SemaStmt.cpp revision 60d7b3a319d84d688752be3870615ac0f111fb16
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/StmtObjC.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallVector.h"
28using namespace clang;
29
30StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
31  Expr *E = expr.get();
32  assert(E && "ActOnExprStmt(): missing expression");
33  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
34  // void expression for its side effects.  Conversion to void allows any
35  // operand, even incomplete types.
36
37  // Same thing in for stmt first clause (when expr) and third clause.
38  return Owned(static_cast<Stmt*>(E));
39}
40
41
42StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
43  return Owned(new (Context) NullStmt(SemiLoc));
44}
45
46StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
47                                           SourceLocation StartLoc,
48                                           SourceLocation EndLoc) {
49  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
50
51  // If we have an invalid decl, just return an error.
52  if (DG.isNull()) return StmtError();
53
54  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
55}
56
57void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
58  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
59
60  // If we have an invalid decl, just return.
61  if (DG.isNull() || !DG.isSingleDecl()) return;
62  // suppress any potential 'unused variable' warning.
63  DG.getSingleDecl()->setUsed();
64}
65
66void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
67  const Expr *E = dyn_cast_or_null<Expr>(S);
68  if (!E)
69    return;
70
71  SourceLocation Loc;
72  SourceRange R1, R2;
73  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
74    return;
75
76  // Okay, we have an unused result.  Depending on what the base expression is,
77  // we might want to make a more specific diagnostic.  Check for one of these
78  // cases now.
79  unsigned DiagID = diag::warn_unused_expr;
80  E = E->IgnoreParens();
81  if (isa<ObjCImplicitSetterGetterRefExpr>(E))
82    DiagID = diag::warn_unused_property_expr;
83
84  if (const CXXExprWithTemporaries *Temps = dyn_cast<CXXExprWithTemporaries>(E))
85    E = Temps->getSubExpr();
86
87  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
88    if (E->getType()->isVoidType())
89      return;
90
91    // If the callee has attribute pure, const, or warn_unused_result, warn with
92    // a more specific message to make it clear what is happening.
93    if (const Decl *FD = CE->getCalleeDecl()) {
94      if (FD->getAttr<WarnUnusedResultAttr>()) {
95        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
96        return;
97      }
98      if (FD->getAttr<PureAttr>()) {
99        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
100        return;
101      }
102      if (FD->getAttr<ConstAttr>()) {
103        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
104        return;
105      }
106    }
107  }
108  else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
109    const ObjCMethodDecl *MD = ME->getMethodDecl();
110    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
111      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
112      return;
113    }
114  } else if (const CXXFunctionalCastExpr *FC
115                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
116    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
117        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
118      return;
119  }
120  // Diagnose "(void*) blah" as a typo for "(void) blah".
121  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
122    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
123    QualType T = TI->getType();
124
125    // We really do want to use the non-canonical type here.
126    if (T == Context.VoidPtrTy) {
127      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
128
129      Diag(Loc, diag::warn_unused_voidptr)
130        << FixItHint::CreateRemoval(TL.getStarLoc());
131      return;
132    }
133  }
134
135  DiagRuntimeBehavior(Loc, PDiag(DiagID) << R1 << R2);
136}
137
138StmtResult
139Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
140                        MultiStmtArg elts, bool isStmtExpr) {
141  unsigned NumElts = elts.size();
142  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
143  // If we're in C89 mode, check that we don't have any decls after stmts.  If
144  // so, emit an extension diagnostic.
145  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
146    // Note that __extension__ can be around a decl.
147    unsigned i = 0;
148    // Skip over all declarations.
149    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
150      /*empty*/;
151
152    // We found the end of the list or a statement.  Scan for another declstmt.
153    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
154      /*empty*/;
155
156    if (i != NumElts) {
157      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
158      Diag(D->getLocation(), diag::ext_mixed_decls_code);
159    }
160  }
161  // Warn about unused expressions in statements.
162  for (unsigned i = 0; i != NumElts; ++i) {
163    // Ignore statements that are last in a statement expression.
164    if (isStmtExpr && i == NumElts - 1)
165      continue;
166
167    DiagnoseUnusedExprResult(Elts[i]);
168  }
169
170  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
171}
172
173StmtResult
174Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
175                    SourceLocation DotDotDotLoc, Expr *RHSVal,
176                    SourceLocation ColonLoc) {
177  assert((LHSVal != 0) && "missing expression in case statement");
178
179  // C99 6.8.4.2p3: The expression shall be an integer constant.
180  // However, GCC allows any evaluatable integer expression.
181  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
182      VerifyIntegerConstantExpression(LHSVal))
183    return StmtError();
184
185  // GCC extension: The expression shall be an integer constant.
186
187  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
188      VerifyIntegerConstantExpression(RHSVal)) {
189    RHSVal = 0;  // Recover by just forgetting about it.
190  }
191
192  if (getSwitchStack().empty()) {
193    Diag(CaseLoc, diag::err_case_not_in_switch);
194    return StmtError();
195  }
196
197  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
198                                        ColonLoc);
199  getSwitchStack().back()->addSwitchCase(CS);
200  return Owned(CS);
201}
202
203/// ActOnCaseStmtBody - This installs a statement as the body of a case.
204void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
205  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
206  CS->setSubStmt(SubStmt);
207}
208
209StmtResult
210Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
211                       Stmt *SubStmt, Scope *CurScope) {
212  if (getSwitchStack().empty()) {
213    Diag(DefaultLoc, diag::err_default_not_in_switch);
214    return Owned(SubStmt);
215  }
216
217  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
218  getSwitchStack().back()->addSwitchCase(DS);
219  return Owned(DS);
220}
221
222StmtResult
223Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
224                     SourceLocation ColonLoc, Stmt *SubStmt) {
225  // Look up the record for this label identifier.
226  LabelStmt *&LabelDecl = getLabelMap()[II];
227
228  // If not forward referenced or defined already, just create a new LabelStmt.
229  if (LabelDecl == 0)
230    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
231
232  assert(LabelDecl->getID() == II && "Label mismatch!");
233
234  // Otherwise, this label was either forward reference or multiply defined.  If
235  // multiply defined, reject it now.
236  if (LabelDecl->getSubStmt()) {
237    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
238    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
239    return Owned(SubStmt);
240  }
241
242  // Otherwise, this label was forward declared, and we just found its real
243  // definition.  Fill in the forward definition and return it.
244  LabelDecl->setIdentLoc(IdentLoc);
245  LabelDecl->setSubStmt(SubStmt);
246  return Owned(LabelDecl);
247}
248
249StmtResult
250Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
251                  Stmt *thenStmt, SourceLocation ElseLoc,
252                  Stmt *elseStmt) {
253  ExprResult CondResult(CondVal.release());
254
255  VarDecl *ConditionVar = 0;
256  if (CondVar) {
257    ConditionVar = cast<VarDecl>(CondVar);
258    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
259    if (CondResult.isInvalid())
260      return StmtError();
261  }
262  Expr *ConditionExpr = CondResult.takeAs<Expr>();
263  if (!ConditionExpr)
264    return StmtError();
265
266  DiagnoseUnusedExprResult(thenStmt);
267
268  // Warn if the if block has a null body without an else value.
269  // this helps prevent bugs due to typos, such as
270  // if (condition);
271  //   do_stuff();
272  if (!elseStmt) {
273    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
274      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
275  }
276
277  DiagnoseUnusedExprResult(elseStmt);
278
279  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
280                                    thenStmt, ElseLoc, elseStmt));
281}
282
283/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
284/// the specified width and sign.  If an overflow occurs, detect it and emit
285/// the specified diagnostic.
286void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
287                                              unsigned NewWidth, bool NewSign,
288                                              SourceLocation Loc,
289                                              unsigned DiagID) {
290  // Perform a conversion to the promoted condition type if needed.
291  if (NewWidth > Val.getBitWidth()) {
292    // If this is an extension, just do it.
293    Val.extend(NewWidth);
294    Val.setIsSigned(NewSign);
295
296    // If the input was signed and negative and the output is
297    // unsigned, don't bother to warn: this is implementation-defined
298    // behavior.
299    // FIXME: Introduce a second, default-ignored warning for this case?
300  } else if (NewWidth < Val.getBitWidth()) {
301    // If this is a truncation, check for overflow.
302    llvm::APSInt ConvVal(Val);
303    ConvVal.trunc(NewWidth);
304    ConvVal.setIsSigned(NewSign);
305    ConvVal.extend(Val.getBitWidth());
306    ConvVal.setIsSigned(Val.isSigned());
307    if (ConvVal != Val)
308      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
309
310    // Regardless of whether a diagnostic was emitted, really do the
311    // truncation.
312    Val.trunc(NewWidth);
313    Val.setIsSigned(NewSign);
314  } else if (NewSign != Val.isSigned()) {
315    // Convert the sign to match the sign of the condition.  This can cause
316    // overflow as well: unsigned(INTMIN)
317    // We don't diagnose this overflow, because it is implementation-defined
318    // behavior.
319    // FIXME: Introduce a second, default-ignored warning for this case?
320    llvm::APSInt OldVal(Val);
321    Val.setIsSigned(NewSign);
322  }
323}
324
325namespace {
326  struct CaseCompareFunctor {
327    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
328                    const llvm::APSInt &RHS) {
329      return LHS.first < RHS;
330    }
331    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
332                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
333      return LHS.first < RHS.first;
334    }
335    bool operator()(const llvm::APSInt &LHS,
336                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
337      return LHS < RHS.first;
338    }
339  };
340}
341
342/// CmpCaseVals - Comparison predicate for sorting case values.
343///
344static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
345                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
346  if (lhs.first < rhs.first)
347    return true;
348
349  if (lhs.first == rhs.first &&
350      lhs.second->getCaseLoc().getRawEncoding()
351       < rhs.second->getCaseLoc().getRawEncoding())
352    return true;
353  return false;
354}
355
356/// CmpEnumVals - Comparison predicate for sorting enumeration values.
357///
358static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
359                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
360{
361  return lhs.first < rhs.first;
362}
363
364/// EqEnumVals - Comparison preficate for uniqing enumeration values.
365///
366static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
367                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
368{
369  return lhs.first == rhs.first;
370}
371
372/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
373/// potentially integral-promoted expression @p expr.
374static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
375  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
376    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
377    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
378    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
379      return TypeBeforePromotion;
380    }
381  }
382  return expr->getType();
383}
384
385StmtResult
386Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
387                             Decl *CondVar) {
388  ExprResult CondResult;
389
390  VarDecl *ConditionVar = 0;
391  if (CondVar) {
392    ConditionVar = cast<VarDecl>(CondVar);
393    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
394    if (CondResult.isInvalid())
395      return StmtError();
396
397    Cond = CondResult.release();
398  }
399
400  if (!Cond)
401    return StmtError();
402
403  CondResult
404    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
405                          PDiag(diag::err_typecheck_statement_requires_integer),
406                                   PDiag(diag::err_switch_incomplete_class_type)
407                                     << Cond->getSourceRange(),
408                                   PDiag(diag::err_switch_explicit_conversion),
409                                         PDiag(diag::note_switch_conversion),
410                                   PDiag(diag::err_switch_multiple_conversions),
411                                         PDiag(diag::note_switch_conversion),
412                                         PDiag(0));
413  if (CondResult.isInvalid()) return StmtError();
414  Cond = CondResult.take();
415
416  if (!CondVar) {
417    CondResult = MaybeCreateCXXExprWithTemporaries(Cond);
418    if (CondResult.isInvalid())
419      return StmtError();
420    Cond = CondResult.take();
421  }
422
423  setFunctionHasBranchIntoScope();
424
425  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
426  getSwitchStack().push_back(SS);
427  return Owned(SS);
428}
429
430StmtResult
431Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
432                            Stmt *BodyStmt) {
433  SwitchStmt *SS = cast<SwitchStmt>(Switch);
434  assert(SS == getSwitchStack().back() && "switch stack missing push/pop!");
435
436  SS->setBody(BodyStmt, SwitchLoc);
437  getSwitchStack().pop_back();
438
439  if (SS->getCond() == 0)
440    return StmtError();
441
442  Expr *CondExpr = SS->getCond();
443  Expr *CondExprBeforePromotion = CondExpr;
444  QualType CondTypeBeforePromotion =
445      GetTypeBeforeIntegralPromotion(CondExpr);
446
447  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
448  UsualUnaryConversions(CondExpr);
449  QualType CondType = CondExpr->getType();
450  SS->setCond(CondExpr);
451
452  // C++ 6.4.2.p2:
453  // Integral promotions are performed (on the switch condition).
454  //
455  // A case value unrepresentable by the original switch condition
456  // type (before the promotion) doesn't make sense, even when it can
457  // be represented by the promoted type.  Therefore we need to find
458  // the pre-promotion type of the switch condition.
459  if (!CondExpr->isTypeDependent()) {
460    // We have already converted the expression to an integral or enumeration
461    // type, when we started the switch statement. If we don't have an
462    // appropriate type now, just return an error.
463    if (!CondType->isIntegralOrEnumerationType())
464      return StmtError();
465
466    if (CondExpr->isKnownToHaveBooleanValue()) {
467      // switch(bool_expr) {...} is often a programmer error, e.g.
468      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
469      // One can always use an if statement instead of switch(bool_expr).
470      Diag(SwitchLoc, diag::warn_bool_switch_condition)
471          << CondExpr->getSourceRange();
472    }
473  }
474
475  // Get the bitwidth of the switched-on value before promotions.  We must
476  // convert the integer case values to this width before comparison.
477  bool HasDependentValue
478    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
479  unsigned CondWidth
480    = HasDependentValue? 0
481      : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
482  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
483
484  // Accumulate all of the case values in a vector so that we can sort them
485  // and detect duplicates.  This vector contains the APInt for the case after
486  // it has been converted to the condition type.
487  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
488  CaseValsTy CaseVals;
489
490  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
491  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
492  CaseRangesTy CaseRanges;
493
494  DefaultStmt *TheDefaultStmt = 0;
495
496  bool CaseListIsErroneous = false;
497
498  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
499       SC = SC->getNextSwitchCase()) {
500
501    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
502      if (TheDefaultStmt) {
503        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
504        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
505
506        // FIXME: Remove the default statement from the switch block so that
507        // we'll return a valid AST.  This requires recursing down the AST and
508        // finding it, not something we are set up to do right now.  For now,
509        // just lop the entire switch stmt out of the AST.
510        CaseListIsErroneous = true;
511      }
512      TheDefaultStmt = DS;
513
514    } else {
515      CaseStmt *CS = cast<CaseStmt>(SC);
516
517      // We already verified that the expression has a i-c-e value (C99
518      // 6.8.4.2p3) - get that value now.
519      Expr *Lo = CS->getLHS();
520
521      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
522        HasDependentValue = true;
523        break;
524      }
525
526      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
527
528      // Convert the value to the same width/sign as the condition.
529      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
530                                         CS->getLHS()->getLocStart(),
531                                         diag::warn_case_value_overflow);
532
533      // If the LHS is not the same type as the condition, insert an implicit
534      // cast.
535      ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast);
536      CS->setLHS(Lo);
537
538      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
539      if (CS->getRHS()) {
540        if (CS->getRHS()->isTypeDependent() ||
541            CS->getRHS()->isValueDependent()) {
542          HasDependentValue = true;
543          break;
544        }
545        CaseRanges.push_back(std::make_pair(LoVal, CS));
546      } else
547        CaseVals.push_back(std::make_pair(LoVal, CS));
548    }
549  }
550
551  if (!HasDependentValue) {
552    // If we don't have a default statement, check whether the
553    // condition is constant.
554    llvm::APSInt ConstantCondValue;
555    bool HasConstantCond = false;
556    bool ShouldCheckConstantCond = false;
557    if (!HasDependentValue && !TheDefaultStmt) {
558      Expr::EvalResult Result;
559      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
560      if (HasConstantCond) {
561        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
562        ConstantCondValue = Result.Val.getInt();
563        ShouldCheckConstantCond = true;
564
565        assert(ConstantCondValue.getBitWidth() == CondWidth &&
566               ConstantCondValue.isSigned() == CondIsSigned);
567      }
568    }
569
570    // Sort all the scalar case values so we can easily detect duplicates.
571    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
572
573    if (!CaseVals.empty()) {
574      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
575        if (ShouldCheckConstantCond &&
576            CaseVals[i].first == ConstantCondValue)
577          ShouldCheckConstantCond = false;
578
579        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
580          // If we have a duplicate, report it.
581          Diag(CaseVals[i].second->getLHS()->getLocStart(),
582               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
583          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
584               diag::note_duplicate_case_prev);
585          // FIXME: We really want to remove the bogus case stmt from the
586          // substmt, but we have no way to do this right now.
587          CaseListIsErroneous = true;
588        }
589      }
590    }
591
592    // Detect duplicate case ranges, which usually don't exist at all in
593    // the first place.
594    if (!CaseRanges.empty()) {
595      // Sort all the case ranges by their low value so we can easily detect
596      // overlaps between ranges.
597      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
598
599      // Scan the ranges, computing the high values and removing empty ranges.
600      std::vector<llvm::APSInt> HiVals;
601      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
602        llvm::APSInt &LoVal = CaseRanges[i].first;
603        CaseStmt *CR = CaseRanges[i].second;
604        Expr *Hi = CR->getRHS();
605        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
606
607        // Convert the value to the same width/sign as the condition.
608        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
609                                           CR->getRHS()->getLocStart(),
610                                           diag::warn_case_value_overflow);
611
612        // If the LHS is not the same type as the condition, insert an implicit
613        // cast.
614        ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast);
615        CR->setRHS(Hi);
616
617        // If the low value is bigger than the high value, the case is empty.
618        if (LoVal > HiVal) {
619          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
620            << SourceRange(CR->getLHS()->getLocStart(),
621                           CR->getRHS()->getLocEnd());
622          CaseRanges.erase(CaseRanges.begin()+i);
623          --i, --e;
624          continue;
625        }
626
627        if (ShouldCheckConstantCond &&
628            LoVal <= ConstantCondValue &&
629            ConstantCondValue <= HiVal)
630          ShouldCheckConstantCond = false;
631
632        HiVals.push_back(HiVal);
633      }
634
635      // Rescan the ranges, looking for overlap with singleton values and other
636      // ranges.  Since the range list is sorted, we only need to compare case
637      // ranges with their neighbors.
638      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
639        llvm::APSInt &CRLo = CaseRanges[i].first;
640        llvm::APSInt &CRHi = HiVals[i];
641        CaseStmt *CR = CaseRanges[i].second;
642
643        // Check to see whether the case range overlaps with any
644        // singleton cases.
645        CaseStmt *OverlapStmt = 0;
646        llvm::APSInt OverlapVal(32);
647
648        // Find the smallest value >= the lower bound.  If I is in the
649        // case range, then we have overlap.
650        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
651                                                  CaseVals.end(), CRLo,
652                                                  CaseCompareFunctor());
653        if (I != CaseVals.end() && I->first < CRHi) {
654          OverlapVal  = I->first;   // Found overlap with scalar.
655          OverlapStmt = I->second;
656        }
657
658        // Find the smallest value bigger than the upper bound.
659        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
660        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
661          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
662          OverlapStmt = (I-1)->second;
663        }
664
665        // Check to see if this case stmt overlaps with the subsequent
666        // case range.
667        if (i && CRLo <= HiVals[i-1]) {
668          OverlapVal  = HiVals[i-1];       // Found overlap with range.
669          OverlapStmt = CaseRanges[i-1].second;
670        }
671
672        if (OverlapStmt) {
673          // If we have a duplicate, report it.
674          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
675            << OverlapVal.toString(10);
676          Diag(OverlapStmt->getLHS()->getLocStart(),
677               diag::note_duplicate_case_prev);
678          // FIXME: We really want to remove the bogus case stmt from the
679          // substmt, but we have no way to do this right now.
680          CaseListIsErroneous = true;
681        }
682      }
683    }
684
685    // Complain if we have a constant condition and we didn't find a match.
686    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
687      // TODO: it would be nice if we printed enums as enums, chars as
688      // chars, etc.
689      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
690        << ConstantCondValue.toString(10)
691        << CondExpr->getSourceRange();
692    }
693
694    // Check to see if switch is over an Enum and handles all of its
695    // values.  We don't need to do this if there's a default
696    // statement or if we have a constant condition.
697    //
698    // TODO: we might want to check whether case values are out of the
699    // enum even if we don't want to check whether all cases are handled.
700    const EnumType* ET = CondTypeBeforePromotion->getAs<EnumType>();
701    // If switch has default case, then ignore it.
702    if (!CaseListIsErroneous && !TheDefaultStmt && !HasConstantCond && ET) {
703      const EnumDecl *ED = ET->getDecl();
704      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
705      EnumValsTy EnumVals;
706
707      // Gather all enum values, set their type and sort them,
708      // allowing easier comparison with CaseVals.
709      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
710             EDI != ED->enumerator_end(); EDI++) {
711        llvm::APSInt Val = (*EDI)->getInitVal();
712        if(Val.getBitWidth() < CondWidth)
713          Val.extend(CondWidth);
714        else if (Val.getBitWidth() > CondWidth)
715          Val.trunc(CondWidth);
716        Val.setIsSigned(CondIsSigned);
717        EnumVals.push_back(std::make_pair(Val, (*EDI)));
718      }
719      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
720      EnumValsTy::iterator EIend =
721        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
722      // See which case values aren't in enum
723      EnumValsTy::const_iterator EI = EnumVals.begin();
724      for (CaseValsTy::const_iterator CI = CaseVals.begin();
725             CI != CaseVals.end(); CI++) {
726        while (EI != EIend && EI->first < CI->first)
727          EI++;
728        if (EI == EIend || EI->first > CI->first)
729            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
730              << ED->getDeclName();
731      }
732      // See which of case ranges aren't in enum
733      EI = EnumVals.begin();
734      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
735             RI != CaseRanges.end() && EI != EIend; RI++) {
736        while (EI != EIend && EI->first < RI->first)
737          EI++;
738
739        if (EI == EIend || EI->first != RI->first) {
740          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
741            << ED->getDeclName();
742        }
743
744        llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
745        while (EI != EIend && EI->first < Hi)
746          EI++;
747        if (EI == EIend || EI->first != Hi)
748          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
749            << ED->getDeclName();
750      }
751      //Check which enum vals aren't in switch
752      CaseValsTy::const_iterator CI = CaseVals.begin();
753      CaseRangesTy::const_iterator RI = CaseRanges.begin();
754      EI = EnumVals.begin();
755      for (; EI != EIend; EI++) {
756        //Drop unneeded case values
757        llvm::APSInt CIVal;
758        while (CI != CaseVals.end() && CI->first < EI->first)
759          CI++;
760
761        if (CI != CaseVals.end() && CI->first == EI->first)
762          continue;
763
764        //Drop unneeded case ranges
765        for (; RI != CaseRanges.end(); RI++) {
766          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
767          if (EI->first <= Hi)
768            break;
769        }
770
771        if (RI == CaseRanges.end() || EI->first < RI->first)
772          Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
773            << EI->second->getDeclName();
774      }
775    }
776  }
777
778  // FIXME: If the case list was broken is some way, we don't have a good system
779  // to patch it up.  Instead, just return the whole substmt as broken.
780  if (CaseListIsErroneous)
781    return StmtError();
782
783  return Owned(SS);
784}
785
786StmtResult
787Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
788                     Decl *CondVar, Stmt *Body) {
789  ExprResult CondResult(Cond.release());
790
791  VarDecl *ConditionVar = 0;
792  if (CondVar) {
793    ConditionVar = cast<VarDecl>(CondVar);
794    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
795    if (CondResult.isInvalid())
796      return StmtError();
797  }
798  Expr *ConditionExpr = CondResult.take();
799  if (!ConditionExpr)
800    return StmtError();
801
802  DiagnoseUnusedExprResult(Body);
803
804  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
805                                       Body, WhileLoc));
806}
807
808StmtResult
809Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
810                  SourceLocation WhileLoc, SourceLocation CondLParen,
811                  Expr *Cond, SourceLocation CondRParen) {
812  assert(Cond && "ActOnDoStmt(): missing expression");
813
814  if (CheckBooleanCondition(Cond, DoLoc))
815    return StmtError();
816
817  ExprResult CondResult = MaybeCreateCXXExprWithTemporaries(Cond);
818  if (CondResult.isInvalid())
819    return StmtError();
820  Cond = CondResult.take();
821
822  DiagnoseUnusedExprResult(Body);
823
824  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
825}
826
827StmtResult
828Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
829                   Stmt *First, FullExprArg second, Decl *secondVar,
830                   FullExprArg third,
831                   SourceLocation RParenLoc, Stmt *Body) {
832  if (!getLangOptions().CPlusPlus) {
833    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
834      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
835      // declare identifiers for objects having storage class 'auto' or
836      // 'register'.
837      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
838           DI!=DE; ++DI) {
839        VarDecl *VD = dyn_cast<VarDecl>(*DI);
840        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
841          VD = 0;
842        if (VD == 0)
843          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
844        // FIXME: mark decl erroneous!
845      }
846    }
847  }
848
849  ExprResult SecondResult(second.release());
850  VarDecl *ConditionVar = 0;
851  if (secondVar) {
852    ConditionVar = cast<VarDecl>(secondVar);
853    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
854    if (SecondResult.isInvalid())
855      return StmtError();
856  }
857
858  Expr *Third  = third.release().takeAs<Expr>();
859
860  DiagnoseUnusedExprResult(First);
861  DiagnoseUnusedExprResult(Third);
862  DiagnoseUnusedExprResult(Body);
863
864  return Owned(new (Context) ForStmt(Context, First,
865                                     SecondResult.take(), ConditionVar,
866                                     Third, Body, ForLoc, LParenLoc,
867                                     RParenLoc));
868}
869
870StmtResult
871Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
872                                 SourceLocation LParenLoc,
873                                 Stmt *First, Expr *Second,
874                                 SourceLocation RParenLoc, Stmt *Body) {
875  if (First) {
876    QualType FirstType;
877    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
878      if (!DS->isSingleDecl())
879        return StmtError(Diag((*DS->decl_begin())->getLocation(),
880                         diag::err_toomany_element_decls));
881
882      Decl *D = DS->getSingleDecl();
883      FirstType = cast<ValueDecl>(D)->getType();
884      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
885      // declare identifiers for objects having storage class 'auto' or
886      // 'register'.
887      VarDecl *VD = cast<VarDecl>(D);
888      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
889        return StmtError(Diag(VD->getLocation(),
890                              diag::err_non_variable_decl_in_for));
891    } else {
892      Expr *FirstE = cast<Expr>(First);
893      if (!FirstE->isTypeDependent() &&
894          FirstE->isLvalue(Context) != Expr::LV_Valid)
895        return StmtError(Diag(First->getLocStart(),
896                   diag::err_selector_element_not_lvalue)
897          << First->getSourceRange());
898
899      FirstType = static_cast<Expr*>(First)->getType();
900    }
901    if (!FirstType->isDependentType() &&
902        !FirstType->isObjCObjectPointerType() &&
903        !FirstType->isBlockPointerType())
904        Diag(ForLoc, diag::err_selector_element_type)
905          << FirstType << First->getSourceRange();
906  }
907  if (Second && !Second->isTypeDependent()) {
908    DefaultFunctionArrayLvalueConversion(Second);
909    QualType SecondType = Second->getType();
910    if (!SecondType->isObjCObjectPointerType())
911      Diag(ForLoc, diag::err_collection_expr_type)
912        << SecondType << Second->getSourceRange();
913    else if (const ObjCObjectPointerType *OPT =
914             SecondType->getAsObjCInterfacePointerType()) {
915      llvm::SmallVector<IdentifierInfo *, 4> KeyIdents;
916      IdentifierInfo* selIdent =
917        &Context.Idents.get("countByEnumeratingWithState");
918      KeyIdents.push_back(selIdent);
919      selIdent = &Context.Idents.get("objects");
920      KeyIdents.push_back(selIdent);
921      selIdent = &Context.Idents.get("count");
922      KeyIdents.push_back(selIdent);
923      Selector CSelector = Context.Selectors.getSelector(3, &KeyIdents[0]);
924      if (ObjCInterfaceDecl *IDecl = OPT->getInterfaceDecl()) {
925        if (!IDecl->isForwardDecl() &&
926            !IDecl->lookupInstanceMethod(CSelector)) {
927          // Must further look into private implementation methods.
928          if (!LookupPrivateInstanceMethod(CSelector, IDecl))
929            Diag(ForLoc, diag::warn_collection_expr_type)
930              << SecondType << CSelector << Second->getSourceRange();
931        }
932      }
933    }
934  }
935  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
936                                                   ForLoc, RParenLoc));
937}
938
939StmtResult
940Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
941                    IdentifierInfo *LabelII) {
942  // Look up the record for this label identifier.
943  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
944
945  setFunctionHasBranchIntoScope();
946
947  // If we haven't seen this label yet, create a forward reference.
948  if (LabelDecl == 0)
949    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
950
951  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
952}
953
954StmtResult
955Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
956                            Expr *E) {
957  // Convert operand to void*
958  if (!E->isTypeDependent()) {
959    QualType ETy = E->getType();
960    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
961    AssignConvertType ConvTy =
962      CheckSingleAssignmentConstraints(DestTy, E);
963    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
964      return StmtError();
965  }
966
967  setFunctionHasIndirectGoto();
968
969  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
970}
971
972StmtResult
973Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
974  Scope *S = CurScope->getContinueParent();
975  if (!S) {
976    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
977    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
978  }
979
980  return Owned(new (Context) ContinueStmt(ContinueLoc));
981}
982
983StmtResult
984Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
985  Scope *S = CurScope->getBreakParent();
986  if (!S) {
987    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
988    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
989  }
990
991  return Owned(new (Context) BreakStmt(BreakLoc));
992}
993
994/// \brief Determine whether a return statement is a candidate for the named
995/// return value optimization (C++0x 12.8p34, bullet 1).
996///
997/// \param Ctx The context in which the return expression and type occur.
998///
999/// \param RetType The return type of the function or block.
1000///
1001/// \param RetExpr The expression being returned from the function or block.
1002///
1003/// \returns The NRVO candidate variable, if the return statement may use the
1004/// NRVO, or NULL if there is no such candidate.
1005static const VarDecl *getNRVOCandidate(ASTContext &Ctx, QualType RetType,
1006                                       Expr *RetExpr) {
1007  QualType ExprType = RetExpr->getType();
1008  // - in a return statement in a function with ...
1009  // ... a class return type ...
1010  if (!RetType->isRecordType())
1011    return 0;
1012  // ... the same cv-unqualified type as the function return type ...
1013  if (!Ctx.hasSameUnqualifiedType(RetType, ExprType))
1014    return 0;
1015  // ... the expression is the name of a non-volatile automatic object ...
1016  // We ignore parentheses here.
1017  // FIXME: Is this compliant? (Everyone else does it)
1018  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
1019  if (!DR)
1020    return 0;
1021  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1022  if (!VD)
1023    return 0;
1024
1025  if (VD->getKind() == Decl::Var && VD->hasLocalStorage() &&
1026      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1027      !VD->getType().isVolatileQualified())
1028    return VD;
1029
1030  return 0;
1031}
1032
1033/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1034///
1035StmtResult
1036Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1037  // If this is the first return we've seen in the block, infer the type of
1038  // the block from it.
1039  BlockScopeInfo *CurBlock = getCurBlock();
1040  if (CurBlock->ReturnType.isNull()) {
1041    if (RetValExp) {
1042      // Don't call UsualUnaryConversions(), since we don't want to do
1043      // integer promotions here.
1044      DefaultFunctionArrayLvalueConversion(RetValExp);
1045      CurBlock->ReturnType = RetValExp->getType();
1046      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1047        // We have to remove a 'const' added to copied-in variable which was
1048        // part of the implementation spec. and not the actual qualifier for
1049        // the variable.
1050        if (CDRE->isConstQualAdded())
1051           CurBlock->ReturnType.removeConst();
1052      }
1053    } else
1054      CurBlock->ReturnType = Context.VoidTy;
1055  }
1056  QualType FnRetType = CurBlock->ReturnType;
1057
1058  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
1059    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1060      << getCurFunctionOrMethodDecl()->getDeclName();
1061    return StmtError();
1062  }
1063
1064  // Otherwise, verify that this result type matches the previous one.  We are
1065  // pickier with blocks than for normal functions because we don't have GCC
1066  // compatibility to worry about here.
1067  ReturnStmt *Result = 0;
1068  if (CurBlock->ReturnType->isVoidType()) {
1069    if (RetValExp) {
1070      Diag(ReturnLoc, diag::err_return_block_has_expr);
1071      RetValExp = 0;
1072    }
1073    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1074  } else if (!RetValExp) {
1075    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1076  } else {
1077    const VarDecl *NRVOCandidate = 0;
1078
1079    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1080      // we have a non-void block with an expression, continue checking
1081
1082      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1083      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1084      // function return.
1085
1086      // In C++ the return statement is handled via a copy initialization.
1087      // the C version of which boils down to CheckSingleAssignmentConstraints.
1088      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1089      ExprResult Res = PerformCopyInitialization(
1090                               InitializedEntity::InitializeResult(ReturnLoc,
1091                                                                   FnRetType,
1092                                                            NRVOCandidate != 0),
1093                               SourceLocation(),
1094                               Owned(RetValExp));
1095      if (Res.isInvalid()) {
1096        // FIXME: Cleanup temporaries here, anyway?
1097        return StmtError();
1098      }
1099
1100      if (RetValExp)
1101        RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1102
1103      RetValExp = Res.takeAs<Expr>();
1104      if (RetValExp)
1105        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1106    }
1107
1108    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1109  }
1110
1111  // If we need to check for the named return value optimization, save the
1112  // return statement in our scope for later processing.
1113  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1114      !CurContext->isDependentContext())
1115    FunctionScopes.back()->Returns.push_back(Result);
1116
1117  return Owned(Result);
1118}
1119
1120StmtResult
1121Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1122  if (getCurBlock())
1123    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1124
1125  QualType FnRetType;
1126  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1127    FnRetType = FD->getResultType();
1128    if (FD->hasAttr<NoReturnAttr>() ||
1129        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1130      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1131        << getCurFunctionOrMethodDecl()->getDeclName();
1132  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1133    FnRetType = MD->getResultType();
1134  else // If we don't have a function/method context, bail.
1135    return StmtError();
1136
1137  ReturnStmt *Result = 0;
1138  if (FnRetType->isVoidType()) {
1139    if (RetValExp && !RetValExp->isTypeDependent()) {
1140      // C99 6.8.6.4p1 (ext_ since GCC warns)
1141      unsigned D = diag::ext_return_has_expr;
1142      if (RetValExp->getType()->isVoidType())
1143        D = diag::ext_return_has_void_expr;
1144
1145      // return (some void expression); is legal in C++.
1146      if (D != diag::ext_return_has_void_expr ||
1147          !getLangOptions().CPlusPlus) {
1148        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1149        Diag(ReturnLoc, D)
1150          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1151          << RetValExp->getSourceRange();
1152      }
1153
1154      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1155    }
1156
1157    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1158  } else if (!RetValExp && !FnRetType->isDependentType()) {
1159    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1160    // C99 6.8.6.4p1 (ext_ since GCC warns)
1161    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1162
1163    if (FunctionDecl *FD = getCurFunctionDecl())
1164      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1165    else
1166      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1167    Result = new (Context) ReturnStmt(ReturnLoc);
1168  } else {
1169    const VarDecl *NRVOCandidate = 0;
1170    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1171      // we have a non-void function with an expression, continue checking
1172
1173      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1174      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1175      // function return.
1176
1177      // In C++ the return statement is handled via a copy initialization.
1178      // the C version of which boils down to CheckSingleAssignmentConstraints.
1179      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1180      ExprResult Res = PerformCopyInitialization(
1181                               InitializedEntity::InitializeResult(ReturnLoc,
1182                                                                   FnRetType,
1183                                                            NRVOCandidate != 0),
1184                               SourceLocation(),
1185                               Owned(RetValExp));
1186      if (Res.isInvalid()) {
1187        // FIXME: Cleanup temporaries here, anyway?
1188        return StmtError();
1189      }
1190
1191      RetValExp = Res.takeAs<Expr>();
1192      if (RetValExp)
1193        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1194    }
1195
1196    if (RetValExp)
1197      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1198    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1199  }
1200
1201  // If we need to check for the named return value optimization, save the
1202  // return statement in our scope for later processing.
1203  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1204      !CurContext->isDependentContext())
1205    FunctionScopes.back()->Returns.push_back(Result);
1206
1207  return Owned(Result);
1208}
1209
1210/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1211/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1212/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1213/// provide a strong guidance to not use it.
1214///
1215/// This method checks to see if the argument is an acceptable l-value and
1216/// returns false if it is a case we can handle.
1217static bool CheckAsmLValue(const Expr *E, Sema &S) {
1218  // Type dependent expressions will be checked during instantiation.
1219  if (E->isTypeDependent())
1220    return false;
1221
1222  if (E->isLvalue(S.Context) == Expr::LV_Valid)
1223    return false;  // Cool, this is an lvalue.
1224
1225  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1226  // are supposed to allow.
1227  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1228  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
1229    if (!S.getLangOptions().HeinousExtensions)
1230      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1231        << E->getSourceRange();
1232    else
1233      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1234        << E->getSourceRange();
1235    // Accept, even if we emitted an error diagnostic.
1236    return false;
1237  }
1238
1239  // None of the above, just randomly invalid non-lvalue.
1240  return true;
1241}
1242
1243
1244StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
1245                                          bool IsSimple,
1246                                          bool IsVolatile,
1247                                          unsigned NumOutputs,
1248                                          unsigned NumInputs,
1249                                          IdentifierInfo **Names,
1250                                          MultiExprArg constraints,
1251                                          MultiExprArg exprs,
1252                                          Expr *asmString,
1253                                          MultiExprArg clobbers,
1254                                          SourceLocation RParenLoc,
1255                                          bool MSAsm) {
1256  unsigned NumClobbers = clobbers.size();
1257  StringLiteral **Constraints =
1258    reinterpret_cast<StringLiteral**>(constraints.get());
1259  Expr **Exprs = exprs.get();
1260  StringLiteral *AsmString = cast<StringLiteral>(asmString);
1261  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1262
1263  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1264
1265  // The parser verifies that there is a string literal here.
1266  if (AsmString->isWide())
1267    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1268      << AsmString->getSourceRange());
1269
1270  for (unsigned i = 0; i != NumOutputs; i++) {
1271    StringLiteral *Literal = Constraints[i];
1272    if (Literal->isWide())
1273      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1274        << Literal->getSourceRange());
1275
1276    llvm::StringRef OutputName;
1277    if (Names[i])
1278      OutputName = Names[i]->getName();
1279
1280    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1281    if (!Context.Target.validateOutputConstraint(Info))
1282      return StmtError(Diag(Literal->getLocStart(),
1283                            diag::err_asm_invalid_output_constraint)
1284                       << Info.getConstraintStr());
1285
1286    // Check that the output exprs are valid lvalues.
1287    Expr *OutputExpr = Exprs[i];
1288    if (CheckAsmLValue(OutputExpr, *this)) {
1289      return StmtError(Diag(OutputExpr->getLocStart(),
1290                  diag::err_asm_invalid_lvalue_in_output)
1291        << OutputExpr->getSourceRange());
1292    }
1293
1294    OutputConstraintInfos.push_back(Info);
1295  }
1296
1297  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1298
1299  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1300    StringLiteral *Literal = Constraints[i];
1301    if (Literal->isWide())
1302      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1303        << Literal->getSourceRange());
1304
1305    llvm::StringRef InputName;
1306    if (Names[i])
1307      InputName = Names[i]->getName();
1308
1309    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1310    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1311                                                NumOutputs, Info)) {
1312      return StmtError(Diag(Literal->getLocStart(),
1313                            diag::err_asm_invalid_input_constraint)
1314                       << Info.getConstraintStr());
1315    }
1316
1317    Expr *InputExpr = Exprs[i];
1318
1319    // Only allow void types for memory constraints.
1320    if (Info.allowsMemory() && !Info.allowsRegister()) {
1321      if (CheckAsmLValue(InputExpr, *this))
1322        return StmtError(Diag(InputExpr->getLocStart(),
1323                              diag::err_asm_invalid_lvalue_in_input)
1324                         << Info.getConstraintStr()
1325                         << InputExpr->getSourceRange());
1326    }
1327
1328    if (Info.allowsRegister()) {
1329      if (InputExpr->getType()->isVoidType()) {
1330        return StmtError(Diag(InputExpr->getLocStart(),
1331                              diag::err_asm_invalid_type_in_input)
1332          << InputExpr->getType() << Info.getConstraintStr()
1333          << InputExpr->getSourceRange());
1334      }
1335    }
1336
1337    DefaultFunctionArrayLvalueConversion(Exprs[i]);
1338
1339    InputConstraintInfos.push_back(Info);
1340  }
1341
1342  // Check that the clobbers are valid.
1343  for (unsigned i = 0; i != NumClobbers; i++) {
1344    StringLiteral *Literal = Clobbers[i];
1345    if (Literal->isWide())
1346      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1347        << Literal->getSourceRange());
1348
1349    llvm::StringRef Clobber = Literal->getString();
1350
1351    if (!Context.Target.isValidGCCRegisterName(Clobber))
1352      return StmtError(Diag(Literal->getLocStart(),
1353                  diag::err_asm_unknown_register_name) << Clobber);
1354  }
1355
1356  AsmStmt *NS =
1357    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1358                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1359                          AsmString, NumClobbers, Clobbers, RParenLoc);
1360  // Validate the asm string, ensuring it makes sense given the operands we
1361  // have.
1362  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1363  unsigned DiagOffs;
1364  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1365    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1366           << AsmString->getSourceRange();
1367    DeleteStmt(NS);
1368    return StmtError();
1369  }
1370
1371  // Validate tied input operands for type mismatches.
1372  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1373    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1374
1375    // If this is a tied constraint, verify that the output and input have
1376    // either exactly the same type, or that they are int/ptr operands with the
1377    // same size (int/long, int*/long, are ok etc).
1378    if (!Info.hasTiedOperand()) continue;
1379
1380    unsigned TiedTo = Info.getTiedOperand();
1381    Expr *OutputExpr = Exprs[TiedTo];
1382    Expr *InputExpr = Exprs[i+NumOutputs];
1383    QualType InTy = InputExpr->getType();
1384    QualType OutTy = OutputExpr->getType();
1385    if (Context.hasSameType(InTy, OutTy))
1386      continue;  // All types can be tied to themselves.
1387
1388    // Decide if the input and output are in the same domain (integer/ptr or
1389    // floating point.
1390    enum AsmDomain {
1391      AD_Int, AD_FP, AD_Other
1392    } InputDomain, OutputDomain;
1393
1394    if (InTy->isIntegerType() || InTy->isPointerType())
1395      InputDomain = AD_Int;
1396    else if (InTy->isRealFloatingType())
1397      InputDomain = AD_FP;
1398    else
1399      InputDomain = AD_Other;
1400
1401    if (OutTy->isIntegerType() || OutTy->isPointerType())
1402      OutputDomain = AD_Int;
1403    else if (OutTy->isRealFloatingType())
1404      OutputDomain = AD_FP;
1405    else
1406      OutputDomain = AD_Other;
1407
1408    // They are ok if they are the same size and in the same domain.  This
1409    // allows tying things like:
1410    //   void* to int*
1411    //   void* to int            if they are the same size.
1412    //   double to long double   if they are the same size.
1413    //
1414    uint64_t OutSize = Context.getTypeSize(OutTy);
1415    uint64_t InSize = Context.getTypeSize(InTy);
1416    if (OutSize == InSize && InputDomain == OutputDomain &&
1417        InputDomain != AD_Other)
1418      continue;
1419
1420    // If the smaller input/output operand is not mentioned in the asm string,
1421    // then we can promote it and the asm string won't notice.  Check this
1422    // case now.
1423    bool SmallerValueMentioned = false;
1424    for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1425      AsmStmt::AsmStringPiece &Piece = Pieces[p];
1426      if (!Piece.isOperand()) continue;
1427
1428      // If this is a reference to the input and if the input was the smaller
1429      // one, then we have to reject this asm.
1430      if (Piece.getOperandNo() == i+NumOutputs) {
1431        if (InSize < OutSize) {
1432          SmallerValueMentioned = true;
1433          break;
1434        }
1435      }
1436
1437      // If this is a reference to the input and if the input was the smaller
1438      // one, then we have to reject this asm.
1439      if (Piece.getOperandNo() == TiedTo) {
1440        if (InSize > OutSize) {
1441          SmallerValueMentioned = true;
1442          break;
1443        }
1444      }
1445    }
1446
1447    // If the smaller value wasn't mentioned in the asm string, and if the
1448    // output was a register, just extend the shorter one to the size of the
1449    // larger one.
1450    if (!SmallerValueMentioned && InputDomain != AD_Other &&
1451        OutputConstraintInfos[TiedTo].allowsRegister())
1452      continue;
1453
1454    Diag(InputExpr->getLocStart(),
1455         diag::err_asm_tying_incompatible_types)
1456      << InTy << OutTy << OutputExpr->getSourceRange()
1457      << InputExpr->getSourceRange();
1458    DeleteStmt(NS);
1459    return StmtError();
1460  }
1461
1462  return Owned(NS);
1463}
1464
1465StmtResult
1466Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1467                           SourceLocation RParen, Decl *Parm,
1468                           Stmt *Body) {
1469  VarDecl *Var = cast_or_null<VarDecl>(Parm);
1470  if (Var && Var->isInvalidDecl())
1471    return StmtError();
1472
1473  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
1474}
1475
1476StmtResult
1477Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
1478  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
1479}
1480
1481StmtResult
1482Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
1483                         MultiStmtArg CatchStmts, Stmt *Finally) {
1484  setFunctionHasBranchProtectedScope();
1485  unsigned NumCatchStmts = CatchStmts.size();
1486  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
1487                                     CatchStmts.release(),
1488                                     NumCatchStmts,
1489                                     Finally));
1490}
1491
1492StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
1493                                                  Expr *Throw) {
1494  if (Throw) {
1495    QualType ThrowType = Throw->getType();
1496    // Make sure the expression type is an ObjC pointer or "void *".
1497    if (!ThrowType->isDependentType() &&
1498        !ThrowType->isObjCObjectPointerType()) {
1499      const PointerType *PT = ThrowType->getAs<PointerType>();
1500      if (!PT || !PT->getPointeeType()->isVoidType())
1501        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1502                         << Throw->getType() << Throw->getSourceRange());
1503    }
1504  }
1505
1506  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
1507}
1508
1509StmtResult
1510Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
1511                           Scope *CurScope) {
1512  if (!Throw) {
1513    // @throw without an expression designates a rethrow (which much occur
1514    // in the context of an @catch clause).
1515    Scope *AtCatchParent = CurScope;
1516    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1517      AtCatchParent = AtCatchParent->getParent();
1518    if (!AtCatchParent)
1519      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1520  }
1521
1522  return BuildObjCAtThrowStmt(AtLoc, Throw);
1523}
1524
1525StmtResult
1526Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
1527                                  Stmt *SyncBody) {
1528  setFunctionHasBranchProtectedScope();
1529
1530  // Make sure the expression type is an ObjC pointer or "void *".
1531  if (!SyncExpr->getType()->isDependentType() &&
1532      !SyncExpr->getType()->isObjCObjectPointerType()) {
1533    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1534    if (!PT || !PT->getPointeeType()->isVoidType())
1535      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1536                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1537  }
1538
1539  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
1540}
1541
1542/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1543/// and creates a proper catch handler from them.
1544StmtResult
1545Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
1546                         Stmt *HandlerBlock) {
1547  // There's nothing to test that ActOnExceptionDecl didn't already test.
1548  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1549                                          cast_or_null<VarDecl>(ExDecl),
1550                                          HandlerBlock));
1551}
1552
1553namespace {
1554
1555class TypeWithHandler {
1556  QualType t;
1557  CXXCatchStmt *stmt;
1558public:
1559  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1560  : t(type), stmt(statement) {}
1561
1562  // An arbitrary order is fine as long as it places identical
1563  // types next to each other.
1564  bool operator<(const TypeWithHandler &y) const {
1565    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
1566      return true;
1567    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
1568      return false;
1569    else
1570      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1571  }
1572
1573  bool operator==(const TypeWithHandler& other) const {
1574    return t == other.t;
1575  }
1576
1577  QualType getQualType() const { return t; }
1578  CXXCatchStmt *getCatchStmt() const { return stmt; }
1579  SourceLocation getTypeSpecStartLoc() const {
1580    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1581  }
1582};
1583
1584}
1585
1586/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1587/// handlers and creates a try statement from them.
1588StmtResult
1589Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
1590                       MultiStmtArg RawHandlers) {
1591  unsigned NumHandlers = RawHandlers.size();
1592  assert(NumHandlers > 0 &&
1593         "The parser shouldn't call this if there are no handlers.");
1594  Stmt **Handlers = RawHandlers.get();
1595
1596  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1597
1598  for (unsigned i = 0; i < NumHandlers; ++i) {
1599    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1600    if (!Handler->getExceptionDecl()) {
1601      if (i < NumHandlers - 1)
1602        return StmtError(Diag(Handler->getLocStart(),
1603                              diag::err_early_catch_all));
1604
1605      continue;
1606    }
1607
1608    const QualType CaughtType = Handler->getCaughtType();
1609    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1610    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1611  }
1612
1613  // Detect handlers for the same type as an earlier one.
1614  if (NumHandlers > 1) {
1615    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1616
1617    TypeWithHandler prev = TypesWithHandlers[0];
1618    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1619      TypeWithHandler curr = TypesWithHandlers[i];
1620
1621      if (curr == prev) {
1622        Diag(curr.getTypeSpecStartLoc(),
1623             diag::warn_exception_caught_by_earlier_handler)
1624          << curr.getCatchStmt()->getCaughtType().getAsString();
1625        Diag(prev.getTypeSpecStartLoc(),
1626             diag::note_previous_exception_handler)
1627          << prev.getCatchStmt()->getCaughtType().getAsString();
1628      }
1629
1630      prev = curr;
1631    }
1632  }
1633
1634  setFunctionHasBranchProtectedScope();
1635
1636  // FIXME: We should detect handlers that cannot catch anything because an
1637  // earlier handler catches a superclass. Need to find a method that is not
1638  // quadratic for this.
1639  // Neither of these are explicitly forbidden, but every compiler detects them
1640  // and warns.
1641
1642  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
1643                                  Handlers, NumHandlers));
1644}
1645