SemaStmt.cpp revision aeeacf725c9e0ddd64ea9764bd008e5b6873ce51
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/EvaluatedExprVisitor.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/AST/StmtObjC.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Sema/Initialization.h"
27#include "clang/Sema/Lookup.h"
28#include "clang/Sema/Scope.h"
29#include "clang/Sema/ScopeInfo.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallString.h"
34#include "llvm/ADT/SmallVector.h"
35using namespace clang;
36using namespace sema;
37
38StmtResult Sema::ActOnExprStmt(ExprResult FE) {
39  if (FE.isInvalid())
40    return StmtError();
41
42  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
43                           /*DiscardedValue*/ true);
44  if (FE.isInvalid())
45    return StmtError();
46
47  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
48  // void expression for its side effects.  Conversion to void allows any
49  // operand, even incomplete types.
50
51  // Same thing in for stmt first clause (when expr) and third clause.
52  return Owned(static_cast<Stmt*>(FE.take()));
53}
54
55
56StmtResult Sema::ActOnExprStmtError() {
57  DiscardCleanupsInEvaluationContext();
58  return StmtError();
59}
60
61StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
62                               bool HasLeadingEmptyMacro) {
63  return Owned(new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro));
64}
65
66StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
67                               SourceLocation EndLoc) {
68  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
69
70  // If we have an invalid decl, just return an error.
71  if (DG.isNull()) return StmtError();
72
73  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
74}
75
76void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
77  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
78
79  // If we don't have a declaration, or we have an invalid declaration,
80  // just return.
81  if (DG.isNull() || !DG.isSingleDecl())
82    return;
83
84  Decl *decl = DG.getSingleDecl();
85  if (!decl || decl->isInvalidDecl())
86    return;
87
88  // Only variable declarations are permitted.
89  VarDecl *var = dyn_cast<VarDecl>(decl);
90  if (!var) {
91    Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
92    decl->setInvalidDecl();
93    return;
94  }
95
96  // suppress any potential 'unused variable' warning.
97  var->setUsed();
98
99  // foreach variables are never actually initialized in the way that
100  // the parser came up with.
101  var->setInit(0);
102
103  // In ARC, we don't need to retain the iteration variable of a fast
104  // enumeration loop.  Rather than actually trying to catch that
105  // during declaration processing, we remove the consequences here.
106  if (getLangOpts().ObjCAutoRefCount) {
107    QualType type = var->getType();
108
109    // Only do this if we inferred the lifetime.  Inferred lifetime
110    // will show up as a local qualifier because explicit lifetime
111    // should have shown up as an AttributedType instead.
112    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
113      // Add 'const' and mark the variable as pseudo-strong.
114      var->setType(type.withConst());
115      var->setARCPseudoStrong(true);
116    }
117  }
118}
119
120/// \brief Diagnose unused '==' and '!=' as likely typos for '=' or '|='.
121///
122/// Adding a cast to void (or other expression wrappers) will prevent the
123/// warning from firing.
124static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
125  SourceLocation Loc;
126  bool IsNotEqual, CanAssign;
127
128  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
129    if (Op->getOpcode() != BO_EQ && Op->getOpcode() != BO_NE)
130      return false;
131
132    Loc = Op->getOperatorLoc();
133    IsNotEqual = Op->getOpcode() == BO_NE;
134    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
135  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
136    if (Op->getOperator() != OO_EqualEqual &&
137        Op->getOperator() != OO_ExclaimEqual)
138      return false;
139
140    Loc = Op->getOperatorLoc();
141    IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
142    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
143  } else {
144    // Not a typo-prone comparison.
145    return false;
146  }
147
148  // Suppress warnings when the operator, suspicious as it may be, comes from
149  // a macro expansion.
150  if (S.SourceMgr.isMacroBodyExpansion(Loc))
151    return false;
152
153  S.Diag(Loc, diag::warn_unused_comparison)
154    << (unsigned)IsNotEqual << E->getSourceRange();
155
156  // If the LHS is a plausible entity to assign to, provide a fixit hint to
157  // correct common typos.
158  if (CanAssign) {
159    if (IsNotEqual)
160      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
161        << FixItHint::CreateReplacement(Loc, "|=");
162    else
163      S.Diag(Loc, diag::note_equality_comparison_to_assign)
164        << FixItHint::CreateReplacement(Loc, "=");
165  }
166
167  return true;
168}
169
170void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
171  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
172    return DiagnoseUnusedExprResult(Label->getSubStmt());
173
174  const Expr *E = dyn_cast_or_null<Expr>(S);
175  if (!E)
176    return;
177  SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
178  // In most cases, we don't want to warn if the expression is written in a
179  // macro body, or if the macro comes from a system header. If the offending
180  // expression is a call to a function with the warn_unused_result attribute,
181  // we warn no matter the location. Because of the order in which the various
182  // checks need to happen, we factor out the macro-related test here.
183  bool ShouldSuppress =
184      SourceMgr.isMacroBodyExpansion(ExprLoc) ||
185      SourceMgr.isInSystemMacro(ExprLoc);
186
187  const Expr *WarnExpr;
188  SourceLocation Loc;
189  SourceRange R1, R2;
190  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
191    return;
192
193  // If this is a GNU statement expression expanded from a macro, it is probably
194  // unused because it is a function-like macro that can be used as either an
195  // expression or statement.  Don't warn, because it is almost certainly a
196  // false positive.
197  if (isa<StmtExpr>(E) && Loc.isMacroID())
198    return;
199
200  // Okay, we have an unused result.  Depending on what the base expression is,
201  // we might want to make a more specific diagnostic.  Check for one of these
202  // cases now.
203  unsigned DiagID = diag::warn_unused_expr;
204  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
205    E = Temps->getSubExpr();
206  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
207    E = TempExpr->getSubExpr();
208
209  if (DiagnoseUnusedComparison(*this, E))
210    return;
211
212  E = WarnExpr;
213  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
214    if (E->getType()->isVoidType())
215      return;
216
217    // If the callee has attribute pure, const, or warn_unused_result, warn with
218    // a more specific message to make it clear what is happening. If the call
219    // is written in a macro body, only warn if it has the warn_unused_result
220    // attribute.
221    if (const Decl *FD = CE->getCalleeDecl()) {
222      if (FD->getAttr<WarnUnusedResultAttr>()) {
223        Diag(Loc, diag::warn_unused_result) << R1 << R2;
224        return;
225      }
226      if (ShouldSuppress)
227        return;
228      if (FD->getAttr<PureAttr>()) {
229        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
230        return;
231      }
232      if (FD->getAttr<ConstAttr>()) {
233        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
234        return;
235      }
236    }
237  } else if (ShouldSuppress)
238    return;
239
240  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
241    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
242      Diag(Loc, diag::err_arc_unused_init_message) << R1;
243      return;
244    }
245    const ObjCMethodDecl *MD = ME->getMethodDecl();
246    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
247      Diag(Loc, diag::warn_unused_result) << R1 << R2;
248      return;
249    }
250  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
251    const Expr *Source = POE->getSyntacticForm();
252    if (isa<ObjCSubscriptRefExpr>(Source))
253      DiagID = diag::warn_unused_container_subscript_expr;
254    else
255      DiagID = diag::warn_unused_property_expr;
256  } else if (const CXXFunctionalCastExpr *FC
257                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
258    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
259        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
260      return;
261  }
262  // Diagnose "(void*) blah" as a typo for "(void) blah".
263  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
264    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
265    QualType T = TI->getType();
266
267    // We really do want to use the non-canonical type here.
268    if (T == Context.VoidPtrTy) {
269      PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
270
271      Diag(Loc, diag::warn_unused_voidptr)
272        << FixItHint::CreateRemoval(TL.getStarLoc());
273      return;
274    }
275  }
276
277  if (E->isGLValue() && E->getType().isVolatileQualified()) {
278    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
279    return;
280  }
281
282  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
283}
284
285void Sema::ActOnStartOfCompoundStmt() {
286  PushCompoundScope();
287}
288
289void Sema::ActOnFinishOfCompoundStmt() {
290  PopCompoundScope();
291}
292
293sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
294  return getCurFunction()->CompoundScopes.back();
295}
296
297StmtResult
298Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
299                        MultiStmtArg elts, bool isStmtExpr) {
300  unsigned NumElts = elts.size();
301  Stmt **Elts = elts.data();
302  // If we're in C89 mode, check that we don't have any decls after stmts.  If
303  // so, emit an extension diagnostic.
304  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
305    // Note that __extension__ can be around a decl.
306    unsigned i = 0;
307    // Skip over all declarations.
308    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
309      /*empty*/;
310
311    // We found the end of the list or a statement.  Scan for another declstmt.
312    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
313      /*empty*/;
314
315    if (i != NumElts) {
316      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
317      Diag(D->getLocation(), diag::ext_mixed_decls_code);
318    }
319  }
320  // Warn about unused expressions in statements.
321  for (unsigned i = 0; i != NumElts; ++i) {
322    // Ignore statements that are last in a statement expression.
323    if (isStmtExpr && i == NumElts - 1)
324      continue;
325
326    DiagnoseUnusedExprResult(Elts[i]);
327  }
328
329  // Check for suspicious empty body (null statement) in `for' and `while'
330  // statements.  Don't do anything for template instantiations, this just adds
331  // noise.
332  if (NumElts != 0 && !CurrentInstantiationScope &&
333      getCurCompoundScope().HasEmptyLoopBodies) {
334    for (unsigned i = 0; i != NumElts - 1; ++i)
335      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
336  }
337
338  return Owned(new (Context) CompoundStmt(Context,
339                                          llvm::makeArrayRef(Elts, NumElts),
340                                          L, R));
341}
342
343StmtResult
344Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
345                    SourceLocation DotDotDotLoc, Expr *RHSVal,
346                    SourceLocation ColonLoc) {
347  assert((LHSVal != 0) && "missing expression in case statement");
348
349  if (getCurFunction()->SwitchStack.empty()) {
350    Diag(CaseLoc, diag::err_case_not_in_switch);
351    return StmtError();
352  }
353
354  if (!getLangOpts().CPlusPlus11) {
355    // C99 6.8.4.2p3: The expression shall be an integer constant.
356    // However, GCC allows any evaluatable integer expression.
357    if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
358      LHSVal = VerifyIntegerConstantExpression(LHSVal).take();
359      if (!LHSVal)
360        return StmtError();
361    }
362
363    // GCC extension: The expression shall be an integer constant.
364
365    if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
366      RHSVal = VerifyIntegerConstantExpression(RHSVal).take();
367      // Recover from an error by just forgetting about it.
368    }
369  }
370
371  LHSVal = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
372                               getLangOpts().CPlusPlus11).take();
373  if (RHSVal)
374    RHSVal = ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
375                                 getLangOpts().CPlusPlus11).take();
376
377  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
378                                        ColonLoc);
379  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
380  return Owned(CS);
381}
382
383/// ActOnCaseStmtBody - This installs a statement as the body of a case.
384void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
385  DiagnoseUnusedExprResult(SubStmt);
386
387  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
388  CS->setSubStmt(SubStmt);
389}
390
391StmtResult
392Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
393                       Stmt *SubStmt, Scope *CurScope) {
394  DiagnoseUnusedExprResult(SubStmt);
395
396  if (getCurFunction()->SwitchStack.empty()) {
397    Diag(DefaultLoc, diag::err_default_not_in_switch);
398    return Owned(SubStmt);
399  }
400
401  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
402  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
403  return Owned(DS);
404}
405
406StmtResult
407Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
408                     SourceLocation ColonLoc, Stmt *SubStmt) {
409  // If the label was multiply defined, reject it now.
410  if (TheDecl->getStmt()) {
411    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
412    Diag(TheDecl->getLocation(), diag::note_previous_definition);
413    return Owned(SubStmt);
414  }
415
416  // Otherwise, things are good.  Fill in the declaration and return it.
417  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
418  TheDecl->setStmt(LS);
419  if (!TheDecl->isGnuLocal()) {
420    TheDecl->setLocStart(IdentLoc);
421    TheDecl->setLocation(IdentLoc);
422  }
423  return Owned(LS);
424}
425
426StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
427                                     ArrayRef<const Attr*> Attrs,
428                                     Stmt *SubStmt) {
429  // Fill in the declaration and return it.
430  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
431  return Owned(LS);
432}
433
434StmtResult
435Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
436                  Stmt *thenStmt, SourceLocation ElseLoc,
437                  Stmt *elseStmt) {
438  // If the condition was invalid, discard the if statement.  We could recover
439  // better by replacing it with a valid expr, but don't do that yet.
440  if (!CondVal.get() && !CondVar) {
441    getCurFunction()->setHasDroppedStmt();
442    return StmtError();
443  }
444
445  ExprResult CondResult(CondVal.release());
446
447  VarDecl *ConditionVar = 0;
448  if (CondVar) {
449    ConditionVar = cast<VarDecl>(CondVar);
450    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
451    if (CondResult.isInvalid())
452      return StmtError();
453  }
454  Expr *ConditionExpr = CondResult.takeAs<Expr>();
455  if (!ConditionExpr)
456    return StmtError();
457
458  DiagnoseUnusedExprResult(thenStmt);
459
460  if (!elseStmt) {
461    DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
462                          diag::warn_empty_if_body);
463  }
464
465  DiagnoseUnusedExprResult(elseStmt);
466
467  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
468                                    thenStmt, ElseLoc, elseStmt));
469}
470
471/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
472/// the specified width and sign.  If an overflow occurs, detect it and emit
473/// the specified diagnostic.
474void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
475                                              unsigned NewWidth, bool NewSign,
476                                              SourceLocation Loc,
477                                              unsigned DiagID) {
478  // Perform a conversion to the promoted condition type if needed.
479  if (NewWidth > Val.getBitWidth()) {
480    // If this is an extension, just do it.
481    Val = Val.extend(NewWidth);
482    Val.setIsSigned(NewSign);
483
484    // If the input was signed and negative and the output is
485    // unsigned, don't bother to warn: this is implementation-defined
486    // behavior.
487    // FIXME: Introduce a second, default-ignored warning for this case?
488  } else if (NewWidth < Val.getBitWidth()) {
489    // If this is a truncation, check for overflow.
490    llvm::APSInt ConvVal(Val);
491    ConvVal = ConvVal.trunc(NewWidth);
492    ConvVal.setIsSigned(NewSign);
493    ConvVal = ConvVal.extend(Val.getBitWidth());
494    ConvVal.setIsSigned(Val.isSigned());
495    if (ConvVal != Val)
496      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
497
498    // Regardless of whether a diagnostic was emitted, really do the
499    // truncation.
500    Val = Val.trunc(NewWidth);
501    Val.setIsSigned(NewSign);
502  } else if (NewSign != Val.isSigned()) {
503    // Convert the sign to match the sign of the condition.  This can cause
504    // overflow as well: unsigned(INTMIN)
505    // We don't diagnose this overflow, because it is implementation-defined
506    // behavior.
507    // FIXME: Introduce a second, default-ignored warning for this case?
508    llvm::APSInt OldVal(Val);
509    Val.setIsSigned(NewSign);
510  }
511}
512
513namespace {
514  struct CaseCompareFunctor {
515    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
516                    const llvm::APSInt &RHS) {
517      return LHS.first < RHS;
518    }
519    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
520                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
521      return LHS.first < RHS.first;
522    }
523    bool operator()(const llvm::APSInt &LHS,
524                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
525      return LHS < RHS.first;
526    }
527  };
528}
529
530/// CmpCaseVals - Comparison predicate for sorting case values.
531///
532static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
533                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
534  if (lhs.first < rhs.first)
535    return true;
536
537  if (lhs.first == rhs.first &&
538      lhs.second->getCaseLoc().getRawEncoding()
539       < rhs.second->getCaseLoc().getRawEncoding())
540    return true;
541  return false;
542}
543
544/// CmpEnumVals - Comparison predicate for sorting enumeration values.
545///
546static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
547                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
548{
549  return lhs.first < rhs.first;
550}
551
552/// EqEnumVals - Comparison preficate for uniqing enumeration values.
553///
554static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
555                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
556{
557  return lhs.first == rhs.first;
558}
559
560/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
561/// potentially integral-promoted expression @p expr.
562static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
563  if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
564    expr = cleanups->getSubExpr();
565  while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
566    if (impcast->getCastKind() != CK_IntegralCast) break;
567    expr = impcast->getSubExpr();
568  }
569  return expr->getType();
570}
571
572StmtResult
573Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
574                             Decl *CondVar) {
575  ExprResult CondResult;
576
577  VarDecl *ConditionVar = 0;
578  if (CondVar) {
579    ConditionVar = cast<VarDecl>(CondVar);
580    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
581    if (CondResult.isInvalid())
582      return StmtError();
583
584    Cond = CondResult.release();
585  }
586
587  if (!Cond)
588    return StmtError();
589
590  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
591    Expr *Cond;
592
593  public:
594    SwitchConvertDiagnoser(Expr *Cond)
595      : ICEConvertDiagnoser(false, true), Cond(Cond) { }
596
597    virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
598                                             QualType T) {
599      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
600    }
601
602    virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
603                                                 QualType T) {
604      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
605               << T << Cond->getSourceRange();
606    }
607
608    virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
609                                                   QualType T,
610                                                   QualType ConvTy) {
611      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
612    }
613
614    virtual DiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
615                                               QualType ConvTy) {
616      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
617        << ConvTy->isEnumeralType() << ConvTy;
618    }
619
620    virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
621                                                QualType T) {
622      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
623    }
624
625    virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
626                                            QualType ConvTy) {
627      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
628      << ConvTy->isEnumeralType() << ConvTy;
629    }
630
631    virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
632                                                 QualType T,
633                                                 QualType ConvTy) {
634      return DiagnosticBuilder::getEmpty();
635    }
636  } SwitchDiagnoser(Cond);
637
638  CondResult
639    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond, SwitchDiagnoser,
640                                         /*AllowScopedEnumerations*/ true);
641  if (CondResult.isInvalid()) return StmtError();
642  Cond = CondResult.take();
643
644  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
645  CondResult = UsualUnaryConversions(Cond);
646  if (CondResult.isInvalid()) return StmtError();
647  Cond = CondResult.take();
648
649  if (!CondVar) {
650    CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
651    if (CondResult.isInvalid())
652      return StmtError();
653    Cond = CondResult.take();
654  }
655
656  getCurFunction()->setHasBranchIntoScope();
657
658  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
659  getCurFunction()->SwitchStack.push_back(SS);
660  return Owned(SS);
661}
662
663static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
664  if (Val.getBitWidth() < BitWidth)
665    Val = Val.extend(BitWidth);
666  else if (Val.getBitWidth() > BitWidth)
667    Val = Val.trunc(BitWidth);
668  Val.setIsSigned(IsSigned);
669}
670
671StmtResult
672Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
673                            Stmt *BodyStmt) {
674  SwitchStmt *SS = cast<SwitchStmt>(Switch);
675  assert(SS == getCurFunction()->SwitchStack.back() &&
676         "switch stack missing push/pop!");
677
678  SS->setBody(BodyStmt, SwitchLoc);
679  getCurFunction()->SwitchStack.pop_back();
680
681  Expr *CondExpr = SS->getCond();
682  if (!CondExpr) return StmtError();
683
684  QualType CondType = CondExpr->getType();
685
686  Expr *CondExprBeforePromotion = CondExpr;
687  QualType CondTypeBeforePromotion =
688      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
689
690  // C++ 6.4.2.p2:
691  // Integral promotions are performed (on the switch condition).
692  //
693  // A case value unrepresentable by the original switch condition
694  // type (before the promotion) doesn't make sense, even when it can
695  // be represented by the promoted type.  Therefore we need to find
696  // the pre-promotion type of the switch condition.
697  if (!CondExpr->isTypeDependent()) {
698    // We have already converted the expression to an integral or enumeration
699    // type, when we started the switch statement. If we don't have an
700    // appropriate type now, just return an error.
701    if (!CondType->isIntegralOrEnumerationType())
702      return StmtError();
703
704    if (CondExpr->isKnownToHaveBooleanValue()) {
705      // switch(bool_expr) {...} is often a programmer error, e.g.
706      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
707      // One can always use an if statement instead of switch(bool_expr).
708      Diag(SwitchLoc, diag::warn_bool_switch_condition)
709          << CondExpr->getSourceRange();
710    }
711  }
712
713  // Get the bitwidth of the switched-on value before promotions.  We must
714  // convert the integer case values to this width before comparison.
715  bool HasDependentValue
716    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
717  unsigned CondWidth
718    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
719  bool CondIsSigned
720    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
721
722  // Accumulate all of the case values in a vector so that we can sort them
723  // and detect duplicates.  This vector contains the APInt for the case after
724  // it has been converted to the condition type.
725  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
726  CaseValsTy CaseVals;
727
728  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
729  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
730  CaseRangesTy CaseRanges;
731
732  DefaultStmt *TheDefaultStmt = 0;
733
734  bool CaseListIsErroneous = false;
735
736  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
737       SC = SC->getNextSwitchCase()) {
738
739    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
740      if (TheDefaultStmt) {
741        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
742        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
743
744        // FIXME: Remove the default statement from the switch block so that
745        // we'll return a valid AST.  This requires recursing down the AST and
746        // finding it, not something we are set up to do right now.  For now,
747        // just lop the entire switch stmt out of the AST.
748        CaseListIsErroneous = true;
749      }
750      TheDefaultStmt = DS;
751
752    } else {
753      CaseStmt *CS = cast<CaseStmt>(SC);
754
755      Expr *Lo = CS->getLHS();
756
757      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
758        HasDependentValue = true;
759        break;
760      }
761
762      llvm::APSInt LoVal;
763
764      if (getLangOpts().CPlusPlus11) {
765        // C++11 [stmt.switch]p2: the constant-expression shall be a converted
766        // constant expression of the promoted type of the switch condition.
767        ExprResult ConvLo =
768          CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
769        if (ConvLo.isInvalid()) {
770          CaseListIsErroneous = true;
771          continue;
772        }
773        Lo = ConvLo.take();
774      } else {
775        // We already verified that the expression has a i-c-e value (C99
776        // 6.8.4.2p3) - get that value now.
777        LoVal = Lo->EvaluateKnownConstInt(Context);
778
779        // If the LHS is not the same type as the condition, insert an implicit
780        // cast.
781        Lo = DefaultLvalueConversion(Lo).take();
782        Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
783      }
784
785      // Convert the value to the same width/sign as the condition had prior to
786      // integral promotions.
787      //
788      // FIXME: This causes us to reject valid code:
789      //   switch ((char)c) { case 256: case 0: return 0; }
790      // Here we claim there is a duplicated condition value, but there is not.
791      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
792                                         Lo->getLocStart(),
793                                         diag::warn_case_value_overflow);
794
795      CS->setLHS(Lo);
796
797      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
798      if (CS->getRHS()) {
799        if (CS->getRHS()->isTypeDependent() ||
800            CS->getRHS()->isValueDependent()) {
801          HasDependentValue = true;
802          break;
803        }
804        CaseRanges.push_back(std::make_pair(LoVal, CS));
805      } else
806        CaseVals.push_back(std::make_pair(LoVal, CS));
807    }
808  }
809
810  if (!HasDependentValue) {
811    // If we don't have a default statement, check whether the
812    // condition is constant.
813    llvm::APSInt ConstantCondValue;
814    bool HasConstantCond = false;
815    if (!HasDependentValue && !TheDefaultStmt) {
816      HasConstantCond
817        = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
818                                                 Expr::SE_AllowSideEffects);
819      assert(!HasConstantCond ||
820             (ConstantCondValue.getBitWidth() == CondWidth &&
821              ConstantCondValue.isSigned() == CondIsSigned));
822    }
823    bool ShouldCheckConstantCond = HasConstantCond;
824
825    // Sort all the scalar case values so we can easily detect duplicates.
826    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
827
828    if (!CaseVals.empty()) {
829      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
830        if (ShouldCheckConstantCond &&
831            CaseVals[i].first == ConstantCondValue)
832          ShouldCheckConstantCond = false;
833
834        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
835          // If we have a duplicate, report it.
836          // First, determine if either case value has a name
837          StringRef PrevString, CurrString;
838          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
839          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
840          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
841            PrevString = DeclRef->getDecl()->getName();
842          }
843          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
844            CurrString = DeclRef->getDecl()->getName();
845          }
846          SmallString<16> CaseValStr;
847          CaseVals[i-1].first.toString(CaseValStr);
848
849          if (PrevString == CurrString)
850            Diag(CaseVals[i].second->getLHS()->getLocStart(),
851                 diag::err_duplicate_case) <<
852                 (PrevString.empty() ? CaseValStr.str() : PrevString);
853          else
854            Diag(CaseVals[i].second->getLHS()->getLocStart(),
855                 diag::err_duplicate_case_differing_expr) <<
856                 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
857                 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
858                 CaseValStr;
859
860          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
861               diag::note_duplicate_case_prev);
862          // FIXME: We really want to remove the bogus case stmt from the
863          // substmt, but we have no way to do this right now.
864          CaseListIsErroneous = true;
865        }
866      }
867    }
868
869    // Detect duplicate case ranges, which usually don't exist at all in
870    // the first place.
871    if (!CaseRanges.empty()) {
872      // Sort all the case ranges by their low value so we can easily detect
873      // overlaps between ranges.
874      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
875
876      // Scan the ranges, computing the high values and removing empty ranges.
877      std::vector<llvm::APSInt> HiVals;
878      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
879        llvm::APSInt &LoVal = CaseRanges[i].first;
880        CaseStmt *CR = CaseRanges[i].second;
881        Expr *Hi = CR->getRHS();
882        llvm::APSInt HiVal;
883
884        if (getLangOpts().CPlusPlus11) {
885          // C++11 [stmt.switch]p2: the constant-expression shall be a converted
886          // constant expression of the promoted type of the switch condition.
887          ExprResult ConvHi =
888            CheckConvertedConstantExpression(Hi, CondType, HiVal,
889                                             CCEK_CaseValue);
890          if (ConvHi.isInvalid()) {
891            CaseListIsErroneous = true;
892            continue;
893          }
894          Hi = ConvHi.take();
895        } else {
896          HiVal = Hi->EvaluateKnownConstInt(Context);
897
898          // If the RHS is not the same type as the condition, insert an
899          // implicit cast.
900          Hi = DefaultLvalueConversion(Hi).take();
901          Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
902        }
903
904        // Convert the value to the same width/sign as the condition.
905        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
906                                           Hi->getLocStart(),
907                                           diag::warn_case_value_overflow);
908
909        CR->setRHS(Hi);
910
911        // If the low value is bigger than the high value, the case is empty.
912        if (LoVal > HiVal) {
913          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
914            << SourceRange(CR->getLHS()->getLocStart(),
915                           Hi->getLocEnd());
916          CaseRanges.erase(CaseRanges.begin()+i);
917          --i, --e;
918          continue;
919        }
920
921        if (ShouldCheckConstantCond &&
922            LoVal <= ConstantCondValue &&
923            ConstantCondValue <= HiVal)
924          ShouldCheckConstantCond = false;
925
926        HiVals.push_back(HiVal);
927      }
928
929      // Rescan the ranges, looking for overlap with singleton values and other
930      // ranges.  Since the range list is sorted, we only need to compare case
931      // ranges with their neighbors.
932      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
933        llvm::APSInt &CRLo = CaseRanges[i].first;
934        llvm::APSInt &CRHi = HiVals[i];
935        CaseStmt *CR = CaseRanges[i].second;
936
937        // Check to see whether the case range overlaps with any
938        // singleton cases.
939        CaseStmt *OverlapStmt = 0;
940        llvm::APSInt OverlapVal(32);
941
942        // Find the smallest value >= the lower bound.  If I is in the
943        // case range, then we have overlap.
944        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
945                                                  CaseVals.end(), CRLo,
946                                                  CaseCompareFunctor());
947        if (I != CaseVals.end() && I->first < CRHi) {
948          OverlapVal  = I->first;   // Found overlap with scalar.
949          OverlapStmt = I->second;
950        }
951
952        // Find the smallest value bigger than the upper bound.
953        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
954        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
955          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
956          OverlapStmt = (I-1)->second;
957        }
958
959        // Check to see if this case stmt overlaps with the subsequent
960        // case range.
961        if (i && CRLo <= HiVals[i-1]) {
962          OverlapVal  = HiVals[i-1];       // Found overlap with range.
963          OverlapStmt = CaseRanges[i-1].second;
964        }
965
966        if (OverlapStmt) {
967          // If we have a duplicate, report it.
968          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
969            << OverlapVal.toString(10);
970          Diag(OverlapStmt->getLHS()->getLocStart(),
971               diag::note_duplicate_case_prev);
972          // FIXME: We really want to remove the bogus case stmt from the
973          // substmt, but we have no way to do this right now.
974          CaseListIsErroneous = true;
975        }
976      }
977    }
978
979    // Complain if we have a constant condition and we didn't find a match.
980    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
981      // TODO: it would be nice if we printed enums as enums, chars as
982      // chars, etc.
983      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
984        << ConstantCondValue.toString(10)
985        << CondExpr->getSourceRange();
986    }
987
988    // Check to see if switch is over an Enum and handles all of its
989    // values.  We only issue a warning if there is not 'default:', but
990    // we still do the analysis to preserve this information in the AST
991    // (which can be used by flow-based analyes).
992    //
993    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
994
995    // If switch has default case, then ignore it.
996    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
997      const EnumDecl *ED = ET->getDecl();
998      typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
999        EnumValsTy;
1000      EnumValsTy EnumVals;
1001
1002      // Gather all enum values, set their type and sort them,
1003      // allowing easier comparison with CaseVals.
1004      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1005           EDI != ED->enumerator_end(); ++EDI) {
1006        llvm::APSInt Val = EDI->getInitVal();
1007        AdjustAPSInt(Val, CondWidth, CondIsSigned);
1008        EnumVals.push_back(std::make_pair(Val, *EDI));
1009      }
1010      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1011      EnumValsTy::iterator EIend =
1012        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1013
1014      // See which case values aren't in enum.
1015      EnumValsTy::const_iterator EI = EnumVals.begin();
1016      for (CaseValsTy::const_iterator CI = CaseVals.begin();
1017           CI != CaseVals.end(); CI++) {
1018        while (EI != EIend && EI->first < CI->first)
1019          EI++;
1020        if (EI == EIend || EI->first > CI->first)
1021          Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1022            << CondTypeBeforePromotion;
1023      }
1024      // See which of case ranges aren't in enum
1025      EI = EnumVals.begin();
1026      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1027           RI != CaseRanges.end() && EI != EIend; RI++) {
1028        while (EI != EIend && EI->first < RI->first)
1029          EI++;
1030
1031        if (EI == EIend || EI->first != RI->first) {
1032          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
1033            << CondTypeBeforePromotion;
1034        }
1035
1036        llvm::APSInt Hi =
1037          RI->second->getRHS()->EvaluateKnownConstInt(Context);
1038        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1039        while (EI != EIend && EI->first < Hi)
1040          EI++;
1041        if (EI == EIend || EI->first != Hi)
1042          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
1043            << CondTypeBeforePromotion;
1044      }
1045
1046      // Check which enum vals aren't in switch
1047      CaseValsTy::const_iterator CI = CaseVals.begin();
1048      CaseRangesTy::const_iterator RI = CaseRanges.begin();
1049      bool hasCasesNotInSwitch = false;
1050
1051      SmallVector<DeclarationName,8> UnhandledNames;
1052
1053      for (EI = EnumVals.begin(); EI != EIend; EI++){
1054        // Drop unneeded case values
1055        llvm::APSInt CIVal;
1056        while (CI != CaseVals.end() && CI->first < EI->first)
1057          CI++;
1058
1059        if (CI != CaseVals.end() && CI->first == EI->first)
1060          continue;
1061
1062        // Drop unneeded case ranges
1063        for (; RI != CaseRanges.end(); RI++) {
1064          llvm::APSInt Hi =
1065            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1066          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1067          if (EI->first <= Hi)
1068            break;
1069        }
1070
1071        if (RI == CaseRanges.end() || EI->first < RI->first) {
1072          hasCasesNotInSwitch = true;
1073          UnhandledNames.push_back(EI->second->getDeclName());
1074        }
1075      }
1076
1077      if (TheDefaultStmt && UnhandledNames.empty())
1078        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1079
1080      // Produce a nice diagnostic if multiple values aren't handled.
1081      switch (UnhandledNames.size()) {
1082      case 0: break;
1083      case 1:
1084        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1085          ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1086          << UnhandledNames[0];
1087        break;
1088      case 2:
1089        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1090          ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1091          << UnhandledNames[0] << UnhandledNames[1];
1092        break;
1093      case 3:
1094        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1095          ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1096          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1097        break;
1098      default:
1099        Diag(CondExpr->getExprLoc(), TheDefaultStmt
1100          ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1101          << (unsigned)UnhandledNames.size()
1102          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1103        break;
1104      }
1105
1106      if (!hasCasesNotInSwitch)
1107        SS->setAllEnumCasesCovered();
1108    }
1109  }
1110
1111  DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1112                        diag::warn_empty_switch_body);
1113
1114  // FIXME: If the case list was broken is some way, we don't have a good system
1115  // to patch it up.  Instead, just return the whole substmt as broken.
1116  if (CaseListIsErroneous)
1117    return StmtError();
1118
1119  return Owned(SS);
1120}
1121
1122void
1123Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1124                             Expr *SrcExpr) {
1125  unsigned DIAG = diag::warn_not_in_enum_assignement;
1126  if (Diags.getDiagnosticLevel(DIAG, SrcExpr->getExprLoc())
1127      == DiagnosticsEngine::Ignored)
1128    return;
1129
1130  if (const EnumType *ET = DstType->getAs<EnumType>())
1131    if (!Context.hasSameType(SrcType, DstType) &&
1132        SrcType->isIntegerType()) {
1133      if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1134          SrcExpr->isIntegerConstantExpr(Context)) {
1135        // Get the bitwidth of the enum value before promotions.
1136        unsigned DstWith = Context.getIntWidth(DstType);
1137        bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1138
1139        llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1140        const EnumDecl *ED = ET->getDecl();
1141        typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
1142        EnumValsTy;
1143        EnumValsTy EnumVals;
1144
1145        // Gather all enum values, set their type and sort them,
1146        // allowing easier comparison with rhs constant.
1147        for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
1148             EDI != ED->enumerator_end(); ++EDI) {
1149          llvm::APSInt Val = EDI->getInitVal();
1150          AdjustAPSInt(Val, DstWith, DstIsSigned);
1151          EnumVals.push_back(std::make_pair(Val, *EDI));
1152        }
1153        if (EnumVals.empty())
1154          return;
1155        std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1156        EnumValsTy::iterator EIend =
1157        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1158
1159        // See which case values aren't in enum.
1160        EnumValsTy::const_iterator EI = EnumVals.begin();
1161        while (EI != EIend && EI->first < RhsVal)
1162          EI++;
1163        if (EI == EIend || EI->first != RhsVal) {
1164          Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignement)
1165          << DstType;
1166        }
1167      }
1168    }
1169}
1170
1171StmtResult
1172Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1173                     Decl *CondVar, Stmt *Body) {
1174  ExprResult CondResult(Cond.release());
1175
1176  VarDecl *ConditionVar = 0;
1177  if (CondVar) {
1178    ConditionVar = cast<VarDecl>(CondVar);
1179    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1180    if (CondResult.isInvalid())
1181      return StmtError();
1182  }
1183  Expr *ConditionExpr = CondResult.take();
1184  if (!ConditionExpr)
1185    return StmtError();
1186
1187  DiagnoseUnusedExprResult(Body);
1188
1189  if (isa<NullStmt>(Body))
1190    getCurCompoundScope().setHasEmptyLoopBodies();
1191
1192  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
1193                                       Body, WhileLoc));
1194}
1195
1196StmtResult
1197Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1198                  SourceLocation WhileLoc, SourceLocation CondLParen,
1199                  Expr *Cond, SourceLocation CondRParen) {
1200  assert(Cond && "ActOnDoStmt(): missing expression");
1201
1202  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1203  if (CondResult.isInvalid())
1204    return StmtError();
1205  Cond = CondResult.take();
1206
1207  CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1208  if (CondResult.isInvalid())
1209    return StmtError();
1210  Cond = CondResult.take();
1211
1212  DiagnoseUnusedExprResult(Body);
1213
1214  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
1215}
1216
1217namespace {
1218  // This visitor will traverse a conditional statement and store all
1219  // the evaluated decls into a vector.  Simple is set to true if none
1220  // of the excluded constructs are used.
1221  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1222    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1223    SmallVector<SourceRange, 10> &Ranges;
1224    bool Simple;
1225public:
1226  typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1227
1228  DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1229                SmallVector<SourceRange, 10> &Ranges) :
1230      Inherited(S.Context),
1231      Decls(Decls),
1232      Ranges(Ranges),
1233      Simple(true) {}
1234
1235  bool isSimple() { return Simple; }
1236
1237  // Replaces the method in EvaluatedExprVisitor.
1238  void VisitMemberExpr(MemberExpr* E) {
1239    Simple = false;
1240  }
1241
1242  // Any Stmt not whitelisted will cause the condition to be marked complex.
1243  void VisitStmt(Stmt *S) {
1244    Simple = false;
1245  }
1246
1247  void VisitBinaryOperator(BinaryOperator *E) {
1248    Visit(E->getLHS());
1249    Visit(E->getRHS());
1250  }
1251
1252  void VisitCastExpr(CastExpr *E) {
1253    Visit(E->getSubExpr());
1254  }
1255
1256  void VisitUnaryOperator(UnaryOperator *E) {
1257    // Skip checking conditionals with derefernces.
1258    if (E->getOpcode() == UO_Deref)
1259      Simple = false;
1260    else
1261      Visit(E->getSubExpr());
1262  }
1263
1264  void VisitConditionalOperator(ConditionalOperator *E) {
1265    Visit(E->getCond());
1266    Visit(E->getTrueExpr());
1267    Visit(E->getFalseExpr());
1268  }
1269
1270  void VisitParenExpr(ParenExpr *E) {
1271    Visit(E->getSubExpr());
1272  }
1273
1274  void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1275    Visit(E->getOpaqueValue()->getSourceExpr());
1276    Visit(E->getFalseExpr());
1277  }
1278
1279  void VisitIntegerLiteral(IntegerLiteral *E) { }
1280  void VisitFloatingLiteral(FloatingLiteral *E) { }
1281  void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1282  void VisitCharacterLiteral(CharacterLiteral *E) { }
1283  void VisitGNUNullExpr(GNUNullExpr *E) { }
1284  void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1285
1286  void VisitDeclRefExpr(DeclRefExpr *E) {
1287    VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1288    if (!VD) return;
1289
1290    Ranges.push_back(E->getSourceRange());
1291
1292    Decls.insert(VD);
1293  }
1294
1295  }; // end class DeclExtractor
1296
1297  // DeclMatcher checks to see if the decls are used in a non-evauluated
1298  // context.
1299  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1300    llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1301    bool FoundDecl;
1302
1303public:
1304  typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1305
1306  DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls, Stmt *Statement) :
1307      Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1308    if (!Statement) return;
1309
1310    Visit(Statement);
1311  }
1312
1313  void VisitReturnStmt(ReturnStmt *S) {
1314    FoundDecl = true;
1315  }
1316
1317  void VisitBreakStmt(BreakStmt *S) {
1318    FoundDecl = true;
1319  }
1320
1321  void VisitGotoStmt(GotoStmt *S) {
1322    FoundDecl = true;
1323  }
1324
1325  void VisitCastExpr(CastExpr *E) {
1326    if (E->getCastKind() == CK_LValueToRValue)
1327      CheckLValueToRValueCast(E->getSubExpr());
1328    else
1329      Visit(E->getSubExpr());
1330  }
1331
1332  void CheckLValueToRValueCast(Expr *E) {
1333    E = E->IgnoreParenImpCasts();
1334
1335    if (isa<DeclRefExpr>(E)) {
1336      return;
1337    }
1338
1339    if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1340      Visit(CO->getCond());
1341      CheckLValueToRValueCast(CO->getTrueExpr());
1342      CheckLValueToRValueCast(CO->getFalseExpr());
1343      return;
1344    }
1345
1346    if (BinaryConditionalOperator *BCO =
1347            dyn_cast<BinaryConditionalOperator>(E)) {
1348      CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1349      CheckLValueToRValueCast(BCO->getFalseExpr());
1350      return;
1351    }
1352
1353    Visit(E);
1354  }
1355
1356  void VisitDeclRefExpr(DeclRefExpr *E) {
1357    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1358      if (Decls.count(VD))
1359        FoundDecl = true;
1360  }
1361
1362  bool FoundDeclInUse() { return FoundDecl; }
1363
1364  };  // end class DeclMatcher
1365
1366  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1367                                        Expr *Third, Stmt *Body) {
1368    // Condition is empty
1369    if (!Second) return;
1370
1371    if (S.Diags.getDiagnosticLevel(diag::warn_variables_not_in_loop_body,
1372                                   Second->getLocStart())
1373        == DiagnosticsEngine::Ignored)
1374      return;
1375
1376    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1377    llvm::SmallPtrSet<VarDecl*, 8> Decls;
1378    SmallVector<SourceRange, 10> Ranges;
1379    DeclExtractor DE(S, Decls, Ranges);
1380    DE.Visit(Second);
1381
1382    // Don't analyze complex conditionals.
1383    if (!DE.isSimple()) return;
1384
1385    // No decls found.
1386    if (Decls.size() == 0) return;
1387
1388    // Don't warn on volatile, static, or global variables.
1389    for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1390                                                  E = Decls.end();
1391         I != E; ++I)
1392      if ((*I)->getType().isVolatileQualified() ||
1393          (*I)->hasGlobalStorage()) return;
1394
1395    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1396        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1397        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1398      return;
1399
1400    // Load decl names into diagnostic.
1401    if (Decls.size() > 4)
1402      PDiag << 0;
1403    else {
1404      PDiag << Decls.size();
1405      for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1406                                                    E = Decls.end();
1407           I != E; ++I)
1408        PDiag << (*I)->getDeclName();
1409    }
1410
1411    // Load SourceRanges into diagnostic if there is room.
1412    // Otherwise, load the SourceRange of the conditional expression.
1413    if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1414      for (SmallVector<SourceRange, 10>::iterator I = Ranges.begin(),
1415                                                  E = Ranges.end();
1416           I != E; ++I)
1417        PDiag << *I;
1418    else
1419      PDiag << Second->getSourceRange();
1420
1421    S.Diag(Ranges.begin()->getBegin(), PDiag);
1422  }
1423
1424} // end namespace
1425
1426StmtResult
1427Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1428                   Stmt *First, FullExprArg second, Decl *secondVar,
1429                   FullExprArg third,
1430                   SourceLocation RParenLoc, Stmt *Body) {
1431  if (!getLangOpts().CPlusPlus) {
1432    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1433      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1434      // declare identifiers for objects having storage class 'auto' or
1435      // 'register'.
1436      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
1437           DI!=DE; ++DI) {
1438        VarDecl *VD = dyn_cast<VarDecl>(*DI);
1439        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1440          VD = 0;
1441        if (VD == 0) {
1442          Diag((*DI)->getLocation(), diag::err_non_local_variable_decl_in_for);
1443          (*DI)->setInvalidDecl();
1444        }
1445      }
1446    }
1447  }
1448
1449  CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1450
1451  ExprResult SecondResult(second.release());
1452  VarDecl *ConditionVar = 0;
1453  if (secondVar) {
1454    ConditionVar = cast<VarDecl>(secondVar);
1455    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1456    if (SecondResult.isInvalid())
1457      return StmtError();
1458  }
1459
1460  Expr *Third  = third.release().takeAs<Expr>();
1461
1462  DiagnoseUnusedExprResult(First);
1463  DiagnoseUnusedExprResult(Third);
1464  DiagnoseUnusedExprResult(Body);
1465
1466  if (isa<NullStmt>(Body))
1467    getCurCompoundScope().setHasEmptyLoopBodies();
1468
1469  return Owned(new (Context) ForStmt(Context, First,
1470                                     SecondResult.take(), ConditionVar,
1471                                     Third, Body, ForLoc, LParenLoc,
1472                                     RParenLoc));
1473}
1474
1475/// In an Objective C collection iteration statement:
1476///   for (x in y)
1477/// x can be an arbitrary l-value expression.  Bind it up as a
1478/// full-expression.
1479StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1480  // Reduce placeholder expressions here.  Note that this rejects the
1481  // use of pseudo-object l-values in this position.
1482  ExprResult result = CheckPlaceholderExpr(E);
1483  if (result.isInvalid()) return StmtError();
1484  E = result.take();
1485
1486  ExprResult FullExpr = ActOnFinishFullExpr(E);
1487  if (FullExpr.isInvalid())
1488    return StmtError();
1489  return StmtResult(static_cast<Stmt*>(FullExpr.take()));
1490}
1491
1492ExprResult
1493Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1494  if (!collection)
1495    return ExprError();
1496
1497  // Bail out early if we've got a type-dependent expression.
1498  if (collection->isTypeDependent()) return Owned(collection);
1499
1500  // Perform normal l-value conversion.
1501  ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1502  if (result.isInvalid())
1503    return ExprError();
1504  collection = result.take();
1505
1506  // The operand needs to have object-pointer type.
1507  // TODO: should we do a contextual conversion?
1508  const ObjCObjectPointerType *pointerType =
1509    collection->getType()->getAs<ObjCObjectPointerType>();
1510  if (!pointerType)
1511    return Diag(forLoc, diag::err_collection_expr_type)
1512             << collection->getType() << collection->getSourceRange();
1513
1514  // Check that the operand provides
1515  //   - countByEnumeratingWithState:objects:count:
1516  const ObjCObjectType *objectType = pointerType->getObjectType();
1517  ObjCInterfaceDecl *iface = objectType->getInterface();
1518
1519  // If we have a forward-declared type, we can't do this check.
1520  // Under ARC, it is an error not to have a forward-declared class.
1521  if (iface &&
1522      RequireCompleteType(forLoc, QualType(objectType, 0),
1523                          getLangOpts().ObjCAutoRefCount
1524                            ? diag::err_arc_collection_forward
1525                            : 0,
1526                          collection)) {
1527    // Otherwise, if we have any useful type information, check that
1528    // the type declares the appropriate method.
1529  } else if (iface || !objectType->qual_empty()) {
1530    IdentifierInfo *selectorIdents[] = {
1531      &Context.Idents.get("countByEnumeratingWithState"),
1532      &Context.Idents.get("objects"),
1533      &Context.Idents.get("count")
1534    };
1535    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1536
1537    ObjCMethodDecl *method = 0;
1538
1539    // If there's an interface, look in both the public and private APIs.
1540    if (iface) {
1541      method = iface->lookupInstanceMethod(selector);
1542      if (!method) method = iface->lookupPrivateMethod(selector);
1543    }
1544
1545    // Also check protocol qualifiers.
1546    if (!method)
1547      method = LookupMethodInQualifiedType(selector, pointerType,
1548                                           /*instance*/ true);
1549
1550    // If we didn't find it anywhere, give up.
1551    if (!method) {
1552      Diag(forLoc, diag::warn_collection_expr_type)
1553        << collection->getType() << selector << collection->getSourceRange();
1554    }
1555
1556    // TODO: check for an incompatible signature?
1557  }
1558
1559  // Wrap up any cleanups in the expression.
1560  return Owned(collection);
1561}
1562
1563StmtResult
1564Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1565                                 Stmt *First, Expr *collection,
1566                                 SourceLocation RParenLoc) {
1567
1568  ExprResult CollectionExprResult =
1569    CheckObjCForCollectionOperand(ForLoc, collection);
1570
1571  if (First) {
1572    QualType FirstType;
1573    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1574      if (!DS->isSingleDecl())
1575        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1576                         diag::err_toomany_element_decls));
1577
1578      VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1579      if (!D || D->isInvalidDecl())
1580        return StmtError();
1581
1582      FirstType = D->getType();
1583      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1584      // declare identifiers for objects having storage class 'auto' or
1585      // 'register'.
1586      if (!D->hasLocalStorage())
1587        return StmtError(Diag(D->getLocation(),
1588                              diag::err_non_local_variable_decl_in_for));
1589
1590      // If the type contained 'auto', deduce the 'auto' to 'id'.
1591      if (FirstType->getContainedAutoType()) {
1592        OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1593                                 VK_RValue);
1594        Expr *DeducedInit = &OpaqueId;
1595        if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1596                DAR_Failed)
1597          DiagnoseAutoDeductionFailure(D, DeducedInit);
1598        if (FirstType.isNull()) {
1599          D->setInvalidDecl();
1600          return StmtError();
1601        }
1602
1603        D->setType(FirstType);
1604
1605        if (ActiveTemplateInstantiations.empty()) {
1606          SourceLocation Loc =
1607              D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1608          Diag(Loc, diag::warn_auto_var_is_id)
1609            << D->getDeclName();
1610        }
1611      }
1612
1613    } else {
1614      Expr *FirstE = cast<Expr>(First);
1615      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1616        return StmtError(Diag(First->getLocStart(),
1617                   diag::err_selector_element_not_lvalue)
1618          << First->getSourceRange());
1619
1620      FirstType = static_cast<Expr*>(First)->getType();
1621    }
1622    if (!FirstType->isDependentType() &&
1623        !FirstType->isObjCObjectPointerType() &&
1624        !FirstType->isBlockPointerType())
1625        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1626                           << FirstType << First->getSourceRange());
1627  }
1628
1629  if (CollectionExprResult.isInvalid())
1630    return StmtError();
1631
1632  CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.take());
1633  if (CollectionExprResult.isInvalid())
1634    return StmtError();
1635
1636  return Owned(new (Context) ObjCForCollectionStmt(First,
1637                                                   CollectionExprResult.take(), 0,
1638                                                   ForLoc, RParenLoc));
1639}
1640
1641/// Finish building a variable declaration for a for-range statement.
1642/// \return true if an error occurs.
1643static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1644                                  SourceLocation Loc, int DiagID) {
1645  // Deduce the type for the iterator variable now rather than leaving it to
1646  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1647  QualType InitType;
1648  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1649      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1650          Sema::DAR_Failed)
1651    SemaRef.Diag(Loc, DiagID) << Init->getType();
1652  if (InitType.isNull()) {
1653    Decl->setInvalidDecl();
1654    return true;
1655  }
1656  Decl->setType(InitType);
1657
1658  // In ARC, infer lifetime.
1659  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1660  // we're doing the equivalent of fast iteration.
1661  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1662      SemaRef.inferObjCARCLifetime(Decl))
1663    Decl->setInvalidDecl();
1664
1665  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1666                               /*TypeMayContainAuto=*/false);
1667  SemaRef.FinalizeDeclaration(Decl);
1668  SemaRef.CurContext->addHiddenDecl(Decl);
1669  return false;
1670}
1671
1672namespace {
1673
1674/// Produce a note indicating which begin/end function was implicitly called
1675/// by a C++11 for-range statement. This is often not obvious from the code,
1676/// nor from the diagnostics produced when analysing the implicit expressions
1677/// required in a for-range statement.
1678void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1679                                  Sema::BeginEndFunction BEF) {
1680  CallExpr *CE = dyn_cast<CallExpr>(E);
1681  if (!CE)
1682    return;
1683  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1684  if (!D)
1685    return;
1686  SourceLocation Loc = D->getLocation();
1687
1688  std::string Description;
1689  bool IsTemplate = false;
1690  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1691    Description = SemaRef.getTemplateArgumentBindingsText(
1692      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1693    IsTemplate = true;
1694  }
1695
1696  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1697    << BEF << IsTemplate << Description << E->getType();
1698}
1699
1700/// Build a variable declaration for a for-range statement.
1701VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1702                              QualType Type, const char *Name) {
1703  DeclContext *DC = SemaRef.CurContext;
1704  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1705  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1706  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1707                                  TInfo, SC_None);
1708  Decl->setImplicit();
1709  return Decl;
1710}
1711
1712}
1713
1714static bool ObjCEnumerationCollection(Expr *Collection) {
1715  return !Collection->isTypeDependent()
1716          && Collection->getType()->getAs<ObjCObjectPointerType>() != 0;
1717}
1718
1719/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1720///
1721/// C++11 [stmt.ranged]:
1722///   A range-based for statement is equivalent to
1723///
1724///   {
1725///     auto && __range = range-init;
1726///     for ( auto __begin = begin-expr,
1727///           __end = end-expr;
1728///           __begin != __end;
1729///           ++__begin ) {
1730///       for-range-declaration = *__begin;
1731///       statement
1732///     }
1733///   }
1734///
1735/// The body of the loop is not available yet, since it cannot be analysed until
1736/// we have determined the type of the for-range-declaration.
1737StmtResult
1738Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
1739                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1740                           SourceLocation RParenLoc, BuildForRangeKind Kind) {
1741  if (!First || !Range)
1742    return StmtError();
1743
1744  if (ObjCEnumerationCollection(Range))
1745    return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1746
1747  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1748  assert(DS && "first part of for range not a decl stmt");
1749
1750  if (!DS->isSingleDecl()) {
1751    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1752    return StmtError();
1753  }
1754  if (DS->getSingleDecl()->isInvalidDecl())
1755    return StmtError();
1756
1757  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1758    return StmtError();
1759
1760  // Build  auto && __range = range-init
1761  SourceLocation RangeLoc = Range->getLocStart();
1762  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1763                                           Context.getAutoRRefDeductType(),
1764                                           "__range");
1765  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1766                            diag::err_for_range_deduction_failure))
1767    return StmtError();
1768
1769  // Claim the type doesn't contain auto: we've already done the checking.
1770  DeclGroupPtrTy RangeGroup =
1771    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1772  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1773  if (RangeDecl.isInvalid())
1774    return StmtError();
1775
1776  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1777                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1778                              RParenLoc, Kind);
1779}
1780
1781/// \brief Create the initialization, compare, and increment steps for
1782/// the range-based for loop expression.
1783/// This function does not handle array-based for loops,
1784/// which are created in Sema::BuildCXXForRangeStmt.
1785///
1786/// \returns a ForRangeStatus indicating success or what kind of error occurred.
1787/// BeginExpr and EndExpr are set and FRS_Success is returned on success;
1788/// CandidateSet and BEF are set and some non-success value is returned on
1789/// failure.
1790static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
1791                                            Expr *BeginRange, Expr *EndRange,
1792                                            QualType RangeType,
1793                                            VarDecl *BeginVar,
1794                                            VarDecl *EndVar,
1795                                            SourceLocation ColonLoc,
1796                                            OverloadCandidateSet *CandidateSet,
1797                                            ExprResult *BeginExpr,
1798                                            ExprResult *EndExpr,
1799                                            Sema::BeginEndFunction *BEF) {
1800  DeclarationNameInfo BeginNameInfo(
1801      &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
1802  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
1803                                  ColonLoc);
1804
1805  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
1806                                 Sema::LookupMemberName);
1807  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
1808
1809  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1810    // - if _RangeT is a class type, the unqualified-ids begin and end are
1811    //   looked up in the scope of class _RangeT as if by class member access
1812    //   lookup (3.4.5), and if either (or both) finds at least one
1813    //   declaration, begin-expr and end-expr are __range.begin() and
1814    //   __range.end(), respectively;
1815    SemaRef.LookupQualifiedName(BeginMemberLookup, D);
1816    SemaRef.LookupQualifiedName(EndMemberLookup, D);
1817
1818    if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1819      SourceLocation RangeLoc = BeginVar->getLocation();
1820      *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
1821
1822      SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
1823          << RangeLoc << BeginRange->getType() << *BEF;
1824      return Sema::FRS_DiagnosticIssued;
1825    }
1826  } else {
1827    // - otherwise, begin-expr and end-expr are begin(__range) and
1828    //   end(__range), respectively, where begin and end are looked up with
1829    //   argument-dependent lookup (3.4.2). For the purposes of this name
1830    //   lookup, namespace std is an associated namespace.
1831
1832  }
1833
1834  *BEF = Sema::BEF_begin;
1835  Sema::ForRangeStatus RangeStatus =
1836      SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
1837                                        Sema::BEF_begin, BeginNameInfo,
1838                                        BeginMemberLookup, CandidateSet,
1839                                        BeginRange, BeginExpr);
1840
1841  if (RangeStatus != Sema::FRS_Success)
1842    return RangeStatus;
1843  if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
1844                            diag::err_for_range_iter_deduction_failure)) {
1845    NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
1846    return Sema::FRS_DiagnosticIssued;
1847  }
1848
1849  *BEF = Sema::BEF_end;
1850  RangeStatus =
1851      SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
1852                                        Sema::BEF_end, EndNameInfo,
1853                                        EndMemberLookup, CandidateSet,
1854                                        EndRange, EndExpr);
1855  if (RangeStatus != Sema::FRS_Success)
1856    return RangeStatus;
1857  if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
1858                            diag::err_for_range_iter_deduction_failure)) {
1859    NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
1860    return Sema::FRS_DiagnosticIssued;
1861  }
1862  return Sema::FRS_Success;
1863}
1864
1865/// Speculatively attempt to dereference an invalid range expression.
1866/// If the attempt fails, this function will return a valid, null StmtResult
1867/// and emit no diagnostics.
1868static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
1869                                                 SourceLocation ForLoc,
1870                                                 Stmt *LoopVarDecl,
1871                                                 SourceLocation ColonLoc,
1872                                                 Expr *Range,
1873                                                 SourceLocation RangeLoc,
1874                                                 SourceLocation RParenLoc) {
1875  // Determine whether we can rebuild the for-range statement with a
1876  // dereferenced range expression.
1877  ExprResult AdjustedRange;
1878  {
1879    Sema::SFINAETrap Trap(SemaRef);
1880
1881    AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
1882    if (AdjustedRange.isInvalid())
1883      return StmtResult();
1884
1885    StmtResult SR =
1886      SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1887                                   AdjustedRange.get(), RParenLoc,
1888                                   Sema::BFRK_Check);
1889    if (SR.isInvalid())
1890      return StmtResult();
1891  }
1892
1893  // The attempt to dereference worked well enough that it could produce a valid
1894  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
1895  // case there are any other (non-fatal) problems with it.
1896  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
1897    << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
1898  return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
1899                                      AdjustedRange.get(), RParenLoc,
1900                                      Sema::BFRK_Rebuild);
1901}
1902
1903/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
1904StmtResult
1905Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1906                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1907                           Expr *Inc, Stmt *LoopVarDecl,
1908                           SourceLocation RParenLoc, BuildForRangeKind Kind) {
1909  Scope *S = getCurScope();
1910
1911  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1912  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1913  QualType RangeVarType = RangeVar->getType();
1914
1915  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1916  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1917
1918  StmtResult BeginEndDecl = BeginEnd;
1919  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1920
1921  if (RangeVarType->isDependentType()) {
1922    // The range is implicitly used as a placeholder when it is dependent.
1923    RangeVar->setUsed();
1924
1925    // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
1926    // them in properly when we instantiate the loop.
1927    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
1928      LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
1929  } else if (!BeginEndDecl.get()) {
1930    SourceLocation RangeLoc = RangeVar->getLocation();
1931
1932    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
1933
1934    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1935                                                VK_LValue, ColonLoc);
1936    if (BeginRangeRef.isInvalid())
1937      return StmtError();
1938
1939    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
1940                                              VK_LValue, ColonLoc);
1941    if (EndRangeRef.isInvalid())
1942      return StmtError();
1943
1944    QualType AutoType = Context.getAutoDeductType();
1945    Expr *Range = RangeVar->getInit();
1946    if (!Range)
1947      return StmtError();
1948    QualType RangeType = Range->getType();
1949
1950    if (RequireCompleteType(RangeLoc, RangeType,
1951                            diag::err_for_range_incomplete_type))
1952      return StmtError();
1953
1954    // Build auto __begin = begin-expr, __end = end-expr.
1955    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1956                                             "__begin");
1957    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1958                                           "__end");
1959
1960    // Build begin-expr and end-expr and attach to __begin and __end variables.
1961    ExprResult BeginExpr, EndExpr;
1962    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1963      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1964      //   __range + __bound, respectively, where __bound is the array bound. If
1965      //   _RangeT is an array of unknown size or an array of incomplete type,
1966      //   the program is ill-formed;
1967
1968      // begin-expr is __range.
1969      BeginExpr = BeginRangeRef;
1970      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
1971                                diag::err_for_range_iter_deduction_failure)) {
1972        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1973        return StmtError();
1974      }
1975
1976      // Find the array bound.
1977      ExprResult BoundExpr;
1978      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1979        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1980                                                 Context.getPointerDiffType(),
1981                                                 RangeLoc));
1982      else if (const VariableArrayType *VAT =
1983               dyn_cast<VariableArrayType>(UnqAT))
1984        // FIXME: Need to build an OpaqueValueExpr for this rather than
1985        // recomputing it!
1986        BoundExpr = VAT->getSizeExpr();
1987      else {
1988        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1989        // UnqAT is not incomplete and Range is not type-dependent.
1990        llvm_unreachable("Unexpected array type in for-range");
1991      }
1992
1993      // end-expr is __range + __bound.
1994      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
1995                           BoundExpr.get());
1996      if (EndExpr.isInvalid())
1997        return StmtError();
1998      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1999                                diag::err_for_range_iter_deduction_failure)) {
2000        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2001        return StmtError();
2002      }
2003    } else {
2004      OverloadCandidateSet CandidateSet(RangeLoc);
2005      Sema::BeginEndFunction BEFFailure;
2006      ForRangeStatus RangeStatus =
2007          BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
2008                                EndRangeRef.get(), RangeType,
2009                                BeginVar, EndVar, ColonLoc, &CandidateSet,
2010                                &BeginExpr, &EndExpr, &BEFFailure);
2011
2012      // If building the range failed, try dereferencing the range expression
2013      // unless a diagnostic was issued or the end function is problematic.
2014      if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2015          BEFFailure == BEF_begin) {
2016        StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2017                                                       LoopVarDecl, ColonLoc,
2018                                                       Range, RangeLoc,
2019                                                       RParenLoc);
2020        if (SR.isInvalid() || SR.isUsable())
2021          return SR;
2022      }
2023
2024      // Otherwise, emit diagnostics if we haven't already.
2025      if (RangeStatus == FRS_NoViableFunction) {
2026        Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2027        Diag(Range->getLocStart(), diag::err_for_range_invalid)
2028            << RangeLoc << Range->getType() << BEFFailure;
2029        CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2030      }
2031      // Return an error if no fix was discovered.
2032      if (RangeStatus != FRS_Success)
2033        return StmtError();
2034    }
2035
2036    assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2037           "invalid range expression in for loop");
2038
2039    // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2040    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2041    if (!Context.hasSameType(BeginType, EndType)) {
2042      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
2043        << BeginType << EndType;
2044      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2045      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2046    }
2047
2048    Decl *BeginEndDecls[] = { BeginVar, EndVar };
2049    // Claim the type doesn't contain auto: we've already done the checking.
2050    DeclGroupPtrTy BeginEndGroup =
2051      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
2052    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
2053
2054    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2055    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2056                                           VK_LValue, ColonLoc);
2057    if (BeginRef.isInvalid())
2058      return StmtError();
2059
2060    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2061                                         VK_LValue, ColonLoc);
2062    if (EndRef.isInvalid())
2063      return StmtError();
2064
2065    // Build and check __begin != __end expression.
2066    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2067                           BeginRef.get(), EndRef.get());
2068    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2069    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2070    if (NotEqExpr.isInvalid()) {
2071      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2072        << RangeLoc << 0 << BeginRangeRef.get()->getType();
2073      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2074      if (!Context.hasSameType(BeginType, EndType))
2075        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2076      return StmtError();
2077    }
2078
2079    // Build and check ++__begin expression.
2080    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2081                                VK_LValue, ColonLoc);
2082    if (BeginRef.isInvalid())
2083      return StmtError();
2084
2085    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2086    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2087    if (IncrExpr.isInvalid()) {
2088      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2089        << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2090      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2091      return StmtError();
2092    }
2093
2094    // Build and check *__begin  expression.
2095    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2096                                VK_LValue, ColonLoc);
2097    if (BeginRef.isInvalid())
2098      return StmtError();
2099
2100    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2101    if (DerefExpr.isInvalid()) {
2102      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2103        << RangeLoc << 1 << BeginRangeRef.get()->getType();
2104      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2105      return StmtError();
2106    }
2107
2108    // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2109    // trying to determine whether this would be a valid range.
2110    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2111      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2112                           /*TypeMayContainAuto=*/true);
2113      if (LoopVar->isInvalidDecl())
2114        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2115    }
2116  }
2117
2118  // Don't bother to actually allocate the result if we're just trying to
2119  // determine whether it would be valid.
2120  if (Kind == BFRK_Check)
2121    return StmtResult();
2122
2123  return Owned(new (Context) CXXForRangeStmt(RangeDS,
2124                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
2125                                             NotEqExpr.take(), IncrExpr.take(),
2126                                             LoopVarDS, /*Body=*/0, ForLoc,
2127                                             ColonLoc, RParenLoc));
2128}
2129
2130/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2131/// statement.
2132StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2133  if (!S || !B)
2134    return StmtError();
2135  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2136
2137  ForStmt->setBody(B);
2138  return S;
2139}
2140
2141/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2142/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2143/// body cannot be performed until after the type of the range variable is
2144/// determined.
2145StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2146  if (!S || !B)
2147    return StmtError();
2148
2149  if (isa<ObjCForCollectionStmt>(S))
2150    return FinishObjCForCollectionStmt(S, B);
2151
2152  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2153  ForStmt->setBody(B);
2154
2155  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2156                        diag::warn_empty_range_based_for_body);
2157
2158  return S;
2159}
2160
2161StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2162                               SourceLocation LabelLoc,
2163                               LabelDecl *TheDecl) {
2164  getCurFunction()->setHasBranchIntoScope();
2165  TheDecl->setUsed();
2166  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
2167}
2168
2169StmtResult
2170Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2171                            Expr *E) {
2172  // Convert operand to void*
2173  if (!E->isTypeDependent()) {
2174    QualType ETy = E->getType();
2175    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2176    ExprResult ExprRes = Owned(E);
2177    AssignConvertType ConvTy =
2178      CheckSingleAssignmentConstraints(DestTy, ExprRes);
2179    if (ExprRes.isInvalid())
2180      return StmtError();
2181    E = ExprRes.take();
2182    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2183      return StmtError();
2184  }
2185
2186  ExprResult ExprRes = ActOnFinishFullExpr(E);
2187  if (ExprRes.isInvalid())
2188    return StmtError();
2189  E = ExprRes.take();
2190
2191  getCurFunction()->setHasIndirectGoto();
2192
2193  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
2194}
2195
2196StmtResult
2197Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2198  Scope *S = CurScope->getContinueParent();
2199  if (!S) {
2200    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2201    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2202  }
2203
2204  return Owned(new (Context) ContinueStmt(ContinueLoc));
2205}
2206
2207StmtResult
2208Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2209  Scope *S = CurScope->getBreakParent();
2210  if (!S) {
2211    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2212    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2213  }
2214
2215  return Owned(new (Context) BreakStmt(BreakLoc));
2216}
2217
2218/// \brief Determine whether the given expression is a candidate for
2219/// copy elision in either a return statement or a throw expression.
2220///
2221/// \param ReturnType If we're determining the copy elision candidate for
2222/// a return statement, this is the return type of the function. If we're
2223/// determining the copy elision candidate for a throw expression, this will
2224/// be a NULL type.
2225///
2226/// \param E The expression being returned from the function or block, or
2227/// being thrown.
2228///
2229/// \param AllowFunctionParameter Whether we allow function parameters to
2230/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2231/// we re-use this logic to determine whether we should try to move as part of
2232/// a return or throw (which does allow function parameters).
2233///
2234/// \returns The NRVO candidate variable, if the return statement may use the
2235/// NRVO, or NULL if there is no such candidate.
2236const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2237                                             Expr *E,
2238                                             bool AllowFunctionParameter) {
2239  QualType ExprType = E->getType();
2240  // - in a return statement in a function with ...
2241  // ... a class return type ...
2242  if (!ReturnType.isNull()) {
2243    if (!ReturnType->isRecordType())
2244      return 0;
2245    // ... the same cv-unqualified type as the function return type ...
2246    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
2247      return 0;
2248  }
2249
2250  // ... the expression is the name of a non-volatile automatic object
2251  // (other than a function or catch-clause parameter)) ...
2252  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2253  if (!DR || DR->refersToEnclosingLocal())
2254    return 0;
2255  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2256  if (!VD)
2257    return 0;
2258
2259  // ...object (other than a function or catch-clause parameter)...
2260  if (VD->getKind() != Decl::Var &&
2261      !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2262    return 0;
2263  if (VD->isExceptionVariable()) return 0;
2264
2265  // ...automatic...
2266  if (!VD->hasLocalStorage()) return 0;
2267
2268  // ...non-volatile...
2269  if (VD->getType().isVolatileQualified()) return 0;
2270  if (VD->getType()->isReferenceType()) return 0;
2271
2272  // __block variables can't be allocated in a way that permits NRVO.
2273  if (VD->hasAttr<BlocksAttr>()) return 0;
2274
2275  // Variables with higher required alignment than their type's ABI
2276  // alignment cannot use NRVO.
2277  if (VD->hasAttr<AlignedAttr>() &&
2278      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2279    return 0;
2280
2281  return VD;
2282}
2283
2284/// \brief Perform the initialization of a potentially-movable value, which
2285/// is the result of return value.
2286///
2287/// This routine implements C++0x [class.copy]p33, which attempts to treat
2288/// returned lvalues as rvalues in certain cases (to prefer move construction),
2289/// then falls back to treating them as lvalues if that failed.
2290ExprResult
2291Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2292                                      const VarDecl *NRVOCandidate,
2293                                      QualType ResultType,
2294                                      Expr *Value,
2295                                      bool AllowNRVO) {
2296  // C++0x [class.copy]p33:
2297  //   When the criteria for elision of a copy operation are met or would
2298  //   be met save for the fact that the source object is a function
2299  //   parameter, and the object to be copied is designated by an lvalue,
2300  //   overload resolution to select the constructor for the copy is first
2301  //   performed as if the object were designated by an rvalue.
2302  ExprResult Res = ExprError();
2303  if (AllowNRVO &&
2304      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2305    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2306                              Value->getType(), CK_NoOp, Value, VK_XValue);
2307
2308    Expr *InitExpr = &AsRvalue;
2309    InitializationKind Kind
2310      = InitializationKind::CreateCopy(Value->getLocStart(),
2311                                       Value->getLocStart());
2312    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
2313
2314    //   [...] If overload resolution fails, or if the type of the first
2315    //   parameter of the selected constructor is not an rvalue reference
2316    //   to the object's type (possibly cv-qualified), overload resolution
2317    //   is performed again, considering the object as an lvalue.
2318    if (Seq) {
2319      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2320           StepEnd = Seq.step_end();
2321           Step != StepEnd; ++Step) {
2322        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2323          continue;
2324
2325        CXXConstructorDecl *Constructor
2326        = cast<CXXConstructorDecl>(Step->Function.Function);
2327
2328        const RValueReferenceType *RRefType
2329          = Constructor->getParamDecl(0)->getType()
2330                                                 ->getAs<RValueReferenceType>();
2331
2332        // If we don't meet the criteria, break out now.
2333        if (!RRefType ||
2334            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2335                            Context.getTypeDeclType(Constructor->getParent())))
2336          break;
2337
2338        // Promote "AsRvalue" to the heap, since we now need this
2339        // expression node to persist.
2340        Value = ImplicitCastExpr::Create(Context, Value->getType(),
2341                                         CK_NoOp, Value, 0, VK_XValue);
2342
2343        // Complete type-checking the initialization of the return type
2344        // using the constructor we found.
2345        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
2346      }
2347    }
2348  }
2349
2350  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2351  // above, or overload resolution failed. Either way, we need to try
2352  // (again) now with the return value expression as written.
2353  if (Res.isInvalid())
2354    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2355
2356  return Res;
2357}
2358
2359/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2360/// for capturing scopes.
2361///
2362StmtResult
2363Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2364  // If this is the first return we've seen, infer the return type.
2365  // [expr.prim.lambda]p4 in C++11; block literals follow a superset of those
2366  // rules which allows multiple return statements.
2367  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2368  QualType FnRetType = CurCap->ReturnType;
2369
2370  // For blocks/lambdas with implicit return types, we check each return
2371  // statement individually, and deduce the common return type when the block
2372  // or lambda is completed.
2373  if (CurCap->HasImplicitReturnType) {
2374    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2375      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2376      if (Result.isInvalid())
2377        return StmtError();
2378      RetValExp = Result.take();
2379
2380      if (!RetValExp->isTypeDependent())
2381        FnRetType = RetValExp->getType();
2382      else
2383        FnRetType = CurCap->ReturnType = Context.DependentTy;
2384    } else {
2385      if (RetValExp) {
2386        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2387        // initializer list, because it is not an expression (even
2388        // though we represent it as one). We still deduce 'void'.
2389        Diag(ReturnLoc, diag::err_lambda_return_init_list)
2390          << RetValExp->getSourceRange();
2391      }
2392
2393      FnRetType = Context.VoidTy;
2394    }
2395
2396    // Although we'll properly infer the type of the block once it's completed,
2397    // make sure we provide a return type now for better error recovery.
2398    if (CurCap->ReturnType.isNull())
2399      CurCap->ReturnType = FnRetType;
2400  }
2401  assert(!FnRetType.isNull());
2402
2403  if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2404    if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2405      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2406      return StmtError();
2407    }
2408  } else if (CapturedRegionScopeInfo *CurRegion =
2409                 dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
2410    Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
2411    return StmtError();
2412  } else {
2413    LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CurCap);
2414    if (LSI->CallOperator->getType()->getAs<FunctionType>()->getNoReturnAttr()){
2415      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2416      return StmtError();
2417    }
2418  }
2419
2420  // Otherwise, verify that this result type matches the previous one.  We are
2421  // pickier with blocks than for normal functions because we don't have GCC
2422  // compatibility to worry about here.
2423  const VarDecl *NRVOCandidate = 0;
2424  if (FnRetType->isDependentType()) {
2425    // Delay processing for now.  TODO: there are lots of dependent
2426    // types we can conclusively prove aren't void.
2427  } else if (FnRetType->isVoidType()) {
2428    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2429        !(getLangOpts().CPlusPlus &&
2430          (RetValExp->isTypeDependent() ||
2431           RetValExp->getType()->isVoidType()))) {
2432      if (!getLangOpts().CPlusPlus &&
2433          RetValExp->getType()->isVoidType())
2434        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2435      else {
2436        Diag(ReturnLoc, diag::err_return_block_has_expr);
2437        RetValExp = 0;
2438      }
2439    }
2440  } else if (!RetValExp) {
2441    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2442  } else if (!RetValExp->isTypeDependent()) {
2443    // we have a non-void block with an expression, continue checking
2444
2445    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2446    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2447    // function return.
2448
2449    // In C++ the return statement is handled via a copy initialization.
2450    // the C version of which boils down to CheckSingleAssignmentConstraints.
2451    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2452    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2453                                                                   FnRetType,
2454                                                          NRVOCandidate != 0);
2455    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2456                                                     FnRetType, RetValExp);
2457    if (Res.isInvalid()) {
2458      // FIXME: Cleanup temporaries here, anyway?
2459      return StmtError();
2460    }
2461    RetValExp = Res.take();
2462    CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2463  }
2464
2465  if (RetValExp) {
2466    ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2467    if (ER.isInvalid())
2468      return StmtError();
2469    RetValExp = ER.take();
2470  }
2471  ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2472                                                NRVOCandidate);
2473
2474  // If we need to check for the named return value optimization,
2475  // or if we need to infer the return type,
2476  // save the return statement in our scope for later processing.
2477  if (CurCap->HasImplicitReturnType ||
2478      (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2479       !CurContext->isDependentContext()))
2480    FunctionScopes.back()->Returns.push_back(Result);
2481
2482  return Owned(Result);
2483}
2484
2485StmtResult
2486Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2487  // Check for unexpanded parameter packs.
2488  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2489    return StmtError();
2490
2491  if (isa<CapturingScopeInfo>(getCurFunction()))
2492    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2493
2494  QualType FnRetType;
2495  QualType RelatedRetType;
2496  if (const FunctionDecl *FD = getCurFunctionDecl()) {
2497    FnRetType = FD->getResultType();
2498    if (FD->isNoReturn())
2499      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2500        << FD->getDeclName();
2501  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2502    FnRetType = MD->getResultType();
2503    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2504      // In the implementation of a method with a related return type, the
2505      // type used to type-check the validity of return statements within the
2506      // method body is a pointer to the type of the class being implemented.
2507      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2508      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2509    }
2510  } else // If we don't have a function/method context, bail.
2511    return StmtError();
2512
2513  ReturnStmt *Result = 0;
2514  if (FnRetType->isVoidType()) {
2515    if (RetValExp) {
2516      if (isa<InitListExpr>(RetValExp)) {
2517        // We simply never allow init lists as the return value of void
2518        // functions. This is compatible because this was never allowed before,
2519        // so there's no legacy code to deal with.
2520        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2521        int FunctionKind = 0;
2522        if (isa<ObjCMethodDecl>(CurDecl))
2523          FunctionKind = 1;
2524        else if (isa<CXXConstructorDecl>(CurDecl))
2525          FunctionKind = 2;
2526        else if (isa<CXXDestructorDecl>(CurDecl))
2527          FunctionKind = 3;
2528
2529        Diag(ReturnLoc, diag::err_return_init_list)
2530          << CurDecl->getDeclName() << FunctionKind
2531          << RetValExp->getSourceRange();
2532
2533        // Drop the expression.
2534        RetValExp = 0;
2535      } else if (!RetValExp->isTypeDependent()) {
2536        // C99 6.8.6.4p1 (ext_ since GCC warns)
2537        unsigned D = diag::ext_return_has_expr;
2538        if (RetValExp->getType()->isVoidType())
2539          D = diag::ext_return_has_void_expr;
2540        else {
2541          ExprResult Result = Owned(RetValExp);
2542          Result = IgnoredValueConversions(Result.take());
2543          if (Result.isInvalid())
2544            return StmtError();
2545          RetValExp = Result.take();
2546          RetValExp = ImpCastExprToType(RetValExp,
2547                                        Context.VoidTy, CK_ToVoid).take();
2548        }
2549
2550        // return (some void expression); is legal in C++.
2551        if (D != diag::ext_return_has_void_expr ||
2552            !getLangOpts().CPlusPlus) {
2553          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2554
2555          int FunctionKind = 0;
2556          if (isa<ObjCMethodDecl>(CurDecl))
2557            FunctionKind = 1;
2558          else if (isa<CXXConstructorDecl>(CurDecl))
2559            FunctionKind = 2;
2560          else if (isa<CXXDestructorDecl>(CurDecl))
2561            FunctionKind = 3;
2562
2563          Diag(ReturnLoc, D)
2564            << CurDecl->getDeclName() << FunctionKind
2565            << RetValExp->getSourceRange();
2566        }
2567      }
2568
2569      if (RetValExp) {
2570        ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2571        if (ER.isInvalid())
2572          return StmtError();
2573        RetValExp = ER.take();
2574      }
2575    }
2576
2577    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
2578  } else if (!RetValExp && !FnRetType->isDependentType()) {
2579    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
2580    // C99 6.8.6.4p1 (ext_ since GCC warns)
2581    if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2582
2583    if (FunctionDecl *FD = getCurFunctionDecl())
2584      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2585    else
2586      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2587    Result = new (Context) ReturnStmt(ReturnLoc);
2588  } else {
2589    assert(RetValExp || FnRetType->isDependentType());
2590    const VarDecl *NRVOCandidate = 0;
2591    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
2592      // we have a non-void function with an expression, continue checking
2593
2594      QualType RetType = (RelatedRetType.isNull() ? FnRetType : RelatedRetType);
2595
2596      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2597      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2598      // function return.
2599
2600      // In C++ the return statement is handled via a copy initialization,
2601      // the C version of which boils down to CheckSingleAssignmentConstraints.
2602      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2603      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2604                                                                     RetType,
2605                                                            NRVOCandidate != 0);
2606      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2607                                                       RetType, RetValExp);
2608      if (Res.isInvalid()) {
2609        // FIXME: Clean up temporaries here anyway?
2610        return StmtError();
2611      }
2612      RetValExp = Res.takeAs<Expr>();
2613
2614      // If we have a related result type, we need to implicitly
2615      // convert back to the formal result type.  We can't pretend to
2616      // initialize the result again --- we might end double-retaining
2617      // --- so instead we initialize a notional temporary; this can
2618      // lead to less-than-great diagnostics, but this stage is much
2619      // less likely to fail than the previous stage.
2620      if (!RelatedRetType.isNull()) {
2621        Entity = InitializedEntity::InitializeTemporary(FnRetType);
2622        Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
2623        if (Res.isInvalid()) {
2624          // FIXME: Clean up temporaries here anyway?
2625          return StmtError();
2626        }
2627        RetValExp = Res.takeAs<Expr>();
2628      }
2629
2630      CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
2631    }
2632
2633    if (RetValExp) {
2634      ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2635      if (ER.isInvalid())
2636        return StmtError();
2637      RetValExp = ER.take();
2638    }
2639    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
2640  }
2641
2642  // If we need to check for the named return value optimization, save the
2643  // return statement in our scope for later processing.
2644  if (getLangOpts().CPlusPlus && FnRetType->isRecordType() &&
2645      !CurContext->isDependentContext())
2646    FunctionScopes.back()->Returns.push_back(Result);
2647
2648  return Owned(Result);
2649}
2650
2651StmtResult
2652Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2653                           SourceLocation RParen, Decl *Parm,
2654                           Stmt *Body) {
2655  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2656  if (Var && Var->isInvalidDecl())
2657    return StmtError();
2658
2659  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2660}
2661
2662StmtResult
2663Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2664  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2665}
2666
2667StmtResult
2668Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2669                         MultiStmtArg CatchStmts, Stmt *Finally) {
2670  if (!getLangOpts().ObjCExceptions)
2671    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2672
2673  getCurFunction()->setHasBranchProtectedScope();
2674  unsigned NumCatchStmts = CatchStmts.size();
2675  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2676                                     CatchStmts.data(),
2677                                     NumCatchStmts,
2678                                     Finally));
2679}
2680
2681StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
2682  if (Throw) {
2683    ExprResult Result = DefaultLvalueConversion(Throw);
2684    if (Result.isInvalid())
2685      return StmtError();
2686
2687    Result = ActOnFinishFullExpr(Result.take());
2688    if (Result.isInvalid())
2689      return StmtError();
2690    Throw = Result.take();
2691
2692    QualType ThrowType = Throw->getType();
2693    // Make sure the expression type is an ObjC pointer or "void *".
2694    if (!ThrowType->isDependentType() &&
2695        !ThrowType->isObjCObjectPointerType()) {
2696      const PointerType *PT = ThrowType->getAs<PointerType>();
2697      if (!PT || !PT->getPointeeType()->isVoidType())
2698        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2699                         << Throw->getType() << Throw->getSourceRange());
2700    }
2701  }
2702
2703  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2704}
2705
2706StmtResult
2707Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2708                           Scope *CurScope) {
2709  if (!getLangOpts().ObjCExceptions)
2710    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2711
2712  if (!Throw) {
2713    // @throw without an expression designates a rethrow (which much occur
2714    // in the context of an @catch clause).
2715    Scope *AtCatchParent = CurScope;
2716    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2717      AtCatchParent = AtCatchParent->getParent();
2718    if (!AtCatchParent)
2719      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2720  }
2721  return BuildObjCAtThrowStmt(AtLoc, Throw);
2722}
2723
2724ExprResult
2725Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
2726  ExprResult result = DefaultLvalueConversion(operand);
2727  if (result.isInvalid())
2728    return ExprError();
2729  operand = result.take();
2730
2731  // Make sure the expression type is an ObjC pointer or "void *".
2732  QualType type = operand->getType();
2733  if (!type->isDependentType() &&
2734      !type->isObjCObjectPointerType()) {
2735    const PointerType *pointerType = type->getAs<PointerType>();
2736    if (!pointerType || !pointerType->getPointeeType()->isVoidType())
2737      return Diag(atLoc, diag::error_objc_synchronized_expects_object)
2738               << type << operand->getSourceRange();
2739  }
2740
2741  // The operand to @synchronized is a full-expression.
2742  return ActOnFinishFullExpr(operand);
2743}
2744
2745StmtResult
2746Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2747                                  Stmt *SyncBody) {
2748  // We can't jump into or indirect-jump out of a @synchronized block.
2749  getCurFunction()->setHasBranchProtectedScope();
2750  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2751}
2752
2753/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2754/// and creates a proper catch handler from them.
2755StmtResult
2756Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2757                         Stmt *HandlerBlock) {
2758  // There's nothing to test that ActOnExceptionDecl didn't already test.
2759  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2760                                          cast_or_null<VarDecl>(ExDecl),
2761                                          HandlerBlock));
2762}
2763
2764StmtResult
2765Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2766  getCurFunction()->setHasBranchProtectedScope();
2767  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2768}
2769
2770namespace {
2771
2772class TypeWithHandler {
2773  QualType t;
2774  CXXCatchStmt *stmt;
2775public:
2776  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2777  : t(type), stmt(statement) {}
2778
2779  // An arbitrary order is fine as long as it places identical
2780  // types next to each other.
2781  bool operator<(const TypeWithHandler &y) const {
2782    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2783      return true;
2784    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2785      return false;
2786    else
2787      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2788  }
2789
2790  bool operator==(const TypeWithHandler& other) const {
2791    return t == other.t;
2792  }
2793
2794  CXXCatchStmt *getCatchStmt() const { return stmt; }
2795  SourceLocation getTypeSpecStartLoc() const {
2796    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2797  }
2798};
2799
2800}
2801
2802/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2803/// handlers and creates a try statement from them.
2804StmtResult
2805Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2806                       MultiStmtArg RawHandlers) {
2807  // Don't report an error if 'try' is used in system headers.
2808  if (!getLangOpts().CXXExceptions &&
2809      !getSourceManager().isInSystemHeader(TryLoc))
2810      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2811
2812  unsigned NumHandlers = RawHandlers.size();
2813  assert(NumHandlers > 0 &&
2814         "The parser shouldn't call this if there are no handlers.");
2815  Stmt **Handlers = RawHandlers.data();
2816
2817  SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2818
2819  for (unsigned i = 0; i < NumHandlers; ++i) {
2820    CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
2821    if (!Handler->getExceptionDecl()) {
2822      if (i < NumHandlers - 1)
2823        return StmtError(Diag(Handler->getLocStart(),
2824                              diag::err_early_catch_all));
2825
2826      continue;
2827    }
2828
2829    const QualType CaughtType = Handler->getCaughtType();
2830    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2831    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2832  }
2833
2834  // Detect handlers for the same type as an earlier one.
2835  if (NumHandlers > 1) {
2836    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2837
2838    TypeWithHandler prev = TypesWithHandlers[0];
2839    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2840      TypeWithHandler curr = TypesWithHandlers[i];
2841
2842      if (curr == prev) {
2843        Diag(curr.getTypeSpecStartLoc(),
2844             diag::warn_exception_caught_by_earlier_handler)
2845          << curr.getCatchStmt()->getCaughtType().getAsString();
2846        Diag(prev.getTypeSpecStartLoc(),
2847             diag::note_previous_exception_handler)
2848          << prev.getCatchStmt()->getCaughtType().getAsString();
2849      }
2850
2851      prev = curr;
2852    }
2853  }
2854
2855  getCurFunction()->setHasBranchProtectedScope();
2856
2857  // FIXME: We should detect handlers that cannot catch anything because an
2858  // earlier handler catches a superclass. Need to find a method that is not
2859  // quadratic for this.
2860  // Neither of these are explicitly forbidden, but every compiler detects them
2861  // and warns.
2862
2863  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2864                                  llvm::makeArrayRef(Handlers, NumHandlers)));
2865}
2866
2867StmtResult
2868Sema::ActOnSEHTryBlock(bool IsCXXTry,
2869                       SourceLocation TryLoc,
2870                       Stmt *TryBlock,
2871                       Stmt *Handler) {
2872  assert(TryBlock && Handler);
2873
2874  getCurFunction()->setHasBranchProtectedScope();
2875
2876  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2877}
2878
2879StmtResult
2880Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2881                          Expr *FilterExpr,
2882                          Stmt *Block) {
2883  assert(FilterExpr && Block);
2884
2885  if(!FilterExpr->getType()->isIntegerType()) {
2886    return StmtError(Diag(FilterExpr->getExprLoc(),
2887                     diag::err_filter_expression_integral)
2888                     << FilterExpr->getType());
2889  }
2890
2891  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2892}
2893
2894StmtResult
2895Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2896                           Stmt *Block) {
2897  assert(Block);
2898  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2899}
2900
2901StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
2902                                            bool IsIfExists,
2903                                            NestedNameSpecifierLoc QualifierLoc,
2904                                            DeclarationNameInfo NameInfo,
2905                                            Stmt *Nested)
2906{
2907  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
2908                                             QualifierLoc, NameInfo,
2909                                             cast<CompoundStmt>(Nested));
2910}
2911
2912
2913StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
2914                                            bool IsIfExists,
2915                                            CXXScopeSpec &SS,
2916                                            UnqualifiedId &Name,
2917                                            Stmt *Nested) {
2918  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
2919                                    SS.getWithLocInContext(Context),
2920                                    GetNameFromUnqualifiedId(Name),
2921                                    Nested);
2922}
2923
2924RecordDecl*
2925Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc)
2926{
2927  DeclContext *DC = CurContext;
2928  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
2929    DC = DC->getParent();
2930
2931  RecordDecl *RD = 0;
2932  if (getLangOpts().CPlusPlus)
2933    RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/0);
2934  else
2935    RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/0);
2936
2937  DC->addDecl(RD);
2938  RD->setImplicit();
2939  RD->startDefinition();
2940
2941  CD = CapturedDecl::Create(Context, CurContext);
2942  DC->addDecl(CD);
2943
2944  return RD;
2945}
2946
2947static void buildCapturedStmtCaptureList(
2948    SmallVectorImpl<CapturedStmt::Capture> &Captures,
2949    SmallVectorImpl<Expr *> &CaptureInits,
2950    ArrayRef<CapturingScopeInfo::Capture> Candidates) {
2951
2952  typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
2953  for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
2954
2955    if (Cap->isThisCapture()) {
2956      Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
2957                                               CapturedStmt::VCK_This));
2958      CaptureInits.push_back(Cap->getCopyExpr());
2959      continue;
2960    }
2961
2962    assert(Cap->isReferenceCapture() &&
2963           "non-reference capture not yet implemented");
2964
2965    Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
2966                                             CapturedStmt::VCK_ByRef,
2967                                             Cap->getVariable()));
2968    CaptureInits.push_back(Cap->getCopyExpr());
2969  }
2970}
2971
2972void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
2973                                    CapturedRegionKind Kind) {
2974  CapturedDecl *CD = 0;
2975  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc);
2976
2977  // Enter the capturing scope for this captured region.
2978  PushCapturedRegionScope(CurScope, CD, RD, Kind);
2979
2980  if (CurScope)
2981    PushDeclContext(CurScope, CD);
2982  else
2983    CurContext = CD;
2984
2985  PushExpressionEvaluationContext(PotentiallyEvaluated);
2986}
2987
2988void Sema::ActOnCapturedRegionError(bool IsInstantiation) {
2989  DiscardCleanupsInEvaluationContext();
2990  PopExpressionEvaluationContext();
2991
2992  if (!IsInstantiation)
2993    PopDeclContext();
2994
2995  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
2996  RecordDecl *Record = RSI->TheRecordDecl;
2997  Record->setInvalidDecl();
2998
2999  SmallVector<Decl*, 4> Fields;
3000  for (RecordDecl::field_iterator I = Record->field_begin(),
3001                                  E = Record->field_end(); I != E; ++I)
3002    Fields.push_back(*I);
3003  ActOnFields(/*Scope=*/0, Record->getLocation(), Record, Fields,
3004              SourceLocation(), SourceLocation(), /*AttributeList=*/0);
3005
3006  PopFunctionScopeInfo();
3007}
3008
3009StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
3010  CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3011
3012  SmallVector<CapturedStmt::Capture, 4> Captures;
3013  SmallVector<Expr *, 4> CaptureInits;
3014  buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
3015
3016  CapturedDecl *CD = RSI->TheCapturedDecl;
3017  RecordDecl *RD = RSI->TheRecordDecl;
3018
3019  CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S, Captures,
3020                                           CaptureInits, CD, RD);
3021
3022  CD->setBody(Res->getCapturedStmt());
3023  RD->completeDefinition();
3024
3025  PopDeclContext();
3026  PopFunctionScopeInfo();
3027
3028  return Owned(Res);
3029}
3030