SemaStmt.cpp revision 729b853f4bfa83e53c638a06a9dccf83b4e1f720
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprObjC.h"
23#include "clang/AST/StmtObjC.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Basic/TargetInfo.h"
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallVector.h"
31using namespace clang;
32using namespace sema;
33
34StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
35  Expr *E = expr.get();
36  if (!E) // FIXME: FullExprArg has no error state?
37    return StmtError();
38
39  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
40  // void expression for its side effects.  Conversion to void allows any
41  // operand, even incomplete types.
42
43  // Same thing in for stmt first clause (when expr) and third clause.
44  return Owned(static_cast<Stmt*>(E));
45}
46
47
48StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, bool LeadingEmptyMacro) {
49  return Owned(new (Context) NullStmt(SemiLoc, LeadingEmptyMacro));
50}
51
52StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
53                               SourceLocation EndLoc) {
54  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
55
56  // If we have an invalid decl, just return an error.
57  if (DG.isNull()) return StmtError();
58
59  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
60}
61
62void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
63  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
64
65  // If we have an invalid decl, just return.
66  if (DG.isNull() || !DG.isSingleDecl()) return;
67  // suppress any potential 'unused variable' warning.
68  DG.getSingleDecl()->setUsed();
69}
70
71void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
72  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
73    return DiagnoseUnusedExprResult(Label->getSubStmt());
74
75  const Expr *E = dyn_cast_or_null<Expr>(S);
76  if (!E)
77    return;
78
79  if (E->isBoundMemberFunction(Context)) {
80    Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
81      << E->getSourceRange();
82    return;
83  }
84
85  SourceLocation Loc;
86  SourceRange R1, R2;
87  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
88    return;
89
90  // Okay, we have an unused result.  Depending on what the base expression is,
91  // we might want to make a more specific diagnostic.  Check for one of these
92  // cases now.
93  unsigned DiagID = diag::warn_unused_expr;
94  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
95    E = Temps->getSubExpr();
96  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
97    E = TempExpr->getSubExpr();
98
99  E = E->IgnoreParenImpCasts();
100  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
101    if (E->getType()->isVoidType())
102      return;
103
104    // If the callee has attribute pure, const, or warn_unused_result, warn with
105    // a more specific message to make it clear what is happening.
106    if (const Decl *FD = CE->getCalleeDecl()) {
107      if (FD->getAttr<WarnUnusedResultAttr>()) {
108        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
109        return;
110      }
111      if (FD->getAttr<PureAttr>()) {
112        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
113        return;
114      }
115      if (FD->getAttr<ConstAttr>()) {
116        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
117        return;
118      }
119    }
120  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
121    const ObjCMethodDecl *MD = ME->getMethodDecl();
122    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
123      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
124      return;
125    }
126  } else if (isa<ObjCPropertyRefExpr>(E)) {
127    DiagID = diag::warn_unused_property_expr;
128  } else if (const CXXFunctionalCastExpr *FC
129                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
130    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
131        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
132      return;
133  }
134  // Diagnose "(void*) blah" as a typo for "(void) blah".
135  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
136    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
137    QualType T = TI->getType();
138
139    // We really do want to use the non-canonical type here.
140    if (T == Context.VoidPtrTy) {
141      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
142
143      Diag(Loc, diag::warn_unused_voidptr)
144        << FixItHint::CreateRemoval(TL.getStarLoc());
145      return;
146    }
147  }
148
149  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
150}
151
152StmtResult
153Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
154                        MultiStmtArg elts, bool isStmtExpr) {
155  unsigned NumElts = elts.size();
156  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
157  // If we're in C89 mode, check that we don't have any decls after stmts.  If
158  // so, emit an extension diagnostic.
159  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
160    // Note that __extension__ can be around a decl.
161    unsigned i = 0;
162    // Skip over all declarations.
163    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
164      /*empty*/;
165
166    // We found the end of the list or a statement.  Scan for another declstmt.
167    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
168      /*empty*/;
169
170    if (i != NumElts) {
171      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
172      Diag(D->getLocation(), diag::ext_mixed_decls_code);
173    }
174  }
175  // Warn about unused expressions in statements.
176  for (unsigned i = 0; i != NumElts; ++i) {
177    // Ignore statements that are last in a statement expression.
178    if (isStmtExpr && i == NumElts - 1)
179      continue;
180
181    DiagnoseUnusedExprResult(Elts[i]);
182  }
183
184  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
185}
186
187StmtResult
188Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
189                    SourceLocation DotDotDotLoc, Expr *RHSVal,
190                    SourceLocation ColonLoc) {
191  assert((LHSVal != 0) && "missing expression in case statement");
192
193  // C99 6.8.4.2p3: The expression shall be an integer constant.
194  // However, GCC allows any evaluatable integer expression.
195  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
196      VerifyIntegerConstantExpression(LHSVal))
197    return StmtError();
198
199  // GCC extension: The expression shall be an integer constant.
200
201  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
202      VerifyIntegerConstantExpression(RHSVal)) {
203    RHSVal = 0;  // Recover by just forgetting about it.
204  }
205
206  if (getCurFunction()->SwitchStack.empty()) {
207    Diag(CaseLoc, diag::err_case_not_in_switch);
208    return StmtError();
209  }
210
211  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
212                                        ColonLoc);
213  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
214  return Owned(CS);
215}
216
217/// ActOnCaseStmtBody - This installs a statement as the body of a case.
218void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
219  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
220  CS->setSubStmt(SubStmt);
221}
222
223StmtResult
224Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
225                       Stmt *SubStmt, Scope *CurScope) {
226  if (getCurFunction()->SwitchStack.empty()) {
227    Diag(DefaultLoc, diag::err_default_not_in_switch);
228    return Owned(SubStmt);
229  }
230
231  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
232  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
233  return Owned(DS);
234}
235
236StmtResult
237Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
238                     SourceLocation ColonLoc, Stmt *SubStmt) {
239
240  // If the label was multiply defined, reject it now.
241  if (TheDecl->getStmt()) {
242    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
243    Diag(TheDecl->getLocation(), diag::note_previous_definition);
244    return Owned(SubStmt);
245  }
246
247  // Otherwise, things are good.  Fill in the declaration and return it.
248  TheDecl->setLocation(IdentLoc);
249
250  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
251  TheDecl->setStmt(LS);
252  TheDecl->setLocation(IdentLoc);
253  return Owned(LS);
254}
255
256StmtResult
257Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
258                  Stmt *thenStmt, SourceLocation ElseLoc,
259                  Stmt *elseStmt) {
260  ExprResult CondResult(CondVal.release());
261
262  VarDecl *ConditionVar = 0;
263  if (CondVar) {
264    ConditionVar = cast<VarDecl>(CondVar);
265    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
266    if (CondResult.isInvalid())
267      return StmtError();
268  }
269  Expr *ConditionExpr = CondResult.takeAs<Expr>();
270  if (!ConditionExpr)
271    return StmtError();
272
273  DiagnoseUnusedExprResult(thenStmt);
274
275  // Warn if the if block has a null body without an else value.
276  // this helps prevent bugs due to typos, such as
277  // if (condition);
278  //   do_stuff();
279  //
280  if (!elseStmt) {
281    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
282      // But do not warn if the body is a macro that expands to nothing, e.g:
283      //
284      // #define CALL(x)
285      // if (condition)
286      //   CALL(0);
287      //
288      if (!stmt->hasLeadingEmptyMacro())
289        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
290  }
291
292  DiagnoseUnusedExprResult(elseStmt);
293
294  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
295                                    thenStmt, ElseLoc, elseStmt));
296}
297
298/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
299/// the specified width and sign.  If an overflow occurs, detect it and emit
300/// the specified diagnostic.
301void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
302                                              unsigned NewWidth, bool NewSign,
303                                              SourceLocation Loc,
304                                              unsigned DiagID) {
305  // Perform a conversion to the promoted condition type if needed.
306  if (NewWidth > Val.getBitWidth()) {
307    // If this is an extension, just do it.
308    Val = Val.extend(NewWidth);
309    Val.setIsSigned(NewSign);
310
311    // If the input was signed and negative and the output is
312    // unsigned, don't bother to warn: this is implementation-defined
313    // behavior.
314    // FIXME: Introduce a second, default-ignored warning for this case?
315  } else if (NewWidth < Val.getBitWidth()) {
316    // If this is a truncation, check for overflow.
317    llvm::APSInt ConvVal(Val);
318    ConvVal = ConvVal.trunc(NewWidth);
319    ConvVal.setIsSigned(NewSign);
320    ConvVal = ConvVal.extend(Val.getBitWidth());
321    ConvVal.setIsSigned(Val.isSigned());
322    if (ConvVal != Val)
323      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
324
325    // Regardless of whether a diagnostic was emitted, really do the
326    // truncation.
327    Val = Val.trunc(NewWidth);
328    Val.setIsSigned(NewSign);
329  } else if (NewSign != Val.isSigned()) {
330    // Convert the sign to match the sign of the condition.  This can cause
331    // overflow as well: unsigned(INTMIN)
332    // We don't diagnose this overflow, because it is implementation-defined
333    // behavior.
334    // FIXME: Introduce a second, default-ignored warning for this case?
335    llvm::APSInt OldVal(Val);
336    Val.setIsSigned(NewSign);
337  }
338}
339
340namespace {
341  struct CaseCompareFunctor {
342    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
343                    const llvm::APSInt &RHS) {
344      return LHS.first < RHS;
345    }
346    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
347                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
348      return LHS.first < RHS.first;
349    }
350    bool operator()(const llvm::APSInt &LHS,
351                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
352      return LHS < RHS.first;
353    }
354  };
355}
356
357/// CmpCaseVals - Comparison predicate for sorting case values.
358///
359static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
360                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
361  if (lhs.first < rhs.first)
362    return true;
363
364  if (lhs.first == rhs.first &&
365      lhs.second->getCaseLoc().getRawEncoding()
366       < rhs.second->getCaseLoc().getRawEncoding())
367    return true;
368  return false;
369}
370
371/// CmpEnumVals - Comparison predicate for sorting enumeration values.
372///
373static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
374                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
375{
376  return lhs.first < rhs.first;
377}
378
379/// EqEnumVals - Comparison preficate for uniqing enumeration values.
380///
381static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
382                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
383{
384  return lhs.first == rhs.first;
385}
386
387/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
388/// potentially integral-promoted expression @p expr.
389static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
390  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
391    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
392    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
393    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
394      return TypeBeforePromotion;
395    }
396  }
397  return expr->getType();
398}
399
400StmtResult
401Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
402                             Decl *CondVar) {
403  ExprResult CondResult;
404
405  VarDecl *ConditionVar = 0;
406  if (CondVar) {
407    ConditionVar = cast<VarDecl>(CondVar);
408    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
409    if (CondResult.isInvalid())
410      return StmtError();
411
412    Cond = CondResult.release();
413  }
414
415  if (!Cond)
416    return StmtError();
417
418  CondResult
419    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
420                          PDiag(diag::err_typecheck_statement_requires_integer),
421                                   PDiag(diag::err_switch_incomplete_class_type)
422                                     << Cond->getSourceRange(),
423                                   PDiag(diag::err_switch_explicit_conversion),
424                                         PDiag(diag::note_switch_conversion),
425                                   PDiag(diag::err_switch_multiple_conversions),
426                                         PDiag(diag::note_switch_conversion),
427                                         PDiag(0));
428  if (CondResult.isInvalid()) return StmtError();
429  Cond = CondResult.take();
430
431  if (!CondVar) {
432    CheckImplicitConversions(Cond, SwitchLoc);
433    CondResult = MaybeCreateExprWithCleanups(Cond);
434    if (CondResult.isInvalid())
435      return StmtError();
436    Cond = CondResult.take();
437  }
438
439  getCurFunction()->setHasBranchIntoScope();
440
441  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
442  getCurFunction()->SwitchStack.push_back(SS);
443  return Owned(SS);
444}
445
446static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
447  if (Val.getBitWidth() < BitWidth)
448    Val = Val.extend(BitWidth);
449  else if (Val.getBitWidth() > BitWidth)
450    Val = Val.trunc(BitWidth);
451  Val.setIsSigned(IsSigned);
452}
453
454StmtResult
455Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
456                            Stmt *BodyStmt) {
457  SwitchStmt *SS = cast<SwitchStmt>(Switch);
458  assert(SS == getCurFunction()->SwitchStack.back() &&
459         "switch stack missing push/pop!");
460
461  SS->setBody(BodyStmt, SwitchLoc);
462  getCurFunction()->SwitchStack.pop_back();
463
464  if (SS->getCond() == 0)
465    return StmtError();
466
467  Expr *CondExpr = SS->getCond();
468  Expr *CondExprBeforePromotion = CondExpr;
469  QualType CondTypeBeforePromotion =
470      GetTypeBeforeIntegralPromotion(CondExpr);
471
472  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
473  UsualUnaryConversions(CondExpr);
474  QualType CondType = CondExpr->getType();
475  SS->setCond(CondExpr);
476
477  // C++ 6.4.2.p2:
478  // Integral promotions are performed (on the switch condition).
479  //
480  // A case value unrepresentable by the original switch condition
481  // type (before the promotion) doesn't make sense, even when it can
482  // be represented by the promoted type.  Therefore we need to find
483  // the pre-promotion type of the switch condition.
484  if (!CondExpr->isTypeDependent()) {
485    // We have already converted the expression to an integral or enumeration
486    // type, when we started the switch statement. If we don't have an
487    // appropriate type now, just return an error.
488    if (!CondType->isIntegralOrEnumerationType())
489      return StmtError();
490
491    if (CondExpr->isKnownToHaveBooleanValue()) {
492      // switch(bool_expr) {...} is often a programmer error, e.g.
493      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
494      // One can always use an if statement instead of switch(bool_expr).
495      Diag(SwitchLoc, diag::warn_bool_switch_condition)
496          << CondExpr->getSourceRange();
497    }
498  }
499
500  // Get the bitwidth of the switched-on value before promotions.  We must
501  // convert the integer case values to this width before comparison.
502  bool HasDependentValue
503    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
504  unsigned CondWidth
505    = HasDependentValue? 0
506      : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
507  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
508
509  // Accumulate all of the case values in a vector so that we can sort them
510  // and detect duplicates.  This vector contains the APInt for the case after
511  // it has been converted to the condition type.
512  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
513  CaseValsTy CaseVals;
514
515  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
516  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
517  CaseRangesTy CaseRanges;
518
519  DefaultStmt *TheDefaultStmt = 0;
520
521  bool CaseListIsErroneous = false;
522
523  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
524       SC = SC->getNextSwitchCase()) {
525
526    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
527      if (TheDefaultStmt) {
528        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
529        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
530
531        // FIXME: Remove the default statement from the switch block so that
532        // we'll return a valid AST.  This requires recursing down the AST and
533        // finding it, not something we are set up to do right now.  For now,
534        // just lop the entire switch stmt out of the AST.
535        CaseListIsErroneous = true;
536      }
537      TheDefaultStmt = DS;
538
539    } else {
540      CaseStmt *CS = cast<CaseStmt>(SC);
541
542      // We already verified that the expression has a i-c-e value (C99
543      // 6.8.4.2p3) - get that value now.
544      Expr *Lo = CS->getLHS();
545
546      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
547        HasDependentValue = true;
548        break;
549      }
550
551      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
552
553      // Convert the value to the same width/sign as the condition.
554      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
555                                         Lo->getLocStart(),
556                                         diag::warn_case_value_overflow);
557
558      // If the LHS is not the same type as the condition, insert an implicit
559      // cast.
560      ImpCastExprToType(Lo, CondType, CK_IntegralCast);
561      CS->setLHS(Lo);
562
563      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
564      if (CS->getRHS()) {
565        if (CS->getRHS()->isTypeDependent() ||
566            CS->getRHS()->isValueDependent()) {
567          HasDependentValue = true;
568          break;
569        }
570        CaseRanges.push_back(std::make_pair(LoVal, CS));
571      } else
572        CaseVals.push_back(std::make_pair(LoVal, CS));
573    }
574  }
575
576  if (!HasDependentValue) {
577    // If we don't have a default statement, check whether the
578    // condition is constant.
579    llvm::APSInt ConstantCondValue;
580    bool HasConstantCond = false;
581    bool ShouldCheckConstantCond = false;
582    if (!HasDependentValue && !TheDefaultStmt) {
583      Expr::EvalResult Result;
584      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
585      if (HasConstantCond) {
586        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
587        ConstantCondValue = Result.Val.getInt();
588        ShouldCheckConstantCond = true;
589
590        assert(ConstantCondValue.getBitWidth() == CondWidth &&
591               ConstantCondValue.isSigned() == CondIsSigned);
592      }
593    }
594
595    // Sort all the scalar case values so we can easily detect duplicates.
596    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
597
598    if (!CaseVals.empty()) {
599      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
600        if (ShouldCheckConstantCond &&
601            CaseVals[i].first == ConstantCondValue)
602          ShouldCheckConstantCond = false;
603
604        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
605          // If we have a duplicate, report it.
606          Diag(CaseVals[i].second->getLHS()->getLocStart(),
607               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
608          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
609               diag::note_duplicate_case_prev);
610          // FIXME: We really want to remove the bogus case stmt from the
611          // substmt, but we have no way to do this right now.
612          CaseListIsErroneous = true;
613        }
614      }
615    }
616
617    // Detect duplicate case ranges, which usually don't exist at all in
618    // the first place.
619    if (!CaseRanges.empty()) {
620      // Sort all the case ranges by their low value so we can easily detect
621      // overlaps between ranges.
622      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
623
624      // Scan the ranges, computing the high values and removing empty ranges.
625      std::vector<llvm::APSInt> HiVals;
626      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
627        llvm::APSInt &LoVal = CaseRanges[i].first;
628        CaseStmt *CR = CaseRanges[i].second;
629        Expr *Hi = CR->getRHS();
630        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
631
632        // Convert the value to the same width/sign as the condition.
633        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
634                                           Hi->getLocStart(),
635                                           diag::warn_case_value_overflow);
636
637        // If the LHS is not the same type as the condition, insert an implicit
638        // cast.
639        ImpCastExprToType(Hi, CondType, CK_IntegralCast);
640        CR->setRHS(Hi);
641
642        // If the low value is bigger than the high value, the case is empty.
643        if (LoVal > HiVal) {
644          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
645            << SourceRange(CR->getLHS()->getLocStart(),
646                           Hi->getLocEnd());
647          CaseRanges.erase(CaseRanges.begin()+i);
648          --i, --e;
649          continue;
650        }
651
652        if (ShouldCheckConstantCond &&
653            LoVal <= ConstantCondValue &&
654            ConstantCondValue <= HiVal)
655          ShouldCheckConstantCond = false;
656
657        HiVals.push_back(HiVal);
658      }
659
660      // Rescan the ranges, looking for overlap with singleton values and other
661      // ranges.  Since the range list is sorted, we only need to compare case
662      // ranges with their neighbors.
663      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
664        llvm::APSInt &CRLo = CaseRanges[i].first;
665        llvm::APSInt &CRHi = HiVals[i];
666        CaseStmt *CR = CaseRanges[i].second;
667
668        // Check to see whether the case range overlaps with any
669        // singleton cases.
670        CaseStmt *OverlapStmt = 0;
671        llvm::APSInt OverlapVal(32);
672
673        // Find the smallest value >= the lower bound.  If I is in the
674        // case range, then we have overlap.
675        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
676                                                  CaseVals.end(), CRLo,
677                                                  CaseCompareFunctor());
678        if (I != CaseVals.end() && I->first < CRHi) {
679          OverlapVal  = I->first;   // Found overlap with scalar.
680          OverlapStmt = I->second;
681        }
682
683        // Find the smallest value bigger than the upper bound.
684        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
685        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
686          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
687          OverlapStmt = (I-1)->second;
688        }
689
690        // Check to see if this case stmt overlaps with the subsequent
691        // case range.
692        if (i && CRLo <= HiVals[i-1]) {
693          OverlapVal  = HiVals[i-1];       // Found overlap with range.
694          OverlapStmt = CaseRanges[i-1].second;
695        }
696
697        if (OverlapStmt) {
698          // If we have a duplicate, report it.
699          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
700            << OverlapVal.toString(10);
701          Diag(OverlapStmt->getLHS()->getLocStart(),
702               diag::note_duplicate_case_prev);
703          // FIXME: We really want to remove the bogus case stmt from the
704          // substmt, but we have no way to do this right now.
705          CaseListIsErroneous = true;
706        }
707      }
708    }
709
710    // Complain if we have a constant condition and we didn't find a match.
711    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
712      // TODO: it would be nice if we printed enums as enums, chars as
713      // chars, etc.
714      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
715        << ConstantCondValue.toString(10)
716        << CondExpr->getSourceRange();
717    }
718
719    // Check to see if switch is over an Enum and handles all of its
720    // values.  We only issue a warning if there is not 'default:', but
721    // we still do the analysis to preserve this information in the AST
722    // (which can be used by flow-based analyes).
723    //
724    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
725
726    // If switch has default case, then ignore it.
727    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
728      const EnumDecl *ED = ET->getDecl();
729      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
730      EnumValsTy EnumVals;
731
732      // Gather all enum values, set their type and sort them,
733      // allowing easier comparison with CaseVals.
734      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
735           EDI != ED->enumerator_end(); ++EDI) {
736        llvm::APSInt Val = EDI->getInitVal();
737        AdjustAPSInt(Val, CondWidth, CondIsSigned);
738        EnumVals.push_back(std::make_pair(Val, *EDI));
739      }
740      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
741      EnumValsTy::iterator EIend =
742        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
743
744      // See which case values aren't in enum.
745      // TODO: we might want to check whether case values are out of the
746      // enum even if we don't want to check whether all cases are handled.
747      if (!TheDefaultStmt) {
748        EnumValsTy::const_iterator EI = EnumVals.begin();
749        for (CaseValsTy::const_iterator CI = CaseVals.begin();
750             CI != CaseVals.end(); CI++) {
751          while (EI != EIend && EI->first < CI->first)
752            EI++;
753          if (EI == EIend || EI->first > CI->first)
754            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
755              << ED->getDeclName();
756        }
757        // See which of case ranges aren't in enum
758        EI = EnumVals.begin();
759        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
760             RI != CaseRanges.end() && EI != EIend; RI++) {
761          while (EI != EIend && EI->first < RI->first)
762            EI++;
763
764          if (EI == EIend || EI->first != RI->first) {
765            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
766              << ED->getDeclName();
767          }
768
769          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
770          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
771          while (EI != EIend && EI->first < Hi)
772            EI++;
773          if (EI == EIend || EI->first != Hi)
774            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
775              << ED->getDeclName();
776        }
777      }
778
779      // Check which enum vals aren't in switch
780      CaseValsTy::const_iterator CI = CaseVals.begin();
781      CaseRangesTy::const_iterator RI = CaseRanges.begin();
782      bool hasCasesNotInSwitch = false;
783
784      llvm::SmallVector<DeclarationName,8> UnhandledNames;
785
786      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
787        // Drop unneeded case values
788        llvm::APSInt CIVal;
789        while (CI != CaseVals.end() && CI->first < EI->first)
790          CI++;
791
792        if (CI != CaseVals.end() && CI->first == EI->first)
793          continue;
794
795        // Drop unneeded case ranges
796        for (; RI != CaseRanges.end(); RI++) {
797          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
798          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
799          if (EI->first <= Hi)
800            break;
801        }
802
803        if (RI == CaseRanges.end() || EI->first < RI->first) {
804          hasCasesNotInSwitch = true;
805          if (!TheDefaultStmt)
806            UnhandledNames.push_back(EI->second->getDeclName());
807        }
808      }
809
810      // Produce a nice diagnostic if multiple values aren't handled.
811      switch (UnhandledNames.size()) {
812      case 0: break;
813      case 1:
814        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
815          << UnhandledNames[0];
816        break;
817      case 2:
818        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
819          << UnhandledNames[0] << UnhandledNames[1];
820        break;
821      case 3:
822        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
823          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
824        break;
825      default:
826        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
827          << (unsigned)UnhandledNames.size()
828          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
829        break;
830      }
831
832      if (!hasCasesNotInSwitch)
833        SS->setAllEnumCasesCovered();
834    }
835  }
836
837  // FIXME: If the case list was broken is some way, we don't have a good system
838  // to patch it up.  Instead, just return the whole substmt as broken.
839  if (CaseListIsErroneous)
840    return StmtError();
841
842  return Owned(SS);
843}
844
845StmtResult
846Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
847                     Decl *CondVar, Stmt *Body) {
848  ExprResult CondResult(Cond.release());
849
850  VarDecl *ConditionVar = 0;
851  if (CondVar) {
852    ConditionVar = cast<VarDecl>(CondVar);
853    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
854    if (CondResult.isInvalid())
855      return StmtError();
856  }
857  Expr *ConditionExpr = CondResult.take();
858  if (!ConditionExpr)
859    return StmtError();
860
861  DiagnoseUnusedExprResult(Body);
862
863  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
864                                       Body, WhileLoc));
865}
866
867StmtResult
868Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
869                  SourceLocation WhileLoc, SourceLocation CondLParen,
870                  Expr *Cond, SourceLocation CondRParen) {
871  assert(Cond && "ActOnDoStmt(): missing expression");
872
873  if (CheckBooleanCondition(Cond, DoLoc))
874    return StmtError();
875
876  CheckImplicitConversions(Cond, DoLoc);
877  ExprResult CondResult = MaybeCreateExprWithCleanups(Cond);
878  if (CondResult.isInvalid())
879    return StmtError();
880  Cond = CondResult.take();
881
882  DiagnoseUnusedExprResult(Body);
883
884  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
885}
886
887StmtResult
888Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
889                   Stmt *First, FullExprArg second, Decl *secondVar,
890                   FullExprArg third,
891                   SourceLocation RParenLoc, Stmt *Body) {
892  if (!getLangOptions().CPlusPlus) {
893    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
894      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
895      // declare identifiers for objects having storage class 'auto' or
896      // 'register'.
897      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
898           DI!=DE; ++DI) {
899        VarDecl *VD = dyn_cast<VarDecl>(*DI);
900        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
901          VD = 0;
902        if (VD == 0)
903          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
904        // FIXME: mark decl erroneous!
905      }
906    }
907  }
908
909  ExprResult SecondResult(second.release());
910  VarDecl *ConditionVar = 0;
911  if (secondVar) {
912    ConditionVar = cast<VarDecl>(secondVar);
913    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
914    if (SecondResult.isInvalid())
915      return StmtError();
916  }
917
918  Expr *Third  = third.release().takeAs<Expr>();
919
920  DiagnoseUnusedExprResult(First);
921  DiagnoseUnusedExprResult(Third);
922  DiagnoseUnusedExprResult(Body);
923
924  return Owned(new (Context) ForStmt(Context, First,
925                                     SecondResult.take(), ConditionVar,
926                                     Third, Body, ForLoc, LParenLoc,
927                                     RParenLoc));
928}
929
930/// In an Objective C collection iteration statement:
931///   for (x in y)
932/// x can be an arbitrary l-value expression.  Bind it up as a
933/// full-expression.
934StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
935  CheckImplicitConversions(E);
936  ExprResult Result = MaybeCreateExprWithCleanups(E);
937  if (Result.isInvalid()) return StmtError();
938  return Owned(static_cast<Stmt*>(Result.get()));
939}
940
941StmtResult
942Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
943                                 SourceLocation LParenLoc,
944                                 Stmt *First, Expr *Second,
945                                 SourceLocation RParenLoc, Stmt *Body) {
946  if (First) {
947    QualType FirstType;
948    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
949      if (!DS->isSingleDecl())
950        return StmtError(Diag((*DS->decl_begin())->getLocation(),
951                         diag::err_toomany_element_decls));
952
953      Decl *D = DS->getSingleDecl();
954      FirstType = cast<ValueDecl>(D)->getType();
955      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
956      // declare identifiers for objects having storage class 'auto' or
957      // 'register'.
958      VarDecl *VD = cast<VarDecl>(D);
959      if (VD->isLocalVarDecl() && !VD->hasLocalStorage())
960        return StmtError(Diag(VD->getLocation(),
961                              diag::err_non_variable_decl_in_for));
962    } else {
963      Expr *FirstE = cast<Expr>(First);
964      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
965        return StmtError(Diag(First->getLocStart(),
966                   diag::err_selector_element_not_lvalue)
967          << First->getSourceRange());
968
969      FirstType = static_cast<Expr*>(First)->getType();
970    }
971    if (!FirstType->isDependentType() &&
972        !FirstType->isObjCObjectPointerType() &&
973        !FirstType->isBlockPointerType())
974        Diag(ForLoc, diag::err_selector_element_type)
975          << FirstType << First->getSourceRange();
976  }
977  if (Second && !Second->isTypeDependent()) {
978    DefaultFunctionArrayLvalueConversion(Second);
979    QualType SecondType = Second->getType();
980    if (!SecondType->isObjCObjectPointerType())
981      Diag(ForLoc, diag::err_collection_expr_type)
982        << SecondType << Second->getSourceRange();
983    else if (const ObjCObjectPointerType *OPT =
984             SecondType->getAsObjCInterfacePointerType()) {
985      llvm::SmallVector<IdentifierInfo *, 4> KeyIdents;
986      IdentifierInfo* selIdent =
987        &Context.Idents.get("countByEnumeratingWithState");
988      KeyIdents.push_back(selIdent);
989      selIdent = &Context.Idents.get("objects");
990      KeyIdents.push_back(selIdent);
991      selIdent = &Context.Idents.get("count");
992      KeyIdents.push_back(selIdent);
993      Selector CSelector = Context.Selectors.getSelector(3, &KeyIdents[0]);
994      if (ObjCInterfaceDecl *IDecl = OPT->getInterfaceDecl()) {
995        if (!IDecl->isForwardDecl() &&
996            !IDecl->lookupInstanceMethod(CSelector)) {
997          // Must further look into private implementation methods.
998          if (!LookupPrivateInstanceMethod(CSelector, IDecl))
999            Diag(ForLoc, diag::warn_collection_expr_type)
1000              << SecondType << CSelector << Second->getSourceRange();
1001        }
1002      }
1003    }
1004  }
1005  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1006                                                   ForLoc, RParenLoc));
1007}
1008
1009StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1010                               SourceLocation LabelLoc,
1011                               LabelDecl *TheDecl) {
1012  getCurFunction()->setHasBranchIntoScope();
1013  TheDecl->setUsed();
1014  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1015}
1016
1017StmtResult
1018Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1019                            Expr *E) {
1020  // Convert operand to void*
1021  if (!E->isTypeDependent()) {
1022    QualType ETy = E->getType();
1023    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1024    AssignConvertType ConvTy =
1025      CheckSingleAssignmentConstraints(DestTy, E);
1026    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1027      return StmtError();
1028  }
1029
1030  getCurFunction()->setHasIndirectGoto();
1031
1032  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1033}
1034
1035StmtResult
1036Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1037  Scope *S = CurScope->getContinueParent();
1038  if (!S) {
1039    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1040    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1041  }
1042
1043  return Owned(new (Context) ContinueStmt(ContinueLoc));
1044}
1045
1046StmtResult
1047Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1048  Scope *S = CurScope->getBreakParent();
1049  if (!S) {
1050    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1051    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1052  }
1053
1054  return Owned(new (Context) BreakStmt(BreakLoc));
1055}
1056
1057/// \brief Determine whether the given expression is a candidate for
1058/// copy elision in either a return statement or a throw expression.
1059///
1060/// \param ReturnType If we're determining the copy elision candidate for
1061/// a return statement, this is the return type of the function. If we're
1062/// determining the copy elision candidate for a throw expression, this will
1063/// be a NULL type.
1064///
1065/// \param E The expression being returned from the function or block, or
1066/// being thrown.
1067///
1068/// \param AllowFunctionParameter
1069///
1070/// \returns The NRVO candidate variable, if the return statement may use the
1071/// NRVO, or NULL if there is no such candidate.
1072const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1073                                             Expr *E,
1074                                             bool AllowFunctionParameter) {
1075  QualType ExprType = E->getType();
1076  // - in a return statement in a function with ...
1077  // ... a class return type ...
1078  if (!ReturnType.isNull()) {
1079    if (!ReturnType->isRecordType())
1080      return 0;
1081    // ... the same cv-unqualified type as the function return type ...
1082    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1083      return 0;
1084  }
1085
1086  // ... the expression is the name of a non-volatile automatic object
1087  // (other than a function or catch-clause parameter)) ...
1088  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1089  if (!DR)
1090    return 0;
1091  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1092  if (!VD)
1093    return 0;
1094
1095  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1096      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1097      !VD->getType().isVolatileQualified() &&
1098      ((VD->getKind() == Decl::Var) ||
1099       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1100    return VD;
1101
1102  return 0;
1103}
1104
1105/// \brief Perform the initialization of a potentially-movable value, which
1106/// is the result of return value.
1107///
1108/// This routine implements C++0x [class.copy]p33, which attempts to treat
1109/// returned lvalues as rvalues in certain cases (to prefer move construction),
1110/// then falls back to treating them as lvalues if that failed.
1111ExprResult
1112Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1113                                      const VarDecl *NRVOCandidate,
1114                                      QualType ResultType,
1115                                      Expr *Value) {
1116  // C++0x [class.copy]p33:
1117  //   When the criteria for elision of a copy operation are met or would
1118  //   be met save for the fact that the source object is a function
1119  //   parameter, and the object to be copied is designated by an lvalue,
1120  //   overload resolution to select the constructor for the copy is first
1121  //   performed as if the object were designated by an rvalue.
1122  ExprResult Res = ExprError();
1123  if (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true)) {
1124    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1125                              Value->getType(), CK_LValueToRValue,
1126                              Value, VK_XValue);
1127
1128    Expr *InitExpr = &AsRvalue;
1129    InitializationKind Kind
1130      = InitializationKind::CreateCopy(Value->getLocStart(),
1131                                       Value->getLocStart());
1132    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1133
1134    //   [...] If overload resolution fails, or if the type of the first
1135    //   parameter of the selected constructor is not an rvalue reference
1136    //   to the object's type (possibly cv-qualified), overload resolution
1137    //   is performed again, considering the object as an lvalue.
1138    if (Seq.getKind() != InitializationSequence::FailedSequence) {
1139      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1140           StepEnd = Seq.step_end();
1141           Step != StepEnd; ++Step) {
1142        if (Step->Kind
1143            != InitializationSequence::SK_ConstructorInitialization)
1144          continue;
1145
1146        CXXConstructorDecl *Constructor
1147        = cast<CXXConstructorDecl>(Step->Function.Function);
1148
1149        const RValueReferenceType *RRefType
1150          = Constructor->getParamDecl(0)->getType()
1151                                                 ->getAs<RValueReferenceType>();
1152
1153        // If we don't meet the criteria, break out now.
1154        if (!RRefType ||
1155            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1156                            Context.getTypeDeclType(Constructor->getParent())))
1157          break;
1158
1159        // Promote "AsRvalue" to the heap, since we now need this
1160        // expression node to persist.
1161        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1162                                         CK_LValueToRValue, Value, 0,
1163                                         VK_XValue);
1164
1165        // Complete type-checking the initialization of the return type
1166        // using the constructor we found.
1167        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1168      }
1169    }
1170  }
1171
1172  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1173  // above, or overload resolution failed. Either way, we need to try
1174  // (again) now with the return value expression as written.
1175  if (Res.isInvalid())
1176    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1177
1178  return Res;
1179}
1180
1181/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1182///
1183StmtResult
1184Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1185  // If this is the first return we've seen in the block, infer the type of
1186  // the block from it.
1187  BlockScopeInfo *CurBlock = getCurBlock();
1188  if (CurBlock->ReturnType.isNull()) {
1189    if (RetValExp) {
1190      // Don't call UsualUnaryConversions(), since we don't want to do
1191      // integer promotions here.
1192      DefaultFunctionArrayLvalueConversion(RetValExp);
1193      CurBlock->ReturnType = RetValExp->getType();
1194      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1195        // We have to remove a 'const' added to copied-in variable which was
1196        // part of the implementation spec. and not the actual qualifier for
1197        // the variable.
1198        if (CDRE->isConstQualAdded())
1199          CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1200      }
1201    } else
1202      CurBlock->ReturnType = Context.VoidTy;
1203  }
1204  QualType FnRetType = CurBlock->ReturnType;
1205
1206  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1207    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1208      << getCurFunctionOrMethodDecl()->getDeclName();
1209    return StmtError();
1210  }
1211
1212  // Otherwise, verify that this result type matches the previous one.  We are
1213  // pickier with blocks than for normal functions because we don't have GCC
1214  // compatibility to worry about here.
1215  ReturnStmt *Result = 0;
1216  if (CurBlock->ReturnType->isVoidType()) {
1217    if (RetValExp) {
1218      Diag(ReturnLoc, diag::err_return_block_has_expr);
1219      RetValExp = 0;
1220    }
1221    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1222  } else if (!RetValExp) {
1223    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1224  } else {
1225    const VarDecl *NRVOCandidate = 0;
1226
1227    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1228      // we have a non-void block with an expression, continue checking
1229
1230      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1231      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1232      // function return.
1233
1234      // In C++ the return statement is handled via a copy initialization.
1235      // the C version of which boils down to CheckSingleAssignmentConstraints.
1236      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1237      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1238                                                                     FnRetType,
1239                                                           NRVOCandidate != 0);
1240      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1241                                                       FnRetType, RetValExp);
1242      if (Res.isInvalid()) {
1243        // FIXME: Cleanup temporaries here, anyway?
1244        return StmtError();
1245      }
1246
1247      if (RetValExp) {
1248        CheckImplicitConversions(RetValExp, ReturnLoc);
1249        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1250      }
1251
1252      RetValExp = Res.takeAs<Expr>();
1253      if (RetValExp)
1254        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1255    }
1256
1257    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1258  }
1259
1260  // If we need to check for the named return value optimization, save the
1261  // return statement in our scope for later processing.
1262  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1263      !CurContext->isDependentContext())
1264    FunctionScopes.back()->Returns.push_back(Result);
1265
1266  return Owned(Result);
1267}
1268
1269StmtResult
1270Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1271  if (getCurBlock())
1272    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1273
1274  QualType FnRetType;
1275  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1276    FnRetType = FD->getResultType();
1277    if (FD->hasAttr<NoReturnAttr>() ||
1278        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1279      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1280        << getCurFunctionOrMethodDecl()->getDeclName();
1281  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1282    FnRetType = MD->getResultType();
1283  else // If we don't have a function/method context, bail.
1284    return StmtError();
1285
1286  ReturnStmt *Result = 0;
1287  if (FnRetType->isVoidType()) {
1288    if (RetValExp && !RetValExp->isTypeDependent()) {
1289      // C99 6.8.6.4p1 (ext_ since GCC warns)
1290      unsigned D = diag::ext_return_has_expr;
1291      if (RetValExp->getType()->isVoidType())
1292        D = diag::ext_return_has_void_expr;
1293      else {
1294        IgnoredValueConversions(RetValExp);
1295        ImpCastExprToType(RetValExp, Context.VoidTy, CK_ToVoid);
1296      }
1297
1298      // return (some void expression); is legal in C++.
1299      if (D != diag::ext_return_has_void_expr ||
1300          !getLangOptions().CPlusPlus) {
1301        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1302        Diag(ReturnLoc, D)
1303          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1304          << RetValExp->getSourceRange();
1305      }
1306
1307      CheckImplicitConversions(RetValExp, ReturnLoc);
1308      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1309    }
1310
1311    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1312  } else if (!RetValExp && !FnRetType->isDependentType()) {
1313    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1314    // C99 6.8.6.4p1 (ext_ since GCC warns)
1315    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1316
1317    if (FunctionDecl *FD = getCurFunctionDecl())
1318      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1319    else
1320      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1321    Result = new (Context) ReturnStmt(ReturnLoc);
1322  } else {
1323    const VarDecl *NRVOCandidate = 0;
1324    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1325      // we have a non-void function with an expression, continue checking
1326
1327      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1328      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1329      // function return.
1330
1331      // In C++ the return statement is handled via a copy initialization.
1332      // the C version of which boils down to CheckSingleAssignmentConstraints.
1333      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1334      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1335                                                                     FnRetType,
1336                                                                     NRVOCandidate != 0);
1337      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1338                                                       FnRetType, RetValExp);
1339      if (Res.isInvalid()) {
1340        // FIXME: Cleanup temporaries here, anyway?
1341        return StmtError();
1342      }
1343
1344      RetValExp = Res.takeAs<Expr>();
1345      if (RetValExp)
1346        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1347    }
1348
1349    if (RetValExp) {
1350      CheckImplicitConversions(RetValExp, ReturnLoc);
1351      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1352    }
1353    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1354  }
1355
1356  // If we need to check for the named return value optimization, save the
1357  // return statement in our scope for later processing.
1358  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1359      !CurContext->isDependentContext())
1360    FunctionScopes.back()->Returns.push_back(Result);
1361
1362  return Owned(Result);
1363}
1364
1365/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1366/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1367/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1368/// provide a strong guidance to not use it.
1369///
1370/// This method checks to see if the argument is an acceptable l-value and
1371/// returns false if it is a case we can handle.
1372static bool CheckAsmLValue(const Expr *E, Sema &S) {
1373  // Type dependent expressions will be checked during instantiation.
1374  if (E->isTypeDependent())
1375    return false;
1376
1377  if (E->isLValue())
1378    return false;  // Cool, this is an lvalue.
1379
1380  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1381  // are supposed to allow.
1382  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1383  if (E != E2 && E2->isLValue()) {
1384    if (!S.getLangOptions().HeinousExtensions)
1385      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1386        << E->getSourceRange();
1387    else
1388      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1389        << E->getSourceRange();
1390    // Accept, even if we emitted an error diagnostic.
1391    return false;
1392  }
1393
1394  // None of the above, just randomly invalid non-lvalue.
1395  return true;
1396}
1397
1398/// isOperandMentioned - Return true if the specified operand # is mentioned
1399/// anywhere in the decomposed asm string.
1400static bool isOperandMentioned(unsigned OpNo,
1401                         llvm::ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
1402  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
1403    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
1404    if (!Piece.isOperand()) continue;
1405
1406    // If this is a reference to the input and if the input was the smaller
1407    // one, then we have to reject this asm.
1408    if (Piece.getOperandNo() == OpNo)
1409      return true;
1410  }
1411
1412  return false;
1413}
1414
1415StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1416                              bool IsVolatile, unsigned NumOutputs,
1417                              unsigned NumInputs, IdentifierInfo **Names,
1418                              MultiExprArg constraints, MultiExprArg exprs,
1419                              Expr *asmString, MultiExprArg clobbers,
1420                              SourceLocation RParenLoc, bool MSAsm) {
1421  unsigned NumClobbers = clobbers.size();
1422  StringLiteral **Constraints =
1423    reinterpret_cast<StringLiteral**>(constraints.get());
1424  Expr **Exprs = exprs.get();
1425  StringLiteral *AsmString = cast<StringLiteral>(asmString);
1426  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1427
1428  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1429
1430  // The parser verifies that there is a string literal here.
1431  if (AsmString->isWide())
1432    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1433      << AsmString->getSourceRange());
1434
1435  for (unsigned i = 0; i != NumOutputs; i++) {
1436    StringLiteral *Literal = Constraints[i];
1437    if (Literal->isWide())
1438      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1439        << Literal->getSourceRange());
1440
1441    llvm::StringRef OutputName;
1442    if (Names[i])
1443      OutputName = Names[i]->getName();
1444
1445    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1446    if (!Context.Target.validateOutputConstraint(Info))
1447      return StmtError(Diag(Literal->getLocStart(),
1448                            diag::err_asm_invalid_output_constraint)
1449                       << Info.getConstraintStr());
1450
1451    // Check that the output exprs are valid lvalues.
1452    Expr *OutputExpr = Exprs[i];
1453    if (CheckAsmLValue(OutputExpr, *this)) {
1454      return StmtError(Diag(OutputExpr->getLocStart(),
1455                  diag::err_asm_invalid_lvalue_in_output)
1456        << OutputExpr->getSourceRange());
1457    }
1458
1459    OutputConstraintInfos.push_back(Info);
1460  }
1461
1462  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1463
1464  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1465    StringLiteral *Literal = Constraints[i];
1466    if (Literal->isWide())
1467      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1468        << Literal->getSourceRange());
1469
1470    llvm::StringRef InputName;
1471    if (Names[i])
1472      InputName = Names[i]->getName();
1473
1474    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1475    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1476                                                NumOutputs, Info)) {
1477      return StmtError(Diag(Literal->getLocStart(),
1478                            diag::err_asm_invalid_input_constraint)
1479                       << Info.getConstraintStr());
1480    }
1481
1482    Expr *InputExpr = Exprs[i];
1483
1484    // Only allow void types for memory constraints.
1485    if (Info.allowsMemory() && !Info.allowsRegister()) {
1486      if (CheckAsmLValue(InputExpr, *this))
1487        return StmtError(Diag(InputExpr->getLocStart(),
1488                              diag::err_asm_invalid_lvalue_in_input)
1489                         << Info.getConstraintStr()
1490                         << InputExpr->getSourceRange());
1491    }
1492
1493    if (Info.allowsRegister()) {
1494      if (InputExpr->getType()->isVoidType()) {
1495        return StmtError(Diag(InputExpr->getLocStart(),
1496                              diag::err_asm_invalid_type_in_input)
1497          << InputExpr->getType() << Info.getConstraintStr()
1498          << InputExpr->getSourceRange());
1499      }
1500    }
1501
1502    DefaultFunctionArrayLvalueConversion(Exprs[i]);
1503
1504    InputConstraintInfos.push_back(Info);
1505  }
1506
1507  // Check that the clobbers are valid.
1508  for (unsigned i = 0; i != NumClobbers; i++) {
1509    StringLiteral *Literal = Clobbers[i];
1510    if (Literal->isWide())
1511      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1512        << Literal->getSourceRange());
1513
1514    llvm::StringRef Clobber = Literal->getString();
1515
1516    if (!Context.Target.isValidGCCRegisterName(Clobber))
1517      return StmtError(Diag(Literal->getLocStart(),
1518                  diag::err_asm_unknown_register_name) << Clobber);
1519  }
1520
1521  AsmStmt *NS =
1522    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1523                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1524                          AsmString, NumClobbers, Clobbers, RParenLoc);
1525  // Validate the asm string, ensuring it makes sense given the operands we
1526  // have.
1527  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1528  unsigned DiagOffs;
1529  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1530    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1531           << AsmString->getSourceRange();
1532    return StmtError();
1533  }
1534
1535  // Validate tied input operands for type mismatches.
1536  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1537    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1538
1539    // If this is a tied constraint, verify that the output and input have
1540    // either exactly the same type, or that they are int/ptr operands with the
1541    // same size (int/long, int*/long, are ok etc).
1542    if (!Info.hasTiedOperand()) continue;
1543
1544    unsigned TiedTo = Info.getTiedOperand();
1545    unsigned InputOpNo = i+NumOutputs;
1546    Expr *OutputExpr = Exprs[TiedTo];
1547    Expr *InputExpr = Exprs[InputOpNo];
1548    QualType InTy = InputExpr->getType();
1549    QualType OutTy = OutputExpr->getType();
1550    if (Context.hasSameType(InTy, OutTy))
1551      continue;  // All types can be tied to themselves.
1552
1553    // Decide if the input and output are in the same domain (integer/ptr or
1554    // floating point.
1555    enum AsmDomain {
1556      AD_Int, AD_FP, AD_Other
1557    } InputDomain, OutputDomain;
1558
1559    if (InTy->isIntegerType() || InTy->isPointerType())
1560      InputDomain = AD_Int;
1561    else if (InTy->isRealFloatingType())
1562      InputDomain = AD_FP;
1563    else
1564      InputDomain = AD_Other;
1565
1566    if (OutTy->isIntegerType() || OutTy->isPointerType())
1567      OutputDomain = AD_Int;
1568    else if (OutTy->isRealFloatingType())
1569      OutputDomain = AD_FP;
1570    else
1571      OutputDomain = AD_Other;
1572
1573    // They are ok if they are the same size and in the same domain.  This
1574    // allows tying things like:
1575    //   void* to int*
1576    //   void* to int            if they are the same size.
1577    //   double to long double   if they are the same size.
1578    //
1579    uint64_t OutSize = Context.getTypeSize(OutTy);
1580    uint64_t InSize = Context.getTypeSize(InTy);
1581    if (OutSize == InSize && InputDomain == OutputDomain &&
1582        InputDomain != AD_Other)
1583      continue;
1584
1585    // If the smaller input/output operand is not mentioned in the asm string,
1586    // then we can promote the smaller one to a larger input and the asm string
1587    // won't notice.
1588    bool SmallerValueMentioned = false;
1589
1590    // If this is a reference to the input and if the input was the smaller
1591    // one, then we have to reject this asm.
1592    if (isOperandMentioned(InputOpNo, Pieces)) {
1593      // This is a use in the asm string of the smaller operand.  Since we
1594      // codegen this by promoting to a wider value, the asm will get printed
1595      // "wrong".
1596      SmallerValueMentioned |= InSize < OutSize;
1597    }
1598    if (isOperandMentioned(TiedTo, Pieces)) {
1599      // If this is a reference to the output, and if the output is the larger
1600      // value, then it's ok because we'll promote the input to the larger type.
1601      SmallerValueMentioned |= OutSize < InSize;
1602    }
1603
1604    // If the smaller value wasn't mentioned in the asm string, and if the
1605    // output was a register, just extend the shorter one to the size of the
1606    // larger one.
1607    if (!SmallerValueMentioned && InputDomain != AD_Other &&
1608        OutputConstraintInfos[TiedTo].allowsRegister())
1609      continue;
1610
1611    // Either both of the operands were mentioned or the smaller one was
1612    // mentioned.  One more special case that we'll allow: if the tied input is
1613    // integer, unmentioned, and is a constant, then we'll allow truncating it
1614    // down to the size of the destination.
1615    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
1616        !isOperandMentioned(InputOpNo, Pieces) &&
1617        InputExpr->isEvaluatable(Context)) {
1618      ImpCastExprToType(InputExpr, OutTy, CK_IntegralCast);
1619      Exprs[InputOpNo] = InputExpr;
1620      NS->setInputExpr(i, InputExpr);
1621      continue;
1622    }
1623
1624    Diag(InputExpr->getLocStart(),
1625         diag::err_asm_tying_incompatible_types)
1626      << InTy << OutTy << OutputExpr->getSourceRange()
1627      << InputExpr->getSourceRange();
1628    return StmtError();
1629  }
1630
1631  return Owned(NS);
1632}
1633
1634StmtResult
1635Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1636                           SourceLocation RParen, Decl *Parm,
1637                           Stmt *Body) {
1638  VarDecl *Var = cast_or_null<VarDecl>(Parm);
1639  if (Var && Var->isInvalidDecl())
1640    return StmtError();
1641
1642  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
1643}
1644
1645StmtResult
1646Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
1647  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
1648}
1649
1650StmtResult
1651Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
1652                         MultiStmtArg CatchStmts, Stmt *Finally) {
1653  if (!getLangOptions().ObjCExceptions)
1654    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
1655
1656  getCurFunction()->setHasBranchProtectedScope();
1657  unsigned NumCatchStmts = CatchStmts.size();
1658  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
1659                                     CatchStmts.release(),
1660                                     NumCatchStmts,
1661                                     Finally));
1662}
1663
1664StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
1665                                                  Expr *Throw) {
1666  if (Throw) {
1667    DefaultLvalueConversion(Throw);
1668
1669    QualType ThrowType = Throw->getType();
1670    // Make sure the expression type is an ObjC pointer or "void *".
1671    if (!ThrowType->isDependentType() &&
1672        !ThrowType->isObjCObjectPointerType()) {
1673      const PointerType *PT = ThrowType->getAs<PointerType>();
1674      if (!PT || !PT->getPointeeType()->isVoidType())
1675        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1676                         << Throw->getType() << Throw->getSourceRange());
1677    }
1678  }
1679
1680  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
1681}
1682
1683StmtResult
1684Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
1685                           Scope *CurScope) {
1686  if (!getLangOptions().ObjCExceptions)
1687    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
1688
1689  if (!Throw) {
1690    // @throw without an expression designates a rethrow (which much occur
1691    // in the context of an @catch clause).
1692    Scope *AtCatchParent = CurScope;
1693    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1694      AtCatchParent = AtCatchParent->getParent();
1695    if (!AtCatchParent)
1696      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1697  }
1698
1699  return BuildObjCAtThrowStmt(AtLoc, Throw);
1700}
1701
1702StmtResult
1703Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
1704                                  Stmt *SyncBody) {
1705  getCurFunction()->setHasBranchProtectedScope();
1706
1707  DefaultLvalueConversion(SyncExpr);
1708
1709  // Make sure the expression type is an ObjC pointer or "void *".
1710  if (!SyncExpr->getType()->isDependentType() &&
1711      !SyncExpr->getType()->isObjCObjectPointerType()) {
1712    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1713    if (!PT || !PT->getPointeeType()->isVoidType())
1714      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1715                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1716  }
1717
1718  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
1719}
1720
1721/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1722/// and creates a proper catch handler from them.
1723StmtResult
1724Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
1725                         Stmt *HandlerBlock) {
1726  // There's nothing to test that ActOnExceptionDecl didn't already test.
1727  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1728                                          cast_or_null<VarDecl>(ExDecl),
1729                                          HandlerBlock));
1730}
1731
1732namespace {
1733
1734class TypeWithHandler {
1735  QualType t;
1736  CXXCatchStmt *stmt;
1737public:
1738  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1739  : t(type), stmt(statement) {}
1740
1741  // An arbitrary order is fine as long as it places identical
1742  // types next to each other.
1743  bool operator<(const TypeWithHandler &y) const {
1744    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
1745      return true;
1746    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
1747      return false;
1748    else
1749      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1750  }
1751
1752  bool operator==(const TypeWithHandler& other) const {
1753    return t == other.t;
1754  }
1755
1756  CXXCatchStmt *getCatchStmt() const { return stmt; }
1757  SourceLocation getTypeSpecStartLoc() const {
1758    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1759  }
1760};
1761
1762}
1763
1764/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1765/// handlers and creates a try statement from them.
1766StmtResult
1767Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
1768                       MultiStmtArg RawHandlers) {
1769  // Don't report an error if 'try' is used in system headers.
1770  if (!getLangOptions().Exceptions &&
1771      !getSourceManager().isInSystemHeader(TryLoc))
1772      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
1773
1774  unsigned NumHandlers = RawHandlers.size();
1775  assert(NumHandlers > 0 &&
1776         "The parser shouldn't call this if there are no handlers.");
1777  Stmt **Handlers = RawHandlers.get();
1778
1779  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1780
1781  for (unsigned i = 0; i < NumHandlers; ++i) {
1782    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1783    if (!Handler->getExceptionDecl()) {
1784      if (i < NumHandlers - 1)
1785        return StmtError(Diag(Handler->getLocStart(),
1786                              diag::err_early_catch_all));
1787
1788      continue;
1789    }
1790
1791    const QualType CaughtType = Handler->getCaughtType();
1792    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1793    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1794  }
1795
1796  // Detect handlers for the same type as an earlier one.
1797  if (NumHandlers > 1) {
1798    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1799
1800    TypeWithHandler prev = TypesWithHandlers[0];
1801    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1802      TypeWithHandler curr = TypesWithHandlers[i];
1803
1804      if (curr == prev) {
1805        Diag(curr.getTypeSpecStartLoc(),
1806             diag::warn_exception_caught_by_earlier_handler)
1807          << curr.getCatchStmt()->getCaughtType().getAsString();
1808        Diag(prev.getTypeSpecStartLoc(),
1809             diag::note_previous_exception_handler)
1810          << prev.getCatchStmt()->getCaughtType().getAsString();
1811      }
1812
1813      prev = curr;
1814    }
1815  }
1816
1817  getCurFunction()->setHasBranchProtectedScope();
1818
1819  // FIXME: We should detect handlers that cannot catch anything because an
1820  // earlier handler catches a superclass. Need to find a method that is not
1821  // quadratic for this.
1822  // Neither of these are explicitly forbidden, but every compiler detects them
1823  // and warns.
1824
1825  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
1826                                  Handlers, NumHandlers));
1827}
1828