SemaStmt.cpp revision 6217b80b7a1379b74cced1c076338262c3c980b3
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/StmtObjC.h"
20#include "clang/AST/StmtCXX.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24using namespace clang;
25
26Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
27  Expr *E = expr->takeAs<Expr>();
28  assert(E && "ActOnExprStmt(): missing expression");
29
30  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
31  // void expression for its side effects.  Conversion to void allows any
32  // operand, even incomplete types.
33
34  // Same thing in for stmt first clause (when expr) and third clause.
35  return Owned(static_cast<Stmt*>(E));
36}
37
38
39Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
40  return Owned(new (Context) NullStmt(SemiLoc));
41}
42
43Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
44                                           SourceLocation StartLoc,
45                                           SourceLocation EndLoc) {
46  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
47
48  // If we have an invalid decl, just return an error.
49  if (DG.isNull()) return StmtError();
50
51  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
52}
53
54Action::OwningStmtResult
55Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
56                        MultiStmtArg elts, bool isStmtExpr) {
57  unsigned NumElts = elts.size();
58  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
59  // If we're in C89 mode, check that we don't have any decls after stmts.  If
60  // so, emit an extension diagnostic.
61  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
62    // Note that __extension__ can be around a decl.
63    unsigned i = 0;
64    // Skip over all declarations.
65    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
66      /*empty*/;
67
68    // We found the end of the list or a statement.  Scan for another declstmt.
69    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
70      /*empty*/;
71
72    if (i != NumElts) {
73      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
74      Diag(D->getLocation(), diag::ext_mixed_decls_code);
75    }
76  }
77  // Warn about unused expressions in statements.
78  for (unsigned i = 0; i != NumElts; ++i) {
79    Expr *E = dyn_cast<Expr>(Elts[i]);
80    if (!E) continue;
81
82    // Warn about expressions with unused results if they are non-void and if
83    // this not the last stmt in a stmt expr.
84    if (E->getType()->isVoidType() || (isStmtExpr && i == NumElts-1))
85      continue;
86
87    SourceLocation Loc;
88    SourceRange R1, R2;
89    if (!E->isUnusedResultAWarning(Loc, R1, R2))
90      continue;
91
92    Diag(Loc, diag::warn_unused_expr) << R1 << R2;
93  }
94
95  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
96}
97
98Action::OwningStmtResult
99Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
100                    SourceLocation DotDotDotLoc, ExprArg rhsval,
101                    SourceLocation ColonLoc) {
102  assert((lhsval.get() != 0) && "missing expression in case statement");
103
104  // C99 6.8.4.2p3: The expression shall be an integer constant.
105  // However, GCC allows any evaluatable integer expression.
106  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
107  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
108      VerifyIntegerConstantExpression(LHSVal))
109    return StmtError();
110
111  // GCC extension: The expression shall be an integer constant.
112
113  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
114  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
115      VerifyIntegerConstantExpression(RHSVal)) {
116    RHSVal = 0;  // Recover by just forgetting about it.
117    rhsval = 0;
118  }
119
120  if (getSwitchStack().empty()) {
121    Diag(CaseLoc, diag::err_case_not_in_switch);
122    return StmtError();
123  }
124
125  // Only now release the smart pointers.
126  lhsval.release();
127  rhsval.release();
128  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
129                                        ColonLoc);
130  getSwitchStack().back()->addSwitchCase(CS);
131  return Owned(CS);
132}
133
134/// ActOnCaseStmtBody - This installs a statement as the body of a case.
135void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
136  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
137  Stmt *SubStmt = subStmt.takeAs<Stmt>();
138  CS->setSubStmt(SubStmt);
139}
140
141Action::OwningStmtResult
142Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
143                       StmtArg subStmt, Scope *CurScope) {
144  Stmt *SubStmt = subStmt.takeAs<Stmt>();
145
146  if (getSwitchStack().empty()) {
147    Diag(DefaultLoc, diag::err_default_not_in_switch);
148    return Owned(SubStmt);
149  }
150
151  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
152  getSwitchStack().back()->addSwitchCase(DS);
153  return Owned(DS);
154}
155
156Action::OwningStmtResult
157Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
158                     SourceLocation ColonLoc, StmtArg subStmt) {
159  Stmt *SubStmt = subStmt.takeAs<Stmt>();
160  // Look up the record for this label identifier.
161  LabelStmt *&LabelDecl = getLabelMap()[II];
162
163  // If not forward referenced or defined already, just create a new LabelStmt.
164  if (LabelDecl == 0)
165    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
166
167  assert(LabelDecl->getID() == II && "Label mismatch!");
168
169  // Otherwise, this label was either forward reference or multiply defined.  If
170  // multiply defined, reject it now.
171  if (LabelDecl->getSubStmt()) {
172    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
173    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
174    return Owned(SubStmt);
175  }
176
177  // Otherwise, this label was forward declared, and we just found its real
178  // definition.  Fill in the forward definition and return it.
179  LabelDecl->setIdentLoc(IdentLoc);
180  LabelDecl->setSubStmt(SubStmt);
181  return Owned(LabelDecl);
182}
183
184Action::OwningStmtResult
185Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal,
186                  StmtArg ThenVal, SourceLocation ElseLoc,
187                  StmtArg ElseVal) {
188  OwningExprResult CondResult(CondVal.release());
189
190  Expr *condExpr = CondResult.takeAs<Expr>();
191
192  assert(condExpr && "ActOnIfStmt(): missing expression");
193
194  if (!condExpr->isTypeDependent()) {
195    DefaultFunctionArrayConversion(condExpr);
196    // Take ownership again until we're past the error checking.
197    CondResult = condExpr;
198    QualType condType = condExpr->getType();
199
200    if (getLangOptions().CPlusPlus) {
201      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
202        return StmtError();
203    } else if (!condType->isScalarType()) // C99 6.8.4.1p1
204      return StmtError(Diag(IfLoc,
205                            diag::err_typecheck_statement_requires_scalar)
206                       << condType << condExpr->getSourceRange());
207  }
208
209  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
210
211  // Warn if the if block has a null body without an else value.
212  // this helps prevent bugs due to typos, such as
213  // if (condition);
214  //   do_stuff();
215  if (!ElseVal.get()) {
216    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
217      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
218  }
219
220  CondResult.release();
221  return Owned(new (Context) IfStmt(IfLoc, condExpr, thenStmt,
222                                    ElseLoc, ElseVal.takeAs<Stmt>()));
223}
224
225Action::OwningStmtResult
226Sema::ActOnStartOfSwitchStmt(ExprArg cond) {
227  Expr *Cond = cond.takeAs<Expr>();
228
229  if (getLangOptions().CPlusPlus) {
230    // C++ 6.4.2.p2:
231    // The condition shall be of integral type, enumeration type, or of a class
232    // type for which a single conversion function to integral or enumeration
233    // type exists (12.3). If the condition is of class type, the condition is
234    // converted by calling that conversion function, and the result of the
235    // conversion is used in place of the original condition for the remainder
236    // of this section. Integral promotions are performed.
237    if (!Cond->isTypeDependent()) {
238      QualType Ty = Cond->getType();
239
240      // FIXME: Handle class types.
241
242      // If the type is wrong a diagnostic will be emitted later at
243      // ActOnFinishSwitchStmt.
244      if (Ty->isIntegralType() || Ty->isEnumeralType()) {
245        // Integral promotions are performed.
246        // FIXME: Integral promotions for C++ are not complete.
247        UsualUnaryConversions(Cond);
248      }
249    }
250  } else {
251    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
252    UsualUnaryConversions(Cond);
253  }
254
255  SwitchStmt *SS = new (Context) SwitchStmt(Cond);
256  getSwitchStack().push_back(SS);
257  return Owned(SS);
258}
259
260/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
261/// the specified width and sign.  If an overflow occurs, detect it and emit
262/// the specified diagnostic.
263void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
264                                              unsigned NewWidth, bool NewSign,
265                                              SourceLocation Loc,
266                                              unsigned DiagID) {
267  // Perform a conversion to the promoted condition type if needed.
268  if (NewWidth > Val.getBitWidth()) {
269    // If this is an extension, just do it.
270    llvm::APSInt OldVal(Val);
271    Val.extend(NewWidth);
272
273    // If the input was signed and negative and the output is unsigned,
274    // warn.
275    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
276      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
277
278    Val.setIsSigned(NewSign);
279  } else if (NewWidth < Val.getBitWidth()) {
280    // If this is a truncation, check for overflow.
281    llvm::APSInt ConvVal(Val);
282    ConvVal.trunc(NewWidth);
283    ConvVal.setIsSigned(NewSign);
284    ConvVal.extend(Val.getBitWidth());
285    ConvVal.setIsSigned(Val.isSigned());
286    if (ConvVal != Val)
287      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
288
289    // Regardless of whether a diagnostic was emitted, really do the
290    // truncation.
291    Val.trunc(NewWidth);
292    Val.setIsSigned(NewSign);
293  } else if (NewSign != Val.isSigned()) {
294    // Convert the sign to match the sign of the condition.  This can cause
295    // overflow as well: unsigned(INTMIN)
296    llvm::APSInt OldVal(Val);
297    Val.setIsSigned(NewSign);
298
299    if (Val.isNegative())  // Sign bit changes meaning.
300      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
301  }
302}
303
304namespace {
305  struct CaseCompareFunctor {
306    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
307                    const llvm::APSInt &RHS) {
308      return LHS.first < RHS;
309    }
310    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
311                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
312      return LHS.first < RHS.first;
313    }
314    bool operator()(const llvm::APSInt &LHS,
315                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
316      return LHS < RHS.first;
317    }
318  };
319}
320
321/// CmpCaseVals - Comparison predicate for sorting case values.
322///
323static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
324                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
325  if (lhs.first < rhs.first)
326    return true;
327
328  if (lhs.first == rhs.first &&
329      lhs.second->getCaseLoc().getRawEncoding()
330       < rhs.second->getCaseLoc().getRawEncoding())
331    return true;
332  return false;
333}
334
335Action::OwningStmtResult
336Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
337                            StmtArg Body) {
338  Stmt *BodyStmt = Body.takeAs<Stmt>();
339
340  SwitchStmt *SS = getSwitchStack().back();
341  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
342
343  SS->setBody(BodyStmt, SwitchLoc);
344  getSwitchStack().pop_back();
345
346  Expr *CondExpr = SS->getCond();
347  QualType CondType = CondExpr->getType();
348
349  if (!CondExpr->isTypeDependent() &&
350      !CondType->isIntegerType()) { // C99 6.8.4.2p1
351    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
352      << CondType << CondExpr->getSourceRange();
353    return StmtError();
354  }
355
356  // Get the bitwidth of the switched-on value before promotions.  We must
357  // convert the integer case values to this width before comparison.
358  bool HasDependentValue
359    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
360  unsigned CondWidth
361    = HasDependentValue? 0
362                       : static_cast<unsigned>(Context.getTypeSize(CondType));
363  bool CondIsSigned = CondType->isSignedIntegerType();
364
365  // Accumulate all of the case values in a vector so that we can sort them
366  // and detect duplicates.  This vector contains the APInt for the case after
367  // it has been converted to the condition type.
368  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
369  CaseValsTy CaseVals;
370
371  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
372  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
373
374  DefaultStmt *TheDefaultStmt = 0;
375
376  bool CaseListIsErroneous = false;
377
378  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
379       SC = SC->getNextSwitchCase()) {
380
381    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
382      if (TheDefaultStmt) {
383        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
384        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
385
386        // FIXME: Remove the default statement from the switch block so that
387        // we'll return a valid AST.  This requires recursing down the AST and
388        // finding it, not something we are set up to do right now.  For now,
389        // just lop the entire switch stmt out of the AST.
390        CaseListIsErroneous = true;
391      }
392      TheDefaultStmt = DS;
393
394    } else {
395      CaseStmt *CS = cast<CaseStmt>(SC);
396
397      // We already verified that the expression has a i-c-e value (C99
398      // 6.8.4.2p3) - get that value now.
399      Expr *Lo = CS->getLHS();
400
401      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
402        HasDependentValue = true;
403        break;
404      }
405
406      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
407
408      // Convert the value to the same width/sign as the condition.
409      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
410                                         CS->getLHS()->getLocStart(),
411                                         diag::warn_case_value_overflow);
412
413      // If the LHS is not the same type as the condition, insert an implicit
414      // cast.
415      ImpCastExprToType(Lo, CondType);
416      CS->setLHS(Lo);
417
418      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
419      if (CS->getRHS()) {
420        if (CS->getRHS()->isTypeDependent() ||
421            CS->getRHS()->isValueDependent()) {
422          HasDependentValue = true;
423          break;
424        }
425        CaseRanges.push_back(std::make_pair(LoVal, CS));
426      } else
427        CaseVals.push_back(std::make_pair(LoVal, CS));
428    }
429  }
430
431  if (!HasDependentValue) {
432    // Sort all the scalar case values so we can easily detect duplicates.
433    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
434
435    if (!CaseVals.empty()) {
436      for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
437        if (CaseVals[i].first == CaseVals[i+1].first) {
438          // If we have a duplicate, report it.
439          Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
440               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
441          Diag(CaseVals[i].second->getLHS()->getLocStart(),
442               diag::note_duplicate_case_prev);
443          // FIXME: We really want to remove the bogus case stmt from the
444          // substmt, but we have no way to do this right now.
445          CaseListIsErroneous = true;
446        }
447      }
448    }
449
450    // Detect duplicate case ranges, which usually don't exist at all in
451    // the first place.
452    if (!CaseRanges.empty()) {
453      // Sort all the case ranges by their low value so we can easily detect
454      // overlaps between ranges.
455      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
456
457      // Scan the ranges, computing the high values and removing empty ranges.
458      std::vector<llvm::APSInt> HiVals;
459      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
460        CaseStmt *CR = CaseRanges[i].second;
461        Expr *Hi = CR->getRHS();
462        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
463
464        // Convert the value to the same width/sign as the condition.
465        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
466                                           CR->getRHS()->getLocStart(),
467                                           diag::warn_case_value_overflow);
468
469        // If the LHS is not the same type as the condition, insert an implicit
470        // cast.
471        ImpCastExprToType(Hi, CondType);
472        CR->setRHS(Hi);
473
474        // If the low value is bigger than the high value, the case is empty.
475        if (CaseRanges[i].first > HiVal) {
476          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
477            << SourceRange(CR->getLHS()->getLocStart(),
478                           CR->getRHS()->getLocEnd());
479          CaseRanges.erase(CaseRanges.begin()+i);
480          --i, --e;
481          continue;
482        }
483        HiVals.push_back(HiVal);
484      }
485
486      // Rescan the ranges, looking for overlap with singleton values and other
487      // ranges.  Since the range list is sorted, we only need to compare case
488      // ranges with their neighbors.
489      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
490        llvm::APSInt &CRLo = CaseRanges[i].first;
491        llvm::APSInt &CRHi = HiVals[i];
492        CaseStmt *CR = CaseRanges[i].second;
493
494        // Check to see whether the case range overlaps with any
495        // singleton cases.
496        CaseStmt *OverlapStmt = 0;
497        llvm::APSInt OverlapVal(32);
498
499        // Find the smallest value >= the lower bound.  If I is in the
500        // case range, then we have overlap.
501        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
502                                                  CaseVals.end(), CRLo,
503                                                  CaseCompareFunctor());
504        if (I != CaseVals.end() && I->first < CRHi) {
505          OverlapVal  = I->first;   // Found overlap with scalar.
506          OverlapStmt = I->second;
507        }
508
509        // Find the smallest value bigger than the upper bound.
510        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
511        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
512          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
513          OverlapStmt = (I-1)->second;
514        }
515
516        // Check to see if this case stmt overlaps with the subsequent
517        // case range.
518        if (i && CRLo <= HiVals[i-1]) {
519          OverlapVal  = HiVals[i-1];       // Found overlap with range.
520          OverlapStmt = CaseRanges[i-1].second;
521        }
522
523        if (OverlapStmt) {
524          // If we have a duplicate, report it.
525          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
526            << OverlapVal.toString(10);
527          Diag(OverlapStmt->getLHS()->getLocStart(),
528               diag::note_duplicate_case_prev);
529          // FIXME: We really want to remove the bogus case stmt from the
530          // substmt, but we have no way to do this right now.
531          CaseListIsErroneous = true;
532        }
533      }
534    }
535  }
536
537  // FIXME: If the case list was broken is some way, we don't have a good system
538  // to patch it up.  Instead, just return the whole substmt as broken.
539  if (CaseListIsErroneous)
540    return StmtError();
541
542  Switch.release();
543  return Owned(SS);
544}
545
546Action::OwningStmtResult
547Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, StmtArg Body) {
548  ExprArg CondArg(Cond.release());
549  Expr *condExpr = CondArg.takeAs<Expr>();
550  assert(condExpr && "ActOnWhileStmt(): missing expression");
551
552  if (!condExpr->isTypeDependent()) {
553    DefaultFunctionArrayConversion(condExpr);
554    CondArg = condExpr;
555    QualType condType = condExpr->getType();
556
557    if (getLangOptions().CPlusPlus) {
558      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
559        return StmtError();
560    } else if (!condType->isScalarType()) // C99 6.8.5p2
561      return StmtError(Diag(WhileLoc,
562                            diag::err_typecheck_statement_requires_scalar)
563                       << condType << condExpr->getSourceRange());
564  }
565
566  CondArg.release();
567  return Owned(new (Context) WhileStmt(condExpr, Body.takeAs<Stmt>(),
568                                       WhileLoc));
569}
570
571Action::OwningStmtResult
572Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
573                  SourceLocation WhileLoc, SourceLocation CondLParen,
574                  ExprArg Cond, SourceLocation CondRParen) {
575  Expr *condExpr = Cond.takeAs<Expr>();
576  assert(condExpr && "ActOnDoStmt(): missing expression");
577
578  if (!condExpr->isTypeDependent()) {
579    DefaultFunctionArrayConversion(condExpr);
580    Cond = condExpr;
581    QualType condType = condExpr->getType();
582
583    if (getLangOptions().CPlusPlus) {
584      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
585        return StmtError();
586    } else if (!condType->isScalarType()) // C99 6.8.5p2
587      return StmtError(Diag(DoLoc,
588                            diag::err_typecheck_statement_requires_scalar)
589                       << condType << condExpr->getSourceRange());
590  }
591
592  Cond.release();
593  return Owned(new (Context) DoStmt(Body.takeAs<Stmt>(), condExpr, DoLoc,
594                                    WhileLoc, CondRParen));
595}
596
597Action::OwningStmtResult
598Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
599                   StmtArg first, ExprArg second, ExprArg third,
600                   SourceLocation RParenLoc, StmtArg body) {
601  Stmt *First  = static_cast<Stmt*>(first.get());
602  Expr *Second = static_cast<Expr*>(second.get());
603  Expr *Third  = static_cast<Expr*>(third.get());
604  Stmt *Body  = static_cast<Stmt*>(body.get());
605
606  if (!getLangOptions().CPlusPlus) {
607    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
608      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
609      // declare identifiers for objects having storage class 'auto' or
610      // 'register'.
611      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
612           DI!=DE; ++DI) {
613        VarDecl *VD = dyn_cast<VarDecl>(*DI);
614        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
615          VD = 0;
616        if (VD == 0)
617          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
618        // FIXME: mark decl erroneous!
619      }
620    }
621  }
622  if (Second && !Second->isTypeDependent()) {
623    DefaultFunctionArrayConversion(Second);
624    QualType SecondType = Second->getType();
625
626    if (getLangOptions().CPlusPlus) {
627      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
628        return StmtError();
629    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
630      return StmtError(Diag(ForLoc,
631                            diag::err_typecheck_statement_requires_scalar)
632        << SecondType << Second->getSourceRange());
633  }
634  first.release();
635  second.release();
636  third.release();
637  body.release();
638  return Owned(new (Context) ForStmt(First, Second, Third, Body, ForLoc,
639                                     LParenLoc, RParenLoc));
640}
641
642Action::OwningStmtResult
643Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
644                                 SourceLocation LParenLoc,
645                                 StmtArg first, ExprArg second,
646                                 SourceLocation RParenLoc, StmtArg body) {
647  Stmt *First  = static_cast<Stmt*>(first.get());
648  Expr *Second = static_cast<Expr*>(second.get());
649  Stmt *Body  = static_cast<Stmt*>(body.get());
650  if (First) {
651    QualType FirstType;
652    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
653      if (!DS->isSingleDecl())
654        return StmtError(Diag((*DS->decl_begin())->getLocation(),
655                         diag::err_toomany_element_decls));
656
657      Decl *D = DS->getSingleDecl();
658      FirstType = cast<ValueDecl>(D)->getType();
659      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
660      // declare identifiers for objects having storage class 'auto' or
661      // 'register'.
662      VarDecl *VD = cast<VarDecl>(D);
663      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
664        return StmtError(Diag(VD->getLocation(),
665                              diag::err_non_variable_decl_in_for));
666    } else {
667      if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
668        return StmtError(Diag(First->getLocStart(),
669                   diag::err_selector_element_not_lvalue)
670          << First->getSourceRange());
671
672      FirstType = static_cast<Expr*>(First)->getType();
673    }
674    if (!FirstType->isObjCObjectPointerType())
675        Diag(ForLoc, diag::err_selector_element_type)
676          << FirstType << First->getSourceRange();
677  }
678  if (Second) {
679    DefaultFunctionArrayConversion(Second);
680    QualType SecondType = Second->getType();
681    if (!SecondType->isObjCObjectPointerType())
682      Diag(ForLoc, diag::err_collection_expr_type)
683        << SecondType << Second->getSourceRange();
684  }
685  first.release();
686  second.release();
687  body.release();
688  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
689                                                   ForLoc, RParenLoc));
690}
691
692Action::OwningStmtResult
693Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
694                    IdentifierInfo *LabelII) {
695  // If we are in a block, reject all gotos for now.
696  if (CurBlock)
697    return StmtError(Diag(GotoLoc, diag::err_goto_in_block));
698
699  // Look up the record for this label identifier.
700  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
701
702  // If we haven't seen this label yet, create a forward reference.
703  if (LabelDecl == 0)
704    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
705
706  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
707}
708
709Action::OwningStmtResult
710Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
711                            ExprArg DestExp) {
712  // Convert operand to void*
713  Expr* E = DestExp.takeAs<Expr>();
714  if (!E->isTypeDependent()) {
715    QualType ETy = E->getType();
716    AssignConvertType ConvTy =
717      CheckSingleAssignmentConstraints(Context.VoidPtrTy, E);
718    if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy,
719                                 E, "passing"))
720      return StmtError();
721  }
722  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
723}
724
725Action::OwningStmtResult
726Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
727  Scope *S = CurScope->getContinueParent();
728  if (!S) {
729    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
730    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
731  }
732
733  return Owned(new (Context) ContinueStmt(ContinueLoc));
734}
735
736Action::OwningStmtResult
737Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
738  Scope *S = CurScope->getBreakParent();
739  if (!S) {
740    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
741    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
742  }
743
744  return Owned(new (Context) BreakStmt(BreakLoc));
745}
746
747/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
748///
749Action::OwningStmtResult
750Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
751  // If this is the first return we've seen in the block, infer the type of
752  // the block from it.
753  if (CurBlock->ReturnType.isNull()) {
754    if (RetValExp) {
755      // Don't call UsualUnaryConversions(), since we don't want to do
756      // integer promotions here.
757      DefaultFunctionArrayConversion(RetValExp);
758      CurBlock->ReturnType = RetValExp->getType();
759      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
760        // We have to remove a 'const' added to copied-in variable which was
761        // part of the implementation spec. and not the actual qualifier for
762        // the variable.
763        if (CDRE->isConstQualAdded())
764           CurBlock->ReturnType.removeConst();
765      }
766    } else
767      CurBlock->ReturnType = Context.VoidTy;
768  }
769  QualType FnRetType = CurBlock->ReturnType;
770
771  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
772    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
773      << getCurFunctionOrMethodDecl()->getDeclName();
774    return StmtError();
775  }
776
777  // Otherwise, verify that this result type matches the previous one.  We are
778  // pickier with blocks than for normal functions because we don't have GCC
779  // compatibility to worry about here.
780  if (CurBlock->ReturnType->isVoidType()) {
781    if (RetValExp) {
782      Diag(ReturnLoc, diag::err_return_block_has_expr);
783      RetValExp->Destroy(Context);
784      RetValExp = 0;
785    }
786    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
787  }
788
789  if (!RetValExp)
790    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
791
792  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
793    // we have a non-void block with an expression, continue checking
794    QualType RetValType = RetValExp->getType();
795
796    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
797    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
798    // function return.
799
800    // In C++ the return statement is handled via a copy initialization.
801    // the C version of which boils down to CheckSingleAssignmentConstraints.
802    // FIXME: Leaks RetValExp.
803    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
804      return StmtError();
805
806    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
807  }
808
809  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
810}
811
812/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
813/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
814static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
815                                 Expr *RetExpr) {
816  QualType ExprType = RetExpr->getType();
817  // - in a return statement in a function with ...
818  // ... a class return type ...
819  if (!RetType->isRecordType())
820    return false;
821  // ... the same cv-unqualified type as the function return type ...
822  if (Ctx.getCanonicalType(RetType).getUnqualifiedType() !=
823      Ctx.getCanonicalType(ExprType).getUnqualifiedType())
824    return false;
825  // ... the expression is the name of a non-volatile automatic object ...
826  // We ignore parentheses here.
827  // FIXME: Is this compliant?
828  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
829  if (!DR)
830    return false;
831  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
832  if (!VD)
833    return false;
834  return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
835    && !VD->getType().isVolatileQualified();
836}
837
838Action::OwningStmtResult
839Sema::ActOnReturnStmt(SourceLocation ReturnLoc, FullExprArg rex) {
840  Expr *RetValExp = rex->takeAs<Expr>();
841  if (CurBlock)
842    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
843
844  QualType FnRetType;
845  if (const FunctionDecl *FD = getCurFunctionDecl()) {
846    FnRetType = FD->getResultType();
847    if (FD->hasAttr<NoReturnAttr>())
848      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
849        << getCurFunctionOrMethodDecl()->getDeclName();
850  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
851    FnRetType = MD->getResultType();
852  else // If we don't have a function/method context, bail.
853    return StmtError();
854
855  if (FnRetType->isVoidType()) {
856    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
857      unsigned D = diag::ext_return_has_expr;
858      if (RetValExp->getType()->isVoidType())
859        D = diag::ext_return_has_void_expr;
860
861      // return (some void expression); is legal in C++.
862      if (D != diag::ext_return_has_void_expr ||
863          !getLangOptions().CPlusPlus) {
864        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
865        Diag(ReturnLoc, D)
866          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
867          << RetValExp->getSourceRange();
868      }
869    }
870    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
871  }
872
873  if (!RetValExp && !FnRetType->isDependentType()) {
874    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
875    // C99 6.8.6.4p1 (ext_ since GCC warns)
876    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
877
878    if (FunctionDecl *FD = getCurFunctionDecl())
879      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
880    else
881      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
882    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
883  }
884
885  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
886    // we have a non-void function with an expression, continue checking
887
888    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
889    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
890    // function return.
891
892    // C++0x 12.8p15: When certain criteria are met, an implementation is
893    //   allowed to omit the copy construction of a class object, [...]
894    //   - in a return statement in a function with a class return type, when
895    //     the expression is the name of a non-volatile automatic object with
896    //     the same cv-unqualified type as the function return type, the copy
897    //     operation can be omitted [...]
898    // C++0x 12.8p16: When the criteria for elision of a copy operation are met
899    //   and the object to be copied is designated by an lvalue, overload
900    //   resolution to select the constructor for the copy is first performed
901    //   as if the object were designated by an rvalue.
902    // Note that we only compute Elidable if we're in C++0x, since we don't
903    // care otherwise.
904    bool Elidable = getLangOptions().CPlusPlus0x ?
905                      IsReturnCopyElidable(Context, FnRetType, RetValExp) :
906                      false;
907
908    // In C++ the return statement is handled via a copy initialization.
909    // the C version of which boils down to CheckSingleAssignmentConstraints.
910    // FIXME: Leaks RetValExp on error.
911    if (PerformCopyInitialization(RetValExp, FnRetType, "returning", Elidable))
912      return StmtError();
913
914    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
915  }
916
917  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
918}
919
920/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
921/// ignore "noop" casts in places where an lvalue is required by an inline asm.
922/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
923/// provide a strong guidance to not use it.
924///
925/// This method checks to see if the argument is an acceptable l-value and
926/// returns false if it is a case we can handle.
927static bool CheckAsmLValue(const Expr *E, Sema &S) {
928  if (E->isLvalue(S.Context) == Expr::LV_Valid)
929    return false;  // Cool, this is an lvalue.
930
931  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
932  // are supposed to allow.
933  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
934  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
935    if (!S.getLangOptions().HeinousExtensions)
936      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
937        << E->getSourceRange();
938    else
939      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
940        << E->getSourceRange();
941    // Accept, even if we emitted an error diagnostic.
942    return false;
943  }
944
945  // None of the above, just randomly invalid non-lvalue.
946  return true;
947}
948
949
950Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
951                                          bool IsSimple,
952                                          bool IsVolatile,
953                                          unsigned NumOutputs,
954                                          unsigned NumInputs,
955                                          std::string *Names,
956                                          MultiExprArg constraints,
957                                          MultiExprArg exprs,
958                                          ExprArg asmString,
959                                          MultiExprArg clobbers,
960                                          SourceLocation RParenLoc) {
961  unsigned NumClobbers = clobbers.size();
962  StringLiteral **Constraints =
963    reinterpret_cast<StringLiteral**>(constraints.get());
964  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
965  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
966  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
967
968  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
969
970  // The parser verifies that there is a string literal here.
971  if (AsmString->isWide())
972    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
973      << AsmString->getSourceRange());
974
975  for (unsigned i = 0; i != NumOutputs; i++) {
976    StringLiteral *Literal = Constraints[i];
977    if (Literal->isWide())
978      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
979        << Literal->getSourceRange());
980
981    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
982                                    Literal->getByteLength(),
983                                    Names[i]);
984    if (!Context.Target.validateOutputConstraint(Info))
985      return StmtError(Diag(Literal->getLocStart(),
986                            diag::err_asm_invalid_output_constraint)
987                       << Info.getConstraintStr());
988
989    // Check that the output exprs are valid lvalues.
990    Expr *OutputExpr = Exprs[i];
991    if (CheckAsmLValue(OutputExpr, *this)) {
992      return StmtError(Diag(OutputExpr->getLocStart(),
993                  diag::err_asm_invalid_lvalue_in_output)
994        << OutputExpr->getSourceRange());
995    }
996
997    OutputConstraintInfos.push_back(Info);
998  }
999
1000  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1001
1002  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1003    StringLiteral *Literal = Constraints[i];
1004    if (Literal->isWide())
1005      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1006        << Literal->getSourceRange());
1007
1008    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
1009                                    Literal->getByteLength(),
1010                                    Names[i]);
1011    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1012                                                NumOutputs, Info)) {
1013      return StmtError(Diag(Literal->getLocStart(),
1014                            diag::err_asm_invalid_input_constraint)
1015                       << Info.getConstraintStr());
1016    }
1017
1018    Expr *InputExpr = Exprs[i];
1019
1020    // Only allow void types for memory constraints.
1021    if (Info.allowsMemory() && !Info.allowsRegister()) {
1022      if (CheckAsmLValue(InputExpr, *this))
1023        return StmtError(Diag(InputExpr->getLocStart(),
1024                              diag::err_asm_invalid_lvalue_in_input)
1025                         << Info.getConstraintStr()
1026                         << InputExpr->getSourceRange());
1027    }
1028
1029    if (Info.allowsRegister()) {
1030      if (InputExpr->getType()->isVoidType()) {
1031        return StmtError(Diag(InputExpr->getLocStart(),
1032                              diag::err_asm_invalid_type_in_input)
1033          << InputExpr->getType() << Info.getConstraintStr()
1034          << InputExpr->getSourceRange());
1035      }
1036    }
1037
1038    DefaultFunctionArrayConversion(Exprs[i]);
1039
1040    InputConstraintInfos.push_back(Info);
1041  }
1042
1043  // Check that the clobbers are valid.
1044  for (unsigned i = 0; i != NumClobbers; i++) {
1045    StringLiteral *Literal = Clobbers[i];
1046    if (Literal->isWide())
1047      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1048        << Literal->getSourceRange());
1049
1050    llvm::SmallString<16> Clobber(Literal->getStrData(),
1051                                  Literal->getStrData() +
1052                                  Literal->getByteLength());
1053
1054    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
1055      return StmtError(Diag(Literal->getLocStart(),
1056                  diag::err_asm_unknown_register_name) << Clobber.c_str());
1057  }
1058
1059  constraints.release();
1060  exprs.release();
1061  asmString.release();
1062  clobbers.release();
1063  AsmStmt *NS =
1064    new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
1065                          Names, Constraints, Exprs, AsmString, NumClobbers,
1066                          Clobbers, RParenLoc);
1067  // Validate the asm string, ensuring it makes sense given the operands we
1068  // have.
1069  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1070  unsigned DiagOffs;
1071  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1072    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1073           << AsmString->getSourceRange();
1074    DeleteStmt(NS);
1075    return StmtError();
1076  }
1077
1078  // Validate tied input operands for type mismatches.
1079  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1080    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1081
1082    // If this is a tied constraint, verify that the output and input have
1083    // either exactly the same type, or that they are int/ptr operands with the
1084    // same size (int/long, int*/long, are ok etc).
1085    if (!Info.hasTiedOperand()) continue;
1086
1087    unsigned TiedTo = Info.getTiedOperand();
1088    Expr *OutputExpr = Exprs[TiedTo];
1089    Expr *InputExpr = Exprs[i+NumOutputs];
1090    QualType InTy = InputExpr->getType();
1091    QualType OutTy = OutputExpr->getType();
1092    if (Context.hasSameType(InTy, OutTy))
1093      continue;  // All types can be tied to themselves.
1094
1095    // Int/ptr operands have some special cases that we allow.
1096    if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
1097        (InTy->isIntegerType() || InTy->isPointerType())) {
1098
1099      // They are ok if they are the same size.  Tying void* to int is ok if
1100      // they are the same size, for example.  This also allows tying void* to
1101      // int*.
1102      uint64_t OutSize = Context.getTypeSize(OutTy);
1103      uint64_t InSize = Context.getTypeSize(InTy);
1104      if (OutSize == InSize)
1105        continue;
1106
1107      // If the smaller input/output operand is not mentioned in the asm string,
1108      // then we can promote it and the asm string won't notice.  Check this
1109      // case now.
1110      bool SmallerValueMentioned = false;
1111      for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1112        AsmStmt::AsmStringPiece &Piece = Pieces[p];
1113        if (!Piece.isOperand()) continue;
1114
1115        // If this is a reference to the input and if the input was the smaller
1116        // one, then we have to reject this asm.
1117        if (Piece.getOperandNo() == i+NumOutputs) {
1118          if (InSize < OutSize) {
1119            SmallerValueMentioned = true;
1120            break;
1121          }
1122        }
1123
1124        // If this is a reference to the input and if the input was the smaller
1125        // one, then we have to reject this asm.
1126        if (Piece.getOperandNo() == TiedTo) {
1127          if (InSize > OutSize) {
1128            SmallerValueMentioned = true;
1129            break;
1130          }
1131        }
1132      }
1133
1134      // If the smaller value wasn't mentioned in the asm string, and if the
1135      // output was a register, just extend the shorter one to the size of the
1136      // larger one.
1137      if (!SmallerValueMentioned &&
1138          OutputConstraintInfos[TiedTo].allowsRegister())
1139        continue;
1140    }
1141
1142    Diag(InputExpr->getLocStart(),
1143         diag::err_asm_tying_incompatible_types)
1144      << InTy << OutTy << OutputExpr->getSourceRange()
1145      << InputExpr->getSourceRange();
1146    DeleteStmt(NS);
1147    return StmtError();
1148  }
1149
1150  return Owned(NS);
1151}
1152
1153Action::OwningStmtResult
1154Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1155                           SourceLocation RParen, DeclPtrTy Parm,
1156                           StmtArg Body, StmtArg catchList) {
1157  Stmt *CatchList = catchList.takeAs<Stmt>();
1158  ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
1159
1160  // PVD == 0 implies @catch(...).
1161  if (PVD) {
1162    // If we already know the decl is invalid, reject it.
1163    if (PVD->isInvalidDecl())
1164      return StmtError();
1165
1166    if (!PVD->getType()->isObjCObjectPointerType())
1167      return StmtError(Diag(PVD->getLocation(),
1168                       diag::err_catch_param_not_objc_type));
1169    if (PVD->getType()->isObjCQualifiedIdType())
1170      return StmtError(Diag(PVD->getLocation(),
1171                       diag::err_illegal_qualifiers_on_catch_parm));
1172  }
1173
1174  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
1175    PVD, Body.takeAs<Stmt>(), CatchList);
1176  return Owned(CatchList ? CatchList : CS);
1177}
1178
1179Action::OwningStmtResult
1180Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1181  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1182                                           static_cast<Stmt*>(Body.release())));
1183}
1184
1185Action::OwningStmtResult
1186Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
1187                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
1188  CurFunctionNeedsScopeChecking = true;
1189  return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
1190                                           Catch.takeAs<Stmt>(),
1191                                           Finally.takeAs<Stmt>()));
1192}
1193
1194Action::OwningStmtResult
1195Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
1196  Expr *ThrowExpr = expr.takeAs<Expr>();
1197  if (!ThrowExpr) {
1198    // @throw without an expression designates a rethrow (which much occur
1199    // in the context of an @catch clause).
1200    Scope *AtCatchParent = CurScope;
1201    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1202      AtCatchParent = AtCatchParent->getParent();
1203    if (!AtCatchParent)
1204      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1205  } else {
1206    QualType ThrowType = ThrowExpr->getType();
1207    // Make sure the expression type is an ObjC pointer or "void *".
1208    if (!ThrowType->isObjCObjectPointerType()) {
1209      const PointerType *PT = ThrowType->getAs<PointerType>();
1210      if (!PT || !PT->getPointeeType()->isVoidType())
1211        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1212                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
1213    }
1214  }
1215  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
1216}
1217
1218Action::OwningStmtResult
1219Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1220                                  StmtArg SynchBody) {
1221  CurFunctionNeedsScopeChecking = true;
1222
1223  // Make sure the expression type is an ObjC pointer or "void *".
1224  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1225  if (!SyncExpr->getType()->isObjCObjectPointerType()) {
1226    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1227    if (!PT || !PT->getPointeeType()->isVoidType())
1228      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1229                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1230  }
1231
1232  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1233                                                    SynchExpr.takeAs<Stmt>(),
1234                                                    SynchBody.takeAs<Stmt>()));
1235}
1236
1237/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1238/// and creates a proper catch handler from them.
1239Action::OwningStmtResult
1240Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1241                         StmtArg HandlerBlock) {
1242  // There's nothing to test that ActOnExceptionDecl didn't already test.
1243  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1244                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1245                                          HandlerBlock.takeAs<Stmt>()));
1246}
1247
1248class TypeWithHandler {
1249  QualType t;
1250  CXXCatchStmt *stmt;
1251public:
1252  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1253  : t(type), stmt(statement) {}
1254
1255  bool operator<(const TypeWithHandler &y) const {
1256    if (t.getTypePtr() < y.t.getTypePtr())
1257      return true;
1258    else if (t.getTypePtr() > y.t.getTypePtr())
1259      return false;
1260    else if (t.getCVRQualifiers() < y.t.getCVRQualifiers())
1261      return true;
1262    else if (t.getCVRQualifiers() < y.t.getCVRQualifiers())
1263      return false;
1264    else
1265      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1266  }
1267
1268  bool operator==(const TypeWithHandler& other) const {
1269    return t.getTypePtr() == other.t.getTypePtr()
1270        && t.getCVRQualifiers() == other.t.getCVRQualifiers();
1271  }
1272
1273  QualType getQualType() const { return t; }
1274  CXXCatchStmt *getCatchStmt() const { return stmt; }
1275  SourceLocation getTypeSpecStartLoc() const {
1276    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1277  }
1278};
1279
1280/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1281/// handlers and creates a try statement from them.
1282Action::OwningStmtResult
1283Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1284                       MultiStmtArg RawHandlers) {
1285  unsigned NumHandlers = RawHandlers.size();
1286  assert(NumHandlers > 0 &&
1287         "The parser shouldn't call this if there are no handlers.");
1288  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1289
1290  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1291
1292  for(unsigned i = 0; i < NumHandlers; ++i) {
1293    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1294    if (!Handler->getExceptionDecl()) {
1295      if (i < NumHandlers - 1)
1296        return StmtError(Diag(Handler->getLocStart(),
1297                              diag::err_early_catch_all));
1298
1299      continue;
1300    }
1301
1302    const QualType CaughtType = Handler->getCaughtType();
1303    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1304    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1305  }
1306
1307  // Detect handlers for the same type as an earlier one.
1308  if (NumHandlers > 1) {
1309    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1310
1311    TypeWithHandler prev = TypesWithHandlers[0];
1312    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1313      TypeWithHandler curr = TypesWithHandlers[i];
1314
1315      if (curr == prev) {
1316        Diag(curr.getTypeSpecStartLoc(),
1317             diag::warn_exception_caught_by_earlier_handler)
1318          << curr.getCatchStmt()->getCaughtType().getAsString();
1319        Diag(prev.getTypeSpecStartLoc(),
1320             diag::note_previous_exception_handler)
1321          << prev.getCatchStmt()->getCaughtType().getAsString();
1322      }
1323
1324      prev = curr;
1325    }
1326  }
1327
1328  // FIXME: We should detect handlers that cannot catch anything because an
1329  // earlier handler catches a superclass. Need to find a method that is not
1330  // quadratic for this.
1331  // Neither of these are explicitly forbidden, but every compiler detects them
1332  // and warns.
1333
1334  CurFunctionNeedsScopeChecking = true;
1335  RawHandlers.release();
1336  return Owned(new (Context) CXXTryStmt(TryLoc,
1337                                        static_cast<Stmt*>(TryBlock.release()),
1338                                        Handlers, NumHandlers));
1339}
1340