SemaStmt.cpp revision 7e725bc7a099fefa5e0f03e2208838d3cdf064e3
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               bool HasLeadingEmptyMacro) {
51  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOpts().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
96///
97/// Adding a cast to void (or other expression wrappers) will prevent the
98/// warning from firing.
99static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
100  SourceLocation Loc;
101  bool IsNotEqual, CanAssign;
102
103  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
104    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
105      return false;
106
107    Loc = Op->getOperatorLoc();
108    IsNotEqual = Op->getOpcode() == BO_NE;
109    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
110  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
111    if (Op->getOperator() != OO_EqualEqual &&
112        Op->getOperator() != OO_ExclaimEqual)
113      return false;
114
115    Loc = Op->getOperatorLoc();
116    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
117    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
118  } else {
119    // Not a typo-prone comparison.
120    return false;
121  }
122
123  // Suppress warnings when the operator, suspicious as it may be, comes from
124  // a macro expansion.
125  if (Loc.isMacroID())
126    return false;
127
128  S.Diag(Loc, diag::warn_unused_comparison)
129    << (unsigned)IsNotEqual << E->getSourceRange();
130
131  // If the LHS is a plausible entity to assign to, provide a fixit hint to
132  // correct common typos.
133  if (CanAssign) {
134    if (IsNotEqual)
135      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
136        << FixItHint::CreateReplacement(Loc, "|=");
137    else
138      S.Diag(Loc, diag::note_equality_comparison_to_assign)
139        << FixItHint::CreateReplacement(Loc, "=");
140  }
141
142  return true;
143}
144
145void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
146  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
147    return DiagnoseUnusedExprResult(Label->getSubStmt());
148
149  const Expr *E = dyn_cast_or_null<Expr>(S);
150  if (!E)
151    return;
152
153  SourceLocation Loc;
154  SourceRange R1, R2;
155  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
156      !E->isUnusedResultAWarning(Loc, R1, R2, Context))
157    return;
158
159  // Okay, we have an unused result.  Depending on what the base expression is,
160  // we might want to make a more specific diagnostic.  Check for one of these
161  // cases now.
162  unsigned DiagID = diag::warn_unused_expr;
163  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
164    E = Temps->getSubExpr();
165  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
166    E = TempExpr->getSubExpr();
167
168  if (DiagnoseUnusedComparison(*this, E))
169    return;
170
171  E = E->IgnoreParenImpCasts();
172  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
173    if (E->getType()->isVoidType())
174      return;
175
176    // If the callee has attribute pure, const, or warn_unused_result, warn with
177    // a more specific message to make it clear what is happening.
178    if (const Decl *FD = CE->getCalleeDecl()) {
179      if (FD->getAttr<WarnUnusedResultAttr>()) {
180        Diag(Loc, diag::warn_unused_result) << R1 << R2;
181        return;
182      }
183      if (FD->getAttr<PureAttr>()) {
184        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
185        return;
186      }
187      if (FD->getAttr<ConstAttr>()) {
188        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
189        return;
190      }
191    }
192  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
193    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
194      Diag(Loc, diag::err_arc_unused_init_message) << R1;
195      return;
196    }
197    const ObjCMethodDecl *MD = ME->getMethodDecl();
198    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
199      Diag(Loc, diag::warn_unused_result) << R1 << R2;
200      return;
201    }
202  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
203    const Expr *Source = POE->getSyntacticForm();
204    if (isa<ObjCSubscriptRefExpr>(Source))
205      DiagID = diag::warn_unused_container_subscript_expr;
206    else
207      DiagID = diag::warn_unused_property_expr;
208  } else if (const CXXFunctionalCastExpr *FC
209                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
210    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
211        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
212      return;
213  }
214  // Diagnose "(void*) blah" as a typo for "(void) blah".
215  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
216    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
217    QualType T = TI->getType();
218
219    // We really do want to use the non-canonical type here.
220    if (T == Context.VoidPtrTy) {
221      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
222
223      Diag(Loc, diag::warn_unused_voidptr)
224        << FixItHint::CreateRemoval(TL.getStarLoc());
225      return;
226    }
227  }
228
229  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
230}
231
232void Sema::ActOnStartOfCompoundStmt() {
233  PushCompoundScope();
234}
235
236void Sema::ActOnFinishOfCompoundStmt() {
237  PopCompoundScope();
238}
239
240sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
241  return getCurFunction()->CompoundScopes.back();
242}
243
244StmtResult
245Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
246                        MultiStmtArg elts, bool isStmtExpr) {
247  unsigned NumElts = elts.size();
248  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
249  // If we're in C89 mode, check that we don't have any decls after stmts.  If
250  // so, emit an extension diagnostic.
251  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
252    // Note that __extension__ can be around a decl.
253    unsigned i = 0;
254    // Skip over all declarations.
255    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
256      /*empty*/;
257
258    // We found the end of the list or a statement.  Scan for another declstmt.
259    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
260      /*empty*/;
261
262    if (i != NumElts) {
263      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
264      Diag(D->getLocation(), diag::ext_mixed_decls_code);
265    }
266  }
267  // Warn about unused expressions in statements.
268  for (unsigned i = 0; i != NumElts; ++i) {
269    // Ignore statements that are last in a statement expression.
270    if (isStmtExpr && i == NumElts - 1)
271      continue;
272
273    DiagnoseUnusedExprResult(Elts[i]);
274  }
275
276  // Check for suspicious empty body (null statement) in `for' and `while'
277  // statements.  Don't do anything for template instantiations, this just adds
278  // noise.
279  if (NumElts != 0 && !CurrentInstantiationScope &&
280      getCurCompoundScope().HasEmptyLoopBodies) {
281    for (unsigned i = 0; i != NumElts - 1; ++i)
282      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
283  }
284
285  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
286}
287
288StmtResult
289Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
290                    SourceLocation DotDotDotLoc, Expr *RHSVal,
291                    SourceLocation ColonLoc) {
292  assert((LHSVal != 0) && "missing expression in case statement");
293
294  if (getCurFunction()->SwitchStack.empty()) {
295    Diag(CaseLoc, diag::err_case_not_in_switch);
296    return StmtError();
297  }
298
299  if (!getLangOpts().CPlusPlus0x) {
300    // C99 6.8.4.2p3: The expression shall be an integer constant.
301    // However, GCC allows any evaluatable integer expression.
302    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
303      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
304      if (!LHSVal)
305        return StmtError();
306    }
307
308    // GCC extension: The expression shall be an integer constant.
309
310    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
311      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
312      // Recover from an error by just forgetting about it.
313    }
314  }
315
316  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
317                                        ColonLoc);
318  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
319  return Owned(CS);
320}
321
322/// ActOnCaseStmtBody - This installs a statement as the body of a case.
323void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
324  DiagnoseUnusedExprResult(SubStmt);
325
326  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
327  CS->setSubStmt(SubStmt);
328}
329
330StmtResult
331Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
332                       Stmt *SubStmt, Scope *CurScope) {
333  DiagnoseUnusedExprResult(SubStmt);
334
335  if (getCurFunction()->SwitchStack.empty()) {
336    Diag(DefaultLoc, diag::err_default_not_in_switch);
337    return Owned(SubStmt);
338  }
339
340  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
341  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
342  return Owned(DS);
343}
344
345StmtResult
346Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
347                     SourceLocation ColonLoc, Stmt *SubStmt) {
348
349  // If the label was multiply defined, reject it now.
350  if (TheDecl->getStmt()) {
351    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
352    Diag(TheDecl->getLocation(), diag::note_previous_definition);
353    return Owned(SubStmt);
354  }
355
356  // Otherwise, things are good.  Fill in the declaration and return it.
357  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
358  TheDecl->setStmt(LS);
359  if (!TheDecl->isGnuLocal())
360    TheDecl->setLocation(IdentLoc);
361  return Owned(LS);
362}
363
364StmtResult
365Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
366                  Stmt *thenStmt, SourceLocation ElseLoc,
367                  Stmt *elseStmt) {
368  ExprResult CondResult(CondVal.release());
369
370  VarDecl *ConditionVar = 0;
371  if (CondVar) {
372    ConditionVar = cast<VarDecl>(CondVar);
373    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
374    if (CondResult.isInvalid())
375      return StmtError();
376  }
377  Expr *ConditionExpr = CondResult.takeAs<Expr>();
378  if (!ConditionExpr)
379    return StmtError();
380
381  DiagnoseUnusedExprResult(thenStmt);
382
383  if (!elseStmt) {
384    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
385                          diag::warn_empty_if_body);
386  }
387
388  DiagnoseUnusedExprResult(elseStmt);
389
390  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
391                                    thenStmt, ElseLoc, elseStmt));
392}
393
394/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
395/// the specified width and sign.  If an overflow occurs, detect it and emit
396/// the specified diagnostic.
397void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
398                                              unsigned NewWidth, bool NewSign,
399                                              SourceLocation Loc,
400                                              unsigned DiagID) {
401  // Perform a conversion to the promoted condition type if needed.
402  if (NewWidth > Val.getBitWidth()) {
403    // If this is an extension, just do it.
404    Val = Val.extend(NewWidth);
405    Val.setIsSigned(NewSign);
406
407    // If the input was signed and negative and the output is
408    // unsigned, don't bother to warn: this is implementation-defined
409    // behavior.
410    // FIXME: Introduce a second, default-ignored warning for this case?
411  } else if (NewWidth < Val.getBitWidth()) {
412    // If this is a truncation, check for overflow.
413    llvm::APSInt ConvVal(Val);
414    ConvVal = ConvVal.trunc(NewWidth);
415    ConvVal.setIsSigned(NewSign);
416    ConvVal = ConvVal.extend(Val.getBitWidth());
417    ConvVal.setIsSigned(Val.isSigned());
418    if (ConvVal != Val)
419      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
420
421    // Regardless of whether a diagnostic was emitted, really do the
422    // truncation.
423    Val = Val.trunc(NewWidth);
424    Val.setIsSigned(NewSign);
425  } else if (NewSign != Val.isSigned()) {
426    // Convert the sign to match the sign of the condition.  This can cause
427    // overflow as well: unsigned(INTMIN)
428    // We don't diagnose this overflow, because it is implementation-defined
429    // behavior.
430    // FIXME: Introduce a second, default-ignored warning for this case?
431    llvm::APSInt OldVal(Val);
432    Val.setIsSigned(NewSign);
433  }
434}
435
436namespace {
437  struct CaseCompareFunctor {
438    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
439                    const llvm::APSInt &RHS) {
440      return LHS.first < RHS;
441    }
442    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
443                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
444      return LHS.first < RHS.first;
445    }
446    bool operator()(const llvm::APSInt &LHS,
447                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
448      return LHS < RHS.first;
449    }
450  };
451}
452
453/// CmpCaseVals - Comparison predicate for sorting case values.
454///
455static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
456                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
457  if (lhs.first < rhs.first)
458    return true;
459
460  if (lhs.first == rhs.first &&
461      lhs.second->getCaseLoc().getRawEncoding()
462       < rhs.second->getCaseLoc().getRawEncoding())
463    return true;
464  return false;
465}
466
467/// CmpEnumVals - Comparison predicate for sorting enumeration values.
468///
469static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
470                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
471{
472  return lhs.first < rhs.first;
473}
474
475/// EqEnumVals - Comparison preficate for uniqing enumeration values.
476///
477static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
478                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
479{
480  return lhs.first == rhs.first;
481}
482
483/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
484/// potentially integral-promoted expression @p expr.
485static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
486  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
487    expr = cleanups->getSubExpr();
488  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
489    if (impcast->getCastKind() != CK_IntegralCast) break;
490    expr = impcast->getSubExpr();
491  }
492  return expr->getType();
493}
494
495StmtResult
496Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
497                             Decl *CondVar) {
498  ExprResult CondResult;
499
500  VarDecl *ConditionVar = 0;
501  if (CondVar) {
502    ConditionVar = cast<VarDecl>(CondVar);
503    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
504    if (CondResult.isInvalid())
505      return StmtError();
506
507    Cond = CondResult.release();
508  }
509
510  if (!Cond)
511    return StmtError();
512
513  CondResult
514    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
515                          PDiag(diag::err_typecheck_statement_requires_integer),
516                                   PDiag(diag::err_switch_incomplete_class_type)
517                                     << Cond->getSourceRange(),
518                                   PDiag(diag::err_switch_explicit_conversion),
519                                         PDiag(diag::note_switch_conversion),
520                                   PDiag(diag::err_switch_multiple_conversions),
521                                         PDiag(diag::note_switch_conversion),
522                                         PDiag(0),
523                                         /*AllowScopedEnumerations*/ true);
524  if (CondResult.isInvalid()) return StmtError();
525  Cond = CondResult.take();
526
527  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
528  CondResult = UsualUnaryConversions(Cond);
529  if (CondResult.isInvalid()) return StmtError();
530  Cond = CondResult.take();
531
532  if (!CondVar) {
533    CheckImplicitConversions(Cond, SwitchLoc);
534    CondResult = MaybeCreateExprWithCleanups(Cond);
535    if (CondResult.isInvalid())
536      return StmtError();
537    Cond = CondResult.take();
538  }
539
540  getCurFunction()->setHasBranchIntoScope();
541
542  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
543  getCurFunction()->SwitchStack.push_back(SS);
544  return Owned(SS);
545}
546
547static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
548  if (Val.getBitWidth() < BitWidth)
549    Val = Val.extend(BitWidth);
550  else if (Val.getBitWidth() > BitWidth)
551    Val = Val.trunc(BitWidth);
552  Val.setIsSigned(IsSigned);
553}
554
555StmtResult
556Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
557                            Stmt *BodyStmt) {
558  SwitchStmt *SS = cast<SwitchStmt>(Switch);
559  assert(SS == getCurFunction()->SwitchStack.back() &&
560         "switch stack missing push/pop!");
561
562  SS->setBody(BodyStmt, SwitchLoc);
563  getCurFunction()->SwitchStack.pop_back();
564
565  Expr *CondExpr = SS->getCond();
566  if (!CondExpr) return StmtError();
567
568  QualType CondType = CondExpr->getType();
569
570  Expr *CondExprBeforePromotion = CondExpr;
571  QualType CondTypeBeforePromotion =
572      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
573
574  // C++ 6.4.2.p2:
575  // Integral promotions are performed (on the switch condition).
576  //
577  // A case value unrepresentable by the original switch condition
578  // type (before the promotion) doesn't make sense, even when it can
579  // be represented by the promoted type.  Therefore we need to find
580  // the pre-promotion type of the switch condition.
581  if (!CondExpr->isTypeDependent()) {
582    // We have already converted the expression to an integral or enumeration
583    // type, when we started the switch statement. If we don't have an
584    // appropriate type now, just return an error.
585    if (!CondType->isIntegralOrEnumerationType())
586      return StmtError();
587
588    if (CondExpr->isKnownToHaveBooleanValue()) {
589      // switch(bool_expr) {...} is often a programmer error, e.g.
590      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
591      // One can always use an if statement instead of switch(bool_expr).
592      Diag(SwitchLoc, diag::warn_bool_switch_condition)
593          << CondExpr->getSourceRange();
594    }
595  }
596
597  // Get the bitwidth of the switched-on value before promotions.  We must
598  // convert the integer case values to this width before comparison.
599  bool HasDependentValue
600    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
601  unsigned CondWidth
602    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
603  bool CondIsSigned
604    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
605
606  // Accumulate all of the case values in a vector so that we can sort them
607  // and detect duplicates.  This vector contains the APInt for the case after
608  // it has been converted to the condition type.
609  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
610  CaseValsTy CaseVals;
611
612  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
613  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
614  CaseRangesTy CaseRanges;
615
616  DefaultStmt *TheDefaultStmt = 0;
617
618  bool CaseListIsErroneous = false;
619
620  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
621       SC = SC->getNextSwitchCase()) {
622
623    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
624      if (TheDefaultStmt) {
625        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
626        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
627
628        // FIXME: Remove the default statement from the switch block so that
629        // we'll return a valid AST.  This requires recursing down the AST and
630        // finding it, not something we are set up to do right now.  For now,
631        // just lop the entire switch stmt out of the AST.
632        CaseListIsErroneous = true;
633      }
634      TheDefaultStmt = DS;
635
636    } else {
637      CaseStmt *CS = cast<CaseStmt>(SC);
638
639      Expr *Lo = CS->getLHS();
640
641      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
642        HasDependentValue = true;
643        break;
644      }
645
646      llvm::APSInt LoVal;
647
648      if (getLangOpts().CPlusPlus0x) {
649        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
650        // constant expression of the promoted type of the switch condition.
651        ExprResult ConvLo =
652          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
653        if (ConvLo.isInvalid()) {
654          CaseListIsErroneous = true;
655          continue;
656        }
657        Lo = ConvLo.take();
658      } else {
659        // We already verified that the expression has a i-c-e value (C99
660        // 6.8.4.2p3) - get that value now.
661        LoVal = Lo->EvaluateKnownConstInt(Context);
662
663        // If the LHS is not the same type as the condition, insert an implicit
664        // cast.
665        Lo = DefaultLvalueConversion(Lo).take();
666        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
667      }
668
669      // Convert the value to the same width/sign as the condition had prior to
670      // integral promotions.
671      //
672      // FIXME: This causes us to reject valid code:
673      //   switch ((char)c) { case 256: case 0: return 0; }
674      // Here we claim there is a duplicated condition value, but there is not.
675      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
676                                         Lo->getLocStart(),
677                                         diag::warn_case_value_overflow);
678
679      CS->setLHS(Lo);
680
681      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
682      if (CS->getRHS()) {
683        if (CS->getRHS()->isTypeDependent() ||
684            CS->getRHS()->isValueDependent()) {
685          HasDependentValue = true;
686          break;
687        }
688        CaseRanges.push_back(std::make_pair(LoVal, CS));
689      } else
690        CaseVals.push_back(std::make_pair(LoVal, CS));
691    }
692  }
693
694  if (!HasDependentValue) {
695    // If we don't have a default statement, check whether the
696    // condition is constant.
697    llvm::APSInt ConstantCondValue;
698    bool HasConstantCond = false;
699    if (!HasDependentValue && !TheDefaultStmt) {
700      HasConstantCond
701        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
702                                                 Expr::SE_AllowSideEffects);
703      assert(!HasConstantCond ||
704             (ConstantCondValue.getBitWidth() == CondWidth &&
705              ConstantCondValue.isSigned() == CondIsSigned));
706    }
707    bool ShouldCheckConstantCond = HasConstantCond;
708
709    // Sort all the scalar case values so we can easily detect duplicates.
710    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
711
712    if (!CaseVals.empty()) {
713      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
714        if (ShouldCheckConstantCond &&
715            CaseVals[i].first == ConstantCondValue)
716          ShouldCheckConstantCond = false;
717
718        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
719          // If we have a duplicate, report it.
720          Diag(CaseVals[i].second->getLHS()->getLocStart(),
721               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
722          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
723               diag::note_duplicate_case_prev);
724          // FIXME: We really want to remove the bogus case stmt from the
725          // substmt, but we have no way to do this right now.
726          CaseListIsErroneous = true;
727        }
728      }
729    }
730
731    // Detect duplicate case ranges, which usually don't exist at all in
732    // the first place.
733    if (!CaseRanges.empty()) {
734      // Sort all the case ranges by their low value so we can easily detect
735      // overlaps between ranges.
736      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
737
738      // Scan the ranges, computing the high values and removing empty ranges.
739      std::vector<llvm::APSInt> HiVals;
740      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
741        llvm::APSInt &LoVal = CaseRanges[i].first;
742        CaseStmt *CR = CaseRanges[i].second;
743        Expr *Hi = CR->getRHS();
744        llvm::APSInt HiVal;
745
746        if (getLangOpts().CPlusPlus0x) {
747          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
748          // constant expression of the promoted type of the switch condition.
749          ExprResult ConvHi =
750            CheckConvertedConstantExpression(Hi, CondType, HiVal,
751                                             CCEK_CaseValue);
752          if (ConvHi.isInvalid()) {
753            CaseListIsErroneous = true;
754            continue;
755          }
756          Hi = ConvHi.take();
757        } else {
758          HiVal = Hi->EvaluateKnownConstInt(Context);
759
760          // If the RHS is not the same type as the condition, insert an
761          // implicit cast.
762          Hi = DefaultLvalueConversion(Hi).take();
763          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
764        }
765
766        // Convert the value to the same width/sign as the condition.
767        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
768                                           Hi->getLocStart(),
769                                           diag::warn_case_value_overflow);
770
771        CR->setRHS(Hi);
772
773        // If the low value is bigger than the high value, the case is empty.
774        if (LoVal > HiVal) {
775          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
776            << SourceRange(CR->getLHS()->getLocStart(),
777                           Hi->getLocEnd());
778          CaseRanges.erase(CaseRanges.begin()+i);
779          --i, --e;
780          continue;
781        }
782
783        if (ShouldCheckConstantCond &&
784            LoVal <= ConstantCondValue &&
785            ConstantCondValue <= HiVal)
786          ShouldCheckConstantCond = false;
787
788        HiVals.push_back(HiVal);
789      }
790
791      // Rescan the ranges, looking for overlap with singleton values and other
792      // ranges.  Since the range list is sorted, we only need to compare case
793      // ranges with their neighbors.
794      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
795        llvm::APSInt &CRLo = CaseRanges[i].first;
796        llvm::APSInt &CRHi = HiVals[i];
797        CaseStmt *CR = CaseRanges[i].second;
798
799        // Check to see whether the case range overlaps with any
800        // singleton cases.
801        CaseStmt *OverlapStmt = 0;
802        llvm::APSInt OverlapVal(32);
803
804        // Find the smallest value >= the lower bound.  If I is in the
805        // case range, then we have overlap.
806        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
807                                                  CaseVals.end(), CRLo,
808                                                  CaseCompareFunctor());
809        if (I != CaseVals.end() && I->first < CRHi) {
810          OverlapVal  = I->first;   // Found overlap with scalar.
811          OverlapStmt = I->second;
812        }
813
814        // Find the smallest value bigger than the upper bound.
815        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
816        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
817          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
818          OverlapStmt = (I-1)->second;
819        }
820
821        // Check to see if this case stmt overlaps with the subsequent
822        // case range.
823        if (i && CRLo <= HiVals[i-1]) {
824          OverlapVal  = HiVals[i-1];       // Found overlap with range.
825          OverlapStmt = CaseRanges[i-1].second;
826        }
827
828        if (OverlapStmt) {
829          // If we have a duplicate, report it.
830          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
831            << OverlapVal.toString(10);
832          Diag(OverlapStmt->getLHS()->getLocStart(),
833               diag::note_duplicate_case_prev);
834          // FIXME: We really want to remove the bogus case stmt from the
835          // substmt, but we have no way to do this right now.
836          CaseListIsErroneous = true;
837        }
838      }
839    }
840
841    // Complain if we have a constant condition and we didn't find a match.
842    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
843      // TODO: it would be nice if we printed enums as enums, chars as
844      // chars, etc.
845      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
846        << ConstantCondValue.toString(10)
847        << CondExpr->getSourceRange();
848    }
849
850    // Check to see if switch is over an Enum and handles all of its
851    // values.  We only issue a warning if there is not 'default:', but
852    // we still do the analysis to preserve this information in the AST
853    // (which can be used by flow-based analyes).
854    //
855    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
856
857    // If switch has default case, then ignore it.
858    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
859      const EnumDecl *ED = ET->getDecl();
860      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
861        EnumValsTy;
862      EnumValsTy EnumVals;
863
864      // Gather all enum values, set their type and sort them,
865      // allowing easier comparison with CaseVals.
866      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
867           EDI != ED->enumerator_end(); ++EDI) {
868        llvm::APSInt Val = EDI->getInitVal();
869        AdjustAPSInt(Val, CondWidth, CondIsSigned);
870        EnumVals.push_back(std::make_pair(Val, *EDI));
871      }
872      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
873      EnumValsTy::iterator EIend =
874        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
875
876      // See which case values aren't in enum.
877      EnumValsTy::const_iterator EI = EnumVals.begin();
878      for (CaseValsTy::const_iterator CI = CaseVals.begin();
879           CI != CaseVals.end(); CI++) {
880        while (EI != EIend && EI->first < CI->first)
881          EI++;
882        if (EI == EIend || EI->first > CI->first)
883          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
884            << ED->getDeclName();
885      }
886      // See which of case ranges aren't in enum
887      EI = EnumVals.begin();
888      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
889           RI != CaseRanges.end() && EI != EIend; RI++) {
890        while (EI != EIend && EI->first < RI->first)
891          EI++;
892
893        if (EI == EIend || EI->first != RI->first) {
894          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
895            << ED->getDeclName();
896        }
897
898        llvm::APSInt Hi =
899          RI->second->getRHS()->EvaluateKnownConstInt(Context);
900        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
901        while (EI != EIend && EI->first < Hi)
902          EI++;
903        if (EI == EIend || EI->first != Hi)
904          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
905            << ED->getDeclName();
906      }
907
908      // Check which enum vals aren't in switch
909      CaseValsTy::const_iterator CI = CaseVals.begin();
910      CaseRangesTy::const_iterator RI = CaseRanges.begin();
911      bool hasCasesNotInSwitch = false;
912
913      SmallVector<DeclarationName,8> UnhandledNames;
914
915      for (EI = EnumVals.begin(); EI != EIend; EI++){
916        // Drop unneeded case values
917        llvm::APSInt CIVal;
918        while (CI != CaseVals.end() && CI->first < EI->first)
919          CI++;
920
921        if (CI != CaseVals.end() && CI->first == EI->first)
922          continue;
923
924        // Drop unneeded case ranges
925        for (; RI != CaseRanges.end(); RI++) {
926          llvm::APSInt Hi =
927            RI->second->getRHS()->EvaluateKnownConstInt(Context);
928          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
929          if (EI->first <= Hi)
930            break;
931        }
932
933        if (RI == CaseRanges.end() || EI->first < RI->first) {
934          hasCasesNotInSwitch = true;
935          UnhandledNames.push_back(EI->second->getDeclName());
936        }
937      }
938
939      if (TheDefaultStmt && UnhandledNames.empty())
940        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
941
942      // Produce a nice diagnostic if multiple values aren't handled.
943      switch (UnhandledNames.size()) {
944      case 0: break;
945      case 1:
946        Diag(CondExpr->getExprLoc(), TheDefaultStmt
947          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
948          << UnhandledNames[0];
949        break;
950      case 2:
951        Diag(CondExpr->getExprLoc(), TheDefaultStmt
952          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
953          << UnhandledNames[0] << UnhandledNames[1];
954        break;
955      case 3:
956        Diag(CondExpr->getExprLoc(), TheDefaultStmt
957          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
958          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
959        break;
960      default:
961        Diag(CondExpr->getExprLoc(), TheDefaultStmt
962          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
963          << (unsigned)UnhandledNames.size()
964          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
965        break;
966      }
967
968      if (!hasCasesNotInSwitch)
969        SS->setAllEnumCasesCovered();
970    }
971  }
972
973  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
974                        diag::warn_empty_switch_body);
975
976  // FIXME: If the case list was broken is some way, we don't have a good system
977  // to patch it up.  Instead, just return the whole substmt as broken.
978  if (CaseListIsErroneous)
979    return StmtError();
980
981  return Owned(SS);
982}
983
984StmtResult
985Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
986                     Decl *CondVar, Stmt *Body) {
987  ExprResult CondResult(Cond.release());
988
989  VarDecl *ConditionVar = 0;
990  if (CondVar) {
991    ConditionVar = cast<VarDecl>(CondVar);
992    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
993    if (CondResult.isInvalid())
994      return StmtError();
995  }
996  Expr *ConditionExpr = CondResult.take();
997  if (!ConditionExpr)
998    return StmtError();
999
1000  DiagnoseUnusedExprResult(Body);
1001
1002  if (isa<NullStmt>(Body))
1003    getCurCompoundScope().setHasEmptyLoopBodies();
1004
1005  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1006                                       Body, WhileLoc));
1007}
1008
1009StmtResult
1010Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1011                  SourceLocation WhileLoc, SourceLocation CondLParen,
1012                  Expr *Cond, SourceLocation CondRParen) {
1013  assert(Cond && "ActOnDoStmt(): missing expression");
1014
1015  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1016  if (CondResult.isInvalid() || CondResult.isInvalid())
1017    return StmtError();
1018  Cond = CondResult.take();
1019
1020  CheckImplicitConversions(Cond, DoLoc);
1021  CondResult = MaybeCreateExprWithCleanups(Cond);
1022  if (CondResult.isInvalid())
1023    return StmtError();
1024  Cond = CondResult.take();
1025
1026  DiagnoseUnusedExprResult(Body);
1027
1028  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1029}
1030
1031StmtResult
1032Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1033                   Stmt *First, FullExprArg second, Decl *secondVar,
1034                   FullExprArg third,
1035                   SourceLocation RParenLoc, Stmt *Body) {
1036  if (!getLangOpts().CPlusPlus) {
1037    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1038      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1039      // declare identifiers for objects having storage class 'auto' or
1040      // 'register'.
1041      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1042           DI!=DE; ++DI) {
1043        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1044        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1045          VD = 0;
1046        if (VD == 0)
1047          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1048        // FIXME: mark decl erroneous!
1049      }
1050    }
1051  }
1052
1053  ExprResult SecondResult(second.release());
1054  VarDecl *ConditionVar = 0;
1055  if (secondVar) {
1056    ConditionVar = cast<VarDecl>(secondVar);
1057    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1058    if (SecondResult.isInvalid())
1059      return StmtError();
1060  }
1061
1062  Expr *Third  = third.release().takeAs<Expr>();
1063
1064  DiagnoseUnusedExprResult(First);
1065  DiagnoseUnusedExprResult(Third);
1066  DiagnoseUnusedExprResult(Body);
1067
1068  if (isa<NullStmt>(Body))
1069    getCurCompoundScope().setHasEmptyLoopBodies();
1070
1071  return Owned(new (Context) ForStmt(Context, First,
1072                                     SecondResult.take(), ConditionVar,
1073                                     Third, Body, ForLoc, LParenLoc,
1074                                     RParenLoc));
1075}
1076
1077/// In an Objective C collection iteration statement:
1078///   for (x in y)
1079/// x can be an arbitrary l-value expression.  Bind it up as a
1080/// full-expression.
1081StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1082  CheckImplicitConversions(E);
1083  ExprResult Result = MaybeCreateExprWithCleanups(E);
1084  if (Result.isInvalid()) return StmtError();
1085  return Owned(static_cast<Stmt*>(Result.get()));
1086}
1087
1088ExprResult
1089Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1090  assert(collection);
1091
1092  // Bail out early if we've got a type-dependent expression.
1093  if (collection->isTypeDependent()) return Owned(collection);
1094
1095  // Perform normal l-value conversion.
1096  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1097  if (result.isInvalid())
1098    return ExprError();
1099  collection = result.take();
1100
1101  // The operand needs to have object-pointer type.
1102  // TODO: should we do a contextual conversion?
1103  const ObjCObjectPointerType *pointerType =
1104    collection->getType()->getAs<ObjCObjectPointerType>();
1105  if (!pointerType)
1106    return Diag(forLoc, diag::err_collection_expr_type)
1107             << collection->getType() << collection->getSourceRange();
1108
1109  // Check that the operand provides
1110  //   - countByEnumeratingWithState:objects:count:
1111  const ObjCObjectType *objectType = pointerType->getObjectType();
1112  ObjCInterfaceDecl *iface = objectType->getInterface();
1113
1114  // If we have a forward-declared type, we can't do this check.
1115  // Under ARC, it is an error not to have a forward-declared class.
1116  if (iface &&
1117      RequireCompleteType(forLoc, QualType(objectType, 0),
1118                          getLangOpts().ObjCAutoRefCount
1119                            ? PDiag(diag::err_arc_collection_forward)
1120                                << collection->getSourceRange()
1121                          : PDiag(0))) {
1122    // Otherwise, if we have any useful type information, check that
1123    // the type declares the appropriate method.
1124  } else if (iface || !objectType->qual_empty()) {
1125    IdentifierInfo *selectorIdents[] = {
1126      &Context.Idents.get("countByEnumeratingWithState"),
1127      &Context.Idents.get("objects"),
1128      &Context.Idents.get("count")
1129    };
1130    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1131
1132    ObjCMethodDecl *method = 0;
1133
1134    // If there's an interface, look in both the public and private APIs.
1135    if (iface) {
1136      method = iface->lookupInstanceMethod(selector);
1137      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1138    }
1139
1140    // Also check protocol qualifiers.
1141    if (!method)
1142      method = LookupMethodInQualifiedType(selector, pointerType,
1143                                           /*instance*/ true);
1144
1145    // If we didn't find it anywhere, give up.
1146    if (!method) {
1147      Diag(forLoc, diag::warn_collection_expr_type)
1148        << collection->getType() << selector << collection->getSourceRange();
1149    }
1150
1151    // TODO: check for an incompatible signature?
1152  }
1153
1154  // Wrap up any cleanups in the expression.
1155  return Owned(MaybeCreateExprWithCleanups(collection));
1156}
1157
1158StmtResult
1159Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1160                                 SourceLocation LParenLoc,
1161                                 Stmt *First, Expr *Second,
1162                                 SourceLocation RParenLoc, Stmt *Body) {
1163  if (First) {
1164    QualType FirstType;
1165    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1166      if (!DS->isSingleDecl())
1167        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1168                         diag::err_toomany_element_decls));
1169
1170      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1171      FirstType = D->getType();
1172      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1173      // declare identifiers for objects having storage class 'auto' or
1174      // 'register'.
1175      if (!D->hasLocalStorage())
1176        return StmtError(Diag(D->getLocation(),
1177                              diag::err_non_variable_decl_in_for));
1178    } else {
1179      Expr *FirstE = cast<Expr>(First);
1180      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1181        return StmtError(Diag(First->getLocStart(),
1182                   diag::err_selector_element_not_lvalue)
1183          << First->getSourceRange());
1184
1185      FirstType = static_cast<Expr*>(First)->getType();
1186    }
1187    if (!FirstType->isDependentType() &&
1188        !FirstType->isObjCObjectPointerType() &&
1189        !FirstType->isBlockPointerType())
1190        Diag(ForLoc, diag::err_selector_element_type)
1191          << FirstType << First->getSourceRange();
1192  }
1193
1194  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1195                                                   ForLoc, RParenLoc));
1196}
1197
1198namespace {
1199
1200enum BeginEndFunction {
1201  BEF_begin,
1202  BEF_end
1203};
1204
1205/// Build a variable declaration for a for-range statement.
1206static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1207                                     QualType Type, const char *Name) {
1208  DeclContext *DC = SemaRef.CurContext;
1209  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1210  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1211  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1212                                  TInfo, SC_Auto, SC_None);
1213  Decl->setImplicit();
1214  return Decl;
1215}
1216
1217/// Finish building a variable declaration for a for-range statement.
1218/// \return true if an error occurs.
1219static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1220                                  SourceLocation Loc, int diag) {
1221  // Deduce the type for the iterator variable now rather than leaving it to
1222  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1223  TypeSourceInfo *InitTSI = 0;
1224  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1225      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1226          Sema::DAR_Failed)
1227    SemaRef.Diag(Loc, diag) << Init->getType();
1228  if (!InitTSI) {
1229    Decl->setInvalidDecl();
1230    return true;
1231  }
1232  Decl->setTypeSourceInfo(InitTSI);
1233  Decl->setType(InitTSI->getType());
1234
1235  // In ARC, infer lifetime.
1236  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1237  // we're doing the equivalent of fast iteration.
1238  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1239      SemaRef.inferObjCARCLifetime(Decl))
1240    Decl->setInvalidDecl();
1241
1242  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1243                               /*TypeMayContainAuto=*/false);
1244  SemaRef.FinalizeDeclaration(Decl);
1245  SemaRef.CurContext->addHiddenDecl(Decl);
1246  return false;
1247}
1248
1249/// Produce a note indicating which begin/end function was implicitly called
1250/// by a C++0x for-range statement. This is often not obvious from the code,
1251/// nor from the diagnostics produced when analysing the implicit expressions
1252/// required in a for-range statement.
1253void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1254                                  BeginEndFunction BEF) {
1255  CallExpr *CE = dyn_cast<CallExpr>(E);
1256  if (!CE)
1257    return;
1258  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1259  if (!D)
1260    return;
1261  SourceLocation Loc = D->getLocation();
1262
1263  std::string Description;
1264  bool IsTemplate = false;
1265  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1266    Description = SemaRef.getTemplateArgumentBindingsText(
1267      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1268    IsTemplate = true;
1269  }
1270
1271  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1272    << BEF << IsTemplate << Description << E->getType();
1273}
1274
1275/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1276/// given LookupResult is non-empty, it is assumed to describe a member which
1277/// will be invoked. Otherwise, the function will be found via argument
1278/// dependent lookup.
1279static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1280                                            SourceLocation Loc,
1281                                            VarDecl *Decl,
1282                                            BeginEndFunction BEF,
1283                                            const DeclarationNameInfo &NameInfo,
1284                                            LookupResult &MemberLookup,
1285                                            Expr *Range) {
1286  ExprResult CallExpr;
1287  if (!MemberLookup.empty()) {
1288    ExprResult MemberRef =
1289      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1290                                       /*IsPtr=*/false, CXXScopeSpec(),
1291                                       /*TemplateKWLoc=*/SourceLocation(),
1292                                       /*FirstQualifierInScope=*/0,
1293                                       MemberLookup,
1294                                       /*TemplateArgs=*/0);
1295    if (MemberRef.isInvalid())
1296      return ExprError();
1297    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1298                                     Loc, 0);
1299    if (CallExpr.isInvalid())
1300      return ExprError();
1301  } else {
1302    UnresolvedSet<0> FoundNames;
1303    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1304    // std is an associated namespace.
1305    UnresolvedLookupExpr *Fn =
1306      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1307                                   NestedNameSpecifierLoc(), NameInfo,
1308                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1309                                   FoundNames.begin(), FoundNames.end(),
1310                                   /*LookInStdNamespace=*/true);
1311    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1312                                               0, /*AllowTypoCorrection=*/false);
1313    if (CallExpr.isInvalid()) {
1314      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1315        << Range->getType();
1316      return ExprError();
1317    }
1318  }
1319  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1320                            diag::err_for_range_iter_deduction_failure)) {
1321    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1322    return ExprError();
1323  }
1324  return CallExpr;
1325}
1326
1327}
1328
1329/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1330///
1331/// C++0x [stmt.ranged]:
1332///   A range-based for statement is equivalent to
1333///
1334///   {
1335///     auto && __range = range-init;
1336///     for ( auto __begin = begin-expr,
1337///           __end = end-expr;
1338///           __begin != __end;
1339///           ++__begin ) {
1340///       for-range-declaration = *__begin;
1341///       statement
1342///     }
1343///   }
1344///
1345/// The body of the loop is not available yet, since it cannot be analysed until
1346/// we have determined the type of the for-range-declaration.
1347StmtResult
1348Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1349                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1350                           SourceLocation RParenLoc) {
1351  if (!First || !Range)
1352    return StmtError();
1353
1354  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1355  assert(DS && "first part of for range not a decl stmt");
1356
1357  if (!DS->isSingleDecl()) {
1358    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1359    return StmtError();
1360  }
1361  if (DS->getSingleDecl()->isInvalidDecl())
1362    return StmtError();
1363
1364  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1365    return StmtError();
1366
1367  // Build  auto && __range = range-init
1368  SourceLocation RangeLoc = Range->getLocStart();
1369  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1370                                           Context.getAutoRRefDeductType(),
1371                                           "__range");
1372  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1373                            diag::err_for_range_deduction_failure))
1374    return StmtError();
1375
1376  // Claim the type doesn't contain auto: we've already done the checking.
1377  DeclGroupPtrTy RangeGroup =
1378    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1379  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1380  if (RangeDecl.isInvalid())
1381    return StmtError();
1382
1383  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1384                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1385                              RParenLoc);
1386}
1387
1388/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1389StmtResult
1390Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1391                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1392                           Expr *Inc, Stmt *LoopVarDecl,
1393                           SourceLocation RParenLoc) {
1394  Scope *S = getCurScope();
1395
1396  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1397  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1398  QualType RangeVarType = RangeVar->getType();
1399
1400  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1401  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1402
1403  StmtResult BeginEndDecl = BeginEnd;
1404  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1405
1406  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1407    SourceLocation RangeLoc = RangeVar->getLocation();
1408
1409    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1410
1411    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1412                                                VK_LValue, ColonLoc);
1413    if (BeginRangeRef.isInvalid())
1414      return StmtError();
1415
1416    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1417                                              VK_LValue, ColonLoc);
1418    if (EndRangeRef.isInvalid())
1419      return StmtError();
1420
1421    QualType AutoType = Context.getAutoDeductType();
1422    Expr *Range = RangeVar->getInit();
1423    if (!Range)
1424      return StmtError();
1425    QualType RangeType = Range->getType();
1426
1427    if (RequireCompleteType(RangeLoc, RangeType,
1428                            PDiag(diag::err_for_range_incomplete_type)))
1429      return StmtError();
1430
1431    // Build auto __begin = begin-expr, __end = end-expr.
1432    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1433                                             "__begin");
1434    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1435                                           "__end");
1436
1437    // Build begin-expr and end-expr and attach to __begin and __end variables.
1438    ExprResult BeginExpr, EndExpr;
1439    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1440      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1441      //   __range + __bound, respectively, where __bound is the array bound. If
1442      //   _RangeT is an array of unknown size or an array of incomplete type,
1443      //   the program is ill-formed;
1444
1445      // begin-expr is __range.
1446      BeginExpr = BeginRangeRef;
1447      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1448                                diag::err_for_range_iter_deduction_failure)) {
1449        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1450        return StmtError();
1451      }
1452
1453      // Find the array bound.
1454      ExprResult BoundExpr;
1455      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1456        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1457                                                 Context.getPointerDiffType(),
1458                                                 RangeLoc));
1459      else if (const VariableArrayType *VAT =
1460               dyn_cast<VariableArrayType>(UnqAT))
1461        BoundExpr = VAT->getSizeExpr();
1462      else {
1463        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1464        // UnqAT is not incomplete and Range is not type-dependent.
1465        llvm_unreachable("Unexpected array type in for-range");
1466      }
1467
1468      // end-expr is __range + __bound.
1469      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1470                           BoundExpr.get());
1471      if (EndExpr.isInvalid())
1472        return StmtError();
1473      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1474                                diag::err_for_range_iter_deduction_failure)) {
1475        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1476        return StmtError();
1477      }
1478    } else {
1479      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1480                                        ColonLoc);
1481      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1482                                      ColonLoc);
1483
1484      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1485      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1486
1487      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1488        // - if _RangeT is a class type, the unqualified-ids begin and end are
1489        //   looked up in the scope of class _RangeT as if by class member access
1490        //   lookup (3.4.5), and if either (or both) finds at least one
1491        //   declaration, begin-expr and end-expr are __range.begin() and
1492        //   __range.end(), respectively;
1493        LookupQualifiedName(BeginMemberLookup, D);
1494        LookupQualifiedName(EndMemberLookup, D);
1495
1496        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1497          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1498            << RangeType << BeginMemberLookup.empty();
1499          return StmtError();
1500        }
1501      } else {
1502        // - otherwise, begin-expr and end-expr are begin(__range) and
1503        //   end(__range), respectively, where begin and end are looked up with
1504        //   argument-dependent lookup (3.4.2). For the purposes of this name
1505        //   lookup, namespace std is an associated namespace.
1506      }
1507
1508      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1509                                            BEF_begin, BeginNameInfo,
1510                                            BeginMemberLookup,
1511                                            BeginRangeRef.get());
1512      if (BeginExpr.isInvalid())
1513        return StmtError();
1514
1515      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1516                                          BEF_end, EndNameInfo,
1517                                          EndMemberLookup, EndRangeRef.get());
1518      if (EndExpr.isInvalid())
1519        return StmtError();
1520    }
1521
1522    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1523    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1524    if (!Context.hasSameType(BeginType, EndType)) {
1525      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1526        << BeginType << EndType;
1527      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1528      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1529    }
1530
1531    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1532    // Claim the type doesn't contain auto: we've already done the checking.
1533    DeclGroupPtrTy BeginEndGroup =
1534      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1535    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1536
1537    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1538    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1539                                           VK_LValue, ColonLoc);
1540    if (BeginRef.isInvalid())
1541      return StmtError();
1542
1543    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1544                                         VK_LValue, ColonLoc);
1545    if (EndRef.isInvalid())
1546      return StmtError();
1547
1548    // Build and check __begin != __end expression.
1549    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1550                           BeginRef.get(), EndRef.get());
1551    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1552    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1553    if (NotEqExpr.isInvalid()) {
1554      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1555      if (!Context.hasSameType(BeginType, EndType))
1556        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1557      return StmtError();
1558    }
1559
1560    // Build and check ++__begin expression.
1561    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1562                                VK_LValue, ColonLoc);
1563    if (BeginRef.isInvalid())
1564      return StmtError();
1565
1566    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1567    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1568    if (IncrExpr.isInvalid()) {
1569      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1570      return StmtError();
1571    }
1572
1573    // Build and check *__begin  expression.
1574    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1575                                VK_LValue, ColonLoc);
1576    if (BeginRef.isInvalid())
1577      return StmtError();
1578
1579    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1580    if (DerefExpr.isInvalid()) {
1581      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1582      return StmtError();
1583    }
1584
1585    // Attach  *__begin  as initializer for VD.
1586    if (!LoopVar->isInvalidDecl()) {
1587      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1588                           /*TypeMayContainAuto=*/true);
1589      if (LoopVar->isInvalidDecl())
1590        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1591    }
1592  } else {
1593    // The range is implicitly used as a placeholder when it is dependent.
1594    RangeVar->setUsed();
1595  }
1596
1597  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1598                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1599                                             NotEqExpr.take(), IncrExpr.take(),
1600                                             LoopVarDS, /*Body=*/0, ForLoc,
1601                                             ColonLoc, RParenLoc));
1602}
1603
1604/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1605/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1606/// body cannot be performed until after the type of the range variable is
1607/// determined.
1608StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1609  if (!S || !B)
1610    return StmtError();
1611
1612  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
1613  ForStmt->setBody(B);
1614
1615  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
1616                        diag::warn_empty_range_based_for_body);
1617
1618  return S;
1619}
1620
1621StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1622                               SourceLocation LabelLoc,
1623                               LabelDecl *TheDecl) {
1624  getCurFunction()->setHasBranchIntoScope();
1625  TheDecl->setUsed();
1626  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1627}
1628
1629StmtResult
1630Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1631                            Expr *E) {
1632  // Convert operand to void*
1633  if (!E->isTypeDependent()) {
1634    QualType ETy = E->getType();
1635    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1636    ExprResult ExprRes = Owned(E);
1637    AssignConvertType ConvTy =
1638      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1639    if (ExprRes.isInvalid())
1640      return StmtError();
1641    E = ExprRes.take();
1642    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1643      return StmtError();
1644    E = MaybeCreateExprWithCleanups(E);
1645  }
1646
1647  getCurFunction()->setHasIndirectGoto();
1648
1649  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1650}
1651
1652StmtResult
1653Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1654  Scope *S = CurScope->getContinueParent();
1655  if (!S) {
1656    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1657    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1658  }
1659
1660  return Owned(new (Context) ContinueStmt(ContinueLoc));
1661}
1662
1663StmtResult
1664Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1665  Scope *S = CurScope->getBreakParent();
1666  if (!S) {
1667    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1668    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1669  }
1670
1671  return Owned(new (Context) BreakStmt(BreakLoc));
1672}
1673
1674/// \brief Determine whether the given expression is a candidate for
1675/// copy elision in either a return statement or a throw expression.
1676///
1677/// \param ReturnType If we're determining the copy elision candidate for
1678/// a return statement, this is the return type of the function. If we're
1679/// determining the copy elision candidate for a throw expression, this will
1680/// be a NULL type.
1681///
1682/// \param E The expression being returned from the function or block, or
1683/// being thrown.
1684///
1685/// \param AllowFunctionParameter Whether we allow function parameters to
1686/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1687/// we re-use this logic to determine whether we should try to move as part of
1688/// a return or throw (which does allow function parameters).
1689///
1690/// \returns The NRVO candidate variable, if the return statement may use the
1691/// NRVO, or NULL if there is no such candidate.
1692const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1693                                             Expr *E,
1694                                             bool AllowFunctionParameter) {
1695  QualType ExprType = E->getType();
1696  // - in a return statement in a function with ...
1697  // ... a class return type ...
1698  if (!ReturnType.isNull()) {
1699    if (!ReturnType->isRecordType())
1700      return 0;
1701    // ... the same cv-unqualified type as the function return type ...
1702    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1703      return 0;
1704  }
1705
1706  // ... the expression is the name of a non-volatile automatic object
1707  // (other than a function or catch-clause parameter)) ...
1708  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1709  if (!DR)
1710    return 0;
1711  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1712  if (!VD)
1713    return 0;
1714
1715  // ...object (other than a function or catch-clause parameter)...
1716  if (VD->getKind() != Decl::Var &&
1717      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
1718    return 0;
1719  if (VD->isExceptionVariable()) return 0;
1720
1721  // ...automatic...
1722  if (!VD->hasLocalStorage()) return 0;
1723
1724  // ...non-volatile...
1725  if (VD->getType().isVolatileQualified()) return 0;
1726  if (VD->getType()->isReferenceType()) return 0;
1727
1728  // __block variables can't be allocated in a way that permits NRVO.
1729  if (VD->hasAttr<BlocksAttr>()) return 0;
1730
1731  // Variables with higher required alignment than their type's ABI
1732  // alignment cannot use NRVO.
1733  if (VD->hasAttr<AlignedAttr>() &&
1734      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
1735    return 0;
1736
1737  return VD;
1738}
1739
1740/// \brief Perform the initialization of a potentially-movable value, which
1741/// is the result of return value.
1742///
1743/// This routine implements C++0x [class.copy]p33, which attempts to treat
1744/// returned lvalues as rvalues in certain cases (to prefer move construction),
1745/// then falls back to treating them as lvalues if that failed.
1746ExprResult
1747Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1748                                      const VarDecl *NRVOCandidate,
1749                                      QualType ResultType,
1750                                      Expr *Value,
1751                                      bool AllowNRVO) {
1752  // C++0x [class.copy]p33:
1753  //   When the criteria for elision of a copy operation are met or would
1754  //   be met save for the fact that the source object is a function
1755  //   parameter, and the object to be copied is designated by an lvalue,
1756  //   overload resolution to select the constructor for the copy is first
1757  //   performed as if the object were designated by an rvalue.
1758  ExprResult Res = ExprError();
1759  if (AllowNRVO &&
1760      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1761    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1762                              Value->getType(), CK_LValueToRValue,
1763                              Value, VK_XValue);
1764
1765    Expr *InitExpr = &AsRvalue;
1766    InitializationKind Kind
1767      = InitializationKind::CreateCopy(Value->getLocStart(),
1768                                       Value->getLocStart());
1769    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1770
1771    //   [...] If overload resolution fails, or if the type of the first
1772    //   parameter of the selected constructor is not an rvalue reference
1773    //   to the object's type (possibly cv-qualified), overload resolution
1774    //   is performed again, considering the object as an lvalue.
1775    if (Seq) {
1776      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1777           StepEnd = Seq.step_end();
1778           Step != StepEnd; ++Step) {
1779        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1780          continue;
1781
1782        CXXConstructorDecl *Constructor
1783        = cast<CXXConstructorDecl>(Step->Function.Function);
1784
1785        const RValueReferenceType *RRefType
1786          = Constructor->getParamDecl(0)->getType()
1787                                                 ->getAs<RValueReferenceType>();
1788
1789        // If we don't meet the criteria, break out now.
1790        if (!RRefType ||
1791            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1792                            Context.getTypeDeclType(Constructor->getParent())))
1793          break;
1794
1795        // Promote "AsRvalue" to the heap, since we now need this
1796        // expression node to persist.
1797        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1798                                         CK_LValueToRValue, Value, 0,
1799                                         VK_XValue);
1800
1801        // Complete type-checking the initialization of the return type
1802        // using the constructor we found.
1803        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1804      }
1805    }
1806  }
1807
1808  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1809  // above, or overload resolution failed. Either way, we need to try
1810  // (again) now with the return value expression as written.
1811  if (Res.isInvalid())
1812    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1813
1814  return Res;
1815}
1816
1817/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
1818/// for capturing scopes.
1819///
1820StmtResult
1821Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1822  // If this is the first return we've seen, infer the return type.
1823  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
1824  // rules which allows multiple return statements.
1825  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
1826  if (CurCap->HasImplicitReturnType) {
1827    QualType ReturnT;
1828    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
1829      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1830      if (Result.isInvalid())
1831        return StmtError();
1832      RetValExp = Result.take();
1833
1834      if (!RetValExp->isTypeDependent())
1835        ReturnT = RetValExp->getType();
1836      else
1837        ReturnT = Context.DependentTy;
1838    } else {
1839      if (RetValExp) {
1840        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
1841        // initializer list, because it is not an expression (even
1842        // though we represent it as one). We still deduce 'void'.
1843        Diag(ReturnLoc, diag::err_lambda_return_init_list)
1844          << RetValExp->getSourceRange();
1845      }
1846
1847      ReturnT = Context.VoidTy;
1848    }
1849    // We require the return types to strictly match here.
1850    if (!CurCap->ReturnType.isNull() &&
1851        !CurCap->ReturnType->isDependentType() &&
1852        !ReturnT->isDependentType() &&
1853        !Context.hasSameType(ReturnT, CurCap->ReturnType)) {
1854      Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
1855          << ReturnT << CurCap->ReturnType
1856          << (getCurLambda() != 0);
1857      return StmtError();
1858    }
1859    CurCap->ReturnType = ReturnT;
1860  }
1861  QualType FnRetType = CurCap->ReturnType;
1862  assert(!FnRetType.isNull());
1863
1864  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
1865    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1866      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
1867      return StmtError();
1868    }
1869  } else {
1870    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
1871    if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
1872      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
1873      return StmtError();
1874    }
1875  }
1876
1877  // Otherwise, verify that this result type matches the previous one.  We are
1878  // pickier with blocks than for normal functions because we don't have GCC
1879  // compatibility to worry about here.
1880  const VarDecl *NRVOCandidate = 0;
1881  if (FnRetType->isDependentType()) {
1882    // Delay processing for now.  TODO: there are lots of dependent
1883    // types we can conclusively prove aren't void.
1884  } else if (FnRetType->isVoidType()) {
1885    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
1886        !(getLangOpts().CPlusPlus &&
1887          (RetValExp->isTypeDependent() ||
1888           RetValExp->getType()->isVoidType()))) {
1889      if (!getLangOpts().CPlusPlus &&
1890          RetValExp->getType()->isVoidType())
1891        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "" << 2;
1892      else {
1893        Diag(ReturnLoc, diag::err_return_block_has_expr);
1894        RetValExp = 0;
1895      }
1896    }
1897  } else if (!RetValExp) {
1898    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1899  } else if (!RetValExp->isTypeDependent()) {
1900    // we have a non-void block with an expression, continue checking
1901
1902    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1903    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1904    // function return.
1905
1906    // In C++ the return statement is handled via a copy initialization.
1907    // the C version of which boils down to CheckSingleAssignmentConstraints.
1908    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1909    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1910                                                                   FnRetType,
1911                                                          NRVOCandidate != 0);
1912    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1913                                                     FnRetType, RetValExp);
1914    if (Res.isInvalid()) {
1915      // FIXME: Cleanup temporaries here, anyway?
1916      return StmtError();
1917    }
1918    RetValExp = Res.take();
1919    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1920  }
1921
1922  if (RetValExp) {
1923    CheckImplicitConversions(RetValExp, ReturnLoc);
1924    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1925  }
1926  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
1927                                                NRVOCandidate);
1928
1929  // If we need to check for the named return value optimization, save the
1930  // return statement in our scope for later processing.
1931  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
1932      !CurContext->isDependentContext())
1933    FunctionScopes.back()->Returns.push_back(Result);
1934
1935  return Owned(Result);
1936}
1937
1938StmtResult
1939Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1940  // Check for unexpanded parameter packs.
1941  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1942    return StmtError();
1943
1944  if (isa<CapturingScopeInfo>(getCurFunction()))
1945    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
1946
1947  QualType FnRetType;
1948  QualType DeclaredRetType;
1949  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1950    FnRetType = FD->getResultType();
1951    DeclaredRetType = FnRetType;
1952    if (FD->hasAttr<NoReturnAttr>() ||
1953        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1954      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1955        << FD->getDeclName();
1956  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1957    DeclaredRetType = MD->getResultType();
1958    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1959      // In the implementation of a method with a related return type, the
1960      // type used to type-check the validity of return statements within the
1961      // method body is a pointer to the type of the class being implemented.
1962      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1963      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1964    } else {
1965      FnRetType = DeclaredRetType;
1966    }
1967  } else // If we don't have a function/method context, bail.
1968    return StmtError();
1969
1970  ReturnStmt *Result = 0;
1971  if (FnRetType->isVoidType()) {
1972    if (RetValExp) {
1973      if (isa<InitListExpr>(RetValExp)) {
1974        // We simply never allow init lists as the return value of void
1975        // functions. This is compatible because this was never allowed before,
1976        // so there's no legacy code to deal with.
1977        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1978        int FunctionKind = 0;
1979        if (isa<ObjCMethodDecl>(CurDecl))
1980          FunctionKind = 1;
1981        else if (isa<CXXConstructorDecl>(CurDecl))
1982          FunctionKind = 2;
1983        else if (isa<CXXDestructorDecl>(CurDecl))
1984          FunctionKind = 3;
1985
1986        Diag(ReturnLoc, diag::err_return_init_list)
1987          << CurDecl->getDeclName() << FunctionKind
1988          << RetValExp->getSourceRange();
1989
1990        // Drop the expression.
1991        RetValExp = 0;
1992      } else if (!RetValExp->isTypeDependent()) {
1993        // C99 6.8.6.4p1 (ext_ since GCC warns)
1994        unsigned D = diag::ext_return_has_expr;
1995        if (RetValExp->getType()->isVoidType())
1996          D = diag::ext_return_has_void_expr;
1997        else {
1998          ExprResult Result = Owned(RetValExp);
1999          Result = IgnoredValueConversions(Result.take());
2000          if (Result.isInvalid())
2001            return StmtError();
2002          RetValExp = Result.take();
2003          RetValExp = ImpCastExprToType(RetValExp,
2004                                        Context.VoidTy, CK_ToVoid).take();
2005        }
2006
2007        // return (some void expression); is legal in C++.
2008        if (D != diag::ext_return_has_void_expr ||
2009            !getLangOpts().CPlusPlus) {
2010          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2011
2012          int FunctionKind = 0;
2013          if (isa<ObjCMethodDecl>(CurDecl))
2014            FunctionKind = 1;
2015          else if (isa<CXXConstructorDecl>(CurDecl))
2016            FunctionKind = 2;
2017          else if (isa<CXXDestructorDecl>(CurDecl))
2018            FunctionKind = 3;
2019
2020          Diag(ReturnLoc, D)
2021            << CurDecl->getDeclName() << FunctionKind
2022            << RetValExp->getSourceRange();
2023        }
2024      }
2025
2026      if (RetValExp) {
2027        CheckImplicitConversions(RetValExp, ReturnLoc);
2028        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2029      }
2030    }
2031
2032    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2033  } else if (!RetValExp && !FnRetType->isDependentType()) {
2034    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2035    // C99 6.8.6.4p1 (ext_ since GCC warns)
2036    if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2037
2038    if (FunctionDecl *FD = getCurFunctionDecl())
2039      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2040    else
2041      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2042    Result = new (Context) ReturnStmt(ReturnLoc);
2043  } else {
2044    const VarDecl *NRVOCandidate = 0;
2045    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2046      // we have a non-void function with an expression, continue checking
2047
2048      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2049      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2050      // function return.
2051
2052      // In C++ the return statement is handled via a copy initialization,
2053      // the C version of which boils down to CheckSingleAssignmentConstraints.
2054      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2055      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2056                                                                     FnRetType,
2057                                                            NRVOCandidate != 0);
2058      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2059                                                       FnRetType, RetValExp);
2060      if (Res.isInvalid()) {
2061        // FIXME: Cleanup temporaries here, anyway?
2062        return StmtError();
2063      }
2064
2065      RetValExp = Res.takeAs<Expr>();
2066      if (RetValExp)
2067        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2068    }
2069
2070    if (RetValExp) {
2071      // If we type-checked an Objective-C method's return type based
2072      // on a related return type, we may need to adjust the return
2073      // type again. Do so now.
2074      if (DeclaredRetType != FnRetType) {
2075        ExprResult result = PerformImplicitConversion(RetValExp,
2076                                                      DeclaredRetType,
2077                                                      AA_Returning);
2078        if (result.isInvalid()) return StmtError();
2079        RetValExp = result.take();
2080      }
2081
2082      CheckImplicitConversions(RetValExp, ReturnLoc);
2083      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2084    }
2085    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2086  }
2087
2088  // If we need to check for the named return value optimization, save the
2089  // return statement in our scope for later processing.
2090  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2091      !CurContext->isDependentContext())
2092    FunctionScopes.back()->Returns.push_back(Result);
2093
2094  return Owned(Result);
2095}
2096
2097/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2098/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2099/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2100/// provide a strong guidance to not use it.
2101///
2102/// This method checks to see if the argument is an acceptable l-value and
2103/// returns false if it is a case we can handle.
2104static bool CheckAsmLValue(const Expr *E, Sema &S) {
2105  // Type dependent expressions will be checked during instantiation.
2106  if (E->isTypeDependent())
2107    return false;
2108
2109  if (E->isLValue())
2110    return false;  // Cool, this is an lvalue.
2111
2112  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2113  // are supposed to allow.
2114  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2115  if (E != E2 && E2->isLValue()) {
2116    if (!S.getLangOpts().HeinousExtensions)
2117      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2118        << E->getSourceRange();
2119    else
2120      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2121        << E->getSourceRange();
2122    // Accept, even if we emitted an error diagnostic.
2123    return false;
2124  }
2125
2126  // None of the above, just randomly invalid non-lvalue.
2127  return true;
2128}
2129
2130/// isOperandMentioned - Return true if the specified operand # is mentioned
2131/// anywhere in the decomposed asm string.
2132static bool isOperandMentioned(unsigned OpNo,
2133                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2134  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2135    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2136    if (!Piece.isOperand()) continue;
2137
2138    // If this is a reference to the input and if the input was the smaller
2139    // one, then we have to reject this asm.
2140    if (Piece.getOperandNo() == OpNo)
2141      return true;
2142  }
2143
2144  return false;
2145}
2146
2147StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2148                              bool IsVolatile, unsigned NumOutputs,
2149                              unsigned NumInputs, IdentifierInfo **Names,
2150                              MultiExprArg constraints, MultiExprArg exprs,
2151                              Expr *asmString, MultiExprArg clobbers,
2152                              SourceLocation RParenLoc, bool MSAsm) {
2153  unsigned NumClobbers = clobbers.size();
2154  StringLiteral **Constraints =
2155    reinterpret_cast<StringLiteral**>(constraints.get());
2156  Expr **Exprs = exprs.get();
2157  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2158  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2159
2160  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2161
2162  // The parser verifies that there is a string literal here.
2163  if (!AsmString->isAscii())
2164    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2165      << AsmString->getSourceRange());
2166
2167  for (unsigned i = 0; i != NumOutputs; i++) {
2168    StringLiteral *Literal = Constraints[i];
2169    if (!Literal->isAscii())
2170      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2171        << Literal->getSourceRange());
2172
2173    StringRef OutputName;
2174    if (Names[i])
2175      OutputName = Names[i]->getName();
2176
2177    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2178    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2179      return StmtError(Diag(Literal->getLocStart(),
2180                            diag::err_asm_invalid_output_constraint)
2181                       << Info.getConstraintStr());
2182
2183    // Check that the output exprs are valid lvalues.
2184    Expr *OutputExpr = Exprs[i];
2185    if (CheckAsmLValue(OutputExpr, *this)) {
2186      return StmtError(Diag(OutputExpr->getLocStart(),
2187                  diag::err_asm_invalid_lvalue_in_output)
2188        << OutputExpr->getSourceRange());
2189    }
2190
2191    OutputConstraintInfos.push_back(Info);
2192  }
2193
2194  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2195
2196  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2197    StringLiteral *Literal = Constraints[i];
2198    if (!Literal->isAscii())
2199      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2200        << Literal->getSourceRange());
2201
2202    StringRef InputName;
2203    if (Names[i])
2204      InputName = Names[i]->getName();
2205
2206    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2207    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2208                                                NumOutputs, Info)) {
2209      return StmtError(Diag(Literal->getLocStart(),
2210                            diag::err_asm_invalid_input_constraint)
2211                       << Info.getConstraintStr());
2212    }
2213
2214    Expr *InputExpr = Exprs[i];
2215
2216    // Only allow void types for memory constraints.
2217    if (Info.allowsMemory() && !Info.allowsRegister()) {
2218      if (CheckAsmLValue(InputExpr, *this))
2219        return StmtError(Diag(InputExpr->getLocStart(),
2220                              diag::err_asm_invalid_lvalue_in_input)
2221                         << Info.getConstraintStr()
2222                         << InputExpr->getSourceRange());
2223    }
2224
2225    if (Info.allowsRegister()) {
2226      if (InputExpr->getType()->isVoidType()) {
2227        return StmtError(Diag(InputExpr->getLocStart(),
2228                              diag::err_asm_invalid_type_in_input)
2229          << InputExpr->getType() << Info.getConstraintStr()
2230          << InputExpr->getSourceRange());
2231      }
2232    }
2233
2234    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2235    if (Result.isInvalid())
2236      return StmtError();
2237
2238    Exprs[i] = Result.take();
2239    InputConstraintInfos.push_back(Info);
2240  }
2241
2242  // Check that the clobbers are valid.
2243  for (unsigned i = 0; i != NumClobbers; i++) {
2244    StringLiteral *Literal = Clobbers[i];
2245    if (!Literal->isAscii())
2246      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2247        << Literal->getSourceRange());
2248
2249    StringRef Clobber = Literal->getString();
2250
2251    if (!Context.getTargetInfo().isValidClobber(Clobber))
2252      return StmtError(Diag(Literal->getLocStart(),
2253                  diag::err_asm_unknown_register_name) << Clobber);
2254  }
2255
2256  AsmStmt *NS =
2257    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2258                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2259                          AsmString, NumClobbers, Clobbers, RParenLoc);
2260  // Validate the asm string, ensuring it makes sense given the operands we
2261  // have.
2262  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2263  unsigned DiagOffs;
2264  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2265    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2266           << AsmString->getSourceRange();
2267    return StmtError();
2268  }
2269
2270  // Validate tied input operands for type mismatches.
2271  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2272    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2273
2274    // If this is a tied constraint, verify that the output and input have
2275    // either exactly the same type, or that they are int/ptr operands with the
2276    // same size (int/long, int*/long, are ok etc).
2277    if (!Info.hasTiedOperand()) continue;
2278
2279    unsigned TiedTo = Info.getTiedOperand();
2280    unsigned InputOpNo = i+NumOutputs;
2281    Expr *OutputExpr = Exprs[TiedTo];
2282    Expr *InputExpr = Exprs[InputOpNo];
2283
2284    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2285      continue;
2286
2287    QualType InTy = InputExpr->getType();
2288    QualType OutTy = OutputExpr->getType();
2289    if (Context.hasSameType(InTy, OutTy))
2290      continue;  // All types can be tied to themselves.
2291
2292    // Decide if the input and output are in the same domain (integer/ptr or
2293    // floating point.
2294    enum AsmDomain {
2295      AD_Int, AD_FP, AD_Other
2296    } InputDomain, OutputDomain;
2297
2298    if (InTy->isIntegerType() || InTy->isPointerType())
2299      InputDomain = AD_Int;
2300    else if (InTy->isRealFloatingType())
2301      InputDomain = AD_FP;
2302    else
2303      InputDomain = AD_Other;
2304
2305    if (OutTy->isIntegerType() || OutTy->isPointerType())
2306      OutputDomain = AD_Int;
2307    else if (OutTy->isRealFloatingType())
2308      OutputDomain = AD_FP;
2309    else
2310      OutputDomain = AD_Other;
2311
2312    // They are ok if they are the same size and in the same domain.  This
2313    // allows tying things like:
2314    //   void* to int*
2315    //   void* to int            if they are the same size.
2316    //   double to long double   if they are the same size.
2317    //
2318    uint64_t OutSize = Context.getTypeSize(OutTy);
2319    uint64_t InSize = Context.getTypeSize(InTy);
2320    if (OutSize == InSize && InputDomain == OutputDomain &&
2321        InputDomain != AD_Other)
2322      continue;
2323
2324    // If the smaller input/output operand is not mentioned in the asm string,
2325    // then we can promote the smaller one to a larger input and the asm string
2326    // won't notice.
2327    bool SmallerValueMentioned = false;
2328
2329    // If this is a reference to the input and if the input was the smaller
2330    // one, then we have to reject this asm.
2331    if (isOperandMentioned(InputOpNo, Pieces)) {
2332      // This is a use in the asm string of the smaller operand.  Since we
2333      // codegen this by promoting to a wider value, the asm will get printed
2334      // "wrong".
2335      SmallerValueMentioned |= InSize < OutSize;
2336    }
2337    if (isOperandMentioned(TiedTo, Pieces)) {
2338      // If this is a reference to the output, and if the output is the larger
2339      // value, then it's ok because we'll promote the input to the larger type.
2340      SmallerValueMentioned |= OutSize < InSize;
2341    }
2342
2343    // If the smaller value wasn't mentioned in the asm string, and if the
2344    // output was a register, just extend the shorter one to the size of the
2345    // larger one.
2346    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2347        OutputConstraintInfos[TiedTo].allowsRegister())
2348      continue;
2349
2350    // Either both of the operands were mentioned or the smaller one was
2351    // mentioned.  One more special case that we'll allow: if the tied input is
2352    // integer, unmentioned, and is a constant, then we'll allow truncating it
2353    // down to the size of the destination.
2354    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2355        !isOperandMentioned(InputOpNo, Pieces) &&
2356        InputExpr->isEvaluatable(Context)) {
2357      CastKind castKind =
2358        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2359      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2360      Exprs[InputOpNo] = InputExpr;
2361      NS->setInputExpr(i, InputExpr);
2362      continue;
2363    }
2364
2365    Diag(InputExpr->getLocStart(),
2366         diag::err_asm_tying_incompatible_types)
2367      << InTy << OutTy << OutputExpr->getSourceRange()
2368      << InputExpr->getSourceRange();
2369    return StmtError();
2370  }
2371
2372  return Owned(NS);
2373}
2374
2375StmtResult
2376Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2377                           SourceLocation RParen, Decl *Parm,
2378                           Stmt *Body) {
2379  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2380  if (Var && Var->isInvalidDecl())
2381    return StmtError();
2382
2383  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2384}
2385
2386StmtResult
2387Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2388  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2389}
2390
2391StmtResult
2392Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2393                         MultiStmtArg CatchStmts, Stmt *Finally) {
2394  if (!getLangOpts().ObjCExceptions)
2395    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2396
2397  getCurFunction()->setHasBranchProtectedScope();
2398  unsigned NumCatchStmts = CatchStmts.size();
2399  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2400                                     CatchStmts.release(),
2401                                     NumCatchStmts,
2402                                     Finally));
2403}
2404
2405StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2406                                                  Expr *Throw) {
2407  if (Throw) {
2408    Throw = MaybeCreateExprWithCleanups(Throw);
2409    ExprResult Result = DefaultLvalueConversion(Throw);
2410    if (Result.isInvalid())
2411      return StmtError();
2412
2413    Throw = Result.take();
2414    QualType ThrowType = Throw->getType();
2415    // Make sure the expression type is an ObjC pointer or "void *".
2416    if (!ThrowType->isDependentType() &&
2417        !ThrowType->isObjCObjectPointerType()) {
2418      const PointerType *PT = ThrowType->getAs<PointerType>();
2419      if (!PT || !PT->getPointeeType()->isVoidType())
2420        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2421                         << Throw->getType() << Throw->getSourceRange());
2422    }
2423  }
2424
2425  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2426}
2427
2428StmtResult
2429Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2430                           Scope *CurScope) {
2431  if (!getLangOpts().ObjCExceptions)
2432    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2433
2434  if (!Throw) {
2435    // @throw without an expression designates a rethrow (which much occur
2436    // in the context of an @catch clause).
2437    Scope *AtCatchParent = CurScope;
2438    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2439      AtCatchParent = AtCatchParent->getParent();
2440    if (!AtCatchParent)
2441      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2442  }
2443
2444  return BuildObjCAtThrowStmt(AtLoc, Throw);
2445}
2446
2447ExprResult
2448Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2449  ExprResult result = DefaultLvalueConversion(operand);
2450  if (result.isInvalid())
2451    return ExprError();
2452  operand = result.take();
2453
2454  // Make sure the expression type is an ObjC pointer or "void *".
2455  QualType type = operand->getType();
2456  if (!type->isDependentType() &&
2457      !type->isObjCObjectPointerType()) {
2458    const PointerType *pointerType = type->getAs<PointerType>();
2459    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2460      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2461               << type << operand->getSourceRange();
2462  }
2463
2464  // The operand to @synchronized is a full-expression.
2465  return MaybeCreateExprWithCleanups(operand);
2466}
2467
2468StmtResult
2469Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2470                                  Stmt *SyncBody) {
2471  // We can't jump into or indirect-jump out of a @synchronized block.
2472  getCurFunction()->setHasBranchProtectedScope();
2473  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2474}
2475
2476/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2477/// and creates a proper catch handler from them.
2478StmtResult
2479Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2480                         Stmt *HandlerBlock) {
2481  // There's nothing to test that ActOnExceptionDecl didn't already test.
2482  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2483                                          cast_or_null<VarDecl>(ExDecl),
2484                                          HandlerBlock));
2485}
2486
2487StmtResult
2488Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2489  getCurFunction()->setHasBranchProtectedScope();
2490  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2491}
2492
2493namespace {
2494
2495class TypeWithHandler {
2496  QualType t;
2497  CXXCatchStmt *stmt;
2498public:
2499  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2500  : t(type), stmt(statement) {}
2501
2502  // An arbitrary order is fine as long as it places identical
2503  // types next to each other.
2504  bool operator<(const TypeWithHandler &y) const {
2505    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2506      return true;
2507    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2508      return false;
2509    else
2510      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2511  }
2512
2513  bool operator==(const TypeWithHandler& other) const {
2514    return t == other.t;
2515  }
2516
2517  CXXCatchStmt *getCatchStmt() const { return stmt; }
2518  SourceLocation getTypeSpecStartLoc() const {
2519    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2520  }
2521};
2522
2523}
2524
2525/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2526/// handlers and creates a try statement from them.
2527StmtResult
2528Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2529                       MultiStmtArg RawHandlers) {
2530  // Don't report an error if 'try' is used in system headers.
2531  if (!getLangOpts().CXXExceptions &&
2532      !getSourceManager().isInSystemHeader(TryLoc))
2533      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2534
2535  unsigned NumHandlers = RawHandlers.size();
2536  assert(NumHandlers > 0 &&
2537         "The parser shouldn't call this if there are no handlers.");
2538  Stmt **Handlers = RawHandlers.get();
2539
2540  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2541
2542  for (unsigned i = 0; i < NumHandlers; ++i) {
2543    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2544    if (!Handler->getExceptionDecl()) {
2545      if (i < NumHandlers - 1)
2546        return StmtError(Diag(Handler->getLocStart(),
2547                              diag::err_early_catch_all));
2548
2549      continue;
2550    }
2551
2552    const QualType CaughtType = Handler->getCaughtType();
2553    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2554    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2555  }
2556
2557  // Detect handlers for the same type as an earlier one.
2558  if (NumHandlers > 1) {
2559    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2560
2561    TypeWithHandler prev = TypesWithHandlers[0];
2562    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2563      TypeWithHandler curr = TypesWithHandlers[i];
2564
2565      if (curr == prev) {
2566        Diag(curr.getTypeSpecStartLoc(),
2567             diag::warn_exception_caught_by_earlier_handler)
2568          << curr.getCatchStmt()->getCaughtType().getAsString();
2569        Diag(prev.getTypeSpecStartLoc(),
2570             diag::note_previous_exception_handler)
2571          << prev.getCatchStmt()->getCaughtType().getAsString();
2572      }
2573
2574      prev = curr;
2575    }
2576  }
2577
2578  getCurFunction()->setHasBranchProtectedScope();
2579
2580  // FIXME: We should detect handlers that cannot catch anything because an
2581  // earlier handler catches a superclass. Need to find a method that is not
2582  // quadratic for this.
2583  // Neither of these are explicitly forbidden, but every compiler detects them
2584  // and warns.
2585
2586  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2587                                  Handlers, NumHandlers));
2588}
2589
2590StmtResult
2591Sema::ActOnSEHTryBlock(bool IsCXXTry,
2592                       SourceLocation TryLoc,
2593                       Stmt *TryBlock,
2594                       Stmt *Handler) {
2595  assert(TryBlock && Handler);
2596
2597  getCurFunction()->setHasBranchProtectedScope();
2598
2599  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2600}
2601
2602StmtResult
2603Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2604                          Expr *FilterExpr,
2605                          Stmt *Block) {
2606  assert(FilterExpr && Block);
2607
2608  if(!FilterExpr->getType()->isIntegerType()) {
2609    return StmtError(Diag(FilterExpr->getExprLoc(),
2610                     diag::err_filter_expression_integral)
2611                     << FilterExpr->getType());
2612  }
2613
2614  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2615}
2616
2617StmtResult
2618Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2619                           Stmt *Block) {
2620  assert(Block);
2621  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2622}
2623
2624StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2625                                            bool IsIfExists,
2626                                            NestedNameSpecifierLoc QualifierLoc,
2627                                            DeclarationNameInfo NameInfo,
2628                                            Stmt *Nested)
2629{
2630  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2631                                             QualifierLoc, NameInfo,
2632                                             cast<CompoundStmt>(Nested));
2633}
2634
2635
2636StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2637                                            bool IsIfExists,
2638                                            CXXScopeSpec &SS,
2639                                            UnqualifiedId &Name,
2640                                            Stmt *Nested) {
2641  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2642                                    SS.getWithLocInContext(Context),
2643                                    GetNameFromUnqualifiedId(Name),
2644                                    Nested);
2645}
2646