SemaStmt.cpp revision 8951067a2bc35fb2a535bc18432cb2d02a762b73
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/SmallVector.h"
35using namespace clang;
36using namespace sema;
37
38StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
39  Expr *E = expr.get();
40  if (!E) // FIXME: FullExprArg has no error state?
41    return StmtError();
42
43  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
44  // void expression for its side effects.  Conversion to void allows any
45  // operand, even incomplete types.
46
47  // Same thing in for stmt first clause (when expr) and third clause.
48  return Owned(static_cast<Stmt*>(E));
49}
50
51
52StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
53                               bool HasLeadingEmptyMacro) {
54  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
55}
56
57StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
58                               SourceLocation EndLoc) {
59  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
60
61  // If we have an invalid decl, just return an error.
62  if (DG.isNull()) return StmtError();
63
64  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
65}
66
67void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
68  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
69
70  // If we have an invalid decl, just return.
71  if (DG.isNull() || !DG.isSingleDecl()) return;
72  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
73
74  // suppress any potential 'unused variable' warning.
75  var->setUsed();
76
77  // foreach variables are never actually initialized in the way that
78  // the parser came up with.
79  var->setInit(0);
80
81  // In ARC, we don't need to retain the iteration variable of a fast
82  // enumeration loop.  Rather than actually trying to catch that
83  // during declaration processing, we remove the consequences here.
84  if (getLangOpts().ObjCAutoRefCount) {
85    QualType type = var->getType();
86
87    // Only do this if we inferred the lifetime.  Inferred lifetime
88    // will show up as a local qualifier because explicit lifetime
89    // should have shown up as an AttributedType instead.
90    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
91      // Add 'const' and mark the variable as pseudo-strong.
92      var->setType(type.withConst());
93      var->setARCPseudoStrong(true);
94    }
95  }
96}
97
98/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
99///
100/// Adding a cast to void (or other expression wrappers) will prevent the
101/// warning from firing.
102static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
103  SourceLocation Loc;
104  bool IsNotEqual, CanAssign;
105
106  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
107    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
108      return false;
109
110    Loc = Op->getOperatorLoc();
111    IsNotEqual = Op->getOpcode() == BO_NE;
112    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
113  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
114    if (Op->getOperator() != OO_EqualEqual &&
115        Op->getOperator() != OO_ExclaimEqual)
116      return false;
117
118    Loc = Op->getOperatorLoc();
119    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
120    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
121  } else {
122    // Not a typo-prone comparison.
123    return false;
124  }
125
126  // Suppress warnings when the operator, suspicious as it may be, comes from
127  // a macro expansion.
128  if (Loc.isMacroID())
129    return false;
130
131  S.Diag(Loc, diag::warn_unused_comparison)
132    << (unsigned)IsNotEqual << E->getSourceRange();
133
134  // If the LHS is a plausible entity to assign to, provide a fixit hint to
135  // correct common typos.
136  if (CanAssign) {
137    if (IsNotEqual)
138      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
139        << FixItHint::CreateReplacement(Loc, "|=");
140    else
141      S.Diag(Loc, diag::note_equality_comparison_to_assign)
142        << FixItHint::CreateReplacement(Loc, "=");
143  }
144
145  return true;
146}
147
148void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
149  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
150    return DiagnoseUnusedExprResult(Label->getSubStmt());
151
152  const Expr *E = dyn_cast_or_null<Expr>(S);
153  if (!E)
154    return;
155
156  const Expr *WarnExpr;
157  SourceLocation Loc;
158  SourceRange R1, R2;
159  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
160      !E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
161    return;
162
163  // Okay, we have an unused result.  Depending on what the base expression is,
164  // we might want to make a more specific diagnostic.  Check for one of these
165  // cases now.
166  unsigned DiagID = diag::warn_unused_expr;
167  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
168    E = Temps->getSubExpr();
169  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
170    E = TempExpr->getSubExpr();
171
172  if (DiagnoseUnusedComparison(*this, E))
173    return;
174
175  E = WarnExpr;
176  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
177    if (E->getType()->isVoidType())
178      return;
179
180    // If the callee has attribute pure, const, or warn_unused_result, warn with
181    // a more specific message to make it clear what is happening.
182    if (const Decl *FD = CE->getCalleeDecl()) {
183      if (FD->getAttr<WarnUnusedResultAttr>()) {
184        Diag(Loc, diag::warn_unused_result) << R1 << R2;
185        return;
186      }
187      if (FD->getAttr<PureAttr>()) {
188        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
189        return;
190      }
191      if (FD->getAttr<ConstAttr>()) {
192        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
193        return;
194      }
195    }
196  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
197    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
198      Diag(Loc, diag::err_arc_unused_init_message) << R1;
199      return;
200    }
201    const ObjCMethodDecl *MD = ME->getMethodDecl();
202    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
203      Diag(Loc, diag::warn_unused_result) << R1 << R2;
204      return;
205    }
206  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
207    const Expr *Source = POE->getSyntacticForm();
208    if (isa<ObjCSubscriptRefExpr>(Source))
209      DiagID = diag::warn_unused_container_subscript_expr;
210    else
211      DiagID = diag::warn_unused_property_expr;
212  } else if (const CXXFunctionalCastExpr *FC
213                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
214    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
215        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
216      return;
217  }
218  // Diagnose "(void*) blah" as a typo for "(void) blah".
219  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
220    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
221    QualType T = TI->getType();
222
223    // We really do want to use the non-canonical type here.
224    if (T == Context.VoidPtrTy) {
225      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
226
227      Diag(Loc, diag::warn_unused_voidptr)
228        << FixItHint::CreateRemoval(TL.getStarLoc());
229      return;
230    }
231  }
232
233  if (E->isGLValue() && E->getType().isVolatileQualified()) {
234    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
235    return;
236  }
237
238  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
239}
240
241void Sema::ActOnStartOfCompoundStmt() {
242  PushCompoundScope();
243}
244
245void Sema::ActOnFinishOfCompoundStmt() {
246  PopCompoundScope();
247}
248
249sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
250  return getCurFunction()->CompoundScopes.back();
251}
252
253StmtResult
254Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
255                        MultiStmtArg elts, bool isStmtExpr) {
256  unsigned NumElts = elts.size();
257  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
258  // If we're in C89 mode, check that we don't have any decls after stmts.  If
259  // so, emit an extension diagnostic.
260  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
261    // Note that __extension__ can be around a decl.
262    unsigned i = 0;
263    // Skip over all declarations.
264    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
265      /*empty*/;
266
267    // We found the end of the list or a statement.  Scan for another declstmt.
268    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
269      /*empty*/;
270
271    if (i != NumElts) {
272      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
273      Diag(D->getLocation(), diag::ext_mixed_decls_code);
274    }
275  }
276  // Warn about unused expressions in statements.
277  for (unsigned i = 0; i != NumElts; ++i) {
278    // Ignore statements that are last in a statement expression.
279    if (isStmtExpr && i == NumElts - 1)
280      continue;
281
282    DiagnoseUnusedExprResult(Elts[i]);
283  }
284
285  // Check for suspicious empty body (null statement) in `for' and `while'
286  // statements.  Don't do anything for template instantiations, this just adds
287  // noise.
288  if (NumElts != 0 && !CurrentInstantiationScope &&
289      getCurCompoundScope().HasEmptyLoopBodies) {
290    for (unsigned i = 0; i != NumElts - 1; ++i)
291      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
292  }
293
294  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
295}
296
297StmtResult
298Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
299                    SourceLocation DotDotDotLoc, Expr *RHSVal,
300                    SourceLocation ColonLoc) {
301  assert((LHSVal != 0) && "missing expression in case statement");
302
303  if (getCurFunction()->SwitchStack.empty()) {
304    Diag(CaseLoc, diag::err_case_not_in_switch);
305    return StmtError();
306  }
307
308  if (!getLangOpts().CPlusPlus0x) {
309    // C99 6.8.4.2p3: The expression shall be an integer constant.
310    // However, GCC allows any evaluatable integer expression.
311    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
312      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
313      if (!LHSVal)
314        return StmtError();
315    }
316
317    // GCC extension: The expression shall be an integer constant.
318
319    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
320      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
321      // Recover from an error by just forgetting about it.
322    }
323  }
324
325  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
326                                        ColonLoc);
327  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
328  return Owned(CS);
329}
330
331/// ActOnCaseStmtBody - This installs a statement as the body of a case.
332void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
333  DiagnoseUnusedExprResult(SubStmt);
334
335  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
336  CS->setSubStmt(SubStmt);
337}
338
339StmtResult
340Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
341                       Stmt *SubStmt, Scope *CurScope) {
342  DiagnoseUnusedExprResult(SubStmt);
343
344  if (getCurFunction()->SwitchStack.empty()) {
345    Diag(DefaultLoc, diag::err_default_not_in_switch);
346    return Owned(SubStmt);
347  }
348
349  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
350  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
351  return Owned(DS);
352}
353
354StmtResult
355Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
356                     SourceLocation ColonLoc, Stmt *SubStmt) {
357  // If the label was multiply defined, reject it now.
358  if (TheDecl->getStmt()) {
359    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
360    Diag(TheDecl->getLocation(), diag::note_previous_definition);
361    return Owned(SubStmt);
362  }
363
364  // Otherwise, things are good.  Fill in the declaration and return it.
365  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
366  TheDecl->setStmt(LS);
367  if (!TheDecl->isGnuLocal())
368    TheDecl->setLocation(IdentLoc);
369  return Owned(LS);
370}
371
372StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
373                                     ArrayRef<const Attr*> Attrs,
374                                     Stmt *SubStmt) {
375  // Fill in the declaration and return it.
376  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
377  return Owned(LS);
378}
379
380StmtResult
381Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
382                  Stmt *thenStmt, SourceLocation ElseLoc,
383                  Stmt *elseStmt) {
384  ExprResult CondResult(CondVal.release());
385
386  VarDecl *ConditionVar = 0;
387  if (CondVar) {
388    ConditionVar = cast<VarDecl>(CondVar);
389    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
390    if (CondResult.isInvalid())
391      return StmtError();
392  }
393  Expr *ConditionExpr = CondResult.takeAs<Expr>();
394  if (!ConditionExpr)
395    return StmtError();
396
397  DiagnoseUnusedExprResult(thenStmt);
398
399  if (!elseStmt) {
400    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
401                          diag::warn_empty_if_body);
402  }
403
404  DiagnoseUnusedExprResult(elseStmt);
405
406  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
407                                    thenStmt, ElseLoc, elseStmt));
408}
409
410/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
411/// the specified width and sign.  If an overflow occurs, detect it and emit
412/// the specified diagnostic.
413void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
414                                              unsigned NewWidth, bool NewSign,
415                                              SourceLocation Loc,
416                                              unsigned DiagID) {
417  // Perform a conversion to the promoted condition type if needed.
418  if (NewWidth > Val.getBitWidth()) {
419    // If this is an extension, just do it.
420    Val = Val.extend(NewWidth);
421    Val.setIsSigned(NewSign);
422
423    // If the input was signed and negative and the output is
424    // unsigned, don't bother to warn: this is implementation-defined
425    // behavior.
426    // FIXME: Introduce a second, default-ignored warning for this case?
427  } else if (NewWidth < Val.getBitWidth()) {
428    // If this is a truncation, check for overflow.
429    llvm::APSInt ConvVal(Val);
430    ConvVal = ConvVal.trunc(NewWidth);
431    ConvVal.setIsSigned(NewSign);
432    ConvVal = ConvVal.extend(Val.getBitWidth());
433    ConvVal.setIsSigned(Val.isSigned());
434    if (ConvVal != Val)
435      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
436
437    // Regardless of whether a diagnostic was emitted, really do the
438    // truncation.
439    Val = Val.trunc(NewWidth);
440    Val.setIsSigned(NewSign);
441  } else if (NewSign != Val.isSigned()) {
442    // Convert the sign to match the sign of the condition.  This can cause
443    // overflow as well: unsigned(INTMIN)
444    // We don't diagnose this overflow, because it is implementation-defined
445    // behavior.
446    // FIXME: Introduce a second, default-ignored warning for this case?
447    llvm::APSInt OldVal(Val);
448    Val.setIsSigned(NewSign);
449  }
450}
451
452namespace {
453  struct CaseCompareFunctor {
454    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
455                    const llvm::APSInt &RHS) {
456      return LHS.first < RHS;
457    }
458    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
459                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
460      return LHS.first < RHS.first;
461    }
462    bool operator()(const llvm::APSInt &LHS,
463                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
464      return LHS < RHS.first;
465    }
466  };
467}
468
469/// CmpCaseVals - Comparison predicate for sorting case values.
470///
471static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
472                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
473  if (lhs.first < rhs.first)
474    return true;
475
476  if (lhs.first == rhs.first &&
477      lhs.second->getCaseLoc().getRawEncoding()
478       < rhs.second->getCaseLoc().getRawEncoding())
479    return true;
480  return false;
481}
482
483/// CmpEnumVals - Comparison predicate for sorting enumeration values.
484///
485static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
486                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
487{
488  return lhs.first < rhs.first;
489}
490
491/// EqEnumVals - Comparison preficate for uniqing enumeration values.
492///
493static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
494                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
495{
496  return lhs.first == rhs.first;
497}
498
499/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
500/// potentially integral-promoted expression @p expr.
501static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
502  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
503    expr = cleanups->getSubExpr();
504  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
505    if (impcast->getCastKind() != CK_IntegralCast) break;
506    expr = impcast->getSubExpr();
507  }
508  return expr->getType();
509}
510
511StmtResult
512Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
513                             Decl *CondVar) {
514  ExprResult CondResult;
515
516  VarDecl *ConditionVar = 0;
517  if (CondVar) {
518    ConditionVar = cast<VarDecl>(CondVar);
519    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
520    if (CondResult.isInvalid())
521      return StmtError();
522
523    Cond = CondResult.release();
524  }
525
526  if (!Cond)
527    return StmtError();
528
529  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
530    Expr *Cond;
531
532  public:
533    SwitchConvertDiagnoser(Expr *Cond)
534      : ICEConvertDiagnoser(false, true), Cond(Cond) { }
535
536    virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
537                                             QualType T) {
538      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
539    }
540
541    virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
542                                                 QualType T) {
543      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
544               << T << Cond->getSourceRange();
545    }
546
547    virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
548                                                   QualType T,
549                                                   QualType ConvTy) {
550      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
551    }
552
553    virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
554                                               QualType ConvTy) {
555      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
556        << ConvTy->isEnumeralType() << ConvTy;
557    }
558
559    virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
560                                                QualType T) {
561      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
562    }
563
564    virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
565                                            QualType ConvTy) {
566      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
567      << ConvTy->isEnumeralType() << ConvTy;
568    }
569
570    virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
571                                                 QualType T,
572                                                 QualType ConvTy) {
573      return DiagnosticBuilder::getEmpty();
574    }
575  } SwitchDiagnoser(Cond);
576
577  CondResult
578    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
579                                         /*AllowScopedEnumerations*/ true);
580  if (CondResult.isInvalid()) return StmtError();
581  Cond = CondResult.take();
582
583  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
584  CondResult = UsualUnaryConversions(Cond);
585  if (CondResult.isInvalid()) return StmtError();
586  Cond = CondResult.take();
587
588  if (!CondVar) {
589    CheckImplicitConversions(Cond, SwitchLoc);
590    CondResult = MaybeCreateExprWithCleanups(Cond);
591    if (CondResult.isInvalid())
592      return StmtError();
593    Cond = CondResult.take();
594  }
595
596  getCurFunction()->setHasBranchIntoScope();
597
598  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
599  getCurFunction()->SwitchStack.push_back(SS);
600  return Owned(SS);
601}
602
603static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
604  if (Val.getBitWidth() < BitWidth)
605    Val = Val.extend(BitWidth);
606  else if (Val.getBitWidth() > BitWidth)
607    Val = Val.trunc(BitWidth);
608  Val.setIsSigned(IsSigned);
609}
610
611StmtResult
612Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
613                            Stmt *BodyStmt) {
614  SwitchStmt *SS = cast<SwitchStmt>(Switch);
615  assert(SS == getCurFunction()->SwitchStack.back() &&
616         "switch stack missing push/pop!");
617
618  SS->setBody(BodyStmt, SwitchLoc);
619  getCurFunction()->SwitchStack.pop_back();
620
621  Expr *CondExpr = SS->getCond();
622  if (!CondExpr) return StmtError();
623
624  QualType CondType = CondExpr->getType();
625
626  Expr *CondExprBeforePromotion = CondExpr;
627  QualType CondTypeBeforePromotion =
628      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
629
630  // C++ 6.4.2.p2:
631  // Integral promotions are performed (on the switch condition).
632  //
633  // A case value unrepresentable by the original switch condition
634  // type (before the promotion) doesn't make sense, even when it can
635  // be represented by the promoted type.  Therefore we need to find
636  // the pre-promotion type of the switch condition.
637  if (!CondExpr->isTypeDependent()) {
638    // We have already converted the expression to an integral or enumeration
639    // type, when we started the switch statement. If we don't have an
640    // appropriate type now, just return an error.
641    if (!CondType->isIntegralOrEnumerationType())
642      return StmtError();
643
644    if (CondExpr->isKnownToHaveBooleanValue()) {
645      // switch(bool_expr) {...} is often a programmer error, e.g.
646      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
647      // One can always use an if statement instead of switch(bool_expr).
648      Diag(SwitchLoc, diag::warn_bool_switch_condition)
649          << CondExpr->getSourceRange();
650    }
651  }
652
653  // Get the bitwidth of the switched-on value before promotions.  We must
654  // convert the integer case values to this width before comparison.
655  bool HasDependentValue
656    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
657  unsigned CondWidth
658    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
659  bool CondIsSigned
660    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
661
662  // Accumulate all of the case values in a vector so that we can sort them
663  // and detect duplicates.  This vector contains the APInt for the case after
664  // it has been converted to the condition type.
665  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
666  CaseValsTy CaseVals;
667
668  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
669  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
670  CaseRangesTy CaseRanges;
671
672  DefaultStmt *TheDefaultStmt = 0;
673
674  bool CaseListIsErroneous = false;
675
676  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
677       SC = SC->getNextSwitchCase()) {
678
679    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
680      if (TheDefaultStmt) {
681        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
682        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
683
684        // FIXME: Remove the default statement from the switch block so that
685        // we'll return a valid AST.  This requires recursing down the AST and
686        // finding it, not something we are set up to do right now.  For now,
687        // just lop the entire switch stmt out of the AST.
688        CaseListIsErroneous = true;
689      }
690      TheDefaultStmt = DS;
691
692    } else {
693      CaseStmt *CS = cast<CaseStmt>(SC);
694
695      Expr *Lo = CS->getLHS();
696
697      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
698        HasDependentValue = true;
699        break;
700      }
701
702      llvm::APSInt LoVal;
703
704      if (getLangOpts().CPlusPlus0x) {
705        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
706        // constant expression of the promoted type of the switch condition.
707        ExprResult ConvLo =
708          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
709        if (ConvLo.isInvalid()) {
710          CaseListIsErroneous = true;
711          continue;
712        }
713        Lo = ConvLo.take();
714      } else {
715        // We already verified that the expression has a i-c-e value (C99
716        // 6.8.4.2p3) - get that value now.
717        LoVal = Lo->EvaluateKnownConstInt(Context);
718
719        // If the LHS is not the same type as the condition, insert an implicit
720        // cast.
721        Lo = DefaultLvalueConversion(Lo).take();
722        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
723      }
724
725      // Convert the value to the same width/sign as the condition had prior to
726      // integral promotions.
727      //
728      // FIXME: This causes us to reject valid code:
729      //   switch ((char)c) { case 256: case 0: return 0; }
730      // Here we claim there is a duplicated condition value, but there is not.
731      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
732                                         Lo->getLocStart(),
733                                         diag::warn_case_value_overflow);
734
735      CS->setLHS(Lo);
736
737      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
738      if (CS->getRHS()) {
739        if (CS->getRHS()->isTypeDependent() ||
740            CS->getRHS()->isValueDependent()) {
741          HasDependentValue = true;
742          break;
743        }
744        CaseRanges.push_back(std::make_pair(LoVal, CS));
745      } else
746        CaseVals.push_back(std::make_pair(LoVal, CS));
747    }
748  }
749
750  if (!HasDependentValue) {
751    // If we don't have a default statement, check whether the
752    // condition is constant.
753    llvm::APSInt ConstantCondValue;
754    bool HasConstantCond = false;
755    if (!HasDependentValue && !TheDefaultStmt) {
756      HasConstantCond
757        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
758                                                 Expr::SE_AllowSideEffects);
759      assert(!HasConstantCond ||
760             (ConstantCondValue.getBitWidth() == CondWidth &&
761              ConstantCondValue.isSigned() == CondIsSigned));
762    }
763    bool ShouldCheckConstantCond = HasConstantCond;
764
765    // Sort all the scalar case values so we can easily detect duplicates.
766    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
767
768    if (!CaseVals.empty()) {
769      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
770        if (ShouldCheckConstantCond &&
771            CaseVals[i].first == ConstantCondValue)
772          ShouldCheckConstantCond = false;
773
774        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
775          // If we have a duplicate, report it.
776          // First, determine if either case value has a name
777          StringRef PrevString, CurrString;
778          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
779          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
780          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
781            PrevString = DeclRef->getDecl()->getName();
782          }
783          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
784            CurrString = DeclRef->getDecl()->getName();
785          }
786          llvm::SmallString<16> CaseValStr;
787          CaseVals[i-1].first.toString(CaseValStr);
788
789          if (PrevString == CurrString)
790            Diag(CaseVals[i].second->getLHS()->getLocStart(),
791                 diag::err_duplicate_case) <<
792                 (PrevString.empty() ? CaseValStr.str() : PrevString);
793          else
794            Diag(CaseVals[i].second->getLHS()->getLocStart(),
795                 diag::err_duplicate_case_differing_expr) <<
796                 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
797                 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
798                 CaseValStr;
799
800          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
801               diag::note_duplicate_case_prev);
802          // FIXME: We really want to remove the bogus case stmt from the
803          // substmt, but we have no way to do this right now.
804          CaseListIsErroneous = true;
805        }
806      }
807    }
808
809    // Detect duplicate case ranges, which usually don't exist at all in
810    // the first place.
811    if (!CaseRanges.empty()) {
812      // Sort all the case ranges by their low value so we can easily detect
813      // overlaps between ranges.
814      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
815
816      // Scan the ranges, computing the high values and removing empty ranges.
817      std::vector<llvm::APSInt> HiVals;
818      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
819        llvm::APSInt &LoVal = CaseRanges[i].first;
820        CaseStmt *CR = CaseRanges[i].second;
821        Expr *Hi = CR->getRHS();
822        llvm::APSInt HiVal;
823
824        if (getLangOpts().CPlusPlus0x) {
825          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
826          // constant expression of the promoted type of the switch condition.
827          ExprResult ConvHi =
828            CheckConvertedConstantExpression(Hi, CondType, HiVal,
829                                             CCEK_CaseValue);
830          if (ConvHi.isInvalid()) {
831            CaseListIsErroneous = true;
832            continue;
833          }
834          Hi = ConvHi.take();
835        } else {
836          HiVal = Hi->EvaluateKnownConstInt(Context);
837
838          // If the RHS is not the same type as the condition, insert an
839          // implicit cast.
840          Hi = DefaultLvalueConversion(Hi).take();
841          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
842        }
843
844        // Convert the value to the same width/sign as the condition.
845        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
846                                           Hi->getLocStart(),
847                                           diag::warn_case_value_overflow);
848
849        CR->setRHS(Hi);
850
851        // If the low value is bigger than the high value, the case is empty.
852        if (LoVal > HiVal) {
853          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
854            << SourceRange(CR->getLHS()->getLocStart(),
855                           Hi->getLocEnd());
856          CaseRanges.erase(CaseRanges.begin()+i);
857          --i, --e;
858          continue;
859        }
860
861        if (ShouldCheckConstantCond &&
862            LoVal <= ConstantCondValue &&
863            ConstantCondValue <= HiVal)
864          ShouldCheckConstantCond = false;
865
866        HiVals.push_back(HiVal);
867      }
868
869      // Rescan the ranges, looking for overlap with singleton values and other
870      // ranges.  Since the range list is sorted, we only need to compare case
871      // ranges with their neighbors.
872      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
873        llvm::APSInt &CRLo = CaseRanges[i].first;
874        llvm::APSInt &CRHi = HiVals[i];
875        CaseStmt *CR = CaseRanges[i].second;
876
877        // Check to see whether the case range overlaps with any
878        // singleton cases.
879        CaseStmt *OverlapStmt = 0;
880        llvm::APSInt OverlapVal(32);
881
882        // Find the smallest value >= the lower bound.  If I is in the
883        // case range, then we have overlap.
884        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
885                                                  CaseVals.end(), CRLo,
886                                                  CaseCompareFunctor());
887        if (I != CaseVals.end() && I->first < CRHi) {
888          OverlapVal  = I->first;   // Found overlap with scalar.
889          OverlapStmt = I->second;
890        }
891
892        // Find the smallest value bigger than the upper bound.
893        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
894        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
895          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
896          OverlapStmt = (I-1)->second;
897        }
898
899        // Check to see if this case stmt overlaps with the subsequent
900        // case range.
901        if (i && CRLo <= HiVals[i-1]) {
902          OverlapVal  = HiVals[i-1];       // Found overlap with range.
903          OverlapStmt = CaseRanges[i-1].second;
904        }
905
906        if (OverlapStmt) {
907          // If we have a duplicate, report it.
908          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
909            << OverlapVal.toString(10);
910          Diag(OverlapStmt->getLHS()->getLocStart(),
911               diag::note_duplicate_case_prev);
912          // FIXME: We really want to remove the bogus case stmt from the
913          // substmt, but we have no way to do this right now.
914          CaseListIsErroneous = true;
915        }
916      }
917    }
918
919    // Complain if we have a constant condition and we didn't find a match.
920    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
921      // TODO: it would be nice if we printed enums as enums, chars as
922      // chars, etc.
923      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
924        << ConstantCondValue.toString(10)
925        << CondExpr->getSourceRange();
926    }
927
928    // Check to see if switch is over an Enum and handles all of its
929    // values.  We only issue a warning if there is not 'default:', but
930    // we still do the analysis to preserve this information in the AST
931    // (which can be used by flow-based analyes).
932    //
933    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
934
935    // If switch has default case, then ignore it.
936    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
937      const EnumDecl *ED = ET->getDecl();
938      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
939        EnumValsTy;
940      EnumValsTy EnumVals;
941
942      // Gather all enum values, set their type and sort them,
943      // allowing easier comparison with CaseVals.
944      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
945           EDI != ED->enumerator_end(); ++EDI) {
946        llvm::APSInt Val = EDI->getInitVal();
947        AdjustAPSInt(Val, CondWidth, CondIsSigned);
948        EnumVals.push_back(std::make_pair(Val, *EDI));
949      }
950      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
951      EnumValsTy::iterator EIend =
952        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
953
954      // See which case values aren't in enum.
955      EnumValsTy::const_iterator EI = EnumVals.begin();
956      for (CaseValsTy::const_iterator CI = CaseVals.begin();
957           CI != CaseVals.end(); CI++) {
958        while (EI != EIend && EI->first < CI->first)
959          EI++;
960        if (EI == EIend || EI->first > CI->first)
961          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
962            << CondTypeBeforePromotion;
963      }
964      // See which of case ranges aren't in enum
965      EI = EnumVals.begin();
966      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
967           RI != CaseRanges.end() && EI != EIend; RI++) {
968        while (EI != EIend && EI->first < RI->first)
969          EI++;
970
971        if (EI == EIend || EI->first != RI->first) {
972          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
973            << CondTypeBeforePromotion;
974        }
975
976        llvm::APSInt Hi =
977          RI->second->getRHS()->EvaluateKnownConstInt(Context);
978        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
979        while (EI != EIend && EI->first < Hi)
980          EI++;
981        if (EI == EIend || EI->first != Hi)
982          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
983            << CondTypeBeforePromotion;
984      }
985
986      // Check which enum vals aren't in switch
987      CaseValsTy::const_iterator CI = CaseVals.begin();
988      CaseRangesTy::const_iterator RI = CaseRanges.begin();
989      bool hasCasesNotInSwitch = false;
990
991      SmallVector<DeclarationName,8> UnhandledNames;
992
993      for (EI = EnumVals.begin(); EI != EIend; EI++){
994        // Drop unneeded case values
995        llvm::APSInt CIVal;
996        while (CI != CaseVals.end() && CI->first < EI->first)
997          CI++;
998
999        if (CI != CaseVals.end() && CI->first == EI->first)
1000          continue;
1001
1002        // Drop unneeded case ranges
1003        for (; RI != CaseRanges.end(); RI++) {
1004          llvm::APSInt Hi =
1005            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1006          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1007          if (EI->first <= Hi)
1008            break;
1009        }
1010
1011        if (RI == CaseRanges.end() || EI->first < RI->first) {
1012          hasCasesNotInSwitch = true;
1013          UnhandledNames.push_back(EI->second->getDeclName());
1014        }
1015      }
1016
1017      if (TheDefaultStmt && UnhandledNames.empty())
1018        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1019
1020      // Produce a nice diagnostic if multiple values aren't handled.
1021      switch (UnhandledNames.size()) {
1022      case 0: break;
1023      case 1:
1024        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1025          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1026          << UnhandledNames[0];
1027        break;
1028      case 2:
1029        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1030          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1031          << UnhandledNames[0] << UnhandledNames[1];
1032        break;
1033      case 3:
1034        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1035          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1036          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1037        break;
1038      default:
1039        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1040          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1041          << (unsigned)UnhandledNames.size()
1042          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1043        break;
1044      }
1045
1046      if (!hasCasesNotInSwitch)
1047        SS->setAllEnumCasesCovered();
1048    }
1049  }
1050
1051  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1052                        diag::warn_empty_switch_body);
1053
1054  // FIXME: If the case list was broken is some way, we don't have a good system
1055  // to patch it up.  Instead, just return the whole substmt as broken.
1056  if (CaseListIsErroneous)
1057    return StmtError();
1058
1059  return Owned(SS);
1060}
1061
1062StmtResult
1063Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1064                     Decl *CondVar, Stmt *Body) {
1065  ExprResult CondResult(Cond.release());
1066
1067  VarDecl *ConditionVar = 0;
1068  if (CondVar) {
1069    ConditionVar = cast<VarDecl>(CondVar);
1070    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1071    if (CondResult.isInvalid())
1072      return StmtError();
1073  }
1074  Expr *ConditionExpr = CondResult.take();
1075  if (!ConditionExpr)
1076    return StmtError();
1077
1078  DiagnoseUnusedExprResult(Body);
1079
1080  if (isa<NullStmt>(Body))
1081    getCurCompoundScope().setHasEmptyLoopBodies();
1082
1083  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1084                                       Body, WhileLoc));
1085}
1086
1087StmtResult
1088Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1089                  SourceLocation WhileLoc, SourceLocation CondLParen,
1090                  Expr *Cond, SourceLocation CondRParen) {
1091  assert(Cond && "ActOnDoStmt(): missing expression");
1092
1093  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1094  if (CondResult.isInvalid() || CondResult.isInvalid())
1095    return StmtError();
1096  Cond = CondResult.take();
1097
1098  CheckImplicitConversions(Cond, DoLoc);
1099  CondResult = MaybeCreateExprWithCleanups(Cond);
1100  if (CondResult.isInvalid())
1101    return StmtError();
1102  Cond = CondResult.take();
1103
1104  DiagnoseUnusedExprResult(Body);
1105
1106  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1107}
1108
1109namespace {
1110  // This visitor will traverse a conditional statement and store all
1111  // the evaluated decls into a vector.  Simple is set to true if none
1112  // of the excluded constructs are used.
1113  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1114    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1115    llvm::SmallVector<SourceRange, 10> &Ranges;
1116    bool Simple;
1117public:
1118  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1119
1120  DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1121                llvm::SmallVector<SourceRange, 10> &Ranges) :
1122      Inherited(S.Context),
1123      Decls(Decls),
1124      Ranges(Ranges),
1125      Simple(true) {}
1126
1127  bool isSimple() { return Simple; }
1128
1129  // Replaces the method in EvaluatedExprVisitor.
1130  void VisitMemberExpr(MemberExpr* E) {
1131    Simple = false;
1132  }
1133
1134  // Any Stmt not whitelisted will cause the condition to be marked complex.
1135  void VisitStmt(Stmt *S) {
1136    Simple = false;
1137  }
1138
1139  void VisitBinaryOperator(BinaryOperator *E) {
1140    Visit(E->getLHS());
1141    Visit(E->getRHS());
1142  }
1143
1144  void VisitCastExpr(CastExpr *E) {
1145    Visit(E->getSubExpr());
1146  }
1147
1148  void VisitUnaryOperator(UnaryOperator *E) {
1149    // Skip checking conditionals with derefernces.
1150    if (E->getOpcode() == UO_Deref)
1151      Simple = false;
1152    else
1153      Visit(E->getSubExpr());
1154  }
1155
1156  void VisitConditionalOperator(ConditionalOperator *E) {
1157    Visit(E->getCond());
1158    Visit(E->getTrueExpr());
1159    Visit(E->getFalseExpr());
1160  }
1161
1162  void VisitParenExpr(ParenExpr *E) {
1163    Visit(E->getSubExpr());
1164  }
1165
1166  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1167    Visit(E->getOpaqueValue()->getSourceExpr());
1168    Visit(E->getFalseExpr());
1169  }
1170
1171  void VisitIntegerLiteral(IntegerLiteral *E) { }
1172  void VisitFloatingLiteral(FloatingLiteral *E) { }
1173  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1174  void VisitCharacterLiteral(CharacterLiteral *E) { }
1175  void VisitGNUNullExpr(GNUNullExpr *E) { }
1176  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1177
1178  void VisitDeclRefExpr(DeclRefExpr *E) {
1179    VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1180    if (!VD) return;
1181
1182    Ranges.push_back(E->getSourceRange());
1183
1184    Decls.insert(VD);
1185  }
1186
1187  }; // end class DeclExtractor
1188
1189  // DeclMatcher checks to see if the decls are used in a non-evauluated
1190  // context.
1191  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1192    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1193    bool FoundDecl;
1194
1195public:
1196  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1197
1198  DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1199      Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1200    if (!Statement) return;
1201
1202    Visit(Statement);
1203  }
1204
1205  void VisitReturnStmt(ReturnStmt *S) {
1206    FoundDecl = true;
1207  }
1208
1209  void VisitBreakStmt(BreakStmt *S) {
1210    FoundDecl = true;
1211  }
1212
1213  void VisitGotoStmt(GotoStmt *S) {
1214    FoundDecl = true;
1215  }
1216
1217  void VisitCastExpr(CastExpr *E) {
1218    if (E->getCastKind() == CK_LValueToRValue)
1219      CheckLValueToRValueCast(E->getSubExpr());
1220    else
1221      Visit(E->getSubExpr());
1222  }
1223
1224  void CheckLValueToRValueCast(Expr *E) {
1225    E = E->IgnoreParenImpCasts();
1226
1227    if (isa<DeclRefExpr>(E)) {
1228      return;
1229    }
1230
1231    if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1232      Visit(CO->getCond());
1233      CheckLValueToRValueCast(CO->getTrueExpr());
1234      CheckLValueToRValueCast(CO->getFalseExpr());
1235      return;
1236    }
1237
1238    if (BinaryConditionalOperator *BCO =
1239            dyn_cast<BinaryConditionalOperator>(E)) {
1240      CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1241      CheckLValueToRValueCast(BCO->getFalseExpr());
1242      return;
1243    }
1244
1245    Visit(E);
1246  }
1247
1248  void VisitDeclRefExpr(DeclRefExpr *E) {
1249    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1250      if (Decls.count(VD))
1251        FoundDecl = true;
1252  }
1253
1254  bool FoundDeclInUse() { return FoundDecl; }
1255
1256  };  // end class DeclMatcher
1257
1258  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1259                                        Expr *Third, Stmt *Body) {
1260    // Condition is empty
1261    if (!Second) return;
1262
1263    if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1264                                   Second->getLocStart())
1265        == DiagnosticsEngine::Ignored)
1266      return;
1267
1268    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1269    llvm::SmallPtrSet<VarDecl*, 8> Decls;
1270    llvm::SmallVector<SourceRange, 10> Ranges;
1271    DeclExtractor DE(S, Decls, Ranges);
1272    DE.Visit(Second);
1273
1274    // Don't analyze complex conditionals.
1275    if (!DE.isSimple()) return;
1276
1277    // No decls found.
1278    if (Decls.size() == 0) return;
1279
1280    // Don't warn on volatile, static, or global variables.
1281    for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1282                                                  E = Decls.end();
1283         I != E; ++I)
1284      if ((*I)->getType().isVolatileQualified() ||
1285          (*I)->hasGlobalStorage()) return;
1286
1287    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1288        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1289        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1290      return;
1291
1292    // Load decl names into diagnostic.
1293    if (Decls.size() > 4)
1294      PDiag << 0;
1295    else {
1296      PDiag << Decls.size();
1297      for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1298                                                    E = Decls.end();
1299           I != E; ++I)
1300        PDiag << (*I)->getDeclName();
1301    }
1302
1303    // Load SourceRanges into diagnostic if there is room.
1304    // Otherwise, load the SourceRange of the conditional expression.
1305    if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1306      for (llvm::SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1307                                                        E = Ranges.end();
1308           I != E; ++I)
1309        PDiag << *I;
1310    else
1311      PDiag << Second->getSourceRange();
1312
1313    S.Diag(Ranges.begin()->getBegin(), PDiag);
1314  }
1315
1316} // end namespace
1317
1318StmtResult
1319Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1320                   Stmt *First, FullExprArg second, Decl *secondVar,
1321                   FullExprArg third,
1322                   SourceLocation RParenLoc, Stmt *Body) {
1323  if (!getLangOpts().CPlusPlus) {
1324    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1325      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1326      // declare identifiers for objects having storage class 'auto' or
1327      // 'register'.
1328      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1329           DI!=DE; ++DI) {
1330        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1331        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1332          VD = 0;
1333        if (VD == 0)
1334          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1335        // FIXME: mark decl erroneous!
1336      }
1337    }
1338  }
1339
1340  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1341
1342  ExprResult SecondResult(second.release());
1343  VarDecl *ConditionVar = 0;
1344  if (secondVar) {
1345    ConditionVar = cast<VarDecl>(secondVar);
1346    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1347    if (SecondResult.isInvalid())
1348      return StmtError();
1349  }
1350
1351  Expr *Third  = third.release().takeAs<Expr>();
1352
1353  DiagnoseUnusedExprResult(First);
1354  DiagnoseUnusedExprResult(Third);
1355  DiagnoseUnusedExprResult(Body);
1356
1357  if (isa<NullStmt>(Body))
1358    getCurCompoundScope().setHasEmptyLoopBodies();
1359
1360  return Owned(new (Context) ForStmt(Context, First,
1361                                     SecondResult.take(), ConditionVar,
1362                                     Third, Body, ForLoc, LParenLoc,
1363                                     RParenLoc));
1364}
1365
1366/// In an Objective C collection iteration statement:
1367///   for (x in y)
1368/// x can be an arbitrary l-value expression.  Bind it up as a
1369/// full-expression.
1370StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1371  // Reduce placeholder expressions here.  Note that this rejects the
1372  // use of pseudo-object l-values in this position.
1373  ExprResult result = CheckPlaceholderExpr(E);
1374  if (result.isInvalid()) return StmtError();
1375  E = result.take();
1376
1377  CheckImplicitConversions(E);
1378
1379  result = MaybeCreateExprWithCleanups(E);
1380  if (result.isInvalid()) return StmtError();
1381
1382  return Owned(static_cast<Stmt*>(result.take()));
1383}
1384
1385ExprResult
1386Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1387  if (!collection)
1388    return ExprError();
1389
1390  // Bail out early if we've got a type-dependent expression.
1391  if (collection->isTypeDependent()) return Owned(collection);
1392
1393  // Perform normal l-value conversion.
1394  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1395  if (result.isInvalid())
1396    return ExprError();
1397  collection = result.take();
1398
1399  // The operand needs to have object-pointer type.
1400  // TODO: should we do a contextual conversion?
1401  const ObjCObjectPointerType *pointerType =
1402    collection->getType()->getAs<ObjCObjectPointerType>();
1403  if (!pointerType)
1404    return Diag(forLoc, diag::err_collection_expr_type)
1405             << collection->getType() << collection->getSourceRange();
1406
1407  // Check that the operand provides
1408  //   - countByEnumeratingWithState:objects:count:
1409  const ObjCObjectType *objectType = pointerType->getObjectType();
1410  ObjCInterfaceDecl *iface = objectType->getInterface();
1411
1412  // If we have a forward-declared type, we can't do this check.
1413  // Under ARC, it is an error not to have a forward-declared class.
1414  if (iface &&
1415      RequireCompleteType(forLoc, QualType(objectType, 0),
1416                          getLangOpts().ObjCAutoRefCount
1417                            ? diag::err_arc_collection_forward
1418                            : 0,
1419                          collection)) {
1420    // Otherwise, if we have any useful type information, check that
1421    // the type declares the appropriate method.
1422  } else if (iface || !objectType->qual_empty()) {
1423    IdentifierInfo *selectorIdents[] = {
1424      &Context.Idents.get("countByEnumeratingWithState"),
1425      &Context.Idents.get("objects"),
1426      &Context.Idents.get("count")
1427    };
1428    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1429
1430    ObjCMethodDecl *method = 0;
1431
1432    // If there's an interface, look in both the public and private APIs.
1433    if (iface) {
1434      method = iface->lookupInstanceMethod(selector);
1435      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1436    }
1437
1438    // Also check protocol qualifiers.
1439    if (!method)
1440      method = LookupMethodInQualifiedType(selector, pointerType,
1441                                           /*instance*/ true);
1442
1443    // If we didn't find it anywhere, give up.
1444    if (!method) {
1445      Diag(forLoc, diag::warn_collection_expr_type)
1446        << collection->getType() << selector << collection->getSourceRange();
1447    }
1448
1449    // TODO: check for an incompatible signature?
1450  }
1451
1452  // Wrap up any cleanups in the expression.
1453  return Owned(MaybeCreateExprWithCleanups(collection));
1454}
1455
1456StmtResult
1457Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1458                                 SourceLocation LParenLoc,
1459                                 Stmt *First, Expr *collection,
1460                                 SourceLocation RParenLoc) {
1461
1462  ExprResult CollectionExprResult =
1463    CheckObjCForCollectionOperand(ForLoc, collection);
1464
1465  if (First) {
1466    QualType FirstType;
1467    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1468      if (!DS->isSingleDecl())
1469        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1470                         diag::err_toomany_element_decls));
1471
1472      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1473      FirstType = D->getType();
1474      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1475      // declare identifiers for objects having storage class 'auto' or
1476      // 'register'.
1477      if (!D->hasLocalStorage())
1478        return StmtError(Diag(D->getLocation(),
1479                              diag::err_non_variable_decl_in_for));
1480    } else {
1481      Expr *FirstE = cast<Expr>(First);
1482      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1483        return StmtError(Diag(First->getLocStart(),
1484                   diag::err_selector_element_not_lvalue)
1485          << First->getSourceRange());
1486
1487      FirstType = static_cast<Expr*>(First)->getType();
1488    }
1489    if (!FirstType->isDependentType() &&
1490        !FirstType->isObjCObjectPointerType() &&
1491        !FirstType->isBlockPointerType())
1492        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1493                           << FirstType << First->getSourceRange());
1494  }
1495
1496  if (CollectionExprResult.isInvalid())
1497    return StmtError();
1498
1499  return Owned(new (Context) ObjCForCollectionStmt(First,
1500                                                   CollectionExprResult.take(), 0,
1501                                                   ForLoc, RParenLoc));
1502}
1503
1504namespace {
1505
1506enum BeginEndFunction {
1507  BEF_begin,
1508  BEF_end
1509};
1510
1511/// Build a variable declaration for a for-range statement.
1512static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1513                                     QualType Type, const char *Name) {
1514  DeclContext *DC = SemaRef.CurContext;
1515  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1516  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1517  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1518                                  TInfo, SC_Auto, SC_None);
1519  Decl->setImplicit();
1520  return Decl;
1521}
1522
1523/// Finish building a variable declaration for a for-range statement.
1524/// \return true if an error occurs.
1525static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1526                                  SourceLocation Loc, int diag) {
1527  // Deduce the type for the iterator variable now rather than leaving it to
1528  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1529  TypeSourceInfo *InitTSI = 0;
1530  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1531      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1532          Sema::DAR_Failed)
1533    SemaRef.Diag(Loc, diag) << Init->getType();
1534  if (!InitTSI) {
1535    Decl->setInvalidDecl();
1536    return true;
1537  }
1538  Decl->setTypeSourceInfo(InitTSI);
1539  Decl->setType(InitTSI->getType());
1540
1541  // In ARC, infer lifetime.
1542  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1543  // we're doing the equivalent of fast iteration.
1544  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1545      SemaRef.inferObjCARCLifetime(Decl))
1546    Decl->setInvalidDecl();
1547
1548  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1549                               /*TypeMayContainAuto=*/false);
1550  SemaRef.FinalizeDeclaration(Decl);
1551  SemaRef.CurContext->addHiddenDecl(Decl);
1552  return false;
1553}
1554
1555/// Produce a note indicating which begin/end function was implicitly called
1556/// by a C++0x for-range statement. This is often not obvious from the code,
1557/// nor from the diagnostics produced when analysing the implicit expressions
1558/// required in a for-range statement.
1559void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1560                                  BeginEndFunction BEF) {
1561  CallExpr *CE = dyn_cast<CallExpr>(E);
1562  if (!CE)
1563    return;
1564  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1565  if (!D)
1566    return;
1567  SourceLocation Loc = D->getLocation();
1568
1569  std::string Description;
1570  bool IsTemplate = false;
1571  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1572    Description = SemaRef.getTemplateArgumentBindingsText(
1573      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1574    IsTemplate = true;
1575  }
1576
1577  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1578    << BEF << IsTemplate << Description << E->getType();
1579}
1580
1581/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1582/// given LookupResult is non-empty, it is assumed to describe a member which
1583/// will be invoked. Otherwise, the function will be found via argument
1584/// dependent lookup.
1585static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1586                                            SourceLocation Loc,
1587                                            VarDecl *Decl,
1588                                            BeginEndFunction BEF,
1589                                            const DeclarationNameInfo &NameInfo,
1590                                            LookupResult &MemberLookup,
1591                                            Expr *Range) {
1592  ExprResult CallExpr;
1593  if (!MemberLookup.empty()) {
1594    ExprResult MemberRef =
1595      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1596                                       /*IsPtr=*/false, CXXScopeSpec(),
1597                                       /*TemplateKWLoc=*/SourceLocation(),
1598                                       /*FirstQualifierInScope=*/0,
1599                                       MemberLookup,
1600                                       /*TemplateArgs=*/0);
1601    if (MemberRef.isInvalid())
1602      return ExprError();
1603    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1604                                     Loc, 0);
1605    if (CallExpr.isInvalid())
1606      return ExprError();
1607  } else {
1608    UnresolvedSet<0> FoundNames;
1609    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1610    // std is an associated namespace.
1611    UnresolvedLookupExpr *Fn =
1612      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1613                                   NestedNameSpecifierLoc(), NameInfo,
1614                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1615                                   FoundNames.begin(), FoundNames.end(),
1616                                   /*LookInStdNamespace=*/true);
1617    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1618                                               0, /*AllowTypoCorrection=*/false);
1619    if (CallExpr.isInvalid()) {
1620      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1621        << Range->getType();
1622      return ExprError();
1623    }
1624  }
1625  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1626                            diag::err_for_range_iter_deduction_failure)) {
1627    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1628    return ExprError();
1629  }
1630  return CallExpr;
1631}
1632
1633}
1634
1635static bool ObjCEnumerationCollection(Expr *Collection) {
1636  return !Collection->isTypeDependent()
1637          && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1638}
1639
1640/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1641///
1642/// C++0x [stmt.ranged]:
1643///   A range-based for statement is equivalent to
1644///
1645///   {
1646///     auto && __range = range-init;
1647///     for ( auto __begin = begin-expr,
1648///           __end = end-expr;
1649///           __begin != __end;
1650///           ++__begin ) {
1651///       for-range-declaration = *__begin;
1652///       statement
1653///     }
1654///   }
1655///
1656/// The body of the loop is not available yet, since it cannot be analysed until
1657/// we have determined the type of the for-range-declaration.
1658StmtResult
1659Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1660                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1661                           SourceLocation RParenLoc) {
1662  if (!First || !Range)
1663    return StmtError();
1664
1665  if (ObjCEnumerationCollection(Range))
1666    return ActOnObjCForCollectionStmt(ForLoc, LParenLoc, First, Range,
1667                                      RParenLoc);
1668
1669  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1670  assert(DS && "first part of for range not a decl stmt");
1671
1672  if (!DS->isSingleDecl()) {
1673    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1674    return StmtError();
1675  }
1676  if (DS->getSingleDecl()->isInvalidDecl())
1677    return StmtError();
1678
1679  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1680    return StmtError();
1681
1682  // Build  auto && __range = range-init
1683  SourceLocation RangeLoc = Range->getLocStart();
1684  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1685                                           Context.getAutoRRefDeductType(),
1686                                           "__range");
1687  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1688                            diag::err_for_range_deduction_failure))
1689    return StmtError();
1690
1691  // Claim the type doesn't contain auto: we've already done the checking.
1692  DeclGroupPtrTy RangeGroup =
1693    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1694  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1695  if (RangeDecl.isInvalid())
1696    return StmtError();
1697
1698  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1699                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1700                              RParenLoc);
1701}
1702
1703/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1704StmtResult
1705Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1706                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1707                           Expr *Inc, Stmt *LoopVarDecl,
1708                           SourceLocation RParenLoc) {
1709  Scope *S = getCurScope();
1710
1711  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1712  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1713  QualType RangeVarType = RangeVar->getType();
1714
1715  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1716  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1717
1718  StmtResult BeginEndDecl = BeginEnd;
1719  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1720
1721  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1722    SourceLocation RangeLoc = RangeVar->getLocation();
1723
1724    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1725
1726    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1727                                                VK_LValue, ColonLoc);
1728    if (BeginRangeRef.isInvalid())
1729      return StmtError();
1730
1731    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1732                                              VK_LValue, ColonLoc);
1733    if (EndRangeRef.isInvalid())
1734      return StmtError();
1735
1736    QualType AutoType = Context.getAutoDeductType();
1737    Expr *Range = RangeVar->getInit();
1738    if (!Range)
1739      return StmtError();
1740    QualType RangeType = Range->getType();
1741
1742    if (RequireCompleteType(RangeLoc, RangeType,
1743                            diag::err_for_range_incomplete_type))
1744      return StmtError();
1745
1746    // Build auto __begin = begin-expr, __end = end-expr.
1747    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1748                                             "__begin");
1749    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1750                                           "__end");
1751
1752    // Build begin-expr and end-expr and attach to __begin and __end variables.
1753    ExprResult BeginExpr, EndExpr;
1754    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1755      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1756      //   __range + __bound, respectively, where __bound is the array bound. If
1757      //   _RangeT is an array of unknown size or an array of incomplete type,
1758      //   the program is ill-formed;
1759
1760      // begin-expr is __range.
1761      BeginExpr = BeginRangeRef;
1762      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1763                                diag::err_for_range_iter_deduction_failure)) {
1764        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1765        return StmtError();
1766      }
1767
1768      // Find the array bound.
1769      ExprResult BoundExpr;
1770      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1771        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1772                                                 Context.getPointerDiffType(),
1773                                                 RangeLoc));
1774      else if (const VariableArrayType *VAT =
1775               dyn_cast<VariableArrayType>(UnqAT))
1776        BoundExpr = VAT->getSizeExpr();
1777      else {
1778        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1779        // UnqAT is not incomplete and Range is not type-dependent.
1780        llvm_unreachable("Unexpected array type in for-range");
1781      }
1782
1783      // end-expr is __range + __bound.
1784      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1785                           BoundExpr.get());
1786      if (EndExpr.isInvalid())
1787        return StmtError();
1788      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1789                                diag::err_for_range_iter_deduction_failure)) {
1790        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1791        return StmtError();
1792      }
1793    } else {
1794      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1795                                        ColonLoc);
1796      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1797                                      ColonLoc);
1798
1799      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1800      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1801
1802      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1803        // - if _RangeT is a class type, the unqualified-ids begin and end are
1804        //   looked up in the scope of class _RangeT as if by class member access
1805        //   lookup (3.4.5), and if either (or both) finds at least one
1806        //   declaration, begin-expr and end-expr are __range.begin() and
1807        //   __range.end(), respectively;
1808        LookupQualifiedName(BeginMemberLookup, D);
1809        LookupQualifiedName(EndMemberLookup, D);
1810
1811        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1812          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1813            << RangeType << BeginMemberLookup.empty();
1814          return StmtError();
1815        }
1816      } else {
1817        // - otherwise, begin-expr and end-expr are begin(__range) and
1818        //   end(__range), respectively, where begin and end are looked up with
1819        //   argument-dependent lookup (3.4.2). For the purposes of this name
1820        //   lookup, namespace std is an associated namespace.
1821      }
1822
1823      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1824                                            BEF_begin, BeginNameInfo,
1825                                            BeginMemberLookup,
1826                                            BeginRangeRef.get());
1827      if (BeginExpr.isInvalid())
1828        return StmtError();
1829
1830      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1831                                          BEF_end, EndNameInfo,
1832                                          EndMemberLookup, EndRangeRef.get());
1833      if (EndExpr.isInvalid())
1834        return StmtError();
1835    }
1836
1837    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1838    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1839    if (!Context.hasSameType(BeginType, EndType)) {
1840      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1841        << BeginType << EndType;
1842      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1843      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1844    }
1845
1846    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1847    // Claim the type doesn't contain auto: we've already done the checking.
1848    DeclGroupPtrTy BeginEndGroup =
1849      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1850    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1851
1852    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1853    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1854                                           VK_LValue, ColonLoc);
1855    if (BeginRef.isInvalid())
1856      return StmtError();
1857
1858    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1859                                         VK_LValue, ColonLoc);
1860    if (EndRef.isInvalid())
1861      return StmtError();
1862
1863    // Build and check __begin != __end expression.
1864    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1865                           BeginRef.get(), EndRef.get());
1866    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1867    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1868    if (NotEqExpr.isInvalid()) {
1869      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1870      if (!Context.hasSameType(BeginType, EndType))
1871        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1872      return StmtError();
1873    }
1874
1875    // Build and check ++__begin expression.
1876    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1877                                VK_LValue, ColonLoc);
1878    if (BeginRef.isInvalid())
1879      return StmtError();
1880
1881    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1882    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1883    if (IncrExpr.isInvalid()) {
1884      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1885      return StmtError();
1886    }
1887
1888    // Build and check *__begin  expression.
1889    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1890                                VK_LValue, ColonLoc);
1891    if (BeginRef.isInvalid())
1892      return StmtError();
1893
1894    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1895    if (DerefExpr.isInvalid()) {
1896      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1897      return StmtError();
1898    }
1899
1900    // Attach  *__begin  as initializer for VD.
1901    if (!LoopVar->isInvalidDecl()) {
1902      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1903                           /*TypeMayContainAuto=*/true);
1904      if (LoopVar->isInvalidDecl())
1905        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1906    }
1907  } else {
1908    // The range is implicitly used as a placeholder when it is dependent.
1909    RangeVar->setUsed();
1910  }
1911
1912  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1913                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1914                                             NotEqExpr.take(), IncrExpr.take(),
1915                                             LoopVarDS, /*Body=*/0, ForLoc,
1916                                             ColonLoc, RParenLoc));
1917}
1918
1919/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
1920/// statement.
1921StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
1922  if (!S || !B)
1923    return StmtError();
1924  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
1925
1926  ForStmt->setBody(B);
1927  return S;
1928}
1929
1930/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1931/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1932/// body cannot be performed until after the type of the range variable is
1933/// determined.
1934StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1935  if (!S || !B)
1936    return StmtError();
1937
1938  if (isa<ObjCForCollectionStmt>(S))
1939    return FinishObjCForCollectionStmt(S, B);
1940
1941  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
1942  ForStmt->setBody(B);
1943
1944  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
1945                        diag::warn_empty_range_based_for_body);
1946
1947  return S;
1948}
1949
1950StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1951                               SourceLocation LabelLoc,
1952                               LabelDecl *TheDecl) {
1953  getCurFunction()->setHasBranchIntoScope();
1954  TheDecl->setUsed();
1955  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1956}
1957
1958StmtResult
1959Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1960                            Expr *E) {
1961  // Convert operand to void*
1962  if (!E->isTypeDependent()) {
1963    QualType ETy = E->getType();
1964    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1965    ExprResult ExprRes = Owned(E);
1966    AssignConvertType ConvTy =
1967      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1968    if (ExprRes.isInvalid())
1969      return StmtError();
1970    E = ExprRes.take();
1971    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1972      return StmtError();
1973    E = MaybeCreateExprWithCleanups(E);
1974  }
1975
1976  getCurFunction()->setHasIndirectGoto();
1977
1978  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1979}
1980
1981StmtResult
1982Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1983  Scope *S = CurScope->getContinueParent();
1984  if (!S) {
1985    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1986    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1987  }
1988
1989  return Owned(new (Context) ContinueStmt(ContinueLoc));
1990}
1991
1992StmtResult
1993Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1994  Scope *S = CurScope->getBreakParent();
1995  if (!S) {
1996    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1997    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1998  }
1999
2000  return Owned(new (Context) BreakStmt(BreakLoc));
2001}
2002
2003/// \brief Determine whether the given expression is a candidate for
2004/// copy elision in either a return statement or a throw expression.
2005///
2006/// \param ReturnType If we're determining the copy elision candidate for
2007/// a return statement, this is the return type of the function. If we're
2008/// determining the copy elision candidate for a throw expression, this will
2009/// be a NULL type.
2010///
2011/// \param E The expression being returned from the function or block, or
2012/// being thrown.
2013///
2014/// \param AllowFunctionParameter Whether we allow function parameters to
2015/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2016/// we re-use this logic to determine whether we should try to move as part of
2017/// a return or throw (which does allow function parameters).
2018///
2019/// \returns The NRVO candidate variable, if the return statement may use the
2020/// NRVO, or NULL if there is no such candidate.
2021const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2022                                             Expr *E,
2023                                             bool AllowFunctionParameter) {
2024  QualType ExprType = E->getType();
2025  // - in a return statement in a function with ...
2026  // ... a class return type ...
2027  if (!ReturnType.isNull()) {
2028    if (!ReturnType->isRecordType())
2029      return 0;
2030    // ... the same cv-unqualified type as the function return type ...
2031    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2032      return 0;
2033  }
2034
2035  // ... the expression is the name of a non-volatile automatic object
2036  // (other than a function or catch-clause parameter)) ...
2037  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2038  if (!DR || DR->refersToEnclosingLocal())
2039    return 0;
2040  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2041  if (!VD)
2042    return 0;
2043
2044  // ...object (other than a function or catch-clause parameter)...
2045  if (VD->getKind() != Decl::Var &&
2046      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2047    return 0;
2048  if (VD->isExceptionVariable()) return 0;
2049
2050  // ...automatic...
2051  if (!VD->hasLocalStorage()) return 0;
2052
2053  // ...non-volatile...
2054  if (VD->getType().isVolatileQualified()) return 0;
2055  if (VD->getType()->isReferenceType()) return 0;
2056
2057  // __block variables can't be allocated in a way that permits NRVO.
2058  if (VD->hasAttr<BlocksAttr>()) return 0;
2059
2060  // Variables with higher required alignment than their type's ABI
2061  // alignment cannot use NRVO.
2062  if (VD->hasAttr<AlignedAttr>() &&
2063      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2064    return 0;
2065
2066  return VD;
2067}
2068
2069/// \brief Perform the initialization of a potentially-movable value, which
2070/// is the result of return value.
2071///
2072/// This routine implements C++0x [class.copy]p33, which attempts to treat
2073/// returned lvalues as rvalues in certain cases (to prefer move construction),
2074/// then falls back to treating them as lvalues if that failed.
2075ExprResult
2076Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2077                                      const VarDecl *NRVOCandidate,
2078                                      QualType ResultType,
2079                                      Expr *Value,
2080                                      bool AllowNRVO) {
2081  // C++0x [class.copy]p33:
2082  //   When the criteria for elision of a copy operation are met or would
2083  //   be met save for the fact that the source object is a function
2084  //   parameter, and the object to be copied is designated by an lvalue,
2085  //   overload resolution to select the constructor for the copy is first
2086  //   performed as if the object were designated by an rvalue.
2087  ExprResult Res = ExprError();
2088  if (AllowNRVO &&
2089      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2090    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2091                              Value->getType(), CK_NoOp, Value, VK_XValue);
2092
2093    Expr *InitExpr = &AsRvalue;
2094    InitializationKind Kind
2095      = InitializationKind::CreateCopy(Value->getLocStart(),
2096                                       Value->getLocStart());
2097    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2098
2099    //   [...] If overload resolution fails, or if the type of the first
2100    //   parameter of the selected constructor is not an rvalue reference
2101    //   to the object's type (possibly cv-qualified), overload resolution
2102    //   is performed again, considering the object as an lvalue.
2103    if (Seq) {
2104      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2105           StepEnd = Seq.step_end();
2106           Step != StepEnd; ++Step) {
2107        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2108          continue;
2109
2110        CXXConstructorDecl *Constructor
2111        = cast<CXXConstructorDecl>(Step->Function.Function);
2112
2113        const RValueReferenceType *RRefType
2114          = Constructor->getParamDecl(0)->getType()
2115                                                 ->getAs<RValueReferenceType>();
2116
2117        // If we don't meet the criteria, break out now.
2118        if (!RRefType ||
2119            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2120                            Context.getTypeDeclType(Constructor->getParent())))
2121          break;
2122
2123        // Promote "AsRvalue" to the heap, since we now need this
2124        // expression node to persist.
2125        Value = ImplicitCastExpr::Create(Context, Value->getType(),
2126                                         CK_NoOp, Value, 0, VK_XValue);
2127
2128        // Complete type-checking the initialization of the return type
2129        // using the constructor we found.
2130        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2131      }
2132    }
2133  }
2134
2135  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2136  // above, or overload resolution failed. Either way, we need to try
2137  // (again) now with the return value expression as written.
2138  if (Res.isInvalid())
2139    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2140
2141  return Res;
2142}
2143
2144/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2145/// for capturing scopes.
2146///
2147StmtResult
2148Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2149  // If this is the first return we've seen, infer the return type.
2150  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2151  // rules which allows multiple return statements.
2152  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2153  QualType FnRetType = CurCap->ReturnType;
2154
2155  // For blocks/lambdas with implicit return types, we check each return
2156  // statement individually, and deduce the common return type when the block
2157  // or lambda is completed.
2158  if (CurCap->HasImplicitReturnType) {
2159    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2160      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2161      if (Result.isInvalid())
2162        return StmtError();
2163      RetValExp = Result.take();
2164
2165      if (!RetValExp->isTypeDependent())
2166        FnRetType = RetValExp->getType();
2167      else
2168        FnRetType = CurCap->ReturnType = Context.DependentTy;
2169    } else {
2170      if (RetValExp) {
2171        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2172        // initializer list, because it is not an expression (even
2173        // though we represent it as one). We still deduce 'void'.
2174        Diag(ReturnLoc, diag::err_lambda_return_init_list)
2175          << RetValExp->getSourceRange();
2176      }
2177
2178      FnRetType = Context.VoidTy;
2179    }
2180
2181    // Although we'll properly infer the type of the block once it's completed,
2182    // make sure we provide a return type now for better error recovery.
2183    if (CurCap->ReturnType.isNull())
2184      CurCap->ReturnType = FnRetType;
2185  }
2186  assert(!FnRetType.isNull());
2187
2188  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2189    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2190      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2191      return StmtError();
2192    }
2193  } else {
2194    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2195    if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2196      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2197      return StmtError();
2198    }
2199  }
2200
2201  // Otherwise, verify that this result type matches the previous one.  We are
2202  // pickier with blocks than for normal functions because we don't have GCC
2203  // compatibility to worry about here.
2204  const VarDecl *NRVOCandidate = 0;
2205  if (FnRetType->isDependentType()) {
2206    // Delay processing for now.  TODO: there are lots of dependent
2207    // types we can conclusively prove aren't void.
2208  } else if (FnRetType->isVoidType()) {
2209    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2210        !(getLangOpts().CPlusPlus &&
2211          (RetValExp->isTypeDependent() ||
2212           RetValExp->getType()->isVoidType()))) {
2213      if (!getLangOpts().CPlusPlus &&
2214          RetValExp->getType()->isVoidType())
2215        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2216      else {
2217        Diag(ReturnLoc, diag::err_return_block_has_expr);
2218        RetValExp = 0;
2219      }
2220    }
2221  } else if (!RetValExp) {
2222    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2223  } else if (!RetValExp->isTypeDependent()) {
2224    // we have a non-void block with an expression, continue checking
2225
2226    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2227    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2228    // function return.
2229
2230    // In C++ the return statement is handled via a copy initialization.
2231    // the C version of which boils down to CheckSingleAssignmentConstraints.
2232    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2233    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2234                                                                   FnRetType,
2235                                                          NRVOCandidate != 0);
2236    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2237                                                     FnRetType, RetValExp);
2238    if (Res.isInvalid()) {
2239      // FIXME: Cleanup temporaries here, anyway?
2240      return StmtError();
2241    }
2242    RetValExp = Res.take();
2243    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2244  }
2245
2246  if (RetValExp) {
2247    CheckImplicitConversions(RetValExp, ReturnLoc);
2248    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2249  }
2250  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2251                                                NRVOCandidate);
2252
2253  // If we need to check for the named return value optimization,
2254  // or if we need to infer the return type,
2255  // save the return statement in our scope for later processing.
2256  if (CurCap->HasImplicitReturnType ||
2257      (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2258       !CurContext->isDependentContext()))
2259    FunctionScopes.back()->Returns.push_back(Result);
2260
2261  return Owned(Result);
2262}
2263
2264StmtResult
2265Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2266  // Check for unexpanded parameter packs.
2267  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2268    return StmtError();
2269
2270  if (isa<CapturingScopeInfo>(getCurFunction()))
2271    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2272
2273  QualType FnRetType;
2274  QualType RelatedRetType;
2275  if (const FunctionDecl *FD = getCurFunctionDecl()) {
2276    FnRetType = FD->getResultType();
2277    if (FD->hasAttr<NoReturnAttr>() ||
2278        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
2279      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2280        << FD->getDeclName();
2281  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2282    FnRetType = MD->getResultType();
2283    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2284      // In the implementation of a method with a related return type, the
2285      // type used to type-check the validity of return statements within the
2286      // method body is a pointer to the type of the class being implemented.
2287      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2288      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2289    }
2290  } else // If we don't have a function/method context, bail.
2291    return StmtError();
2292
2293  ReturnStmt *Result = 0;
2294  if (FnRetType->isVoidType()) {
2295    if (RetValExp) {
2296      if (isa<InitListExpr>(RetValExp)) {
2297        // We simply never allow init lists as the return value of void
2298        // functions. This is compatible because this was never allowed before,
2299        // so there's no legacy code to deal with.
2300        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2301        int FunctionKind = 0;
2302        if (isa<ObjCMethodDecl>(CurDecl))
2303          FunctionKind = 1;
2304        else if (isa<CXXConstructorDecl>(CurDecl))
2305          FunctionKind = 2;
2306        else if (isa<CXXDestructorDecl>(CurDecl))
2307          FunctionKind = 3;
2308
2309        Diag(ReturnLoc, diag::err_return_init_list)
2310          << CurDecl->getDeclName() << FunctionKind
2311          << RetValExp->getSourceRange();
2312
2313        // Drop the expression.
2314        RetValExp = 0;
2315      } else if (!RetValExp->isTypeDependent()) {
2316        // C99 6.8.6.4p1 (ext_ since GCC warns)
2317        unsigned D = diag::ext_return_has_expr;
2318        if (RetValExp->getType()->isVoidType())
2319          D = diag::ext_return_has_void_expr;
2320        else {
2321          ExprResult Result = Owned(RetValExp);
2322          Result = IgnoredValueConversions(Result.take());
2323          if (Result.isInvalid())
2324            return StmtError();
2325          RetValExp = Result.take();
2326          RetValExp = ImpCastExprToType(RetValExp,
2327                                        Context.VoidTy, CK_ToVoid).take();
2328        }
2329
2330        // return (some void expression); is legal in C++.
2331        if (D != diag::ext_return_has_void_expr ||
2332            !getLangOpts().CPlusPlus) {
2333          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2334
2335          int FunctionKind = 0;
2336          if (isa<ObjCMethodDecl>(CurDecl))
2337            FunctionKind = 1;
2338          else if (isa<CXXConstructorDecl>(CurDecl))
2339            FunctionKind = 2;
2340          else if (isa<CXXDestructorDecl>(CurDecl))
2341            FunctionKind = 3;
2342
2343          Diag(ReturnLoc, D)
2344            << CurDecl->getDeclName() << FunctionKind
2345            << RetValExp->getSourceRange();
2346        }
2347      }
2348
2349      if (RetValExp) {
2350        CheckImplicitConversions(RetValExp, ReturnLoc);
2351        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2352      }
2353    }
2354
2355    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2356  } else if (!RetValExp && !FnRetType->isDependentType()) {
2357    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2358    // C99 6.8.6.4p1 (ext_ since GCC warns)
2359    if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2360
2361    if (FunctionDecl *FD = getCurFunctionDecl())
2362      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2363    else
2364      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2365    Result = new (Context) ReturnStmt(ReturnLoc);
2366  } else {
2367    const VarDecl *NRVOCandidate = 0;
2368    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2369      // we have a non-void function with an expression, continue checking
2370
2371      if (!RelatedRetType.isNull()) {
2372        // If we have a related result type, perform an extra conversion here.
2373        // FIXME: The diagnostics here don't really describe what is happening.
2374        InitializedEntity Entity =
2375            InitializedEntity::InitializeTemporary(RelatedRetType);
2376
2377        ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2378                                                   RetValExp);
2379        if (Res.isInvalid()) {
2380          // FIXME: Cleanup temporaries here, anyway?
2381          return StmtError();
2382        }
2383        RetValExp = Res.takeAs<Expr>();
2384      }
2385
2386      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2387      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2388      // function return.
2389
2390      // In C++ the return statement is handled via a copy initialization,
2391      // the C version of which boils down to CheckSingleAssignmentConstraints.
2392      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2393      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2394                                                                     FnRetType,
2395                                                            NRVOCandidate != 0);
2396      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2397                                                       FnRetType, RetValExp);
2398      if (Res.isInvalid()) {
2399        // FIXME: Cleanup temporaries here, anyway?
2400        return StmtError();
2401      }
2402
2403      RetValExp = Res.takeAs<Expr>();
2404      if (RetValExp)
2405        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2406    }
2407
2408    if (RetValExp) {
2409      CheckImplicitConversions(RetValExp, ReturnLoc);
2410      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2411    }
2412    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2413  }
2414
2415  // If we need to check for the named return value optimization, save the
2416  // return statement in our scope for later processing.
2417  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2418      !CurContext->isDependentContext())
2419    FunctionScopes.back()->Returns.push_back(Result);
2420
2421  return Owned(Result);
2422}
2423
2424/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2425/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2426/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2427/// provide a strong guidance to not use it.
2428///
2429/// This method checks to see if the argument is an acceptable l-value and
2430/// returns false if it is a case we can handle.
2431static bool CheckAsmLValue(const Expr *E, Sema &S) {
2432  // Type dependent expressions will be checked during instantiation.
2433  if (E->isTypeDependent())
2434    return false;
2435
2436  if (E->isLValue())
2437    return false;  // Cool, this is an lvalue.
2438
2439  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2440  // are supposed to allow.
2441  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2442  if (E != E2 && E2->isLValue()) {
2443    if (!S.getLangOpts().HeinousExtensions)
2444      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2445        << E->getSourceRange();
2446    else
2447      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2448        << E->getSourceRange();
2449    // Accept, even if we emitted an error diagnostic.
2450    return false;
2451  }
2452
2453  // None of the above, just randomly invalid non-lvalue.
2454  return true;
2455}
2456
2457/// isOperandMentioned - Return true if the specified operand # is mentioned
2458/// anywhere in the decomposed asm string.
2459static bool isOperandMentioned(unsigned OpNo,
2460                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2461  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2462    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2463    if (!Piece.isOperand()) continue;
2464
2465    // If this is a reference to the input and if the input was the smaller
2466    // one, then we have to reject this asm.
2467    if (Piece.getOperandNo() == OpNo)
2468      return true;
2469  }
2470  return false;
2471}
2472
2473StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2474                              bool IsVolatile, unsigned NumOutputs,
2475                              unsigned NumInputs, IdentifierInfo **Names,
2476                              MultiExprArg constraints, MultiExprArg exprs,
2477                              Expr *asmString, MultiExprArg clobbers,
2478                              SourceLocation RParenLoc, bool MSAsm) {
2479  unsigned NumClobbers = clobbers.size();
2480  StringLiteral **Constraints =
2481    reinterpret_cast<StringLiteral**>(constraints.get());
2482  Expr **Exprs = exprs.get();
2483  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2484  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2485
2486  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2487
2488  // The parser verifies that there is a string literal here.
2489  if (!AsmString->isAscii())
2490    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2491      << AsmString->getSourceRange());
2492
2493  for (unsigned i = 0; i != NumOutputs; i++) {
2494    StringLiteral *Literal = Constraints[i];
2495    if (!Literal->isAscii())
2496      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2497        << Literal->getSourceRange());
2498
2499    StringRef OutputName;
2500    if (Names[i])
2501      OutputName = Names[i]->getName();
2502
2503    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2504    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2505      return StmtError(Diag(Literal->getLocStart(),
2506                            diag::err_asm_invalid_output_constraint)
2507                       << Info.getConstraintStr());
2508
2509    // Check that the output exprs are valid lvalues.
2510    Expr *OutputExpr = Exprs[i];
2511    if (CheckAsmLValue(OutputExpr, *this)) {
2512      return StmtError(Diag(OutputExpr->getLocStart(),
2513                  diag::err_asm_invalid_lvalue_in_output)
2514        << OutputExpr->getSourceRange());
2515    }
2516
2517    OutputConstraintInfos.push_back(Info);
2518  }
2519
2520  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2521
2522  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2523    StringLiteral *Literal = Constraints[i];
2524    if (!Literal->isAscii())
2525      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2526        << Literal->getSourceRange());
2527
2528    StringRef InputName;
2529    if (Names[i])
2530      InputName = Names[i]->getName();
2531
2532    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2533    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2534                                                NumOutputs, Info)) {
2535      return StmtError(Diag(Literal->getLocStart(),
2536                            diag::err_asm_invalid_input_constraint)
2537                       << Info.getConstraintStr());
2538    }
2539
2540    Expr *InputExpr = Exprs[i];
2541
2542    // Only allow void types for memory constraints.
2543    if (Info.allowsMemory() && !Info.allowsRegister()) {
2544      if (CheckAsmLValue(InputExpr, *this))
2545        return StmtError(Diag(InputExpr->getLocStart(),
2546                              diag::err_asm_invalid_lvalue_in_input)
2547                         << Info.getConstraintStr()
2548                         << InputExpr->getSourceRange());
2549    }
2550
2551    if (Info.allowsRegister()) {
2552      if (InputExpr->getType()->isVoidType()) {
2553        return StmtError(Diag(InputExpr->getLocStart(),
2554                              diag::err_asm_invalid_type_in_input)
2555          << InputExpr->getType() << Info.getConstraintStr()
2556          << InputExpr->getSourceRange());
2557      }
2558    }
2559
2560    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2561    if (Result.isInvalid())
2562      return StmtError();
2563
2564    Exprs[i] = Result.take();
2565    InputConstraintInfos.push_back(Info);
2566  }
2567
2568  // Check that the clobbers are valid.
2569  for (unsigned i = 0; i != NumClobbers; i++) {
2570    StringLiteral *Literal = Clobbers[i];
2571    if (!Literal->isAscii())
2572      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2573        << Literal->getSourceRange());
2574
2575    StringRef Clobber = Literal->getString();
2576
2577    if (!Context.getTargetInfo().isValidClobber(Clobber))
2578      return StmtError(Diag(Literal->getLocStart(),
2579                  diag::err_asm_unknown_register_name) << Clobber);
2580  }
2581
2582  AsmStmt *NS =
2583    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2584                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2585                          AsmString, NumClobbers, Clobbers, RParenLoc);
2586  // Validate the asm string, ensuring it makes sense given the operands we
2587  // have.
2588  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2589  unsigned DiagOffs;
2590  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2591    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2592           << AsmString->getSourceRange();
2593    return StmtError();
2594  }
2595
2596  // Validate tied input operands for type mismatches.
2597  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2598    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2599
2600    // If this is a tied constraint, verify that the output and input have
2601    // either exactly the same type, or that they are int/ptr operands with the
2602    // same size (int/long, int*/long, are ok etc).
2603    if (!Info.hasTiedOperand()) continue;
2604
2605    unsigned TiedTo = Info.getTiedOperand();
2606    unsigned InputOpNo = i+NumOutputs;
2607    Expr *OutputExpr = Exprs[TiedTo];
2608    Expr *InputExpr = Exprs[InputOpNo];
2609
2610    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2611      continue;
2612
2613    QualType InTy = InputExpr->getType();
2614    QualType OutTy = OutputExpr->getType();
2615    if (Context.hasSameType(InTy, OutTy))
2616      continue;  // All types can be tied to themselves.
2617
2618    // Decide if the input and output are in the same domain (integer/ptr or
2619    // floating point.
2620    enum AsmDomain {
2621      AD_Int, AD_FP, AD_Other
2622    } InputDomain, OutputDomain;
2623
2624    if (InTy->isIntegerType() || InTy->isPointerType())
2625      InputDomain = AD_Int;
2626    else if (InTy->isRealFloatingType())
2627      InputDomain = AD_FP;
2628    else
2629      InputDomain = AD_Other;
2630
2631    if (OutTy->isIntegerType() || OutTy->isPointerType())
2632      OutputDomain = AD_Int;
2633    else if (OutTy->isRealFloatingType())
2634      OutputDomain = AD_FP;
2635    else
2636      OutputDomain = AD_Other;
2637
2638    // They are ok if they are the same size and in the same domain.  This
2639    // allows tying things like:
2640    //   void* to int*
2641    //   void* to int            if they are the same size.
2642    //   double to long double   if they are the same size.
2643    //
2644    uint64_t OutSize = Context.getTypeSize(OutTy);
2645    uint64_t InSize = Context.getTypeSize(InTy);
2646    if (OutSize == InSize && InputDomain == OutputDomain &&
2647        InputDomain != AD_Other)
2648      continue;
2649
2650    // If the smaller input/output operand is not mentioned in the asm string,
2651    // then we can promote the smaller one to a larger input and the asm string
2652    // won't notice.
2653    bool SmallerValueMentioned = false;
2654
2655    // If this is a reference to the input and if the input was the smaller
2656    // one, then we have to reject this asm.
2657    if (isOperandMentioned(InputOpNo, Pieces)) {
2658      // This is a use in the asm string of the smaller operand.  Since we
2659      // codegen this by promoting to a wider value, the asm will get printed
2660      // "wrong".
2661      SmallerValueMentioned |= InSize < OutSize;
2662    }
2663    if (isOperandMentioned(TiedTo, Pieces)) {
2664      // If this is a reference to the output, and if the output is the larger
2665      // value, then it's ok because we'll promote the input to the larger type.
2666      SmallerValueMentioned |= OutSize < InSize;
2667    }
2668
2669    // If the smaller value wasn't mentioned in the asm string, and if the
2670    // output was a register, just extend the shorter one to the size of the
2671    // larger one.
2672    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2673        OutputConstraintInfos[TiedTo].allowsRegister())
2674      continue;
2675
2676    // Either both of the operands were mentioned or the smaller one was
2677    // mentioned.  One more special case that we'll allow: if the tied input is
2678    // integer, unmentioned, and is a constant, then we'll allow truncating it
2679    // down to the size of the destination.
2680    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2681        !isOperandMentioned(InputOpNo, Pieces) &&
2682        InputExpr->isEvaluatable(Context)) {
2683      CastKind castKind =
2684        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2685      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2686      Exprs[InputOpNo] = InputExpr;
2687      NS->setInputExpr(i, InputExpr);
2688      continue;
2689    }
2690
2691    Diag(InputExpr->getLocStart(),
2692         diag::err_asm_tying_incompatible_types)
2693      << InTy << OutTy << OutputExpr->getSourceRange()
2694      << InputExpr->getSourceRange();
2695    return StmtError();
2696  }
2697
2698  return Owned(NS);
2699}
2700
2701StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc,
2702                                std::string &AsmString,
2703                                SourceLocation EndLoc) {
2704  // MS-style inline assembly is not fully supported, so emit a warning.
2705  Diag(AsmLoc, diag::warn_unsupported_msasm);
2706
2707  MSAsmStmt *NS =
2708    new (Context) MSAsmStmt(Context, AsmLoc, AsmString, EndLoc);
2709
2710  return Owned(NS);
2711}
2712
2713StmtResult
2714Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2715                           SourceLocation RParen, Decl *Parm,
2716                           Stmt *Body) {
2717  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2718  if (Var && Var->isInvalidDecl())
2719    return StmtError();
2720
2721  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2722}
2723
2724StmtResult
2725Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2726  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2727}
2728
2729StmtResult
2730Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2731                         MultiStmtArg CatchStmts, Stmt *Finally) {
2732  if (!getLangOpts().ObjCExceptions)
2733    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2734
2735  getCurFunction()->setHasBranchProtectedScope();
2736  unsigned NumCatchStmts = CatchStmts.size();
2737  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2738                                     CatchStmts.release(),
2739                                     NumCatchStmts,
2740                                     Finally));
2741}
2742
2743StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2744  if (Throw) {
2745    ExprResult Result = DefaultLvalueConversion(Throw);
2746    if (Result.isInvalid())
2747      return StmtError();
2748
2749    Throw = MaybeCreateExprWithCleanups(Result.take());
2750    QualType ThrowType = Throw->getType();
2751    // Make sure the expression type is an ObjC pointer or "void *".
2752    if (!ThrowType->isDependentType() &&
2753        !ThrowType->isObjCObjectPointerType()) {
2754      const PointerType *PT = ThrowType->getAs<PointerType>();
2755      if (!PT || !PT->getPointeeType()->isVoidType())
2756        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2757                         << Throw->getType() << Throw->getSourceRange());
2758    }
2759  }
2760
2761  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2762}
2763
2764StmtResult
2765Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2766                           Scope *CurScope) {
2767  if (!getLangOpts().ObjCExceptions)
2768    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2769
2770  if (!Throw) {
2771    // @throw without an expression designates a rethrow (which much occur
2772    // in the context of an @catch clause).
2773    Scope *AtCatchParent = CurScope;
2774    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2775      AtCatchParent = AtCatchParent->getParent();
2776    if (!AtCatchParent)
2777      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2778  }
2779  return BuildObjCAtThrowStmt(AtLoc, Throw);
2780}
2781
2782ExprResult
2783Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2784  ExprResult result = DefaultLvalueConversion(operand);
2785  if (result.isInvalid())
2786    return ExprError();
2787  operand = result.take();
2788
2789  // Make sure the expression type is an ObjC pointer or "void *".
2790  QualType type = operand->getType();
2791  if (!type->isDependentType() &&
2792      !type->isObjCObjectPointerType()) {
2793    const PointerType *pointerType = type->getAs<PointerType>();
2794    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2795      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2796               << type << operand->getSourceRange();
2797  }
2798
2799  // The operand to @synchronized is a full-expression.
2800  return MaybeCreateExprWithCleanups(operand);
2801}
2802
2803StmtResult
2804Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2805                                  Stmt *SyncBody) {
2806  // We can't jump into or indirect-jump out of a @synchronized block.
2807  getCurFunction()->setHasBranchProtectedScope();
2808  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2809}
2810
2811/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2812/// and creates a proper catch handler from them.
2813StmtResult
2814Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2815                         Stmt *HandlerBlock) {
2816  // There's nothing to test that ActOnExceptionDecl didn't already test.
2817  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2818                                          cast_or_null<VarDecl>(ExDecl),
2819                                          HandlerBlock));
2820}
2821
2822StmtResult
2823Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2824  getCurFunction()->setHasBranchProtectedScope();
2825  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2826}
2827
2828namespace {
2829
2830class TypeWithHandler {
2831  QualType t;
2832  CXXCatchStmt *stmt;
2833public:
2834  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2835  : t(type), stmt(statement) {}
2836
2837  // An arbitrary order is fine as long as it places identical
2838  // types next to each other.
2839  bool operator<(const TypeWithHandler &y) const {
2840    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2841      return true;
2842    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2843      return false;
2844    else
2845      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2846  }
2847
2848  bool operator==(const TypeWithHandler& other) const {
2849    return t == other.t;
2850  }
2851
2852  CXXCatchStmt *getCatchStmt() const { return stmt; }
2853  SourceLocation getTypeSpecStartLoc() const {
2854    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2855  }
2856};
2857
2858}
2859
2860/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2861/// handlers and creates a try statement from them.
2862StmtResult
2863Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2864                       MultiStmtArg RawHandlers) {
2865  // Don't report an error if 'try' is used in system headers.
2866  if (!getLangOpts().CXXExceptions &&
2867      !getSourceManager().isInSystemHeader(TryLoc))
2868      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2869
2870  unsigned NumHandlers = RawHandlers.size();
2871  assert(NumHandlers > 0 &&
2872         "The parser shouldn't call this if there are no handlers.");
2873  Stmt **Handlers = RawHandlers.get();
2874
2875  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2876
2877  for (unsigned i = 0; i < NumHandlers; ++i) {
2878    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2879    if (!Handler->getExceptionDecl()) {
2880      if (i < NumHandlers - 1)
2881        return StmtError(Diag(Handler->getLocStart(),
2882                              diag::err_early_catch_all));
2883
2884      continue;
2885    }
2886
2887    const QualType CaughtType = Handler->getCaughtType();
2888    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2889    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2890  }
2891
2892  // Detect handlers for the same type as an earlier one.
2893  if (NumHandlers > 1) {
2894    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2895
2896    TypeWithHandler prev = TypesWithHandlers[0];
2897    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2898      TypeWithHandler curr = TypesWithHandlers[i];
2899
2900      if (curr == prev) {
2901        Diag(curr.getTypeSpecStartLoc(),
2902             diag::warn_exception_caught_by_earlier_handler)
2903          << curr.getCatchStmt()->getCaughtType().getAsString();
2904        Diag(prev.getTypeSpecStartLoc(),
2905             diag::note_previous_exception_handler)
2906          << prev.getCatchStmt()->getCaughtType().getAsString();
2907      }
2908
2909      prev = curr;
2910    }
2911  }
2912
2913  getCurFunction()->setHasBranchProtectedScope();
2914
2915  // FIXME: We should detect handlers that cannot catch anything because an
2916  // earlier handler catches a superclass. Need to find a method that is not
2917  // quadratic for this.
2918  // Neither of these are explicitly forbidden, but every compiler detects them
2919  // and warns.
2920
2921  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2922                                  Handlers, NumHandlers));
2923}
2924
2925StmtResult
2926Sema::ActOnSEHTryBlock(bool IsCXXTry,
2927                       SourceLocation TryLoc,
2928                       Stmt *TryBlock,
2929                       Stmt *Handler) {
2930  assert(TryBlock && Handler);
2931
2932  getCurFunction()->setHasBranchProtectedScope();
2933
2934  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2935}
2936
2937StmtResult
2938Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2939                          Expr *FilterExpr,
2940                          Stmt *Block) {
2941  assert(FilterExpr && Block);
2942
2943  if(!FilterExpr->getType()->isIntegerType()) {
2944    return StmtError(Diag(FilterExpr->getExprLoc(),
2945                     diag::err_filter_expression_integral)
2946                     << FilterExpr->getType());
2947  }
2948
2949  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2950}
2951
2952StmtResult
2953Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2954                           Stmt *Block) {
2955  assert(Block);
2956  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2957}
2958
2959StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2960                                            bool IsIfExists,
2961                                            NestedNameSpecifierLoc QualifierLoc,
2962                                            DeclarationNameInfo NameInfo,
2963                                            Stmt *Nested)
2964{
2965  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2966                                             QualifierLoc, NameInfo,
2967                                             cast<CompoundStmt>(Nested));
2968}
2969
2970
2971StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2972                                            bool IsIfExists,
2973                                            CXXScopeSpec &SS,
2974                                            UnqualifiedId &Name,
2975                                            Stmt *Nested) {
2976  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2977                                    SS.getWithLocInContext(Context),
2978                                    GetNameFromUnqualifiedId(Name),
2979                                    Nested);
2980}
2981