr(CastExpr *E) {
1297    if (E->getCastKind() == CK_LValueToRValue)
1298      CheckLValueToRValueCast(E->getSubExpr());
1299    else
1300      Visit(E->getSubExpr());
1301  }
1302
1303  void CheckLValueToRValueCast(Expr *E) {
1304    E = E->IgnoreParenImpCasts();
1305
1306    if (isa<DeclRefExpr>(E)) {
1307      return;
1308    }
1309
1310    if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1311      Visit(CO->getCond());
1312      CheckLValueToRValueCast(CO->getTrueExpr());
1313      CheckLValueToRValueCast(CO->getFalseExpr());
1314      return;
1315    }
1316
1317    if (BinaryConditionalOperator *BCO =
1318            dyn_cast<BinaryConditionalOperator>(E)) {
1319      CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1320      CheckLValueToRValueCast(BCO->getFalseExpr());
1321      return;
1322    }
1323
1324    Visit(E);
1325  }
1326
1327  void VisitDeclRefExpr(DeclRefExpr *E) {
1328    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1329      if (Decls.count(VD))
1330        FoundDecl = true;
1331  }
1332
1333  bool FoundDeclInUse() { return FoundDecl; }
1334
1335  };  // end class DeclMatcher
1336
1337  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1338                                        Expr *Third, Stmt *Body) {
1339    // Condition is empty
1340    if (!Second) return;
1341
1342    if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1343                                   Second->getLocStart())
1344        == DiagnosticsEngine::Ignored)
1345      return;
1346
1347    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1348    llvm::SmallPtrSet<VarDecl*, 8> Decls;
1349    SmallVector<SourceRange, 10> Ranges;
1350    DeclExtractor DE(S, Decls, Ranges);
1351    DE.Visit(Second);
1352
1353    // Don't analyze complex conditionals.
1354    if (!DE.isSimple()) return;
1355
1356    // No decls found.
1357    if (Decls.size() == 0) return;
1358
1359    // Don't warn on volatile, static, or global variables.
1360    for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1361                                                  E = Decls.end();
1362         I != E; ++I)
1363      if ((*I)->getType().isVolatileQualified() ||
1364          (*I)->hasGlobalStorage()) return;
1365
1366    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1367        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1368        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1369      return;
1370
1371    // Load decl names into diagnostic.
1372    if (Decls.size() > 4)
1373      PDiag << 0;
1374    else {
1375      PDiag << Decls.size();
1376      for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1377                                                    E = Decls.end();
1378           I != E; ++I)
1379        PDiag << (*I)->getDeclName();
1380    }
1381
1382    // Load SourceRanges into diagnostic if there is room.
1383    // Otherwise, load the SourceRange of the conditional expression.
1384    if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1385      for (SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1386                                                  E = Ranges.end();
1387           I != E; ++I)
1388        PDiag << *I;
1389    else
1390      PDiag << Second->getSourceRange();
1391
1392    S.Diag(Ranges.begin()->getBegin(), PDiag);
1393  }
1394
1395} // end namespace
1396
1397StmtResult
1398Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1399                   Stmt *First, FullExprArg second, Decl *secondVar,
1400                   FullExprArg third,
1401                   SourceLocation RParenLoc, Stmt *Body) {
1402  if (!getLangOpts().CPlusPlus) {
1403    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1404      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1405      // declare identifiers for objects having storage class 'auto' or
1406      // 'register'.
1407      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1408           DI!=DE; ++DI) {
1409        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1410        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1411          VD = 0;
1412        if (VD == 0)
1413          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1414        // FIXME: mark decl erroneous!
1415      }
1416    }
1417  }
1418
1419  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1420
1421  ExprResult SecondResult(second.release());
1422  VarDecl *ConditionVar = 0;
1423  if (secondVar) {
1424    ConditionVar = cast<VarDecl>(secondVar);
1425    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1426    if (SecondResult.isInvalid())
1427      return StmtError();
1428  }
1429
1430  Expr *Third  = third.release().takeAs<Expr>();
1431
1432  DiagnoseUnusedExprResult(First);
1433  DiagnoseUnusedExprResult(Third);
1434  DiagnoseUnusedExprResult(Body);
1435
1436  if (isa<NullStmt>(Body))
1437    getCurCompoundScope().setHasEmptyLoopBodies();
1438
1439  return Owned(new (Context) ForStmt(Context, First,
1440                                     SecondResult.take(), ConditionVar,
1441                                     Third, Body, ForLoc, LParenLoc,
1442                                     RParenLoc));
1443}
1444
1445/// In an Objective C collection iteration statement:
1446///   for (x in y)
1447/// x can be an arbitrary l-value expression.  Bind it up as a
1448/// full-expression.
1449StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1450  // Reduce placeholder expressions here.  Note that this rejects the
1451  // use of pseudo-object l-values in this position.
1452  ExprResult result = CheckPlaceholderExpr(E);
1453  if (result.isInvalid()) return StmtError();
1454  E = result.take();
1455
1456  ExprResult FullExpr = ActOnFinishFullExpr(E);
1457  if (FullExpr.isInvalid())
1458    return StmtError();
1459  return StmtResult(static_cast<Stmt*>(FullExpr.take()));
1460}
1461
1462ExprResult
1463Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1464  if (!collection)
1465    return ExprError();
1466
1467  // Bail out early if we've got a type-dependent expression.
1468  if (collection->isTypeDependent()) return Owned(collection);
1469
1470  // Perform normal l-value conversion.
1471  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1472  if (result.isInvalid())
1473    return ExprError();
1474  collection = result.take();
1475
1476  // The operand needs to have object-pointer type.
1477  // TODO: should we do a contextual conversion?
1478  const ObjCObjectPointerType *pointerType =
1479    collection->getType()->getAs<ObjCObjectPointerType>();
1480  if (!pointerType)
1481    return Diag(forLoc, diag::err_collection_expr_type)
1482             << collection->getType() << collection->getSourceRange();
1483
1484  // Check that the operand provides
1485  //   - countByEnumeratingWithState:objects:count:
1486  const ObjCObjectType *objectType = pointerType->getObjectType();
1487  ObjCInterfaceDecl *iface = objectType->getInterface();
1488
1489  // If we have a forward-declared type, we can't do this check.
1490  // Under ARC, it is an error not to have a forward-declared class.
1491  if (iface &&
1492      RequireCompleteType(forLoc, QualType(objectType, 0),
1493                          getLangOpts().ObjCAutoRefCount
1494                            ? diag::err_arc_collection_forward
1495                            : 0,
1496                          collection)) {
1497    // Otherwise, if we have any useful type information, check that
1498    // the type declares the appropriate method.
1499  } else if (iface || !objectType->qual_empty()) {
1500    IdentifierInfo *selectorIdents[] = {
1501      &Context.Idents.get("countByEnumeratingWithState"),
1502      &Context.Idents.get("objects"),
1503      &Context.Idents.get("count")
1504    };
1505    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1506
1507    ObjCMethodDecl *method = 0;
1508
1509    // If there's an interface, look in both the public and private APIs.
1510    if (iface) {
1511      method = iface->lookupInstanceMethod(selector);
1512      if (!method) method = iface->lookupPrivateMethod(selector);
1513    }
1514
1515    // Also check protocol qualifiers.
1516    if (!method)
1517      method = LookupMethodInQualifiedType(selector, pointerType,
1518                                           /*instance*/ true);
1519
1520    // If we didn't find it anywhere, give up.
1521    if (!method) {
1522      Diag(forLoc, diag::warn_collection_expr_type)
1523        << collection->getType() << selector << collection->getSourceRange();
1524    }
1525
1526    // TODO: check for an incompatible signature?
1527  }
1528
1529  // Wrap up any cleanups in the expression.
1530  return Owned(collection);
1531}
1532
1533StmtResult
1534Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1535                                 Stmt *First, Expr *collection,
1536                                 SourceLocation RParenLoc) {
1537
1538  ExprResult CollectionExprResult =
1539    CheckObjCForCollectionOperand(ForLoc, collection);
1540
1541  if (First) {
1542    QualType FirstType;
1543    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1544      if (!DS->isSingleDecl())
1545        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1546                         diag::err_toomany_element_decls));
1547
1548      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1549      FirstType = D->getType();
1550      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1551      // declare identifiers for objects having storage class 'auto' or
1552      // 'register'.
1553      if (!D->hasLocalStorage())
1554        return StmtError(Diag(D->getLocation(),
1555                              diag::err_non_variable_decl_in_for));
1556    } else {
1557      Expr *FirstE = cast<Expr>(First);
1558      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1559        return StmtError(Diag(First->getLocStart(),
1560                   diag::err_selector_element_not_lvalue)
1561          << First->getSourceRange());
1562
1563      FirstType = static_cast<Expr*>(First)->getType();
1564    }
1565    if (!FirstType->isDependentType() &&
1566        !FirstType->isObjCObjectPointerType() &&
1567        !FirstType->isBlockPointerType())
1568        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1569                           << FirstType << First->getSourceRange());
1570  }
1571
1572  if (CollectionExprResult.isInvalid())
1573    return StmtError();
1574
1575  CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.take());
1576  if (CollectionExprResult.isInvalid())
1577    return StmtError();
1578
1579  return Owned(new (Context) ObjCForCollectionStmt(First,
1580                                                   CollectionExprResult.take(), 0,
1581                                                   ForLoc, RParenLoc));
1582}
1583
1584/// Finish building a variable declaration for a for-range statement.
1585/// \return true if an error occurs.
1586static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1587                                  SourceLocation Loc, int diag) {
1588  // Deduce the type for the iterator variable now rather than leaving it to
1589  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1590  TypeSourceInfo *InitTSI = 0;
1591  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1592      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1593          Sema::DAR_Failed)
1594    SemaRef.Diag(Loc, diag) << Init->getType();
1595  if (!InitTSI) {
1596    Decl->setInvalidDecl();
1597    return true;
1598  }
1599  Decl->setTypeSourceInfo(InitTSI);
1600  Decl->setType(InitTSI->getType());
1601
1602  // In ARC, infer lifetime.
1603  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1604  // we're doing the equivalent of fast iteration.
1605  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1606      SemaRef.inferObjCARCLifetime(Decl))
1607    Decl->setInvalidDecl();
1608
1609  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1610                               /*TypeMayContainAuto=*/false);
1611  SemaRef.FinalizeDeclaration(Decl);
1612  SemaRef.CurContext->addHiddenDecl(Decl);
1613  return false;
1614}
1615
1616namespace {
1617
1618/// Produce a note indicating which begin/end function was implicitly called
1619/// by a C++11 for-range statement. This is often not obvious from the code,
1620/// nor from the diagnostics produced when analysing the implicit expressions
1621/// required in a for-range statement.
1622void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1623                                  Sema::BeginEndFunction BEF) {
1624  CallExpr *CE = dyn_cast<CallExpr>(E);
1625  if (!CE)
1626    return;
1627  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1628  if (!D)
1629    return;
1630  SourceLocation Loc = D->getLocation();
1631
1632  std::string Description;
1633  bool IsTemplate = false;
1634  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1635    Description = SemaRef.getTemplateArgumentBindingsText(
1636      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1637    IsTemplate = true;
1638  }
1639
1640  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1641    << BEF << IsTemplate << Description << E->getType();
1642}
1643
1644/// Build a variable declaration for a for-range statement.
1645VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1646                              QualType Type, const char *Name) {
1647  DeclContext *DC = SemaRef.CurContext;
1648  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1649  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1650  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1651                                  TInfo, SC_Auto, SC_None);
1652  Decl->setImplicit();
1653  return Decl;
1654}
1655
1656}
1657
1658static bool ObjCEnumerationCollection(Expr *Collection) {
1659  return !Collection->isTypeDependent()
1660          && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1661}
1662
1663/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1664///
1665/// C++11 [stmt.ranged]:
1666///   A range-based for statement is equivalent to
1667///
1668///   {
1669///     auto && __range = range-init;
1670///     for ( auto __begin = begin-expr,
1671///           __end = end-expr;
1672///           __begin != __end;
1673///           ++__begin ) {
1674///       for-range-declaration = *__begin;
1675///       statement
1676///     }
1677///   }
1678///
1679/// The body of the loop is not available yet, since it cannot be analysed until
1680/// we have determined the type of the for-range-declaration.
1681StmtResult
1682Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
1683                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1684                           SourceLocation RParenLoc, BuildForRangeKind Kind) {
1685  if (!First || !Range)
1686    return StmtError();
1687
1688  if (ObjCEnumerationCollection(Range))
1689    return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1690
1691  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1692  assert(DS && "first part of for range not a decl stmt");
1693
1694  if (!DS->isSingleDecl()) {
1695    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1696    return StmtError();
1697  }
1698  if (DS->getSingleDecl()->isInvalidDecl())
1699    return StmtError();
1700
1701  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1702    return StmtError();
1703
1704  // Build  auto && __range = range-init
1705  SourceLocation RangeLoc = Range->getLocStart();
1706  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1707                                           Context.getAutoRRefDeductType(),
1708                                           "__range");
1709  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1710                            diag::err_for_range_deduction_failure))
1711    return StmtError();
1712
1713  // Claim the type doesn't contain auto: we've already done the checking.
1714  DeclGroupPtrTy RangeGroup =
1715    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1716  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1717  if (RangeDecl.isInvalid())
1718    return StmtError();
1719
1720  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1721                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1722                              RParenLoc, Kind);
1723}
1724
1725/// \brief Create the initialization, compare, and increment steps for
1726/// the range-based for loop expression.
1727/// This function does not handle array-based for loops,
1728/// which are created in Sema::BuildCXXForRangeStmt.
1729///
1730/// \returns a ForRangeStatus indicating success or what kind of error occurred.
1731/// BeginExpr and EndExpr are set and FRS_Success is returned on success;
1732/// CandidateSet and BEF are set and some non-success value is returned on
1733/// failure.
1734static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
1735                                            Expr *BeginRange, Expr *EndRange,
1736                                            QualType RangeType,
1737                                            VarDecl *BeginVar,
1738                                            VarDecl *EndVar,
1739                                            SourceLocation ColonLoc,
1740                                            OverloadCandidateSet *CandidateSet,
1741                                            ExprResult *BeginExpr,
1742                                            ExprResult *EndExpr,
1743                                            Sema::BeginEndFunction *BEF) {
1744  DeclarationNameInfo BeginNameInfo(
1745      &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
1746  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
1747                                  ColonLoc);
1748
1749  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
1750                                 Sema::LookupMemberName);
1751  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
1752
1753  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1754    // - if _RangeT is a class type, the unqualified-ids begin and end are
1755    //   looked up in the scope of class _RangeT as if by class member access
1756    //   lookup (3.4.5), and if either (or both) finds at least one
1757    //   declaration, begin-expr and end-expr are __range.begin() and
1758    //   __range.end(), respectively;
1759    SemaRef.LookupQualifiedName(BeginMemberLookup, D);
1760    SemaRef.LookupQualifiedName(EndMemberLookup, D);
1761
1762    if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1763      SourceLocation RangeLoc = BeginVar->getLocation();
1764      *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
1765
1766      SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
1767          << RangeLoc << BeginRange->getType() << *BEF;
1768      return Sema::FRS_DiagnosticIssued;
1769    }
1770  } else {
1771    // - otherwise, begin-expr and end-expr are begin(__range) and
1772    //   end(__range), respectively, where begin and end are looked up with
1773    //   argument-dependent lookup (3.4.2). For the purposes of this name
1774    //   lookup, namespace std is an associated namespace.
1775
1776  }
1777
1778  *BEF = Sema::BEF_begin;
1779  Sema::ForRangeStatus RangeStatus =
1780      SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
1781                                        Sema::BEF_begin, BeginNameInfo,
1782                                        BeginMemberLookup, CandidateSet,
1783                                        BeginRange, BeginExpr);
1784
1785  if (RangeStatus != Sema::FRS_Success)
1786    return RangeStatus;
1787  if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
1788                            diag::err_for_range_iter_deduction_failure)) {
1789    NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
1790    return Sema::FRS_DiagnosticIssued;
1791  }
1792
1793  *BEF = Sema::BEF_end;
1794  RangeStatus =
1795      SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
1796                                        Sema::BEF_end, EndNameInfo,
1797                                        EndMemberLookup, CandidateSet,
1798                                        EndRange, EndExpr);
1799  if (RangeStatus != Sema::FRS_Success)
1800    return RangeStatus;
1801  if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
1802                            diag::err_for_range_iter_deduction_failure)) {
1803    NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
1804    return Sema::FRS_DiagnosticIssued;
1805  }
1806  return Sema::FRS_Success;
1807}
1808
1809/// Speculatively attempt to dereference an invalid range expression.
1810/// If the attempt fails, this function will return a valid, null StmtResult
1811/// and emit no diagnostics.
1812static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
1813                                                 SourceLocation ForLoc,
1814                                                 Stmt *LoopVarDecl,
1815                                                 SourceLocation ColonLoc,
1816                                                 Expr *Range,
1817                                                 SourceLocation RangeLoc,
1818                                                 SourceLocation RParenLoc) {
1819  // Determine whether we can rebuild the for-range statement with a
1820  // dereferenced range expression.
1821  ExprResult AdjustedRange;
1822  {
1823    Sema::SFINAETrap Trap(SemaRef);
1824
1825    AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
1826    if (AdjustedRange.isInvalid())
1827      return StmtResult();
1828
1829    StmtResult SR =
1830      SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1831                                   AdjustedRange.get(), RParenLoc,
1832                                   Sema::BFRK_Check);
1833    if (SR.isInvalid())
1834      return StmtResult();
1835  }
1836
1837  // The attempt to dereference worked well enough that it could produce a valid
1838  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
1839  // case there are any other (non-fatal) problems with it.
1840  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
1841    << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
1842  return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1843                                      AdjustedRange.get(), RParenLoc,
1844                                      Sema::BFRK_Rebuild);
1845}
1846
1847/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
1848StmtResult
1849Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1850                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1851                           Expr *Inc, Stmt *LoopVarDecl,
1852                           SourceLocation RParenLoc, BuildForRangeKind Kind) {
1853  Scope *S = getCurScope();
1854
1855  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1856  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1857  QualType RangeVarType = RangeVar->getType();
1858
1859  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1860  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1861
1862  StmtResult BeginEndDecl = BeginEnd;
1863  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1864
1865  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1866    SourceLocation RangeLoc = RangeVar->getLocation();
1867
1868    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1869
1870    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1871                                                VK_LValue, ColonLoc);
1872    if (BeginRangeRef.isInvalid())
1873      return StmtError();
1874
1875    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1876                                              VK_LValue, ColonLoc);
1877    if (EndRangeRef.isInvalid())
1878      return StmtError();
1879
1880    QualType AutoType = Context.getAutoDeductType();
1881    Expr *Range = RangeVar->getInit();
1882    if (!Range)
1883      return StmtError();
1884    QualType RangeType = Range->getType();
1885
1886    if (RequireCompleteType(RangeLoc, RangeType,
1887                            diag::err_for_range_incomplete_type))
1888      return StmtError();
1889
1890    // Build auto __begin = begin-expr, __end = end-expr.
1891    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1892                                             "__begin");
1893    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1894                                           "__end");
1895
1896    // Build begin-expr and end-expr and attach to __begin and __end variables.
1897    ExprResult BeginExpr, EndExpr;
1898    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1899      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1900      //   __range + __bound, respectively, where __bound is the array bound. If
1901      //   _RangeT is an array of unknown size or an array of incomplete type,
1902      //   the program is ill-formed;
1903
1904      // begin-expr is __range.
1905      BeginExpr = BeginRangeRef;
1906      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1907                                diag::err_for_range_iter_deduction_failure)) {
1908        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1909        return StmtError();
1910      }
1911
1912      // Find the array bound.
1913      ExprResult BoundExpr;
1914      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1915        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1916                                                 Context.getPointerDiffType(),
1917                                                 RangeLoc));
1918      else if (const VariableArrayType *VAT =
1919               dyn_cast<VariableArrayType>(UnqAT))
1920        BoundExpr = VAT->getSizeExpr();
1921      else {
1922        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1923        // UnqAT is not incomplete and Range is not type-dependent.
1924        llvm_unreachable("Unexpected array type in for-range");
1925      }
1926
1927      // end-expr is __range + __bound.
1928      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1929                           BoundExpr.get());
1930      if (EndExpr.isInvalid())
1931        return StmtError();
1932      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1933                                diag::err_for_range_iter_deduction_failure)) {
1934        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1935        return StmtError();
1936      }
1937    } else {
1938      OverloadCandidateSet CandidateSet(RangeLoc);
1939      Sema::BeginEndFunction BEFFailure;
1940      ForRangeStatus RangeStatus =
1941          BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
1942                                EndRangeRef.get(), RangeType,
1943                                BeginVar, EndVar, ColonLoc, &CandidateSet,
1944                                &BeginExpr, &EndExpr, &BEFFailure);
1945
1946      // If building the range failed, try dereferencing the range expression
1947      // unless a diagnostic was issued or the end function is problematic.
1948      if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
1949          BEFFailure == BEF_begin) {
1950        StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
1951                                                       LoopVarDecl, ColonLoc,
1952                                                       Range, RangeLoc,
1953                                                       RParenLoc);
1954        if (SR.isInvalid() || SR.isUsable())
1955          return SR;
1956      }
1957
1958      // Otherwise, emit diagnostics if we haven't already.
1959      if (RangeStatus == FRS_NoViableFunction) {
1960        Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
1961        Diag(Range->getLocStart(), diag::err_for_range_invalid)
1962            << RangeLoc << Range->getType() << BEFFailure;
1963        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
1964      }
1965      // Return an error if no fix was discovered.
1966      if (RangeStatus != FRS_Success)
1967        return StmtError();
1968    }
1969
1970    assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
1971           "invalid range expression in for loop");
1972
1973    // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
1974    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1975    if (!Context.hasSameType(BeginType, EndType)) {
1976      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1977        << BeginType << EndType;
1978      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1979      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1980    }
1981
1982    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1983    // Claim the type doesn't contain auto: we've already done the checking.
1984    DeclGroupPtrTy BeginEndGroup =
1985      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1986    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1987
1988    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1989    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1990                                           VK_LValue, ColonLoc);
1991    if (BeginRef.isInvalid())
1992      return StmtError();
1993
1994    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1995                                         VK_LValue, ColonLoc);
1996    if (EndRef.isInvalid())
1997      return StmtError();
1998
1999    // Build and check __begin != __end expression.
2000    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2001                           BeginRef.get(), EndRef.get());
2002    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2003    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2004    if (NotEqExpr.isInvalid()) {
2005      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2006        << RangeLoc << 0 << BeginRangeRef.get()->getType();
2007      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2008      if (!Context.hasSameType(BeginType, EndType))
2009        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2010      return StmtError();
2011    }
2012
2013    // Build and check ++__begin expression.
2014    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2015                                VK_LValue, ColonLoc);
2016    if (BeginRef.isInvalid())
2017      return StmtError();
2018
2019    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2020    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2021    if (IncrExpr.isInvalid()) {
2022      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2023        << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2024      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2025      return StmtError();
2026    }
2027
2028    // Build and check *__begin  expression.
2029    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2030                                VK_LValue, ColonLoc);
2031    if (BeginRef.isInvalid())
2032      return StmtError();
2033
2034    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2035    if (DerefExpr.isInvalid()) {
2036      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2037        << RangeLoc << 1 << BeginRangeRef.get()->getType();
2038      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2039      return StmtError();
2040    }
2041
2042    // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2043    // trying to determine whether this would be a valid range.
2044    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2045      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2046                           /*TypeMayContainAuto=*/true);
2047      if (LoopVar->isInvalidDecl())
2048        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2049    }
2050  } else {
2051    // The range is implicitly used as a placeholder when it is dependent.
2052    RangeVar->setUsed();
2053  }
2054
2055  // Don't bother to actually allocate the result if we're just trying to
2056  // determine whether it would be valid.
2057  if (Kind == BFRK_Check)
2058    return StmtResult();
2059
2060  return Owned(new (Context) CXXForRangeStmt(RangeDS,
2061                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
2062                                             NotEqExpr.take(), IncrExpr.take(),
2063                                             LoopVarDS, /*Body=*/0, ForLoc,
2064                                             ColonLoc, RParenLoc));
2065}
2066
2067/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2068/// statement.
2069StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2070  if (!S || !B)
2071    return StmtError();
2072  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2073
2074  ForStmt->setBody(B);
2075  return S;
2076}
2077
2078/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2079/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2080/// body cannot be performed until after the type of the range variable is
2081/// determined.
2082StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2083  if (!S || !B)
2084    return StmtError();
2085
2086  if (isa<ObjCForCollectionStmt>(S))
2087    return FinishObjCForCollectionStmt(S, B);
2088
2089  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2090  ForStmt->setBody(B);
2091
2092  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2093                        diag::warn_empty_range_based_for_body);
2094
2095  return S;
2096}
2097
2098StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2099                               SourceLocation LabelLoc,
2100                               LabelDecl *TheDecl) {
2101  getCurFunction()->setHasBranchIntoScope();
2102  TheDecl->setUsed();
2103  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
2104}
2105
2106StmtResult
2107Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2108                            Expr *E) {
2109  // Convert operand to void*
2110  if (!E->isTypeDependent()) {
2111    QualType ETy = E->getType();
2112    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2113    ExprResult ExprRes = Owned(E);
2114    AssignConvertType ConvTy =
2115      CheckSingleAssignmentConstraints(DestTy, ExprRes);
2116    if (ExprRes.isInvalid())
2117      return StmtError();
2118    E = ExprRes.take();
2119    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2120      return StmtError();
2121  }
2122
2123  ExprResult ExprRes = ActOnFinishFullExpr(E);
2124  if (ExprRes.isInvalid())
2125    return StmtError();
2126  E = ExprRes.take();
2127
2128  getCurFunction()->setHasIndirectGoto();
2129
2130  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
2131}
2132
2133StmtResult
2134Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2135  Scope *S = CurScope->getContinueParent();
2136  if (!S) {
2137    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2138    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2139  }
2140
2141  return Owned(new (Context) ContinueStmt(ContinueLoc));
2142}
2143
2144StmtResult
2145Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2146  Scope *S = CurScope->getBreakParent();
2147  if (!S) {
2148    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2149    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2150  }
2151
2152  return Owned(new (Context) BreakStmt(BreakLoc));
2153}
2154
2155/// \brief Determine whether the given expression is a candidate for
2156/// copy elision in either a return statement or a throw expression.
2157///
2158/// \param ReturnType If we're determining the copy elision candidate for
2159/// a return statement, this is the return type of the function. If we're
2160/// determining the copy elision candidate for a throw expression, this will
2161/// be a NULL type.
2162///
2163/// \param E The expression being returned from the function or block, or
2164/// being thrown.
2165///
2166/// \param AllowFunctionParameter Whether we allow function parameters to
2167/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2168/// we re-use this logic to determine whether we should try to move as part of
2169/// a return or throw (which does allow function parameters).
2170///
2171/// \returns The NRVO candidate variable, if the return statement may use the
2172/// NRVO, or NULL if there is no such candidate.
2173const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2174                                             Expr *E,
2175                                             bool AllowFunctionParameter) {
2176  QualType ExprType = E->getType();
2177  // - in a return statement in a function with ...
2178  // ... a class return type ...
2179  if (!ReturnType.isNull()) {
2180    if (!ReturnType->isRecordType())
2181      return 0;
2182    // ... the same cv-unqualified type as the function return type ...
2183    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2184      return 0;
2185  }
2186
2187  // ... the expression is the name of a non-volatile automatic object
2188  // (other than a function or catch-clause parameter)) ...
2189  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2190  if (!DR || DR->refersToEnclosingLocal())
2191    return 0;
2192  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2193  if (!VD)
2194    return 0;
2195
2196  // ...object (other than a function or catch-clause parameter)...
2197  if (VD->getKind() != Decl::Var &&
2198      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2199    return 0;
2200  if (VD->isExceptionVariable()) return 0;
2201
2202  // ...automatic...
2203  if (!VD->hasLocalStorage()) return 0;
2204
2205  // ...non-volatile...
2206  if (VD->getType().isVolatileQualified()) return 0;
2207  if (VD->getType()->isReferenceType()) return 0;
2208
2209  // __block variables can't be allocated in a way that permits NRVO.
2210  if (VD->hasAttr<BlocksAttr>()) return 0;
2211
2212  // Variables with higher required alignment than their type's ABI
2213  // alignment cannot use NRVO.
2214  if (VD->hasAttr<AlignedAttr>() &&
2215      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2216    return 0;
2217
2218  return VD;
2219}
2220
2221/// \brief Perform the initialization of a potentially-movable value, which
2222/// is the result of return value.
2223///
2224/// This routine implements C++0x [class.copy]p33, which attempts to treat
2225/// returned lvalues as rvalues in certain cases (to prefer move construction),
2226/// then falls back to treating them as lvalues if that failed.
2227ExprResult
2228Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2229                                      const VarDecl *NRVOCandidate,
2230                                      QualType ResultType,
2231                                      Expr *Value,
2232                                      bool AllowNRVO) {
2233  // C++0x [class.copy]p33:
2234  //   When the criteria for elision of a copy operation are met or would
2235  //   be met save for the fact that the source object is a function
2236  //   parameter, and the object to be copied is designated by an lvalue,
2237  //   overload resolution to select the constructor for the copy is first
2238  //   performed as if the object were designated by an rvalue.
2239  ExprResult Res = ExprError();
2240  if (AllowNRVO &&
2241      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2242    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2243                              Value->getType(), CK_NoOp, Value, VK_XValue);
2244
2245    Expr *InitExpr = &AsRvalue;
2246    InitializationKind Kind
2247      = InitializationKind::CreateCopy(Value->getLocStart(),
2248                                       Value->getLocStart());
2249    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2250
2251    //   [...] If overload resolution fails, or if the type of the first
2252    //   parameter of the selected constructor is not an rvalue reference
2253    //   to the object's type (possibly cv-qualified), overload resolution
2254    //   is performed again, considering the object as an lvalue.
2255    if (Seq) {
2256      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2257           StepEnd = Seq.step_end();
2258           Step != StepEnd; ++Step) {
2259        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2260          continue;
2261
2262        CXXConstructorDecl *Constructor
2263        = cast<CXXConstructorDecl>(Step->Function.Function);
2264
2265        const RValueReferenceType *RRefType
2266          = Constructor->getParamDecl(0)->getType()
2267                                                 ->getAs<RValueReferenceType>();
2268
2269        // If we don't meet the criteria, break out now.
2270        if (!RRefType ||
2271            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2272                            Context.getTypeDeclType(Constructor->getParent())))
2273          break;
2274
2275        // Promote "AsRvalue" to the heap, since we now need this
2276        // expression node to persist.
2277        Value = ImplicitCastExpr::Create(Context, Value->getType(),
2278                                         CK_NoOp, Value, 0, VK_XValue);
2279
2280        // Complete type-checking the initialization of the return type
2281        // using the constructor we found.
2282        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2283      }
2284    }
2285  }
2286
2287  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2288  // above, or overload resolution failed. Either way, we need to try
2289  // (again) now with the return value expression as written.
2290  if (Res.isInvalid())
2291    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2292
2293  return Res;
2294}
2295
2296/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2297/// for capturing scopes.
2298///
2299StmtResult
2300Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2301  // If this is the first return we've seen, infer the return type.
2302  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2303  // rules which allows multiple return statements.
2304  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2305  QualType FnRetType = CurCap->ReturnType;
2306
2307  // For blocks/lambdas with implicit return types, we check each return
2308  // statement individually, and deduce the common return type when the block
2309  // or lambda is completed.
2310  if (CurCap->HasImplicitReturnType) {
2311    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2312      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2313      if (Result.isInvalid())
2314        return StmtError();
2315      RetValExp = Result.take();
2316
2317      if (!RetValExp->isTypeDependent())
2318        FnRetType = RetValExp->getType();
2319      else
2320        FnRetType = CurCap->ReturnType = Context.DependentTy;
2321    } else {
2322      if (RetValExp) {
2323        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2324        // initializer list, because it is not an expression (even
2325        // though we represent it as one). We still deduce 'void'.
2326        Diag(ReturnLoc, diag::err_lambda_return_init_list)
2327          << RetValExp->getSourceRange();
2328      }
2329
2330      FnRetType = Context.VoidTy;
2331    }
2332
2333    // Although we'll properly infer the type of the block once it's completed,
2334    // make sure we provide a return type now for better error recovery.
2335    if (CurCap->ReturnType.isNull())
2336      CurCap->ReturnType = FnRetType;
2337  }
2338  assert(!FnRetType.isNull());
2339
2340  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2341    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2342      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2343      return StmtError();
2344    }
2345  } else {
2346    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2347    if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2348      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2349      return StmtError();
2350    }
2351  }
2352
2353  // Otherwise, verify that this result type matches the previous one.  We are
2354  // pickier with blocks than for normal functions because we don't have GCC
2355  // compatibility to worry about here.
2356  const VarDecl *NRVOCandidate = 0;
2357  if (FnRetType->isDependentType()) {
2358    // Delay processing for now.  TODO: there are lots of dependent
2359    // types we can conclusively prove aren't void.
2360  } else if (FnRetType->isVoidType()) {
2361    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2362        !(getLangOpts().CPlusPlus &&
2363          (RetValExp->isTypeDependent() ||
2364           RetValExp->getType()->isVoidType()))) {
2365      if (!getLangOpts().CPlusPlus &&
2366          RetValExp->getType()->isVoidType())
2367        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2368      else {
2369        Diag(ReturnLoc, diag::err_return_block_has_expr);
2370        RetValExp = 0;
2371      }
2372    }
2373  } else if (!RetValExp) {
2374    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2375  } else if (!RetValExp->isTypeDependent()) {
2376    // we have a non-void block with an expression, continue checking
2377
2378    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2379    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2380    // function return.
2381
2382    // In C++ the return statement is handled via a copy initialization.
2383    // the C version of which boils down to CheckSingleAssignmentConstraints.
2384    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2385    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2386                                                                   FnRetType,
2387                                                          NRVOCandidate != 0);
2388    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2389                                                     FnRetType, RetValExp);
2390    if (Res.isInvalid()) {
2391      // FIXME: Cleanup temporaries here, anyway?
2392      return StmtError();
2393    }
2394    RetValExp = Res.take();
2395    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2396  }
2397
2398  if (RetValExp) {
2399    ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2400    if (ER.isInvalid())
2401      return StmtError();
2402    RetValExp = ER.take();
2403  }
2404  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2405                                                NRVOCandidate);
2406
2407  // If we need to check for the named return value optimization,
2408  // or if we need to infer the return type,
2409  // save the return statement in our scope for later processing.
2410  if (CurCap->HasImplicitReturnType ||
2411      (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2412       !CurContext->isDependentContext()))
2413    FunctionScopes.back()->Returns.push_back(Result);
2414
2415  return Owned(Result);
2416}
2417
2418StmtResult
2419Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2420  // Check for unexpanded parameter packs.
2421  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2422    return StmtError();
2423
2424  if (isa<CapturingScopeInfo>(getCurFunction()))
2425    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2426
2427  QualType FnRetType;
2428  QualType RelatedRetType;
2429  if (const FunctionDecl *FD = getCurFunctionDecl()) {
2430    FnRetType = FD->getResultType();
2431    if (FD->isNoReturn())
2432      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2433        << FD->getDeclName();
2434  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2435    FnRetType = MD->getResultType();
2436    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2437      // In the implementation of a method with a related return type, the
2438      // type used to type-check the validity of return statements within the
2439      // method body is a pointer to the type of the class being implemented.
2440      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2441      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2442    }
2443  } else // If we don't have a function/method context, bail.
2444    return StmtError();
2445
2446  ReturnStmt *Result = 0;
2447  if (FnRetType->isVoidType()) {
2448    if (RetValExp) {
2449      if (isa<InitListExpr>(RetValExp)) {
2450        // We simply never allow init lists as the return value of void
2451        // functions. This is compatible because this was never allowed before,
2452        // so there's no legacy code to deal with.
2453        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2454        int FunctionKind = 0;
2455        if (isa<ObjCMethodDecl>(CurDecl))
2456          FunctionKind = 1;
2457        else if (isa<CXXConstructorDecl>(CurDecl))
2458          FunctionKind = 2;
2459        else if (isa<CXXDestructorDecl>(CurDecl))
2460          FunctionKind = 3;
2461
2462        Diag(ReturnLoc, diag::err_return_init_list)
2463          << CurDecl->getDeclName() << FunctionKind
2464          << RetValExp->getSourceRange();
2465
2466        // Drop the expression.
2467        RetValExp = 0;
2468      } else if (!RetValExp->isTypeDependent()) {
2469        // C99 6.8.6.4p1 (ext_ since GCC warns)
2470        unsigned D = diag::ext_return_has_expr;
2471        if (RetValExp->getType()->isVoidType())
2472          D = diag::ext_return_has_void_expr;
2473        else {
2474          ExprResult Result = Owned(RetValExp);
2475          Result = IgnoredValueConversions(Result.take());
2476          if (Result.isInvalid())
2477            return StmtError();
2478          RetValExp = Result.take();
2479          RetValExp = ImpCastExprToType(RetValExp,
2480                                        Context.VoidTy, CK_ToVoid).take();
2481        }
2482
2483        // return (some void expression); is legal in C++.
2484        if (D != diag::ext_return_has_void_expr ||
2485            !getLangOpts().CPlusPlus) {
2486          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2487
2488          int FunctionKind = 0;
2489          if (isa<ObjCMethodDecl>(CurDecl))
2490            FunctionKind = 1;
2491          else if (isa<CXXConstructorDecl>(CurDecl))
2492            FunctionKind = 2;
2493          else if (isa<CXXDestructorDecl>(CurDecl))
2494            FunctionKind = 3;
2495
2496          Diag(ReturnLoc, D)
2497            << CurDecl->getDeclName() << FunctionKind
2498            << RetValExp->getSourceRange();
2499        }
2500      }
2501
2502      if (RetValExp) {
2503        ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2504        if (ER.isInvalid())
2505          return StmtError();
2506        RetValExp = ER.take();
2507      }
2508    }
2509
2510    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2511  } else if (!RetValExp && !FnRetType->isDependentType()) {
2512    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2513    // C99 6.8.6.4p1 (ext_ since GCC warns)
2514    if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2515
2516    if (FunctionDecl *FD = getCurFunctionDecl())
2517      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2518    else
2519      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2520    Result = new (Context) ReturnStmt(ReturnLoc);
2521  } else {
2522    const VarDecl *NRVOCandidate = 0;
2523    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2524      // we have a non-void function with an expression, continue checking
2525
2526      if (!RelatedRetType.isNull()) {
2527        // If we have a related result type, perform an extra conversion here.
2528        // FIXME: The diagnostics here don't really describe what is happening.
2529        InitializedEntity Entity =
2530            InitializedEntity::InitializeTemporary(RelatedRetType);
2531
2532        ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2533                                                   RetValExp);
2534        if (Res.isInvalid()) {
2535          // FIXME: Cleanup temporaries here, anyway?
2536          return StmtError();
2537        }
2538        RetValExp = Res.takeAs<Expr>();
2539      }
2540
2541      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2542      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2543      // function return.
2544
2545      // In C++ the return statement is handled via a copy initialization,
2546      // the C version of which boils down to CheckSingleAssignmentConstraints.
2547      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2548      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2549                                                                     FnRetType,
2550                                                            NRVOCandidate != 0);
2551      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2552                                                       FnRetType, RetValExp);
2553      if (Res.isInvalid()) {
2554        // FIXME: Cleanup temporaries here, anyway?
2555        return StmtError();
2556      }
2557
2558      RetValExp = Res.takeAs<Expr>();
2559      if (RetValExp)
2560        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2561    }
2562
2563    if (RetValExp) {
2564      ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2565      if (ER.isInvalid())
2566        return StmtError();
2567      RetValExp = ER.take();
2568    }
2569    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2570  }
2571
2572  // If we need to check for the named return value optimization, save the
2573  // return statement in our scope for later processing.
2574  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2575      !CurContext->isDependentContext())
2576    FunctionScopes.back()->Returns.push_back(Result);
2577
2578  return Owned(Result);
2579}
2580
2581StmtResult
2582Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2583                           SourceLocation RParen, Decl *Parm,
2584                           Stmt *Body) {
2585  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2586  if (Var && Var->isInvalidDecl())
2587    return StmtError();
2588
2589  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2590}
2591
2592StmtResult
2593Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2594  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2595}
2596
2597StmtResult
2598Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2599                         MultiStmtArg CatchStmts, Stmt *Finally) {
2600  if (!getLangOpts().ObjCExceptions)
2601    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2602
2603  getCurFunction()->setHasBranchProtectedScope();
2604  unsigned NumCatchStmts = CatchStmts.size();
2605  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2606                                     CatchStmts.data(),
2607                                     NumCatchStmts,
2608                                     Finally));
2609}
2610
2611StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2612  if (Throw) {
2613    ExprResult Result = DefaultLvalueConversion(Throw);
2614    if (Result.isInvalid())
2615      return StmtError();
2616
2617    Result = ActOnFinishFullExpr(Result.take());
2618    if (Result.isInvalid())
2619      return StmtError();
2620    Throw = Result.take();
2621
2622    QualType ThrowType = Throw->getType();
2623    // Make sure the expression type is an ObjC pointer or "void *".
2624    if (!ThrowType->isDependentType() &&
2625        !ThrowType->isObjCObjectPointerType()) {
2626      const PointerType *PT = ThrowType->getAs<PointerType>();
2627      if (!PT || !PT->getPointeeType()->isVoidType())
2628        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2629                         << Throw->getType() << Throw->getSourceRange());
2630    }
2631  }
2632
2633  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2634}
2635
2636StmtResult
2637Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2638                           Scope *CurScope) {
2639  if (!getLangOpts().ObjCExceptions)
2640    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2641
2642  if (!Throw) {
2643    // @throw without an expression designates a rethrow (which much occur
2644    // in the context of an @catch clause).
2645    Scope *AtCatchParent = CurScope;
2646    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2647      AtCatchParent = AtCatchParent->getParent();
2648    if (!AtCatchParent)
2649      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2650  }
2651  return BuildObjCAtThrowStmt(AtLoc, Throw);
2652}
2653
2654ExprResult
2655Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2656  ExprResult result = DefaultLvalueConversion(operand);
2657  if (result.isInvalid())
2658    return ExprError();
2659  operand = result.take();
2660
2661  // Make sure the expression type is an ObjC pointer or "void *".
2662  QualType type = operand->getType();
2663  if (!type->isDependentType() &&
2664      !type->isObjCObjectPointerType()) {
2665    const PointerType *pointerType = type->getAs<PointerType>();
2666    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2667      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2668               << type << operand->getSourceRange();
2669  }
2670
2671  // The operand to @synchronized is a full-expression.
2672  return ActOnFinishFullExpr(operand);
2673}
2674
2675StmtResult
2676Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2677                                  Stmt *SyncBody) {
2678  // We can't jump into or indirect-jump out of a @synchronized block.
2679  getCurFunction()->setHasBranchProtectedScope();
2680  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2681}
2682
2683/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2684/// and creates a proper catch handler from them.
2685StmtResult
2686Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2687                         Stmt *HandlerBlock) {
2688  // There's nothing to test that ActOnExceptionDecl didn't already test.
2689  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2690                                          cast_or_null<VarDecl>(ExDecl),
2691                                          HandlerBlock));
2692}
2693
2694StmtResult
2695Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2696  getCurFunction()->setHasBranchProtectedScope();
2697  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2698}
2699
2700namespace {
2701
2702class TypeWithHandler {
2703  QualType t;
2704  CXXCatchStmt *stmt;
2705public:
2706  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2707  : t(type), stmt(statement) {}
2708
2709  // An arbitrary order is fine as long as it places identical
2710  // types next to each other.
2711  bool operator<(const TypeWithHandler &y) const {
2712    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2713      return true;
2714    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2715      return false;
2716    else
2717      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2718  }
2719
2720  bool operator==(const TypeWithHandler& other) const {
2721    return t == other.t;
2722  }
2723
2724  CXXCatchStmt *getCatchStmt() const { return stmt; }
2725  SourceLocation getTypeSpecStartLoc() const {
2726    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2727  }
2728};
2729
2730}
2731
2732/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2733/// handlers and creates a try statement from them.
2734StmtResult
2735Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2736                       MultiStmtArg RawHandlers) {
2737  // Don't report an error if 'try' is used in system headers.
2738  if (!getLangOpts().CXXExceptions &&
2739      !getSourceManager().isInSystemHeader(TryLoc))
2740      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2741
2742  unsigned NumHandlers = RawHandlers.size();
2743  assert(NumHandlers > 0 &&
2744         "The parser shouldn't call this if there are no handlers.");
2745  Stmt **Handlers = RawHandlers.data();
2746
2747  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2748
2749  for (unsigned i = 0; i < NumHandlers; ++i) {
2750    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2751    if (!Handler->getExceptionDecl()) {
2752      if (i < NumHandlers - 1)
2753        return StmtError(Diag(Handler->getLocStart(),
2754                              diag::err_early_catch_all));
2755
2756      continue;
2757    }
2758
2759    const QualType CaughtType = Handler->getCaughtType();
2760    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2761    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2762  }
2763
2764  // Detect handlers for the same type as an earlier one.
2765  if (NumHandlers > 1) {
2766    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2767
2768    TypeWithHandler prev = TypesWithHandlers[0];
2769    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2770      TypeWithHandler curr = TypesWithHandlers[i];
2771
2772      if (curr == prev) {
2773        Diag(curr.getTypeSpecStartLoc(),
2774             diag::warn_exception_caught_by_earlier_handler)
2775          << curr.getCatchStmt()->getCaughtType().getAsString();
2776        Diag(prev.getTypeSpecStartLoc(),
2777             diag::note_previous_exception_handler)
2778          << prev.getCatchStmt()->getCaughtType().getAsString();
2779      }
2780
2781      prev = curr;
2782    }
2783  }
2784
2785  getCurFunction()->setHasBranchProtectedScope();
2786
2787  // FIXME: We should detect handlers that cannot catch anything because an
2788  // earlier handler catches a superclass. Need to find a method that is not
2789  // quadratic for this.
2790  // Neither of these are explicitly forbidden, but every compiler detects them
2791  // and warns.
2792
2793  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2794                                  llvm::makeArrayRef(Handlers, NumHandlers)));
2795}
2796
2797StmtResult
2798Sema::ActOnSEHTryBlock(bool IsCXXTry,
2799                       SourceLocation TryLoc,
2800                       Stmt *TryBlock,
2801                       Stmt *Handler) {
2802  assert(TryBlock && Handler);
2803
2804  getCurFunction()->setHasBranchProtectedScope();
2805
2806  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2807}
2808
2809StmtResult
2810Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2811                          Expr *FilterExpr,
2812                          Stmt *Block) {
2813  assert(FilterExpr && Block);
2814
2815  if(!FilterExpr->getType()->isIntegerType()) {
2816    return StmtError(Diag(FilterExpr->getExprLoc(),
2817                     diag::err_filter_expression_integral)
2818                     << FilterExpr->getType());
2819  }
2820
2821  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2822}
2823
2824StmtResult
2825Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2826                           Stmt *Block) {
2827  assert(Block);
2828  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2829}
2830
2831StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2832                                            bool IsIfExists,
2833                                            NestedNameSpecifierLoc QualifierLoc,
2834                                            DeclarationNameInfo NameInfo,
2835                                            Stmt *Nested)
2836{
2837  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2838                                             QualifierLoc, NameInfo,
2839                                             cast<CompoundStmt>(Nested));
2840}
2841
2842
2843StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2844                                            bool IsIfExists,
2845                                            CXXScopeSpec &SS,
2846                                            UnqualifiedId &Name,
2847                                            Stmt *Nested) {
2848  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2849                                    SS.getWithLocInContext(Context),
2850                                    GetNameFromUnqualifiedId(Name),
2851                                    Nested);
2852}
2853