SemaStmt.cpp revision 84745677f64863e025a6733cb29d0b94bc3a6ae2
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/StmtObjC.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallVector.h"
28using namespace clang;
29
30Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
31  Expr *E = expr->takeAs<Expr>();
32  assert(E && "ActOnExprStmt(): missing expression");
33  if (E->getType()->isObjCObjectType()) {
34    if (LangOpts.ObjCNonFragileABI)
35      Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object)
36             << E->getType();
37    else
38      Diag(E->getLocEnd(), diag::err_direct_interface_unsupported)
39             << E->getType();
40    return StmtError();
41  }
42  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
43  // void expression for its side effects.  Conversion to void allows any
44  // operand, even incomplete types.
45
46  // Same thing in for stmt first clause (when expr) and third clause.
47  return Owned(static_cast<Stmt*>(E));
48}
49
50
51Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
52  return Owned(new (Context) NullStmt(SemiLoc));
53}
54
55Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
56                                           SourceLocation StartLoc,
57                                           SourceLocation EndLoc) {
58  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
59
60  // If we have an invalid decl, just return an error.
61  if (DG.isNull()) return StmtError();
62
63  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
64}
65
66void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
67  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
68
69  // If we have an invalid decl, just return.
70  if (DG.isNull() || !DG.isSingleDecl()) return;
71  // suppress any potential 'unused variable' warning.
72  DG.getSingleDecl()->setUsed();
73}
74
75void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
76  const Expr *E = dyn_cast_or_null<Expr>(S);
77  if (!E)
78    return;
79
80  SourceLocation Loc;
81  SourceRange R1, R2;
82  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
83    return;
84
85  // Okay, we have an unused result.  Depending on what the base expression is,
86  // we might want to make a more specific diagnostic.  Check for one of these
87  // cases now.
88  unsigned DiagID = diag::warn_unused_expr;
89  E = E->IgnoreParens();
90  if (isa<ObjCImplicitSetterGetterRefExpr>(E))
91    DiagID = diag::warn_unused_property_expr;
92
93  if (const CXXExprWithTemporaries *Temps = dyn_cast<CXXExprWithTemporaries>(E))
94    E = Temps->getSubExpr();
95  if (const CXXZeroInitValueExpr *Zero = dyn_cast<CXXZeroInitValueExpr>(E)) {
96    if (const RecordType *RecordT = Zero->getType()->getAs<RecordType>())
97      if (CXXRecordDecl *RecordD = dyn_cast<CXXRecordDecl>(RecordT->getDecl()))
98        if (!RecordD->hasTrivialDestructor())
99          return;
100  }
101
102  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
103    if (E->getType()->isVoidType())
104      return;
105
106    // If the callee has attribute pure, const, or warn_unused_result, warn with
107    // a more specific message to make it clear what is happening.
108    if (const Decl *FD = CE->getCalleeDecl()) {
109      if (FD->getAttr<WarnUnusedResultAttr>()) {
110        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
111        return;
112      }
113      if (FD->getAttr<PureAttr>()) {
114        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
115        return;
116      }
117      if (FD->getAttr<ConstAttr>()) {
118        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
119        return;
120      }
121    }
122  }
123  else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
124    const ObjCMethodDecl *MD = ME->getMethodDecl();
125    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
126      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
127      return;
128    }
129  } else if (const CXXFunctionalCastExpr *FC
130                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
131    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
132        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
133      return;
134  }
135  // Diagnose "(void*) blah" as a typo for "(void) blah".
136  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
137    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
138    QualType T = TI->getType();
139
140    // We really do want to use the non-canonical type here.
141    if (T == Context.VoidPtrTy) {
142      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
143
144      Diag(Loc, diag::warn_unused_voidptr)
145        << FixItHint::CreateRemoval(TL.getStarLoc());
146      return;
147    }
148  }
149
150  Diag(Loc, DiagID) << R1 << R2;
151}
152
153Action::OwningStmtResult
154Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
155                        MultiStmtArg elts, bool isStmtExpr) {
156  unsigned NumElts = elts.size();
157  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
158  // If we're in C89 mode, check that we don't have any decls after stmts.  If
159  // so, emit an extension diagnostic.
160  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
161    // Note that __extension__ can be around a decl.
162    unsigned i = 0;
163    // Skip over all declarations.
164    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
165      /*empty*/;
166
167    // We found the end of the list or a statement.  Scan for another declstmt.
168    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
169      /*empty*/;
170
171    if (i != NumElts) {
172      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
173      Diag(D->getLocation(), diag::ext_mixed_decls_code);
174    }
175  }
176  // Warn about unused expressions in statements.
177  for (unsigned i = 0; i != NumElts; ++i) {
178    // Ignore statements that are last in a statement expression.
179    if (isStmtExpr && i == NumElts - 1)
180      continue;
181
182    DiagnoseUnusedExprResult(Elts[i]);
183  }
184
185  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
186}
187
188Action::OwningStmtResult
189Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
190                    SourceLocation DotDotDotLoc, ExprArg rhsval,
191                    SourceLocation ColonLoc) {
192  assert((lhsval.get() != 0) && "missing expression in case statement");
193
194  // C99 6.8.4.2p3: The expression shall be an integer constant.
195  // However, GCC allows any evaluatable integer expression.
196  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
197  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
198      VerifyIntegerConstantExpression(LHSVal))
199    return StmtError();
200
201  // GCC extension: The expression shall be an integer constant.
202
203  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
204  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
205      VerifyIntegerConstantExpression(RHSVal)) {
206    RHSVal = 0;  // Recover by just forgetting about it.
207    rhsval = 0;
208  }
209
210  if (getSwitchStack().empty()) {
211    Diag(CaseLoc, diag::err_case_not_in_switch);
212    return StmtError();
213  }
214
215  // Only now release the smart pointers.
216  lhsval.release();
217  rhsval.release();
218  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
219                                        ColonLoc);
220  getSwitchStack().back()->addSwitchCase(CS);
221  return Owned(CS);
222}
223
224/// ActOnCaseStmtBody - This installs a statement as the body of a case.
225void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
226  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
227  Stmt *SubStmt = subStmt.takeAs<Stmt>();
228  CS->setSubStmt(SubStmt);
229}
230
231Action::OwningStmtResult
232Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
233                       StmtArg subStmt, Scope *CurScope) {
234  Stmt *SubStmt = subStmt.takeAs<Stmt>();
235
236  if (getSwitchStack().empty()) {
237    Diag(DefaultLoc, diag::err_default_not_in_switch);
238    return Owned(SubStmt);
239  }
240
241  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
242  getSwitchStack().back()->addSwitchCase(DS);
243  return Owned(DS);
244}
245
246Action::OwningStmtResult
247Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
248                     SourceLocation ColonLoc, StmtArg subStmt) {
249  Stmt *SubStmt = subStmt.takeAs<Stmt>();
250  // Look up the record for this label identifier.
251  LabelStmt *&LabelDecl = getLabelMap()[II];
252
253  // If not forward referenced or defined already, just create a new LabelStmt.
254  if (LabelDecl == 0)
255    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
256
257  assert(LabelDecl->getID() == II && "Label mismatch!");
258
259  // Otherwise, this label was either forward reference or multiply defined.  If
260  // multiply defined, reject it now.
261  if (LabelDecl->getSubStmt()) {
262    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
263    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
264    return Owned(SubStmt);
265  }
266
267  // Otherwise, this label was forward declared, and we just found its real
268  // definition.  Fill in the forward definition and return it.
269  LabelDecl->setIdentLoc(IdentLoc);
270  LabelDecl->setSubStmt(SubStmt);
271  return Owned(LabelDecl);
272}
273
274Action::OwningStmtResult
275Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, DeclPtrTy CondVar,
276                  StmtArg ThenVal, SourceLocation ElseLoc,
277                  StmtArg ElseVal) {
278  OwningExprResult CondResult(CondVal.release());
279
280  VarDecl *ConditionVar = 0;
281  if (CondVar.get()) {
282    ConditionVar = CondVar.getAs<VarDecl>();
283    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
284    if (CondResult.isInvalid())
285      return StmtError();
286  }
287  Expr *ConditionExpr = CondResult.takeAs<Expr>();
288  if (!ConditionExpr)
289    return StmtError();
290
291  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
292  DiagnoseUnusedExprResult(thenStmt);
293
294  // Warn if the if block has a null body without an else value.
295  // this helps prevent bugs due to typos, such as
296  // if (condition);
297  //   do_stuff();
298  if (!ElseVal.get()) {
299    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
300      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
301  }
302
303  Stmt *elseStmt = ElseVal.takeAs<Stmt>();
304  DiagnoseUnusedExprResult(elseStmt);
305
306  CondResult.release();
307  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
308                                    thenStmt, ElseLoc, elseStmt));
309}
310
311/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
312/// the specified width and sign.  If an overflow occurs, detect it and emit
313/// the specified diagnostic.
314void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
315                                              unsigned NewWidth, bool NewSign,
316                                              SourceLocation Loc,
317                                              unsigned DiagID) {
318  // Perform a conversion to the promoted condition type if needed.
319  if (NewWidth > Val.getBitWidth()) {
320    // If this is an extension, just do it.
321    Val.extend(NewWidth);
322    Val.setIsSigned(NewSign);
323
324    // If the input was signed and negative and the output is
325    // unsigned, don't bother to warn: this is implementation-defined
326    // behavior.
327    // FIXME: Introduce a second, default-ignored warning for this case?
328  } else if (NewWidth < Val.getBitWidth()) {
329    // If this is a truncation, check for overflow.
330    llvm::APSInt ConvVal(Val);
331    ConvVal.trunc(NewWidth);
332    ConvVal.setIsSigned(NewSign);
333    ConvVal.extend(Val.getBitWidth());
334    ConvVal.setIsSigned(Val.isSigned());
335    if (ConvVal != Val)
336      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
337
338    // Regardless of whether a diagnostic was emitted, really do the
339    // truncation.
340    Val.trunc(NewWidth);
341    Val.setIsSigned(NewSign);
342  } else if (NewSign != Val.isSigned()) {
343    // Convert the sign to match the sign of the condition.  This can cause
344    // overflow as well: unsigned(INTMIN)
345    // We don't diagnose this overflow, because it is implementation-defined
346    // behavior.
347    // FIXME: Introduce a second, default-ignored warning for this case?
348    llvm::APSInt OldVal(Val);
349    Val.setIsSigned(NewSign);
350  }
351}
352
353namespace {
354  struct CaseCompareFunctor {
355    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
356                    const llvm::APSInt &RHS) {
357      return LHS.first < RHS;
358    }
359    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
360                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
361      return LHS.first < RHS.first;
362    }
363    bool operator()(const llvm::APSInt &LHS,
364                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
365      return LHS < RHS.first;
366    }
367  };
368}
369
370/// CmpCaseVals - Comparison predicate for sorting case values.
371///
372static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
373                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
374  if (lhs.first < rhs.first)
375    return true;
376
377  if (lhs.first == rhs.first &&
378      lhs.second->getCaseLoc().getRawEncoding()
379       < rhs.second->getCaseLoc().getRawEncoding())
380    return true;
381  return false;
382}
383
384/// CmpEnumVals - Comparison predicate for sorting enumeration values.
385///
386static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
387                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
388{
389  return lhs.first < rhs.first;
390}
391
392/// EqEnumVals - Comparison preficate for uniqing enumeration values.
393///
394static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
395                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
396{
397  return lhs.first == rhs.first;
398}
399
400/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
401/// potentially integral-promoted expression @p expr.
402static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
403  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
404    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
405    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
406    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
407      return TypeBeforePromotion;
408    }
409  }
410  return expr->getType();
411}
412
413Action::OwningStmtResult
414Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, ExprArg Cond,
415                             DeclPtrTy CondVar) {
416  VarDecl *ConditionVar = 0;
417  if (CondVar.get()) {
418    ConditionVar = CondVar.getAs<VarDecl>();
419    OwningExprResult CondE = CheckConditionVariable(ConditionVar, SourceLocation(), false);
420    if (CondE.isInvalid())
421      return StmtError();
422
423    Cond = move(CondE);
424  }
425
426  if (!Cond.get())
427    return StmtError();
428
429  Expr *CondExpr = static_cast<Expr *>(Cond.get());
430  OwningExprResult ConvertedCond
431    = ConvertToIntegralOrEnumerationType(SwitchLoc, move(Cond),
432                          PDiag(diag::err_typecheck_statement_requires_integer),
433                                   PDiag(diag::err_switch_incomplete_class_type)
434                                     << CondExpr->getSourceRange(),
435                                   PDiag(diag::err_switch_explicit_conversion),
436                                         PDiag(diag::note_switch_conversion),
437                                   PDiag(diag::err_switch_multiple_conversions),
438                                         PDiag(diag::note_switch_conversion),
439                                         PDiag(0));
440  if (ConvertedCond.isInvalid())
441    return StmtError();
442
443  CondExpr = ConvertedCond.takeAs<Expr>();
444
445  if (!CondVar.get()) {
446    CondExpr = MaybeCreateCXXExprWithTemporaries(CondExpr);
447    if (!CondExpr)
448      return StmtError();
449  }
450
451  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, CondExpr);
452  getSwitchStack().push_back(SS);
453  return Owned(SS);
454}
455
456Action::OwningStmtResult
457Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
458                            StmtArg Body) {
459  Stmt *BodyStmt = Body.takeAs<Stmt>();
460
461  SwitchStmt *SS = getSwitchStack().back();
462  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
463
464  SS->setBody(BodyStmt, SwitchLoc);
465  getSwitchStack().pop_back();
466
467  if (SS->getCond() == 0) {
468    SS->Destroy(Context);
469    return StmtError();
470  }
471
472  Expr *CondExpr = SS->getCond();
473  Expr *CondExprBeforePromotion = CondExpr;
474  QualType CondTypeBeforePromotion =
475      GetTypeBeforeIntegralPromotion(CondExpr);
476
477  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
478  UsualUnaryConversions(CondExpr);
479  QualType CondType = CondExpr->getType();
480  SS->setCond(CondExpr);
481
482  // C++ 6.4.2.p2:
483  // Integral promotions are performed (on the switch condition).
484  //
485  // A case value unrepresentable by the original switch condition
486  // type (before the promotion) doesn't make sense, even when it can
487  // be represented by the promoted type.  Therefore we need to find
488  // the pre-promotion type of the switch condition.
489  if (!CondExpr->isTypeDependent()) {
490    // We have already converted the expression to an integral or enumeration
491    // type, when we started the switch statement. If we don't have an
492    // appropriate type now, just return an error.
493    if (!CondType->isIntegralOrEnumerationType())
494      return StmtError();
495
496    if (CondExpr->isKnownToHaveBooleanValue()) {
497      // switch(bool_expr) {...} is often a programmer error, e.g.
498      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
499      // One can always use an if statement instead of switch(bool_expr).
500      Diag(SwitchLoc, diag::warn_bool_switch_condition)
501          << CondExpr->getSourceRange();
502    }
503  }
504
505  // Get the bitwidth of the switched-on value before promotions.  We must
506  // convert the integer case values to this width before comparison.
507  bool HasDependentValue
508    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
509  unsigned CondWidth
510    = HasDependentValue? 0
511      : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
512  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
513
514  // Accumulate all of the case values in a vector so that we can sort them
515  // and detect duplicates.  This vector contains the APInt for the case after
516  // it has been converted to the condition type.
517  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
518  CaseValsTy CaseVals;
519
520  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
521  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
522  CaseRangesTy CaseRanges;
523
524  DefaultStmt *TheDefaultStmt = 0;
525
526  bool CaseListIsErroneous = false;
527
528  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
529       SC = SC->getNextSwitchCase()) {
530
531    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
532      if (TheDefaultStmt) {
533        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
534        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
535
536        // FIXME: Remove the default statement from the switch block so that
537        // we'll return a valid AST.  This requires recursing down the AST and
538        // finding it, not something we are set up to do right now.  For now,
539        // just lop the entire switch stmt out of the AST.
540        CaseListIsErroneous = true;
541      }
542      TheDefaultStmt = DS;
543
544    } else {
545      CaseStmt *CS = cast<CaseStmt>(SC);
546
547      // We already verified that the expression has a i-c-e value (C99
548      // 6.8.4.2p3) - get that value now.
549      Expr *Lo = CS->getLHS();
550
551      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
552        HasDependentValue = true;
553        break;
554      }
555
556      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
557
558      // Convert the value to the same width/sign as the condition.
559      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
560                                         CS->getLHS()->getLocStart(),
561                                         diag::warn_case_value_overflow);
562
563      // If the LHS is not the same type as the condition, insert an implicit
564      // cast.
565      ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast);
566      CS->setLHS(Lo);
567
568      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
569      if (CS->getRHS()) {
570        if (CS->getRHS()->isTypeDependent() ||
571            CS->getRHS()->isValueDependent()) {
572          HasDependentValue = true;
573          break;
574        }
575        CaseRanges.push_back(std::make_pair(LoVal, CS));
576      } else
577        CaseVals.push_back(std::make_pair(LoVal, CS));
578    }
579  }
580
581  if (!HasDependentValue) {
582    // If we don't have a default statement, check whether the
583    // condition is constant.
584    llvm::APSInt ConstantCondValue;
585    bool HasConstantCond = false;
586    bool ShouldCheckConstantCond = false;
587    if (!HasDependentValue && !TheDefaultStmt) {
588      Expr::EvalResult Result;
589      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
590      if (HasConstantCond) {
591        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
592        ConstantCondValue = Result.Val.getInt();
593        ShouldCheckConstantCond = true;
594
595        assert(ConstantCondValue.getBitWidth() == CondWidth &&
596               ConstantCondValue.isSigned() == CondIsSigned);
597      }
598    }
599
600    // Sort all the scalar case values so we can easily detect duplicates.
601    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
602
603    if (!CaseVals.empty()) {
604      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
605        if (ShouldCheckConstantCond &&
606            CaseVals[i].first == ConstantCondValue)
607          ShouldCheckConstantCond = false;
608
609        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
610          // If we have a duplicate, report it.
611          Diag(CaseVals[i].second->getLHS()->getLocStart(),
612               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
613          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
614               diag::note_duplicate_case_prev);
615          // FIXME: We really want to remove the bogus case stmt from the
616          // substmt, but we have no way to do this right now.
617          CaseListIsErroneous = true;
618        }
619      }
620    }
621
622    // Detect duplicate case ranges, which usually don't exist at all in
623    // the first place.
624    if (!CaseRanges.empty()) {
625      // Sort all the case ranges by their low value so we can easily detect
626      // overlaps between ranges.
627      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
628
629      // Scan the ranges, computing the high values and removing empty ranges.
630      std::vector<llvm::APSInt> HiVals;
631      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
632        llvm::APSInt &LoVal = CaseRanges[i].first;
633        CaseStmt *CR = CaseRanges[i].second;
634        Expr *Hi = CR->getRHS();
635        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
636
637        // Convert the value to the same width/sign as the condition.
638        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
639                                           CR->getRHS()->getLocStart(),
640                                           diag::warn_case_value_overflow);
641
642        // If the LHS is not the same type as the condition, insert an implicit
643        // cast.
644        ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast);
645        CR->setRHS(Hi);
646
647        // If the low value is bigger than the high value, the case is empty.
648        if (LoVal > HiVal) {
649          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
650            << SourceRange(CR->getLHS()->getLocStart(),
651                           CR->getRHS()->getLocEnd());
652          CaseRanges.erase(CaseRanges.begin()+i);
653          --i, --e;
654          continue;
655        }
656
657        if (ShouldCheckConstantCond &&
658            LoVal <= ConstantCondValue &&
659            ConstantCondValue <= HiVal)
660          ShouldCheckConstantCond = false;
661
662        HiVals.push_back(HiVal);
663      }
664
665      // Rescan the ranges, looking for overlap with singleton values and other
666      // ranges.  Since the range list is sorted, we only need to compare case
667      // ranges with their neighbors.
668      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
669        llvm::APSInt &CRLo = CaseRanges[i].first;
670        llvm::APSInt &CRHi = HiVals[i];
671        CaseStmt *CR = CaseRanges[i].second;
672
673        // Check to see whether the case range overlaps with any
674        // singleton cases.
675        CaseStmt *OverlapStmt = 0;
676        llvm::APSInt OverlapVal(32);
677
678        // Find the smallest value >= the lower bound.  If I is in the
679        // case range, then we have overlap.
680        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
681                                                  CaseVals.end(), CRLo,
682                                                  CaseCompareFunctor());
683        if (I != CaseVals.end() && I->first < CRHi) {
684          OverlapVal  = I->first;   // Found overlap with scalar.
685          OverlapStmt = I->second;
686        }
687
688        // Find the smallest value bigger than the upper bound.
689        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
690        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
691          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
692          OverlapStmt = (I-1)->second;
693        }
694
695        // Check to see if this case stmt overlaps with the subsequent
696        // case range.
697        if (i && CRLo <= HiVals[i-1]) {
698          OverlapVal  = HiVals[i-1];       // Found overlap with range.
699          OverlapStmt = CaseRanges[i-1].second;
700        }
701
702        if (OverlapStmt) {
703          // If we have a duplicate, report it.
704          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
705            << OverlapVal.toString(10);
706          Diag(OverlapStmt->getLHS()->getLocStart(),
707               diag::note_duplicate_case_prev);
708          // FIXME: We really want to remove the bogus case stmt from the
709          // substmt, but we have no way to do this right now.
710          CaseListIsErroneous = true;
711        }
712      }
713    }
714
715    // Complain if we have a constant condition and we didn't find a match.
716    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
717      // TODO: it would be nice if we printed enums as enums, chars as
718      // chars, etc.
719      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
720        << ConstantCondValue.toString(10)
721        << CondExpr->getSourceRange();
722    }
723
724    // Check to see if switch is over an Enum and handles all of its
725    // values.  We don't need to do this if there's a default
726    // statement or if we have a constant condition.
727    //
728    // TODO: we might want to check whether case values are out of the
729    // enum even if we don't want to check whether all cases are handled.
730    const EnumType* ET = CondTypeBeforePromotion->getAs<EnumType>();
731    // If switch has default case, then ignore it.
732    if (!CaseListIsErroneous && !TheDefaultStmt && !HasConstantCond && ET) {
733      const EnumDecl *ED = ET->getDecl();
734      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
735      EnumValsTy EnumVals;
736
737      // Gather all enum values, set their type and sort them,
738      // allowing easier comparison with CaseVals.
739      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
740             EDI != ED->enumerator_end(); EDI++) {
741        llvm::APSInt Val = (*EDI)->getInitVal();
742        if(Val.getBitWidth() < CondWidth)
743          Val.extend(CondWidth);
744        else if (Val.getBitWidth() > CondWidth)
745          Val.trunc(CondWidth);
746        Val.setIsSigned(CondIsSigned);
747        EnumVals.push_back(std::make_pair(Val, (*EDI)));
748      }
749      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
750      EnumValsTy::iterator EIend =
751        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
752      // See which case values aren't in enum
753      EnumValsTy::const_iterator EI = EnumVals.begin();
754      for (CaseValsTy::const_iterator CI = CaseVals.begin();
755             CI != CaseVals.end(); CI++) {
756        while (EI != EIend && EI->first < CI->first)
757          EI++;
758        if (EI == EIend || EI->first > CI->first)
759            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
760              << ED->getDeclName();
761      }
762      // See which of case ranges aren't in enum
763      EI = EnumVals.begin();
764      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
765             RI != CaseRanges.end() && EI != EIend; RI++) {
766        while (EI != EIend && EI->first < RI->first)
767          EI++;
768
769        if (EI == EIend || EI->first != RI->first) {
770          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
771            << ED->getDeclName();
772        }
773
774        llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
775        while (EI != EIend && EI->first < Hi)
776          EI++;
777        if (EI == EIend || EI->first != Hi)
778          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
779            << ED->getDeclName();
780      }
781      //Check which enum vals aren't in switch
782      CaseValsTy::const_iterator CI = CaseVals.begin();
783      CaseRangesTy::const_iterator RI = CaseRanges.begin();
784      EI = EnumVals.begin();
785      for (; EI != EIend; EI++) {
786        //Drop unneeded case values
787        llvm::APSInt CIVal;
788        while (CI != CaseVals.end() && CI->first < EI->first)
789          CI++;
790
791        if (CI != CaseVals.end() && CI->first == EI->first)
792          continue;
793
794        //Drop unneeded case ranges
795        for (; RI != CaseRanges.end(); RI++) {
796          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
797          if (EI->first <= Hi)
798            break;
799        }
800
801        if (RI == CaseRanges.end() || EI->first < RI->first)
802          Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
803            << EI->second->getDeclName();
804      }
805    }
806  }
807
808  // FIXME: If the case list was broken is some way, we don't have a good system
809  // to patch it up.  Instead, just return the whole substmt as broken.
810  if (CaseListIsErroneous)
811    return StmtError();
812
813  Switch.release();
814  return Owned(SS);
815}
816
817Action::OwningStmtResult
818Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
819                     DeclPtrTy CondVar, StmtArg Body) {
820  OwningExprResult CondResult(Cond.release());
821
822  VarDecl *ConditionVar = 0;
823  if (CondVar.get()) {
824    ConditionVar = CondVar.getAs<VarDecl>();
825    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
826    if (CondResult.isInvalid())
827      return StmtError();
828  }
829  Expr *ConditionExpr = CondResult.takeAs<Expr>();
830  if (!ConditionExpr)
831    return StmtError();
832
833  Stmt *bodyStmt = Body.takeAs<Stmt>();
834  DiagnoseUnusedExprResult(bodyStmt);
835
836  CondResult.release();
837  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
838                                       bodyStmt, WhileLoc));
839}
840
841Action::OwningStmtResult
842Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
843                  SourceLocation WhileLoc, SourceLocation CondLParen,
844                  ExprArg Cond, SourceLocation CondRParen) {
845  Expr *condExpr = Cond.takeAs<Expr>();
846  assert(condExpr && "ActOnDoStmt(): missing expression");
847
848  if (CheckBooleanCondition(condExpr, DoLoc)) {
849    Cond = condExpr;
850    return StmtError();
851  }
852
853  condExpr = MaybeCreateCXXExprWithTemporaries(condExpr);
854  if (!condExpr)
855    return StmtError();
856
857  Stmt *bodyStmt = Body.takeAs<Stmt>();
858  DiagnoseUnusedExprResult(bodyStmt);
859
860  Cond.release();
861  return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
862                                    WhileLoc, CondRParen));
863}
864
865Action::OwningStmtResult
866Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
867                   StmtArg first, FullExprArg second, DeclPtrTy secondVar,
868                   FullExprArg third,
869                   SourceLocation RParenLoc, StmtArg body) {
870  Stmt *First  = static_cast<Stmt*>(first.get());
871
872  if (!getLangOptions().CPlusPlus) {
873    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
874      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
875      // declare identifiers for objects having storage class 'auto' or
876      // 'register'.
877      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
878           DI!=DE; ++DI) {
879        VarDecl *VD = dyn_cast<VarDecl>(*DI);
880        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
881          VD = 0;
882        if (VD == 0)
883          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
884        // FIXME: mark decl erroneous!
885      }
886    }
887  }
888
889  OwningExprResult SecondResult(second.release());
890  VarDecl *ConditionVar = 0;
891  if (secondVar.get()) {
892    ConditionVar = secondVar.getAs<VarDecl>();
893    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
894    if (SecondResult.isInvalid())
895      return StmtError();
896  }
897
898  Expr *Third  = third.release().takeAs<Expr>();
899  Stmt *Body  = static_cast<Stmt*>(body.get());
900
901  DiagnoseUnusedExprResult(First);
902  DiagnoseUnusedExprResult(Third);
903  DiagnoseUnusedExprResult(Body);
904
905  first.release();
906  body.release();
907  return Owned(new (Context) ForStmt(Context, First,
908                                     SecondResult.takeAs<Expr>(), ConditionVar,
909                                     Third, Body, ForLoc, LParenLoc,
910                                     RParenLoc));
911}
912
913Action::OwningStmtResult
914Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
915                                 SourceLocation LParenLoc,
916                                 StmtArg first, ExprArg second,
917                                 SourceLocation RParenLoc, StmtArg body) {
918  Stmt *First  = static_cast<Stmt*>(first.get());
919  Expr *Second = static_cast<Expr*>(second.get());
920  Stmt *Body  = static_cast<Stmt*>(body.get());
921  if (First) {
922    QualType FirstType;
923    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
924      if (!DS->isSingleDecl())
925        return StmtError(Diag((*DS->decl_begin())->getLocation(),
926                         diag::err_toomany_element_decls));
927
928      Decl *D = DS->getSingleDecl();
929      FirstType = cast<ValueDecl>(D)->getType();
930      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
931      // declare identifiers for objects having storage class 'auto' or
932      // 'register'.
933      VarDecl *VD = cast<VarDecl>(D);
934      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
935        return StmtError(Diag(VD->getLocation(),
936                              diag::err_non_variable_decl_in_for));
937    } else {
938      Expr *FirstE = cast<Expr>(First);
939      if (!FirstE->isTypeDependent() &&
940          FirstE->isLvalue(Context) != Expr::LV_Valid)
941        return StmtError(Diag(First->getLocStart(),
942                   diag::err_selector_element_not_lvalue)
943          << First->getSourceRange());
944
945      FirstType = static_cast<Expr*>(First)->getType();
946    }
947    if (!FirstType->isDependentType() &&
948        !FirstType->isObjCObjectPointerType() &&
949        !FirstType->isBlockPointerType())
950        Diag(ForLoc, diag::err_selector_element_type)
951          << FirstType << First->getSourceRange();
952  }
953  if (Second && !Second->isTypeDependent()) {
954    DefaultFunctionArrayLvalueConversion(Second);
955    QualType SecondType = Second->getType();
956    if (!SecondType->isObjCObjectPointerType())
957      Diag(ForLoc, diag::err_collection_expr_type)
958        << SecondType << Second->getSourceRange();
959  }
960  first.release();
961  second.release();
962  body.release();
963  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
964                                                   ForLoc, RParenLoc));
965}
966
967Action::OwningStmtResult
968Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
969                    IdentifierInfo *LabelII) {
970  // Look up the record for this label identifier.
971  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
972
973  // If we haven't seen this label yet, create a forward reference.
974  if (LabelDecl == 0)
975    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
976
977  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
978}
979
980Action::OwningStmtResult
981Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
982                            ExprArg DestExp) {
983  // Convert operand to void*
984  Expr* E = DestExp.takeAs<Expr>();
985  if (!E->isTypeDependent()) {
986    QualType ETy = E->getType();
987    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
988    AssignConvertType ConvTy =
989      CheckSingleAssignmentConstraints(DestTy, E);
990    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
991      return StmtError();
992  }
993  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
994}
995
996Action::OwningStmtResult
997Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
998  Scope *S = CurScope->getContinueParent();
999  if (!S) {
1000    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1001    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1002  }
1003
1004  return Owned(new (Context) ContinueStmt(ContinueLoc));
1005}
1006
1007Action::OwningStmtResult
1008Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1009  Scope *S = CurScope->getBreakParent();
1010  if (!S) {
1011    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1012    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1013  }
1014
1015  return Owned(new (Context) BreakStmt(BreakLoc));
1016}
1017
1018/// \brief Determine whether a return statement is a candidate for the named
1019/// return value optimization (C++0x 12.8p34, bullet 1).
1020///
1021/// \param Ctx The context in which the return expression and type occur.
1022///
1023/// \param RetType The return type of the function or block.
1024///
1025/// \param RetExpr The expression being returned from the function or block.
1026///
1027/// \returns The NRVO candidate variable, if the return statement may use the
1028/// NRVO, or NULL if there is no such candidate.
1029static const VarDecl *getNRVOCandidate(ASTContext &Ctx, QualType RetType,
1030                                       Expr *RetExpr) {
1031  QualType ExprType = RetExpr->getType();
1032  // - in a return statement in a function with ...
1033  // ... a class return type ...
1034  if (!RetType->isRecordType())
1035    return 0;
1036  // ... the same cv-unqualified type as the function return type ...
1037  if (!Ctx.hasSameUnqualifiedType(RetType, ExprType))
1038    return 0;
1039  // ... the expression is the name of a non-volatile automatic object ...
1040  // We ignore parentheses here.
1041  // FIXME: Is this compliant? (Everyone else does it)
1042  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
1043  if (!DR)
1044    return 0;
1045  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1046  if (!VD)
1047    return 0;
1048
1049  if (VD->getKind() == Decl::Var && VD->hasLocalStorage() &&
1050      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1051      !VD->getType().isVolatileQualified())
1052    return VD;
1053
1054  return 0;
1055}
1056
1057/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1058///
1059Action::OwningStmtResult
1060Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1061  // If this is the first return we've seen in the block, infer the type of
1062  // the block from it.
1063  BlockScopeInfo *CurBlock = getCurBlock();
1064  if (CurBlock->ReturnType.isNull()) {
1065    if (RetValExp) {
1066      // Don't call UsualUnaryConversions(), since we don't want to do
1067      // integer promotions here.
1068      DefaultFunctionArrayLvalueConversion(RetValExp);
1069      CurBlock->ReturnType = RetValExp->getType();
1070      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1071        // We have to remove a 'const' added to copied-in variable which was
1072        // part of the implementation spec. and not the actual qualifier for
1073        // the variable.
1074        if (CDRE->isConstQualAdded())
1075           CurBlock->ReturnType.removeConst();
1076      }
1077    } else
1078      CurBlock->ReturnType = Context.VoidTy;
1079  }
1080  QualType FnRetType = CurBlock->ReturnType;
1081
1082  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
1083    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1084      << getCurFunctionOrMethodDecl()->getDeclName();
1085    return StmtError();
1086  }
1087
1088  // Otherwise, verify that this result type matches the previous one.  We are
1089  // pickier with blocks than for normal functions because we don't have GCC
1090  // compatibility to worry about here.
1091  ReturnStmt *Result = 0;
1092  if (CurBlock->ReturnType->isVoidType()) {
1093    if (RetValExp) {
1094      Diag(ReturnLoc, diag::err_return_block_has_expr);
1095      RetValExp->Destroy(Context);
1096      RetValExp = 0;
1097    }
1098    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1099  } else if (!RetValExp) {
1100    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1101  } else {
1102    const VarDecl *NRVOCandidate = 0;
1103
1104    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1105      // we have a non-void block with an expression, continue checking
1106
1107      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1108      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1109      // function return.
1110
1111      // In C++ the return statement is handled via a copy initialization.
1112      // the C version of which boils down to CheckSingleAssignmentConstraints.
1113      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1114      OwningExprResult Res = PerformCopyInitialization(
1115                               InitializedEntity::InitializeResult(ReturnLoc,
1116                                                                   FnRetType,
1117                                                            NRVOCandidate != 0),
1118                               SourceLocation(),
1119                               Owned(RetValExp));
1120      if (Res.isInvalid()) {
1121        // FIXME: Cleanup temporaries here, anyway?
1122        return StmtError();
1123      }
1124
1125      if (RetValExp)
1126        RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1127
1128      RetValExp = Res.takeAs<Expr>();
1129      if (RetValExp)
1130        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1131    }
1132
1133    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1134  }
1135
1136  // If we need to check for the named return value optimization, save the
1137  // return statement in our scope for later processing.
1138  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1139      !CurContext->isDependentContext())
1140    FunctionScopes.back()->Returns.push_back(Result);
1141
1142  return Owned(Result);
1143}
1144
1145Action::OwningStmtResult
1146Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
1147  Expr *RetValExp = rex.takeAs<Expr>();
1148  if (getCurBlock())
1149    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1150
1151  QualType FnRetType;
1152  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1153    FnRetType = FD->getResultType();
1154    if (FD->hasAttr<NoReturnAttr>() ||
1155        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1156      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1157        << getCurFunctionOrMethodDecl()->getDeclName();
1158  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1159    FnRetType = MD->getResultType();
1160  else // If we don't have a function/method context, bail.
1161    return StmtError();
1162
1163  ReturnStmt *Result = 0;
1164  if (FnRetType->isVoidType()) {
1165    if (RetValExp && !RetValExp->isTypeDependent()) {
1166      // C99 6.8.6.4p1 (ext_ since GCC warns)
1167      unsigned D = diag::ext_return_has_expr;
1168      if (RetValExp->getType()->isVoidType())
1169        D = diag::ext_return_has_void_expr;
1170
1171      // return (some void expression); is legal in C++.
1172      if (D != diag::ext_return_has_void_expr ||
1173          !getLangOptions().CPlusPlus) {
1174        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1175        Diag(ReturnLoc, D)
1176          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1177          << RetValExp->getSourceRange();
1178      }
1179
1180      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1181    }
1182
1183    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1184  } else if (!RetValExp && !FnRetType->isDependentType()) {
1185    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1186    // C99 6.8.6.4p1 (ext_ since GCC warns)
1187    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1188
1189    if (FunctionDecl *FD = getCurFunctionDecl())
1190      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1191    else
1192      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1193    Result = new (Context) ReturnStmt(ReturnLoc);
1194  } else {
1195    const VarDecl *NRVOCandidate = 0;
1196    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1197      // we have a non-void function with an expression, continue checking
1198
1199      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1200      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1201      // function return.
1202
1203      // In C++ the return statement is handled via a copy initialization.
1204      // the C version of which boils down to CheckSingleAssignmentConstraints.
1205      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1206      OwningExprResult Res = PerformCopyInitialization(
1207                               InitializedEntity::InitializeResult(ReturnLoc,
1208                                                                   FnRetType,
1209                                                            NRVOCandidate != 0),
1210                               SourceLocation(),
1211                               Owned(RetValExp));
1212      if (Res.isInvalid()) {
1213        // FIXME: Cleanup temporaries here, anyway?
1214        return StmtError();
1215      }
1216
1217      RetValExp = Res.takeAs<Expr>();
1218      if (RetValExp)
1219        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1220    }
1221
1222    if (RetValExp)
1223      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1224    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1225  }
1226
1227  // If we need to check for the named return value optimization, save the
1228  // return statement in our scope for later processing.
1229  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1230      !CurContext->isDependentContext())
1231    FunctionScopes.back()->Returns.push_back(Result);
1232
1233  return Owned(Result);
1234}
1235
1236/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1237/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1238/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1239/// provide a strong guidance to not use it.
1240///
1241/// This method checks to see if the argument is an acceptable l-value and
1242/// returns false if it is a case we can handle.
1243static bool CheckAsmLValue(const Expr *E, Sema &S) {
1244  // Type dependent expressions will be checked during instantiation.
1245  if (E->isTypeDependent())
1246    return false;
1247
1248  if (E->isLvalue(S.Context) == Expr::LV_Valid)
1249    return false;  // Cool, this is an lvalue.
1250
1251  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1252  // are supposed to allow.
1253  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1254  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
1255    if (!S.getLangOptions().HeinousExtensions)
1256      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1257        << E->getSourceRange();
1258    else
1259      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1260        << E->getSourceRange();
1261    // Accept, even if we emitted an error diagnostic.
1262    return false;
1263  }
1264
1265  // None of the above, just randomly invalid non-lvalue.
1266  return true;
1267}
1268
1269
1270Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
1271                                          bool IsSimple,
1272                                          bool IsVolatile,
1273                                          unsigned NumOutputs,
1274                                          unsigned NumInputs,
1275                                          IdentifierInfo **Names,
1276                                          MultiExprArg constraints,
1277                                          MultiExprArg exprs,
1278                                          ExprArg asmString,
1279                                          MultiExprArg clobbers,
1280                                          SourceLocation RParenLoc,
1281                                          bool MSAsm) {
1282  unsigned NumClobbers = clobbers.size();
1283  StringLiteral **Constraints =
1284    reinterpret_cast<StringLiteral**>(constraints.get());
1285  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
1286  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
1287  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1288
1289  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1290
1291  // The parser verifies that there is a string literal here.
1292  if (AsmString->isWide())
1293    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1294      << AsmString->getSourceRange());
1295
1296  for (unsigned i = 0; i != NumOutputs; i++) {
1297    StringLiteral *Literal = Constraints[i];
1298    if (Literal->isWide())
1299      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1300        << Literal->getSourceRange());
1301
1302    llvm::StringRef OutputName;
1303    if (Names[i])
1304      OutputName = Names[i]->getName();
1305
1306    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1307    if (!Context.Target.validateOutputConstraint(Info))
1308      return StmtError(Diag(Literal->getLocStart(),
1309                            diag::err_asm_invalid_output_constraint)
1310                       << Info.getConstraintStr());
1311
1312    // Check that the output exprs are valid lvalues.
1313    Expr *OutputExpr = Exprs[i];
1314    if (CheckAsmLValue(OutputExpr, *this)) {
1315      return StmtError(Diag(OutputExpr->getLocStart(),
1316                  diag::err_asm_invalid_lvalue_in_output)
1317        << OutputExpr->getSourceRange());
1318    }
1319
1320    OutputConstraintInfos.push_back(Info);
1321  }
1322
1323  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1324
1325  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1326    StringLiteral *Literal = Constraints[i];
1327    if (Literal->isWide())
1328      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1329        << Literal->getSourceRange());
1330
1331    llvm::StringRef InputName;
1332    if (Names[i])
1333      InputName = Names[i]->getName();
1334
1335    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1336    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1337                                                NumOutputs, Info)) {
1338      return StmtError(Diag(Literal->getLocStart(),
1339                            diag::err_asm_invalid_input_constraint)
1340                       << Info.getConstraintStr());
1341    }
1342
1343    Expr *InputExpr = Exprs[i];
1344
1345    // Only allow void types for memory constraints.
1346    if (Info.allowsMemory() && !Info.allowsRegister()) {
1347      if (CheckAsmLValue(InputExpr, *this))
1348        return StmtError(Diag(InputExpr->getLocStart(),
1349                              diag::err_asm_invalid_lvalue_in_input)
1350                         << Info.getConstraintStr()
1351                         << InputExpr->getSourceRange());
1352    }
1353
1354    if (Info.allowsRegister()) {
1355      if (InputExpr->getType()->isVoidType()) {
1356        return StmtError(Diag(InputExpr->getLocStart(),
1357                              diag::err_asm_invalid_type_in_input)
1358          << InputExpr->getType() << Info.getConstraintStr()
1359          << InputExpr->getSourceRange());
1360      }
1361    }
1362
1363    DefaultFunctionArrayLvalueConversion(Exprs[i]);
1364
1365    InputConstraintInfos.push_back(Info);
1366  }
1367
1368  // Check that the clobbers are valid.
1369  for (unsigned i = 0; i != NumClobbers; i++) {
1370    StringLiteral *Literal = Clobbers[i];
1371    if (Literal->isWide())
1372      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1373        << Literal->getSourceRange());
1374
1375    llvm::StringRef Clobber = Literal->getString();
1376
1377    if (!Context.Target.isValidGCCRegisterName(Clobber))
1378      return StmtError(Diag(Literal->getLocStart(),
1379                  diag::err_asm_unknown_register_name) << Clobber);
1380  }
1381
1382  constraints.release();
1383  exprs.release();
1384  asmString.release();
1385  clobbers.release();
1386  AsmStmt *NS =
1387    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1388                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1389                          AsmString, NumClobbers, Clobbers, RParenLoc);
1390  // Validate the asm string, ensuring it makes sense given the operands we
1391  // have.
1392  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1393  unsigned DiagOffs;
1394  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1395    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1396           << AsmString->getSourceRange();
1397    DeleteStmt(NS);
1398    return StmtError();
1399  }
1400
1401  // Validate tied input operands for type mismatches.
1402  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1403    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1404
1405    // If this is a tied constraint, verify that the output and input have
1406    // either exactly the same type, or that they are int/ptr operands with the
1407    // same size (int/long, int*/long, are ok etc).
1408    if (!Info.hasTiedOperand()) continue;
1409
1410    unsigned TiedTo = Info.getTiedOperand();
1411    Expr *OutputExpr = Exprs[TiedTo];
1412    Expr *InputExpr = Exprs[i+NumOutputs];
1413    QualType InTy = InputExpr->getType();
1414    QualType OutTy = OutputExpr->getType();
1415    if (Context.hasSameType(InTy, OutTy))
1416      continue;  // All types can be tied to themselves.
1417
1418    // Decide if the input and output are in the same domain (integer/ptr or
1419    // floating point.
1420    enum AsmDomain {
1421      AD_Int, AD_FP, AD_Other
1422    } InputDomain, OutputDomain;
1423
1424    if (InTy->isIntegerType() || InTy->isPointerType())
1425      InputDomain = AD_Int;
1426    else if (InTy->isRealFloatingType())
1427      InputDomain = AD_FP;
1428    else
1429      InputDomain = AD_Other;
1430
1431    if (OutTy->isIntegerType() || OutTy->isPointerType())
1432      OutputDomain = AD_Int;
1433    else if (OutTy->isRealFloatingType())
1434      OutputDomain = AD_FP;
1435    else
1436      OutputDomain = AD_Other;
1437
1438    // They are ok if they are the same size and in the same domain.  This
1439    // allows tying things like:
1440    //   void* to int*
1441    //   void* to int            if they are the same size.
1442    //   double to long double   if they are the same size.
1443    //
1444    uint64_t OutSize = Context.getTypeSize(OutTy);
1445    uint64_t InSize = Context.getTypeSize(InTy);
1446    if (OutSize == InSize && InputDomain == OutputDomain &&
1447        InputDomain != AD_Other)
1448      continue;
1449
1450    // If the smaller input/output operand is not mentioned in the asm string,
1451    // then we can promote it and the asm string won't notice.  Check this
1452    // case now.
1453    bool SmallerValueMentioned = false;
1454    for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1455      AsmStmt::AsmStringPiece &Piece = Pieces[p];
1456      if (!Piece.isOperand()) continue;
1457
1458      // If this is a reference to the input and if the input was the smaller
1459      // one, then we have to reject this asm.
1460      if (Piece.getOperandNo() == i+NumOutputs) {
1461        if (InSize < OutSize) {
1462          SmallerValueMentioned = true;
1463          break;
1464        }
1465      }
1466
1467      // If this is a reference to the input and if the input was the smaller
1468      // one, then we have to reject this asm.
1469      if (Piece.getOperandNo() == TiedTo) {
1470        if (InSize > OutSize) {
1471          SmallerValueMentioned = true;
1472          break;
1473        }
1474      }
1475    }
1476
1477    // If the smaller value wasn't mentioned in the asm string, and if the
1478    // output was a register, just extend the shorter one to the size of the
1479    // larger one.
1480    if (!SmallerValueMentioned && InputDomain != AD_Other &&
1481        OutputConstraintInfos[TiedTo].allowsRegister())
1482      continue;
1483
1484    Diag(InputExpr->getLocStart(),
1485         diag::err_asm_tying_incompatible_types)
1486      << InTy << OutTy << OutputExpr->getSourceRange()
1487      << InputExpr->getSourceRange();
1488    DeleteStmt(NS);
1489    return StmtError();
1490  }
1491
1492  return Owned(NS);
1493}
1494
1495Action::OwningStmtResult
1496Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1497                           SourceLocation RParen, DeclPtrTy Parm,
1498                           StmtArg Body) {
1499  VarDecl *Var = cast_or_null<VarDecl>(Parm.getAs<Decl>());
1500  if (Var && Var->isInvalidDecl())
1501    return StmtError();
1502
1503  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var,
1504                                             Body.takeAs<Stmt>()));
1505}
1506
1507Action::OwningStmtResult
1508Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1509  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1510                                           static_cast<Stmt*>(Body.release())));
1511}
1512
1513Action::OwningStmtResult
1514Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, StmtArg Try,
1515                         MultiStmtArg CatchStmts, StmtArg Finally) {
1516  FunctionNeedsScopeChecking() = true;
1517  unsigned NumCatchStmts = CatchStmts.size();
1518  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try.takeAs<Stmt>(),
1519                                     (Stmt **)CatchStmts.release(),
1520                                     NumCatchStmts,
1521                                     Finally.takeAs<Stmt>()));
1522}
1523
1524Sema::OwningStmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
1525                                                  ExprArg ThrowE) {
1526  Expr *Throw = static_cast<Expr *>(ThrowE.get());
1527  if (Throw) {
1528    QualType ThrowType = Throw->getType();
1529    // Make sure the expression type is an ObjC pointer or "void *".
1530    if (!ThrowType->isDependentType() &&
1531        !ThrowType->isObjCObjectPointerType()) {
1532      const PointerType *PT = ThrowType->getAs<PointerType>();
1533      if (!PT || !PT->getPointeeType()->isVoidType())
1534        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1535                         << Throw->getType() << Throw->getSourceRange());
1536    }
1537  }
1538
1539  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowE.takeAs<Expr>()));
1540}
1541
1542Action::OwningStmtResult
1543Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg Throw,
1544                           Scope *CurScope) {
1545  if (!Throw.get()) {
1546    // @throw without an expression designates a rethrow (which much occur
1547    // in the context of an @catch clause).
1548    Scope *AtCatchParent = CurScope;
1549    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1550      AtCatchParent = AtCatchParent->getParent();
1551    if (!AtCatchParent)
1552      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1553  }
1554
1555  return BuildObjCAtThrowStmt(AtLoc, move(Throw));
1556}
1557
1558Action::OwningStmtResult
1559Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1560                                  StmtArg SynchBody) {
1561  FunctionNeedsScopeChecking() = true;
1562
1563  // Make sure the expression type is an ObjC pointer or "void *".
1564  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1565  if (!SyncExpr->getType()->isDependentType() &&
1566      !SyncExpr->getType()->isObjCObjectPointerType()) {
1567    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1568    if (!PT || !PT->getPointeeType()->isVoidType())
1569      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1570                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1571  }
1572
1573  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1574                                                    SynchExpr.takeAs<Stmt>(),
1575                                                    SynchBody.takeAs<Stmt>()));
1576}
1577
1578/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1579/// and creates a proper catch handler from them.
1580Action::OwningStmtResult
1581Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1582                         StmtArg HandlerBlock) {
1583  // There's nothing to test that ActOnExceptionDecl didn't already test.
1584  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1585                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1586                                          HandlerBlock.takeAs<Stmt>()));
1587}
1588
1589class TypeWithHandler {
1590  QualType t;
1591  CXXCatchStmt *stmt;
1592public:
1593  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1594  : t(type), stmt(statement) {}
1595
1596  // An arbitrary order is fine as long as it places identical
1597  // types next to each other.
1598  bool operator<(const TypeWithHandler &y) const {
1599    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
1600      return true;
1601    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
1602      return false;
1603    else
1604      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1605  }
1606
1607  bool operator==(const TypeWithHandler& other) const {
1608    return t == other.t;
1609  }
1610
1611  QualType getQualType() const { return t; }
1612  CXXCatchStmt *getCatchStmt() const { return stmt; }
1613  SourceLocation getTypeSpecStartLoc() const {
1614    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1615  }
1616};
1617
1618/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1619/// handlers and creates a try statement from them.
1620Action::OwningStmtResult
1621Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1622                       MultiStmtArg RawHandlers) {
1623  unsigned NumHandlers = RawHandlers.size();
1624  assert(NumHandlers > 0 &&
1625         "The parser shouldn't call this if there are no handlers.");
1626  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1627
1628  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1629
1630  for (unsigned i = 0; i < NumHandlers; ++i) {
1631    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1632    if (!Handler->getExceptionDecl()) {
1633      if (i < NumHandlers - 1)
1634        return StmtError(Diag(Handler->getLocStart(),
1635                              diag::err_early_catch_all));
1636
1637      continue;
1638    }
1639
1640    const QualType CaughtType = Handler->getCaughtType();
1641    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1642    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1643  }
1644
1645  // Detect handlers for the same type as an earlier one.
1646  if (NumHandlers > 1) {
1647    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1648
1649    TypeWithHandler prev = TypesWithHandlers[0];
1650    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1651      TypeWithHandler curr = TypesWithHandlers[i];
1652
1653      if (curr == prev) {
1654        Diag(curr.getTypeSpecStartLoc(),
1655             diag::warn_exception_caught_by_earlier_handler)
1656          << curr.getCatchStmt()->getCaughtType().getAsString();
1657        Diag(prev.getTypeSpecStartLoc(),
1658             diag::note_previous_exception_handler)
1659          << prev.getCatchStmt()->getCaughtType().getAsString();
1660      }
1661
1662      prev = curr;
1663    }
1664  }
1665
1666  // FIXME: We should detect handlers that cannot catch anything because an
1667  // earlier handler catches a superclass. Need to find a method that is not
1668  // quadratic for this.
1669  // Neither of these are explicitly forbidden, but every compiler detects them
1670  // and warns.
1671
1672  FunctionNeedsScopeChecking() = true;
1673  RawHandlers.release();
1674  return Owned(CXXTryStmt::Create(Context, TryLoc,
1675                                  static_cast<Stmt*>(TryBlock.release()),
1676                                  Handlers, NumHandlers));
1677}
1678