SemaStmt.cpp revision b403d6d746239095a2c7bac958c924d92434e2b4
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc, bool LeadingEmptyMacro) {
50  return Owned(new (Context) NullStmt(SemiLoc, LeadingEmptyMacro));
51}
52
53StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
54                               SourceLocation EndLoc) {
55  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
56
57  // If we have an invalid decl, just return an error.
58  if (DG.isNull()) return StmtError();
59
60  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
61}
62
63void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
64  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
65
66  // If we have an invalid decl, just return.
67  if (DG.isNull() || !DG.isSingleDecl()) return;
68  // suppress any potential 'unused variable' warning.
69  DG.getSingleDecl()->setUsed();
70}
71
72void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
73  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
74    return DiagnoseUnusedExprResult(Label->getSubStmt());
75
76  const Expr *E = dyn_cast_or_null<Expr>(S);
77  if (!E)
78    return;
79
80  if (E->isBoundMemberFunction(Context)) {
81    Diag(E->getLocStart(), diag::err_invalid_use_of_bound_member_func)
82      << E->getSourceRange();
83    return;
84  }
85
86  SourceLocation Loc;
87  SourceRange R1, R2;
88  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
89    return;
90
91  // Okay, we have an unused result.  Depending on what the base expression is,
92  // we might want to make a more specific diagnostic.  Check for one of these
93  // cases now.
94  unsigned DiagID = diag::warn_unused_expr;
95  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
96    E = Temps->getSubExpr();
97  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
98    E = TempExpr->getSubExpr();
99
100  E = E->IgnoreParenImpCasts();
101  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
102    if (E->getType()->isVoidType())
103      return;
104
105    // If the callee has attribute pure, const, or warn_unused_result, warn with
106    // a more specific message to make it clear what is happening.
107    if (const Decl *FD = CE->getCalleeDecl()) {
108      if (FD->getAttr<WarnUnusedResultAttr>()) {
109        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
110        return;
111      }
112      if (FD->getAttr<PureAttr>()) {
113        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
114        return;
115      }
116      if (FD->getAttr<ConstAttr>()) {
117        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
118        return;
119      }
120    }
121  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
122    const ObjCMethodDecl *MD = ME->getMethodDecl();
123    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
124      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
125      return;
126    }
127  } else if (isa<ObjCPropertyRefExpr>(E)) {
128    DiagID = diag::warn_unused_property_expr;
129  } else if (const CXXFunctionalCastExpr *FC
130                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
131    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
132        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
133      return;
134  }
135  // Diagnose "(void*) blah" as a typo for "(void) blah".
136  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
137    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
138    QualType T = TI->getType();
139
140    // We really do want to use the non-canonical type here.
141    if (T == Context.VoidPtrTy) {
142      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
143
144      Diag(Loc, diag::warn_unused_voidptr)
145        << FixItHint::CreateRemoval(TL.getStarLoc());
146      return;
147    }
148  }
149
150  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
151}
152
153StmtResult
154Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
155                        MultiStmtArg elts, bool isStmtExpr) {
156  unsigned NumElts = elts.size();
157  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
158  // If we're in C89 mode, check that we don't have any decls after stmts.  If
159  // so, emit an extension diagnostic.
160  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
161    // Note that __extension__ can be around a decl.
162    unsigned i = 0;
163    // Skip over all declarations.
164    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
165      /*empty*/;
166
167    // We found the end of the list or a statement.  Scan for another declstmt.
168    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
169      /*empty*/;
170
171    if (i != NumElts) {
172      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
173      Diag(D->getLocation(), diag::ext_mixed_decls_code);
174    }
175  }
176  // Warn about unused expressions in statements.
177  for (unsigned i = 0; i != NumElts; ++i) {
178    // Ignore statements that are last in a statement expression.
179    if (isStmtExpr && i == NumElts - 1)
180      continue;
181
182    DiagnoseUnusedExprResult(Elts[i]);
183  }
184
185  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
186}
187
188StmtResult
189Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
190                    SourceLocation DotDotDotLoc, Expr *RHSVal,
191                    SourceLocation ColonLoc) {
192  assert((LHSVal != 0) && "missing expression in case statement");
193
194  // C99 6.8.4.2p3: The expression shall be an integer constant.
195  // However, GCC allows any evaluatable integer expression.
196  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
197      VerifyIntegerConstantExpression(LHSVal))
198    return StmtError();
199
200  // GCC extension: The expression shall be an integer constant.
201
202  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
203      VerifyIntegerConstantExpression(RHSVal)) {
204    RHSVal = 0;  // Recover by just forgetting about it.
205  }
206
207  if (getCurFunction()->SwitchStack.empty()) {
208    Diag(CaseLoc, diag::err_case_not_in_switch);
209    return StmtError();
210  }
211
212  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
213                                        ColonLoc);
214  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
215  return Owned(CS);
216}
217
218/// ActOnCaseStmtBody - This installs a statement as the body of a case.
219void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
220  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
221  CS->setSubStmt(SubStmt);
222}
223
224StmtResult
225Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
226                       Stmt *SubStmt, Scope *CurScope) {
227  if (getCurFunction()->SwitchStack.empty()) {
228    Diag(DefaultLoc, diag::err_default_not_in_switch);
229    return Owned(SubStmt);
230  }
231
232  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
233  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
234  return Owned(DS);
235}
236
237StmtResult
238Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
239                     SourceLocation ColonLoc, Stmt *SubStmt) {
240
241  // If the label was multiply defined, reject it now.
242  if (TheDecl->getStmt()) {
243    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
244    Diag(TheDecl->getLocation(), diag::note_previous_definition);
245    return Owned(SubStmt);
246  }
247
248  // Otherwise, things are good.  Fill in the declaration and return it.
249  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
250  TheDecl->setStmt(LS);
251  if (!TheDecl->isGnuLocal())
252    TheDecl->setLocation(IdentLoc);
253  return Owned(LS);
254}
255
256StmtResult
257Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
258                  Stmt *thenStmt, SourceLocation ElseLoc,
259                  Stmt *elseStmt) {
260  ExprResult CondResult(CondVal.release());
261
262  VarDecl *ConditionVar = 0;
263  if (CondVar) {
264    ConditionVar = cast<VarDecl>(CondVar);
265    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
266    if (CondResult.isInvalid())
267      return StmtError();
268  }
269  Expr *ConditionExpr = CondResult.takeAs<Expr>();
270  if (!ConditionExpr)
271    return StmtError();
272
273  DiagnoseUnusedExprResult(thenStmt);
274
275  // Warn if the if block has a null body without an else value.
276  // this helps prevent bugs due to typos, such as
277  // if (condition);
278  //   do_stuff();
279  //
280  if (!elseStmt) {
281    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
282      // But do not warn if the body is a macro that expands to nothing, e.g:
283      //
284      // #define CALL(x)
285      // if (condition)
286      //   CALL(0);
287      //
288      if (!stmt->hasLeadingEmptyMacro())
289        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
290  }
291
292  DiagnoseUnusedExprResult(elseStmt);
293
294  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
295                                    thenStmt, ElseLoc, elseStmt));
296}
297
298/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
299/// the specified width and sign.  If an overflow occurs, detect it and emit
300/// the specified diagnostic.
301void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
302                                              unsigned NewWidth, bool NewSign,
303                                              SourceLocation Loc,
304                                              unsigned DiagID) {
305  // Perform a conversion to the promoted condition type if needed.
306  if (NewWidth > Val.getBitWidth()) {
307    // If this is an extension, just do it.
308    Val = Val.extend(NewWidth);
309    Val.setIsSigned(NewSign);
310
311    // If the input was signed and negative and the output is
312    // unsigned, don't bother to warn: this is implementation-defined
313    // behavior.
314    // FIXME: Introduce a second, default-ignored warning for this case?
315  } else if (NewWidth < Val.getBitWidth()) {
316    // If this is a truncation, check for overflow.
317    llvm::APSInt ConvVal(Val);
318    ConvVal = ConvVal.trunc(NewWidth);
319    ConvVal.setIsSigned(NewSign);
320    ConvVal = ConvVal.extend(Val.getBitWidth());
321    ConvVal.setIsSigned(Val.isSigned());
322    if (ConvVal != Val)
323      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
324
325    // Regardless of whether a diagnostic was emitted, really do the
326    // truncation.
327    Val = Val.trunc(NewWidth);
328    Val.setIsSigned(NewSign);
329  } else if (NewSign != Val.isSigned()) {
330    // Convert the sign to match the sign of the condition.  This can cause
331    // overflow as well: unsigned(INTMIN)
332    // We don't diagnose this overflow, because it is implementation-defined
333    // behavior.
334    // FIXME: Introduce a second, default-ignored warning for this case?
335    llvm::APSInt OldVal(Val);
336    Val.setIsSigned(NewSign);
337  }
338}
339
340namespace {
341  struct CaseCompareFunctor {
342    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
343                    const llvm::APSInt &RHS) {
344      return LHS.first < RHS;
345    }
346    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
347                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
348      return LHS.first < RHS.first;
349    }
350    bool operator()(const llvm::APSInt &LHS,
351                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
352      return LHS < RHS.first;
353    }
354  };
355}
356
357/// CmpCaseVals - Comparison predicate for sorting case values.
358///
359static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
360                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
361  if (lhs.first < rhs.first)
362    return true;
363
364  if (lhs.first == rhs.first &&
365      lhs.second->getCaseLoc().getRawEncoding()
366       < rhs.second->getCaseLoc().getRawEncoding())
367    return true;
368  return false;
369}
370
371/// CmpEnumVals - Comparison predicate for sorting enumeration values.
372///
373static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
374                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
375{
376  return lhs.first < rhs.first;
377}
378
379/// EqEnumVals - Comparison preficate for uniqing enumeration values.
380///
381static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
382                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
383{
384  return lhs.first == rhs.first;
385}
386
387/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
388/// potentially integral-promoted expression @p expr.
389static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
390  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
391    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
392    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
393    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
394      return TypeBeforePromotion;
395    }
396  }
397  return expr->getType();
398}
399
400StmtResult
401Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
402                             Decl *CondVar) {
403  ExprResult CondResult;
404
405  VarDecl *ConditionVar = 0;
406  if (CondVar) {
407    ConditionVar = cast<VarDecl>(CondVar);
408    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
409    if (CondResult.isInvalid())
410      return StmtError();
411
412    Cond = CondResult.release();
413  }
414
415  if (!Cond)
416    return StmtError();
417
418  CondResult
419    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
420                          PDiag(diag::err_typecheck_statement_requires_integer),
421                                   PDiag(diag::err_switch_incomplete_class_type)
422                                     << Cond->getSourceRange(),
423                                   PDiag(diag::err_switch_explicit_conversion),
424                                         PDiag(diag::note_switch_conversion),
425                                   PDiag(diag::err_switch_multiple_conversions),
426                                         PDiag(diag::note_switch_conversion),
427                                         PDiag(0));
428  if (CondResult.isInvalid()) return StmtError();
429  Cond = CondResult.take();
430
431  if (!CondVar) {
432    CheckImplicitConversions(Cond, SwitchLoc);
433    CondResult = MaybeCreateExprWithCleanups(Cond);
434    if (CondResult.isInvalid())
435      return StmtError();
436    Cond = CondResult.take();
437  }
438
439  getCurFunction()->setHasBranchIntoScope();
440
441  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
442  getCurFunction()->SwitchStack.push_back(SS);
443  return Owned(SS);
444}
445
446static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
447  if (Val.getBitWidth() < BitWidth)
448    Val = Val.extend(BitWidth);
449  else if (Val.getBitWidth() > BitWidth)
450    Val = Val.trunc(BitWidth);
451  Val.setIsSigned(IsSigned);
452}
453
454StmtResult
455Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
456                            Stmt *BodyStmt) {
457  SwitchStmt *SS = cast<SwitchStmt>(Switch);
458  assert(SS == getCurFunction()->SwitchStack.back() &&
459         "switch stack missing push/pop!");
460
461  SS->setBody(BodyStmt, SwitchLoc);
462  getCurFunction()->SwitchStack.pop_back();
463
464  if (SS->getCond() == 0)
465    return StmtError();
466
467  Expr *CondExpr = SS->getCond();
468  Expr *CondExprBeforePromotion = CondExpr;
469  QualType CondTypeBeforePromotion =
470      GetTypeBeforeIntegralPromotion(CondExpr);
471
472  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
473  ExprResult CondResult = UsualUnaryConversions(CondExpr);
474  if (CondResult.isInvalid())
475    return StmtError();
476  CondExpr = CondResult.take();
477  QualType CondType = CondExpr->getType();
478  SS->setCond(CondExpr);
479
480  // C++ 6.4.2.p2:
481  // Integral promotions are performed (on the switch condition).
482  //
483  // A case value unrepresentable by the original switch condition
484  // type (before the promotion) doesn't make sense, even when it can
485  // be represented by the promoted type.  Therefore we need to find
486  // the pre-promotion type of the switch condition.
487  if (!CondExpr->isTypeDependent()) {
488    // We have already converted the expression to an integral or enumeration
489    // type, when we started the switch statement. If we don't have an
490    // appropriate type now, just return an error.
491    if (!CondType->isIntegralOrEnumerationType())
492      return StmtError();
493
494    if (CondExpr->isKnownToHaveBooleanValue()) {
495      // switch(bool_expr) {...} is often a programmer error, e.g.
496      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
497      // One can always use an if statement instead of switch(bool_expr).
498      Diag(SwitchLoc, diag::warn_bool_switch_condition)
499          << CondExpr->getSourceRange();
500    }
501  }
502
503  // Get the bitwidth of the switched-on value before promotions.  We must
504  // convert the integer case values to this width before comparison.
505  bool HasDependentValue
506    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
507  unsigned CondWidth
508    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
509  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
510
511  // Accumulate all of the case values in a vector so that we can sort them
512  // and detect duplicates.  This vector contains the APInt for the case after
513  // it has been converted to the condition type.
514  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
515  CaseValsTy CaseVals;
516
517  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
518  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
519  CaseRangesTy CaseRanges;
520
521  DefaultStmt *TheDefaultStmt = 0;
522
523  bool CaseListIsErroneous = false;
524
525  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
526       SC = SC->getNextSwitchCase()) {
527
528    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
529      if (TheDefaultStmt) {
530        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
531        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
532
533        // FIXME: Remove the default statement from the switch block so that
534        // we'll return a valid AST.  This requires recursing down the AST and
535        // finding it, not something we are set up to do right now.  For now,
536        // just lop the entire switch stmt out of the AST.
537        CaseListIsErroneous = true;
538      }
539      TheDefaultStmt = DS;
540
541    } else {
542      CaseStmt *CS = cast<CaseStmt>(SC);
543
544      // We already verified that the expression has a i-c-e value (C99
545      // 6.8.4.2p3) - get that value now.
546      Expr *Lo = CS->getLHS();
547
548      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
549        HasDependentValue = true;
550        break;
551      }
552
553      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
554
555      // Convert the value to the same width/sign as the condition.
556      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
557                                         Lo->getLocStart(),
558                                         diag::warn_case_value_overflow);
559
560      // If the LHS is not the same type as the condition, insert an implicit
561      // cast.
562      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
563      CS->setLHS(Lo);
564
565      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
566      if (CS->getRHS()) {
567        if (CS->getRHS()->isTypeDependent() ||
568            CS->getRHS()->isValueDependent()) {
569          HasDependentValue = true;
570          break;
571        }
572        CaseRanges.push_back(std::make_pair(LoVal, CS));
573      } else
574        CaseVals.push_back(std::make_pair(LoVal, CS));
575    }
576  }
577
578  if (!HasDependentValue) {
579    // If we don't have a default statement, check whether the
580    // condition is constant.
581    llvm::APSInt ConstantCondValue;
582    bool HasConstantCond = false;
583    bool ShouldCheckConstantCond = false;
584    if (!HasDependentValue && !TheDefaultStmt) {
585      Expr::EvalResult Result;
586      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
587      if (HasConstantCond) {
588        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
589        ConstantCondValue = Result.Val.getInt();
590        ShouldCheckConstantCond = true;
591
592        assert(ConstantCondValue.getBitWidth() == CondWidth &&
593               ConstantCondValue.isSigned() == CondIsSigned);
594      }
595    }
596
597    // Sort all the scalar case values so we can easily detect duplicates.
598    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
599
600    if (!CaseVals.empty()) {
601      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
602        if (ShouldCheckConstantCond &&
603            CaseVals[i].first == ConstantCondValue)
604          ShouldCheckConstantCond = false;
605
606        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
607          // If we have a duplicate, report it.
608          Diag(CaseVals[i].second->getLHS()->getLocStart(),
609               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
610          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
611               diag::note_duplicate_case_prev);
612          // FIXME: We really want to remove the bogus case stmt from the
613          // substmt, but we have no way to do this right now.
614          CaseListIsErroneous = true;
615        }
616      }
617    }
618
619    // Detect duplicate case ranges, which usually don't exist at all in
620    // the first place.
621    if (!CaseRanges.empty()) {
622      // Sort all the case ranges by their low value so we can easily detect
623      // overlaps between ranges.
624      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
625
626      // Scan the ranges, computing the high values and removing empty ranges.
627      std::vector<llvm::APSInt> HiVals;
628      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
629        llvm::APSInt &LoVal = CaseRanges[i].first;
630        CaseStmt *CR = CaseRanges[i].second;
631        Expr *Hi = CR->getRHS();
632        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
633
634        // Convert the value to the same width/sign as the condition.
635        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
636                                           Hi->getLocStart(),
637                                           diag::warn_case_value_overflow);
638
639        // If the LHS is not the same type as the condition, insert an implicit
640        // cast.
641        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
642        CR->setRHS(Hi);
643
644        // If the low value is bigger than the high value, the case is empty.
645        if (LoVal > HiVal) {
646          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
647            << SourceRange(CR->getLHS()->getLocStart(),
648                           Hi->getLocEnd());
649          CaseRanges.erase(CaseRanges.begin()+i);
650          --i, --e;
651          continue;
652        }
653
654        if (ShouldCheckConstantCond &&
655            LoVal <= ConstantCondValue &&
656            ConstantCondValue <= HiVal)
657          ShouldCheckConstantCond = false;
658
659        HiVals.push_back(HiVal);
660      }
661
662      // Rescan the ranges, looking for overlap with singleton values and other
663      // ranges.  Since the range list is sorted, we only need to compare case
664      // ranges with their neighbors.
665      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
666        llvm::APSInt &CRLo = CaseRanges[i].first;
667        llvm::APSInt &CRHi = HiVals[i];
668        CaseStmt *CR = CaseRanges[i].second;
669
670        // Check to see whether the case range overlaps with any
671        // singleton cases.
672        CaseStmt *OverlapStmt = 0;
673        llvm::APSInt OverlapVal(32);
674
675        // Find the smallest value >= the lower bound.  If I is in the
676        // case range, then we have overlap.
677        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
678                                                  CaseVals.end(), CRLo,
679                                                  CaseCompareFunctor());
680        if (I != CaseVals.end() && I->first < CRHi) {
681          OverlapVal  = I->first;   // Found overlap with scalar.
682          OverlapStmt = I->second;
683        }
684
685        // Find the smallest value bigger than the upper bound.
686        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
687        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
688          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
689          OverlapStmt = (I-1)->second;
690        }
691
692        // Check to see if this case stmt overlaps with the subsequent
693        // case range.
694        if (i && CRLo <= HiVals[i-1]) {
695          OverlapVal  = HiVals[i-1];       // Found overlap with range.
696          OverlapStmt = CaseRanges[i-1].second;
697        }
698
699        if (OverlapStmt) {
700          // If we have a duplicate, report it.
701          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
702            << OverlapVal.toString(10);
703          Diag(OverlapStmt->getLHS()->getLocStart(),
704               diag::note_duplicate_case_prev);
705          // FIXME: We really want to remove the bogus case stmt from the
706          // substmt, but we have no way to do this right now.
707          CaseListIsErroneous = true;
708        }
709      }
710    }
711
712    // Complain if we have a constant condition and we didn't find a match.
713    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
714      // TODO: it would be nice if we printed enums as enums, chars as
715      // chars, etc.
716      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
717        << ConstantCondValue.toString(10)
718        << CondExpr->getSourceRange();
719    }
720
721    // Check to see if switch is over an Enum and handles all of its
722    // values.  We only issue a warning if there is not 'default:', but
723    // we still do the analysis to preserve this information in the AST
724    // (which can be used by flow-based analyes).
725    //
726    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
727
728    // If switch has default case, then ignore it.
729    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
730      const EnumDecl *ED = ET->getDecl();
731      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
732      EnumValsTy EnumVals;
733
734      // Gather all enum values, set their type and sort them,
735      // allowing easier comparison with CaseVals.
736      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
737           EDI != ED->enumerator_end(); ++EDI) {
738        llvm::APSInt Val = EDI->getInitVal();
739        AdjustAPSInt(Val, CondWidth, CondIsSigned);
740        EnumVals.push_back(std::make_pair(Val, *EDI));
741      }
742      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
743      EnumValsTy::iterator EIend =
744        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
745
746      // See which case values aren't in enum.
747      // TODO: we might want to check whether case values are out of the
748      // enum even if we don't want to check whether all cases are handled.
749      if (!TheDefaultStmt) {
750        EnumValsTy::const_iterator EI = EnumVals.begin();
751        for (CaseValsTy::const_iterator CI = CaseVals.begin();
752             CI != CaseVals.end(); CI++) {
753          while (EI != EIend && EI->first < CI->first)
754            EI++;
755          if (EI == EIend || EI->first > CI->first)
756            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
757              << ED->getDeclName();
758        }
759        // See which of case ranges aren't in enum
760        EI = EnumVals.begin();
761        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
762             RI != CaseRanges.end() && EI != EIend; RI++) {
763          while (EI != EIend && EI->first < RI->first)
764            EI++;
765
766          if (EI == EIend || EI->first != RI->first) {
767            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
768              << ED->getDeclName();
769          }
770
771          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
772          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
773          while (EI != EIend && EI->first < Hi)
774            EI++;
775          if (EI == EIend || EI->first != Hi)
776            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
777              << ED->getDeclName();
778        }
779      }
780
781      // Check which enum vals aren't in switch
782      CaseValsTy::const_iterator CI = CaseVals.begin();
783      CaseRangesTy::const_iterator RI = CaseRanges.begin();
784      bool hasCasesNotInSwitch = false;
785
786      llvm::SmallVector<DeclarationName,8> UnhandledNames;
787
788      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
789        // Drop unneeded case values
790        llvm::APSInt CIVal;
791        while (CI != CaseVals.end() && CI->first < EI->first)
792          CI++;
793
794        if (CI != CaseVals.end() && CI->first == EI->first)
795          continue;
796
797        // Drop unneeded case ranges
798        for (; RI != CaseRanges.end(); RI++) {
799          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
800          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
801          if (EI->first <= Hi)
802            break;
803        }
804
805        if (RI == CaseRanges.end() || EI->first < RI->first) {
806          hasCasesNotInSwitch = true;
807          if (!TheDefaultStmt)
808            UnhandledNames.push_back(EI->second->getDeclName());
809        }
810      }
811
812      // Produce a nice diagnostic if multiple values aren't handled.
813      switch (UnhandledNames.size()) {
814      case 0: break;
815      case 1:
816        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
817          << UnhandledNames[0];
818        break;
819      case 2:
820        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
821          << UnhandledNames[0] << UnhandledNames[1];
822        break;
823      case 3:
824        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
825          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
826        break;
827      default:
828        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
829          << (unsigned)UnhandledNames.size()
830          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
831        break;
832      }
833
834      if (!hasCasesNotInSwitch)
835        SS->setAllEnumCasesCovered();
836    }
837  }
838
839  // FIXME: If the case list was broken is some way, we don't have a good system
840  // to patch it up.  Instead, just return the whole substmt as broken.
841  if (CaseListIsErroneous)
842    return StmtError();
843
844  return Owned(SS);
845}
846
847StmtResult
848Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
849                     Decl *CondVar, Stmt *Body) {
850  ExprResult CondResult(Cond.release());
851
852  VarDecl *ConditionVar = 0;
853  if (CondVar) {
854    ConditionVar = cast<VarDecl>(CondVar);
855    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
856    if (CondResult.isInvalid())
857      return StmtError();
858  }
859  Expr *ConditionExpr = CondResult.take();
860  if (!ConditionExpr)
861    return StmtError();
862
863  DiagnoseUnusedExprResult(Body);
864
865  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
866                                       Body, WhileLoc));
867}
868
869StmtResult
870Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
871                  SourceLocation WhileLoc, SourceLocation CondLParen,
872                  Expr *Cond, SourceLocation CondRParen) {
873  assert(Cond && "ActOnDoStmt(): missing expression");
874
875  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
876  if (CondResult.isInvalid() || CondResult.isInvalid())
877    return StmtError();
878  Cond = CondResult.take();
879
880  CheckImplicitConversions(Cond, DoLoc);
881  CondResult = MaybeCreateExprWithCleanups(Cond);
882  if (CondResult.isInvalid())
883    return StmtError();
884  Cond = CondResult.take();
885
886  DiagnoseUnusedExprResult(Body);
887
888  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
889}
890
891StmtResult
892Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
893                   Stmt *First, FullExprArg second, Decl *secondVar,
894                   FullExprArg third,
895                   SourceLocation RParenLoc, Stmt *Body) {
896  if (!getLangOptions().CPlusPlus) {
897    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
898      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
899      // declare identifiers for objects having storage class 'auto' or
900      // 'register'.
901      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
902           DI!=DE; ++DI) {
903        VarDecl *VD = dyn_cast<VarDecl>(*DI);
904        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
905          VD = 0;
906        if (VD == 0)
907          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
908        // FIXME: mark decl erroneous!
909      }
910    }
911  }
912
913  ExprResult SecondResult(second.release());
914  VarDecl *ConditionVar = 0;
915  if (secondVar) {
916    ConditionVar = cast<VarDecl>(secondVar);
917    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
918    if (SecondResult.isInvalid())
919      return StmtError();
920  }
921
922  Expr *Third  = third.release().takeAs<Expr>();
923
924  DiagnoseUnusedExprResult(First);
925  DiagnoseUnusedExprResult(Third);
926  DiagnoseUnusedExprResult(Body);
927
928  return Owned(new (Context) ForStmt(Context, First,
929                                     SecondResult.take(), ConditionVar,
930                                     Third, Body, ForLoc, LParenLoc,
931                                     RParenLoc));
932}
933
934/// In an Objective C collection iteration statement:
935///   for (x in y)
936/// x can be an arbitrary l-value expression.  Bind it up as a
937/// full-expression.
938StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
939  CheckImplicitConversions(E);
940  ExprResult Result = MaybeCreateExprWithCleanups(E);
941  if (Result.isInvalid()) return StmtError();
942  return Owned(static_cast<Stmt*>(Result.get()));
943}
944
945StmtResult
946Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
947                                 SourceLocation LParenLoc,
948                                 Stmt *First, Expr *Second,
949                                 SourceLocation RParenLoc, Stmt *Body) {
950  if (First) {
951    QualType FirstType;
952    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
953      if (!DS->isSingleDecl())
954        return StmtError(Diag((*DS->decl_begin())->getLocation(),
955                         diag::err_toomany_element_decls));
956
957      Decl *D = DS->getSingleDecl();
958      FirstType = cast<ValueDecl>(D)->getType();
959      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
960      // declare identifiers for objects having storage class 'auto' or
961      // 'register'.
962      VarDecl *VD = cast<VarDecl>(D);
963      if (VD->isLocalVarDecl() && !VD->hasLocalStorage())
964        return StmtError(Diag(VD->getLocation(),
965                              diag::err_non_variable_decl_in_for));
966    } else {
967      Expr *FirstE = cast<Expr>(First);
968      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
969        return StmtError(Diag(First->getLocStart(),
970                   diag::err_selector_element_not_lvalue)
971          << First->getSourceRange());
972
973      FirstType = static_cast<Expr*>(First)->getType();
974    }
975    if (!FirstType->isDependentType() &&
976        !FirstType->isObjCObjectPointerType() &&
977        !FirstType->isBlockPointerType())
978        Diag(ForLoc, diag::err_selector_element_type)
979          << FirstType << First->getSourceRange();
980  }
981  if (Second && !Second->isTypeDependent()) {
982    ExprResult Result = DefaultFunctionArrayLvalueConversion(Second);
983    if (Result.isInvalid())
984      return StmtError();
985    Second = Result.take();
986    QualType SecondType = Second->getType();
987    if (!SecondType->isObjCObjectPointerType())
988      Diag(ForLoc, diag::err_collection_expr_type)
989        << SecondType << Second->getSourceRange();
990    else if (const ObjCObjectPointerType *OPT =
991             SecondType->getAsObjCInterfacePointerType()) {
992      llvm::SmallVector<IdentifierInfo *, 4> KeyIdents;
993      IdentifierInfo* selIdent =
994        &Context.Idents.get("countByEnumeratingWithState");
995      KeyIdents.push_back(selIdent);
996      selIdent = &Context.Idents.get("objects");
997      KeyIdents.push_back(selIdent);
998      selIdent = &Context.Idents.get("count");
999      KeyIdents.push_back(selIdent);
1000      Selector CSelector = Context.Selectors.getSelector(3, &KeyIdents[0]);
1001      if (ObjCInterfaceDecl *IDecl = OPT->getInterfaceDecl()) {
1002        if (!IDecl->isForwardDecl() &&
1003            !IDecl->lookupInstanceMethod(CSelector) &&
1004            !LookupMethodInQualifiedType(CSelector, OPT, true)) {
1005          // Must further look into private implementation methods.
1006          if (!LookupPrivateInstanceMethod(CSelector, IDecl))
1007            Diag(ForLoc, diag::warn_collection_expr_type)
1008              << SecondType << CSelector << Second->getSourceRange();
1009        }
1010      }
1011    }
1012  }
1013  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1014                                                   ForLoc, RParenLoc));
1015}
1016
1017namespace {
1018
1019enum BeginEndFunction {
1020  BEF_begin,
1021  BEF_end
1022};
1023
1024/// Build a variable declaration for a for-range statement.
1025static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1026                                     QualType Type, const char *Name) {
1027  DeclContext *DC = SemaRef.CurContext;
1028  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1029  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1030  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1031                                  TInfo, SC_Auto, SC_None);
1032  Decl->setImplicit();
1033  return Decl;
1034}
1035
1036/// Finish building a variable declaration for a for-range statement.
1037/// \return true if an error occurs.
1038static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1039                                  SourceLocation Loc, int diag) {
1040  // Deduce the type for the iterator variable now rather than leaving it to
1041  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1042  TypeSourceInfo *InitTSI = 0;
1043  if (Init->getType()->isVoidType() ||
1044      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1045    SemaRef.Diag(Loc, diag) << Init->getType();
1046  if (!InitTSI) {
1047    Decl->setInvalidDecl();
1048    return true;
1049  }
1050  Decl->setTypeSourceInfo(InitTSI);
1051  Decl->setType(InitTSI->getType());
1052
1053  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1054                               /*TypeMayContainAuto=*/false);
1055  SemaRef.FinalizeDeclaration(Decl);
1056  SemaRef.CurContext->addHiddenDecl(Decl);
1057  return false;
1058}
1059
1060/// Produce a note indicating which begin/end function was implicitly called
1061/// by a C++0x for-range statement. This is often not obvious from the code,
1062/// nor from the diagnostics produced when analysing the implicit expressions
1063/// required in a for-range statement.
1064void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1065                                  BeginEndFunction BEF) {
1066  CallExpr *CE = dyn_cast<CallExpr>(E);
1067  if (!CE)
1068    return;
1069  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1070  if (!D)
1071    return;
1072  SourceLocation Loc = D->getLocation();
1073
1074  std::string Description;
1075  bool IsTemplate = false;
1076  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1077    Description = SemaRef.getTemplateArgumentBindingsText(
1078      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1079    IsTemplate = true;
1080  }
1081
1082  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1083    << BEF << IsTemplate << Description << E->getType();
1084}
1085
1086/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1087/// given LookupResult is non-empty, it is assumed to describe a member which
1088/// will be invoked. Otherwise, the function will be found via argument
1089/// dependent lookup.
1090static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1091                                            SourceLocation Loc,
1092                                            VarDecl *Decl,
1093                                            BeginEndFunction BEF,
1094                                            const DeclarationNameInfo &NameInfo,
1095                                            LookupResult &MemberLookup,
1096                                            Expr *Range) {
1097  ExprResult CallExpr;
1098  if (!MemberLookup.empty()) {
1099    ExprResult MemberRef =
1100      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1101                                       /*IsPtr=*/false, CXXScopeSpec(),
1102                                       /*Qualifier=*/0, MemberLookup,
1103                                       /*TemplateArgs=*/0);
1104    if (MemberRef.isInvalid())
1105      return ExprError();
1106    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1107                                     Loc, 0);
1108    if (CallExpr.isInvalid())
1109      return ExprError();
1110  } else {
1111    UnresolvedSet<0> FoundNames;
1112    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1113    // std is an associated namespace.
1114    UnresolvedLookupExpr *Fn =
1115      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1116                                   NestedNameSpecifierLoc(), NameInfo,
1117                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1118                                   FoundNames.begin(), FoundNames.end(),
1119                                   /*LookInStdNamespace=*/true);
1120    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1121                                               0);
1122    if (CallExpr.isInvalid()) {
1123      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1124        << Range->getType();
1125      return ExprError();
1126    }
1127  }
1128  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1129                            diag::err_for_range_iter_deduction_failure)) {
1130    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1131    return ExprError();
1132  }
1133  return CallExpr;
1134}
1135
1136}
1137
1138/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1139///
1140/// C++0x [stmt.ranged]:
1141///   A range-based for statement is equivalent to
1142///
1143///   {
1144///     auto && __range = range-init;
1145///     for ( auto __begin = begin-expr,
1146///           __end = end-expr;
1147///           __begin != __end;
1148///           ++__begin ) {
1149///       for-range-declaration = *__begin;
1150///       statement
1151///     }
1152///   }
1153///
1154/// The body of the loop is not available yet, since it cannot be analysed until
1155/// we have determined the type of the for-range-declaration.
1156StmtResult
1157Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1158                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1159                           SourceLocation RParenLoc) {
1160  if (!First || !Range)
1161    return StmtError();
1162
1163  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1164  assert(DS && "first part of for range not a decl stmt");
1165
1166  if (!DS->isSingleDecl()) {
1167    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1168    return StmtError();
1169  }
1170  if (DS->getSingleDecl()->isInvalidDecl())
1171    return StmtError();
1172
1173  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1174    return StmtError();
1175
1176  // Build  auto && __range = range-init
1177  SourceLocation RangeLoc = Range->getLocStart();
1178  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1179                                           Context.getAutoRRefDeductType(),
1180                                           "__range");
1181  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1182                            diag::err_for_range_deduction_failure))
1183    return StmtError();
1184
1185  // Claim the type doesn't contain auto: we've already done the checking.
1186  DeclGroupPtrTy RangeGroup =
1187    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1188  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1189  if (RangeDecl.isInvalid())
1190    return StmtError();
1191
1192  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1193                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1194                              RParenLoc);
1195}
1196
1197/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1198StmtResult
1199Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1200                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1201                           Expr *Inc, Stmt *LoopVarDecl,
1202                           SourceLocation RParenLoc) {
1203  Scope *S = getCurScope();
1204
1205  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1206  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1207  QualType RangeVarType = RangeVar->getType();
1208
1209  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1210  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1211
1212  StmtResult BeginEndDecl = BeginEnd;
1213  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1214
1215  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1216    SourceLocation RangeLoc = RangeVar->getLocation();
1217
1218    ExprResult RangeRef = BuildDeclRefExpr(RangeVar,
1219                                           RangeVarType.getNonReferenceType(),
1220                                           VK_LValue, ColonLoc);
1221    if (RangeRef.isInvalid())
1222      return StmtError();
1223
1224    QualType AutoType = Context.getAutoDeductType();
1225    Expr *Range = RangeVar->getInit();
1226    if (!Range)
1227      return StmtError();
1228    QualType RangeType = Range->getType();
1229
1230    if (RequireCompleteType(RangeLoc, RangeType,
1231                            PDiag(diag::err_for_range_incomplete_type)))
1232      return StmtError();
1233
1234    // Build auto __begin = begin-expr, __end = end-expr.
1235    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1236                                             "__begin");
1237    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1238                                           "__end");
1239
1240    // Build begin-expr and end-expr and attach to __begin and __end variables.
1241    ExprResult BeginExpr, EndExpr;
1242    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1243      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1244      //   __range + __bound, respectively, where __bound is the array bound. If
1245      //   _RangeT is an array of unknown size or an array of incomplete type,
1246      //   the program is ill-formed;
1247
1248      // begin-expr is __range.
1249      BeginExpr = RangeRef;
1250      if (FinishForRangeVarDecl(*this, BeginVar, RangeRef.get(), ColonLoc,
1251                                diag::err_for_range_iter_deduction_failure)) {
1252        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1253        return StmtError();
1254      }
1255
1256      // Find the array bound.
1257      ExprResult BoundExpr;
1258      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1259        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1260                                                 Context.IntTy, RangeLoc));
1261      else if (const VariableArrayType *VAT =
1262               dyn_cast<VariableArrayType>(UnqAT))
1263        BoundExpr = VAT->getSizeExpr();
1264      else {
1265        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1266        // UnqAT is not incomplete and Range is not type-dependent.
1267        assert(0 && "Unexpected array type in for-range");
1268        return StmtError();
1269      }
1270
1271      // end-expr is __range + __bound.
1272      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, RangeRef.get(),
1273                           BoundExpr.get());
1274      if (EndExpr.isInvalid())
1275        return StmtError();
1276      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1277                                diag::err_for_range_iter_deduction_failure)) {
1278        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1279        return StmtError();
1280      }
1281    } else {
1282      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1283                                        ColonLoc);
1284      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1285                                      ColonLoc);
1286
1287      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1288      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1289
1290      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1291        // - if _RangeT is a class type, the unqualified-ids begin and end are
1292        //   looked up in the scope of class _RangeT as if by class member access
1293        //   lookup (3.4.5), and if either (or both) finds at least one
1294        //   declaration, begin-expr and end-expr are __range.begin() and
1295        //   __range.end(), respectively;
1296        LookupQualifiedName(BeginMemberLookup, D);
1297        LookupQualifiedName(EndMemberLookup, D);
1298
1299        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1300          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1301            << RangeType << BeginMemberLookup.empty();
1302          return StmtError();
1303        }
1304      } else {
1305        // - otherwise, begin-expr and end-expr are begin(__range) and
1306        //   end(__range), respectively, where begin and end are looked up with
1307        //   argument-dependent lookup (3.4.2). For the purposes of this name
1308        //   lookup, namespace std is an associated namespace.
1309      }
1310
1311      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1312                                            BEF_begin, BeginNameInfo,
1313                                            BeginMemberLookup, RangeRef.get());
1314      if (BeginExpr.isInvalid())
1315        return StmtError();
1316
1317      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1318                                          BEF_end, EndNameInfo,
1319                                          EndMemberLookup, RangeRef.get());
1320      if (EndExpr.isInvalid())
1321        return StmtError();
1322    }
1323
1324    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1325    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1326    if (!Context.hasSameType(BeginType, EndType)) {
1327      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1328        << BeginType << EndType;
1329      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1330      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1331    }
1332
1333    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1334    // Claim the type doesn't contain auto: we've already done the checking.
1335    DeclGroupPtrTy BeginEndGroup =
1336      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1337    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1338
1339    ExprResult BeginRef = BuildDeclRefExpr(BeginVar,
1340                                           BeginType.getNonReferenceType(),
1341                                           VK_LValue, ColonLoc);
1342    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1343                                         VK_LValue, ColonLoc);
1344
1345    // Build and check __begin != __end expression.
1346    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1347                           BeginRef.get(), EndRef.get());
1348    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1349    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1350    if (NotEqExpr.isInvalid()) {
1351      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1352      if (!Context.hasSameType(BeginType, EndType))
1353        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1354      return StmtError();
1355    }
1356
1357    // Build and check ++__begin expression.
1358    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1359    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1360    if (IncrExpr.isInvalid()) {
1361      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1362      return StmtError();
1363    }
1364
1365    // Build and check *__begin  expression.
1366    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1367    if (DerefExpr.isInvalid()) {
1368      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1369      return StmtError();
1370    }
1371
1372    // Attach  *__begin  as initializer for VD.
1373    if (!LoopVar->isInvalidDecl()) {
1374      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1375                           /*TypeMayContainAuto=*/true);
1376      if (LoopVar->isInvalidDecl())
1377        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1378    }
1379  }
1380
1381  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1382                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1383                                             NotEqExpr.take(), IncrExpr.take(),
1384                                             LoopVarDS, /*Body=*/0, ForLoc,
1385                                             ColonLoc, RParenLoc));
1386}
1387
1388/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1389/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1390/// body cannot be performed until after the type of the range variable is
1391/// determined.
1392StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1393  if (!S || !B)
1394    return StmtError();
1395
1396  cast<CXXForRangeStmt>(S)->setBody(B);
1397  return S;
1398}
1399
1400StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1401                               SourceLocation LabelLoc,
1402                               LabelDecl *TheDecl) {
1403  getCurFunction()->setHasBranchIntoScope();
1404  TheDecl->setUsed();
1405  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1406}
1407
1408StmtResult
1409Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1410                            Expr *E) {
1411  // Convert operand to void*
1412  if (!E->isTypeDependent()) {
1413    QualType ETy = E->getType();
1414    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1415    ExprResult ExprRes = Owned(E);
1416    AssignConvertType ConvTy =
1417      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1418    if (ExprRes.isInvalid())
1419      return StmtError();
1420    E = ExprRes.take();
1421    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1422      return StmtError();
1423  }
1424
1425  getCurFunction()->setHasIndirectGoto();
1426
1427  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1428}
1429
1430StmtResult
1431Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1432  Scope *S = CurScope->getContinueParent();
1433  if (!S) {
1434    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1435    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1436  }
1437
1438  return Owned(new (Context) ContinueStmt(ContinueLoc));
1439}
1440
1441StmtResult
1442Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1443  Scope *S = CurScope->getBreakParent();
1444  if (!S) {
1445    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1446    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1447  }
1448
1449  return Owned(new (Context) BreakStmt(BreakLoc));
1450}
1451
1452/// \brief Determine whether the given expression is a candidate for
1453/// copy elision in either a return statement or a throw expression.
1454///
1455/// \param ReturnType If we're determining the copy elision candidate for
1456/// a return statement, this is the return type of the function. If we're
1457/// determining the copy elision candidate for a throw expression, this will
1458/// be a NULL type.
1459///
1460/// \param E The expression being returned from the function or block, or
1461/// being thrown.
1462///
1463/// \param AllowFunctionParameter
1464///
1465/// \returns The NRVO candidate variable, if the return statement may use the
1466/// NRVO, or NULL if there is no such candidate.
1467const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1468                                             Expr *E,
1469                                             bool AllowFunctionParameter) {
1470  QualType ExprType = E->getType();
1471  // - in a return statement in a function with ...
1472  // ... a class return type ...
1473  if (!ReturnType.isNull()) {
1474    if (!ReturnType->isRecordType())
1475      return 0;
1476    // ... the same cv-unqualified type as the function return type ...
1477    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1478      return 0;
1479  }
1480
1481  // ... the expression is the name of a non-volatile automatic object
1482  // (other than a function or catch-clause parameter)) ...
1483  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1484  if (!DR)
1485    return 0;
1486  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1487  if (!VD)
1488    return 0;
1489
1490  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1491      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1492      !VD->getType().isVolatileQualified() &&
1493      ((VD->getKind() == Decl::Var) ||
1494       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1495    return VD;
1496
1497  return 0;
1498}
1499
1500/// \brief Perform the initialization of a potentially-movable value, which
1501/// is the result of return value.
1502///
1503/// This routine implements C++0x [class.copy]p33, which attempts to treat
1504/// returned lvalues as rvalues in certain cases (to prefer move construction),
1505/// then falls back to treating them as lvalues if that failed.
1506ExprResult
1507Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1508                                      const VarDecl *NRVOCandidate,
1509                                      QualType ResultType,
1510                                      Expr *Value) {
1511  // C++0x [class.copy]p33:
1512  //   When the criteria for elision of a copy operation are met or would
1513  //   be met save for the fact that the source object is a function
1514  //   parameter, and the object to be copied is designated by an lvalue,
1515  //   overload resolution to select the constructor for the copy is first
1516  //   performed as if the object were designated by an rvalue.
1517  ExprResult Res = ExprError();
1518  if (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true)) {
1519    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1520                              Value->getType(), CK_LValueToRValue,
1521                              Value, VK_XValue);
1522
1523    Expr *InitExpr = &AsRvalue;
1524    InitializationKind Kind
1525      = InitializationKind::CreateCopy(Value->getLocStart(),
1526                                       Value->getLocStart());
1527    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1528
1529    //   [...] If overload resolution fails, or if the type of the first
1530    //   parameter of the selected constructor is not an rvalue reference
1531    //   to the object's type (possibly cv-qualified), overload resolution
1532    //   is performed again, considering the object as an lvalue.
1533    if (Seq.getKind() != InitializationSequence::FailedSequence) {
1534      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1535           StepEnd = Seq.step_end();
1536           Step != StepEnd; ++Step) {
1537        if (Step->Kind
1538            != InitializationSequence::SK_ConstructorInitialization)
1539          continue;
1540
1541        CXXConstructorDecl *Constructor
1542        = cast<CXXConstructorDecl>(Step->Function.Function);
1543
1544        const RValueReferenceType *RRefType
1545          = Constructor->getParamDecl(0)->getType()
1546                                                 ->getAs<RValueReferenceType>();
1547
1548        // If we don't meet the criteria, break out now.
1549        if (!RRefType ||
1550            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1551                            Context.getTypeDeclType(Constructor->getParent())))
1552          break;
1553
1554        // Promote "AsRvalue" to the heap, since we now need this
1555        // expression node to persist.
1556        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1557                                         CK_LValueToRValue, Value, 0,
1558                                         VK_XValue);
1559
1560        // Complete type-checking the initialization of the return type
1561        // using the constructor we found.
1562        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1563      }
1564    }
1565  }
1566
1567  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1568  // above, or overload resolution failed. Either way, we need to try
1569  // (again) now with the return value expression as written.
1570  if (Res.isInvalid())
1571    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1572
1573  return Res;
1574}
1575
1576/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1577///
1578StmtResult
1579Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1580  // If this is the first return we've seen in the block, infer the type of
1581  // the block from it.
1582  BlockScopeInfo *CurBlock = getCurBlock();
1583  if (CurBlock->ReturnType.isNull()) {
1584    if (RetValExp) {
1585      // Don't call UsualUnaryConversions(), since we don't want to do
1586      // integer promotions here.
1587      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1588      if (Result.isInvalid())
1589        return StmtError();
1590      RetValExp = Result.take();
1591      CurBlock->ReturnType = RetValExp->getType();
1592      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1593        // We have to remove a 'const' added to copied-in variable which was
1594        // part of the implementation spec. and not the actual qualifier for
1595        // the variable.
1596        if (CDRE->isConstQualAdded())
1597          CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1598      }
1599    } else
1600      CurBlock->ReturnType = Context.VoidTy;
1601  }
1602  QualType FnRetType = CurBlock->ReturnType;
1603
1604  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1605    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1606      << getCurFunctionOrMethodDecl()->getDeclName();
1607    return StmtError();
1608  }
1609
1610  // Otherwise, verify that this result type matches the previous one.  We are
1611  // pickier with blocks than for normal functions because we don't have GCC
1612  // compatibility to worry about here.
1613  ReturnStmt *Result = 0;
1614  if (CurBlock->ReturnType->isVoidType()) {
1615    if (RetValExp) {
1616      Diag(ReturnLoc, diag::err_return_block_has_expr);
1617      RetValExp = 0;
1618    }
1619    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1620  } else if (!RetValExp) {
1621    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1622  } else {
1623    const VarDecl *NRVOCandidate = 0;
1624
1625    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1626      // we have a non-void block with an expression, continue checking
1627
1628      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1629      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1630      // function return.
1631
1632      // In C++ the return statement is handled via a copy initialization.
1633      // the C version of which boils down to CheckSingleAssignmentConstraints.
1634      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1635      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1636                                                                     FnRetType,
1637                                                           NRVOCandidate != 0);
1638      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1639                                                       FnRetType, RetValExp);
1640      if (Res.isInvalid()) {
1641        // FIXME: Cleanup temporaries here, anyway?
1642        return StmtError();
1643      }
1644
1645      if (RetValExp) {
1646        CheckImplicitConversions(RetValExp, ReturnLoc);
1647        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1648      }
1649
1650      RetValExp = Res.takeAs<Expr>();
1651      if (RetValExp)
1652        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1653    }
1654
1655    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1656  }
1657
1658  // If we need to check for the named return value optimization, save the
1659  // return statement in our scope for later processing.
1660  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1661      !CurContext->isDependentContext())
1662    FunctionScopes.back()->Returns.push_back(Result);
1663
1664  return Owned(Result);
1665}
1666
1667StmtResult
1668Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1669  if (getCurBlock())
1670    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1671
1672  QualType FnRetType;
1673  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1674    FnRetType = FD->getResultType();
1675    if (FD->hasAttr<NoReturnAttr>() ||
1676        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1677      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1678        << getCurFunctionOrMethodDecl()->getDeclName();
1679  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1680    FnRetType = MD->getResultType();
1681  else // If we don't have a function/method context, bail.
1682    return StmtError();
1683
1684  ReturnStmt *Result = 0;
1685  if (FnRetType->isVoidType()) {
1686    if (RetValExp && !RetValExp->isTypeDependent()) {
1687      // C99 6.8.6.4p1 (ext_ since GCC warns)
1688      unsigned D = diag::ext_return_has_expr;
1689      if (RetValExp->getType()->isVoidType())
1690        D = diag::ext_return_has_void_expr;
1691      else {
1692        ExprResult Result = Owned(RetValExp);
1693        Result = IgnoredValueConversions(Result.take());
1694        if (Result.isInvalid())
1695          return StmtError();
1696        RetValExp = Result.take();
1697        RetValExp = ImpCastExprToType(RetValExp, Context.VoidTy, CK_ToVoid).take();
1698      }
1699
1700      // return (some void expression); is legal in C++.
1701      if (D != diag::ext_return_has_void_expr ||
1702          !getLangOptions().CPlusPlus) {
1703        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1704        Diag(ReturnLoc, D)
1705          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1706          << RetValExp->getSourceRange();
1707      }
1708
1709      CheckImplicitConversions(RetValExp, ReturnLoc);
1710      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1711    }
1712
1713    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1714  } else if (!RetValExp && !FnRetType->isDependentType()) {
1715    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1716    // C99 6.8.6.4p1 (ext_ since GCC warns)
1717    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1718
1719    if (FunctionDecl *FD = getCurFunctionDecl())
1720      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1721    else
1722      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1723    Result = new (Context) ReturnStmt(ReturnLoc);
1724  } else {
1725    const VarDecl *NRVOCandidate = 0;
1726    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1727      // we have a non-void function with an expression, continue checking
1728
1729      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1730      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1731      // function return.
1732
1733      // In C++ the return statement is handled via a copy initialization.
1734      // the C version of which boils down to CheckSingleAssignmentConstraints.
1735      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1736      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1737                                                                     FnRetType,
1738                                                                     NRVOCandidate != 0);
1739      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1740                                                       FnRetType, RetValExp);
1741      if (Res.isInvalid()) {
1742        // FIXME: Cleanup temporaries here, anyway?
1743        return StmtError();
1744      }
1745
1746      RetValExp = Res.takeAs<Expr>();
1747      if (RetValExp)
1748        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1749    }
1750
1751    if (RetValExp) {
1752      CheckImplicitConversions(RetValExp, ReturnLoc);
1753      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1754    }
1755    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1756  }
1757
1758  // If we need to check for the named return value optimization, save the
1759  // return statement in our scope for later processing.
1760  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1761      !CurContext->isDependentContext())
1762    FunctionScopes.back()->Returns.push_back(Result);
1763
1764  return Owned(Result);
1765}
1766
1767/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1768/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1769/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1770/// provide a strong guidance to not use it.
1771///
1772/// This method checks to see if the argument is an acceptable l-value and
1773/// returns false if it is a case we can handle.
1774static bool CheckAsmLValue(const Expr *E, Sema &S) {
1775  // Type dependent expressions will be checked during instantiation.
1776  if (E->isTypeDependent())
1777    return false;
1778
1779  if (E->isLValue())
1780    return false;  // Cool, this is an lvalue.
1781
1782  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1783  // are supposed to allow.
1784  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1785  if (E != E2 && E2->isLValue()) {
1786    if (!S.getLangOptions().HeinousExtensions)
1787      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1788        << E->getSourceRange();
1789    else
1790      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1791        << E->getSourceRange();
1792    // Accept, even if we emitted an error diagnostic.
1793    return false;
1794  }
1795
1796  // None of the above, just randomly invalid non-lvalue.
1797  return true;
1798}
1799
1800/// isOperandMentioned - Return true if the specified operand # is mentioned
1801/// anywhere in the decomposed asm string.
1802static bool isOperandMentioned(unsigned OpNo,
1803                         llvm::ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
1804  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
1805    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
1806    if (!Piece.isOperand()) continue;
1807
1808    // If this is a reference to the input and if the input was the smaller
1809    // one, then we have to reject this asm.
1810    if (Piece.getOperandNo() == OpNo)
1811      return true;
1812  }
1813
1814  return false;
1815}
1816
1817StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1818                              bool IsVolatile, unsigned NumOutputs,
1819                              unsigned NumInputs, IdentifierInfo **Names,
1820                              MultiExprArg constraints, MultiExprArg exprs,
1821                              Expr *asmString, MultiExprArg clobbers,
1822                              SourceLocation RParenLoc, bool MSAsm) {
1823  unsigned NumClobbers = clobbers.size();
1824  StringLiteral **Constraints =
1825    reinterpret_cast<StringLiteral**>(constraints.get());
1826  Expr **Exprs = exprs.get();
1827  StringLiteral *AsmString = cast<StringLiteral>(asmString);
1828  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1829
1830  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1831
1832  // The parser verifies that there is a string literal here.
1833  if (AsmString->isWide())
1834    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1835      << AsmString->getSourceRange());
1836
1837  for (unsigned i = 0; i != NumOutputs; i++) {
1838    StringLiteral *Literal = Constraints[i];
1839    if (Literal->isWide())
1840      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1841        << Literal->getSourceRange());
1842
1843    llvm::StringRef OutputName;
1844    if (Names[i])
1845      OutputName = Names[i]->getName();
1846
1847    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1848    if (!Context.Target.validateOutputConstraint(Info))
1849      return StmtError(Diag(Literal->getLocStart(),
1850                            diag::err_asm_invalid_output_constraint)
1851                       << Info.getConstraintStr());
1852
1853    // Check that the output exprs are valid lvalues.
1854    Expr *OutputExpr = Exprs[i];
1855    if (CheckAsmLValue(OutputExpr, *this)) {
1856      return StmtError(Diag(OutputExpr->getLocStart(),
1857                  diag::err_asm_invalid_lvalue_in_output)
1858        << OutputExpr->getSourceRange());
1859    }
1860
1861    OutputConstraintInfos.push_back(Info);
1862  }
1863
1864  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1865
1866  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1867    StringLiteral *Literal = Constraints[i];
1868    if (Literal->isWide())
1869      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1870        << Literal->getSourceRange());
1871
1872    llvm::StringRef InputName;
1873    if (Names[i])
1874      InputName = Names[i]->getName();
1875
1876    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1877    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1878                                                NumOutputs, Info)) {
1879      return StmtError(Diag(Literal->getLocStart(),
1880                            diag::err_asm_invalid_input_constraint)
1881                       << Info.getConstraintStr());
1882    }
1883
1884    Expr *InputExpr = Exprs[i];
1885
1886    // Only allow void types for memory constraints.
1887    if (Info.allowsMemory() && !Info.allowsRegister()) {
1888      if (CheckAsmLValue(InputExpr, *this))
1889        return StmtError(Diag(InputExpr->getLocStart(),
1890                              diag::err_asm_invalid_lvalue_in_input)
1891                         << Info.getConstraintStr()
1892                         << InputExpr->getSourceRange());
1893    }
1894
1895    if (Info.allowsRegister()) {
1896      if (InputExpr->getType()->isVoidType()) {
1897        return StmtError(Diag(InputExpr->getLocStart(),
1898                              diag::err_asm_invalid_type_in_input)
1899          << InputExpr->getType() << Info.getConstraintStr()
1900          << InputExpr->getSourceRange());
1901      }
1902    }
1903
1904    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
1905    if (Result.isInvalid())
1906      return StmtError();
1907
1908    Exprs[i] = Result.take();
1909    InputConstraintInfos.push_back(Info);
1910  }
1911
1912  // Check that the clobbers are valid.
1913  for (unsigned i = 0; i != NumClobbers; i++) {
1914    StringLiteral *Literal = Clobbers[i];
1915    if (Literal->isWide())
1916      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1917        << Literal->getSourceRange());
1918
1919    llvm::StringRef Clobber = Literal->getString();
1920
1921    if (!Context.Target.isValidGCCRegisterName(Clobber))
1922      return StmtError(Diag(Literal->getLocStart(),
1923                  diag::err_asm_unknown_register_name) << Clobber);
1924  }
1925
1926  AsmStmt *NS =
1927    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1928                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1929                          AsmString, NumClobbers, Clobbers, RParenLoc);
1930  // Validate the asm string, ensuring it makes sense given the operands we
1931  // have.
1932  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1933  unsigned DiagOffs;
1934  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1935    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1936           << AsmString->getSourceRange();
1937    return StmtError();
1938  }
1939
1940  // Validate tied input operands for type mismatches.
1941  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1942    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1943
1944    // If this is a tied constraint, verify that the output and input have
1945    // either exactly the same type, or that they are int/ptr operands with the
1946    // same size (int/long, int*/long, are ok etc).
1947    if (!Info.hasTiedOperand()) continue;
1948
1949    unsigned TiedTo = Info.getTiedOperand();
1950    unsigned InputOpNo = i+NumOutputs;
1951    Expr *OutputExpr = Exprs[TiedTo];
1952    Expr *InputExpr = Exprs[InputOpNo];
1953    QualType InTy = InputExpr->getType();
1954    QualType OutTy = OutputExpr->getType();
1955    if (Context.hasSameType(InTy, OutTy))
1956      continue;  // All types can be tied to themselves.
1957
1958    // Decide if the input and output are in the same domain (integer/ptr or
1959    // floating point.
1960    enum AsmDomain {
1961      AD_Int, AD_FP, AD_Other
1962    } InputDomain, OutputDomain;
1963
1964    if (InTy->isIntegerType() || InTy->isPointerType())
1965      InputDomain = AD_Int;
1966    else if (InTy->isRealFloatingType())
1967      InputDomain = AD_FP;
1968    else
1969      InputDomain = AD_Other;
1970
1971    if (OutTy->isIntegerType() || OutTy->isPointerType())
1972      OutputDomain = AD_Int;
1973    else if (OutTy->isRealFloatingType())
1974      OutputDomain = AD_FP;
1975    else
1976      OutputDomain = AD_Other;
1977
1978    // They are ok if they are the same size and in the same domain.  This
1979    // allows tying things like:
1980    //   void* to int*
1981    //   void* to int            if they are the same size.
1982    //   double to long double   if they are the same size.
1983    //
1984    uint64_t OutSize = Context.getTypeSize(OutTy);
1985    uint64_t InSize = Context.getTypeSize(InTy);
1986    if (OutSize == InSize && InputDomain == OutputDomain &&
1987        InputDomain != AD_Other)
1988      continue;
1989
1990    // If the smaller input/output operand is not mentioned in the asm string,
1991    // then we can promote the smaller one to a larger input and the asm string
1992    // won't notice.
1993    bool SmallerValueMentioned = false;
1994
1995    // If this is a reference to the input and if the input was the smaller
1996    // one, then we have to reject this asm.
1997    if (isOperandMentioned(InputOpNo, Pieces)) {
1998      // This is a use in the asm string of the smaller operand.  Since we
1999      // codegen this by promoting to a wider value, the asm will get printed
2000      // "wrong".
2001      SmallerValueMentioned |= InSize < OutSize;
2002    }
2003    if (isOperandMentioned(TiedTo, Pieces)) {
2004      // If this is a reference to the output, and if the output is the larger
2005      // value, then it's ok because we'll promote the input to the larger type.
2006      SmallerValueMentioned |= OutSize < InSize;
2007    }
2008
2009    // If the smaller value wasn't mentioned in the asm string, and if the
2010    // output was a register, just extend the shorter one to the size of the
2011    // larger one.
2012    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2013        OutputConstraintInfos[TiedTo].allowsRegister())
2014      continue;
2015
2016    // Either both of the operands were mentioned or the smaller one was
2017    // mentioned.  One more special case that we'll allow: if the tied input is
2018    // integer, unmentioned, and is a constant, then we'll allow truncating it
2019    // down to the size of the destination.
2020    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2021        !isOperandMentioned(InputOpNo, Pieces) &&
2022        InputExpr->isEvaluatable(Context)) {
2023      InputExpr = ImpCastExprToType(InputExpr, OutTy, CK_IntegralCast).take();
2024      Exprs[InputOpNo] = InputExpr;
2025      NS->setInputExpr(i, InputExpr);
2026      continue;
2027    }
2028
2029    Diag(InputExpr->getLocStart(),
2030         diag::err_asm_tying_incompatible_types)
2031      << InTy << OutTy << OutputExpr->getSourceRange()
2032      << InputExpr->getSourceRange();
2033    return StmtError();
2034  }
2035
2036  return Owned(NS);
2037}
2038
2039StmtResult
2040Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2041                           SourceLocation RParen, Decl *Parm,
2042                           Stmt *Body) {
2043  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2044  if (Var && Var->isInvalidDecl())
2045    return StmtError();
2046
2047  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2048}
2049
2050StmtResult
2051Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2052  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2053}
2054
2055StmtResult
2056Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2057                         MultiStmtArg CatchStmts, Stmt *Finally) {
2058  if (!getLangOptions().ObjCExceptions)
2059    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2060
2061  getCurFunction()->setHasBranchProtectedScope();
2062  unsigned NumCatchStmts = CatchStmts.size();
2063  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2064                                     CatchStmts.release(),
2065                                     NumCatchStmts,
2066                                     Finally));
2067}
2068
2069StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2070                                                  Expr *Throw) {
2071  if (Throw) {
2072    ExprResult Result = DefaultLvalueConversion(Throw);
2073    if (Result.isInvalid())
2074      return StmtError();
2075
2076    Throw = Result.take();
2077    QualType ThrowType = Throw->getType();
2078    // Make sure the expression type is an ObjC pointer or "void *".
2079    if (!ThrowType->isDependentType() &&
2080        !ThrowType->isObjCObjectPointerType()) {
2081      const PointerType *PT = ThrowType->getAs<PointerType>();
2082      if (!PT || !PT->getPointeeType()->isVoidType())
2083        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2084                         << Throw->getType() << Throw->getSourceRange());
2085    }
2086  }
2087
2088  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2089}
2090
2091StmtResult
2092Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2093                           Scope *CurScope) {
2094  if (!getLangOptions().ObjCExceptions)
2095    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2096
2097  if (!Throw) {
2098    // @throw without an expression designates a rethrow (which much occur
2099    // in the context of an @catch clause).
2100    Scope *AtCatchParent = CurScope;
2101    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2102      AtCatchParent = AtCatchParent->getParent();
2103    if (!AtCatchParent)
2104      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2105  }
2106
2107  return BuildObjCAtThrowStmt(AtLoc, Throw);
2108}
2109
2110StmtResult
2111Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2112                                  Stmt *SyncBody) {
2113  getCurFunction()->setHasBranchProtectedScope();
2114
2115  ExprResult Result = DefaultLvalueConversion(SyncExpr);
2116  if (Result.isInvalid())
2117    return StmtError();
2118
2119  SyncExpr = Result.take();
2120  // Make sure the expression type is an ObjC pointer or "void *".
2121  if (!SyncExpr->getType()->isDependentType() &&
2122      !SyncExpr->getType()->isObjCObjectPointerType()) {
2123    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
2124    if (!PT || !PT->getPointeeType()->isVoidType())
2125      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
2126                       << SyncExpr->getType() << SyncExpr->getSourceRange());
2127  }
2128
2129  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2130}
2131
2132/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2133/// and creates a proper catch handler from them.
2134StmtResult
2135Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2136                         Stmt *HandlerBlock) {
2137  // There's nothing to test that ActOnExceptionDecl didn't already test.
2138  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2139                                          cast_or_null<VarDecl>(ExDecl),
2140                                          HandlerBlock));
2141}
2142
2143namespace {
2144
2145class TypeWithHandler {
2146  QualType t;
2147  CXXCatchStmt *stmt;
2148public:
2149  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2150  : t(type), stmt(statement) {}
2151
2152  // An arbitrary order is fine as long as it places identical
2153  // types next to each other.
2154  bool operator<(const TypeWithHandler &y) const {
2155    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2156      return true;
2157    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2158      return false;
2159    else
2160      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2161  }
2162
2163  bool operator==(const TypeWithHandler& other) const {
2164    return t == other.t;
2165  }
2166
2167  CXXCatchStmt *getCatchStmt() const { return stmt; }
2168  SourceLocation getTypeSpecStartLoc() const {
2169    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2170  }
2171};
2172
2173}
2174
2175/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2176/// handlers and creates a try statement from them.
2177StmtResult
2178Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2179                       MultiStmtArg RawHandlers) {
2180  // Don't report an error if 'try' is used in system headers.
2181  if (!getLangOptions().CXXExceptions &&
2182      !getSourceManager().isInSystemHeader(TryLoc))
2183      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2184
2185  unsigned NumHandlers = RawHandlers.size();
2186  assert(NumHandlers > 0 &&
2187         "The parser shouldn't call this if there are no handlers.");
2188  Stmt **Handlers = RawHandlers.get();
2189
2190  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2191
2192  for (unsigned i = 0; i < NumHandlers; ++i) {
2193    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
2194    if (!Handler->getExceptionDecl()) {
2195      if (i < NumHandlers - 1)
2196        return StmtError(Diag(Handler->getLocStart(),
2197                              diag::err_early_catch_all));
2198
2199      continue;
2200    }
2201
2202    const QualType CaughtType = Handler->getCaughtType();
2203    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2204    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2205  }
2206
2207  // Detect handlers for the same type as an earlier one.
2208  if (NumHandlers > 1) {
2209    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2210
2211    TypeWithHandler prev = TypesWithHandlers[0];
2212    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2213      TypeWithHandler curr = TypesWithHandlers[i];
2214
2215      if (curr == prev) {
2216        Diag(curr.getTypeSpecStartLoc(),
2217             diag::warn_exception_caught_by_earlier_handler)
2218          << curr.getCatchStmt()->getCaughtType().getAsString();
2219        Diag(prev.getTypeSpecStartLoc(),
2220             diag::note_previous_exception_handler)
2221          << prev.getCatchStmt()->getCaughtType().getAsString();
2222      }
2223
2224      prev = curr;
2225    }
2226  }
2227
2228  getCurFunction()->setHasBranchProtectedScope();
2229
2230  // FIXME: We should detect handlers that cannot catch anything because an
2231  // earlier handler catches a superclass. Need to find a method that is not
2232  // quadratic for this.
2233  // Neither of these are explicitly forbidden, but every compiler detects them
2234  // and warns.
2235
2236  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2237                                  Handlers, NumHandlers));
2238}
2239