SemaStmt.cpp revision 4b07b2968f87f3cd5a3d8c76145f1cbfd718d42d
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/Basic/Diagnostic.h"
21using namespace clang;
22
23Sema::OwningStmtResult Sema::ActOnExprStmt(ExprArg expr) {
24  Expr *E = static_cast<Expr*>(expr.release());
25  assert(E && "ActOnExprStmt(): missing expression");
26
27  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
28  // void expression for its side effects.  Conversion to void allows any
29  // operand, even incomplete types.
30
31  // Same thing in for stmt first clause (when expr) and third clause.
32  return Owned(static_cast<Stmt*>(E));
33}
34
35
36Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
37  return Owned(new NullStmt(SemiLoc));
38}
39
40Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclTy *decl,
41                                           SourceLocation StartLoc,
42                                           SourceLocation EndLoc) {
43  if (decl == 0)
44    return StmtError();
45
46  ScopedDecl *SD = cast<ScopedDecl>(static_cast<Decl *>(decl));
47
48  // This is a temporary hack until we are always passing around
49  // DeclGroupRefs.
50  llvm::SmallVector<Decl*, 10> decls;
51  while (SD) {
52    ScopedDecl* d = SD;
53    SD = SD->getNextDeclarator();
54    d->setNextDeclarator(0);
55    decls.push_back(d);
56  }
57
58  assert (!decls.empty());
59
60  if (decls.size() == 1) {
61    DeclGroupOwningRef DG(*decls.begin());
62    return Owned(new DeclStmt(DG, StartLoc, EndLoc));
63  }
64  else {
65    DeclGroupOwningRef DG(DeclGroup::Create(Context, decls.size(), &decls[0]));
66    return Owned(new DeclStmt(DG, StartLoc, EndLoc));
67  }
68}
69
70Action::OwningStmtResult
71Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
72                        MultiStmtArg elts, bool isStmtExpr) {
73  unsigned NumElts = elts.size();
74  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
75  // If we're in C89 mode, check that we don't have any decls after stmts.  If
76  // so, emit an extension diagnostic.
77  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
78    // Note that __extension__ can be around a decl.
79    unsigned i = 0;
80    // Skip over all declarations.
81    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
82      /*empty*/;
83
84    // We found the end of the list or a statement.  Scan for another declstmt.
85    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
86      /*empty*/;
87
88    if (i != NumElts) {
89      ScopedDecl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
90      Diag(D->getLocation(), diag::ext_mixed_decls_code);
91    }
92  }
93  // Warn about unused expressions in statements.
94  for (unsigned i = 0; i != NumElts; ++i) {
95    Expr *E = dyn_cast<Expr>(Elts[i]);
96    if (!E) continue;
97
98    // Warn about expressions with unused results.
99    if (E->hasLocalSideEffect() || E->getType()->isVoidType())
100      continue;
101
102    // The last expr in a stmt expr really is used.
103    if (isStmtExpr && i == NumElts-1)
104      continue;
105
106    /// DiagnoseDeadExpr - This expression is side-effect free and evaluated in
107    /// a context where the result is unused.  Emit a diagnostic to warn about
108    /// this.
109    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
110      Diag(BO->getOperatorLoc(), diag::warn_unused_expr)
111        << BO->getLHS()->getSourceRange() << BO->getRHS()->getSourceRange();
112    else if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
113      Diag(UO->getOperatorLoc(), diag::warn_unused_expr)
114        << UO->getSubExpr()->getSourceRange();
115    else
116      Diag(E->getExprLoc(), diag::warn_unused_expr) << E->getSourceRange();
117  }
118
119  return Owned(new CompoundStmt(Elts, NumElts, L, R));
120}
121
122Action::StmtResult
123Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprTy *lhsval,
124                    SourceLocation DotDotDotLoc, ExprTy *rhsval,
125                    SourceLocation ColonLoc, StmtTy *subStmt) {
126  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
127  Expr *LHSVal = ((Expr *)lhsval), *RHSVal = ((Expr *)rhsval);
128  assert((LHSVal != 0) && "missing expression in case statement");
129
130  // C99 6.8.4.2p3: The expression shall be an integer constant.
131  // However, GCC allows any evaluatable integer expression.
132
133  if (VerifyIntegerConstantExpression(LHSVal))
134    return SubStmt;
135
136  // GCC extension: The expression shall be an integer constant.
137
138  if (RHSVal && VerifyIntegerConstantExpression(RHSVal))
139    RHSVal = 0;  // Recover by just forgetting about it.
140
141  if (SwitchStack.empty()) {
142    Diag(CaseLoc, diag::err_case_not_in_switch);
143    return SubStmt;
144  }
145
146  CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc);
147  SwitchStack.back()->addSwitchCase(CS);
148  return CS;
149}
150
151Action::StmtResult
152Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
153                       StmtTy *subStmt, Scope *CurScope) {
154  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
155
156  if (SwitchStack.empty()) {
157    Diag(DefaultLoc, diag::err_default_not_in_switch);
158    return SubStmt;
159  }
160
161  DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt);
162  SwitchStack.back()->addSwitchCase(DS);
163
164  return DS;
165}
166
167Action::StmtResult
168Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
169                     SourceLocation ColonLoc, StmtTy *subStmt) {
170  Stmt *SubStmt = static_cast<Stmt*>(subStmt);
171  // Look up the record for this label identifier.
172  LabelStmt *&LabelDecl = LabelMap[II];
173
174  // If not forward referenced or defined already, just create a new LabelStmt.
175  if (LabelDecl == 0)
176    return LabelDecl = new LabelStmt(IdentLoc, II, SubStmt);
177
178  assert(LabelDecl->getID() == II && "Label mismatch!");
179
180  // Otherwise, this label was either forward reference or multiply defined.  If
181  // multiply defined, reject it now.
182  if (LabelDecl->getSubStmt()) {
183    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
184    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
185    return SubStmt;
186  }
187
188  // Otherwise, this label was forward declared, and we just found its real
189  // definition.  Fill in the forward definition and return it.
190  LabelDecl->setIdentLoc(IdentLoc);
191  LabelDecl->setSubStmt(SubStmt);
192  return LabelDecl;
193}
194
195Action::StmtResult
196Sema::ActOnIfStmt(SourceLocation IfLoc, ExprTy *CondVal,
197                  StmtTy *ThenVal, SourceLocation ElseLoc,
198                  StmtTy *ElseVal) {
199  Expr *condExpr = (Expr *)CondVal;
200  Stmt *thenStmt = (Stmt *)ThenVal;
201
202  assert(condExpr && "ActOnIfStmt(): missing expression");
203
204  DefaultFunctionArrayConversion(condExpr);
205  QualType condType = condExpr->getType();
206
207  if (getLangOptions().CPlusPlus) {
208    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
209      return true;
210  } else if (!condType->isScalarType()) // C99 6.8.4.1p1
211    return Diag(IfLoc, diag::err_typecheck_statement_requires_scalar)
212      << condType << condExpr->getSourceRange();
213
214  // Warn if the if block has a null body without an else value.
215  // this helps prevent bugs due to typos, such as
216  // if (condition);
217  //   do_stuff();
218  if (!ElseVal) {
219    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
220      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
221  }
222
223  return new IfStmt(IfLoc, condExpr, thenStmt, (Stmt*)ElseVal);
224}
225
226Action::StmtResult
227Sema::ActOnStartOfSwitchStmt(ExprTy *cond) {
228  Expr *Cond = static_cast<Expr*>(cond);
229
230  if (getLangOptions().CPlusPlus) {
231    // C++ 6.4.2.p2:
232    // The condition shall be of integral type, enumeration type, or of a class
233    // type for which a single conversion function to integral or enumeration
234    // type exists (12.3). If the condition is of class type, the condition is
235    // converted by calling that conversion function, and the result of the
236    // conversion is used in place of the original condition for the remainder
237    // of this section. Integral promotions are performed.
238
239    QualType Ty = Cond->getType();
240
241    // FIXME: Handle class types.
242
243    // If the type is wrong a diagnostic will be emitted later at
244    // ActOnFinishSwitchStmt.
245    if (Ty->isIntegralType() || Ty->isEnumeralType()) {
246      // Integral promotions are performed.
247      // FIXME: Integral promotions for C++ are not complete.
248      UsualUnaryConversions(Cond);
249    }
250  } else {
251    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
252    UsualUnaryConversions(Cond);
253  }
254
255  SwitchStmt *SS = new SwitchStmt(Cond);
256  SwitchStack.push_back(SS);
257  return SS;
258}
259
260/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
261/// the specified width and sign.  If an overflow occurs, detect it and emit
262/// the specified diagnostic.
263void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
264                                              unsigned NewWidth, bool NewSign,
265                                              SourceLocation Loc,
266                                              unsigned DiagID) {
267  // Perform a conversion to the promoted condition type if needed.
268  if (NewWidth > Val.getBitWidth()) {
269    // If this is an extension, just do it.
270    llvm::APSInt OldVal(Val);
271    Val.extend(NewWidth);
272
273    // If the input was signed and negative and the output is unsigned,
274    // warn.
275    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
276      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
277
278    Val.setIsSigned(NewSign);
279  } else if (NewWidth < Val.getBitWidth()) {
280    // If this is a truncation, check for overflow.
281    llvm::APSInt ConvVal(Val);
282    ConvVal.trunc(NewWidth);
283    ConvVal.setIsSigned(NewSign);
284    ConvVal.extend(Val.getBitWidth());
285    ConvVal.setIsSigned(Val.isSigned());
286    if (ConvVal != Val)
287      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
288
289    // Regardless of whether a diagnostic was emitted, really do the
290    // truncation.
291    Val.trunc(NewWidth);
292    Val.setIsSigned(NewSign);
293  } else if (NewSign != Val.isSigned()) {
294    // Convert the sign to match the sign of the condition.  This can cause
295    // overflow as well: unsigned(INTMIN)
296    llvm::APSInt OldVal(Val);
297    Val.setIsSigned(NewSign);
298
299    if (Val.isNegative())  // Sign bit changes meaning.
300      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
301  }
302}
303
304namespace {
305  struct CaseCompareFunctor {
306    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
307                    const llvm::APSInt &RHS) {
308      return LHS.first < RHS;
309    }
310    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
311                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
312      return LHS.first < RHS.first;
313    }
314    bool operator()(const llvm::APSInt &LHS,
315                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
316      return LHS < RHS.first;
317    }
318  };
319}
320
321/// CmpCaseVals - Comparison predicate for sorting case values.
322///
323static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
324                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
325  if (lhs.first < rhs.first)
326    return true;
327
328  if (lhs.first == rhs.first &&
329      lhs.second->getCaseLoc().getRawEncoding()
330       < rhs.second->getCaseLoc().getRawEncoding())
331    return true;
332  return false;
333}
334
335Action::StmtResult
336Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch,
337                            ExprTy *Body) {
338  Stmt *BodyStmt = (Stmt*)Body;
339
340  SwitchStmt *SS = SwitchStack.back();
341  assert(SS == (SwitchStmt*)Switch && "switch stack missing push/pop!");
342
343  SS->setBody(BodyStmt, SwitchLoc);
344  SwitchStack.pop_back();
345
346  Expr *CondExpr = SS->getCond();
347  QualType CondType = CondExpr->getType();
348
349  if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
350    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
351      << CondType << CondExpr->getSourceRange();
352    return true;
353  }
354
355  // Get the bitwidth of the switched-on value before promotions.  We must
356  // convert the integer case values to this width before comparison.
357  unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType));
358  bool CondIsSigned = CondType->isSignedIntegerType();
359
360  // Accumulate all of the case values in a vector so that we can sort them
361  // and detect duplicates.  This vector contains the APInt for the case after
362  // it has been converted to the condition type.
363  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
364  CaseValsTy CaseVals;
365
366  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
367  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
368
369  DefaultStmt *TheDefaultStmt = 0;
370
371  bool CaseListIsErroneous = false;
372
373  for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
374       SC = SC->getNextSwitchCase()) {
375
376    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
377      if (TheDefaultStmt) {
378        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
379        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
380
381        // FIXME: Remove the default statement from the switch block so that
382        // we'll return a valid AST.  This requires recursing down the
383        // AST and finding it, not something we are set up to do right now.  For
384        // now, just lop the entire switch stmt out of the AST.
385        CaseListIsErroneous = true;
386      }
387      TheDefaultStmt = DS;
388
389    } else {
390      CaseStmt *CS = cast<CaseStmt>(SC);
391
392      // We already verified that the expression has a i-c-e value (C99
393      // 6.8.4.2p3) - get that value now.
394      Expr *Lo = CS->getLHS();
395      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
396
397      // Convert the value to the same width/sign as the condition.
398      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
399                                         CS->getLHS()->getLocStart(),
400                                         diag::warn_case_value_overflow);
401
402      // If the LHS is not the same type as the condition, insert an implicit
403      // cast.
404      ImpCastExprToType(Lo, CondType);
405      CS->setLHS(Lo);
406
407      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
408      if (CS->getRHS())
409        CaseRanges.push_back(std::make_pair(LoVal, CS));
410      else
411        CaseVals.push_back(std::make_pair(LoVal, CS));
412    }
413  }
414
415  // Sort all the scalar case values so we can easily detect duplicates.
416  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
417
418  if (!CaseVals.empty()) {
419    for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
420      if (CaseVals[i].first == CaseVals[i+1].first) {
421        // If we have a duplicate, report it.
422        Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
423             diag::err_duplicate_case) << CaseVals[i].first.toString(10);
424        Diag(CaseVals[i].second->getLHS()->getLocStart(),
425             diag::note_duplicate_case_prev);
426        // FIXME: We really want to remove the bogus case stmt from the substmt,
427        // but we have no way to do this right now.
428        CaseListIsErroneous = true;
429      }
430    }
431  }
432
433  // Detect duplicate case ranges, which usually don't exist at all in the first
434  // place.
435  if (!CaseRanges.empty()) {
436    // Sort all the case ranges by their low value so we can easily detect
437    // overlaps between ranges.
438    std::stable_sort(CaseRanges.begin(), CaseRanges.end());
439
440    // Scan the ranges, computing the high values and removing empty ranges.
441    std::vector<llvm::APSInt> HiVals;
442    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
443      CaseStmt *CR = CaseRanges[i].second;
444      Expr *Hi = CR->getRHS();
445      llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
446
447      // Convert the value to the same width/sign as the condition.
448      ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
449                                         CR->getRHS()->getLocStart(),
450                                         diag::warn_case_value_overflow);
451
452      // If the LHS is not the same type as the condition, insert an implicit
453      // cast.
454      ImpCastExprToType(Hi, CondType);
455      CR->setRHS(Hi);
456
457      // If the low value is bigger than the high value, the case is empty.
458      if (CaseRanges[i].first > HiVal) {
459        Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
460          << SourceRange(CR->getLHS()->getLocStart(),
461                         CR->getRHS()->getLocEnd());
462        CaseRanges.erase(CaseRanges.begin()+i);
463        --i, --e;
464        continue;
465      }
466      HiVals.push_back(HiVal);
467    }
468
469    // Rescan the ranges, looking for overlap with singleton values and other
470    // ranges.  Since the range list is sorted, we only need to compare case
471    // ranges with their neighbors.
472    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
473      llvm::APSInt &CRLo = CaseRanges[i].first;
474      llvm::APSInt &CRHi = HiVals[i];
475      CaseStmt *CR = CaseRanges[i].second;
476
477      // Check to see whether the case range overlaps with any singleton cases.
478      CaseStmt *OverlapStmt = 0;
479      llvm::APSInt OverlapVal(32);
480
481      // Find the smallest value >= the lower bound.  If I is in the case range,
482      // then we have overlap.
483      CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
484                                                CaseVals.end(), CRLo,
485                                                CaseCompareFunctor());
486      if (I != CaseVals.end() && I->first < CRHi) {
487        OverlapVal  = I->first;   // Found overlap with scalar.
488        OverlapStmt = I->second;
489      }
490
491      // Find the smallest value bigger than the upper bound.
492      I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
493      if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
494        OverlapVal  = (I-1)->first;      // Found overlap with scalar.
495        OverlapStmt = (I-1)->second;
496      }
497
498      // Check to see if this case stmt overlaps with the subsequent case range.
499      if (i && CRLo <= HiVals[i-1]) {
500        OverlapVal  = HiVals[i-1];       // Found overlap with range.
501        OverlapStmt = CaseRanges[i-1].second;
502      }
503
504      if (OverlapStmt) {
505        // If we have a duplicate, report it.
506        Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
507          << OverlapVal.toString(10);
508        Diag(OverlapStmt->getLHS()->getLocStart(),
509             diag::note_duplicate_case_prev);
510        // FIXME: We really want to remove the bogus case stmt from the substmt,
511        // but we have no way to do this right now.
512        CaseListIsErroneous = true;
513      }
514    }
515  }
516
517  // FIXME: If the case list was broken is some way, we don't have a good system
518  // to patch it up.  Instead, just return the whole substmt as broken.
519  if (CaseListIsErroneous)
520    return true;
521
522  return SS;
523}
524
525Action::StmtResult
526Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body) {
527  Expr *condExpr = (Expr *)Cond;
528  assert(condExpr && "ActOnWhileStmt(): missing expression");
529
530  DefaultFunctionArrayConversion(condExpr);
531  QualType condType = condExpr->getType();
532
533  if (getLangOptions().CPlusPlus) {
534    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
535      return true;
536  } else if (!condType->isScalarType()) // C99 6.8.5p2
537    return Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar)
538      << condType << condExpr->getSourceRange();
539
540  return new WhileStmt(condExpr, (Stmt*)Body, WhileLoc);
541}
542
543Action::StmtResult
544Sema::ActOnDoStmt(SourceLocation DoLoc, StmtTy *Body,
545                  SourceLocation WhileLoc, ExprTy *Cond) {
546  Expr *condExpr = (Expr *)Cond;
547  assert(condExpr && "ActOnDoStmt(): missing expression");
548
549  DefaultFunctionArrayConversion(condExpr);
550  QualType condType = condExpr->getType();
551
552  if (getLangOptions().CPlusPlus) {
553    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
554      return true;
555  } else if (!condType->isScalarType()) // C99 6.8.5p2
556    return Diag(DoLoc, diag::err_typecheck_statement_requires_scalar)
557      << condType << condExpr->getSourceRange();
558
559  return new DoStmt((Stmt*)Body, condExpr, DoLoc);
560}
561
562Action::StmtResult
563Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
564                   StmtTy *first, ExprTy *second, ExprTy *third,
565                   SourceLocation RParenLoc, StmtTy *body) {
566  Stmt *First  = static_cast<Stmt*>(first);
567  Expr *Second = static_cast<Expr*>(second);
568  Expr *Third  = static_cast<Expr*>(third);
569  Stmt *Body  = static_cast<Stmt*>(body);
570
571  if (!getLangOptions().CPlusPlus) {
572    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
573      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
574      // declare identifiers for objects having storage class 'auto' or
575      // 'register'.
576      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
577           DI!=DE; ++DI) {
578        VarDecl *VD = dyn_cast<VarDecl>(*DI);
579        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
580          VD = 0;
581        if (VD == 0)
582          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
583        // FIXME: mark decl erroneous!
584      }
585    }
586  }
587  if (Second) {
588    DefaultFunctionArrayConversion(Second);
589    QualType SecondType = Second->getType();
590
591    if (getLangOptions().CPlusPlus) {
592      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
593        return true;
594    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
595      return Diag(ForLoc, diag::err_typecheck_statement_requires_scalar)
596        << SecondType << Second->getSourceRange();
597  }
598  return new ForStmt(First, Second, Third, Body, ForLoc);
599}
600
601Action::StmtResult
602Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
603                                 SourceLocation LParenLoc,
604                                 StmtTy *first, ExprTy *second,
605                                 SourceLocation RParenLoc, StmtTy *body) {
606  Stmt *First  = static_cast<Stmt*>(first);
607  Expr *Second = static_cast<Expr*>(second);
608  Stmt *Body  = static_cast<Stmt*>(body);
609  if (First) {
610    QualType FirstType;
611    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
612      if (!DS->hasSolitaryDecl())
613        return Diag((*DS->decl_begin())->getLocation(),
614                    diag::err_toomany_element_decls);
615
616      ScopedDecl *D = DS->getSolitaryDecl();
617      FirstType = cast<ValueDecl>(D)->getType();
618      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
619      // declare identifiers for objects having storage class 'auto' or
620      // 'register'.
621      VarDecl *VD = cast<VarDecl>(D);
622      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
623        return Diag(VD->getLocation(), diag::err_non_variable_decl_in_for);
624    } else {
625      Expr::isLvalueResult lval = cast<Expr>(First)->isLvalue(Context);
626
627      if (lval != Expr::LV_Valid)
628        return Diag(First->getLocStart(), diag::err_selector_element_not_lvalue)
629          << First->getSourceRange();
630
631      FirstType = static_cast<Expr*>(first)->getType();
632    }
633    if (!Context.isObjCObjectPointerType(FirstType))
634        Diag(ForLoc, diag::err_selector_element_type)
635          << FirstType << First->getSourceRange();
636  }
637  if (Second) {
638    DefaultFunctionArrayConversion(Second);
639    QualType SecondType = Second->getType();
640    if (!Context.isObjCObjectPointerType(SecondType))
641      Diag(ForLoc, diag::err_collection_expr_type)
642        << SecondType << Second->getSourceRange();
643  }
644  return new ObjCForCollectionStmt(First, Second, Body, ForLoc, RParenLoc);
645}
646
647Action::StmtResult
648Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
649                    IdentifierInfo *LabelII) {
650  // If we are in a block, reject all gotos for now.
651  if (CurBlock)
652    return Diag(GotoLoc, diag::err_goto_in_block);
653
654  // Look up the record for this label identifier.
655  LabelStmt *&LabelDecl = LabelMap[LabelII];
656
657  // If we haven't seen this label yet, create a forward reference.
658  if (LabelDecl == 0)
659    LabelDecl = new LabelStmt(LabelLoc, LabelII, 0);
660
661  return new GotoStmt(LabelDecl, GotoLoc, LabelLoc);
662}
663
664Action::StmtResult
665Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,
666                            ExprTy *DestExp) {
667  // FIXME: Verify that the operand is convertible to void*.
668
669  return new IndirectGotoStmt((Expr*)DestExp);
670}
671
672Action::StmtResult
673Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
674  Scope *S = CurScope->getContinueParent();
675  if (!S) {
676    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
677    Diag(ContinueLoc, diag::err_continue_not_in_loop);
678    return true;
679  }
680
681  return new ContinueStmt(ContinueLoc);
682}
683
684Action::StmtResult
685Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
686  Scope *S = CurScope->getBreakParent();
687  if (!S) {
688    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
689    Diag(BreakLoc, diag::err_break_not_in_loop_or_switch);
690    return true;
691  }
692
693  return new BreakStmt(BreakLoc);
694}
695
696/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
697///
698Action::StmtResult
699Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
700
701  // If this is the first return we've seen in the block, infer the type of
702  // the block from it.
703  if (CurBlock->ReturnType == 0) {
704    if (RetValExp) {
705      // Don't call UsualUnaryConversions(), since we don't want to do
706      // integer promotions here.
707      DefaultFunctionArrayConversion(RetValExp);
708      CurBlock->ReturnType = RetValExp->getType().getTypePtr();
709    } else
710      CurBlock->ReturnType = Context.VoidTy.getTypePtr();
711    return new ReturnStmt(ReturnLoc, RetValExp);
712  }
713
714  // Otherwise, verify that this result type matches the previous one.  We are
715  // pickier with blocks than for normal functions because we don't have GCC
716  // compatibility to worry about here.
717  if (CurBlock->ReturnType->isVoidType()) {
718    if (RetValExp) {
719      Diag(ReturnLoc, diag::err_return_block_has_expr);
720      delete RetValExp;
721      RetValExp = 0;
722    }
723    return new ReturnStmt(ReturnLoc, RetValExp);
724  }
725
726  if (!RetValExp) {
727    Diag(ReturnLoc, diag::err_block_return_missing_expr);
728    return true;
729  }
730
731  // we have a non-void block with an expression, continue checking
732  QualType RetValType = RetValExp->getType();
733
734  // For now, restrict multiple return statements in a block to have
735  // strict compatible types only.
736  QualType BlockQT = QualType(CurBlock->ReturnType, 0);
737  if (Context.getCanonicalType(BlockQT).getTypePtr()
738      != Context.getCanonicalType(RetValType).getTypePtr()) {
739    DiagnoseAssignmentResult(Incompatible, ReturnLoc, BlockQT,
740                             RetValType, RetValExp, "returning");
741    return true;
742  }
743
744  if (RetValExp) CheckReturnStackAddr(RetValExp, BlockQT, ReturnLoc);
745
746  return new ReturnStmt(ReturnLoc, (Expr*)RetValExp);
747}
748
749Action::StmtResult
750Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprTy *rex) {
751  Expr *RetValExp = static_cast<Expr *>(rex);
752  if (CurBlock)
753    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
754
755  QualType FnRetType;
756  if (FunctionDecl *FD = getCurFunctionDecl())
757    FnRetType = FD->getResultType();
758  else
759    FnRetType = getCurMethodDecl()->getResultType();
760
761  if (FnRetType->isVoidType()) {
762    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
763      unsigned D = diag::ext_return_has_expr;
764      if (RetValExp->getType()->isVoidType())
765        D = diag::ext_return_has_void_expr;
766
767      // return (some void expression); is legal in C++.
768      if (D != diag::ext_return_has_void_expr ||
769          !getLangOptions().CPlusPlus) {
770        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
771        Diag(ReturnLoc, D)
772          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
773          << RetValExp->getSourceRange();
774      }
775    }
776    return new ReturnStmt(ReturnLoc, RetValExp);
777  }
778
779  if (!RetValExp) {
780    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
781    // C99 6.8.6.4p1 (ext_ since GCC warns)
782    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
783
784    if (FunctionDecl *FD = getCurFunctionDecl())
785      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
786    else
787      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
788    return new ReturnStmt(ReturnLoc, (Expr*)0);
789  }
790
791  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
792    // we have a non-void function with an expression, continue checking
793    QualType RetValType = RetValExp->getType();
794
795    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
796    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
797    // function return.
798
799    // In C++ the return statement is handled via a copy initialization.
800    // the C version of which boils down to
801    // CheckSingleAssignmentConstraints.
802    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
803      return true;
804
805    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
806  }
807
808  return new ReturnStmt(ReturnLoc, (Expr*)RetValExp);
809}
810
811Sema::StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
812                                    bool IsSimple,
813                                    bool IsVolatile,
814                                    unsigned NumOutputs,
815                                    unsigned NumInputs,
816                                    std::string *Names,
817                                    ExprTy **constraints,
818                                    ExprTy **exprs,
819                                    ExprTy *asmString,
820                                    unsigned NumClobbers,
821                                    ExprTy **clobbers,
822                                    SourceLocation RParenLoc) {
823  StringLiteral **Constraints = reinterpret_cast<StringLiteral**>(constraints);
824  Expr **Exprs = reinterpret_cast<Expr **>(exprs);
825  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString);
826  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers);
827
828  // The parser verifies that there is a string literal here.
829  if (AsmString->isWide())
830    // FIXME: We currently leak memory here.
831    return Diag(AsmString->getLocStart(), diag::err_asm_wide_character)
832      << AsmString->getSourceRange();
833
834
835  for (unsigned i = 0; i != NumOutputs; i++) {
836    StringLiteral *Literal = Constraints[i];
837    if (Literal->isWide())
838      // FIXME: We currently leak memory here.
839      return Diag(Literal->getLocStart(), diag::err_asm_wide_character)
840        << Literal->getSourceRange();
841
842    std::string OutputConstraint(Literal->getStrData(),
843                                 Literal->getByteLength());
844
845    TargetInfo::ConstraintInfo info;
846    if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),info))
847      // FIXME: We currently leak memory here.
848      return Diag(Literal->getLocStart(),
849                  diag::err_asm_invalid_output_constraint) << OutputConstraint;
850
851    // Check that the output exprs are valid lvalues.
852    ParenExpr *OutputExpr = cast<ParenExpr>(Exprs[i]);
853    Expr::isLvalueResult Result = OutputExpr->isLvalue(Context);
854    if (Result != Expr::LV_Valid) {
855      // FIXME: We currently leak memory here.
856      return Diag(OutputExpr->getSubExpr()->getLocStart(),
857                  diag::err_asm_invalid_lvalue_in_output)
858        << OutputExpr->getSubExpr()->getSourceRange();
859    }
860  }
861
862  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
863    StringLiteral *Literal = Constraints[i];
864    if (Literal->isWide())
865      // FIXME: We currently leak memory here.
866      return Diag(Literal->getLocStart(), diag::err_asm_wide_character)
867        << Literal->getSourceRange();
868
869    std::string InputConstraint(Literal->getStrData(),
870                                Literal->getByteLength());
871
872    TargetInfo::ConstraintInfo info;
873    if (!Context.Target.validateInputConstraint(InputConstraint.c_str(),
874                                                NumOutputs, info)) {
875      // FIXME: We currently leak memory here.
876      return Diag(Literal->getLocStart(),
877                  diag::err_asm_invalid_input_constraint) << InputConstraint;
878    }
879
880    // Check that the input exprs aren't of type void.
881    ParenExpr *InputExpr = cast<ParenExpr>(Exprs[i]);
882    if (InputExpr->getType()->isVoidType()) {
883
884      // FIXME: We currently leak memory here.
885      return Diag(InputExpr->getSubExpr()->getLocStart(),
886                  diag::err_asm_invalid_type_in_input)
887        << InputExpr->getType() << InputConstraint
888        << InputExpr->getSubExpr()->getSourceRange();
889    }
890  }
891
892  // Check that the clobbers are valid.
893  for (unsigned i = 0; i != NumClobbers; i++) {
894    StringLiteral *Literal = Clobbers[i];
895    if (Literal->isWide())
896      // FIXME: We currently leak memory here.
897      return Diag(Literal->getLocStart(), diag::err_asm_wide_character)
898        << Literal->getSourceRange();
899
900    llvm::SmallString<16> Clobber(Literal->getStrData(),
901                                  Literal->getStrData() +
902                                  Literal->getByteLength());
903
904    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
905      // FIXME: We currently leak memory here.
906      return Diag(Literal->getLocStart(),
907                  diag::err_asm_unknown_register_name) << Clobber.c_str();
908  }
909
910  return new AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
911                     Names, Constraints, Exprs, AsmString, NumClobbers,
912                     Clobbers, RParenLoc);
913}
914
915Action::StmtResult
916Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
917                           SourceLocation RParen, StmtTy *Parm,
918                           StmtTy *Body, StmtTy *CatchList) {
919  ObjCAtCatchStmt *CS = new ObjCAtCatchStmt(AtLoc, RParen,
920    static_cast<Stmt*>(Parm), static_cast<Stmt*>(Body),
921    static_cast<Stmt*>(CatchList));
922  return CatchList ? CatchList : CS;
923}
924
925Action::StmtResult
926Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtTy *Body) {
927  ObjCAtFinallyStmt *FS = new ObjCAtFinallyStmt(AtLoc,
928                                                static_cast<Stmt*>(Body));
929  return FS;
930}
931
932Action::StmtResult
933Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
934                         StmtTy *Try, StmtTy *Catch, StmtTy *Finally) {
935  ObjCAtTryStmt *TS = new ObjCAtTryStmt(AtLoc, static_cast<Stmt*>(Try),
936                                        static_cast<Stmt*>(Catch),
937                                        static_cast<Stmt*>(Finally));
938  return TS;
939}
940
941Action::StmtResult
942Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, StmtTy *Throw) {
943  ObjCAtThrowStmt *TS = new ObjCAtThrowStmt(AtLoc, static_cast<Stmt*>(Throw));
944  return TS;
945}
946
947Action::StmtResult
948Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprTy *SynchExpr,
949                                  StmtTy *SynchBody) {
950  ObjCAtSynchronizedStmt *SS = new ObjCAtSynchronizedStmt(AtLoc,
951    static_cast<Stmt*>(SynchExpr), static_cast<Stmt*>(SynchBody));
952  return SS;
953}
954
955/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
956/// and creates a proper catch handler from them.
957Action::OwningStmtResult
958Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclTy *ExDecl,
959                         StmtArg HandlerBlock) {
960  // There's nothing to test that ActOnExceptionDecl didn't already test.
961  return Owned(new CXXCatchStmt(CatchLoc, static_cast<VarDecl*>(ExDecl),
962                                static_cast<Stmt*>(HandlerBlock.release())));
963}
964