SemaStmt.cpp revision 585d7795c2dddaa510b3bb1b3b18633bfcfdf643
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               bool HasLeadingEmptyMacro) {
51  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOptions().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
96///
97/// Adding a cast to void (or other expression wrappers) will prevent the
98/// warning from firing.
99static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
100  SourceLocation Loc;
101  bool IsNotEqual, CanAssign;
102
103  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
104    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
105      return false;
106
107    Loc = Op->getOperatorLoc();
108    IsNotEqual = Op->getOpcode() == BO_NE;
109    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
110  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
111    if (Op->getOperator() != OO_EqualEqual &&
112        Op->getOperator() != OO_ExclaimEqual)
113      return false;
114
115    Loc = Op->getOperatorLoc();
116    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
117    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
118  } else {
119    // Not a typo-prone comparison.
120    return false;
121  }
122
123  // Suppress warnings when the operator, suspicious as it may be, comes from
124  // a macro expansion.
125  if (Loc.isMacroID())
126    return false;
127
128  S.Diag(Loc, diag::warn_unused_comparison)
129    << (unsigned)IsNotEqual << E->getSourceRange();
130
131  // If the LHS is a plausible entity to assign to, provide a fixit hint to
132  // correct common typos.
133  if (CanAssign) {
134    if (IsNotEqual)
135      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
136        << FixItHint::CreateReplacement(Loc, "|=");
137    else
138      S.Diag(Loc, diag::note_equality_comparison_to_assign)
139        << FixItHint::CreateReplacement(Loc, "=");
140  }
141
142  return true;
143}
144
145void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
146  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
147    return DiagnoseUnusedExprResult(Label->getSubStmt());
148
149  const Expr *E = dyn_cast_or_null<Expr>(S);
150  if (!E)
151    return;
152
153  SourceLocation Loc;
154  SourceRange R1, R2;
155  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
156      !E->isUnusedResultAWarning(Loc, R1, R2, Context))
157    return;
158
159  // Okay, we have an unused result.  Depending on what the base expression is,
160  // we might want to make a more specific diagnostic.  Check for one of these
161  // cases now.
162  unsigned DiagID = diag::warn_unused_expr;
163  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
164    E = Temps->getSubExpr();
165  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
166    E = TempExpr->getSubExpr();
167
168  if (DiagnoseUnusedComparison(*this, E))
169    return;
170
171  E = E->IgnoreParenImpCasts();
172  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
173    if (E->getType()->isVoidType())
174      return;
175
176    // If the callee has attribute pure, const, or warn_unused_result, warn with
177    // a more specific message to make it clear what is happening.
178    if (const Decl *FD = CE->getCalleeDecl()) {
179      if (FD->getAttr<WarnUnusedResultAttr>()) {
180        Diag(Loc, diag::warn_unused_result) << R1 << R2;
181        return;
182      }
183      if (FD->getAttr<PureAttr>()) {
184        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
185        return;
186      }
187      if (FD->getAttr<ConstAttr>()) {
188        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
189        return;
190      }
191    }
192  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
193    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
194      Diag(Loc, diag::err_arc_unused_init_message) << R1;
195      return;
196    }
197    const ObjCMethodDecl *MD = ME->getMethodDecl();
198    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
199      Diag(Loc, diag::warn_unused_result) << R1 << R2;
200      return;
201    }
202  } else if (isa<PseudoObjectExpr>(E)) {
203    DiagID = diag::warn_unused_property_expr;
204  } else if (const CXXFunctionalCastExpr *FC
205                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
206    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
207        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
208      return;
209  }
210  // Diagnose "(void*) blah" as a typo for "(void) blah".
211  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
212    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
213    QualType T = TI->getType();
214
215    // We really do want to use the non-canonical type here.
216    if (T == Context.VoidPtrTy) {
217      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
218
219      Diag(Loc, diag::warn_unused_voidptr)
220        << FixItHint::CreateRemoval(TL.getStarLoc());
221      return;
222    }
223  }
224
225  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
226}
227
228StmtResult
229Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
230                        MultiStmtArg elts, bool isStmtExpr) {
231  unsigned NumElts = elts.size();
232  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
233  // If we're in C89 mode, check that we don't have any decls after stmts.  If
234  // so, emit an extension diagnostic.
235  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
236    // Note that __extension__ can be around a decl.
237    unsigned i = 0;
238    // Skip over all declarations.
239    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
240      /*empty*/;
241
242    // We found the end of the list or a statement.  Scan for another declstmt.
243    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
244      /*empty*/;
245
246    if (i != NumElts) {
247      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
248      Diag(D->getLocation(), diag::ext_mixed_decls_code);
249    }
250  }
251  // Warn about unused expressions in statements.
252  for (unsigned i = 0; i != NumElts; ++i) {
253    // Ignore statements that are last in a statement expression.
254    if (isStmtExpr && i == NumElts - 1)
255      continue;
256
257    DiagnoseUnusedExprResult(Elts[i]);
258  }
259
260  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
261}
262
263StmtResult
264Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
265                    SourceLocation DotDotDotLoc, Expr *RHSVal,
266                    SourceLocation ColonLoc) {
267  assert((LHSVal != 0) && "missing expression in case statement");
268
269  if (getCurFunction()->SwitchStack.empty()) {
270    Diag(CaseLoc, diag::err_case_not_in_switch);
271    return StmtError();
272  }
273
274  if (!getLangOptions().CPlusPlus0x) {
275    // C99 6.8.4.2p3: The expression shall be an integer constant.
276    // However, GCC allows any evaluatable integer expression.
277    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
278        VerifyIntegerConstantExpression(LHSVal))
279      return StmtError();
280
281    // GCC extension: The expression shall be an integer constant.
282
283    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
284        VerifyIntegerConstantExpression(RHSVal)) {
285      RHSVal = 0;  // Recover by just forgetting about it.
286    }
287  }
288
289  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
290                                        ColonLoc);
291  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
292  return Owned(CS);
293}
294
295/// ActOnCaseStmtBody - This installs a statement as the body of a case.
296void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
297  DiagnoseUnusedExprResult(SubStmt);
298
299  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
300  CS->setSubStmt(SubStmt);
301}
302
303StmtResult
304Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
305                       Stmt *SubStmt, Scope *CurScope) {
306  DiagnoseUnusedExprResult(SubStmt);
307
308  if (getCurFunction()->SwitchStack.empty()) {
309    Diag(DefaultLoc, diag::err_default_not_in_switch);
310    return Owned(SubStmt);
311  }
312
313  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
314  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
315  return Owned(DS);
316}
317
318StmtResult
319Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
320                     SourceLocation ColonLoc, Stmt *SubStmt) {
321
322  // If the label was multiply defined, reject it now.
323  if (TheDecl->getStmt()) {
324    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
325    Diag(TheDecl->getLocation(), diag::note_previous_definition);
326    return Owned(SubStmt);
327  }
328
329  // Otherwise, things are good.  Fill in the declaration and return it.
330  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
331  TheDecl->setStmt(LS);
332  if (!TheDecl->isGnuLocal())
333    TheDecl->setLocation(IdentLoc);
334  return Owned(LS);
335}
336
337StmtResult
338Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
339                  Stmt *thenStmt, SourceLocation ElseLoc,
340                  Stmt *elseStmt) {
341  ExprResult CondResult(CondVal.release());
342
343  VarDecl *ConditionVar = 0;
344  if (CondVar) {
345    ConditionVar = cast<VarDecl>(CondVar);
346    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
347    if (CondResult.isInvalid())
348      return StmtError();
349  }
350  Expr *ConditionExpr = CondResult.takeAs<Expr>();
351  if (!ConditionExpr)
352    return StmtError();
353
354  DiagnoseUnusedExprResult(thenStmt);
355
356  // Warn if the if block has a null body without an else value.
357  // this helps prevent bugs due to typos, such as
358  // if (condition);
359  //   do_stuff();
360  //
361  if (!elseStmt) {
362    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
363      // But do not warn if the body is a macro that expands to nothing, e.g:
364      //
365      // #define CALL(x)
366      // if (condition)
367      //   CALL(0);
368      //
369      if (!stmt->hasLeadingEmptyMacro())
370        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
371  }
372
373  DiagnoseUnusedExprResult(elseStmt);
374
375  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
376                                    thenStmt, ElseLoc, elseStmt));
377}
378
379/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
380/// the specified width and sign.  If an overflow occurs, detect it and emit
381/// the specified diagnostic.
382void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
383                                              unsigned NewWidth, bool NewSign,
384                                              SourceLocation Loc,
385                                              unsigned DiagID) {
386  // Perform a conversion to the promoted condition type if needed.
387  if (NewWidth > Val.getBitWidth()) {
388    // If this is an extension, just do it.
389    Val = Val.extend(NewWidth);
390    Val.setIsSigned(NewSign);
391
392    // If the input was signed and negative and the output is
393    // unsigned, don't bother to warn: this is implementation-defined
394    // behavior.
395    // FIXME: Introduce a second, default-ignored warning for this case?
396  } else if (NewWidth < Val.getBitWidth()) {
397    // If this is a truncation, check for overflow.
398    llvm::APSInt ConvVal(Val);
399    ConvVal = ConvVal.trunc(NewWidth);
400    ConvVal.setIsSigned(NewSign);
401    ConvVal = ConvVal.extend(Val.getBitWidth());
402    ConvVal.setIsSigned(Val.isSigned());
403    if (ConvVal != Val)
404      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
405
406    // Regardless of whether a diagnostic was emitted, really do the
407    // truncation.
408    Val = Val.trunc(NewWidth);
409    Val.setIsSigned(NewSign);
410  } else if (NewSign != Val.isSigned()) {
411    // Convert the sign to match the sign of the condition.  This can cause
412    // overflow as well: unsigned(INTMIN)
413    // We don't diagnose this overflow, because it is implementation-defined
414    // behavior.
415    // FIXME: Introduce a second, default-ignored warning for this case?
416    llvm::APSInt OldVal(Val);
417    Val.setIsSigned(NewSign);
418  }
419}
420
421namespace {
422  struct CaseCompareFunctor {
423    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
424                    const llvm::APSInt &RHS) {
425      return LHS.first < RHS;
426    }
427    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
428                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
429      return LHS.first < RHS.first;
430    }
431    bool operator()(const llvm::APSInt &LHS,
432                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
433      return LHS < RHS.first;
434    }
435  };
436}
437
438/// CmpCaseVals - Comparison predicate for sorting case values.
439///
440static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
441                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
442  if (lhs.first < rhs.first)
443    return true;
444
445  if (lhs.first == rhs.first &&
446      lhs.second->getCaseLoc().getRawEncoding()
447       < rhs.second->getCaseLoc().getRawEncoding())
448    return true;
449  return false;
450}
451
452/// CmpEnumVals - Comparison predicate for sorting enumeration values.
453///
454static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
455                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
456{
457  return lhs.first < rhs.first;
458}
459
460/// EqEnumVals - Comparison preficate for uniqing enumeration values.
461///
462static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
463                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
464{
465  return lhs.first == rhs.first;
466}
467
468/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
469/// potentially integral-promoted expression @p expr.
470static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
471  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
472    expr = cleanups->getSubExpr();
473  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
474    if (impcast->getCastKind() != CK_IntegralCast) break;
475    expr = impcast->getSubExpr();
476  }
477  return expr->getType();
478}
479
480StmtResult
481Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
482                             Decl *CondVar) {
483  ExprResult CondResult;
484
485  VarDecl *ConditionVar = 0;
486  if (CondVar) {
487    ConditionVar = cast<VarDecl>(CondVar);
488    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
489    if (CondResult.isInvalid())
490      return StmtError();
491
492    Cond = CondResult.release();
493  }
494
495  if (!Cond)
496    return StmtError();
497
498  CondResult = DefaultFunctionArrayLvalueConversion(Cond);
499  if (CondResult.isInvalid())
500    return StmtError();
501
502  CondResult
503    = ConvertToIntegralOrEnumerationType(SwitchLoc, CondResult.take(),
504                          PDiag(diag::err_typecheck_statement_requires_integer),
505                                   PDiag(diag::err_switch_incomplete_class_type)
506                                     << Cond->getSourceRange(),
507                                   PDiag(diag::err_switch_explicit_conversion),
508                                         PDiag(diag::note_switch_conversion),
509                                   PDiag(diag::err_switch_multiple_conversions),
510                                         PDiag(diag::note_switch_conversion),
511                                         PDiag(0));
512  if (CondResult.isInvalid()) return StmtError();
513  Cond = CondResult.take();
514
515  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
516  CondResult = UsualUnaryConversions(Cond);
517  if (CondResult.isInvalid()) return StmtError();
518  Cond = CondResult.take();
519
520  if (!CondVar) {
521    CheckImplicitConversions(Cond, SwitchLoc);
522    CondResult = MaybeCreateExprWithCleanups(Cond);
523    if (CondResult.isInvalid())
524      return StmtError();
525    Cond = CondResult.take();
526  }
527
528  getCurFunction()->setHasBranchIntoScope();
529
530  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
531  getCurFunction()->SwitchStack.push_back(SS);
532  return Owned(SS);
533}
534
535static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
536  if (Val.getBitWidth() < BitWidth)
537    Val = Val.extend(BitWidth);
538  else if (Val.getBitWidth() > BitWidth)
539    Val = Val.trunc(BitWidth);
540  Val.setIsSigned(IsSigned);
541}
542
543StmtResult
544Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
545                            Stmt *BodyStmt) {
546  SwitchStmt *SS = cast<SwitchStmt>(Switch);
547  assert(SS == getCurFunction()->SwitchStack.back() &&
548         "switch stack missing push/pop!");
549
550  SS->setBody(BodyStmt, SwitchLoc);
551  getCurFunction()->SwitchStack.pop_back();
552
553  Expr *CondExpr = SS->getCond();
554  if (!CondExpr) return StmtError();
555
556  QualType CondType = CondExpr->getType();
557
558  Expr *CondExprBeforePromotion = CondExpr;
559  QualType CondTypeBeforePromotion =
560      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
561
562  // C++ 6.4.2.p2:
563  // Integral promotions are performed (on the switch condition).
564  //
565  // A case value unrepresentable by the original switch condition
566  // type (before the promotion) doesn't make sense, even when it can
567  // be represented by the promoted type.  Therefore we need to find
568  // the pre-promotion type of the switch condition.
569  if (!CondExpr->isTypeDependent()) {
570    // We have already converted the expression to an integral or enumeration
571    // type, when we started the switch statement. If we don't have an
572    // appropriate type now, just return an error.
573    if (!CondType->isIntegralOrEnumerationType())
574      return StmtError();
575
576    if (CondExpr->isKnownToHaveBooleanValue()) {
577      // switch(bool_expr) {...} is often a programmer error, e.g.
578      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
579      // One can always use an if statement instead of switch(bool_expr).
580      Diag(SwitchLoc, diag::warn_bool_switch_condition)
581          << CondExpr->getSourceRange();
582    }
583  }
584
585  // Get the bitwidth of the switched-on value before promotions.  We must
586  // convert the integer case values to this width before comparison.
587  bool HasDependentValue
588    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
589  unsigned CondWidth
590    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
591  bool CondIsSigned
592    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
593
594  // Accumulate all of the case values in a vector so that we can sort them
595  // and detect duplicates.  This vector contains the APInt for the case after
596  // it has been converted to the condition type.
597  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
598  CaseValsTy CaseVals;
599
600  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
601  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
602  CaseRangesTy CaseRanges;
603
604  DefaultStmt *TheDefaultStmt = 0;
605
606  bool CaseListIsErroneous = false;
607
608  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
609       SC = SC->getNextSwitchCase()) {
610
611    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
612      if (TheDefaultStmt) {
613        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
614        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
615
616        // FIXME: Remove the default statement from the switch block so that
617        // we'll return a valid AST.  This requires recursing down the AST and
618        // finding it, not something we are set up to do right now.  For now,
619        // just lop the entire switch stmt out of the AST.
620        CaseListIsErroneous = true;
621      }
622      TheDefaultStmt = DS;
623
624    } else {
625      CaseStmt *CS = cast<CaseStmt>(SC);
626
627      Expr *Lo = CS->getLHS();
628
629      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
630        HasDependentValue = true;
631        break;
632      }
633
634      llvm::APSInt LoVal;
635
636      if (getLangOptions().CPlusPlus0x) {
637        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
638        // constant expression of the promoted type of the switch condition.
639        ExprResult ConvLo =
640          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
641        if (ConvLo.isInvalid()) {
642          CaseListIsErroneous = true;
643          continue;
644        }
645        Lo = ConvLo.take();
646      } else {
647        // We already verified that the expression has a i-c-e value (C99
648        // 6.8.4.2p3) - get that value now.
649        LoVal = Lo->EvaluateKnownConstInt(Context);
650
651        // If the LHS is not the same type as the condition, insert an implicit
652        // cast.
653        Lo = DefaultLvalueConversion(Lo).take();
654        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
655      }
656
657      // Convert the value to the same width/sign as the condition had prior to
658      // integral promotions.
659      //
660      // FIXME: This causes us to reject valid code:
661      //   switch ((char)c) { case 256: case 0: return 0; }
662      // Here we claim there is a duplicated condition value, but there is not.
663      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
664                                         Lo->getLocStart(),
665                                         diag::warn_case_value_overflow);
666
667      CS->setLHS(Lo);
668
669      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
670      if (CS->getRHS()) {
671        if (CS->getRHS()->isTypeDependent() ||
672            CS->getRHS()->isValueDependent()) {
673          HasDependentValue = true;
674          break;
675        }
676        CaseRanges.push_back(std::make_pair(LoVal, CS));
677      } else
678        CaseVals.push_back(std::make_pair(LoVal, CS));
679    }
680  }
681
682  if (!HasDependentValue) {
683    // If we don't have a default statement, check whether the
684    // condition is constant.
685    llvm::APSInt ConstantCondValue;
686    bool HasConstantCond = false;
687    if (!HasDependentValue && !TheDefaultStmt) {
688      HasConstantCond
689        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
690                                                 Expr::SE_AllowSideEffects);
691      assert(!HasConstantCond ||
692             (ConstantCondValue.getBitWidth() == CondWidth &&
693              ConstantCondValue.isSigned() == CondIsSigned));
694    }
695    bool ShouldCheckConstantCond = HasConstantCond;
696
697    // Sort all the scalar case values so we can easily detect duplicates.
698    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
699
700    if (!CaseVals.empty()) {
701      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
702        if (ShouldCheckConstantCond &&
703            CaseVals[i].first == ConstantCondValue)
704          ShouldCheckConstantCond = false;
705
706        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
707          // If we have a duplicate, report it.
708          Diag(CaseVals[i].second->getLHS()->getLocStart(),
709               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
710          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
711               diag::note_duplicate_case_prev);
712          // FIXME: We really want to remove the bogus case stmt from the
713          // substmt, but we have no way to do this right now.
714          CaseListIsErroneous = true;
715        }
716      }
717    }
718
719    // Detect duplicate case ranges, which usually don't exist at all in
720    // the first place.
721    if (!CaseRanges.empty()) {
722      // Sort all the case ranges by their low value so we can easily detect
723      // overlaps between ranges.
724      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
725
726      // Scan the ranges, computing the high values and removing empty ranges.
727      std::vector<llvm::APSInt> HiVals;
728      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
729        llvm::APSInt &LoVal = CaseRanges[i].first;
730        CaseStmt *CR = CaseRanges[i].second;
731        Expr *Hi = CR->getRHS();
732        llvm::APSInt HiVal;
733
734        if (getLangOptions().CPlusPlus0x) {
735          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
736          // constant expression of the promoted type of the switch condition.
737          ExprResult ConvHi =
738            CheckConvertedConstantExpression(Hi, CondType, HiVal,
739                                             CCEK_CaseValue);
740          if (ConvHi.isInvalid()) {
741            CaseListIsErroneous = true;
742            continue;
743          }
744          Hi = ConvHi.take();
745        } else {
746          HiVal = Hi->EvaluateKnownConstInt(Context);
747
748          // If the RHS is not the same type as the condition, insert an
749          // implicit cast.
750          Hi = DefaultLvalueConversion(Hi).take();
751          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
752        }
753
754        // Convert the value to the same width/sign as the condition.
755        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
756                                           Hi->getLocStart(),
757                                           diag::warn_case_value_overflow);
758
759        CR->setRHS(Hi);
760
761        // If the low value is bigger than the high value, the case is empty.
762        if (LoVal > HiVal) {
763          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
764            << SourceRange(CR->getLHS()->getLocStart(),
765                           Hi->getLocEnd());
766          CaseRanges.erase(CaseRanges.begin()+i);
767          --i, --e;
768          continue;
769        }
770
771        if (ShouldCheckConstantCond &&
772            LoVal <= ConstantCondValue &&
773            ConstantCondValue <= HiVal)
774          ShouldCheckConstantCond = false;
775
776        HiVals.push_back(HiVal);
777      }
778
779      // Rescan the ranges, looking for overlap with singleton values and other
780      // ranges.  Since the range list is sorted, we only need to compare case
781      // ranges with their neighbors.
782      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
783        llvm::APSInt &CRLo = CaseRanges[i].first;
784        llvm::APSInt &CRHi = HiVals[i];
785        CaseStmt *CR = CaseRanges[i].second;
786
787        // Check to see whether the case range overlaps with any
788        // singleton cases.
789        CaseStmt *OverlapStmt = 0;
790        llvm::APSInt OverlapVal(32);
791
792        // Find the smallest value >= the lower bound.  If I is in the
793        // case range, then we have overlap.
794        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
795                                                  CaseVals.end(), CRLo,
796                                                  CaseCompareFunctor());
797        if (I != CaseVals.end() && I->first < CRHi) {
798          OverlapVal  = I->first;   // Found overlap with scalar.
799          OverlapStmt = I->second;
800        }
801
802        // Find the smallest value bigger than the upper bound.
803        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
804        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
805          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
806          OverlapStmt = (I-1)->second;
807        }
808
809        // Check to see if this case stmt overlaps with the subsequent
810        // case range.
811        if (i && CRLo <= HiVals[i-1]) {
812          OverlapVal  = HiVals[i-1];       // Found overlap with range.
813          OverlapStmt = CaseRanges[i-1].second;
814        }
815
816        if (OverlapStmt) {
817          // If we have a duplicate, report it.
818          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
819            << OverlapVal.toString(10);
820          Diag(OverlapStmt->getLHS()->getLocStart(),
821               diag::note_duplicate_case_prev);
822          // FIXME: We really want to remove the bogus case stmt from the
823          // substmt, but we have no way to do this right now.
824          CaseListIsErroneous = true;
825        }
826      }
827    }
828
829    // Complain if we have a constant condition and we didn't find a match.
830    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
831      // TODO: it would be nice if we printed enums as enums, chars as
832      // chars, etc.
833      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
834        << ConstantCondValue.toString(10)
835        << CondExpr->getSourceRange();
836    }
837
838    // Check to see if switch is over an Enum and handles all of its
839    // values.  We only issue a warning if there is not 'default:', but
840    // we still do the analysis to preserve this information in the AST
841    // (which can be used by flow-based analyes).
842    //
843    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
844
845    // If switch has default case, then ignore it.
846    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
847      const EnumDecl *ED = ET->getDecl();
848      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
849        EnumValsTy;
850      EnumValsTy EnumVals;
851
852      // Gather all enum values, set their type and sort them,
853      // allowing easier comparison with CaseVals.
854      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
855           EDI != ED->enumerator_end(); ++EDI) {
856        llvm::APSInt Val = EDI->getInitVal();
857        AdjustAPSInt(Val, CondWidth, CondIsSigned);
858        EnumVals.push_back(std::make_pair(Val, *EDI));
859      }
860      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
861      EnumValsTy::iterator EIend =
862        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
863
864      // See which case values aren't in enum.
865      EnumValsTy::const_iterator EI = EnumVals.begin();
866      for (CaseValsTy::const_iterator CI = CaseVals.begin();
867           CI != CaseVals.end(); CI++) {
868        while (EI != EIend && EI->first < CI->first)
869          EI++;
870        if (EI == EIend || EI->first > CI->first)
871          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
872            << ED->getDeclName();
873      }
874      // See which of case ranges aren't in enum
875      EI = EnumVals.begin();
876      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
877           RI != CaseRanges.end() && EI != EIend; RI++) {
878        while (EI != EIend && EI->first < RI->first)
879          EI++;
880
881        if (EI == EIend || EI->first != RI->first) {
882          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
883            << ED->getDeclName();
884        }
885
886        llvm::APSInt Hi =
887          RI->second->getRHS()->EvaluateKnownConstInt(Context);
888        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
889        while (EI != EIend && EI->first < Hi)
890          EI++;
891        if (EI == EIend || EI->first != Hi)
892          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
893            << ED->getDeclName();
894      }
895
896      // Check which enum vals aren't in switch
897      CaseValsTy::const_iterator CI = CaseVals.begin();
898      CaseRangesTy::const_iterator RI = CaseRanges.begin();
899      bool hasCasesNotInSwitch = false;
900
901      SmallVector<DeclarationName,8> UnhandledNames;
902
903      for (EI = EnumVals.begin(); EI != EIend; EI++){
904        // Drop unneeded case values
905        llvm::APSInt CIVal;
906        while (CI != CaseVals.end() && CI->first < EI->first)
907          CI++;
908
909        if (CI != CaseVals.end() && CI->first == EI->first)
910          continue;
911
912        // Drop unneeded case ranges
913        for (; RI != CaseRanges.end(); RI++) {
914          llvm::APSInt Hi =
915            RI->second->getRHS()->EvaluateKnownConstInt(Context);
916          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
917          if (EI->first <= Hi)
918            break;
919        }
920
921        if (RI == CaseRanges.end() || EI->first < RI->first) {
922          hasCasesNotInSwitch = true;
923          UnhandledNames.push_back(EI->second->getDeclName());
924        }
925      }
926
927      if (TheDefaultStmt && UnhandledNames.empty())
928        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
929
930      // Produce a nice diagnostic if multiple values aren't handled.
931      switch (UnhandledNames.size()) {
932      case 0: break;
933      case 1:
934        Diag(CondExpr->getExprLoc(), TheDefaultStmt
935          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
936          << UnhandledNames[0];
937        break;
938      case 2:
939        Diag(CondExpr->getExprLoc(), TheDefaultStmt
940          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
941          << UnhandledNames[0] << UnhandledNames[1];
942        break;
943      case 3:
944        Diag(CondExpr->getExprLoc(), TheDefaultStmt
945          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
946          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
947        break;
948      default:
949        Diag(CondExpr->getExprLoc(), TheDefaultStmt
950          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
951          << (unsigned)UnhandledNames.size()
952          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
953        break;
954      }
955
956      if (!hasCasesNotInSwitch)
957        SS->setAllEnumCasesCovered();
958    }
959  }
960
961  // FIXME: If the case list was broken is some way, we don't have a good system
962  // to patch it up.  Instead, just return the whole substmt as broken.
963  if (CaseListIsErroneous)
964    return StmtError();
965
966  return Owned(SS);
967}
968
969StmtResult
970Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
971                     Decl *CondVar, Stmt *Body) {
972  ExprResult CondResult(Cond.release());
973
974  VarDecl *ConditionVar = 0;
975  if (CondVar) {
976    ConditionVar = cast<VarDecl>(CondVar);
977    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
978    if (CondResult.isInvalid())
979      return StmtError();
980  }
981  Expr *ConditionExpr = CondResult.take();
982  if (!ConditionExpr)
983    return StmtError();
984
985  DiagnoseUnusedExprResult(Body);
986
987  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
988                                       Body, WhileLoc));
989}
990
991StmtResult
992Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
993                  SourceLocation WhileLoc, SourceLocation CondLParen,
994                  Expr *Cond, SourceLocation CondRParen) {
995  assert(Cond && "ActOnDoStmt(): missing expression");
996
997  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
998  if (CondResult.isInvalid() || CondResult.isInvalid())
999    return StmtError();
1000  Cond = CondResult.take();
1001
1002  CheckImplicitConversions(Cond, DoLoc);
1003  CondResult = MaybeCreateExprWithCleanups(Cond);
1004  if (CondResult.isInvalid())
1005    return StmtError();
1006  Cond = CondResult.take();
1007
1008  DiagnoseUnusedExprResult(Body);
1009
1010  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1011}
1012
1013StmtResult
1014Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1015                   Stmt *First, FullExprArg second, Decl *secondVar,
1016                   FullExprArg third,
1017                   SourceLocation RParenLoc, Stmt *Body) {
1018  if (!getLangOptions().CPlusPlus) {
1019    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1020      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1021      // declare identifiers for objects having storage class 'auto' or
1022      // 'register'.
1023      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1024           DI!=DE; ++DI) {
1025        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1026        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1027          VD = 0;
1028        if (VD == 0)
1029          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1030        // FIXME: mark decl erroneous!
1031      }
1032    }
1033  }
1034
1035  ExprResult SecondResult(second.release());
1036  VarDecl *ConditionVar = 0;
1037  if (secondVar) {
1038    ConditionVar = cast<VarDecl>(secondVar);
1039    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1040    if (SecondResult.isInvalid())
1041      return StmtError();
1042  }
1043
1044  Expr *Third  = third.release().takeAs<Expr>();
1045
1046  DiagnoseUnusedExprResult(First);
1047  DiagnoseUnusedExprResult(Third);
1048  DiagnoseUnusedExprResult(Body);
1049
1050  return Owned(new (Context) ForStmt(Context, First,
1051                                     SecondResult.take(), ConditionVar,
1052                                     Third, Body, ForLoc, LParenLoc,
1053                                     RParenLoc));
1054}
1055
1056/// In an Objective C collection iteration statement:
1057///   for (x in y)
1058/// x can be an arbitrary l-value expression.  Bind it up as a
1059/// full-expression.
1060StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1061  CheckImplicitConversions(E);
1062  ExprResult Result = MaybeCreateExprWithCleanups(E);
1063  if (Result.isInvalid()) return StmtError();
1064  return Owned(static_cast<Stmt*>(Result.get()));
1065}
1066
1067ExprResult
1068Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1069  assert(collection);
1070
1071  // Bail out early if we've got a type-dependent expression.
1072  if (collection->isTypeDependent()) return Owned(collection);
1073
1074  // Perform normal l-value conversion.
1075  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1076  if (result.isInvalid())
1077    return ExprError();
1078  collection = result.take();
1079
1080  // The operand needs to have object-pointer type.
1081  // TODO: should we do a contextual conversion?
1082  const ObjCObjectPointerType *pointerType =
1083    collection->getType()->getAs<ObjCObjectPointerType>();
1084  if (!pointerType)
1085    return Diag(forLoc, diag::err_collection_expr_type)
1086             << collection->getType() << collection->getSourceRange();
1087
1088  // Check that the operand provides
1089  //   - countByEnumeratingWithState:objects:count:
1090  const ObjCObjectType *objectType = pointerType->getObjectType();
1091  ObjCInterfaceDecl *iface = objectType->getInterface();
1092
1093  // If we have a forward-declared type, we can't do this check.
1094  // Under ARC, it is an error not to have a forward-declared class.
1095  if (iface &&
1096      RequireCompleteType(forLoc, QualType(objectType, 0),
1097                          getLangOptions().ObjCAutoRefCount
1098                            ? PDiag(diag::err_arc_collection_forward)
1099                                << collection->getSourceRange()
1100                          : PDiag(0))) {
1101    // Otherwise, if we have any useful type information, check that
1102    // the type declares the appropriate method.
1103  } else if (iface || !objectType->qual_empty()) {
1104    IdentifierInfo *selectorIdents[] = {
1105      &Context.Idents.get("countByEnumeratingWithState"),
1106      &Context.Idents.get("objects"),
1107      &Context.Idents.get("count")
1108    };
1109    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1110
1111    ObjCMethodDecl *method = 0;
1112
1113    // If there's an interface, look in both the public and private APIs.
1114    if (iface) {
1115      method = iface->lookupInstanceMethod(selector);
1116      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1117    }
1118
1119    // Also check protocol qualifiers.
1120    if (!method)
1121      method = LookupMethodInQualifiedType(selector, pointerType,
1122                                           /*instance*/ true);
1123
1124    // If we didn't find it anywhere, give up.
1125    if (!method) {
1126      Diag(forLoc, diag::warn_collection_expr_type)
1127        << collection->getType() << selector << collection->getSourceRange();
1128    }
1129
1130    // TODO: check for an incompatible signature?
1131  }
1132
1133  // Wrap up any cleanups in the expression.
1134  return Owned(MaybeCreateExprWithCleanups(collection));
1135}
1136
1137StmtResult
1138Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1139                                 SourceLocation LParenLoc,
1140                                 Stmt *First, Expr *Second,
1141                                 SourceLocation RParenLoc, Stmt *Body) {
1142  if (First) {
1143    QualType FirstType;
1144    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1145      if (!DS->isSingleDecl())
1146        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1147                         diag::err_toomany_element_decls));
1148
1149      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1150      FirstType = D->getType();
1151      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1152      // declare identifiers for objects having storage class 'auto' or
1153      // 'register'.
1154      if (!D->hasLocalStorage())
1155        return StmtError(Diag(D->getLocation(),
1156                              diag::err_non_variable_decl_in_for));
1157    } else {
1158      Expr *FirstE = cast<Expr>(First);
1159      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1160        return StmtError(Diag(First->getLocStart(),
1161                   diag::err_selector_element_not_lvalue)
1162          << First->getSourceRange());
1163
1164      FirstType = static_cast<Expr*>(First)->getType();
1165    }
1166    if (!FirstType->isDependentType() &&
1167        !FirstType->isObjCObjectPointerType() &&
1168        !FirstType->isBlockPointerType())
1169        Diag(ForLoc, diag::err_selector_element_type)
1170          << FirstType << First->getSourceRange();
1171  }
1172
1173  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1174                                                   ForLoc, RParenLoc));
1175}
1176
1177namespace {
1178
1179enum BeginEndFunction {
1180  BEF_begin,
1181  BEF_end
1182};
1183
1184/// Build a variable declaration for a for-range statement.
1185static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1186                                     QualType Type, const char *Name) {
1187  DeclContext *DC = SemaRef.CurContext;
1188  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1189  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1190  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1191                                  TInfo, SC_Auto, SC_None);
1192  Decl->setImplicit();
1193  return Decl;
1194}
1195
1196/// Finish building a variable declaration for a for-range statement.
1197/// \return true if an error occurs.
1198static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1199                                  SourceLocation Loc, int diag) {
1200  // Deduce the type for the iterator variable now rather than leaving it to
1201  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1202  TypeSourceInfo *InitTSI = 0;
1203  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1204      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1205    SemaRef.Diag(Loc, diag) << Init->getType();
1206  if (!InitTSI) {
1207    Decl->setInvalidDecl();
1208    return true;
1209  }
1210  Decl->setTypeSourceInfo(InitTSI);
1211  Decl->setType(InitTSI->getType());
1212
1213  // In ARC, infer lifetime.
1214  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1215  // we're doing the equivalent of fast iteration.
1216  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1217      SemaRef.inferObjCARCLifetime(Decl))
1218    Decl->setInvalidDecl();
1219
1220  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1221                               /*TypeMayContainAuto=*/false);
1222  SemaRef.FinalizeDeclaration(Decl);
1223  SemaRef.CurContext->addHiddenDecl(Decl);
1224  return false;
1225}
1226
1227/// Produce a note indicating which begin/end function was implicitly called
1228/// by a C++0x for-range statement. This is often not obvious from the code,
1229/// nor from the diagnostics produced when analysing the implicit expressions
1230/// required in a for-range statement.
1231void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1232                                  BeginEndFunction BEF) {
1233  CallExpr *CE = dyn_cast<CallExpr>(E);
1234  if (!CE)
1235    return;
1236  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1237  if (!D)
1238    return;
1239  SourceLocation Loc = D->getLocation();
1240
1241  std::string Description;
1242  bool IsTemplate = false;
1243  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1244    Description = SemaRef.getTemplateArgumentBindingsText(
1245      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1246    IsTemplate = true;
1247  }
1248
1249  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1250    << BEF << IsTemplate << Description << E->getType();
1251}
1252
1253/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1254/// given LookupResult is non-empty, it is assumed to describe a member which
1255/// will be invoked. Otherwise, the function will be found via argument
1256/// dependent lookup.
1257static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1258                                            SourceLocation Loc,
1259                                            VarDecl *Decl,
1260                                            BeginEndFunction BEF,
1261                                            const DeclarationNameInfo &NameInfo,
1262                                            LookupResult &MemberLookup,
1263                                            Expr *Range) {
1264  ExprResult CallExpr;
1265  if (!MemberLookup.empty()) {
1266    ExprResult MemberRef =
1267      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1268                                       /*IsPtr=*/false, CXXScopeSpec(),
1269                                       /*Qualifier=*/0, MemberLookup,
1270                                       /*TemplateArgs=*/0);
1271    if (MemberRef.isInvalid())
1272      return ExprError();
1273    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1274                                     Loc, 0);
1275    if (CallExpr.isInvalid())
1276      return ExprError();
1277  } else {
1278    UnresolvedSet<0> FoundNames;
1279    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1280    // std is an associated namespace.
1281    UnresolvedLookupExpr *Fn =
1282      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1283                                   NestedNameSpecifierLoc(), NameInfo,
1284                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1285                                   FoundNames.begin(), FoundNames.end(),
1286                                   /*LookInStdNamespace=*/true);
1287    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1288                                               0);
1289    if (CallExpr.isInvalid()) {
1290      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1291        << Range->getType();
1292      return ExprError();
1293    }
1294  }
1295  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1296                            diag::err_for_range_iter_deduction_failure)) {
1297    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1298    return ExprError();
1299  }
1300  return CallExpr;
1301}
1302
1303}
1304
1305/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1306///
1307/// C++0x [stmt.ranged]:
1308///   A range-based for statement is equivalent to
1309///
1310///   {
1311///     auto && __range = range-init;
1312///     for ( auto __begin = begin-expr,
1313///           __end = end-expr;
1314///           __begin != __end;
1315///           ++__begin ) {
1316///       for-range-declaration = *__begin;
1317///       statement
1318///     }
1319///   }
1320///
1321/// The body of the loop is not available yet, since it cannot be analysed until
1322/// we have determined the type of the for-range-declaration.
1323StmtResult
1324Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1325                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1326                           SourceLocation RParenLoc) {
1327  if (!First || !Range)
1328    return StmtError();
1329
1330  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1331  assert(DS && "first part of for range not a decl stmt");
1332
1333  if (!DS->isSingleDecl()) {
1334    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1335    return StmtError();
1336  }
1337  if (DS->getSingleDecl()->isInvalidDecl())
1338    return StmtError();
1339
1340  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1341    return StmtError();
1342
1343  // Build  auto && __range = range-init
1344  SourceLocation RangeLoc = Range->getLocStart();
1345  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1346                                           Context.getAutoRRefDeductType(),
1347                                           "__range");
1348  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1349                            diag::err_for_range_deduction_failure))
1350    return StmtError();
1351
1352  // Claim the type doesn't contain auto: we've already done the checking.
1353  DeclGroupPtrTy RangeGroup =
1354    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1355  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1356  if (RangeDecl.isInvalid())
1357    return StmtError();
1358
1359  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1360                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1361                              RParenLoc);
1362}
1363
1364/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1365StmtResult
1366Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1367                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1368                           Expr *Inc, Stmt *LoopVarDecl,
1369                           SourceLocation RParenLoc) {
1370  Scope *S = getCurScope();
1371
1372  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1373  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1374  QualType RangeVarType = RangeVar->getType();
1375
1376  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1377  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1378
1379  StmtResult BeginEndDecl = BeginEnd;
1380  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1381
1382  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1383    SourceLocation RangeLoc = RangeVar->getLocation();
1384
1385    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1386
1387    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1388                                                VK_LValue, ColonLoc);
1389    if (BeginRangeRef.isInvalid())
1390      return StmtError();
1391
1392    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1393                                              VK_LValue, ColonLoc);
1394    if (EndRangeRef.isInvalid())
1395      return StmtError();
1396
1397    QualType AutoType = Context.getAutoDeductType();
1398    Expr *Range = RangeVar->getInit();
1399    if (!Range)
1400      return StmtError();
1401    QualType RangeType = Range->getType();
1402
1403    if (RequireCompleteType(RangeLoc, RangeType,
1404                            PDiag(diag::err_for_range_incomplete_type)))
1405      return StmtError();
1406
1407    // Build auto __begin = begin-expr, __end = end-expr.
1408    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1409                                             "__begin");
1410    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1411                                           "__end");
1412
1413    // Build begin-expr and end-expr and attach to __begin and __end variables.
1414    ExprResult BeginExpr, EndExpr;
1415    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1416      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1417      //   __range + __bound, respectively, where __bound is the array bound. If
1418      //   _RangeT is an array of unknown size or an array of incomplete type,
1419      //   the program is ill-formed;
1420
1421      // begin-expr is __range.
1422      BeginExpr = BeginRangeRef;
1423      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1424                                diag::err_for_range_iter_deduction_failure)) {
1425        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1426        return StmtError();
1427      }
1428
1429      // Find the array bound.
1430      ExprResult BoundExpr;
1431      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1432        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1433                                                 Context.getPointerDiffType(),
1434                                                 RangeLoc));
1435      else if (const VariableArrayType *VAT =
1436               dyn_cast<VariableArrayType>(UnqAT))
1437        BoundExpr = VAT->getSizeExpr();
1438      else {
1439        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1440        // UnqAT is not incomplete and Range is not type-dependent.
1441        llvm_unreachable("Unexpected array type in for-range");
1442      }
1443
1444      // end-expr is __range + __bound.
1445      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1446                           BoundExpr.get());
1447      if (EndExpr.isInvalid())
1448        return StmtError();
1449      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1450                                diag::err_for_range_iter_deduction_failure)) {
1451        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1452        return StmtError();
1453      }
1454    } else {
1455      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1456                                        ColonLoc);
1457      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1458                                      ColonLoc);
1459
1460      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1461      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1462
1463      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1464        // - if _RangeT is a class type, the unqualified-ids begin and end are
1465        //   looked up in the scope of class _RangeT as if by class member access
1466        //   lookup (3.4.5), and if either (or both) finds at least one
1467        //   declaration, begin-expr and end-expr are __range.begin() and
1468        //   __range.end(), respectively;
1469        LookupQualifiedName(BeginMemberLookup, D);
1470        LookupQualifiedName(EndMemberLookup, D);
1471
1472        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1473          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1474            << RangeType << BeginMemberLookup.empty();
1475          return StmtError();
1476        }
1477      } else {
1478        // - otherwise, begin-expr and end-expr are begin(__range) and
1479        //   end(__range), respectively, where begin and end are looked up with
1480        //   argument-dependent lookup (3.4.2). For the purposes of this name
1481        //   lookup, namespace std is an associated namespace.
1482      }
1483
1484      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1485                                            BEF_begin, BeginNameInfo,
1486                                            BeginMemberLookup,
1487                                            BeginRangeRef.get());
1488      if (BeginExpr.isInvalid())
1489        return StmtError();
1490
1491      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1492                                          BEF_end, EndNameInfo,
1493                                          EndMemberLookup, EndRangeRef.get());
1494      if (EndExpr.isInvalid())
1495        return StmtError();
1496    }
1497
1498    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1499    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1500    if (!Context.hasSameType(BeginType, EndType)) {
1501      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1502        << BeginType << EndType;
1503      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1504      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1505    }
1506
1507    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1508    // Claim the type doesn't contain auto: we've already done the checking.
1509    DeclGroupPtrTy BeginEndGroup =
1510      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1511    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1512
1513    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1514    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1515                                           VK_LValue, ColonLoc);
1516    if (BeginRef.isInvalid())
1517      return StmtError();
1518
1519    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1520                                         VK_LValue, ColonLoc);
1521    if (EndRef.isInvalid())
1522      return StmtError();
1523
1524    // Build and check __begin != __end expression.
1525    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1526                           BeginRef.get(), EndRef.get());
1527    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1528    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1529    if (NotEqExpr.isInvalid()) {
1530      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1531      if (!Context.hasSameType(BeginType, EndType))
1532        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1533      return StmtError();
1534    }
1535
1536    // Build and check ++__begin expression.
1537    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1538                                VK_LValue, ColonLoc);
1539    if (BeginRef.isInvalid())
1540      return StmtError();
1541
1542    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1543    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1544    if (IncrExpr.isInvalid()) {
1545      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1546      return StmtError();
1547    }
1548
1549    // Build and check *__begin  expression.
1550    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1551                                VK_LValue, ColonLoc);
1552    if (BeginRef.isInvalid())
1553      return StmtError();
1554
1555    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1556    if (DerefExpr.isInvalid()) {
1557      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1558      return StmtError();
1559    }
1560
1561    // Attach  *__begin  as initializer for VD.
1562    if (!LoopVar->isInvalidDecl()) {
1563      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1564                           /*TypeMayContainAuto=*/true);
1565      if (LoopVar->isInvalidDecl())
1566        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1567    }
1568  } else {
1569    // The range is implicitly used as a placeholder when it is dependent.
1570    RangeVar->setUsed();
1571  }
1572
1573  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1574                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1575                                             NotEqExpr.take(), IncrExpr.take(),
1576                                             LoopVarDS, /*Body=*/0, ForLoc,
1577                                             ColonLoc, RParenLoc));
1578}
1579
1580/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1581/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1582/// body cannot be performed until after the type of the range variable is
1583/// determined.
1584StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1585  if (!S || !B)
1586    return StmtError();
1587
1588  cast<CXXForRangeStmt>(S)->setBody(B);
1589  return S;
1590}
1591
1592StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1593                               SourceLocation LabelLoc,
1594                               LabelDecl *TheDecl) {
1595  getCurFunction()->setHasBranchIntoScope();
1596  TheDecl->setUsed();
1597  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1598}
1599
1600StmtResult
1601Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1602                            Expr *E) {
1603  // Convert operand to void*
1604  if (!E->isTypeDependent()) {
1605    QualType ETy = E->getType();
1606    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1607    ExprResult ExprRes = Owned(E);
1608    AssignConvertType ConvTy =
1609      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1610    if (ExprRes.isInvalid())
1611      return StmtError();
1612    E = ExprRes.take();
1613    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1614      return StmtError();
1615  }
1616
1617  getCurFunction()->setHasIndirectGoto();
1618
1619  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1620}
1621
1622StmtResult
1623Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1624  Scope *S = CurScope->getContinueParent();
1625  if (!S) {
1626    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1627    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1628  }
1629
1630  return Owned(new (Context) ContinueStmt(ContinueLoc));
1631}
1632
1633StmtResult
1634Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1635  Scope *S = CurScope->getBreakParent();
1636  if (!S) {
1637    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1638    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1639  }
1640
1641  return Owned(new (Context) BreakStmt(BreakLoc));
1642}
1643
1644/// \brief Determine whether the given expression is a candidate for
1645/// copy elision in either a return statement or a throw expression.
1646///
1647/// \param ReturnType If we're determining the copy elision candidate for
1648/// a return statement, this is the return type of the function. If we're
1649/// determining the copy elision candidate for a throw expression, this will
1650/// be a NULL type.
1651///
1652/// \param E The expression being returned from the function or block, or
1653/// being thrown.
1654///
1655/// \param AllowFunctionParameter Whether we allow function parameters to
1656/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1657/// we re-use this logic to determine whether we should try to move as part of
1658/// a return or throw (which does allow function parameters).
1659///
1660/// \returns The NRVO candidate variable, if the return statement may use the
1661/// NRVO, or NULL if there is no such candidate.
1662const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1663                                             Expr *E,
1664                                             bool AllowFunctionParameter) {
1665  QualType ExprType = E->getType();
1666  // - in a return statement in a function with ...
1667  // ... a class return type ...
1668  if (!ReturnType.isNull()) {
1669    if (!ReturnType->isRecordType())
1670      return 0;
1671    // ... the same cv-unqualified type as the function return type ...
1672    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1673      return 0;
1674  }
1675
1676  // ... the expression is the name of a non-volatile automatic object
1677  // (other than a function or catch-clause parameter)) ...
1678  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1679  if (!DR)
1680    return 0;
1681  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1682  if (!VD)
1683    return 0;
1684
1685  // ...object (other than a function or catch-clause parameter)...
1686  if (VD->getKind() != Decl::Var &&
1687      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
1688    return 0;
1689  if (VD->isExceptionVariable()) return 0;
1690
1691  // ...automatic...
1692  if (!VD->hasLocalStorage()) return 0;
1693
1694  // ...non-volatile...
1695  if (VD->getType().isVolatileQualified()) return 0;
1696  if (VD->getType()->isReferenceType()) return 0;
1697
1698  // __block variables can't be allocated in a way that permits NRVO.
1699  if (VD->hasAttr<BlocksAttr>()) return 0;
1700
1701  // Variables with higher required alignment than their type's ABI
1702  // alignment cannot use NRVO.
1703  if (VD->hasAttr<AlignedAttr>() &&
1704      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
1705    return 0;
1706
1707  return VD;
1708}
1709
1710/// \brief Perform the initialization of a potentially-movable value, which
1711/// is the result of return value.
1712///
1713/// This routine implements C++0x [class.copy]p33, which attempts to treat
1714/// returned lvalues as rvalues in certain cases (to prefer move construction),
1715/// then falls back to treating them as lvalues if that failed.
1716ExprResult
1717Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1718                                      const VarDecl *NRVOCandidate,
1719                                      QualType ResultType,
1720                                      Expr *Value,
1721                                      bool AllowNRVO) {
1722  // C++0x [class.copy]p33:
1723  //   When the criteria for elision of a copy operation are met or would
1724  //   be met save for the fact that the source object is a function
1725  //   parameter, and the object to be copied is designated by an lvalue,
1726  //   overload resolution to select the constructor for the copy is first
1727  //   performed as if the object were designated by an rvalue.
1728  ExprResult Res = ExprError();
1729  if (AllowNRVO &&
1730      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1731    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1732                              Value->getType(), CK_LValueToRValue,
1733                              Value, VK_XValue);
1734
1735    Expr *InitExpr = &AsRvalue;
1736    InitializationKind Kind
1737      = InitializationKind::CreateCopy(Value->getLocStart(),
1738                                       Value->getLocStart());
1739    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1740
1741    //   [...] If overload resolution fails, or if the type of the first
1742    //   parameter of the selected constructor is not an rvalue reference
1743    //   to the object's type (possibly cv-qualified), overload resolution
1744    //   is performed again, considering the object as an lvalue.
1745    if (Seq) {
1746      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1747           StepEnd = Seq.step_end();
1748           Step != StepEnd; ++Step) {
1749        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1750          continue;
1751
1752        CXXConstructorDecl *Constructor
1753        = cast<CXXConstructorDecl>(Step->Function.Function);
1754
1755        const RValueReferenceType *RRefType
1756          = Constructor->getParamDecl(0)->getType()
1757                                                 ->getAs<RValueReferenceType>();
1758
1759        // If we don't meet the criteria, break out now.
1760        if (!RRefType ||
1761            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1762                            Context.getTypeDeclType(Constructor->getParent())))
1763          break;
1764
1765        // Promote "AsRvalue" to the heap, since we now need this
1766        // expression node to persist.
1767        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1768                                         CK_LValueToRValue, Value, 0,
1769                                         VK_XValue);
1770
1771        // Complete type-checking the initialization of the return type
1772        // using the constructor we found.
1773        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1774      }
1775    }
1776  }
1777
1778  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1779  // above, or overload resolution failed. Either way, we need to try
1780  // (again) now with the return value expression as written.
1781  if (Res.isInvalid())
1782    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1783
1784  return Res;
1785}
1786
1787/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1788///
1789StmtResult
1790Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1791  // If this is the first return we've seen in the block, infer the type of
1792  // the block from it.
1793  BlockScopeInfo *CurBlock = getCurBlock();
1794  if (CurBlock->TheDecl->blockMissingReturnType()) {
1795    QualType BlockReturnT;
1796    if (RetValExp) {
1797      // Don't call UsualUnaryConversions(), since we don't want to do
1798      // integer promotions here.
1799      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1800      if (Result.isInvalid())
1801        return StmtError();
1802      RetValExp = Result.take();
1803
1804      if (!RetValExp->isTypeDependent()) {
1805        BlockReturnT = RetValExp->getType();
1806        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1807          // We have to remove a 'const' added to copied-in variable which was
1808          // part of the implementation spec. and not the actual qualifier for
1809          // the variable.
1810          if (CDRE->isConstQualAdded())
1811            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1812        }
1813      } else
1814        BlockReturnT = Context.DependentTy;
1815    } else
1816        BlockReturnT = Context.VoidTy;
1817    if (!CurBlock->ReturnType.isNull() && !CurBlock->ReturnType->isDependentType()
1818        && !BlockReturnT->isDependentType()
1819        // when block's return type is not specified, all return types
1820        // must strictly match.
1821        && !Context.hasSameType(BlockReturnT, CurBlock->ReturnType)) {
1822        Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
1823            << BlockReturnT << CurBlock->ReturnType;
1824        return StmtError();
1825    }
1826    CurBlock->ReturnType = BlockReturnT;
1827  }
1828  QualType FnRetType = CurBlock->ReturnType;
1829
1830  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1831    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
1832    return StmtError();
1833  }
1834
1835  // Otherwise, verify that this result type matches the previous one.  We are
1836  // pickier with blocks than for normal functions because we don't have GCC
1837  // compatibility to worry about here.
1838  const VarDecl *NRVOCandidate = 0;
1839  if (FnRetType->isDependentType()) {
1840    // Delay processing for now.  TODO: there are lots of dependent
1841    // types we can conclusively prove aren't void.
1842  } else if (FnRetType->isVoidType()) {
1843    if (RetValExp &&
1844        !(getLangOptions().CPlusPlus &&
1845          (RetValExp->isTypeDependent() ||
1846           RetValExp->getType()->isVoidType()))) {
1847      Diag(ReturnLoc, diag::err_return_block_has_expr);
1848      RetValExp = 0;
1849    }
1850  } else if (!RetValExp) {
1851    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1852  } else if (!RetValExp->isTypeDependent()) {
1853    // we have a non-void block with an expression, continue checking
1854
1855    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1856    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1857    // function return.
1858
1859    // In C++ the return statement is handled via a copy initialization.
1860    // the C version of which boils down to CheckSingleAssignmentConstraints.
1861    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1862    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1863                                                                   FnRetType,
1864                                                          NRVOCandidate != 0);
1865    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1866                                                     FnRetType, RetValExp);
1867    if (Res.isInvalid()) {
1868      // FIXME: Cleanup temporaries here, anyway?
1869      return StmtError();
1870    }
1871    RetValExp = Res.take();
1872    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1873  }
1874
1875  if (RetValExp) {
1876    CheckImplicitConversions(RetValExp, ReturnLoc);
1877    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1878  }
1879  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1880                                                NRVOCandidate);
1881
1882  // If we need to check for the named return value optimization, save the
1883  // return statement in our scope for later processing.
1884  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1885      !CurContext->isDependentContext())
1886    FunctionScopes.back()->Returns.push_back(Result);
1887
1888  return Owned(Result);
1889}
1890
1891StmtResult
1892Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1893  // Check for unexpanded parameter packs.
1894  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1895    return StmtError();
1896
1897  if (getCurBlock())
1898    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1899
1900  QualType FnRetType;
1901  QualType DeclaredRetType;
1902  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1903    FnRetType = FD->getResultType();
1904    DeclaredRetType = FnRetType;
1905    if (FD->hasAttr<NoReturnAttr>() ||
1906        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1907      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1908        << FD->getDeclName();
1909  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1910    DeclaredRetType = MD->getResultType();
1911    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1912      // In the implementation of a method with a related return type, the
1913      // type used to type-check the validity of return statements within the
1914      // method body is a pointer to the type of the class being implemented.
1915      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1916      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1917    } else {
1918      FnRetType = DeclaredRetType;
1919    }
1920  } else // If we don't have a function/method context, bail.
1921    return StmtError();
1922
1923  ReturnStmt *Result = 0;
1924  if (FnRetType->isVoidType()) {
1925    if (RetValExp) {
1926      if (!RetValExp->isTypeDependent()) {
1927        // C99 6.8.6.4p1 (ext_ since GCC warns)
1928        unsigned D = diag::ext_return_has_expr;
1929        if (RetValExp->getType()->isVoidType())
1930          D = diag::ext_return_has_void_expr;
1931        else {
1932          ExprResult Result = Owned(RetValExp);
1933          Result = IgnoredValueConversions(Result.take());
1934          if (Result.isInvalid())
1935            return StmtError();
1936          RetValExp = Result.take();
1937          RetValExp = ImpCastExprToType(RetValExp,
1938                                        Context.VoidTy, CK_ToVoid).take();
1939        }
1940
1941        // return (some void expression); is legal in C++.
1942        if (D != diag::ext_return_has_void_expr ||
1943            !getLangOptions().CPlusPlus) {
1944          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1945
1946          int FunctionKind = 0;
1947          if (isa<ObjCMethodDecl>(CurDecl))
1948            FunctionKind = 1;
1949          else if (isa<CXXConstructorDecl>(CurDecl))
1950            FunctionKind = 2;
1951          else if (isa<CXXDestructorDecl>(CurDecl))
1952            FunctionKind = 3;
1953
1954          Diag(ReturnLoc, D)
1955            << CurDecl->getDeclName() << FunctionKind
1956            << RetValExp->getSourceRange();
1957        }
1958      }
1959
1960      CheckImplicitConversions(RetValExp, ReturnLoc);
1961      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1962    }
1963
1964    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1965  } else if (!RetValExp && !FnRetType->isDependentType()) {
1966    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1967    // C99 6.8.6.4p1 (ext_ since GCC warns)
1968    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1969
1970    if (FunctionDecl *FD = getCurFunctionDecl())
1971      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1972    else
1973      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1974    Result = new (Context) ReturnStmt(ReturnLoc);
1975  } else {
1976    const VarDecl *NRVOCandidate = 0;
1977    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1978      // we have a non-void function with an expression, continue checking
1979
1980      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1981      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1982      // function return.
1983
1984      // In C++ the return statement is handled via a copy initialization,
1985      // the C version of which boils down to CheckSingleAssignmentConstraints.
1986      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1987      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1988                                                                     FnRetType,
1989                                                            NRVOCandidate != 0);
1990      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1991                                                       FnRetType, RetValExp);
1992      if (Res.isInvalid()) {
1993        // FIXME: Cleanup temporaries here, anyway?
1994        return StmtError();
1995      }
1996
1997      RetValExp = Res.takeAs<Expr>();
1998      if (RetValExp)
1999        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2000    }
2001
2002    if (RetValExp) {
2003      // If we type-checked an Objective-C method's return type based
2004      // on a related return type, we may need to adjust the return
2005      // type again. Do so now.
2006      if (DeclaredRetType != FnRetType) {
2007        ExprResult result = PerformImplicitConversion(RetValExp,
2008                                                      DeclaredRetType,
2009                                                      AA_Returning);
2010        if (result.isInvalid()) return StmtError();
2011        RetValExp = result.take();
2012      }
2013
2014      CheckImplicitConversions(RetValExp, ReturnLoc);
2015      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2016    }
2017    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2018  }
2019
2020  // If we need to check for the named return value optimization, save the
2021  // return statement in our scope for later processing.
2022  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
2023      !CurContext->isDependentContext())
2024    FunctionScopes.back()->Returns.push_back(Result);
2025
2026  return Owned(Result);
2027}
2028
2029/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2030/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2031/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2032/// provide a strong guidance to not use it.
2033///
2034/// This method checks to see if the argument is an acceptable l-value and
2035/// returns false if it is a case we can handle.
2036static bool CheckAsmLValue(const Expr *E, Sema &S) {
2037  // Type dependent expressions will be checked during instantiation.
2038  if (E->isTypeDependent())
2039    return false;
2040
2041  if (E->isLValue())
2042    return false;  // Cool, this is an lvalue.
2043
2044  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2045  // are supposed to allow.
2046  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2047  if (E != E2 && E2->isLValue()) {
2048    if (!S.getLangOptions().HeinousExtensions)
2049      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2050        << E->getSourceRange();
2051    else
2052      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2053        << E->getSourceRange();
2054    // Accept, even if we emitted an error diagnostic.
2055    return false;
2056  }
2057
2058  // None of the above, just randomly invalid non-lvalue.
2059  return true;
2060}
2061
2062/// isOperandMentioned - Return true if the specified operand # is mentioned
2063/// anywhere in the decomposed asm string.
2064static bool isOperandMentioned(unsigned OpNo,
2065                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2066  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2067    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2068    if (!Piece.isOperand()) continue;
2069
2070    // If this is a reference to the input and if the input was the smaller
2071    // one, then we have to reject this asm.
2072    if (Piece.getOperandNo() == OpNo)
2073      return true;
2074  }
2075
2076  return false;
2077}
2078
2079StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2080                              bool IsVolatile, unsigned NumOutputs,
2081                              unsigned NumInputs, IdentifierInfo **Names,
2082                              MultiExprArg constraints, MultiExprArg exprs,
2083                              Expr *asmString, MultiExprArg clobbers,
2084                              SourceLocation RParenLoc, bool MSAsm) {
2085  unsigned NumClobbers = clobbers.size();
2086  StringLiteral **Constraints =
2087    reinterpret_cast<StringLiteral**>(constraints.get());
2088  Expr **Exprs = exprs.get();
2089  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2090  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2091
2092  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2093
2094  // The parser verifies that there is a string literal here.
2095  if (!AsmString->isAscii())
2096    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2097      << AsmString->getSourceRange());
2098
2099  for (unsigned i = 0; i != NumOutputs; i++) {
2100    StringLiteral *Literal = Constraints[i];
2101    if (!Literal->isAscii())
2102      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2103        << Literal->getSourceRange());
2104
2105    StringRef OutputName;
2106    if (Names[i])
2107      OutputName = Names[i]->getName();
2108
2109    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2110    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2111      return StmtError(Diag(Literal->getLocStart(),
2112                            diag::err_asm_invalid_output_constraint)
2113                       << Info.getConstraintStr());
2114
2115    // Check that the output exprs are valid lvalues.
2116    Expr *OutputExpr = Exprs[i];
2117    if (CheckAsmLValue(OutputExpr, *this)) {
2118      return StmtError(Diag(OutputExpr->getLocStart(),
2119                  diag::err_asm_invalid_lvalue_in_output)
2120        << OutputExpr->getSourceRange());
2121    }
2122
2123    OutputConstraintInfos.push_back(Info);
2124  }
2125
2126  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2127
2128  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2129    StringLiteral *Literal = Constraints[i];
2130    if (!Literal->isAscii())
2131      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2132        << Literal->getSourceRange());
2133
2134    StringRef InputName;
2135    if (Names[i])
2136      InputName = Names[i]->getName();
2137
2138    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2139    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2140                                                NumOutputs, Info)) {
2141      return StmtError(Diag(Literal->getLocStart(),
2142                            diag::err_asm_invalid_input_constraint)
2143                       << Info.getConstraintStr());
2144    }
2145
2146    Expr *InputExpr = Exprs[i];
2147
2148    // Only allow void types for memory constraints.
2149    if (Info.allowsMemory() && !Info.allowsRegister()) {
2150      if (CheckAsmLValue(InputExpr, *this))
2151        return StmtError(Diag(InputExpr->getLocStart(),
2152                              diag::err_asm_invalid_lvalue_in_input)
2153                         << Info.getConstraintStr()
2154                         << InputExpr->getSourceRange());
2155    }
2156
2157    if (Info.allowsRegister()) {
2158      if (InputExpr->getType()->isVoidType()) {
2159        return StmtError(Diag(InputExpr->getLocStart(),
2160                              diag::err_asm_invalid_type_in_input)
2161          << InputExpr->getType() << Info.getConstraintStr()
2162          << InputExpr->getSourceRange());
2163      }
2164    }
2165
2166    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2167    if (Result.isInvalid())
2168      return StmtError();
2169
2170    Exprs[i] = Result.take();
2171    InputConstraintInfos.push_back(Info);
2172  }
2173
2174  // Check that the clobbers are valid.
2175  for (unsigned i = 0; i != NumClobbers; i++) {
2176    StringLiteral *Literal = Clobbers[i];
2177    if (!Literal->isAscii())
2178      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2179        << Literal->getSourceRange());
2180
2181    StringRef Clobber = Literal->getString();
2182
2183    if (!Context.getTargetInfo().isValidClobber(Clobber))
2184      return StmtError(Diag(Literal->getLocStart(),
2185                  diag::err_asm_unknown_register_name) << Clobber);
2186  }
2187
2188  AsmStmt *NS =
2189    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2190                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2191                          AsmString, NumClobbers, Clobbers, RParenLoc);
2192  // Validate the asm string, ensuring it makes sense given the operands we
2193  // have.
2194  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2195  unsigned DiagOffs;
2196  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2197    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2198           << AsmString->getSourceRange();
2199    return StmtError();
2200  }
2201
2202  // Validate tied input operands for type mismatches.
2203  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2204    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2205
2206    // If this is a tied constraint, verify that the output and input have
2207    // either exactly the same type, or that they are int/ptr operands with the
2208    // same size (int/long, int*/long, are ok etc).
2209    if (!Info.hasTiedOperand()) continue;
2210
2211    unsigned TiedTo = Info.getTiedOperand();
2212    unsigned InputOpNo = i+NumOutputs;
2213    Expr *OutputExpr = Exprs[TiedTo];
2214    Expr *InputExpr = Exprs[InputOpNo];
2215
2216    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2217      continue;
2218
2219    QualType InTy = InputExpr->getType();
2220    QualType OutTy = OutputExpr->getType();
2221    if (Context.hasSameType(InTy, OutTy))
2222      continue;  // All types can be tied to themselves.
2223
2224    // Decide if the input and output are in the same domain (integer/ptr or
2225    // floating point.
2226    enum AsmDomain {
2227      AD_Int, AD_FP, AD_Other
2228    } InputDomain, OutputDomain;
2229
2230    if (InTy->isIntegerType() || InTy->isPointerType())
2231      InputDomain = AD_Int;
2232    else if (InTy->isRealFloatingType())
2233      InputDomain = AD_FP;
2234    else
2235      InputDomain = AD_Other;
2236
2237    if (OutTy->isIntegerType() || OutTy->isPointerType())
2238      OutputDomain = AD_Int;
2239    else if (OutTy->isRealFloatingType())
2240      OutputDomain = AD_FP;
2241    else
2242      OutputDomain = AD_Other;
2243
2244    // They are ok if they are the same size and in the same domain.  This
2245    // allows tying things like:
2246    //   void* to int*
2247    //   void* to int            if they are the same size.
2248    //   double to long double   if they are the same size.
2249    //
2250    uint64_t OutSize = Context.getTypeSize(OutTy);
2251    uint64_t InSize = Context.getTypeSize(InTy);
2252    if (OutSize == InSize && InputDomain == OutputDomain &&
2253        InputDomain != AD_Other)
2254      continue;
2255
2256    // If the smaller input/output operand is not mentioned in the asm string,
2257    // then we can promote the smaller one to a larger input and the asm string
2258    // won't notice.
2259    bool SmallerValueMentioned = false;
2260
2261    // If this is a reference to the input and if the input was the smaller
2262    // one, then we have to reject this asm.
2263    if (isOperandMentioned(InputOpNo, Pieces)) {
2264      // This is a use in the asm string of the smaller operand.  Since we
2265      // codegen this by promoting to a wider value, the asm will get printed
2266      // "wrong".
2267      SmallerValueMentioned |= InSize < OutSize;
2268    }
2269    if (isOperandMentioned(TiedTo, Pieces)) {
2270      // If this is a reference to the output, and if the output is the larger
2271      // value, then it's ok because we'll promote the input to the larger type.
2272      SmallerValueMentioned |= OutSize < InSize;
2273    }
2274
2275    // If the smaller value wasn't mentioned in the asm string, and if the
2276    // output was a register, just extend the shorter one to the size of the
2277    // larger one.
2278    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2279        OutputConstraintInfos[TiedTo].allowsRegister())
2280      continue;
2281
2282    // Either both of the operands were mentioned or the smaller one was
2283    // mentioned.  One more special case that we'll allow: if the tied input is
2284    // integer, unmentioned, and is a constant, then we'll allow truncating it
2285    // down to the size of the destination.
2286    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2287        !isOperandMentioned(InputOpNo, Pieces) &&
2288        InputExpr->isEvaluatable(Context)) {
2289      CastKind castKind =
2290        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2291      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2292      Exprs[InputOpNo] = InputExpr;
2293      NS->setInputExpr(i, InputExpr);
2294      continue;
2295    }
2296
2297    Diag(InputExpr->getLocStart(),
2298         diag::err_asm_tying_incompatible_types)
2299      << InTy << OutTy << OutputExpr->getSourceRange()
2300      << InputExpr->getSourceRange();
2301    return StmtError();
2302  }
2303
2304  return Owned(NS);
2305}
2306
2307StmtResult
2308Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2309                           SourceLocation RParen, Decl *Parm,
2310                           Stmt *Body) {
2311  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2312  if (Var && Var->isInvalidDecl())
2313    return StmtError();
2314
2315  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2316}
2317
2318StmtResult
2319Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2320  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2321}
2322
2323StmtResult
2324Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2325                         MultiStmtArg CatchStmts, Stmt *Finally) {
2326  if (!getLangOptions().ObjCExceptions)
2327    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2328
2329  getCurFunction()->setHasBranchProtectedScope();
2330  unsigned NumCatchStmts = CatchStmts.size();
2331  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2332                                     CatchStmts.release(),
2333                                     NumCatchStmts,
2334                                     Finally));
2335}
2336
2337StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2338                                                  Expr *Throw) {
2339  if (Throw) {
2340    Throw = MaybeCreateExprWithCleanups(Throw);
2341    ExprResult Result = DefaultLvalueConversion(Throw);
2342    if (Result.isInvalid())
2343      return StmtError();
2344
2345    Throw = Result.take();
2346    QualType ThrowType = Throw->getType();
2347    // Make sure the expression type is an ObjC pointer or "void *".
2348    if (!ThrowType->isDependentType() &&
2349        !ThrowType->isObjCObjectPointerType()) {
2350      const PointerType *PT = ThrowType->getAs<PointerType>();
2351      if (!PT || !PT->getPointeeType()->isVoidType())
2352        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2353                         << Throw->getType() << Throw->getSourceRange());
2354    }
2355  }
2356
2357  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2358}
2359
2360StmtResult
2361Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2362                           Scope *CurScope) {
2363  if (!getLangOptions().ObjCExceptions)
2364    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2365
2366  if (!Throw) {
2367    // @throw without an expression designates a rethrow (which much occur
2368    // in the context of an @catch clause).
2369    Scope *AtCatchParent = CurScope;
2370    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2371      AtCatchParent = AtCatchParent->getParent();
2372    if (!AtCatchParent)
2373      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2374  }
2375
2376  return BuildObjCAtThrowStmt(AtLoc, Throw);
2377}
2378
2379ExprResult
2380Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2381  ExprResult result = DefaultLvalueConversion(operand);
2382  if (result.isInvalid())
2383    return ExprError();
2384  operand = result.take();
2385
2386  // Make sure the expression type is an ObjC pointer or "void *".
2387  QualType type = operand->getType();
2388  if (!type->isDependentType() &&
2389      !type->isObjCObjectPointerType()) {
2390    const PointerType *pointerType = type->getAs<PointerType>();
2391    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2392      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2393               << type << operand->getSourceRange();
2394  }
2395
2396  // The operand to @synchronized is a full-expression.
2397  return MaybeCreateExprWithCleanups(operand);
2398}
2399
2400StmtResult
2401Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2402                                  Stmt *SyncBody) {
2403  // We can't jump into or indirect-jump out of a @synchronized block.
2404  getCurFunction()->setHasBranchProtectedScope();
2405  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2406}
2407
2408/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2409/// and creates a proper catch handler from them.
2410StmtResult
2411Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2412                         Stmt *HandlerBlock) {
2413  // There's nothing to test that ActOnExceptionDecl didn't already test.
2414  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2415                                          cast_or_null<VarDecl>(ExDecl),
2416                                          HandlerBlock));
2417}
2418
2419StmtResult
2420Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2421  getCurFunction()->setHasBranchProtectedScope();
2422  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2423}
2424
2425namespace {
2426
2427class TypeWithHandler {
2428  QualType t;
2429  CXXCatchStmt *stmt;
2430public:
2431  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2432  : t(type), stmt(statement) {}
2433
2434  // An arbitrary order is fine as long as it places identical
2435  // types next to each other.
2436  bool operator<(const TypeWithHandler &y) const {
2437    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2438      return true;
2439    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2440      return false;
2441    else
2442      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2443  }
2444
2445  bool operator==(const TypeWithHandler& other) const {
2446    return t == other.t;
2447  }
2448
2449  CXXCatchStmt *getCatchStmt() const { return stmt; }
2450  SourceLocation getTypeSpecStartLoc() const {
2451    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2452  }
2453};
2454
2455}
2456
2457/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2458/// handlers and creates a try statement from them.
2459StmtResult
2460Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2461                       MultiStmtArg RawHandlers) {
2462  // Don't report an error if 'try' is used in system headers.
2463  if (!getLangOptions().CXXExceptions &&
2464      !getSourceManager().isInSystemHeader(TryLoc))
2465      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2466
2467  unsigned NumHandlers = RawHandlers.size();
2468  assert(NumHandlers > 0 &&
2469         "The parser shouldn't call this if there are no handlers.");
2470  Stmt **Handlers = RawHandlers.get();
2471
2472  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2473
2474  for (unsigned i = 0; i < NumHandlers; ++i) {
2475    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2476    if (!Handler->getExceptionDecl()) {
2477      if (i < NumHandlers - 1)
2478        return StmtError(Diag(Handler->getLocStart(),
2479                              diag::err_early_catch_all));
2480
2481      continue;
2482    }
2483
2484    const QualType CaughtType = Handler->getCaughtType();
2485    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2486    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2487  }
2488
2489  // Detect handlers for the same type as an earlier one.
2490  if (NumHandlers > 1) {
2491    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2492
2493    TypeWithHandler prev = TypesWithHandlers[0];
2494    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2495      TypeWithHandler curr = TypesWithHandlers[i];
2496
2497      if (curr == prev) {
2498        Diag(curr.getTypeSpecStartLoc(),
2499             diag::warn_exception_caught_by_earlier_handler)
2500          << curr.getCatchStmt()->getCaughtType().getAsString();
2501        Diag(prev.getTypeSpecStartLoc(),
2502             diag::note_previous_exception_handler)
2503          << prev.getCatchStmt()->getCaughtType().getAsString();
2504      }
2505
2506      prev = curr;
2507    }
2508  }
2509
2510  getCurFunction()->setHasBranchProtectedScope();
2511
2512  // FIXME: We should detect handlers that cannot catch anything because an
2513  // earlier handler catches a superclass. Need to find a method that is not
2514  // quadratic for this.
2515  // Neither of these are explicitly forbidden, but every compiler detects them
2516  // and warns.
2517
2518  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2519                                  Handlers, NumHandlers));
2520}
2521
2522StmtResult
2523Sema::ActOnSEHTryBlock(bool IsCXXTry,
2524                       SourceLocation TryLoc,
2525                       Stmt *TryBlock,
2526                       Stmt *Handler) {
2527  assert(TryBlock && Handler);
2528
2529  getCurFunction()->setHasBranchProtectedScope();
2530
2531  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2532}
2533
2534StmtResult
2535Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2536                          Expr *FilterExpr,
2537                          Stmt *Block) {
2538  assert(FilterExpr && Block);
2539
2540  if(!FilterExpr->getType()->isIntegerType()) {
2541    return StmtError(Diag(FilterExpr->getExprLoc(),
2542                     diag::err_filter_expression_integral)
2543                     << FilterExpr->getType());
2544  }
2545
2546  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2547}
2548
2549StmtResult
2550Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2551                           Stmt *Block) {
2552  assert(Block);
2553  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2554}
2555
2556StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2557                                            bool IsIfExists,
2558                                            NestedNameSpecifierLoc QualifierLoc,
2559                                            DeclarationNameInfo NameInfo,
2560                                            Stmt *Nested)
2561{
2562  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2563                                             QualifierLoc, NameInfo,
2564                                             cast<CompoundStmt>(Nested));
2565}
2566
2567
2568StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2569                                            bool IsIfExists,
2570                                            CXXScopeSpec &SS,
2571                                            UnqualifiedId &Name,
2572                                            Stmt *Nested) {
2573  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2574                                    SS.getWithLocInContext(Context),
2575                                    GetNameFromUnqualifiedId(Name),
2576                                    Nested);
2577}
2578