SemaStmt.cpp revision dbb26db1d426fb6caaaf1b4fa47b46d1947c12c9
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/StmtObjC.h"
20#include "clang/AST/StmtCXX.h"
21#include "clang/Basic/TargetInfo.h"
22using namespace clang;
23
24Sema::OwningStmtResult Sema::ActOnExprStmt(ExprArg expr) {
25  Expr *E = expr.takeAs<Expr>();
26  assert(E && "ActOnExprStmt(): missing expression");
27
28  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
29  // void expression for its side effects.  Conversion to void allows any
30  // operand, even incomplete types.
31
32  // Same thing in for stmt first clause (when expr) and third clause.
33  return Owned(static_cast<Stmt*>(E));
34}
35
36
37Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
38  return Owned(new (Context) NullStmt(SemiLoc));
39}
40
41Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
42                                           SourceLocation StartLoc,
43                                           SourceLocation EndLoc) {
44  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
45
46  // If we have an invalid decl, just return an error.
47  if (DG.isNull()) return StmtError();
48
49  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
50}
51
52Action::OwningStmtResult
53Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
54                        MultiStmtArg elts, bool isStmtExpr) {
55  unsigned NumElts = elts.size();
56  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
57  // If we're in C89 mode, check that we don't have any decls after stmts.  If
58  // so, emit an extension diagnostic.
59  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
60    // Note that __extension__ can be around a decl.
61    unsigned i = 0;
62    // Skip over all declarations.
63    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
64      /*empty*/;
65
66    // We found the end of the list or a statement.  Scan for another declstmt.
67    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
68      /*empty*/;
69
70    if (i != NumElts) {
71      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
72      Diag(D->getLocation(), diag::ext_mixed_decls_code);
73    }
74  }
75  // Warn about unused expressions in statements.
76  for (unsigned i = 0; i != NumElts; ++i) {
77    Expr *E = dyn_cast<Expr>(Elts[i]);
78    if (!E) continue;
79
80    // Warn about expressions with unused results if they are non-void and if
81    // this not the last stmt in a stmt expr.
82    if (E->getType()->isVoidType() || (isStmtExpr && i == NumElts-1))
83      continue;
84
85    SourceLocation Loc;
86    SourceRange R1, R2;
87    if (!E->isUnusedResultAWarning(Loc, R1, R2))
88      continue;
89
90    Diag(Loc, diag::warn_unused_expr) << R1 << R2;
91  }
92
93  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
94}
95
96Action::OwningStmtResult
97Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
98                    SourceLocation DotDotDotLoc, ExprArg rhsval,
99                    SourceLocation ColonLoc) {
100  assert((lhsval.get() != 0) && "missing expression in case statement");
101
102  // C99 6.8.4.2p3: The expression shall be an integer constant.
103  // However, GCC allows any evaluatable integer expression.
104  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
105  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
106      VerifyIntegerConstantExpression(LHSVal))
107    return StmtError();
108
109  // GCC extension: The expression shall be an integer constant.
110
111  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
112  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
113      VerifyIntegerConstantExpression(RHSVal)) {
114    RHSVal = 0;  // Recover by just forgetting about it.
115    rhsval = 0;
116  }
117
118  if (getSwitchStack().empty()) {
119    Diag(CaseLoc, diag::err_case_not_in_switch);
120    return StmtError();
121  }
122
123  // Only now release the smart pointers.
124  lhsval.release();
125  rhsval.release();
126  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
127                                        ColonLoc);
128  getSwitchStack().back()->addSwitchCase(CS);
129  return Owned(CS);
130}
131
132/// ActOnCaseStmtBody - This installs a statement as the body of a case.
133void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
134  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
135  Stmt *SubStmt = subStmt.takeAs<Stmt>();
136  CS->setSubStmt(SubStmt);
137}
138
139Action::OwningStmtResult
140Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
141                       StmtArg subStmt, Scope *CurScope) {
142  Stmt *SubStmt = subStmt.takeAs<Stmt>();
143
144  if (getSwitchStack().empty()) {
145    Diag(DefaultLoc, diag::err_default_not_in_switch);
146    return Owned(SubStmt);
147  }
148
149  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
150  getSwitchStack().back()->addSwitchCase(DS);
151  return Owned(DS);
152}
153
154Action::OwningStmtResult
155Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
156                     SourceLocation ColonLoc, StmtArg subStmt) {
157  Stmt *SubStmt = subStmt.takeAs<Stmt>();
158  // Look up the record for this label identifier.
159  LabelStmt *&LabelDecl = getLabelMap()[II];
160
161  // If not forward referenced or defined already, just create a new LabelStmt.
162  if (LabelDecl == 0)
163    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
164
165  assert(LabelDecl->getID() == II && "Label mismatch!");
166
167  // Otherwise, this label was either forward reference or multiply defined.  If
168  // multiply defined, reject it now.
169  if (LabelDecl->getSubStmt()) {
170    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
171    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
172    return Owned(SubStmt);
173  }
174
175  // Otherwise, this label was forward declared, and we just found its real
176  // definition.  Fill in the forward definition and return it.
177  LabelDecl->setIdentLoc(IdentLoc);
178  LabelDecl->setSubStmt(SubStmt);
179  return Owned(LabelDecl);
180}
181
182Action::OwningStmtResult
183Sema::ActOnIfStmt(SourceLocation IfLoc, ExprArg CondVal,
184                  StmtArg ThenVal, SourceLocation ElseLoc,
185                  StmtArg ElseVal) {
186  Expr *condExpr = CondVal.takeAs<Expr>();
187
188  assert(condExpr && "ActOnIfStmt(): missing expression");
189
190  if (!condExpr->isTypeDependent()) {
191    DefaultFunctionArrayConversion(condExpr);
192    // Take ownership again until we're past the error checking.
193    CondVal = condExpr;
194    QualType condType = condExpr->getType();
195
196    if (getLangOptions().CPlusPlus) {
197      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
198        return StmtError();
199    } else if (!condType->isScalarType()) // C99 6.8.4.1p1
200      return StmtError(Diag(IfLoc,
201                            diag::err_typecheck_statement_requires_scalar)
202                       << condType << condExpr->getSourceRange());
203  }
204
205  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
206
207  // Warn if the if block has a null body without an else value.
208  // this helps prevent bugs due to typos, such as
209  // if (condition);
210  //   do_stuff();
211  if (!ElseVal.get()) {
212    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
213      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
214  }
215
216  CondVal.release();
217  return Owned(new (Context) IfStmt(IfLoc, condExpr, thenStmt,
218                                    ElseLoc, ElseVal.takeAs<Stmt>()));
219}
220
221Action::OwningStmtResult
222Sema::ActOnStartOfSwitchStmt(ExprArg cond) {
223  Expr *Cond = cond.takeAs<Expr>();
224
225  if (getLangOptions().CPlusPlus) {
226    // C++ 6.4.2.p2:
227    // The condition shall be of integral type, enumeration type, or of a class
228    // type for which a single conversion function to integral or enumeration
229    // type exists (12.3). If the condition is of class type, the condition is
230    // converted by calling that conversion function, and the result of the
231    // conversion is used in place of the original condition for the remainder
232    // of this section. Integral promotions are performed.
233    if (!Cond->isTypeDependent()) {
234      QualType Ty = Cond->getType();
235
236      // FIXME: Handle class types.
237
238      // If the type is wrong a diagnostic will be emitted later at
239      // ActOnFinishSwitchStmt.
240      if (Ty->isIntegralType() || Ty->isEnumeralType()) {
241        // Integral promotions are performed.
242        // FIXME: Integral promotions for C++ are not complete.
243        UsualUnaryConversions(Cond);
244      }
245    }
246  } else {
247    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
248    UsualUnaryConversions(Cond);
249  }
250
251  SwitchStmt *SS = new (Context) SwitchStmt(Cond);
252  getSwitchStack().push_back(SS);
253  return Owned(SS);
254}
255
256/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
257/// the specified width and sign.  If an overflow occurs, detect it and emit
258/// the specified diagnostic.
259void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
260                                              unsigned NewWidth, bool NewSign,
261                                              SourceLocation Loc,
262                                              unsigned DiagID) {
263  // Perform a conversion to the promoted condition type if needed.
264  if (NewWidth > Val.getBitWidth()) {
265    // If this is an extension, just do it.
266    llvm::APSInt OldVal(Val);
267    Val.extend(NewWidth);
268
269    // If the input was signed and negative and the output is unsigned,
270    // warn.
271    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
272      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
273
274    Val.setIsSigned(NewSign);
275  } else if (NewWidth < Val.getBitWidth()) {
276    // If this is a truncation, check for overflow.
277    llvm::APSInt ConvVal(Val);
278    ConvVal.trunc(NewWidth);
279    ConvVal.setIsSigned(NewSign);
280    ConvVal.extend(Val.getBitWidth());
281    ConvVal.setIsSigned(Val.isSigned());
282    if (ConvVal != Val)
283      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
284
285    // Regardless of whether a diagnostic was emitted, really do the
286    // truncation.
287    Val.trunc(NewWidth);
288    Val.setIsSigned(NewSign);
289  } else if (NewSign != Val.isSigned()) {
290    // Convert the sign to match the sign of the condition.  This can cause
291    // overflow as well: unsigned(INTMIN)
292    llvm::APSInt OldVal(Val);
293    Val.setIsSigned(NewSign);
294
295    if (Val.isNegative())  // Sign bit changes meaning.
296      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
297  }
298}
299
300namespace {
301  struct CaseCompareFunctor {
302    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
303                    const llvm::APSInt &RHS) {
304      return LHS.first < RHS;
305    }
306    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
307                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
308      return LHS.first < RHS.first;
309    }
310    bool operator()(const llvm::APSInt &LHS,
311                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
312      return LHS < RHS.first;
313    }
314  };
315}
316
317/// CmpCaseVals - Comparison predicate for sorting case values.
318///
319static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
320                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
321  if (lhs.first < rhs.first)
322    return true;
323
324  if (lhs.first == rhs.first &&
325      lhs.second->getCaseLoc().getRawEncoding()
326       < rhs.second->getCaseLoc().getRawEncoding())
327    return true;
328  return false;
329}
330
331Action::OwningStmtResult
332Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
333                            StmtArg Body) {
334  Stmt *BodyStmt = Body.takeAs<Stmt>();
335
336  SwitchStmt *SS = getSwitchStack().back();
337  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
338
339  SS->setBody(BodyStmt, SwitchLoc);
340  getSwitchStack().pop_back();
341
342  Expr *CondExpr = SS->getCond();
343  QualType CondType = CondExpr->getType();
344
345  if (!CondExpr->isTypeDependent() &&
346      !CondType->isIntegerType()) { // C99 6.8.4.2p1
347    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
348      << CondType << CondExpr->getSourceRange();
349    return StmtError();
350  }
351
352  // Get the bitwidth of the switched-on value before promotions.  We must
353  // convert the integer case values to this width before comparison.
354  bool HasDependentValue
355    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
356  unsigned CondWidth
357    = HasDependentValue? 0
358                       : static_cast<unsigned>(Context.getTypeSize(CondType));
359  bool CondIsSigned = CondType->isSignedIntegerType();
360
361  // Accumulate all of the case values in a vector so that we can sort them
362  // and detect duplicates.  This vector contains the APInt for the case after
363  // it has been converted to the condition type.
364  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
365  CaseValsTy CaseVals;
366
367  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
368  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
369
370  DefaultStmt *TheDefaultStmt = 0;
371
372  bool CaseListIsErroneous = false;
373
374  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
375       SC = SC->getNextSwitchCase()) {
376
377    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
378      if (TheDefaultStmt) {
379        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
380        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
381
382        // FIXME: Remove the default statement from the switch block so that
383        // we'll return a valid AST.  This requires recursing down the
384        // AST and finding it, not something we are set up to do right now.  For
385        // now, just lop the entire switch stmt out of the AST.
386        CaseListIsErroneous = true;
387      }
388      TheDefaultStmt = DS;
389
390    } else {
391      CaseStmt *CS = cast<CaseStmt>(SC);
392
393      // We already verified that the expression has a i-c-e value (C99
394      // 6.8.4.2p3) - get that value now.
395      Expr *Lo = CS->getLHS();
396
397      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
398        HasDependentValue = true;
399        break;
400      }
401
402      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
403
404      // Convert the value to the same width/sign as the condition.
405      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
406                                         CS->getLHS()->getLocStart(),
407                                         diag::warn_case_value_overflow);
408
409      // If the LHS is not the same type as the condition, insert an implicit
410      // cast.
411      ImpCastExprToType(Lo, CondType);
412      CS->setLHS(Lo);
413
414      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
415      if (CS->getRHS()) {
416        if (CS->getRHS()->isTypeDependent() ||
417            CS->getRHS()->isValueDependent()) {
418          HasDependentValue = true;
419          break;
420        }
421        CaseRanges.push_back(std::make_pair(LoVal, CS));
422      } else
423        CaseVals.push_back(std::make_pair(LoVal, CS));
424    }
425  }
426
427  if (!HasDependentValue) {
428    // Sort all the scalar case values so we can easily detect duplicates.
429    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
430
431    if (!CaseVals.empty()) {
432      for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
433        if (CaseVals[i].first == CaseVals[i+1].first) {
434          // If we have a duplicate, report it.
435          Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
436               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
437          Diag(CaseVals[i].second->getLHS()->getLocStart(),
438               diag::note_duplicate_case_prev);
439          // FIXME: We really want to remove the bogus case stmt from
440          // the substmt, but we have no way to do this right now.
441          CaseListIsErroneous = true;
442        }
443      }
444    }
445
446    // Detect duplicate case ranges, which usually don't exist at all in
447    // the first place.
448    if (!CaseRanges.empty()) {
449      // Sort all the case ranges by their low value so we can easily detect
450      // overlaps between ranges.
451      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
452
453      // Scan the ranges, computing the high values and removing empty ranges.
454      std::vector<llvm::APSInt> HiVals;
455      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
456        CaseStmt *CR = CaseRanges[i].second;
457        Expr *Hi = CR->getRHS();
458        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
459
460        // Convert the value to the same width/sign as the condition.
461        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
462                                           CR->getRHS()->getLocStart(),
463                                           diag::warn_case_value_overflow);
464
465        // If the LHS is not the same type as the condition, insert an implicit
466        // cast.
467        ImpCastExprToType(Hi, CondType);
468        CR->setRHS(Hi);
469
470        // If the low value is bigger than the high value, the case is empty.
471        if (CaseRanges[i].first > HiVal) {
472          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
473            << SourceRange(CR->getLHS()->getLocStart(),
474                           CR->getRHS()->getLocEnd());
475          CaseRanges.erase(CaseRanges.begin()+i);
476          --i, --e;
477          continue;
478        }
479        HiVals.push_back(HiVal);
480      }
481
482      // Rescan the ranges, looking for overlap with singleton values and other
483      // ranges.  Since the range list is sorted, we only need to compare case
484      // ranges with their neighbors.
485      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
486        llvm::APSInt &CRLo = CaseRanges[i].first;
487        llvm::APSInt &CRHi = HiVals[i];
488        CaseStmt *CR = CaseRanges[i].second;
489
490        // Check to see whether the case range overlaps with any
491        // singleton cases.
492        CaseStmt *OverlapStmt = 0;
493        llvm::APSInt OverlapVal(32);
494
495        // Find the smallest value >= the lower bound.  If I is in the
496        // case range, then we have overlap.
497        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
498                                                  CaseVals.end(), CRLo,
499                                                  CaseCompareFunctor());
500        if (I != CaseVals.end() && I->first < CRHi) {
501          OverlapVal  = I->first;   // Found overlap with scalar.
502          OverlapStmt = I->second;
503        }
504
505        // Find the smallest value bigger than the upper bound.
506        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
507        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
508          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
509          OverlapStmt = (I-1)->second;
510        }
511
512        // Check to see if this case stmt overlaps with the subsequent
513        // case range.
514        if (i && CRLo <= HiVals[i-1]) {
515          OverlapVal  = HiVals[i-1];       // Found overlap with range.
516          OverlapStmt = CaseRanges[i-1].second;
517        }
518
519        if (OverlapStmt) {
520          // If we have a duplicate, report it.
521          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
522            << OverlapVal.toString(10);
523          Diag(OverlapStmt->getLHS()->getLocStart(),
524               diag::note_duplicate_case_prev);
525          // FIXME: We really want to remove the bogus case stmt from
526          // the substmt, but we have no way to do this right now.
527          CaseListIsErroneous = true;
528        }
529      }
530    }
531  }
532
533  // FIXME: If the case list was broken is some way, we don't have a
534  // good system to patch it up.  Instead, just return the whole
535  // substmt as broken.
536  if (CaseListIsErroneous)
537    return StmtError();
538
539  Switch.release();
540  return Owned(SS);
541}
542
543Action::OwningStmtResult
544Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprArg Cond, StmtArg Body) {
545  Expr *condExpr = Cond.takeAs<Expr>();
546  assert(condExpr && "ActOnWhileStmt(): missing expression");
547
548  if (!condExpr->isTypeDependent()) {
549    DefaultFunctionArrayConversion(condExpr);
550    Cond = condExpr;
551    QualType condType = condExpr->getType();
552
553    if (getLangOptions().CPlusPlus) {
554      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
555        return StmtError();
556    } else if (!condType->isScalarType()) // C99 6.8.5p2
557      return StmtError(Diag(WhileLoc,
558                            diag::err_typecheck_statement_requires_scalar)
559                       << condType << condExpr->getSourceRange());
560  }
561
562  Cond.release();
563  return Owned(new (Context) WhileStmt(condExpr, Body.takeAs<Stmt>(),
564                                       WhileLoc));
565}
566
567Action::OwningStmtResult
568Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
569                  SourceLocation WhileLoc, ExprArg Cond) {
570  Expr *condExpr = Cond.takeAs<Expr>();
571  assert(condExpr && "ActOnDoStmt(): missing expression");
572
573  if (!condExpr->isTypeDependent()) {
574    DefaultFunctionArrayConversion(condExpr);
575    Cond = condExpr;
576    QualType condType = condExpr->getType();
577
578    if (getLangOptions().CPlusPlus) {
579      if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
580        return StmtError();
581    } else if (!condType->isScalarType()) // C99 6.8.5p2
582      return StmtError(Diag(DoLoc,
583                            diag::err_typecheck_statement_requires_scalar)
584                       << condType << condExpr->getSourceRange());
585  }
586
587  Cond.release();
588  return Owned(new (Context) DoStmt(Body.takeAs<Stmt>(), condExpr, DoLoc,
589                                    WhileLoc));
590}
591
592Action::OwningStmtResult
593Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
594                   StmtArg first, ExprArg second, ExprArg third,
595                   SourceLocation RParenLoc, StmtArg body) {
596  Stmt *First  = static_cast<Stmt*>(first.get());
597  Expr *Second = static_cast<Expr*>(second.get());
598  Expr *Third  = static_cast<Expr*>(third.get());
599  Stmt *Body  = static_cast<Stmt*>(body.get());
600
601  if (!getLangOptions().CPlusPlus) {
602    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
603      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
604      // declare identifiers for objects having storage class 'auto' or
605      // 'register'.
606      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
607           DI!=DE; ++DI) {
608        VarDecl *VD = dyn_cast<VarDecl>(*DI);
609        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
610          VD = 0;
611        if (VD == 0)
612          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
613        // FIXME: mark decl erroneous!
614      }
615    }
616  }
617  if (Second && !Second->isTypeDependent()) {
618    DefaultFunctionArrayConversion(Second);
619    QualType SecondType = Second->getType();
620
621    if (getLangOptions().CPlusPlus) {
622      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
623        return StmtError();
624    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
625      return StmtError(Diag(ForLoc,
626                            diag::err_typecheck_statement_requires_scalar)
627        << SecondType << Second->getSourceRange());
628  }
629  first.release();
630  second.release();
631  third.release();
632  body.release();
633  return Owned(new (Context) ForStmt(First, Second, Third, Body, ForLoc,
634                                     LParenLoc, RParenLoc));
635}
636
637Action::OwningStmtResult
638Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
639                                 SourceLocation LParenLoc,
640                                 StmtArg first, ExprArg second,
641                                 SourceLocation RParenLoc, StmtArg body) {
642  Stmt *First  = static_cast<Stmt*>(first.get());
643  Expr *Second = static_cast<Expr*>(second.get());
644  Stmt *Body  = static_cast<Stmt*>(body.get());
645  if (First) {
646    QualType FirstType;
647    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
648      if (!DS->isSingleDecl())
649        return StmtError(Diag((*DS->decl_begin())->getLocation(),
650                         diag::err_toomany_element_decls));
651
652      Decl *D = DS->getSingleDecl();
653      FirstType = cast<ValueDecl>(D)->getType();
654      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
655      // declare identifiers for objects having storage class 'auto' or
656      // 'register'.
657      VarDecl *VD = cast<VarDecl>(D);
658      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
659        return StmtError(Diag(VD->getLocation(),
660                              diag::err_non_variable_decl_in_for));
661    } else {
662      if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
663        return StmtError(Diag(First->getLocStart(),
664                   diag::err_selector_element_not_lvalue)
665          << First->getSourceRange());
666
667      FirstType = static_cast<Expr*>(First)->getType();
668    }
669    if (!Context.isObjCObjectPointerType(FirstType))
670        Diag(ForLoc, diag::err_selector_element_type)
671          << FirstType << First->getSourceRange();
672  }
673  if (Second) {
674    DefaultFunctionArrayConversion(Second);
675    QualType SecondType = Second->getType();
676    if (!Context.isObjCObjectPointerType(SecondType))
677      Diag(ForLoc, diag::err_collection_expr_type)
678        << SecondType << Second->getSourceRange();
679  }
680  first.release();
681  second.release();
682  body.release();
683  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
684                                                   ForLoc, RParenLoc));
685}
686
687Action::OwningStmtResult
688Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
689                    IdentifierInfo *LabelII) {
690  // If we are in a block, reject all gotos for now.
691  if (CurBlock)
692    return StmtError(Diag(GotoLoc, diag::err_goto_in_block));
693
694  // Look up the record for this label identifier.
695  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
696
697  // If we haven't seen this label yet, create a forward reference.
698  if (LabelDecl == 0)
699    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
700
701  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
702}
703
704Action::OwningStmtResult
705Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
706                            ExprArg DestExp) {
707  // Convert operand to void*
708  Expr* E = DestExp.takeAs<Expr>();
709  QualType ETy = E->getType();
710  AssignConvertType ConvTy =
711        CheckSingleAssignmentConstraints(Context.VoidPtrTy, E);
712  if (DiagnoseAssignmentResult(ConvTy, StarLoc, Context.VoidPtrTy, ETy,
713                               E, "passing"))
714    return StmtError();
715  return Owned(new (Context) IndirectGotoStmt(GotoLoc, E));
716}
717
718Action::OwningStmtResult
719Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
720  Scope *S = CurScope->getContinueParent();
721  if (!S) {
722    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
723    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
724  }
725
726  return Owned(new (Context) ContinueStmt(ContinueLoc));
727}
728
729Action::OwningStmtResult
730Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
731  Scope *S = CurScope->getBreakParent();
732  if (!S) {
733    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
734    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
735  }
736
737  return Owned(new (Context) BreakStmt(BreakLoc));
738}
739
740/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
741///
742Action::OwningStmtResult
743Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
744  // If this is the first return we've seen in the block, infer the type of
745  // the block from it.
746  if (CurBlock->ReturnType == 0) {
747    if (RetValExp) {
748      // Don't call UsualUnaryConversions(), since we don't want to do
749      // integer promotions here.
750      DefaultFunctionArrayConversion(RetValExp);
751      CurBlock->ReturnType = RetValExp->getType().getTypePtr();
752    } else
753      CurBlock->ReturnType = Context.VoidTy.getTypePtr();
754  }
755  QualType FnRetType = QualType(CurBlock->ReturnType, 0);
756
757  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
758    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
759      << getCurFunctionOrMethodDecl()->getDeclName();
760    return StmtError();
761  }
762
763  // Otherwise, verify that this result type matches the previous one.  We are
764  // pickier with blocks than for normal functions because we don't have GCC
765  // compatibility to worry about here.
766  if (CurBlock->ReturnType->isVoidType()) {
767    if (RetValExp) {
768      Diag(ReturnLoc, diag::err_return_block_has_expr);
769      RetValExp->Destroy(Context);
770      RetValExp = 0;
771    }
772    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
773  }
774
775  if (!RetValExp)
776    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
777
778  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
779    // we have a non-void block with an expression, continue checking
780    QualType RetValType = RetValExp->getType();
781
782    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
783    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
784    // function return.
785
786    // In C++ the return statement is handled via a copy initialization.
787    // the C version of which boils down to CheckSingleAssignmentConstraints.
788    // FIXME: Leaks RetValExp.
789    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
790      return StmtError();
791
792    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
793  }
794
795  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
796}
797
798/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
799/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
800static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
801                                 Expr *RetExpr) {
802  QualType ExprType = RetExpr->getType();
803  // - in a return statement in a function with ...
804  // ... a class return type ...
805  if (!RetType->isRecordType())
806    return false;
807  // ... the same cv-unqualified type as the function return type ...
808  if (Ctx.getCanonicalType(RetType).getUnqualifiedType() !=
809      Ctx.getCanonicalType(ExprType).getUnqualifiedType())
810    return false;
811  // ... the expression is the name of a non-volatile automatic object ...
812  // We ignore parentheses here.
813  // FIXME: Is this compliant?
814  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
815  if (!DR)
816    return false;
817  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
818  if (!VD)
819    return false;
820  return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
821    && !VD->getType().isVolatileQualified();
822}
823
824Action::OwningStmtResult
825Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
826  Expr *RetValExp = rex.takeAs<Expr>();
827  if (CurBlock)
828    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
829
830  QualType FnRetType;
831  if (const FunctionDecl *FD = getCurFunctionDecl()) {
832    FnRetType = FD->getResultType();
833    if (FD->hasAttr<NoReturnAttr>()) {
834      Diag(ReturnLoc, diag::err_noreturn_function_has_return_expr)
835        << getCurFunctionOrMethodDecl()->getDeclName();
836      return StmtError();
837    }
838  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
839    FnRetType = MD->getResultType();
840  else // If we don't have a function/method context, bail.
841    return StmtError();
842
843  if (FnRetType->isVoidType()) {
844    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
845      unsigned D = diag::ext_return_has_expr;
846      if (RetValExp->getType()->isVoidType())
847        D = diag::ext_return_has_void_expr;
848
849      // return (some void expression); is legal in C++.
850      if (D != diag::ext_return_has_void_expr ||
851          !getLangOptions().CPlusPlus) {
852        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
853        Diag(ReturnLoc, D)
854          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
855          << RetValExp->getSourceRange();
856      }
857    }
858    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
859  }
860
861  if (!RetValExp && !FnRetType->isDependentType()) {
862    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
863    // C99 6.8.6.4p1 (ext_ since GCC warns)
864    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
865
866    if (FunctionDecl *FD = getCurFunctionDecl())
867      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
868    else
869      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
870    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
871  }
872
873  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
874    // we have a non-void function with an expression, continue checking
875
876    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
877    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
878    // function return.
879
880    // C++0x 12.8p15: When certain criteria are met, an implementation is
881    //   allowed to omit the copy construction of a class object, [...]
882    //   - in a return statement in a function with a class return type, when
883    //     the expression is the name of a non-volatile automatic object with
884    //     the same cv-unqualified type as the function return type, the copy
885    //     operation can be omitted [...]
886    // C++0x 12.8p16: When the criteria for elision of a copy operation are met
887    //   and the object to be copied is designated by an lvalue, overload
888    //   resolution to select the constructor for the copy is first performed
889    //   as if the object were designated by an rvalue.
890    // Note that we only compute Elidable if we're in C++0x, since we don't
891    // care otherwise.
892    bool Elidable = getLangOptions().CPlusPlus0x ?
893                      IsReturnCopyElidable(Context, FnRetType, RetValExp) :
894                      false;
895
896    // In C++ the return statement is handled via a copy initialization.
897    // the C version of which boils down to CheckSingleAssignmentConstraints.
898    // FIXME: Leaks RetValExp on error.
899    if (PerformCopyInitialization(RetValExp, FnRetType, "returning", Elidable))
900      return StmtError();
901
902    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
903  }
904
905  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
906}
907
908/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
909/// ignore "noop" casts in places where an lvalue is required by an inline asm.
910/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
911/// provide a strong guidance to not use it.
912///
913/// This method checks to see if the argument is an acceptable l-value and
914/// returns false if it is a case we can handle.
915static bool CheckAsmLValue(const Expr *E, Sema &S) {
916  if (E->isLvalue(S.Context) == Expr::LV_Valid)
917    return false;  // Cool, this is an lvalue.
918
919  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
920  // are supposed to allow.
921  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
922  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
923    if (!S.getLangOptions().HeinousExtensions)
924      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
925        << E->getSourceRange();
926    else
927      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
928        << E->getSourceRange();
929    // Accept, even if we emitted an error diagnostic.
930    return false;
931  }
932
933  // None of the above, just randomly invalid non-lvalue.
934  return true;
935}
936
937
938Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
939                                          bool IsSimple,
940                                          bool IsVolatile,
941                                          unsigned NumOutputs,
942                                          unsigned NumInputs,
943                                          std::string *Names,
944                                          MultiExprArg constraints,
945                                          MultiExprArg exprs,
946                                          ExprArg asmString,
947                                          MultiExprArg clobbers,
948                                          SourceLocation RParenLoc) {
949  unsigned NumClobbers = clobbers.size();
950  StringLiteral **Constraints =
951    reinterpret_cast<StringLiteral**>(constraints.get());
952  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
953  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
954  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
955
956  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
957
958  // The parser verifies that there is a string literal here.
959  if (AsmString->isWide())
960    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
961      << AsmString->getSourceRange());
962
963  for (unsigned i = 0; i != NumOutputs; i++) {
964    StringLiteral *Literal = Constraints[i];
965    if (Literal->isWide())
966      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
967        << Literal->getSourceRange());
968
969    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
970                                    Literal->getByteLength(),
971                                    Names[i]);
972    if (!Context.Target.validateOutputConstraint(Info))
973      return StmtError(Diag(Literal->getLocStart(),
974                            diag::err_asm_invalid_output_constraint)
975                       << Info.getConstraintStr());
976
977    // Check that the output exprs are valid lvalues.
978    Expr *OutputExpr = Exprs[i];
979    if (CheckAsmLValue(OutputExpr, *this)) {
980      return StmtError(Diag(OutputExpr->getLocStart(),
981                  diag::err_asm_invalid_lvalue_in_output)
982        << OutputExpr->getSourceRange());
983    }
984
985    OutputConstraintInfos.push_back(Info);
986  }
987
988  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
989
990  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
991    StringLiteral *Literal = Constraints[i];
992    if (Literal->isWide())
993      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
994        << Literal->getSourceRange());
995
996    TargetInfo::ConstraintInfo Info(Literal->getStrData(),
997                                    Literal->getByteLength(),
998                                    Names[i]);
999    if (!Context.Target.validateInputConstraint(&OutputConstraintInfos[0],
1000                                                NumOutputs, Info)) {
1001      return StmtError(Diag(Literal->getLocStart(),
1002                            diag::err_asm_invalid_input_constraint)
1003                       << Info.getConstraintStr());
1004    }
1005
1006    Expr *InputExpr = Exprs[i];
1007
1008    // Only allow void types for memory constraints.
1009    if (Info.allowsMemory() && !Info.allowsRegister()) {
1010      if (CheckAsmLValue(InputExpr, *this))
1011        return StmtError(Diag(InputExpr->getLocStart(),
1012                              diag::err_asm_invalid_lvalue_in_input)
1013                         << Info.getConstraintStr()
1014                         << InputExpr->getSourceRange());
1015    }
1016
1017    if (Info.allowsRegister()) {
1018      if (InputExpr->getType()->isVoidType()) {
1019        return StmtError(Diag(InputExpr->getLocStart(),
1020                              diag::err_asm_invalid_type_in_input)
1021          << InputExpr->getType() << Info.getConstraintStr()
1022          << InputExpr->getSourceRange());
1023      }
1024    }
1025
1026    DefaultFunctionArrayConversion(Exprs[i]);
1027
1028    InputConstraintInfos.push_back(Info);
1029  }
1030
1031  // Check that the clobbers are valid.
1032  for (unsigned i = 0; i != NumClobbers; i++) {
1033    StringLiteral *Literal = Clobbers[i];
1034    if (Literal->isWide())
1035      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1036        << Literal->getSourceRange());
1037
1038    llvm::SmallString<16> Clobber(Literal->getStrData(),
1039                                  Literal->getStrData() +
1040                                  Literal->getByteLength());
1041
1042    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
1043      return StmtError(Diag(Literal->getLocStart(),
1044                  diag::err_asm_unknown_register_name) << Clobber.c_str());
1045  }
1046
1047  constraints.release();
1048  exprs.release();
1049  asmString.release();
1050  clobbers.release();
1051  AsmStmt *NS =
1052    new (Context) AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
1053                          Names, Constraints, Exprs, AsmString, NumClobbers,
1054                          Clobbers, RParenLoc);
1055  // Validate the asm string, ensuring it makes sense given the operands we
1056  // have.
1057  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1058  unsigned DiagOffs;
1059  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1060    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1061           << AsmString->getSourceRange();
1062    DeleteStmt(NS);
1063    return StmtError();
1064  }
1065
1066  // Validate tied input operands for type mismatches.
1067  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1068    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1069
1070    // If this is a tied constraint, verify that the output and input have
1071    // either exactly the same type, or that they are int/ptr operands with the
1072    // same size (int/long, int*/long, are ok etc).
1073    if (!Info.hasTiedOperand()) continue;
1074
1075    unsigned TiedTo = Info.getTiedOperand();
1076    Expr *OutputExpr = Exprs[TiedTo];
1077    Expr *InputExpr = Exprs[i+NumOutputs];
1078    QualType InTy = InputExpr->getType();
1079    QualType OutTy = OutputExpr->getType();
1080    if (Context.hasSameType(InTy, OutTy))
1081      continue;  // All types can be tied to themselves.
1082
1083    // Int/ptr operands have some special cases that we allow.
1084    if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
1085        (InTy->isIntegerType() || InTy->isPointerType())) {
1086
1087      // They are ok if they are the same size.  Tying void* to int is ok if
1088      // they are the same size, for example.  This also allows tying void* to
1089      // int*.
1090      uint64_t OutSize = Context.getTypeSize(OutTy);
1091      uint64_t InSize = Context.getTypeSize(InTy);
1092      if (OutSize == InSize)
1093        continue;
1094
1095      // If the smaller input/output operand is not mentioned in the asm string,
1096      // then we can promote it and the asm string won't notice.  Check this
1097      // case now.
1098      bool SmallerValueMentioned = false;
1099      for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1100        AsmStmt::AsmStringPiece &Piece = Pieces[p];
1101        if (!Piece.isOperand()) continue;
1102
1103        // If this is a reference to the input and if the input was the smaller
1104        // one, then we have to reject this asm.
1105        if (Piece.getOperandNo() == i+NumOutputs) {
1106          if (InSize < OutSize) {
1107            SmallerValueMentioned = true;
1108            break;
1109          }
1110        }
1111
1112        // If this is a reference to the input and if the input was the smaller
1113        // one, then we have to reject this asm.
1114        if (Piece.getOperandNo() == TiedTo) {
1115          if (InSize > OutSize) {
1116            SmallerValueMentioned = true;
1117            break;
1118          }
1119        }
1120      }
1121
1122      // If the smaller value wasn't mentioned in the asm string, and if the
1123      // output was a register, just extend the shorter one to the size of the
1124      // larger one.
1125      if (!SmallerValueMentioned &&
1126          OutputConstraintInfos[TiedTo].allowsRegister())
1127        continue;
1128    }
1129
1130    Diag(InputExpr->getLocStart(),
1131         diag::err_asm_tying_incompatible_types)
1132      << InTy << OutTy << OutputExpr->getSourceRange()
1133      << InputExpr->getSourceRange();
1134    DeleteStmt(NS);
1135    return StmtError();
1136  }
1137
1138  return Owned(NS);
1139}
1140
1141Action::OwningStmtResult
1142Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1143                           SourceLocation RParen, DeclPtrTy Parm,
1144                           StmtArg Body, StmtArg catchList) {
1145  Stmt *CatchList = catchList.takeAs<Stmt>();
1146  ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
1147
1148  // PVD == 0 implies @catch(...).
1149  if (PVD) {
1150    // If we already know the decl is invalid, reject it.
1151    if (PVD->isInvalidDecl())
1152      return StmtError();
1153
1154    if (!Context.isObjCObjectPointerType(PVD->getType()))
1155      return StmtError(Diag(PVD->getLocation(),
1156                       diag::err_catch_param_not_objc_type));
1157    if (PVD->getType()->isObjCQualifiedIdType())
1158      return StmtError(Diag(PVD->getLocation(),
1159                       diag::err_illegal_qualifiers_on_catch_parm));
1160  }
1161
1162  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
1163    PVD, Body.takeAs<Stmt>(), CatchList);
1164  return Owned(CatchList ? CatchList : CS);
1165}
1166
1167Action::OwningStmtResult
1168Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1169  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1170                                           static_cast<Stmt*>(Body.release())));
1171}
1172
1173Action::OwningStmtResult
1174Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
1175                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
1176  CurFunctionNeedsScopeChecking = true;
1177  return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
1178                                           Catch.takeAs<Stmt>(),
1179                                           Finally.takeAs<Stmt>()));
1180}
1181
1182Action::OwningStmtResult
1183Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
1184  Expr *ThrowExpr = expr.takeAs<Expr>();
1185  if (!ThrowExpr) {
1186    // @throw without an expression designates a rethrow (which much occur
1187    // in the context of an @catch clause).
1188    Scope *AtCatchParent = CurScope;
1189    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1190      AtCatchParent = AtCatchParent->getParent();
1191    if (!AtCatchParent)
1192      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1193  } else {
1194    QualType ThrowType = ThrowExpr->getType();
1195    // Make sure the expression type is an ObjC pointer or "void *".
1196    if (!Context.isObjCObjectPointerType(ThrowType)) {
1197      const PointerType *PT = ThrowType->getAsPointerType();
1198      if (!PT || !PT->getPointeeType()->isVoidType())
1199        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1200                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
1201    }
1202  }
1203  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
1204}
1205
1206Action::OwningStmtResult
1207Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1208                                  StmtArg SynchBody) {
1209  CurFunctionNeedsScopeChecking = true;
1210
1211  // Make sure the expression type is an ObjC pointer or "void *".
1212  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1213  if (!Context.isObjCObjectPointerType(SyncExpr->getType())) {
1214    const PointerType *PT = SyncExpr->getType()->getAsPointerType();
1215    if (!PT || !PT->getPointeeType()->isVoidType())
1216      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1217                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1218  }
1219
1220  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1221                                                    SynchExpr.takeAs<Stmt>(),
1222                                                    SynchBody.takeAs<Stmt>()));
1223}
1224
1225/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1226/// and creates a proper catch handler from them.
1227Action::OwningStmtResult
1228Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1229                         StmtArg HandlerBlock) {
1230  // There's nothing to test that ActOnExceptionDecl didn't already test.
1231  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1232                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1233                                          HandlerBlock.takeAs<Stmt>()));
1234}
1235
1236/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1237/// handlers and creates a try statement from them.
1238Action::OwningStmtResult
1239Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1240                       MultiStmtArg RawHandlers) {
1241  unsigned NumHandlers = RawHandlers.size();
1242  assert(NumHandlers > 0 &&
1243         "The parser shouldn't call this if there are no handlers.");
1244  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1245
1246  for(unsigned i = 0; i < NumHandlers - 1; ++i) {
1247    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1248    if (!Handler->getExceptionDecl())
1249      return StmtError(Diag(Handler->getLocStart(), diag::err_early_catch_all));
1250  }
1251  // FIXME: We should detect handlers for the same type as an earlier one.
1252  // This one is rather easy.
1253  // FIXME: We should detect handlers that cannot catch anything because an
1254  // earlier handler catches a superclass. Need to find a method that is not
1255  // quadratic for this.
1256  // Neither of these are explicitly forbidden, but every compiler detects them
1257  // and warns.
1258
1259  CurFunctionNeedsScopeChecking = true;
1260  RawHandlers.release();
1261  return Owned(new (Context) CXXTryStmt(TryLoc,
1262                                        static_cast<Stmt*>(TryBlock.release()),
1263                                        Handlers, NumHandlers));
1264}
1265