SemaStmt.cpp revision 89f63bf0759d6d5908ec6ee07dc05dfebf1437b3
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/StmtObjC.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallVector.h"
28using namespace clang;
29
30Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
31  Expr *E = expr->takeAs<Expr>();
32  assert(E && "ActOnExprStmt(): missing expression");
33  if (E->getType()->isObjCObjectType()) {
34    if (LangOpts.ObjCNonFragileABI)
35      Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object)
36             << E->getType();
37    else
38      Diag(E->getLocEnd(), diag::err_direct_interface_unsupported)
39             << E->getType();
40    return StmtError();
41  }
42  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
43  // void expression for its side effects.  Conversion to void allows any
44  // operand, even incomplete types.
45
46  // Same thing in for stmt first clause (when expr) and third clause.
47  return Owned(static_cast<Stmt*>(E));
48}
49
50
51Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
52  return Owned(new (Context) NullStmt(SemiLoc));
53}
54
55Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
56                                           SourceLocation StartLoc,
57                                           SourceLocation EndLoc) {
58  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
59
60  // If we have an invalid decl, just return an error.
61  if (DG.isNull()) return StmtError();
62
63  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
64}
65
66void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
67  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
68
69  // If we have an invalid decl, just return.
70  if (DG.isNull() || !DG.isSingleDecl()) return;
71  // suppress any potential 'unused variable' warning.
72  DG.getSingleDecl()->setUsed();
73}
74
75void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
76  const Expr *E = dyn_cast_or_null<Expr>(S);
77  if (!E)
78    return;
79
80  SourceLocation Loc;
81  SourceRange R1, R2;
82  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
83    return;
84
85  // Okay, we have an unused result.  Depending on what the base expression is,
86  // we might want to make a more specific diagnostic.  Check for one of these
87  // cases now.
88  unsigned DiagID = diag::warn_unused_expr;
89  E = E->IgnoreParens();
90  if (isa<ObjCImplicitSetterGetterRefExpr>(E))
91    DiagID = diag::warn_unused_property_expr;
92
93  if (const CXXExprWithTemporaries *Temps = dyn_cast<CXXExprWithTemporaries>(E))
94    E = Temps->getSubExpr();
95  if (const CXXZeroInitValueExpr *Zero = dyn_cast<CXXZeroInitValueExpr>(E)) {
96    if (const RecordType *RecordT = Zero->getType()->getAs<RecordType>())
97      if (CXXRecordDecl *RecordD = dyn_cast<CXXRecordDecl>(RecordT->getDecl()))
98        if (!RecordD->hasTrivialDestructor())
99          return;
100  }
101
102  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
103    if (E->getType()->isVoidType())
104      return;
105
106    // If the callee has attribute pure, const, or warn_unused_result, warn with
107    // a more specific message to make it clear what is happening.
108    if (const Decl *FD = CE->getCalleeDecl()) {
109      if (FD->getAttr<WarnUnusedResultAttr>()) {
110        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
111        return;
112      }
113      if (FD->getAttr<PureAttr>()) {
114        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
115        return;
116      }
117      if (FD->getAttr<ConstAttr>()) {
118        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
119        return;
120      }
121    }
122  }
123  else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
124    const ObjCMethodDecl *MD = ME->getMethodDecl();
125    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
126      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
127      return;
128    }
129  } else if (const CXXFunctionalCastExpr *FC
130                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
131    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
132        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
133      return;
134  }
135  // Diagnose "(void*) blah" as a typo for "(void) blah".
136  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
137    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
138    QualType T = TI->getType();
139
140    // We really do want to use the non-canonical type here.
141    if (T == Context.VoidPtrTy) {
142      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
143
144      Diag(Loc, diag::warn_unused_voidptr)
145        << FixItHint::CreateRemoval(TL.getStarLoc());
146      return;
147    }
148  }
149
150  Diag(Loc, DiagID) << R1 << R2;
151}
152
153Action::OwningStmtResult
154Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
155                        MultiStmtArg elts, bool isStmtExpr) {
156  unsigned NumElts = elts.size();
157  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
158  // If we're in C89 mode, check that we don't have any decls after stmts.  If
159  // so, emit an extension diagnostic.
160  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
161    // Note that __extension__ can be around a decl.
162    unsigned i = 0;
163    // Skip over all declarations.
164    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
165      /*empty*/;
166
167    // We found the end of the list or a statement.  Scan for another declstmt.
168    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
169      /*empty*/;
170
171    if (i != NumElts) {
172      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
173      Diag(D->getLocation(), diag::ext_mixed_decls_code);
174    }
175  }
176  // Warn about unused expressions in statements.
177  for (unsigned i = 0; i != NumElts; ++i) {
178    // Ignore statements that are last in a statement expression.
179    if (isStmtExpr && i == NumElts - 1)
180      continue;
181
182    DiagnoseUnusedExprResult(Elts[i]);
183  }
184
185  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
186}
187
188Action::OwningStmtResult
189Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
190                    SourceLocation DotDotDotLoc, ExprArg rhsval,
191                    SourceLocation ColonLoc) {
192  assert((lhsval.get() != 0) && "missing expression in case statement");
193
194  // C99 6.8.4.2p3: The expression shall be an integer constant.
195  // However, GCC allows any evaluatable integer expression.
196  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
197  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
198      VerifyIntegerConstantExpression(LHSVal))
199    return StmtError();
200
201  // GCC extension: The expression shall be an integer constant.
202
203  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
204  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
205      VerifyIntegerConstantExpression(RHSVal)) {
206    RHSVal = 0;  // Recover by just forgetting about it.
207    rhsval = 0;
208  }
209
210  if (getSwitchStack().empty()) {
211    Diag(CaseLoc, diag::err_case_not_in_switch);
212    return StmtError();
213  }
214
215  // Only now release the smart pointers.
216  lhsval.release();
217  rhsval.release();
218  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
219                                        ColonLoc);
220  getSwitchStack().back()->addSwitchCase(CS);
221  return Owned(CS);
222}
223
224/// ActOnCaseStmtBody - This installs a statement as the body of a case.
225void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
226  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
227  Stmt *SubStmt = subStmt.takeAs<Stmt>();
228  CS->setSubStmt(SubStmt);
229}
230
231Action::OwningStmtResult
232Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
233                       StmtArg subStmt, Scope *CurScope) {
234  Stmt *SubStmt = subStmt.takeAs<Stmt>();
235
236  if (getSwitchStack().empty()) {
237    Diag(DefaultLoc, diag::err_default_not_in_switch);
238    return Owned(SubStmt);
239  }
240
241  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
242  getSwitchStack().back()->addSwitchCase(DS);
243  return Owned(DS);
244}
245
246Action::OwningStmtResult
247Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
248                     SourceLocation ColonLoc, StmtArg subStmt) {
249  Stmt *SubStmt = subStmt.takeAs<Stmt>();
250  // Look up the record for this label identifier.
251  LabelStmt *&LabelDecl = getLabelMap()[II];
252
253  // If not forward referenced or defined already, just create a new LabelStmt.
254  if (LabelDecl == 0)
255    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
256
257  assert(LabelDecl->getID() == II && "Label mismatch!");
258
259  // Otherwise, this label was either forward reference or multiply defined.  If
260  // multiply defined, reject it now.
261  if (LabelDecl->getSubStmt()) {
262    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
263    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
264    return Owned(SubStmt);
265  }
266
267  // Otherwise, this label was forward declared, and we just found its real
268  // definition.  Fill in the forward definition and return it.
269  LabelDecl->setIdentLoc(IdentLoc);
270  LabelDecl->setSubStmt(SubStmt);
271  return Owned(LabelDecl);
272}
273
274Action::OwningStmtResult
275Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, DeclPtrTy CondVar,
276                  StmtArg ThenVal, SourceLocation ElseLoc,
277                  StmtArg ElseVal) {
278  OwningExprResult CondResult(CondVal.release());
279
280  VarDecl *ConditionVar = 0;
281  if (CondVar.get()) {
282    ConditionVar = CondVar.getAs<VarDecl>();
283    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
284    if (CondResult.isInvalid())
285      return StmtError();
286  }
287  Expr *ConditionExpr = CondResult.takeAs<Expr>();
288  if (!ConditionExpr)
289    return StmtError();
290
291  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
292  DiagnoseUnusedExprResult(thenStmt);
293
294  // Warn if the if block has a null body without an else value.
295  // this helps prevent bugs due to typos, such as
296  // if (condition);
297  //   do_stuff();
298  if (!ElseVal.get()) {
299    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
300      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
301  }
302
303  Stmt *elseStmt = ElseVal.takeAs<Stmt>();
304  DiagnoseUnusedExprResult(elseStmt);
305
306  CondResult.release();
307  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
308                                    thenStmt, ElseLoc, elseStmt));
309}
310
311/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
312/// the specified width and sign.  If an overflow occurs, detect it and emit
313/// the specified diagnostic.
314void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
315                                              unsigned NewWidth, bool NewSign,
316                                              SourceLocation Loc,
317                                              unsigned DiagID) {
318  // Perform a conversion to the promoted condition type if needed.
319  if (NewWidth > Val.getBitWidth()) {
320    // If this is an extension, just do it.
321    Val.extend(NewWidth);
322    Val.setIsSigned(NewSign);
323
324    // If the input was signed and negative and the output is
325    // unsigned, don't bother to warn: this is implementation-defined
326    // behavior.
327    // FIXME: Introduce a second, default-ignored warning for this case?
328  } else if (NewWidth < Val.getBitWidth()) {
329    // If this is a truncation, check for overflow.
330    llvm::APSInt ConvVal(Val);
331    ConvVal.trunc(NewWidth);
332    ConvVal.setIsSigned(NewSign);
333    ConvVal.extend(Val.getBitWidth());
334    ConvVal.setIsSigned(Val.isSigned());
335    if (ConvVal != Val)
336      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
337
338    // Regardless of whether a diagnostic was emitted, really do the
339    // truncation.
340    Val.trunc(NewWidth);
341    Val.setIsSigned(NewSign);
342  } else if (NewSign != Val.isSigned()) {
343    // Convert the sign to match the sign of the condition.  This can cause
344    // overflow as well: unsigned(INTMIN)
345    // We don't diagnose this overflow, because it is implementation-defined
346    // behavior.
347    // FIXME: Introduce a second, default-ignored warning for this case?
348    llvm::APSInt OldVal(Val);
349    Val.setIsSigned(NewSign);
350  }
351}
352
353namespace {
354  struct CaseCompareFunctor {
355    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
356                    const llvm::APSInt &RHS) {
357      return LHS.first < RHS;
358    }
359    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
360                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
361      return LHS.first < RHS.first;
362    }
363    bool operator()(const llvm::APSInt &LHS,
364                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
365      return LHS < RHS.first;
366    }
367  };
368}
369
370/// CmpCaseVals - Comparison predicate for sorting case values.
371///
372static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
373                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
374  if (lhs.first < rhs.first)
375    return true;
376
377  if (lhs.first == rhs.first &&
378      lhs.second->getCaseLoc().getRawEncoding()
379       < rhs.second->getCaseLoc().getRawEncoding())
380    return true;
381  return false;
382}
383
384/// CmpEnumVals - Comparison predicate for sorting enumeration values.
385///
386static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
387                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
388{
389  return lhs.first < rhs.first;
390}
391
392/// EqEnumVals - Comparison preficate for uniqing enumeration values.
393///
394static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
395                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
396{
397  return lhs.first == rhs.first;
398}
399
400/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
401/// potentially integral-promoted expression @p expr.
402static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
403  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
404    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
405    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
406    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
407      return TypeBeforePromotion;
408    }
409  }
410  return expr->getType();
411}
412
413Action::OwningStmtResult
414Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, ExprArg Cond,
415                             DeclPtrTy CondVar) {
416  VarDecl *ConditionVar = 0;
417  if (CondVar.get()) {
418    ConditionVar = CondVar.getAs<VarDecl>();
419    OwningExprResult CondE = CheckConditionVariable(ConditionVar, SourceLocation(), false);
420    if (CondE.isInvalid())
421      return StmtError();
422
423    Cond = move(CondE);
424  }
425
426  if (!Cond.get())
427    return StmtError();
428
429  Expr *CondExpr = static_cast<Expr *>(Cond.get());
430  OwningExprResult ConvertedCond
431    = ConvertToIntegralOrEnumerationType(SwitchLoc, move(Cond),
432                          PDiag(diag::err_typecheck_statement_requires_integer),
433                                   PDiag(diag::err_switch_incomplete_class_type)
434                                     << CondExpr->getSourceRange(),
435                                   PDiag(diag::err_switch_explicit_conversion),
436                                         PDiag(diag::note_switch_conversion),
437                                   PDiag(diag::err_switch_multiple_conversions),
438                                         PDiag(diag::note_switch_conversion));
439  if (ConvertedCond.isInvalid())
440    return StmtError();
441
442  CondExpr = ConvertedCond.takeAs<Expr>();
443
444  if (!CondVar.get()) {
445    CondExpr = MaybeCreateCXXExprWithTemporaries(CondExpr);
446    if (!CondExpr)
447      return StmtError();
448  }
449
450  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, CondExpr);
451  getSwitchStack().push_back(SS);
452  return Owned(SS);
453}
454
455Action::OwningStmtResult
456Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
457                            StmtArg Body) {
458  Stmt *BodyStmt = Body.takeAs<Stmt>();
459
460  SwitchStmt *SS = getSwitchStack().back();
461  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
462
463  SS->setBody(BodyStmt, SwitchLoc);
464  getSwitchStack().pop_back();
465
466  if (SS->getCond() == 0) {
467    SS->Destroy(Context);
468    return StmtError();
469  }
470
471  Expr *CondExpr = SS->getCond();
472  Expr *CondExprBeforePromotion = CondExpr;
473  QualType CondTypeBeforePromotion =
474      GetTypeBeforeIntegralPromotion(CondExpr);
475
476  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
477  UsualUnaryConversions(CondExpr);
478  QualType CondType = CondExpr->getType();
479  SS->setCond(CondExpr);
480
481  // C++ 6.4.2.p2:
482  // Integral promotions are performed (on the switch condition).
483  //
484  // A case value unrepresentable by the original switch condition
485  // type (before the promotion) doesn't make sense, even when it can
486  // be represented by the promoted type.  Therefore we need to find
487  // the pre-promotion type of the switch condition.
488  if (!CondExpr->isTypeDependent()) {
489    // We have already converted the expression to an integral or enumeration
490    // type, when we started the switch statement. If we don't have an
491    // appropriate type now, just return an error.
492    if (!CondType->isIntegralOrEnumerationType())
493      return StmtError();
494
495    if (CondExpr->isKnownToHaveBooleanValue()) {
496      // switch(bool_expr) {...} is often a programmer error, e.g.
497      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
498      // One can always use an if statement instead of switch(bool_expr).
499      Diag(SwitchLoc, diag::warn_bool_switch_condition)
500          << CondExpr->getSourceRange();
501    }
502  }
503
504  // Get the bitwidth of the switched-on value before promotions.  We must
505  // convert the integer case values to this width before comparison.
506  bool HasDependentValue
507    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
508  unsigned CondWidth
509    = HasDependentValue? 0
510      : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
511  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
512
513  // Accumulate all of the case values in a vector so that we can sort them
514  // and detect duplicates.  This vector contains the APInt for the case after
515  // it has been converted to the condition type.
516  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
517  CaseValsTy CaseVals;
518
519  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
520  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
521  CaseRangesTy CaseRanges;
522
523  DefaultStmt *TheDefaultStmt = 0;
524
525  bool CaseListIsErroneous = false;
526
527  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
528       SC = SC->getNextSwitchCase()) {
529
530    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
531      if (TheDefaultStmt) {
532        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
533        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
534
535        // FIXME: Remove the default statement from the switch block so that
536        // we'll return a valid AST.  This requires recursing down the AST and
537        // finding it, not something we are set up to do right now.  For now,
538        // just lop the entire switch stmt out of the AST.
539        CaseListIsErroneous = true;
540      }
541      TheDefaultStmt = DS;
542
543    } else {
544      CaseStmt *CS = cast<CaseStmt>(SC);
545
546      // We already verified that the expression has a i-c-e value (C99
547      // 6.8.4.2p3) - get that value now.
548      Expr *Lo = CS->getLHS();
549
550      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
551        HasDependentValue = true;
552        break;
553      }
554
555      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
556
557      // Convert the value to the same width/sign as the condition.
558      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
559                                         CS->getLHS()->getLocStart(),
560                                         diag::warn_case_value_overflow);
561
562      // If the LHS is not the same type as the condition, insert an implicit
563      // cast.
564      ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast);
565      CS->setLHS(Lo);
566
567      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
568      if (CS->getRHS()) {
569        if (CS->getRHS()->isTypeDependent() ||
570            CS->getRHS()->isValueDependent()) {
571          HasDependentValue = true;
572          break;
573        }
574        CaseRanges.push_back(std::make_pair(LoVal, CS));
575      } else
576        CaseVals.push_back(std::make_pair(LoVal, CS));
577    }
578  }
579
580  if (!HasDependentValue) {
581    // If we don't have a default statement, check whether the
582    // condition is constant.
583    llvm::APSInt ConstantCondValue;
584    bool HasConstantCond = false;
585    bool ShouldCheckConstantCond = false;
586    if (!HasDependentValue && !TheDefaultStmt) {
587      Expr::EvalResult Result;
588      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
589      if (HasConstantCond) {
590        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
591        ConstantCondValue = Result.Val.getInt();
592        ShouldCheckConstantCond = true;
593
594        assert(ConstantCondValue.getBitWidth() == CondWidth &&
595               ConstantCondValue.isSigned() == CondIsSigned);
596      }
597    }
598
599    // Sort all the scalar case values so we can easily detect duplicates.
600    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
601
602    if (!CaseVals.empty()) {
603      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
604        if (ShouldCheckConstantCond &&
605            CaseVals[i].first == ConstantCondValue)
606          ShouldCheckConstantCond = false;
607
608        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
609          // If we have a duplicate, report it.
610          Diag(CaseVals[i].second->getLHS()->getLocStart(),
611               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
612          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
613               diag::note_duplicate_case_prev);
614          // FIXME: We really want to remove the bogus case stmt from the
615          // substmt, but we have no way to do this right now.
616          CaseListIsErroneous = true;
617        }
618      }
619    }
620
621    // Detect duplicate case ranges, which usually don't exist at all in
622    // the first place.
623    if (!CaseRanges.empty()) {
624      // Sort all the case ranges by their low value so we can easily detect
625      // overlaps between ranges.
626      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
627
628      // Scan the ranges, computing the high values and removing empty ranges.
629      std::vector<llvm::APSInt> HiVals;
630      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
631        llvm::APSInt &LoVal = CaseRanges[i].first;
632        CaseStmt *CR = CaseRanges[i].second;
633        Expr *Hi = CR->getRHS();
634        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
635
636        // Convert the value to the same width/sign as the condition.
637        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
638                                           CR->getRHS()->getLocStart(),
639                                           diag::warn_case_value_overflow);
640
641        // If the LHS is not the same type as the condition, insert an implicit
642        // cast.
643        ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast);
644        CR->setRHS(Hi);
645
646        // If the low value is bigger than the high value, the case is empty.
647        if (LoVal > HiVal) {
648          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
649            << SourceRange(CR->getLHS()->getLocStart(),
650                           CR->getRHS()->getLocEnd());
651          CaseRanges.erase(CaseRanges.begin()+i);
652          --i, --e;
653          continue;
654        }
655
656        if (ShouldCheckConstantCond &&
657            LoVal <= ConstantCondValue &&
658            ConstantCondValue <= HiVal)
659          ShouldCheckConstantCond = false;
660
661        HiVals.push_back(HiVal);
662      }
663
664      // Rescan the ranges, looking for overlap with singleton values and other
665      // ranges.  Since the range list is sorted, we only need to compare case
666      // ranges with their neighbors.
667      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
668        llvm::APSInt &CRLo = CaseRanges[i].first;
669        llvm::APSInt &CRHi = HiVals[i];
670        CaseStmt *CR = CaseRanges[i].second;
671
672        // Check to see whether the case range overlaps with any
673        // singleton cases.
674        CaseStmt *OverlapStmt = 0;
675        llvm::APSInt OverlapVal(32);
676
677        // Find the smallest value >= the lower bound.  If I is in the
678        // case range, then we have overlap.
679        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
680                                                  CaseVals.end(), CRLo,
681                                                  CaseCompareFunctor());
682        if (I != CaseVals.end() && I->first < CRHi) {
683          OverlapVal  = I->first;   // Found overlap with scalar.
684          OverlapStmt = I->second;
685        }
686
687        // Find the smallest value bigger than the upper bound.
688        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
689        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
690          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
691          OverlapStmt = (I-1)->second;
692        }
693
694        // Check to see if this case stmt overlaps with the subsequent
695        // case range.
696        if (i && CRLo <= HiVals[i-1]) {
697          OverlapVal  = HiVals[i-1];       // Found overlap with range.
698          OverlapStmt = CaseRanges[i-1].second;
699        }
700
701        if (OverlapStmt) {
702          // If we have a duplicate, report it.
703          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
704            << OverlapVal.toString(10);
705          Diag(OverlapStmt->getLHS()->getLocStart(),
706               diag::note_duplicate_case_prev);
707          // FIXME: We really want to remove the bogus case stmt from the
708          // substmt, but we have no way to do this right now.
709          CaseListIsErroneous = true;
710        }
711      }
712    }
713
714    // Complain if we have a constant condition and we didn't find a match.
715    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
716      // TODO: it would be nice if we printed enums as enums, chars as
717      // chars, etc.
718      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
719        << ConstantCondValue.toString(10)
720        << CondExpr->getSourceRange();
721    }
722
723    // Check to see if switch is over an Enum and handles all of its
724    // values.  We don't need to do this if there's a default
725    // statement or if we have a constant condition.
726    //
727    // TODO: we might want to check whether case values are out of the
728    // enum even if we don't want to check whether all cases are handled.
729    const EnumType* ET = CondTypeBeforePromotion->getAs<EnumType>();
730    // If switch has default case, then ignore it.
731    if (!CaseListIsErroneous && !TheDefaultStmt && !HasConstantCond && ET) {
732      const EnumDecl *ED = ET->getDecl();
733      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
734      EnumValsTy EnumVals;
735
736      // Gather all enum values, set their type and sort them,
737      // allowing easier comparison with CaseVals.
738      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
739             EDI != ED->enumerator_end(); EDI++) {
740        llvm::APSInt Val = (*EDI)->getInitVal();
741        if(Val.getBitWidth() < CondWidth)
742          Val.extend(CondWidth);
743        else if (Val.getBitWidth() > CondWidth)
744          Val.trunc(CondWidth);
745        Val.setIsSigned(CondIsSigned);
746        EnumVals.push_back(std::make_pair(Val, (*EDI)));
747      }
748      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
749      EnumValsTy::iterator EIend =
750        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
751      // See which case values aren't in enum
752      EnumValsTy::const_iterator EI = EnumVals.begin();
753      for (CaseValsTy::const_iterator CI = CaseVals.begin();
754             CI != CaseVals.end(); CI++) {
755        while (EI != EIend && EI->first < CI->first)
756          EI++;
757        if (EI == EIend || EI->first > CI->first)
758            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
759              << ED->getDeclName();
760      }
761      // See which of case ranges aren't in enum
762      EI = EnumVals.begin();
763      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
764             RI != CaseRanges.end() && EI != EIend; RI++) {
765        while (EI != EIend && EI->first < RI->first)
766          EI++;
767
768        if (EI == EIend || EI->first != RI->first) {
769          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
770            << ED->getDeclName();
771        }
772
773        llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
774        while (EI != EIend && EI->first < Hi)
775          EI++;
776        if (EI == EIend || EI->first != Hi)
777          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
778            << ED->getDeclName();
779      }
780      //Check which enum vals aren't in switch
781      CaseValsTy::const_iterator CI = CaseVals.begin();
782      CaseRangesTy::const_iterator RI = CaseRanges.begin();
783      EI = EnumVals.begin();
784      for (; EI != EIend; EI++) {
785        //Drop unneeded case values
786        llvm::APSInt CIVal;
787        while (CI != CaseVals.end() && CI->first < EI->first)
788          CI++;
789
790        if (CI != CaseVals.end() && CI->first == EI->first)
791          continue;
792
793        //Drop unneeded case ranges
794        for (; RI != CaseRanges.end(); RI++) {
795          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
796          if (EI->first <= Hi)
797            break;
798        }
799
800        if (RI == CaseRanges.end() || EI->first < RI->first)
801          Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
802            << EI->second->getDeclName();
803      }
804    }
805  }
806
807  // FIXME: If the case list was broken is some way, we don't have a good system
808  // to patch it up.  Instead, just return the whole substmt as broken.
809  if (CaseListIsErroneous)
810    return StmtError();
811
812  Switch.release();
813  return Owned(SS);
814}
815
816Action::OwningStmtResult
817Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
818                     DeclPtrTy CondVar, StmtArg Body) {
819  OwningExprResult CondResult(Cond.release());
820
821  VarDecl *ConditionVar = 0;
822  if (CondVar.get()) {
823    ConditionVar = CondVar.getAs<VarDecl>();
824    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
825    if (CondResult.isInvalid())
826      return StmtError();
827  }
828  Expr *ConditionExpr = CondResult.takeAs<Expr>();
829  if (!ConditionExpr)
830    return StmtError();
831
832  Stmt *bodyStmt = Body.takeAs<Stmt>();
833  DiagnoseUnusedExprResult(bodyStmt);
834
835  CondResult.release();
836  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
837                                       bodyStmt, WhileLoc));
838}
839
840Action::OwningStmtResult
841Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
842                  SourceLocation WhileLoc, SourceLocation CondLParen,
843                  ExprArg Cond, SourceLocation CondRParen) {
844  Expr *condExpr = Cond.takeAs<Expr>();
845  assert(condExpr && "ActOnDoStmt(): missing expression");
846
847  if (CheckBooleanCondition(condExpr, DoLoc)) {
848    Cond = condExpr;
849    return StmtError();
850  }
851
852  condExpr = MaybeCreateCXXExprWithTemporaries(condExpr);
853  if (!condExpr)
854    return StmtError();
855
856  Stmt *bodyStmt = Body.takeAs<Stmt>();
857  DiagnoseUnusedExprResult(bodyStmt);
858
859  Cond.release();
860  return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
861                                    WhileLoc, CondRParen));
862}
863
864Action::OwningStmtResult
865Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
866                   StmtArg first, FullExprArg second, DeclPtrTy secondVar,
867                   FullExprArg third,
868                   SourceLocation RParenLoc, StmtArg body) {
869  Stmt *First  = static_cast<Stmt*>(first.get());
870
871  if (!getLangOptions().CPlusPlus) {
872    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
873      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
874      // declare identifiers for objects having storage class 'auto' or
875      // 'register'.
876      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
877           DI!=DE; ++DI) {
878        VarDecl *VD = dyn_cast<VarDecl>(*DI);
879        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
880          VD = 0;
881        if (VD == 0)
882          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
883        // FIXME: mark decl erroneous!
884      }
885    }
886  }
887
888  OwningExprResult SecondResult(second.release());
889  VarDecl *ConditionVar = 0;
890  if (secondVar.get()) {
891    ConditionVar = secondVar.getAs<VarDecl>();
892    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
893    if (SecondResult.isInvalid())
894      return StmtError();
895  }
896
897  Expr *Third  = third.release().takeAs<Expr>();
898  Stmt *Body  = static_cast<Stmt*>(body.get());
899
900  DiagnoseUnusedExprResult(First);
901  DiagnoseUnusedExprResult(Third);
902  DiagnoseUnusedExprResult(Body);
903
904  first.release();
905  body.release();
906  return Owned(new (Context) ForStmt(Context, First,
907                                     SecondResult.takeAs<Expr>(), ConditionVar,
908                                     Third, Body, ForLoc, LParenLoc,
909                                     RParenLoc));
910}
911
912Action::OwningStmtResult
913Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
914                                 SourceLocation LParenLoc,
915                                 StmtArg first, ExprArg second,
916                                 SourceLocation RParenLoc, StmtArg body) {
917  Stmt *First  = static_cast<Stmt*>(first.get());
918  Expr *Second = static_cast<Expr*>(second.get());
919  Stmt *Body  = static_cast<Stmt*>(body.get());
920  if (First) {
921    QualType FirstType;
922    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
923      if (!DS->isSingleDecl())
924        return StmtError(Diag((*DS->decl_begin())->getLocation(),
925                         diag::err_toomany_element_decls));
926
927      Decl *D = DS->getSingleDecl();
928      FirstType = cast<ValueDecl>(D)->getType();
929      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
930      // declare identifiers for objects having storage class 'auto' or
931      // 'register'.
932      VarDecl *VD = cast<VarDecl>(D);
933      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
934        return StmtError(Diag(VD->getLocation(),
935                              diag::err_non_variable_decl_in_for));
936    } else {
937      Expr *FirstE = cast<Expr>(First);
938      if (!FirstE->isTypeDependent() &&
939          FirstE->isLvalue(Context) != Expr::LV_Valid)
940        return StmtError(Diag(First->getLocStart(),
941                   diag::err_selector_element_not_lvalue)
942          << First->getSourceRange());
943
944      FirstType = static_cast<Expr*>(First)->getType();
945    }
946    if (!FirstType->isDependentType() &&
947        !FirstType->isObjCObjectPointerType() &&
948        !FirstType->isBlockPointerType())
949        Diag(ForLoc, diag::err_selector_element_type)
950          << FirstType << First->getSourceRange();
951  }
952  if (Second && !Second->isTypeDependent()) {
953    DefaultFunctionArrayLvalueConversion(Second);
954    QualType SecondType = Second->getType();
955    if (!SecondType->isObjCObjectPointerType())
956      Diag(ForLoc, diag::err_collection_expr_type)
957        << SecondType << Second->getSourceRange();
958  }
959  first.release();
960  second.release();
961  body.release();
962  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
963                                                   ForLoc, RParenLoc));
964}
965
966Action::OwningStmtResult
967Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
968                    IdentifierInfo *LabelII) {
969  // Look up the record for this label identifier.
970  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
971
972  // If we haven't seen this label yet, create a forward reference.
973  if (LabelDecl == 0)
974    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
975
976  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
977}
978
979Action::OwningStmtResult
980Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
981                            ExprArg DestExp) {
982  // Convert operand to void*
983  Expr* E = DestExp.takeAs<Expr>();
984  if (!E->isTypeDependent()) {
985    QualType ETy = E->getType();
986    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
987    AssignConvertType ConvTy =
988      CheckSingleAssignmentConstraints(DestTy, E);
989    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
990      return StmtError();
991  }
992  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
993}
994
995Action::OwningStmtResult
996Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
997  Scope *S = CurScope->getContinueParent();
998  if (!S) {
999    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1000    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1001  }
1002
1003  return Owned(new (Context) ContinueStmt(ContinueLoc));
1004}
1005
1006Action::OwningStmtResult
1007Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1008  Scope *S = CurScope->getBreakParent();
1009  if (!S) {
1010    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1011    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1012  }
1013
1014  return Owned(new (Context) BreakStmt(BreakLoc));
1015}
1016
1017/// \brief Determine whether a return statement is a candidate for the named
1018/// return value optimization (C++0x 12.8p34, bullet 1).
1019///
1020/// \param Ctx The context in which the return expression and type occur.
1021///
1022/// \param RetType The return type of the function or block.
1023///
1024/// \param RetExpr The expression being returned from the function or block.
1025///
1026/// \returns The NRVO candidate variable, if the return statement may use the
1027/// NRVO, or NULL if there is no such candidate.
1028static const VarDecl *getNRVOCandidate(ASTContext &Ctx, QualType RetType,
1029                                       Expr *RetExpr) {
1030  QualType ExprType = RetExpr->getType();
1031  // - in a return statement in a function with ...
1032  // ... a class return type ...
1033  if (!RetType->isRecordType())
1034    return 0;
1035  // ... the same cv-unqualified type as the function return type ...
1036  if (!Ctx.hasSameUnqualifiedType(RetType, ExprType))
1037    return 0;
1038  // ... the expression is the name of a non-volatile automatic object ...
1039  // We ignore parentheses here.
1040  // FIXME: Is this compliant? (Everyone else does it)
1041  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
1042  if (!DR)
1043    return 0;
1044  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1045  if (!VD)
1046    return 0;
1047
1048  if (VD->getKind() == Decl::Var && VD->hasLocalStorage() &&
1049      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1050      !VD->getType().isVolatileQualified())
1051    return VD;
1052
1053  return 0;
1054}
1055
1056/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1057///
1058Action::OwningStmtResult
1059Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1060  // If this is the first return we've seen in the block, infer the type of
1061  // the block from it.
1062  BlockScopeInfo *CurBlock = getCurBlock();
1063  if (CurBlock->ReturnType.isNull()) {
1064    if (RetValExp) {
1065      // Don't call UsualUnaryConversions(), since we don't want to do
1066      // integer promotions here.
1067      DefaultFunctionArrayLvalueConversion(RetValExp);
1068      CurBlock->ReturnType = RetValExp->getType();
1069      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1070        // We have to remove a 'const' added to copied-in variable which was
1071        // part of the implementation spec. and not the actual qualifier for
1072        // the variable.
1073        if (CDRE->isConstQualAdded())
1074           CurBlock->ReturnType.removeConst();
1075      }
1076    } else
1077      CurBlock->ReturnType = Context.VoidTy;
1078  }
1079  QualType FnRetType = CurBlock->ReturnType;
1080
1081  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
1082    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1083      << getCurFunctionOrMethodDecl()->getDeclName();
1084    return StmtError();
1085  }
1086
1087  // Otherwise, verify that this result type matches the previous one.  We are
1088  // pickier with blocks than for normal functions because we don't have GCC
1089  // compatibility to worry about here.
1090  ReturnStmt *Result = 0;
1091  if (CurBlock->ReturnType->isVoidType()) {
1092    if (RetValExp) {
1093      Diag(ReturnLoc, diag::err_return_block_has_expr);
1094      RetValExp->Destroy(Context);
1095      RetValExp = 0;
1096    }
1097    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1098  } else if (!RetValExp) {
1099    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1100  } else {
1101    const VarDecl *NRVOCandidate = 0;
1102
1103    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1104      // we have a non-void block with an expression, continue checking
1105
1106      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1107      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1108      // function return.
1109
1110      // In C++ the return statement is handled via a copy initialization.
1111      // the C version of which boils down to CheckSingleAssignmentConstraints.
1112      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1113      OwningExprResult Res = PerformCopyInitialization(
1114                               InitializedEntity::InitializeResult(ReturnLoc,
1115                                                                   FnRetType,
1116                                                            NRVOCandidate != 0),
1117                               SourceLocation(),
1118                               Owned(RetValExp));
1119      if (Res.isInvalid()) {
1120        // FIXME: Cleanup temporaries here, anyway?
1121        return StmtError();
1122      }
1123
1124      if (RetValExp)
1125        RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1126
1127      RetValExp = Res.takeAs<Expr>();
1128      if (RetValExp)
1129        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1130    }
1131
1132    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1133  }
1134
1135  // If we need to check for the named return value optimization, save the
1136  // return statement in our scope for later processing.
1137  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1138      !CurContext->isDependentContext())
1139    FunctionScopes.back()->Returns.push_back(Result);
1140
1141  return Owned(Result);
1142}
1143
1144Action::OwningStmtResult
1145Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
1146  Expr *RetValExp = rex.takeAs<Expr>();
1147  if (getCurBlock())
1148    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1149
1150  QualType FnRetType;
1151  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1152    FnRetType = FD->getResultType();
1153    if (FD->hasAttr<NoReturnAttr>() ||
1154        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1155      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1156        << getCurFunctionOrMethodDecl()->getDeclName();
1157  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1158    FnRetType = MD->getResultType();
1159  else // If we don't have a function/method context, bail.
1160    return StmtError();
1161
1162  ReturnStmt *Result = 0;
1163  if (FnRetType->isVoidType()) {
1164    if (RetValExp && !RetValExp->isTypeDependent()) {
1165      // C99 6.8.6.4p1 (ext_ since GCC warns)
1166      unsigned D = diag::ext_return_has_expr;
1167      if (RetValExp->getType()->isVoidType())
1168        D = diag::ext_return_has_void_expr;
1169
1170      // return (some void expression); is legal in C++.
1171      if (D != diag::ext_return_has_void_expr ||
1172          !getLangOptions().CPlusPlus) {
1173        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1174        Diag(ReturnLoc, D)
1175          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1176          << RetValExp->getSourceRange();
1177      }
1178
1179      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1180    }
1181
1182    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1183  } else if (!RetValExp && !FnRetType->isDependentType()) {
1184    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1185    // C99 6.8.6.4p1 (ext_ since GCC warns)
1186    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1187
1188    if (FunctionDecl *FD = getCurFunctionDecl())
1189      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1190    else
1191      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1192    Result = new (Context) ReturnStmt(ReturnLoc);
1193  } else {
1194    const VarDecl *NRVOCandidate = 0;
1195    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1196      // we have a non-void function with an expression, continue checking
1197
1198      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1199      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1200      // function return.
1201
1202      // In C++ the return statement is handled via a copy initialization.
1203      // the C version of which boils down to CheckSingleAssignmentConstraints.
1204      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1205      OwningExprResult Res = PerformCopyInitialization(
1206                               InitializedEntity::InitializeResult(ReturnLoc,
1207                                                                   FnRetType,
1208                                                            NRVOCandidate != 0),
1209                               SourceLocation(),
1210                               Owned(RetValExp));
1211      if (Res.isInvalid()) {
1212        // FIXME: Cleanup temporaries here, anyway?
1213        return StmtError();
1214      }
1215
1216      RetValExp = Res.takeAs<Expr>();
1217      if (RetValExp)
1218        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1219    }
1220
1221    if (RetValExp)
1222      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1223    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1224  }
1225
1226  // If we need to check for the named return value optimization, save the
1227  // return statement in our scope for later processing.
1228  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1229      !CurContext->isDependentContext())
1230    FunctionScopes.back()->Returns.push_back(Result);
1231
1232  return Owned(Result);
1233}
1234
1235/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1236/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1237/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1238/// provide a strong guidance to not use it.
1239///
1240/// This method checks to see if the argument is an acceptable l-value and
1241/// returns false if it is a case we can handle.
1242static bool CheckAsmLValue(const Expr *E, Sema &S) {
1243  // Type dependent expressions will be checked during instantiation.
1244  if (E->isTypeDependent())
1245    return false;
1246
1247  if (E->isLvalue(S.Context) == Expr::LV_Valid)
1248    return false;  // Cool, this is an lvalue.
1249
1250  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1251  // are supposed to allow.
1252  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1253  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
1254    if (!S.getLangOptions().HeinousExtensions)
1255      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1256        << E->getSourceRange();
1257    else
1258      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1259        << E->getSourceRange();
1260    // Accept, even if we emitted an error diagnostic.
1261    return false;
1262  }
1263
1264  // None of the above, just randomly invalid non-lvalue.
1265  return true;
1266}
1267
1268
1269Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
1270                                          bool IsSimple,
1271                                          bool IsVolatile,
1272                                          unsigned NumOutputs,
1273                                          unsigned NumInputs,
1274                                          IdentifierInfo **Names,
1275                                          MultiExprArg constraints,
1276                                          MultiExprArg exprs,
1277                                          ExprArg asmString,
1278                                          MultiExprArg clobbers,
1279                                          SourceLocation RParenLoc,
1280                                          bool MSAsm) {
1281  unsigned NumClobbers = clobbers.size();
1282  StringLiteral **Constraints =
1283    reinterpret_cast<StringLiteral**>(constraints.get());
1284  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
1285  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
1286  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1287
1288  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1289
1290  // The parser verifies that there is a string literal here.
1291  if (AsmString->isWide())
1292    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1293      << AsmString->getSourceRange());
1294
1295  for (unsigned i = 0; i != NumOutputs; i++) {
1296    StringLiteral *Literal = Constraints[i];
1297    if (Literal->isWide())
1298      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1299        << Literal->getSourceRange());
1300
1301    llvm::StringRef OutputName;
1302    if (Names[i])
1303      OutputName = Names[i]->getName();
1304
1305    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1306    if (!Context.Target.validateOutputConstraint(Info))
1307      return StmtError(Diag(Literal->getLocStart(),
1308                            diag::err_asm_invalid_output_constraint)
1309                       << Info.getConstraintStr());
1310
1311    // Check that the output exprs are valid lvalues.
1312    Expr *OutputExpr = Exprs[i];
1313    if (CheckAsmLValue(OutputExpr, *this)) {
1314      return StmtError(Diag(OutputExpr->getLocStart(),
1315                  diag::err_asm_invalid_lvalue_in_output)
1316        << OutputExpr->getSourceRange());
1317    }
1318
1319    OutputConstraintInfos.push_back(Info);
1320  }
1321
1322  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1323
1324  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1325    StringLiteral *Literal = Constraints[i];
1326    if (Literal->isWide())
1327      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1328        << Literal->getSourceRange());
1329
1330    llvm::StringRef InputName;
1331    if (Names[i])
1332      InputName = Names[i]->getName();
1333
1334    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1335    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1336                                                NumOutputs, Info)) {
1337      return StmtError(Diag(Literal->getLocStart(),
1338                            diag::err_asm_invalid_input_constraint)
1339                       << Info.getConstraintStr());
1340    }
1341
1342    Expr *InputExpr = Exprs[i];
1343
1344    // Only allow void types for memory constraints.
1345    if (Info.allowsMemory() && !Info.allowsRegister()) {
1346      if (CheckAsmLValue(InputExpr, *this))
1347        return StmtError(Diag(InputExpr->getLocStart(),
1348                              diag::err_asm_invalid_lvalue_in_input)
1349                         << Info.getConstraintStr()
1350                         << InputExpr->getSourceRange());
1351    }
1352
1353    if (Info.allowsRegister()) {
1354      if (InputExpr->getType()->isVoidType()) {
1355        return StmtError(Diag(InputExpr->getLocStart(),
1356                              diag::err_asm_invalid_type_in_input)
1357          << InputExpr->getType() << Info.getConstraintStr()
1358          << InputExpr->getSourceRange());
1359      }
1360    }
1361
1362    DefaultFunctionArrayLvalueConversion(Exprs[i]);
1363
1364    InputConstraintInfos.push_back(Info);
1365  }
1366
1367  // Check that the clobbers are valid.
1368  for (unsigned i = 0; i != NumClobbers; i++) {
1369    StringLiteral *Literal = Clobbers[i];
1370    if (Literal->isWide())
1371      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1372        << Literal->getSourceRange());
1373
1374    llvm::StringRef Clobber = Literal->getString();
1375
1376    if (!Context.Target.isValidGCCRegisterName(Clobber))
1377      return StmtError(Diag(Literal->getLocStart(),
1378                  diag::err_asm_unknown_register_name) << Clobber);
1379  }
1380
1381  constraints.release();
1382  exprs.release();
1383  asmString.release();
1384  clobbers.release();
1385  AsmStmt *NS =
1386    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1387                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1388                          AsmString, NumClobbers, Clobbers, RParenLoc);
1389  // Validate the asm string, ensuring it makes sense given the operands we
1390  // have.
1391  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1392  unsigned DiagOffs;
1393  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1394    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1395           << AsmString->getSourceRange();
1396    DeleteStmt(NS);
1397    return StmtError();
1398  }
1399
1400  // Validate tied input operands for type mismatches.
1401  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1402    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1403
1404    // If this is a tied constraint, verify that the output and input have
1405    // either exactly the same type, or that they are int/ptr operands with the
1406    // same size (int/long, int*/long, are ok etc).
1407    if (!Info.hasTiedOperand()) continue;
1408
1409    unsigned TiedTo = Info.getTiedOperand();
1410    Expr *OutputExpr = Exprs[TiedTo];
1411    Expr *InputExpr = Exprs[i+NumOutputs];
1412    QualType InTy = InputExpr->getType();
1413    QualType OutTy = OutputExpr->getType();
1414    if (Context.hasSameType(InTy, OutTy))
1415      continue;  // All types can be tied to themselves.
1416
1417    // Decide if the input and output are in the same domain (integer/ptr or
1418    // floating point.
1419    enum AsmDomain {
1420      AD_Int, AD_FP, AD_Other
1421    } InputDomain, OutputDomain;
1422
1423    if (InTy->isIntegerType() || InTy->isPointerType())
1424      InputDomain = AD_Int;
1425    else if (InTy->isRealFloatingType())
1426      InputDomain = AD_FP;
1427    else
1428      InputDomain = AD_Other;
1429
1430    if (OutTy->isIntegerType() || OutTy->isPointerType())
1431      OutputDomain = AD_Int;
1432    else if (OutTy->isRealFloatingType())
1433      OutputDomain = AD_FP;
1434    else
1435      OutputDomain = AD_Other;
1436
1437    // They are ok if they are the same size and in the same domain.  This
1438    // allows tying things like:
1439    //   void* to int*
1440    //   void* to int            if they are the same size.
1441    //   double to long double   if they are the same size.
1442    //
1443    uint64_t OutSize = Context.getTypeSize(OutTy);
1444    uint64_t InSize = Context.getTypeSize(InTy);
1445    if (OutSize == InSize && InputDomain == OutputDomain &&
1446        InputDomain != AD_Other)
1447      continue;
1448
1449    // If the smaller input/output operand is not mentioned in the asm string,
1450    // then we can promote it and the asm string won't notice.  Check this
1451    // case now.
1452    bool SmallerValueMentioned = false;
1453    for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1454      AsmStmt::AsmStringPiece &Piece = Pieces[p];
1455      if (!Piece.isOperand()) continue;
1456
1457      // If this is a reference to the input and if the input was the smaller
1458      // one, then we have to reject this asm.
1459      if (Piece.getOperandNo() == i+NumOutputs) {
1460        if (InSize < OutSize) {
1461          SmallerValueMentioned = true;
1462          break;
1463        }
1464      }
1465
1466      // If this is a reference to the input and if the input was the smaller
1467      // one, then we have to reject this asm.
1468      if (Piece.getOperandNo() == TiedTo) {
1469        if (InSize > OutSize) {
1470          SmallerValueMentioned = true;
1471          break;
1472        }
1473      }
1474    }
1475
1476    // If the smaller value wasn't mentioned in the asm string, and if the
1477    // output was a register, just extend the shorter one to the size of the
1478    // larger one.
1479    if (!SmallerValueMentioned && InputDomain != AD_Other &&
1480        OutputConstraintInfos[TiedTo].allowsRegister())
1481      continue;
1482
1483    Diag(InputExpr->getLocStart(),
1484         diag::err_asm_tying_incompatible_types)
1485      << InTy << OutTy << OutputExpr->getSourceRange()
1486      << InputExpr->getSourceRange();
1487    DeleteStmt(NS);
1488    return StmtError();
1489  }
1490
1491  return Owned(NS);
1492}
1493
1494Action::OwningStmtResult
1495Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1496                           SourceLocation RParen, DeclPtrTy Parm,
1497                           StmtArg Body) {
1498  VarDecl *Var = cast_or_null<VarDecl>(Parm.getAs<Decl>());
1499  if (Var && Var->isInvalidDecl())
1500    return StmtError();
1501
1502  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var,
1503                                             Body.takeAs<Stmt>()));
1504}
1505
1506Action::OwningStmtResult
1507Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1508  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1509                                           static_cast<Stmt*>(Body.release())));
1510}
1511
1512Action::OwningStmtResult
1513Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, StmtArg Try,
1514                         MultiStmtArg CatchStmts, StmtArg Finally) {
1515  FunctionNeedsScopeChecking() = true;
1516  unsigned NumCatchStmts = CatchStmts.size();
1517  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try.takeAs<Stmt>(),
1518                                     (Stmt **)CatchStmts.release(),
1519                                     NumCatchStmts,
1520                                     Finally.takeAs<Stmt>()));
1521}
1522
1523Sema::OwningStmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
1524                                                  ExprArg ThrowE) {
1525  Expr *Throw = static_cast<Expr *>(ThrowE.get());
1526  if (Throw) {
1527    QualType ThrowType = Throw->getType();
1528    // Make sure the expression type is an ObjC pointer or "void *".
1529    if (!ThrowType->isDependentType() &&
1530        !ThrowType->isObjCObjectPointerType()) {
1531      const PointerType *PT = ThrowType->getAs<PointerType>();
1532      if (!PT || !PT->getPointeeType()->isVoidType())
1533        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1534                         << Throw->getType() << Throw->getSourceRange());
1535    }
1536  }
1537
1538  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowE.takeAs<Expr>()));
1539}
1540
1541Action::OwningStmtResult
1542Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg Throw,
1543                           Scope *CurScope) {
1544  if (!Throw.get()) {
1545    // @throw without an expression designates a rethrow (which much occur
1546    // in the context of an @catch clause).
1547    Scope *AtCatchParent = CurScope;
1548    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1549      AtCatchParent = AtCatchParent->getParent();
1550    if (!AtCatchParent)
1551      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1552  }
1553
1554  return BuildObjCAtThrowStmt(AtLoc, move(Throw));
1555}
1556
1557Action::OwningStmtResult
1558Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1559                                  StmtArg SynchBody) {
1560  FunctionNeedsScopeChecking() = true;
1561
1562  // Make sure the expression type is an ObjC pointer or "void *".
1563  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1564  if (!SyncExpr->getType()->isDependentType() &&
1565      !SyncExpr->getType()->isObjCObjectPointerType()) {
1566    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1567    if (!PT || !PT->getPointeeType()->isVoidType())
1568      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1569                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1570  }
1571
1572  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1573                                                    SynchExpr.takeAs<Stmt>(),
1574                                                    SynchBody.takeAs<Stmt>()));
1575}
1576
1577/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1578/// and creates a proper catch handler from them.
1579Action::OwningStmtResult
1580Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1581                         StmtArg HandlerBlock) {
1582  // There's nothing to test that ActOnExceptionDecl didn't already test.
1583  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1584                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1585                                          HandlerBlock.takeAs<Stmt>()));
1586}
1587
1588class TypeWithHandler {
1589  QualType t;
1590  CXXCatchStmt *stmt;
1591public:
1592  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1593  : t(type), stmt(statement) {}
1594
1595  // An arbitrary order is fine as long as it places identical
1596  // types next to each other.
1597  bool operator<(const TypeWithHandler &y) const {
1598    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
1599      return true;
1600    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
1601      return false;
1602    else
1603      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1604  }
1605
1606  bool operator==(const TypeWithHandler& other) const {
1607    return t == other.t;
1608  }
1609
1610  QualType getQualType() const { return t; }
1611  CXXCatchStmt *getCatchStmt() const { return stmt; }
1612  SourceLocation getTypeSpecStartLoc() const {
1613    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1614  }
1615};
1616
1617/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1618/// handlers and creates a try statement from them.
1619Action::OwningStmtResult
1620Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1621                       MultiStmtArg RawHandlers) {
1622  unsigned NumHandlers = RawHandlers.size();
1623  assert(NumHandlers > 0 &&
1624         "The parser shouldn't call this if there are no handlers.");
1625  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1626
1627  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1628
1629  for (unsigned i = 0; i < NumHandlers; ++i) {
1630    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1631    if (!Handler->getExceptionDecl()) {
1632      if (i < NumHandlers - 1)
1633        return StmtError(Diag(Handler->getLocStart(),
1634                              diag::err_early_catch_all));
1635
1636      continue;
1637    }
1638
1639    const QualType CaughtType = Handler->getCaughtType();
1640    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1641    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1642  }
1643
1644  // Detect handlers for the same type as an earlier one.
1645  if (NumHandlers > 1) {
1646    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1647
1648    TypeWithHandler prev = TypesWithHandlers[0];
1649    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1650      TypeWithHandler curr = TypesWithHandlers[i];
1651
1652      if (curr == prev) {
1653        Diag(curr.getTypeSpecStartLoc(),
1654             diag::warn_exception_caught_by_earlier_handler)
1655          << curr.getCatchStmt()->getCaughtType().getAsString();
1656        Diag(prev.getTypeSpecStartLoc(),
1657             diag::note_previous_exception_handler)
1658          << prev.getCatchStmt()->getCaughtType().getAsString();
1659      }
1660
1661      prev = curr;
1662    }
1663  }
1664
1665  // FIXME: We should detect handlers that cannot catch anything because an
1666  // earlier handler catches a superclass. Need to find a method that is not
1667  // quadratic for this.
1668  // Neither of these are explicitly forbidden, but every compiler detects them
1669  // and warns.
1670
1671  FunctionNeedsScopeChecking() = true;
1672  RawHandlers.release();
1673  return Owned(CXXTryStmt::Create(Context, TryLoc,
1674                                  static_cast<Stmt*>(TryBlock.release()),
1675                                  Handlers, NumHandlers));
1676}
1677