SemaStmt.cpp revision 8cd64b4c5553fa6284d248336cb7c82dc960a394
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/SmallVector.h"
35using namespace clang;
36using namespace sema;
37
38StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
39  Expr *E = expr.get();
40  if (!E) // FIXME: FullExprArg has no error state?
41    return StmtError();
42
43  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
44  // void expression for its side effects.  Conversion to void allows any
45  // operand, even incomplete types.
46
47  // Same thing in for stmt first clause (when expr) and third clause.
48  return Owned(static_cast<Stmt*>(E));
49}
50
51
52StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
53                               bool HasLeadingEmptyMacro) {
54  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
55}
56
57StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
58                               SourceLocation EndLoc) {
59  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
60
61  // If we have an invalid decl, just return an error.
62  if (DG.isNull()) return StmtError();
63
64  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
65}
66
67void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
68  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
69
70  // If we have an invalid decl, just return.
71  if (DG.isNull() || !DG.isSingleDecl()) return;
72  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
73
74  // suppress any potential 'unused variable' warning.
75  var->setUsed();
76
77  // foreach variables are never actually initialized in the way that
78  // the parser came up with.
79  var->setInit(0);
80
81  // In ARC, we don't need to retain the iteration variable of a fast
82  // enumeration loop.  Rather than actually trying to catch that
83  // during declaration processing, we remove the consequences here.
84  if (getLangOpts().ObjCAutoRefCount) {
85    QualType type = var->getType();
86
87    // Only do this if we inferred the lifetime.  Inferred lifetime
88    // will show up as a local qualifier because explicit lifetime
89    // should have shown up as an AttributedType instead.
90    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
91      // Add 'const' and mark the variable as pseudo-strong.
92      var->setType(type.withConst());
93      var->setARCPseudoStrong(true);
94    }
95  }
96}
97
98/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
99///
100/// Adding a cast to void (or other expression wrappers) will prevent the
101/// warning from firing.
102static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
103  SourceLocation Loc;
104  bool IsNotEqual, CanAssign;
105
106  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
107    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
108      return false;
109
110    Loc = Op->getOperatorLoc();
111    IsNotEqual = Op->getOpcode() == BO_NE;
112    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
113  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
114    if (Op->getOperator() != OO_EqualEqual &&
115        Op->getOperator() != OO_ExclaimEqual)
116      return false;
117
118    Loc = Op->getOperatorLoc();
119    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
120    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
121  } else {
122    // Not a typo-prone comparison.
123    return false;
124  }
125
126  // Suppress warnings when the operator, suspicious as it may be, comes from
127  // a macro expansion.
128  if (Loc.isMacroID())
129    return false;
130
131  S.Diag(Loc, diag::warn_unused_comparison)
132    << (unsigned)IsNotEqual << E->getSourceRange();
133
134  // If the LHS is a plausible entity to assign to, provide a fixit hint to
135  // correct common typos.
136  if (CanAssign) {
137    if (IsNotEqual)
138      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
139        << FixItHint::CreateReplacement(Loc, "|=");
140    else
141      S.Diag(Loc, diag::note_equality_comparison_to_assign)
142        << FixItHint::CreateReplacement(Loc, "=");
143  }
144
145  return true;
146}
147
148void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
149  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
150    return DiagnoseUnusedExprResult(Label->getSubStmt());
151
152  const Expr *E = dyn_cast_or_null<Expr>(S);
153  if (!E)
154    return;
155
156  const Expr *WarnExpr;
157  SourceLocation Loc;
158  SourceRange R1, R2;
159  if (SourceMgr.isInSystemMacro(E->getExprLoc()) ||
160      !E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
161    return;
162
163  // Okay, we have an unused result.  Depending on what the base expression is,
164  // we might want to make a more specific diagnostic.  Check for one of these
165  // cases now.
166  unsigned DiagID = diag::warn_unused_expr;
167  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
168    E = Temps->getSubExpr();
169  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
170    E = TempExpr->getSubExpr();
171
172  if (DiagnoseUnusedComparison(*this, E))
173    return;
174
175  E = WarnExpr;
176  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
177    if (E->getType()->isVoidType())
178      return;
179
180    // If the callee has attribute pure, const, or warn_unused_result, warn with
181    // a more specific message to make it clear what is happening.
182    if (const Decl *FD = CE->getCalleeDecl()) {
183      if (FD->getAttr<WarnUnusedResultAttr>()) {
184        Diag(Loc, diag::warn_unused_result) << R1 << R2;
185        return;
186      }
187      if (FD->getAttr<PureAttr>()) {
188        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
189        return;
190      }
191      if (FD->getAttr<ConstAttr>()) {
192        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
193        return;
194      }
195    }
196  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
197    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
198      Diag(Loc, diag::err_arc_unused_init_message) << R1;
199      return;
200    }
201    const ObjCMethodDecl *MD = ME->getMethodDecl();
202    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
203      Diag(Loc, diag::warn_unused_result) << R1 << R2;
204      return;
205    }
206  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
207    const Expr *Source = POE->getSyntacticForm();
208    if (isa<ObjCSubscriptRefExpr>(Source))
209      DiagID = diag::warn_unused_container_subscript_expr;
210    else
211      DiagID = diag::warn_unused_property_expr;
212  } else if (const CXXFunctionalCastExpr *FC
213                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
214    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
215        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
216      return;
217  }
218  // Diagnose "(void*) blah" as a typo for "(void) blah".
219  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
220    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
221    QualType T = TI->getType();
222
223    // We really do want to use the non-canonical type here.
224    if (T == Context.VoidPtrTy) {
225      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
226
227      Diag(Loc, diag::warn_unused_voidptr)
228        << FixItHint::CreateRemoval(TL.getStarLoc());
229      return;
230    }
231  }
232
233  if (E->isGLValue() && E->getType().isVolatileQualified()) {
234    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
235    return;
236  }
237
238  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
239}
240
241void Sema::ActOnStartOfCompoundStmt() {
242  PushCompoundScope();
243}
244
245void Sema::ActOnFinishOfCompoundStmt() {
246  PopCompoundScope();
247}
248
249sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
250  return getCurFunction()->CompoundScopes.back();
251}
252
253StmtResult
254Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
255                        MultiStmtArg elts, bool isStmtExpr) {
256  unsigned NumElts = elts.size();
257  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
258  // If we're in C89 mode, check that we don't have any decls after stmts.  If
259  // so, emit an extension diagnostic.
260  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
261    // Note that __extension__ can be around a decl.
262    unsigned i = 0;
263    // Skip over all declarations.
264    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
265      /*empty*/;
266
267    // We found the end of the list or a statement.  Scan for another declstmt.
268    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
269      /*empty*/;
270
271    if (i != NumElts) {
272      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
273      Diag(D->getLocation(), diag::ext_mixed_decls_code);
274    }
275  }
276  // Warn about unused expressions in statements.
277  for (unsigned i = 0; i != NumElts; ++i) {
278    // Ignore statements that are last in a statement expression.
279    if (isStmtExpr && i == NumElts - 1)
280      continue;
281
282    DiagnoseUnusedExprResult(Elts[i]);
283  }
284
285  // Check for suspicious empty body (null statement) in `for' and `while'
286  // statements.  Don't do anything for template instantiations, this just adds
287  // noise.
288  if (NumElts != 0 && !CurrentInstantiationScope &&
289      getCurCompoundScope().HasEmptyLoopBodies) {
290    for (unsigned i = 0; i != NumElts - 1; ++i)
291      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
292  }
293
294  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
295}
296
297StmtResult
298Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
299                    SourceLocation DotDotDotLoc, Expr *RHSVal,
300                    SourceLocation ColonLoc) {
301  assert((LHSVal != 0) && "missing expression in case statement");
302
303  if (getCurFunction()->SwitchStack.empty()) {
304    Diag(CaseLoc, diag::err_case_not_in_switch);
305    return StmtError();
306  }
307
308  if (!getLangOpts().CPlusPlus0x) {
309    // C99 6.8.4.2p3: The expression shall be an integer constant.
310    // However, GCC allows any evaluatable integer expression.
311    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
312      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
313      if (!LHSVal)
314        return StmtError();
315    }
316
317    // GCC extension: The expression shall be an integer constant.
318
319    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
320      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
321      // Recover from an error by just forgetting about it.
322    }
323  }
324
325  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
326                                        ColonLoc);
327  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
328  return Owned(CS);
329}
330
331/// ActOnCaseStmtBody - This installs a statement as the body of a case.
332void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
333  DiagnoseUnusedExprResult(SubStmt);
334
335  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
336  CS->setSubStmt(SubStmt);
337}
338
339StmtResult
340Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
341                       Stmt *SubStmt, Scope *CurScope) {
342  DiagnoseUnusedExprResult(SubStmt);
343
344  if (getCurFunction()->SwitchStack.empty()) {
345    Diag(DefaultLoc, diag::err_default_not_in_switch);
346    return Owned(SubStmt);
347  }
348
349  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
350  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
351  return Owned(DS);
352}
353
354StmtResult
355Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
356                     SourceLocation ColonLoc, Stmt *SubStmt) {
357  // If the label was multiply defined, reject it now.
358  if (TheDecl->getStmt()) {
359    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
360    Diag(TheDecl->getLocation(), diag::note_previous_definition);
361    return Owned(SubStmt);
362  }
363
364  // Otherwise, things are good.  Fill in the declaration and return it.
365  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
366  TheDecl->setStmt(LS);
367  if (!TheDecl->isGnuLocal())
368    TheDecl->setLocation(IdentLoc);
369  return Owned(LS);
370}
371
372StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
373                                     const AttrVec &Attrs,
374                                     Stmt *SubStmt) {
375  // Fill in the declaration and return it. Variable length will require to
376  // change this to AttributedStmt::Create(Context, ....);
377  // and probably using ArrayRef
378  AttributedStmt *LS = new (Context) AttributedStmt(AttrLoc, Attrs, SubStmt);
379  return Owned(LS);
380}
381
382StmtResult
383Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
384                  Stmt *thenStmt, SourceLocation ElseLoc,
385                  Stmt *elseStmt) {
386  ExprResult CondResult(CondVal.release());
387
388  VarDecl *ConditionVar = 0;
389  if (CondVar) {
390    ConditionVar = cast<VarDecl>(CondVar);
391    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
392    if (CondResult.isInvalid())
393      return StmtError();
394  }
395  Expr *ConditionExpr = CondResult.takeAs<Expr>();
396  if (!ConditionExpr)
397    return StmtError();
398
399  DiagnoseUnusedExprResult(thenStmt);
400
401  if (!elseStmt) {
402    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
403                          diag::warn_empty_if_body);
404  }
405
406  DiagnoseUnusedExprResult(elseStmt);
407
408  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
409                                    thenStmt, ElseLoc, elseStmt));
410}
411
412/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
413/// the specified width and sign.  If an overflow occurs, detect it and emit
414/// the specified diagnostic.
415void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
416                                              unsigned NewWidth, bool NewSign,
417                                              SourceLocation Loc,
418                                              unsigned DiagID) {
419  // Perform a conversion to the promoted condition type if needed.
420  if (NewWidth > Val.getBitWidth()) {
421    // If this is an extension, just do it.
422    Val = Val.extend(NewWidth);
423    Val.setIsSigned(NewSign);
424
425    // If the input was signed and negative and the output is
426    // unsigned, don't bother to warn: this is implementation-defined
427    // behavior.
428    // FIXME: Introduce a second, default-ignored warning for this case?
429  } else if (NewWidth < Val.getBitWidth()) {
430    // If this is a truncation, check for overflow.
431    llvm::APSInt ConvVal(Val);
432    ConvVal = ConvVal.trunc(NewWidth);
433    ConvVal.setIsSigned(NewSign);
434    ConvVal = ConvVal.extend(Val.getBitWidth());
435    ConvVal.setIsSigned(Val.isSigned());
436    if (ConvVal != Val)
437      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
438
439    // Regardless of whether a diagnostic was emitted, really do the
440    // truncation.
441    Val = Val.trunc(NewWidth);
442    Val.setIsSigned(NewSign);
443  } else if (NewSign != Val.isSigned()) {
444    // Convert the sign to match the sign of the condition.  This can cause
445    // overflow as well: unsigned(INTMIN)
446    // We don't diagnose this overflow, because it is implementation-defined
447    // behavior.
448    // FIXME: Introduce a second, default-ignored warning for this case?
449    llvm::APSInt OldVal(Val);
450    Val.setIsSigned(NewSign);
451  }
452}
453
454namespace {
455  struct CaseCompareFunctor {
456    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
457                    const llvm::APSInt &RHS) {
458      return LHS.first < RHS;
459    }
460    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
461                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
462      return LHS.first < RHS.first;
463    }
464    bool operator()(const llvm::APSInt &LHS,
465                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
466      return LHS < RHS.first;
467    }
468  };
469}
470
471/// CmpCaseVals - Comparison predicate for sorting case values.
472///
473static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
474                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
475  if (lhs.first < rhs.first)
476    return true;
477
478  if (lhs.first == rhs.first &&
479      lhs.second->getCaseLoc().getRawEncoding()
480       < rhs.second->getCaseLoc().getRawEncoding())
481    return true;
482  return false;
483}
484
485/// CmpEnumVals - Comparison predicate for sorting enumeration values.
486///
487static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
488                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
489{
490  return lhs.first < rhs.first;
491}
492
493/// EqEnumVals - Comparison preficate for uniqing enumeration values.
494///
495static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
496                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
497{
498  return lhs.first == rhs.first;
499}
500
501/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
502/// potentially integral-promoted expression @p expr.
503static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
504  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
505    expr = cleanups->getSubExpr();
506  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
507    if (impcast->getCastKind() != CK_IntegralCast) break;
508    expr = impcast->getSubExpr();
509  }
510  return expr->getType();
511}
512
513StmtResult
514Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
515                             Decl *CondVar) {
516  ExprResult CondResult;
517
518  VarDecl *ConditionVar = 0;
519  if (CondVar) {
520    ConditionVar = cast<VarDecl>(CondVar);
521    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
522    if (CondResult.isInvalid())
523      return StmtError();
524
525    Cond = CondResult.release();
526  }
527
528  if (!Cond)
529    return StmtError();
530
531  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
532    Expr *Cond;
533
534  public:
535    SwitchConvertDiagnoser(Expr *Cond)
536      : ICEConvertDiagnoser(false, true), Cond(Cond) { }
537
538    virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
539                                             QualType T) {
540      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
541    }
542
543    virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
544                                                 QualType T) {
545      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
546               << T << Cond->getSourceRange();
547    }
548
549    virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
550                                                   QualType T,
551                                                   QualType ConvTy) {
552      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
553    }
554
555    virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
556                                               QualType ConvTy) {
557      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
558        << ConvTy->isEnumeralType() << ConvTy;
559    }
560
561    virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
562                                                QualType T) {
563      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
564    }
565
566    virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
567                                            QualType ConvTy) {
568      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
569      << ConvTy->isEnumeralType() << ConvTy;
570    }
571
572    virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
573                                                 QualType T,
574                                                 QualType ConvTy) {
575      return DiagnosticBuilder::getEmpty();
576    }
577  } SwitchDiagnoser(Cond);
578
579  CondResult
580    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
581                                         /*AllowScopedEnumerations*/ true);
582  if (CondResult.isInvalid()) return StmtError();
583  Cond = CondResult.take();
584
585  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
586  CondResult = UsualUnaryConversions(Cond);
587  if (CondResult.isInvalid()) return StmtError();
588  Cond = CondResult.take();
589
590  if (!CondVar) {
591    CheckImplicitConversions(Cond, SwitchLoc);
592    CondResult = MaybeCreateExprWithCleanups(Cond);
593    if (CondResult.isInvalid())
594      return StmtError();
595    Cond = CondResult.take();
596  }
597
598  getCurFunction()->setHasBranchIntoScope();
599
600  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
601  getCurFunction()->SwitchStack.push_back(SS);
602  return Owned(SS);
603}
604
605static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
606  if (Val.getBitWidth() < BitWidth)
607    Val = Val.extend(BitWidth);
608  else if (Val.getBitWidth() > BitWidth)
609    Val = Val.trunc(BitWidth);
610  Val.setIsSigned(IsSigned);
611}
612
613StmtResult
614Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
615                            Stmt *BodyStmt) {
616  SwitchStmt *SS = cast<SwitchStmt>(Switch);
617  assert(SS == getCurFunction()->SwitchStack.back() &&
618         "switch stack missing push/pop!");
619
620  SS->setBody(BodyStmt, SwitchLoc);
621  getCurFunction()->SwitchStack.pop_back();
622
623  Expr *CondExpr = SS->getCond();
624  if (!CondExpr) return StmtError();
625
626  QualType CondType = CondExpr->getType();
627
628  Expr *CondExprBeforePromotion = CondExpr;
629  QualType CondTypeBeforePromotion =
630      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
631
632  // C++ 6.4.2.p2:
633  // Integral promotions are performed (on the switch condition).
634  //
635  // A case value unrepresentable by the original switch condition
636  // type (before the promotion) doesn't make sense, even when it can
637  // be represented by the promoted type.  Therefore we need to find
638  // the pre-promotion type of the switch condition.
639  if (!CondExpr->isTypeDependent()) {
640    // We have already converted the expression to an integral or enumeration
641    // type, when we started the switch statement. If we don't have an
642    // appropriate type now, just return an error.
643    if (!CondType->isIntegralOrEnumerationType())
644      return StmtError();
645
646    if (CondExpr->isKnownToHaveBooleanValue()) {
647      // switch(bool_expr) {...} is often a programmer error, e.g.
648      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
649      // One can always use an if statement instead of switch(bool_expr).
650      Diag(SwitchLoc, diag::warn_bool_switch_condition)
651          << CondExpr->getSourceRange();
652    }
653  }
654
655  // Get the bitwidth of the switched-on value before promotions.  We must
656  // convert the integer case values to this width before comparison.
657  bool HasDependentValue
658    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
659  unsigned CondWidth
660    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
661  bool CondIsSigned
662    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
663
664  // Accumulate all of the case values in a vector so that we can sort them
665  // and detect duplicates.  This vector contains the APInt for the case after
666  // it has been converted to the condition type.
667  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
668  CaseValsTy CaseVals;
669
670  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
671  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
672  CaseRangesTy CaseRanges;
673
674  DefaultStmt *TheDefaultStmt = 0;
675
676  bool CaseListIsErroneous = false;
677
678  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
679       SC = SC->getNextSwitchCase()) {
680
681    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
682      if (TheDefaultStmt) {
683        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
684        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
685
686        // FIXME: Remove the default statement from the switch block so that
687        // we'll return a valid AST.  This requires recursing down the AST and
688        // finding it, not something we are set up to do right now.  For now,
689        // just lop the entire switch stmt out of the AST.
690        CaseListIsErroneous = true;
691      }
692      TheDefaultStmt = DS;
693
694    } else {
695      CaseStmt *CS = cast<CaseStmt>(SC);
696
697      Expr *Lo = CS->getLHS();
698
699      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
700        HasDependentValue = true;
701        break;
702      }
703
704      llvm::APSInt LoVal;
705
706      if (getLangOpts().CPlusPlus0x) {
707        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
708        // constant expression of the promoted type of the switch condition.
709        ExprResult ConvLo =
710          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
711        if (ConvLo.isInvalid()) {
712          CaseListIsErroneous = true;
713          continue;
714        }
715        Lo = ConvLo.take();
716      } else {
717        // We already verified that the expression has a i-c-e value (C99
718        // 6.8.4.2p3) - get that value now.
719        LoVal = Lo->EvaluateKnownConstInt(Context);
720
721        // If the LHS is not the same type as the condition, insert an implicit
722        // cast.
723        Lo = DefaultLvalueConversion(Lo).take();
724        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
725      }
726
727      // Convert the value to the same width/sign as the condition had prior to
728      // integral promotions.
729      //
730      // FIXME: This causes us to reject valid code:
731      //   switch ((char)c) { case 256: case 0: return 0; }
732      // Here we claim there is a duplicated condition value, but there is not.
733      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
734                                         Lo->getLocStart(),
735                                         diag::warn_case_value_overflow);
736
737      CS->setLHS(Lo);
738
739      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
740      if (CS->getRHS()) {
741        if (CS->getRHS()->isTypeDependent() ||
742            CS->getRHS()->isValueDependent()) {
743          HasDependentValue = true;
744          break;
745        }
746        CaseRanges.push_back(std::make_pair(LoVal, CS));
747      } else
748        CaseVals.push_back(std::make_pair(LoVal, CS));
749    }
750  }
751
752  if (!HasDependentValue) {
753    // If we don't have a default statement, check whether the
754    // condition is constant.
755    llvm::APSInt ConstantCondValue;
756    bool HasConstantCond = false;
757    if (!HasDependentValue && !TheDefaultStmt) {
758      HasConstantCond
759        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
760                                                 Expr::SE_AllowSideEffects);
761      assert(!HasConstantCond ||
762             (ConstantCondValue.getBitWidth() == CondWidth &&
763              ConstantCondValue.isSigned() == CondIsSigned));
764    }
765    bool ShouldCheckConstantCond = HasConstantCond;
766
767    // Sort all the scalar case values so we can easily detect duplicates.
768    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
769
770    if (!CaseVals.empty()) {
771      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
772        if (ShouldCheckConstantCond &&
773            CaseVals[i].first == ConstantCondValue)
774          ShouldCheckConstantCond = false;
775
776        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
777          // If we have a duplicate, report it.
778          // First, determine if either case value has a name
779          StringRef PrevString, CurrString;
780          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
781          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
782          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
783            PrevString = DeclRef->getDecl()->getName();
784          }
785          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
786            CurrString = DeclRef->getDecl()->getName();
787          }
788          llvm::SmallString<16> CaseValStr;
789          CaseVals[i-1].first.toString(CaseValStr);
790
791          if (PrevString == CurrString)
792            Diag(CaseVals[i].second->getLHS()->getLocStart(),
793                 diag::err_duplicate_case) <<
794                 (PrevString.empty() ? CaseValStr.str() : PrevString);
795          else
796            Diag(CaseVals[i].second->getLHS()->getLocStart(),
797                 diag::err_duplicate_case_differing_expr) <<
798                 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
799                 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
800                 CaseValStr;
801
802          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
803               diag::note_duplicate_case_prev);
804          // FIXME: We really want to remove the bogus case stmt from the
805          // substmt, but we have no way to do this right now.
806          CaseListIsErroneous = true;
807        }
808      }
809    }
810
811    // Detect duplicate case ranges, which usually don't exist at all in
812    // the first place.
813    if (!CaseRanges.empty()) {
814      // Sort all the case ranges by their low value so we can easily detect
815      // overlaps between ranges.
816      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
817
818      // Scan the ranges, computing the high values and removing empty ranges.
819      std::vector<llvm::APSInt> HiVals;
820      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
821        llvm::APSInt &LoVal = CaseRanges[i].first;
822        CaseStmt *CR = CaseRanges[i].second;
823        Expr *Hi = CR->getRHS();
824        llvm::APSInt HiVal;
825
826        if (getLangOpts().CPlusPlus0x) {
827          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
828          // constant expression of the promoted type of the switch condition.
829          ExprResult ConvHi =
830            CheckConvertedConstantExpression(Hi, CondType, HiVal,
831                                             CCEK_CaseValue);
832          if (ConvHi.isInvalid()) {
833            CaseListIsErroneous = true;
834            continue;
835          }
836          Hi = ConvHi.take();
837        } else {
838          HiVal = Hi->EvaluateKnownConstInt(Context);
839
840          // If the RHS is not the same type as the condition, insert an
841          // implicit cast.
842          Hi = DefaultLvalueConversion(Hi).take();
843          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
844        }
845
846        // Convert the value to the same width/sign as the condition.
847        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
848                                           Hi->getLocStart(),
849                                           diag::warn_case_value_overflow);
850
851        CR->setRHS(Hi);
852
853        // If the low value is bigger than the high value, the case is empty.
854        if (LoVal > HiVal) {
855          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
856            << SourceRange(CR->getLHS()->getLocStart(),
857                           Hi->getLocEnd());
858          CaseRanges.erase(CaseRanges.begin()+i);
859          --i, --e;
860          continue;
861        }
862
863        if (ShouldCheckConstantCond &&
864            LoVal <= ConstantCondValue &&
865            ConstantCondValue <= HiVal)
866          ShouldCheckConstantCond = false;
867
868        HiVals.push_back(HiVal);
869      }
870
871      // Rescan the ranges, looking for overlap with singleton values and other
872      // ranges.  Since the range list is sorted, we only need to compare case
873      // ranges with their neighbors.
874      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
875        llvm::APSInt &CRLo = CaseRanges[i].first;
876        llvm::APSInt &CRHi = HiVals[i];
877        CaseStmt *CR = CaseRanges[i].second;
878
879        // Check to see whether the case range overlaps with any
880        // singleton cases.
881        CaseStmt *OverlapStmt = 0;
882        llvm::APSInt OverlapVal(32);
883
884        // Find the smallest value >= the lower bound.  If I is in the
885        // case range, then we have overlap.
886        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
887                                                  CaseVals.end(), CRLo,
888                                                  CaseCompareFunctor());
889        if (I != CaseVals.end() && I->first < CRHi) {
890          OverlapVal  = I->first;   // Found overlap with scalar.
891          OverlapStmt = I->second;
892        }
893
894        // Find the smallest value bigger than the upper bound.
895        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
896        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
897          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
898          OverlapStmt = (I-1)->second;
899        }
900
901        // Check to see if this case stmt overlaps with the subsequent
902        // case range.
903        if (i && CRLo <= HiVals[i-1]) {
904          OverlapVal  = HiVals[i-1];       // Found overlap with range.
905          OverlapStmt = CaseRanges[i-1].second;
906        }
907
908        if (OverlapStmt) {
909          // If we have a duplicate, report it.
910          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
911            << OverlapVal.toString(10);
912          Diag(OverlapStmt->getLHS()->getLocStart(),
913               diag::note_duplicate_case_prev);
914          // FIXME: We really want to remove the bogus case stmt from the
915          // substmt, but we have no way to do this right now.
916          CaseListIsErroneous = true;
917        }
918      }
919    }
920
921    // Complain if we have a constant condition and we didn't find a match.
922    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
923      // TODO: it would be nice if we printed enums as enums, chars as
924      // chars, etc.
925      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
926        << ConstantCondValue.toString(10)
927        << CondExpr->getSourceRange();
928    }
929
930    // Check to see if switch is over an Enum and handles all of its
931    // values.  We only issue a warning if there is not 'default:', but
932    // we still do the analysis to preserve this information in the AST
933    // (which can be used by flow-based analyes).
934    //
935    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
936
937    // If switch has default case, then ignore it.
938    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
939      const EnumDecl *ED = ET->getDecl();
940      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
941        EnumValsTy;
942      EnumValsTy EnumVals;
943
944      // Gather all enum values, set their type and sort them,
945      // allowing easier comparison with CaseVals.
946      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
947           EDI != ED->enumerator_end(); ++EDI) {
948        llvm::APSInt Val = EDI->getInitVal();
949        AdjustAPSInt(Val, CondWidth, CondIsSigned);
950        EnumVals.push_back(std::make_pair(Val, *EDI));
951      }
952      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
953      EnumValsTy::iterator EIend =
954        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
955
956      // See which case values aren't in enum.
957      EnumValsTy::const_iterator EI = EnumVals.begin();
958      for (CaseValsTy::const_iterator CI = CaseVals.begin();
959           CI != CaseVals.end(); CI++) {
960        while (EI != EIend && EI->first < CI->first)
961          EI++;
962        if (EI == EIend || EI->first > CI->first)
963          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
964            << CondTypeBeforePromotion;
965      }
966      // See which of case ranges aren't in enum
967      EI = EnumVals.begin();
968      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
969           RI != CaseRanges.end() && EI != EIend; RI++) {
970        while (EI != EIend && EI->first < RI->first)
971          EI++;
972
973        if (EI == EIend || EI->first != RI->first) {
974          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
975            << CondTypeBeforePromotion;
976        }
977
978        llvm::APSInt Hi =
979          RI->second->getRHS()->EvaluateKnownConstInt(Context);
980        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
981        while (EI != EIend && EI->first < Hi)
982          EI++;
983        if (EI == EIend || EI->first != Hi)
984          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
985            << CondTypeBeforePromotion;
986      }
987
988      // Check which enum vals aren't in switch
989      CaseValsTy::const_iterator CI = CaseVals.begin();
990      CaseRangesTy::const_iterator RI = CaseRanges.begin();
991      bool hasCasesNotInSwitch = false;
992
993      SmallVector<DeclarationName,8> UnhandledNames;
994
995      for (EI = EnumVals.begin(); EI != EIend; EI++){
996        // Drop unneeded case values
997        llvm::APSInt CIVal;
998        while (CI != CaseVals.end() && CI->first < EI->first)
999          CI++;
1000
1001        if (CI != CaseVals.end() && CI->first == EI->first)
1002          continue;
1003
1004        // Drop unneeded case ranges
1005        for (; RI != CaseRanges.end(); RI++) {
1006          llvm::APSInt Hi =
1007            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1008          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1009          if (EI->first <= Hi)
1010            break;
1011        }
1012
1013        if (RI == CaseRanges.end() || EI->first < RI->first) {
1014          hasCasesNotInSwitch = true;
1015          UnhandledNames.push_back(EI->second->getDeclName());
1016        }
1017      }
1018
1019      if (TheDefaultStmt && UnhandledNames.empty())
1020        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1021
1022      // Produce a nice diagnostic if multiple values aren't handled.
1023      switch (UnhandledNames.size()) {
1024      case 0: break;
1025      case 1:
1026        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1027          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1028          << UnhandledNames[0];
1029        break;
1030      case 2:
1031        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1032          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1033          << UnhandledNames[0] << UnhandledNames[1];
1034        break;
1035      case 3:
1036        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1037          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1038          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1039        break;
1040      default:
1041        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1042          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1043          << (unsigned)UnhandledNames.size()
1044          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1045        break;
1046      }
1047
1048      if (!hasCasesNotInSwitch)
1049        SS->setAllEnumCasesCovered();
1050    }
1051  }
1052
1053  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1054                        diag::warn_empty_switch_body);
1055
1056  // FIXME: If the case list was broken is some way, we don't have a good system
1057  // to patch it up.  Instead, just return the whole substmt as broken.
1058  if (CaseListIsErroneous)
1059    return StmtError();
1060
1061  return Owned(SS);
1062}
1063
1064StmtResult
1065Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1066                     Decl *CondVar, Stmt *Body) {
1067  ExprResult CondResult(Cond.release());
1068
1069  VarDecl *ConditionVar = 0;
1070  if (CondVar) {
1071    ConditionVar = cast<VarDecl>(CondVar);
1072    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1073    if (CondResult.isInvalid())
1074      return StmtError();
1075  }
1076  Expr *ConditionExpr = CondResult.take();
1077  if (!ConditionExpr)
1078    return StmtError();
1079
1080  DiagnoseUnusedExprResult(Body);
1081
1082  if (isa<NullStmt>(Body))
1083    getCurCompoundScope().setHasEmptyLoopBodies();
1084
1085  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1086                                       Body, WhileLoc));
1087}
1088
1089StmtResult
1090Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1091                  SourceLocation WhileLoc, SourceLocation CondLParen,
1092                  Expr *Cond, SourceLocation CondRParen) {
1093  assert(Cond && "ActOnDoStmt(): missing expression");
1094
1095  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1096  if (CondResult.isInvalid() || CondResult.isInvalid())
1097    return StmtError();
1098  Cond = CondResult.take();
1099
1100  CheckImplicitConversions(Cond, DoLoc);
1101  CondResult = MaybeCreateExprWithCleanups(Cond);
1102  if (CondResult.isInvalid())
1103    return StmtError();
1104  Cond = CondResult.take();
1105
1106  DiagnoseUnusedExprResult(Body);
1107
1108  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1109}
1110
1111namespace {
1112  // This visitor will traverse a conditional statement and store all
1113  // the evaluated decls into a vector.  Simple is set to true if none
1114  // of the excluded constructs are used.
1115  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1116    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1117    llvm::SmallVector<SourceRange, 10> &Ranges;
1118    bool Simple;
1119public:
1120  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1121
1122  DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1123                llvm::SmallVector<SourceRange, 10> &Ranges) :
1124      Inherited(S.Context),
1125      Decls(Decls),
1126      Ranges(Ranges),
1127      Simple(true) {}
1128
1129  bool isSimple() { return Simple; }
1130
1131  // Replaces the method in EvaluatedExprVisitor.
1132  void VisitMemberExpr(MemberExpr* E) {
1133    Simple = false;
1134  }
1135
1136  // Any Stmt not whitelisted will cause the condition to be marked complex.
1137  void VisitStmt(Stmt *S) {
1138    Simple = false;
1139  }
1140
1141  void VisitBinaryOperator(BinaryOperator *E) {
1142    Visit(E->getLHS());
1143    Visit(E->getRHS());
1144  }
1145
1146  void VisitCastExpr(CastExpr *E) {
1147    Visit(E->getSubExpr());
1148  }
1149
1150  void VisitUnaryOperator(UnaryOperator *E) {
1151    // Skip checking conditionals with derefernces.
1152    if (E->getOpcode() == UO_Deref)
1153      Simple = false;
1154    else
1155      Visit(E->getSubExpr());
1156  }
1157
1158  void VisitConditionalOperator(ConditionalOperator *E) {
1159    Visit(E->getCond());
1160    Visit(E->getTrueExpr());
1161    Visit(E->getFalseExpr());
1162  }
1163
1164  void VisitParenExpr(ParenExpr *E) {
1165    Visit(E->getSubExpr());
1166  }
1167
1168  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1169    Visit(E->getOpaqueValue()->getSourceExpr());
1170    Visit(E->getFalseExpr());
1171  }
1172
1173  void VisitIntegerLiteral(IntegerLiteral *E) { }
1174  void VisitFloatingLiteral(FloatingLiteral *E) { }
1175  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1176  void VisitCharacterLiteral(CharacterLiteral *E) { }
1177  void VisitGNUNullExpr(GNUNullExpr *E) { }
1178  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1179
1180  void VisitDeclRefExpr(DeclRefExpr *E) {
1181    VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1182    if (!VD) return;
1183
1184    Ranges.push_back(E->getSourceRange());
1185
1186    Decls.insert(VD);
1187  }
1188
1189  }; // end class DeclExtractor
1190
1191  // DeclMatcher checks to see if the decls are used in a non-evauluated
1192  // context.
1193  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1194    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1195    bool FoundDecl;
1196
1197public:
1198  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1199
1200  DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1201      Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1202    if (!Statement) return;
1203
1204    Visit(Statement);
1205  }
1206
1207  void VisitReturnStmt(ReturnStmt *S) {
1208    FoundDecl = true;
1209  }
1210
1211  void VisitBreakStmt(BreakStmt *S) {
1212    FoundDecl = true;
1213  }
1214
1215  void VisitGotoStmt(GotoStmt *S) {
1216    FoundDecl = true;
1217  }
1218
1219  void VisitCastExpr(CastExpr *E) {
1220    if (E->getCastKind() == CK_LValueToRValue)
1221      CheckLValueToRValueCast(E->getSubExpr());
1222    else
1223      Visit(E->getSubExpr());
1224  }
1225
1226  void CheckLValueToRValueCast(Expr *E) {
1227    E = E->IgnoreParenImpCasts();
1228
1229    if (isa<DeclRefExpr>(E)) {
1230      return;
1231    }
1232
1233    if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1234      Visit(CO->getCond());
1235      CheckLValueToRValueCast(CO->getTrueExpr());
1236      CheckLValueToRValueCast(CO->getFalseExpr());
1237      return;
1238    }
1239
1240    if (BinaryConditionalOperator *BCO =
1241            dyn_cast<BinaryConditionalOperator>(E)) {
1242      CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1243      CheckLValueToRValueCast(BCO->getFalseExpr());
1244      return;
1245    }
1246
1247    Visit(E);
1248  }
1249
1250  void VisitDeclRefExpr(DeclRefExpr *E) {
1251    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1252      if (Decls.count(VD))
1253        FoundDecl = true;
1254  }
1255
1256  bool FoundDeclInUse() { return FoundDecl; }
1257
1258  };  // end class DeclMatcher
1259
1260  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1261                                        Expr *Third, Stmt *Body) {
1262    // Condition is empty
1263    if (!Second) return;
1264
1265    if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1266                                   Second->getLocStart())
1267        == DiagnosticsEngine::Ignored)
1268      return;
1269
1270    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1271    llvm::SmallPtrSet<VarDecl*, 8> Decls;
1272    llvm::SmallVector<SourceRange, 10> Ranges;
1273    DeclExtractor DE(S, Decls, Ranges);
1274    DE.Visit(Second);
1275
1276    // Don't analyze complex conditionals.
1277    if (!DE.isSimple()) return;
1278
1279    // No decls found.
1280    if (Decls.size() == 0) return;
1281
1282    // Don't warn on volatile, static, or global variables.
1283    for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1284                                                  E = Decls.end();
1285         I != E; ++I)
1286      if ((*I)->getType().isVolatileQualified() ||
1287          (*I)->hasGlobalStorage()) return;
1288
1289    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1290        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1291        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1292      return;
1293
1294    // Load decl names into diagnostic.
1295    if (Decls.size() > 4)
1296      PDiag << 0;
1297    else {
1298      PDiag << Decls.size();
1299      for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1300                                                    E = Decls.end();
1301           I != E; ++I)
1302        PDiag << (*I)->getDeclName();
1303    }
1304
1305    // Load SourceRanges into diagnostic if there is room.
1306    // Otherwise, load the SourceRange of the conditional expression.
1307    if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1308      for (llvm::SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1309                                                        E = Ranges.end();
1310           I != E; ++I)
1311        PDiag << *I;
1312    else
1313      PDiag << Second->getSourceRange();
1314
1315    S.Diag(Ranges.begin()->getBegin(), PDiag);
1316  }
1317
1318} // end namespace
1319
1320StmtResult
1321Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1322                   Stmt *First, FullExprArg second, Decl *secondVar,
1323                   FullExprArg third,
1324                   SourceLocation RParenLoc, Stmt *Body) {
1325  if (!getLangOpts().CPlusPlus) {
1326    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1327      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1328      // declare identifiers for objects having storage class 'auto' or
1329      // 'register'.
1330      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1331           DI!=DE; ++DI) {
1332        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1333        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1334          VD = 0;
1335        if (VD == 0)
1336          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
1337        // FIXME: mark decl erroneous!
1338      }
1339    }
1340  }
1341
1342  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1343
1344  ExprResult SecondResult(second.release());
1345  VarDecl *ConditionVar = 0;
1346  if (secondVar) {
1347    ConditionVar = cast<VarDecl>(secondVar);
1348    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1349    if (SecondResult.isInvalid())
1350      return StmtError();
1351  }
1352
1353  Expr *Third  = third.release().takeAs<Expr>();
1354
1355  DiagnoseUnusedExprResult(First);
1356  DiagnoseUnusedExprResult(Third);
1357  DiagnoseUnusedExprResult(Body);
1358
1359  if (isa<NullStmt>(Body))
1360    getCurCompoundScope().setHasEmptyLoopBodies();
1361
1362  return Owned(new (Context) ForStmt(Context, First,
1363                                     SecondResult.take(), ConditionVar,
1364                                     Third, Body, ForLoc, LParenLoc,
1365                                     RParenLoc));
1366}
1367
1368/// In an Objective C collection iteration statement:
1369///   for (x in y)
1370/// x can be an arbitrary l-value expression.  Bind it up as a
1371/// full-expression.
1372StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1373  // Reduce placeholder expressions here.  Note that this rejects the
1374  // use of pseudo-object l-values in this position.
1375  ExprResult result = CheckPlaceholderExpr(E);
1376  if (result.isInvalid()) return StmtError();
1377  E = result.take();
1378
1379  CheckImplicitConversions(E);
1380
1381  result = MaybeCreateExprWithCleanups(E);
1382  if (result.isInvalid()) return StmtError();
1383
1384  return Owned(static_cast<Stmt*>(result.take()));
1385}
1386
1387ExprResult
1388Sema::ActOnObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1389  assert(collection);
1390
1391  // Bail out early if we've got a type-dependent expression.
1392  if (collection->isTypeDependent()) return Owned(collection);
1393
1394  // Perform normal l-value conversion.
1395  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1396  if (result.isInvalid())
1397    return ExprError();
1398  collection = result.take();
1399
1400  // The operand needs to have object-pointer type.
1401  // TODO: should we do a contextual conversion?
1402  const ObjCObjectPointerType *pointerType =
1403    collection->getType()->getAs<ObjCObjectPointerType>();
1404  if (!pointerType)
1405    return Diag(forLoc, diag::err_collection_expr_type)
1406             << collection->getType() << collection->getSourceRange();
1407
1408  // Check that the operand provides
1409  //   - countByEnumeratingWithState:objects:count:
1410  const ObjCObjectType *objectType = pointerType->getObjectType();
1411  ObjCInterfaceDecl *iface = objectType->getInterface();
1412
1413  // If we have a forward-declared type, we can't do this check.
1414  // Under ARC, it is an error not to have a forward-declared class.
1415  if (iface &&
1416      RequireCompleteType(forLoc, QualType(objectType, 0),
1417                          getLangOpts().ObjCAutoRefCount
1418                            ? diag::err_arc_collection_forward
1419                            : 0,
1420                          collection)) {
1421    // Otherwise, if we have any useful type information, check that
1422    // the type declares the appropriate method.
1423  } else if (iface || !objectType->qual_empty()) {
1424    IdentifierInfo *selectorIdents[] = {
1425      &Context.Idents.get("countByEnumeratingWithState"),
1426      &Context.Idents.get("objects"),
1427      &Context.Idents.get("count")
1428    };
1429    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1430
1431    ObjCMethodDecl *method = 0;
1432
1433    // If there's an interface, look in both the public and private APIs.
1434    if (iface) {
1435      method = iface->lookupInstanceMethod(selector);
1436      if (!method) method = LookupPrivateInstanceMethod(selector, iface);
1437    }
1438
1439    // Also check protocol qualifiers.
1440    if (!method)
1441      method = LookupMethodInQualifiedType(selector, pointerType,
1442                                           /*instance*/ true);
1443
1444    // If we didn't find it anywhere, give up.
1445    if (!method) {
1446      Diag(forLoc, diag::warn_collection_expr_type)
1447        << collection->getType() << selector << collection->getSourceRange();
1448    }
1449
1450    // TODO: check for an incompatible signature?
1451  }
1452
1453  // Wrap up any cleanups in the expression.
1454  return Owned(MaybeCreateExprWithCleanups(collection));
1455}
1456
1457StmtResult
1458Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1459                                 SourceLocation LParenLoc,
1460                                 Stmt *First, Expr *Second,
1461                                 SourceLocation RParenLoc, Stmt *Body) {
1462  if (First) {
1463    QualType FirstType;
1464    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1465      if (!DS->isSingleDecl())
1466        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1467                         diag::err_toomany_element_decls));
1468
1469      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
1470      FirstType = D->getType();
1471      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1472      // declare identifiers for objects having storage class 'auto' or
1473      // 'register'.
1474      if (!D->hasLocalStorage())
1475        return StmtError(Diag(D->getLocation(),
1476                              diag::err_non_variable_decl_in_for));
1477    } else {
1478      Expr *FirstE = cast<Expr>(First);
1479      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1480        return StmtError(Diag(First->getLocStart(),
1481                   diag::err_selector_element_not_lvalue)
1482          << First->getSourceRange());
1483
1484      FirstType = static_cast<Expr*>(First)->getType();
1485    }
1486    if (!FirstType->isDependentType() &&
1487        !FirstType->isObjCObjectPointerType() &&
1488        !FirstType->isBlockPointerType())
1489        Diag(ForLoc, diag::err_selector_element_type)
1490          << FirstType << First->getSourceRange();
1491  }
1492
1493  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1494                                                   ForLoc, RParenLoc));
1495}
1496
1497namespace {
1498
1499enum BeginEndFunction {
1500  BEF_begin,
1501  BEF_end
1502};
1503
1504/// Build a variable declaration for a for-range statement.
1505static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1506                                     QualType Type, const char *Name) {
1507  DeclContext *DC = SemaRef.CurContext;
1508  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1509  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1510  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1511                                  TInfo, SC_Auto, SC_None);
1512  Decl->setImplicit();
1513  return Decl;
1514}
1515
1516/// Finish building a variable declaration for a for-range statement.
1517/// \return true if an error occurs.
1518static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1519                                  SourceLocation Loc, int diag) {
1520  // Deduce the type for the iterator variable now rather than leaving it to
1521  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1522  TypeSourceInfo *InitTSI = 0;
1523  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1524      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI) ==
1525          Sema::DAR_Failed)
1526    SemaRef.Diag(Loc, diag) << Init->getType();
1527  if (!InitTSI) {
1528    Decl->setInvalidDecl();
1529    return true;
1530  }
1531  Decl->setTypeSourceInfo(InitTSI);
1532  Decl->setType(InitTSI->getType());
1533
1534  // In ARC, infer lifetime.
1535  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1536  // we're doing the equivalent of fast iteration.
1537  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1538      SemaRef.inferObjCARCLifetime(Decl))
1539    Decl->setInvalidDecl();
1540
1541  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1542                               /*TypeMayContainAuto=*/false);
1543  SemaRef.FinalizeDeclaration(Decl);
1544  SemaRef.CurContext->addHiddenDecl(Decl);
1545  return false;
1546}
1547
1548/// Produce a note indicating which begin/end function was implicitly called
1549/// by a C++0x for-range statement. This is often not obvious from the code,
1550/// nor from the diagnostics produced when analysing the implicit expressions
1551/// required in a for-range statement.
1552void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1553                                  BeginEndFunction BEF) {
1554  CallExpr *CE = dyn_cast<CallExpr>(E);
1555  if (!CE)
1556    return;
1557  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1558  if (!D)
1559    return;
1560  SourceLocation Loc = D->getLocation();
1561
1562  std::string Description;
1563  bool IsTemplate = false;
1564  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1565    Description = SemaRef.getTemplateArgumentBindingsText(
1566      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1567    IsTemplate = true;
1568  }
1569
1570  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1571    << BEF << IsTemplate << Description << E->getType();
1572}
1573
1574/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1575/// given LookupResult is non-empty, it is assumed to describe a member which
1576/// will be invoked. Otherwise, the function will be found via argument
1577/// dependent lookup.
1578static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1579                                            SourceLocation Loc,
1580                                            VarDecl *Decl,
1581                                            BeginEndFunction BEF,
1582                                            const DeclarationNameInfo &NameInfo,
1583                                            LookupResult &MemberLookup,
1584                                            Expr *Range) {
1585  ExprResult CallExpr;
1586  if (!MemberLookup.empty()) {
1587    ExprResult MemberRef =
1588      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1589                                       /*IsPtr=*/false, CXXScopeSpec(),
1590                                       /*TemplateKWLoc=*/SourceLocation(),
1591                                       /*FirstQualifierInScope=*/0,
1592                                       MemberLookup,
1593                                       /*TemplateArgs=*/0);
1594    if (MemberRef.isInvalid())
1595      return ExprError();
1596    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1597                                     Loc, 0);
1598    if (CallExpr.isInvalid())
1599      return ExprError();
1600  } else {
1601    UnresolvedSet<0> FoundNames;
1602    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1603    // std is an associated namespace.
1604    UnresolvedLookupExpr *Fn =
1605      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1606                                   NestedNameSpecifierLoc(), NameInfo,
1607                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1608                                   FoundNames.begin(), FoundNames.end(),
1609                                   /*LookInStdNamespace=*/true);
1610    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1611                                               0, /*AllowTypoCorrection=*/false);
1612    if (CallExpr.isInvalid()) {
1613      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1614        << Range->getType();
1615      return ExprError();
1616    }
1617  }
1618  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1619                            diag::err_for_range_iter_deduction_failure)) {
1620    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1621    return ExprError();
1622  }
1623  return CallExpr;
1624}
1625
1626}
1627
1628/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1629///
1630/// C++0x [stmt.ranged]:
1631///   A range-based for statement is equivalent to
1632///
1633///   {
1634///     auto && __range = range-init;
1635///     for ( auto __begin = begin-expr,
1636///           __end = end-expr;
1637///           __begin != __end;
1638///           ++__begin ) {
1639///       for-range-declaration = *__begin;
1640///       statement
1641///     }
1642///   }
1643///
1644/// The body of the loop is not available yet, since it cannot be analysed until
1645/// we have determined the type of the for-range-declaration.
1646StmtResult
1647Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1648                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1649                           SourceLocation RParenLoc) {
1650  if (!First || !Range)
1651    return StmtError();
1652
1653  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1654  assert(DS && "first part of for range not a decl stmt");
1655
1656  if (!DS->isSingleDecl()) {
1657    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1658    return StmtError();
1659  }
1660  if (DS->getSingleDecl()->isInvalidDecl())
1661    return StmtError();
1662
1663  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1664    return StmtError();
1665
1666  // Build  auto && __range = range-init
1667  SourceLocation RangeLoc = Range->getLocStart();
1668  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1669                                           Context.getAutoRRefDeductType(),
1670                                           "__range");
1671  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1672                            diag::err_for_range_deduction_failure))
1673    return StmtError();
1674
1675  // Claim the type doesn't contain auto: we've already done the checking.
1676  DeclGroupPtrTy RangeGroup =
1677    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1678  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1679  if (RangeDecl.isInvalid())
1680    return StmtError();
1681
1682  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1683                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1684                              RParenLoc);
1685}
1686
1687/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1688StmtResult
1689Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1690                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1691                           Expr *Inc, Stmt *LoopVarDecl,
1692                           SourceLocation RParenLoc) {
1693  Scope *S = getCurScope();
1694
1695  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1696  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1697  QualType RangeVarType = RangeVar->getType();
1698
1699  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1700  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1701
1702  StmtResult BeginEndDecl = BeginEnd;
1703  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1704
1705  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1706    SourceLocation RangeLoc = RangeVar->getLocation();
1707
1708    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1709
1710    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1711                                                VK_LValue, ColonLoc);
1712    if (BeginRangeRef.isInvalid())
1713      return StmtError();
1714
1715    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1716                                              VK_LValue, ColonLoc);
1717    if (EndRangeRef.isInvalid())
1718      return StmtError();
1719
1720    QualType AutoType = Context.getAutoDeductType();
1721    Expr *Range = RangeVar->getInit();
1722    if (!Range)
1723      return StmtError();
1724    QualType RangeType = Range->getType();
1725
1726    if (RequireCompleteType(RangeLoc, RangeType,
1727                            diag::err_for_range_incomplete_type))
1728      return StmtError();
1729
1730    // Build auto __begin = begin-expr, __end = end-expr.
1731    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1732                                             "__begin");
1733    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1734                                           "__end");
1735
1736    // Build begin-expr and end-expr and attach to __begin and __end variables.
1737    ExprResult BeginExpr, EndExpr;
1738    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1739      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1740      //   __range + __bound, respectively, where __bound is the array bound. If
1741      //   _RangeT is an array of unknown size or an array of incomplete type,
1742      //   the program is ill-formed;
1743
1744      // begin-expr is __range.
1745      BeginExpr = BeginRangeRef;
1746      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1747                                diag::err_for_range_iter_deduction_failure)) {
1748        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1749        return StmtError();
1750      }
1751
1752      // Find the array bound.
1753      ExprResult BoundExpr;
1754      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1755        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1756                                                 Context.getPointerDiffType(),
1757                                                 RangeLoc));
1758      else if (const VariableArrayType *VAT =
1759               dyn_cast<VariableArrayType>(UnqAT))
1760        BoundExpr = VAT->getSizeExpr();
1761      else {
1762        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1763        // UnqAT is not incomplete and Range is not type-dependent.
1764        llvm_unreachable("Unexpected array type in for-range");
1765      }
1766
1767      // end-expr is __range + __bound.
1768      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1769                           BoundExpr.get());
1770      if (EndExpr.isInvalid())
1771        return StmtError();
1772      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1773                                diag::err_for_range_iter_deduction_failure)) {
1774        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1775        return StmtError();
1776      }
1777    } else {
1778      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1779                                        ColonLoc);
1780      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1781                                      ColonLoc);
1782
1783      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1784      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1785
1786      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1787        // - if _RangeT is a class type, the unqualified-ids begin and end are
1788        //   looked up in the scope of class _RangeT as if by class member access
1789        //   lookup (3.4.5), and if either (or both) finds at least one
1790        //   declaration, begin-expr and end-expr are __range.begin() and
1791        //   __range.end(), respectively;
1792        LookupQualifiedName(BeginMemberLookup, D);
1793        LookupQualifiedName(EndMemberLookup, D);
1794
1795        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1796          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1797            << RangeType << BeginMemberLookup.empty();
1798          return StmtError();
1799        }
1800      } else {
1801        // - otherwise, begin-expr and end-expr are begin(__range) and
1802        //   end(__range), respectively, where begin and end are looked up with
1803        //   argument-dependent lookup (3.4.2). For the purposes of this name
1804        //   lookup, namespace std is an associated namespace.
1805      }
1806
1807      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1808                                            BEF_begin, BeginNameInfo,
1809                                            BeginMemberLookup,
1810                                            BeginRangeRef.get());
1811      if (BeginExpr.isInvalid())
1812        return StmtError();
1813
1814      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1815                                          BEF_end, EndNameInfo,
1816                                          EndMemberLookup, EndRangeRef.get());
1817      if (EndExpr.isInvalid())
1818        return StmtError();
1819    }
1820
1821    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1822    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1823    if (!Context.hasSameType(BeginType, EndType)) {
1824      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1825        << BeginType << EndType;
1826      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1827      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1828    }
1829
1830    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1831    // Claim the type doesn't contain auto: we've already done the checking.
1832    DeclGroupPtrTy BeginEndGroup =
1833      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1834    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1835
1836    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
1837    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1838                                           VK_LValue, ColonLoc);
1839    if (BeginRef.isInvalid())
1840      return StmtError();
1841
1842    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1843                                         VK_LValue, ColonLoc);
1844    if (EndRef.isInvalid())
1845      return StmtError();
1846
1847    // Build and check __begin != __end expression.
1848    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1849                           BeginRef.get(), EndRef.get());
1850    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1851    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1852    if (NotEqExpr.isInvalid()) {
1853      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1854      if (!Context.hasSameType(BeginType, EndType))
1855        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1856      return StmtError();
1857    }
1858
1859    // Build and check ++__begin expression.
1860    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1861                                VK_LValue, ColonLoc);
1862    if (BeginRef.isInvalid())
1863      return StmtError();
1864
1865    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1866    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1867    if (IncrExpr.isInvalid()) {
1868      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1869      return StmtError();
1870    }
1871
1872    // Build and check *__begin  expression.
1873    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
1874                                VK_LValue, ColonLoc);
1875    if (BeginRef.isInvalid())
1876      return StmtError();
1877
1878    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1879    if (DerefExpr.isInvalid()) {
1880      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1881      return StmtError();
1882    }
1883
1884    // Attach  *__begin  as initializer for VD.
1885    if (!LoopVar->isInvalidDecl()) {
1886      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1887                           /*TypeMayContainAuto=*/true);
1888      if (LoopVar->isInvalidDecl())
1889        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1890    }
1891  } else {
1892    // The range is implicitly used as a placeholder when it is dependent.
1893    RangeVar->setUsed();
1894  }
1895
1896  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1897                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1898                                             NotEqExpr.take(), IncrExpr.take(),
1899                                             LoopVarDS, /*Body=*/0, ForLoc,
1900                                             ColonLoc, RParenLoc));
1901}
1902
1903/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1904/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1905/// body cannot be performed until after the type of the range variable is
1906/// determined.
1907StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1908  if (!S || !B)
1909    return StmtError();
1910
1911  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
1912  ForStmt->setBody(B);
1913
1914  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
1915                        diag::warn_empty_range_based_for_body);
1916
1917  return S;
1918}
1919
1920StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1921                               SourceLocation LabelLoc,
1922                               LabelDecl *TheDecl) {
1923  getCurFunction()->setHasBranchIntoScope();
1924  TheDecl->setUsed();
1925  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1926}
1927
1928StmtResult
1929Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1930                            Expr *E) {
1931  // Convert operand to void*
1932  if (!E->isTypeDependent()) {
1933    QualType ETy = E->getType();
1934    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1935    ExprResult ExprRes = Owned(E);
1936    AssignConvertType ConvTy =
1937      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1938    if (ExprRes.isInvalid())
1939      return StmtError();
1940    E = ExprRes.take();
1941    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1942      return StmtError();
1943    E = MaybeCreateExprWithCleanups(E);
1944  }
1945
1946  getCurFunction()->setHasIndirectGoto();
1947
1948  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1949}
1950
1951StmtResult
1952Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1953  Scope *S = CurScope->getContinueParent();
1954  if (!S) {
1955    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1956    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1957  }
1958
1959  return Owned(new (Context) ContinueStmt(ContinueLoc));
1960}
1961
1962StmtResult
1963Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1964  Scope *S = CurScope->getBreakParent();
1965  if (!S) {
1966    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1967    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1968  }
1969
1970  return Owned(new (Context) BreakStmt(BreakLoc));
1971}
1972
1973/// \brief Determine whether the given expression is a candidate for
1974/// copy elision in either a return statement or a throw expression.
1975///
1976/// \param ReturnType If we're determining the copy elision candidate for
1977/// a return statement, this is the return type of the function. If we're
1978/// determining the copy elision candidate for a throw expression, this will
1979/// be a NULL type.
1980///
1981/// \param E The expression being returned from the function or block, or
1982/// being thrown.
1983///
1984/// \param AllowFunctionParameter Whether we allow function parameters to
1985/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1986/// we re-use this logic to determine whether we should try to move as part of
1987/// a return or throw (which does allow function parameters).
1988///
1989/// \returns The NRVO candidate variable, if the return statement may use the
1990/// NRVO, or NULL if there is no such candidate.
1991const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1992                                             Expr *E,
1993                                             bool AllowFunctionParameter) {
1994  QualType ExprType = E->getType();
1995  // - in a return statement in a function with ...
1996  // ... a class return type ...
1997  if (!ReturnType.isNull()) {
1998    if (!ReturnType->isRecordType())
1999      return 0;
2000    // ... the same cv-unqualified type as the function return type ...
2001    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2002      return 0;
2003  }
2004
2005  // ... the expression is the name of a non-volatile automatic object
2006  // (other than a function or catch-clause parameter)) ...
2007  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2008  if (!DR)
2009    return 0;
2010  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2011  if (!VD)
2012    return 0;
2013
2014  // ...object (other than a function or catch-clause parameter)...
2015  if (VD->getKind() != Decl::Var &&
2016      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2017    return 0;
2018  if (VD->isExceptionVariable()) return 0;
2019
2020  // ...automatic...
2021  if (!VD->hasLocalStorage()) return 0;
2022
2023  // ...non-volatile...
2024  if (VD->getType().isVolatileQualified()) return 0;
2025  if (VD->getType()->isReferenceType()) return 0;
2026
2027  // __block variables can't be allocated in a way that permits NRVO.
2028  if (VD->hasAttr<BlocksAttr>()) return 0;
2029
2030  // Variables with higher required alignment than their type's ABI
2031  // alignment cannot use NRVO.
2032  if (VD->hasAttr<AlignedAttr>() &&
2033      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2034    return 0;
2035
2036  return VD;
2037}
2038
2039/// \brief Perform the initialization of a potentially-movable value, which
2040/// is the result of return value.
2041///
2042/// This routine implements C++0x [class.copy]p33, which attempts to treat
2043/// returned lvalues as rvalues in certain cases (to prefer move construction),
2044/// then falls back to treating them as lvalues if that failed.
2045ExprResult
2046Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2047                                      const VarDecl *NRVOCandidate,
2048                                      QualType ResultType,
2049                                      Expr *Value,
2050                                      bool AllowNRVO) {
2051  // C++0x [class.copy]p33:
2052  //   When the criteria for elision of a copy operation are met or would
2053  //   be met save for the fact that the source object is a function
2054  //   parameter, and the object to be copied is designated by an lvalue,
2055  //   overload resolution to select the constructor for the copy is first
2056  //   performed as if the object were designated by an rvalue.
2057  ExprResult Res = ExprError();
2058  if (AllowNRVO &&
2059      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2060    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2061                              Value->getType(), CK_NoOp, Value, VK_XValue);
2062
2063    Expr *InitExpr = &AsRvalue;
2064    InitializationKind Kind
2065      = InitializationKind::CreateCopy(Value->getLocStart(),
2066                                       Value->getLocStart());
2067    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2068
2069    //   [...] If overload resolution fails, or if the type of the first
2070    //   parameter of the selected constructor is not an rvalue reference
2071    //   to the object's type (possibly cv-qualified), overload resolution
2072    //   is performed again, considering the object as an lvalue.
2073    if (Seq) {
2074      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2075           StepEnd = Seq.step_end();
2076           Step != StepEnd; ++Step) {
2077        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2078          continue;
2079
2080        CXXConstructorDecl *Constructor
2081        = cast<CXXConstructorDecl>(Step->Function.Function);
2082
2083        const RValueReferenceType *RRefType
2084          = Constructor->getParamDecl(0)->getType()
2085                                                 ->getAs<RValueReferenceType>();
2086
2087        // If we don't meet the criteria, break out now.
2088        if (!RRefType ||
2089            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2090                            Context.getTypeDeclType(Constructor->getParent())))
2091          break;
2092
2093        // Promote "AsRvalue" to the heap, since we now need this
2094        // expression node to persist.
2095        Value = ImplicitCastExpr::Create(Context, Value->getType(),
2096                                         CK_NoOp, Value, 0, VK_XValue);
2097
2098        // Complete type-checking the initialization of the return type
2099        // using the constructor we found.
2100        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2101      }
2102    }
2103  }
2104
2105  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2106  // above, or overload resolution failed. Either way, we need to try
2107  // (again) now with the return value expression as written.
2108  if (Res.isInvalid())
2109    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2110
2111  return Res;
2112}
2113
2114/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2115/// for capturing scopes.
2116///
2117StmtResult
2118Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2119  // If this is the first return we've seen, infer the return type.
2120  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2121  // rules which allows multiple return statements.
2122  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2123  if (CurCap->HasImplicitReturnType) {
2124    QualType ReturnT;
2125    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2126      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2127      if (Result.isInvalid())
2128        return StmtError();
2129      RetValExp = Result.take();
2130
2131      if (!RetValExp->isTypeDependent())
2132        ReturnT = RetValExp->getType();
2133      else
2134        ReturnT = Context.DependentTy;
2135    } else {
2136      if (RetValExp) {
2137        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2138        // initializer list, because it is not an expression (even
2139        // though we represent it as one). We still deduce 'void'.
2140        Diag(ReturnLoc, diag::err_lambda_return_init_list)
2141          << RetValExp->getSourceRange();
2142      }
2143
2144      ReturnT = Context.VoidTy;
2145    }
2146    // We require the return types to strictly match here.
2147    if (!CurCap->ReturnType.isNull() &&
2148        !CurCap->ReturnType->isDependentType() &&
2149        !ReturnT->isDependentType() &&
2150        !Context.hasSameType(ReturnT, CurCap->ReturnType)) {
2151      Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
2152          << ReturnT << CurCap->ReturnType
2153          << (getCurLambda() != 0);
2154      return StmtError();
2155    }
2156    CurCap->ReturnType = ReturnT;
2157  }
2158  QualType FnRetType = CurCap->ReturnType;
2159  assert(!FnRetType.isNull());
2160
2161  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2162    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2163      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2164      return StmtError();
2165    }
2166  } else {
2167    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2168    if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2169      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2170      return StmtError();
2171    }
2172  }
2173
2174  // Otherwise, verify that this result type matches the previous one.  We are
2175  // pickier with blocks than for normal functions because we don't have GCC
2176  // compatibility to worry about here.
2177  const VarDecl *NRVOCandidate = 0;
2178  if (FnRetType->isDependentType()) {
2179    // Delay processing for now.  TODO: there are lots of dependent
2180    // types we can conclusively prove aren't void.
2181  } else if (FnRetType->isVoidType()) {
2182    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2183        !(getLangOpts().CPlusPlus &&
2184          (RetValExp->isTypeDependent() ||
2185           RetValExp->getType()->isVoidType()))) {
2186      if (!getLangOpts().CPlusPlus &&
2187          RetValExp->getType()->isVoidType())
2188        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2189      else {
2190        Diag(ReturnLoc, diag::err_return_block_has_expr);
2191        RetValExp = 0;
2192      }
2193    }
2194  } else if (!RetValExp) {
2195    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2196  } else if (!RetValExp->isTypeDependent()) {
2197    // we have a non-void block with an expression, continue checking
2198
2199    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2200    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2201    // function return.
2202
2203    // In C++ the return statement is handled via a copy initialization.
2204    // the C version of which boils down to CheckSingleAssignmentConstraints.
2205    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2206    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2207                                                                   FnRetType,
2208                                                          NRVOCandidate != 0);
2209    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2210                                                     FnRetType, RetValExp);
2211    if (Res.isInvalid()) {
2212      // FIXME: Cleanup temporaries here, anyway?
2213      return StmtError();
2214    }
2215    RetValExp = Res.take();
2216    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2217  }
2218
2219  if (RetValExp) {
2220    CheckImplicitConversions(RetValExp, ReturnLoc);
2221    RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2222  }
2223  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2224                                                NRVOCandidate);
2225
2226  // If we need to check for the named return value optimization, save the
2227  // return statement in our scope for later processing.
2228  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2229      !CurContext->isDependentContext())
2230    FunctionScopes.back()->Returns.push_back(Result);
2231
2232  return Owned(Result);
2233}
2234
2235StmtResult
2236Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2237  // Check for unexpanded parameter packs.
2238  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2239    return StmtError();
2240
2241  if (isa<CapturingScopeInfo>(getCurFunction()))
2242    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2243
2244  QualType FnRetType;
2245  QualType RelatedRetType;
2246  if (const FunctionDecl *FD = getCurFunctionDecl()) {
2247    FnRetType = FD->getResultType();
2248    if (FD->hasAttr<NoReturnAttr>() ||
2249        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
2250      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2251        << FD->getDeclName();
2252  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2253    FnRetType = MD->getResultType();
2254    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2255      // In the implementation of a method with a related return type, the
2256      // type used to type-check the validity of return statements within the
2257      // method body is a pointer to the type of the class being implemented.
2258      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2259      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2260    }
2261  } else // If we don't have a function/method context, bail.
2262    return StmtError();
2263
2264  ReturnStmt *Result = 0;
2265  if (FnRetType->isVoidType()) {
2266    if (RetValExp) {
2267      if (isa<InitListExpr>(RetValExp)) {
2268        // We simply never allow init lists as the return value of void
2269        // functions. This is compatible because this was never allowed before,
2270        // so there's no legacy code to deal with.
2271        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2272        int FunctionKind = 0;
2273        if (isa<ObjCMethodDecl>(CurDecl))
2274          FunctionKind = 1;
2275        else if (isa<CXXConstructorDecl>(CurDecl))
2276          FunctionKind = 2;
2277        else if (isa<CXXDestructorDecl>(CurDecl))
2278          FunctionKind = 3;
2279
2280        Diag(ReturnLoc, diag::err_return_init_list)
2281          << CurDecl->getDeclName() << FunctionKind
2282          << RetValExp->getSourceRange();
2283
2284        // Drop the expression.
2285        RetValExp = 0;
2286      } else if (!RetValExp->isTypeDependent()) {
2287        // C99 6.8.6.4p1 (ext_ since GCC warns)
2288        unsigned D = diag::ext_return_has_expr;
2289        if (RetValExp->getType()->isVoidType())
2290          D = diag::ext_return_has_void_expr;
2291        else {
2292          ExprResult Result = Owned(RetValExp);
2293          Result = IgnoredValueConversions(Result.take());
2294          if (Result.isInvalid())
2295            return StmtError();
2296          RetValExp = Result.take();
2297          RetValExp = ImpCastExprToType(RetValExp,
2298                                        Context.VoidTy, CK_ToVoid).take();
2299        }
2300
2301        // return (some void expression); is legal in C++.
2302        if (D != diag::ext_return_has_void_expr ||
2303            !getLangOpts().CPlusPlus) {
2304          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2305
2306          int FunctionKind = 0;
2307          if (isa<ObjCMethodDecl>(CurDecl))
2308            FunctionKind = 1;
2309          else if (isa<CXXConstructorDecl>(CurDecl))
2310            FunctionKind = 2;
2311          else if (isa<CXXDestructorDecl>(CurDecl))
2312            FunctionKind = 3;
2313
2314          Diag(ReturnLoc, D)
2315            << CurDecl->getDeclName() << FunctionKind
2316            << RetValExp->getSourceRange();
2317        }
2318      }
2319
2320      if (RetValExp) {
2321        CheckImplicitConversions(RetValExp, ReturnLoc);
2322        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2323      }
2324    }
2325
2326    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2327  } else if (!RetValExp && !FnRetType->isDependentType()) {
2328    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2329    // C99 6.8.6.4p1 (ext_ since GCC warns)
2330    if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2331
2332    if (FunctionDecl *FD = getCurFunctionDecl())
2333      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2334    else
2335      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2336    Result = new (Context) ReturnStmt(ReturnLoc);
2337  } else {
2338    const VarDecl *NRVOCandidate = 0;
2339    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2340      // we have a non-void function with an expression, continue checking
2341
2342      if (!RelatedRetType.isNull()) {
2343        // If we have a related result type, perform an extra conversion here.
2344        // FIXME: The diagnostics here don't really describe what is happening.
2345        InitializedEntity Entity =
2346            InitializedEntity::InitializeTemporary(RelatedRetType);
2347
2348        ExprResult Res = PerformCopyInitialization(Entity, SourceLocation(),
2349                                                   RetValExp);
2350        if (Res.isInvalid()) {
2351          // FIXME: Cleanup temporaries here, anyway?
2352          return StmtError();
2353        }
2354        RetValExp = Res.takeAs<Expr>();
2355      }
2356
2357      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2358      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2359      // function return.
2360
2361      // In C++ the return statement is handled via a copy initialization,
2362      // the C version of which boils down to CheckSingleAssignmentConstraints.
2363      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2364      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2365                                                                     FnRetType,
2366                                                            NRVOCandidate != 0);
2367      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2368                                                       FnRetType, RetValExp);
2369      if (Res.isInvalid()) {
2370        // FIXME: Cleanup temporaries here, anyway?
2371        return StmtError();
2372      }
2373
2374      RetValExp = Res.takeAs<Expr>();
2375      if (RetValExp)
2376        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2377    }
2378
2379    if (RetValExp) {
2380      CheckImplicitConversions(RetValExp, ReturnLoc);
2381      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
2382    }
2383    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2384  }
2385
2386  // If we need to check for the named return value optimization, save the
2387  // return statement in our scope for later processing.
2388  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2389      !CurContext->isDependentContext())
2390    FunctionScopes.back()->Returns.push_back(Result);
2391
2392  return Owned(Result);
2393}
2394
2395/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
2396/// ignore "noop" casts in places where an lvalue is required by an inline asm.
2397/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
2398/// provide a strong guidance to not use it.
2399///
2400/// This method checks to see if the argument is an acceptable l-value and
2401/// returns false if it is a case we can handle.
2402static bool CheckAsmLValue(const Expr *E, Sema &S) {
2403  // Type dependent expressions will be checked during instantiation.
2404  if (E->isTypeDependent())
2405    return false;
2406
2407  if (E->isLValue())
2408    return false;  // Cool, this is an lvalue.
2409
2410  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
2411  // are supposed to allow.
2412  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
2413  if (E != E2 && E2->isLValue()) {
2414    if (!S.getLangOpts().HeinousExtensions)
2415      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
2416        << E->getSourceRange();
2417    else
2418      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
2419        << E->getSourceRange();
2420    // Accept, even if we emitted an error diagnostic.
2421    return false;
2422  }
2423
2424  // None of the above, just randomly invalid non-lvalue.
2425  return true;
2426}
2427
2428/// isOperandMentioned - Return true if the specified operand # is mentioned
2429/// anywhere in the decomposed asm string.
2430static bool isOperandMentioned(unsigned OpNo,
2431                         ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
2432  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
2433    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
2434    if (!Piece.isOperand()) continue;
2435
2436    // If this is a reference to the input and if the input was the smaller
2437    // one, then we have to reject this asm.
2438    if (Piece.getOperandNo() == OpNo)
2439      return true;
2440  }
2441
2442  return false;
2443}
2444
2445StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
2446                              bool IsVolatile, unsigned NumOutputs,
2447                              unsigned NumInputs, IdentifierInfo **Names,
2448                              MultiExprArg constraints, MultiExprArg exprs,
2449                              Expr *asmString, MultiExprArg clobbers,
2450                              SourceLocation RParenLoc, bool MSAsm) {
2451  unsigned NumClobbers = clobbers.size();
2452  StringLiteral **Constraints =
2453    reinterpret_cast<StringLiteral**>(constraints.get());
2454  Expr **Exprs = exprs.get();
2455  StringLiteral *AsmString = cast<StringLiteral>(asmString);
2456  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
2457
2458  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2459
2460  // The parser verifies that there is a string literal here.
2461  if (!AsmString->isAscii())
2462    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
2463      << AsmString->getSourceRange());
2464
2465  for (unsigned i = 0; i != NumOutputs; i++) {
2466    StringLiteral *Literal = Constraints[i];
2467    if (!Literal->isAscii())
2468      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2469        << Literal->getSourceRange());
2470
2471    StringRef OutputName;
2472    if (Names[i])
2473      OutputName = Names[i]->getName();
2474
2475    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
2476    if (!Context.getTargetInfo().validateOutputConstraint(Info))
2477      return StmtError(Diag(Literal->getLocStart(),
2478                            diag::err_asm_invalid_output_constraint)
2479                       << Info.getConstraintStr());
2480
2481    // Check that the output exprs are valid lvalues.
2482    Expr *OutputExpr = Exprs[i];
2483    if (CheckAsmLValue(OutputExpr, *this)) {
2484      return StmtError(Diag(OutputExpr->getLocStart(),
2485                  diag::err_asm_invalid_lvalue_in_output)
2486        << OutputExpr->getSourceRange());
2487    }
2488
2489    OutputConstraintInfos.push_back(Info);
2490  }
2491
2492  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2493
2494  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
2495    StringLiteral *Literal = Constraints[i];
2496    if (!Literal->isAscii())
2497      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2498        << Literal->getSourceRange());
2499
2500    StringRef InputName;
2501    if (Names[i])
2502      InputName = Names[i]->getName();
2503
2504    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
2505    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
2506                                                NumOutputs, Info)) {
2507      return StmtError(Diag(Literal->getLocStart(),
2508                            diag::err_asm_invalid_input_constraint)
2509                       << Info.getConstraintStr());
2510    }
2511
2512    Expr *InputExpr = Exprs[i];
2513
2514    // Only allow void types for memory constraints.
2515    if (Info.allowsMemory() && !Info.allowsRegister()) {
2516      if (CheckAsmLValue(InputExpr, *this))
2517        return StmtError(Diag(InputExpr->getLocStart(),
2518                              diag::err_asm_invalid_lvalue_in_input)
2519                         << Info.getConstraintStr()
2520                         << InputExpr->getSourceRange());
2521    }
2522
2523    if (Info.allowsRegister()) {
2524      if (InputExpr->getType()->isVoidType()) {
2525        return StmtError(Diag(InputExpr->getLocStart(),
2526                              diag::err_asm_invalid_type_in_input)
2527          << InputExpr->getType() << Info.getConstraintStr()
2528          << InputExpr->getSourceRange());
2529      }
2530    }
2531
2532    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
2533    if (Result.isInvalid())
2534      return StmtError();
2535
2536    Exprs[i] = Result.take();
2537    InputConstraintInfos.push_back(Info);
2538  }
2539
2540  // Check that the clobbers are valid.
2541  for (unsigned i = 0; i != NumClobbers; i++) {
2542    StringLiteral *Literal = Clobbers[i];
2543    if (!Literal->isAscii())
2544      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2545        << Literal->getSourceRange());
2546
2547    StringRef Clobber = Literal->getString();
2548
2549    if (!Context.getTargetInfo().isValidClobber(Clobber))
2550      return StmtError(Diag(Literal->getLocStart(),
2551                  diag::err_asm_unknown_register_name) << Clobber);
2552  }
2553
2554  AsmStmt *NS =
2555    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2556                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2557                          AsmString, NumClobbers, Clobbers, RParenLoc);
2558  // Validate the asm string, ensuring it makes sense given the operands we
2559  // have.
2560  SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2561  unsigned DiagOffs;
2562  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2563    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2564           << AsmString->getSourceRange();
2565    return StmtError();
2566  }
2567
2568  // Validate tied input operands for type mismatches.
2569  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2570    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2571
2572    // If this is a tied constraint, verify that the output and input have
2573    // either exactly the same type, or that they are int/ptr operands with the
2574    // same size (int/long, int*/long, are ok etc).
2575    if (!Info.hasTiedOperand()) continue;
2576
2577    unsigned TiedTo = Info.getTiedOperand();
2578    unsigned InputOpNo = i+NumOutputs;
2579    Expr *OutputExpr = Exprs[TiedTo];
2580    Expr *InputExpr = Exprs[InputOpNo];
2581
2582    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
2583      continue;
2584
2585    QualType InTy = InputExpr->getType();
2586    QualType OutTy = OutputExpr->getType();
2587    if (Context.hasSameType(InTy, OutTy))
2588      continue;  // All types can be tied to themselves.
2589
2590    // Decide if the input and output are in the same domain (integer/ptr or
2591    // floating point.
2592    enum AsmDomain {
2593      AD_Int, AD_FP, AD_Other
2594    } InputDomain, OutputDomain;
2595
2596    if (InTy->isIntegerType() || InTy->isPointerType())
2597      InputDomain = AD_Int;
2598    else if (InTy->isRealFloatingType())
2599      InputDomain = AD_FP;
2600    else
2601      InputDomain = AD_Other;
2602
2603    if (OutTy->isIntegerType() || OutTy->isPointerType())
2604      OutputDomain = AD_Int;
2605    else if (OutTy->isRealFloatingType())
2606      OutputDomain = AD_FP;
2607    else
2608      OutputDomain = AD_Other;
2609
2610    // They are ok if they are the same size and in the same domain.  This
2611    // allows tying things like:
2612    //   void* to int*
2613    //   void* to int            if they are the same size.
2614    //   double to long double   if they are the same size.
2615    //
2616    uint64_t OutSize = Context.getTypeSize(OutTy);
2617    uint64_t InSize = Context.getTypeSize(InTy);
2618    if (OutSize == InSize && InputDomain == OutputDomain &&
2619        InputDomain != AD_Other)
2620      continue;
2621
2622    // If the smaller input/output operand is not mentioned in the asm string,
2623    // then we can promote the smaller one to a larger input and the asm string
2624    // won't notice.
2625    bool SmallerValueMentioned = false;
2626
2627    // If this is a reference to the input and if the input was the smaller
2628    // one, then we have to reject this asm.
2629    if (isOperandMentioned(InputOpNo, Pieces)) {
2630      // This is a use in the asm string of the smaller operand.  Since we
2631      // codegen this by promoting to a wider value, the asm will get printed
2632      // "wrong".
2633      SmallerValueMentioned |= InSize < OutSize;
2634    }
2635    if (isOperandMentioned(TiedTo, Pieces)) {
2636      // If this is a reference to the output, and if the output is the larger
2637      // value, then it's ok because we'll promote the input to the larger type.
2638      SmallerValueMentioned |= OutSize < InSize;
2639    }
2640
2641    // If the smaller value wasn't mentioned in the asm string, and if the
2642    // output was a register, just extend the shorter one to the size of the
2643    // larger one.
2644    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2645        OutputConstraintInfos[TiedTo].allowsRegister())
2646      continue;
2647
2648    // Either both of the operands were mentioned or the smaller one was
2649    // mentioned.  One more special case that we'll allow: if the tied input is
2650    // integer, unmentioned, and is a constant, then we'll allow truncating it
2651    // down to the size of the destination.
2652    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2653        !isOperandMentioned(InputOpNo, Pieces) &&
2654        InputExpr->isEvaluatable(Context)) {
2655      CastKind castKind =
2656        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2657      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2658      Exprs[InputOpNo] = InputExpr;
2659      NS->setInputExpr(i, InputExpr);
2660      continue;
2661    }
2662
2663    Diag(InputExpr->getLocStart(),
2664         diag::err_asm_tying_incompatible_types)
2665      << InTy << OutTy << OutputExpr->getSourceRange()
2666      << InputExpr->getSourceRange();
2667    return StmtError();
2668  }
2669
2670  return Owned(NS);
2671}
2672
2673StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc,
2674                                std::string &AsmString,
2675                                SourceLocation EndLoc) {
2676  MSAsmStmt *NS =
2677    new (Context) MSAsmStmt(Context, AsmLoc, AsmString, EndLoc);
2678
2679  return Owned(NS);
2680}
2681
2682StmtResult
2683Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2684                           SourceLocation RParen, Decl *Parm,
2685                           Stmt *Body) {
2686  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2687  if (Var && Var->isInvalidDecl())
2688    return StmtError();
2689
2690  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2691}
2692
2693StmtResult
2694Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2695  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2696}
2697
2698StmtResult
2699Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2700                         MultiStmtArg CatchStmts, Stmt *Finally) {
2701  if (!getLangOpts().ObjCExceptions)
2702    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2703
2704  getCurFunction()->setHasBranchProtectedScope();
2705  unsigned NumCatchStmts = CatchStmts.size();
2706  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2707                                     CatchStmts.release(),
2708                                     NumCatchStmts,
2709                                     Finally));
2710}
2711
2712StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2713  if (Throw) {
2714    ExprResult Result = DefaultLvalueConversion(Throw);
2715    if (Result.isInvalid())
2716      return StmtError();
2717
2718    Throw = MaybeCreateExprWithCleanups(Result.take());
2719    QualType ThrowType = Throw->getType();
2720    // Make sure the expression type is an ObjC pointer or "void *".
2721    if (!ThrowType->isDependentType() &&
2722        !ThrowType->isObjCObjectPointerType()) {
2723      const PointerType *PT = ThrowType->getAs<PointerType>();
2724      if (!PT || !PT->getPointeeType()->isVoidType())
2725        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2726                         << Throw->getType() << Throw->getSourceRange());
2727    }
2728  }
2729
2730  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2731}
2732
2733StmtResult
2734Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2735                           Scope *CurScope) {
2736  if (!getLangOpts().ObjCExceptions)
2737    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2738
2739  if (!Throw) {
2740    // @throw without an expression designates a rethrow (which much occur
2741    // in the context of an @catch clause).
2742    Scope *AtCatchParent = CurScope;
2743    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2744      AtCatchParent = AtCatchParent->getParent();
2745    if (!AtCatchParent)
2746      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2747  }
2748
2749  return BuildObjCAtThrowStmt(AtLoc, Throw);
2750}
2751
2752ExprResult
2753Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2754  ExprResult result = DefaultLvalueConversion(operand);
2755  if (result.isInvalid())
2756    return ExprError();
2757  operand = result.take();
2758
2759  // Make sure the expression type is an ObjC pointer or "void *".
2760  QualType type = operand->getType();
2761  if (!type->isDependentType() &&
2762      !type->isObjCObjectPointerType()) {
2763    const PointerType *pointerType = type->getAs<PointerType>();
2764    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2765      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2766               << type << operand->getSourceRange();
2767  }
2768
2769  // The operand to @synchronized is a full-expression.
2770  return MaybeCreateExprWithCleanups(operand);
2771}
2772
2773StmtResult
2774Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2775                                  Stmt *SyncBody) {
2776  // We can't jump into or indirect-jump out of a @synchronized block.
2777  getCurFunction()->setHasBranchProtectedScope();
2778  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2779}
2780
2781/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2782/// and creates a proper catch handler from them.
2783StmtResult
2784Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2785                         Stmt *HandlerBlock) {
2786  // There's nothing to test that ActOnExceptionDecl didn't already test.
2787  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2788                                          cast_or_null<VarDecl>(ExDecl),
2789                                          HandlerBlock));
2790}
2791
2792StmtResult
2793Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2794  getCurFunction()->setHasBranchProtectedScope();
2795  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2796}
2797
2798namespace {
2799
2800class TypeWithHandler {
2801  QualType t;
2802  CXXCatchStmt *stmt;
2803public:
2804  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2805  : t(type), stmt(statement) {}
2806
2807  // An arbitrary order is fine as long as it places identical
2808  // types next to each other.
2809  bool operator<(const TypeWithHandler &y) const {
2810    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2811      return true;
2812    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2813      return false;
2814    else
2815      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2816  }
2817
2818  bool operator==(const TypeWithHandler& other) const {
2819    return t == other.t;
2820  }
2821
2822  CXXCatchStmt *getCatchStmt() const { return stmt; }
2823  SourceLocation getTypeSpecStartLoc() const {
2824    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2825  }
2826};
2827
2828}
2829
2830/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2831/// handlers and creates a try statement from them.
2832StmtResult
2833Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2834                       MultiStmtArg RawHandlers) {
2835  // Don't report an error if 'try' is used in system headers.
2836  if (!getLangOpts().CXXExceptions &&
2837      !getSourceManager().isInSystemHeader(TryLoc))
2838      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2839
2840  unsigned NumHandlers = RawHandlers.size();
2841  assert(NumHandlers > 0 &&
2842         "The parser shouldn't call this if there are no handlers.");
2843  Stmt **Handlers = RawHandlers.get();
2844
2845  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2846
2847  for (unsigned i = 0; i < NumHandlers; ++i) {
2848    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2849    if (!Handler->getExceptionDecl()) {
2850      if (i < NumHandlers - 1)
2851        return StmtError(Diag(Handler->getLocStart(),
2852                              diag::err_early_catch_all));
2853
2854      continue;
2855    }
2856
2857    const QualType CaughtType = Handler->getCaughtType();
2858    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2859    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2860  }
2861
2862  // Detect handlers for the same type as an earlier one.
2863  if (NumHandlers > 1) {
2864    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2865
2866    TypeWithHandler prev = TypesWithHandlers[0];
2867    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2868      TypeWithHandler curr = TypesWithHandlers[i];
2869
2870      if (curr == prev) {
2871        Diag(curr.getTypeSpecStartLoc(),
2872             diag::warn_exception_caught_by_earlier_handler)
2873          << curr.getCatchStmt()->getCaughtType().getAsString();
2874        Diag(prev.getTypeSpecStartLoc(),
2875             diag::note_previous_exception_handler)
2876          << prev.getCatchStmt()->getCaughtType().getAsString();
2877      }
2878
2879      prev = curr;
2880    }
2881  }
2882
2883  getCurFunction()->setHasBranchProtectedScope();
2884
2885  // FIXME: We should detect handlers that cannot catch anything because an
2886  // earlier handler catches a superclass. Need to find a method that is not
2887  // quadratic for this.
2888  // Neither of these are explicitly forbidden, but every compiler detects them
2889  // and warns.
2890
2891  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2892                                  Handlers, NumHandlers));
2893}
2894
2895StmtResult
2896Sema::ActOnSEHTryBlock(bool IsCXXTry,
2897                       SourceLocation TryLoc,
2898                       Stmt *TryBlock,
2899                       Stmt *Handler) {
2900  assert(TryBlock && Handler);
2901
2902  getCurFunction()->setHasBranchProtectedScope();
2903
2904  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2905}
2906
2907StmtResult
2908Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2909                          Expr *FilterExpr,
2910                          Stmt *Block) {
2911  assert(FilterExpr && Block);
2912
2913  if(!FilterExpr->getType()->isIntegerType()) {
2914    return StmtError(Diag(FilterExpr->getExprLoc(),
2915                     diag::err_filter_expression_integral)
2916                     << FilterExpr->getType());
2917  }
2918
2919  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2920}
2921
2922StmtResult
2923Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2924                           Stmt *Block) {
2925  assert(Block);
2926  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2927}
2928
2929StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2930                                            bool IsIfExists,
2931                                            NestedNameSpecifierLoc QualifierLoc,
2932                                            DeclarationNameInfo NameInfo,
2933                                            Stmt *Nested)
2934{
2935  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2936                                             QualifierLoc, NameInfo,
2937                                             cast<CompoundStmt>(Nested));
2938}
2939
2940
2941StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2942                                            bool IsIfExists,
2943                                            CXXScopeSpec &SS,
2944                                            UnqualifiedId &Name,
2945                                            Stmt *Nested) {
2946  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2947                                    SS.getWithLocInContext(Context),
2948                                    GetNameFromUnqualifiedId(Name),
2949                                    Nested);
2950}
2951