SemaStmt.cpp revision e6ea27995fb15add0de47588b4226049fa0753e5
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/Basic/Diagnostic.h"
21using namespace clang;
22
23Sema::OwningStmtResult Sema::ActOnExprStmt(ExprArg expr) {
24  Expr *E = static_cast<Expr*>(expr.release());
25  assert(E && "ActOnExprStmt(): missing expression");
26
27  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
28  // void expression for its side effects.  Conversion to void allows any
29  // operand, even incomplete types.
30
31  // Same thing in for stmt first clause (when expr) and third clause.
32  return Owned(static_cast<Stmt*>(E));
33}
34
35
36Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
37  return Owned(new NullStmt(SemiLoc));
38}
39
40Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclTy *decl,
41                                           SourceLocation StartLoc,
42                                           SourceLocation EndLoc) {
43  if (decl == 0)
44    return StmtError();
45
46  Decl *D = static_cast<Decl *>(decl);
47
48  // This is a temporary hack until we are always passing around
49  // DeclGroupRefs.
50  llvm::SmallVector<Decl*, 10> decls;
51  while (D) {
52    Decl* d = D;
53    D = D->getNextDeclarator();
54    d->setNextDeclarator(0);
55    decls.push_back(d);
56  }
57
58  assert (!decls.empty());
59
60  if (decls.size() == 1) {
61    DeclGroupOwningRef DG(*decls.begin());
62    return Owned(new DeclStmt(DG, StartLoc, EndLoc));
63  }
64  else {
65    DeclGroupOwningRef DG(DeclGroup::Create(Context, decls.size(), &decls[0]));
66    return Owned(new DeclStmt(DG, StartLoc, EndLoc));
67  }
68}
69
70Action::OwningStmtResult
71Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
72                        MultiStmtArg elts, bool isStmtExpr) {
73  unsigned NumElts = elts.size();
74  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
75  // If we're in C89 mode, check that we don't have any decls after stmts.  If
76  // so, emit an extension diagnostic.
77  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
78    // Note that __extension__ can be around a decl.
79    unsigned i = 0;
80    // Skip over all declarations.
81    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
82      /*empty*/;
83
84    // We found the end of the list or a statement.  Scan for another declstmt.
85    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
86      /*empty*/;
87
88    if (i != NumElts) {
89      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
90      Diag(D->getLocation(), diag::ext_mixed_decls_code);
91    }
92  }
93  // Warn about unused expressions in statements.
94  for (unsigned i = 0; i != NumElts; ++i) {
95    Expr *E = dyn_cast<Expr>(Elts[i]);
96    if (!E) continue;
97
98    // Warn about expressions with unused results.
99    if (E->hasLocalSideEffect() || E->getType()->isVoidType())
100      continue;
101
102    // The last expr in a stmt expr really is used.
103    if (isStmtExpr && i == NumElts-1)
104      continue;
105
106    /// DiagnoseDeadExpr - This expression is side-effect free and evaluated in
107    /// a context where the result is unused.  Emit a diagnostic to warn about
108    /// this.
109    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
110      Diag(BO->getOperatorLoc(), diag::warn_unused_expr)
111        << BO->getLHS()->getSourceRange() << BO->getRHS()->getSourceRange();
112    else if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
113      Diag(UO->getOperatorLoc(), diag::warn_unused_expr)
114        << UO->getSubExpr()->getSourceRange();
115    else
116      Diag(E->getExprLoc(), diag::warn_unused_expr) << E->getSourceRange();
117  }
118
119  return Owned(new CompoundStmt(Elts, NumElts, L, R));
120}
121
122Action::OwningStmtResult
123Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
124                    SourceLocation DotDotDotLoc, ExprArg rhsval,
125                    SourceLocation ColonLoc, StmtArg subStmt) {
126  Stmt *SubStmt = static_cast<Stmt*>(subStmt.release());
127  assert((lhsval.get() != 0) && "missing expression in case statement");
128
129  // C99 6.8.4.2p3: The expression shall be an integer constant.
130  // However, GCC allows any evaluatable integer expression.
131
132  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
133  if (VerifyIntegerConstantExpression(LHSVal))
134    return Owned(SubStmt);
135
136  // GCC extension: The expression shall be an integer constant.
137
138  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
139  if (RHSVal && VerifyIntegerConstantExpression(RHSVal)) {
140    RHSVal = 0;  // Recover by just forgetting about it.
141    rhsval = 0;
142  }
143
144  if (SwitchStack.empty()) {
145    Diag(CaseLoc, diag::err_case_not_in_switch);
146    return Owned(SubStmt);
147  }
148
149  // Only now release the smart pointers.
150  lhsval.release();
151  rhsval.release();
152  CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc);
153  SwitchStack.back()->addSwitchCase(CS);
154  return Owned(CS);
155}
156
157Action::OwningStmtResult
158Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
159                       StmtArg subStmt, Scope *CurScope) {
160  Stmt *SubStmt = static_cast<Stmt*>(subStmt.release());
161
162  if (SwitchStack.empty()) {
163    Diag(DefaultLoc, diag::err_default_not_in_switch);
164    return Owned(SubStmt);
165  }
166
167  DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt);
168  SwitchStack.back()->addSwitchCase(DS);
169  return Owned(DS);
170}
171
172Action::OwningStmtResult
173Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
174                     SourceLocation ColonLoc, StmtArg subStmt) {
175  Stmt *SubStmt = static_cast<Stmt*>(subStmt.release());
176  // Look up the record for this label identifier.
177  LabelStmt *&LabelDecl = LabelMap[II];
178
179  // If not forward referenced or defined already, just create a new LabelStmt.
180  if (LabelDecl == 0)
181    return Owned(LabelDecl = new LabelStmt(IdentLoc, II, SubStmt));
182
183  assert(LabelDecl->getID() == II && "Label mismatch!");
184
185  // Otherwise, this label was either forward reference or multiply defined.  If
186  // multiply defined, reject it now.
187  if (LabelDecl->getSubStmt()) {
188    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
189    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
190    return Owned(SubStmt);
191  }
192
193  // Otherwise, this label was forward declared, and we just found its real
194  // definition.  Fill in the forward definition and return it.
195  LabelDecl->setIdentLoc(IdentLoc);
196  LabelDecl->setSubStmt(SubStmt);
197  return Owned(LabelDecl);
198}
199
200Action::OwningStmtResult
201Sema::ActOnIfStmt(SourceLocation IfLoc, ExprArg CondVal,
202                  StmtArg ThenVal, SourceLocation ElseLoc,
203                  StmtArg ElseVal) {
204  Expr *condExpr = (Expr *)CondVal.release();
205
206  assert(condExpr && "ActOnIfStmt(): missing expression");
207
208  DefaultFunctionArrayConversion(condExpr);
209  // Take ownership again until we're past the error checking.
210  CondVal = condExpr;
211  QualType condType = condExpr->getType();
212
213  if (getLangOptions().CPlusPlus) {
214    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
215      return StmtError();
216  } else if (!condType->isScalarType()) // C99 6.8.4.1p1
217    return StmtError(Diag(IfLoc, diag::err_typecheck_statement_requires_scalar)
218      << condType << condExpr->getSourceRange());
219
220  Stmt *thenStmt = (Stmt *)ThenVal.release();
221
222  // Warn if the if block has a null body without an else value.
223  // this helps prevent bugs due to typos, such as
224  // if (condition);
225  //   do_stuff();
226  if (!ElseVal.get()) {
227    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
228      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
229  }
230
231  CondVal.release();
232  return Owned(new IfStmt(IfLoc, condExpr, thenStmt, (Stmt*)ElseVal.release()));
233}
234
235Action::OwningStmtResult
236Sema::ActOnStartOfSwitchStmt(ExprArg cond) {
237  Expr *Cond = static_cast<Expr*>(cond.release());
238
239  if (getLangOptions().CPlusPlus) {
240    // C++ 6.4.2.p2:
241    // The condition shall be of integral type, enumeration type, or of a class
242    // type for which a single conversion function to integral or enumeration
243    // type exists (12.3). If the condition is of class type, the condition is
244    // converted by calling that conversion function, and the result of the
245    // conversion is used in place of the original condition for the remainder
246    // of this section. Integral promotions are performed.
247
248    QualType Ty = Cond->getType();
249
250    // FIXME: Handle class types.
251
252    // If the type is wrong a diagnostic will be emitted later at
253    // ActOnFinishSwitchStmt.
254    if (Ty->isIntegralType() || Ty->isEnumeralType()) {
255      // Integral promotions are performed.
256      // FIXME: Integral promotions for C++ are not complete.
257      UsualUnaryConversions(Cond);
258    }
259  } else {
260    // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
261    UsualUnaryConversions(Cond);
262  }
263
264  SwitchStmt *SS = new SwitchStmt(Cond);
265  SwitchStack.push_back(SS);
266  return Owned(SS);
267}
268
269/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
270/// the specified width and sign.  If an overflow occurs, detect it and emit
271/// the specified diagnostic.
272void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
273                                              unsigned NewWidth, bool NewSign,
274                                              SourceLocation Loc,
275                                              unsigned DiagID) {
276  // Perform a conversion to the promoted condition type if needed.
277  if (NewWidth > Val.getBitWidth()) {
278    // If this is an extension, just do it.
279    llvm::APSInt OldVal(Val);
280    Val.extend(NewWidth);
281
282    // If the input was signed and negative and the output is unsigned,
283    // warn.
284    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
285      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
286
287    Val.setIsSigned(NewSign);
288  } else if (NewWidth < Val.getBitWidth()) {
289    // If this is a truncation, check for overflow.
290    llvm::APSInt ConvVal(Val);
291    ConvVal.trunc(NewWidth);
292    ConvVal.setIsSigned(NewSign);
293    ConvVal.extend(Val.getBitWidth());
294    ConvVal.setIsSigned(Val.isSigned());
295    if (ConvVal != Val)
296      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
297
298    // Regardless of whether a diagnostic was emitted, really do the
299    // truncation.
300    Val.trunc(NewWidth);
301    Val.setIsSigned(NewSign);
302  } else if (NewSign != Val.isSigned()) {
303    // Convert the sign to match the sign of the condition.  This can cause
304    // overflow as well: unsigned(INTMIN)
305    llvm::APSInt OldVal(Val);
306    Val.setIsSigned(NewSign);
307
308    if (Val.isNegative())  // Sign bit changes meaning.
309      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
310  }
311}
312
313namespace {
314  struct CaseCompareFunctor {
315    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
316                    const llvm::APSInt &RHS) {
317      return LHS.first < RHS;
318    }
319    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
320                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
321      return LHS.first < RHS.first;
322    }
323    bool operator()(const llvm::APSInt &LHS,
324                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
325      return LHS < RHS.first;
326    }
327  };
328}
329
330/// CmpCaseVals - Comparison predicate for sorting case values.
331///
332static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
333                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
334  if (lhs.first < rhs.first)
335    return true;
336
337  if (lhs.first == rhs.first &&
338      lhs.second->getCaseLoc().getRawEncoding()
339       < rhs.second->getCaseLoc().getRawEncoding())
340    return true;
341  return false;
342}
343
344Action::OwningStmtResult
345Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
346                            StmtArg Body) {
347  Stmt *BodyStmt = (Stmt*)Body.release();
348
349  SwitchStmt *SS = SwitchStack.back();
350  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
351
352  SS->setBody(BodyStmt, SwitchLoc);
353  SwitchStack.pop_back();
354
355  Expr *CondExpr = SS->getCond();
356  QualType CondType = CondExpr->getType();
357
358  if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
359    Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
360      << CondType << CondExpr->getSourceRange();
361    return StmtError();
362  }
363
364  // Get the bitwidth of the switched-on value before promotions.  We must
365  // convert the integer case values to this width before comparison.
366  unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType));
367  bool CondIsSigned = CondType->isSignedIntegerType();
368
369  // Accumulate all of the case values in a vector so that we can sort them
370  // and detect duplicates.  This vector contains the APInt for the case after
371  // it has been converted to the condition type.
372  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
373  CaseValsTy CaseVals;
374
375  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
376  std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
377
378  DefaultStmt *TheDefaultStmt = 0;
379
380  bool CaseListIsErroneous = false;
381
382  for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
383       SC = SC->getNextSwitchCase()) {
384
385    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
386      if (TheDefaultStmt) {
387        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
388        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
389
390        // FIXME: Remove the default statement from the switch block so that
391        // we'll return a valid AST.  This requires recursing down the
392        // AST and finding it, not something we are set up to do right now.  For
393        // now, just lop the entire switch stmt out of the AST.
394        CaseListIsErroneous = true;
395      }
396      TheDefaultStmt = DS;
397
398    } else {
399      CaseStmt *CS = cast<CaseStmt>(SC);
400
401      // We already verified that the expression has a i-c-e value (C99
402      // 6.8.4.2p3) - get that value now.
403      Expr *Lo = CS->getLHS();
404      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
405
406      // Convert the value to the same width/sign as the condition.
407      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
408                                         CS->getLHS()->getLocStart(),
409                                         diag::warn_case_value_overflow);
410
411      // If the LHS is not the same type as the condition, insert an implicit
412      // cast.
413      ImpCastExprToType(Lo, CondType);
414      CS->setLHS(Lo);
415
416      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
417      if (CS->getRHS())
418        CaseRanges.push_back(std::make_pair(LoVal, CS));
419      else
420        CaseVals.push_back(std::make_pair(LoVal, CS));
421    }
422  }
423
424  // Sort all the scalar case values so we can easily detect duplicates.
425  std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
426
427  if (!CaseVals.empty()) {
428    for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
429      if (CaseVals[i].first == CaseVals[i+1].first) {
430        // If we have a duplicate, report it.
431        Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
432             diag::err_duplicate_case) << CaseVals[i].first.toString(10);
433        Diag(CaseVals[i].second->getLHS()->getLocStart(),
434             diag::note_duplicate_case_prev);
435        // FIXME: We really want to remove the bogus case stmt from the substmt,
436        // but we have no way to do this right now.
437        CaseListIsErroneous = true;
438      }
439    }
440  }
441
442  // Detect duplicate case ranges, which usually don't exist at all in the first
443  // place.
444  if (!CaseRanges.empty()) {
445    // Sort all the case ranges by their low value so we can easily detect
446    // overlaps between ranges.
447    std::stable_sort(CaseRanges.begin(), CaseRanges.end());
448
449    // Scan the ranges, computing the high values and removing empty ranges.
450    std::vector<llvm::APSInt> HiVals;
451    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
452      CaseStmt *CR = CaseRanges[i].second;
453      Expr *Hi = CR->getRHS();
454      llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
455
456      // Convert the value to the same width/sign as the condition.
457      ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
458                                         CR->getRHS()->getLocStart(),
459                                         diag::warn_case_value_overflow);
460
461      // If the LHS is not the same type as the condition, insert an implicit
462      // cast.
463      ImpCastExprToType(Hi, CondType);
464      CR->setRHS(Hi);
465
466      // If the low value is bigger than the high value, the case is empty.
467      if (CaseRanges[i].first > HiVal) {
468        Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
469          << SourceRange(CR->getLHS()->getLocStart(),
470                         CR->getRHS()->getLocEnd());
471        CaseRanges.erase(CaseRanges.begin()+i);
472        --i, --e;
473        continue;
474      }
475      HiVals.push_back(HiVal);
476    }
477
478    // Rescan the ranges, looking for overlap with singleton values and other
479    // ranges.  Since the range list is sorted, we only need to compare case
480    // ranges with their neighbors.
481    for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
482      llvm::APSInt &CRLo = CaseRanges[i].first;
483      llvm::APSInt &CRHi = HiVals[i];
484      CaseStmt *CR = CaseRanges[i].second;
485
486      // Check to see whether the case range overlaps with any singleton cases.
487      CaseStmt *OverlapStmt = 0;
488      llvm::APSInt OverlapVal(32);
489
490      // Find the smallest value >= the lower bound.  If I is in the case range,
491      // then we have overlap.
492      CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
493                                                CaseVals.end(), CRLo,
494                                                CaseCompareFunctor());
495      if (I != CaseVals.end() && I->first < CRHi) {
496        OverlapVal  = I->first;   // Found overlap with scalar.
497        OverlapStmt = I->second;
498      }
499
500      // Find the smallest value bigger than the upper bound.
501      I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
502      if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
503        OverlapVal  = (I-1)->first;      // Found overlap with scalar.
504        OverlapStmt = (I-1)->second;
505      }
506
507      // Check to see if this case stmt overlaps with the subsequent case range.
508      if (i && CRLo <= HiVals[i-1]) {
509        OverlapVal  = HiVals[i-1];       // Found overlap with range.
510        OverlapStmt = CaseRanges[i-1].second;
511      }
512
513      if (OverlapStmt) {
514        // If we have a duplicate, report it.
515        Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
516          << OverlapVal.toString(10);
517        Diag(OverlapStmt->getLHS()->getLocStart(),
518             diag::note_duplicate_case_prev);
519        // FIXME: We really want to remove the bogus case stmt from the substmt,
520        // but we have no way to do this right now.
521        CaseListIsErroneous = true;
522      }
523    }
524  }
525
526  // FIXME: If the case list was broken is some way, we don't have a good system
527  // to patch it up.  Instead, just return the whole substmt as broken.
528  if (CaseListIsErroneous)
529    return StmtError();
530
531  Switch.release();
532  return Owned(SS);
533}
534
535Action::OwningStmtResult
536Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprArg Cond, StmtArg Body) {
537  Expr *condExpr = (Expr *)Cond.release();
538  assert(condExpr && "ActOnWhileStmt(): missing expression");
539
540  DefaultFunctionArrayConversion(condExpr);
541  Cond = condExpr;
542  QualType condType = condExpr->getType();
543
544  if (getLangOptions().CPlusPlus) {
545    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
546      return StmtError();
547  } else if (!condType->isScalarType()) // C99 6.8.5p2
548    return StmtError(Diag(WhileLoc,
549      diag::err_typecheck_statement_requires_scalar)
550      << condType << condExpr->getSourceRange());
551
552  Cond.release();
553  return Owned(new WhileStmt(condExpr, (Stmt*)Body.release(), WhileLoc));
554}
555
556Action::OwningStmtResult
557Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
558                  SourceLocation WhileLoc, ExprArg Cond) {
559  Expr *condExpr = (Expr *)Cond.release();
560  assert(condExpr && "ActOnDoStmt(): missing expression");
561
562  DefaultFunctionArrayConversion(condExpr);
563  Cond = condExpr;
564  QualType condType = condExpr->getType();
565
566  if (getLangOptions().CPlusPlus) {
567    if (CheckCXXBooleanCondition(condExpr)) // C++ 6.4p4
568      return StmtError();
569  } else if (!condType->isScalarType()) // C99 6.8.5p2
570    return StmtError(Diag(DoLoc, diag::err_typecheck_statement_requires_scalar)
571      << condType << condExpr->getSourceRange());
572
573  Cond.release();
574  return Owned(new DoStmt((Stmt*)Body.release(), condExpr, DoLoc));
575}
576
577Action::OwningStmtResult
578Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
579                   StmtArg first, ExprArg second, ExprArg third,
580                   SourceLocation RParenLoc, StmtArg body) {
581  Stmt *First  = static_cast<Stmt*>(first.get());
582  Expr *Second = static_cast<Expr*>(second.get());
583  Expr *Third  = static_cast<Expr*>(third.get());
584  Stmt *Body  = static_cast<Stmt*>(body.get());
585
586  if (!getLangOptions().CPlusPlus) {
587    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
588      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
589      // declare identifiers for objects having storage class 'auto' or
590      // 'register'.
591      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
592           DI!=DE; ++DI) {
593        VarDecl *VD = dyn_cast<VarDecl>(*DI);
594        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
595          VD = 0;
596        if (VD == 0)
597          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
598        // FIXME: mark decl erroneous!
599      }
600    }
601  }
602  if (Second) {
603    DefaultFunctionArrayConversion(Second);
604    QualType SecondType = Second->getType();
605
606    if (getLangOptions().CPlusPlus) {
607      if (CheckCXXBooleanCondition(Second)) // C++ 6.4p4
608        return StmtError();
609    } else if (!SecondType->isScalarType()) // C99 6.8.5p2
610      return StmtError(Diag(ForLoc,
611                            diag::err_typecheck_statement_requires_scalar)
612        << SecondType << Second->getSourceRange());
613  }
614  first.release();
615  second.release();
616  third.release();
617  body.release();
618  return Owned(new ForStmt(First, Second, Third, Body, ForLoc));
619}
620
621Action::OwningStmtResult
622Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
623                                 SourceLocation LParenLoc,
624                                 StmtArg first, ExprArg second,
625                                 SourceLocation RParenLoc, StmtArg body) {
626  Stmt *First  = static_cast<Stmt*>(first.get());
627  Expr *Second = static_cast<Expr*>(second.get());
628  Stmt *Body  = static_cast<Stmt*>(body.get());
629  if (First) {
630    QualType FirstType;
631    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
632      if (!DS->hasSolitaryDecl())
633        return StmtError(Diag((*DS->decl_begin())->getLocation(),
634                         diag::err_toomany_element_decls));
635
636      Decl *D = DS->getSolitaryDecl();
637      FirstType = cast<ValueDecl>(D)->getType();
638      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
639      // declare identifiers for objects having storage class 'auto' or
640      // 'register'.
641      VarDecl *VD = cast<VarDecl>(D);
642      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
643        return StmtError(Diag(VD->getLocation(),
644                              diag::err_non_variable_decl_in_for));
645    } else {
646      Expr::isLvalueResult lval = cast<Expr>(First)->isLvalue(Context);
647
648      if (lval != Expr::LV_Valid)
649        return StmtError(Diag(First->getLocStart(),
650                   diag::err_selector_element_not_lvalue)
651          << First->getSourceRange());
652
653      FirstType = static_cast<Expr*>(First)->getType();
654    }
655    if (!Context.isObjCObjectPointerType(FirstType))
656        Diag(ForLoc, diag::err_selector_element_type)
657          << FirstType << First->getSourceRange();
658  }
659  if (Second) {
660    DefaultFunctionArrayConversion(Second);
661    QualType SecondType = Second->getType();
662    if (!Context.isObjCObjectPointerType(SecondType))
663      Diag(ForLoc, diag::err_collection_expr_type)
664        << SecondType << Second->getSourceRange();
665  }
666  first.release();
667  second.release();
668  body.release();
669  return Owned(new ObjCForCollectionStmt(First, Second, Body,
670                                         ForLoc, RParenLoc));
671}
672
673Action::OwningStmtResult
674Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
675                    IdentifierInfo *LabelII) {
676  // If we are in a block, reject all gotos for now.
677  if (CurBlock)
678    return StmtError(Diag(GotoLoc, diag::err_goto_in_block));
679
680  // Look up the record for this label identifier.
681  LabelStmt *&LabelDecl = LabelMap[LabelII];
682
683  // If we haven't seen this label yet, create a forward reference.
684  if (LabelDecl == 0)
685    LabelDecl = new LabelStmt(LabelLoc, LabelII, 0);
686
687  return Owned(new GotoStmt(LabelDecl, GotoLoc, LabelLoc));
688}
689
690Action::OwningStmtResult
691Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,
692                            ExprArg DestExp) {
693  // FIXME: Verify that the operand is convertible to void*.
694
695  return Owned(new IndirectGotoStmt((Expr*)DestExp.release()));
696}
697
698Action::OwningStmtResult
699Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
700  Scope *S = CurScope->getContinueParent();
701  if (!S) {
702    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
703    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
704  }
705
706  return Owned(new ContinueStmt(ContinueLoc));
707}
708
709Action::OwningStmtResult
710Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
711  Scope *S = CurScope->getBreakParent();
712  if (!S) {
713    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
714    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
715  }
716
717  return Owned(new BreakStmt(BreakLoc));
718}
719
720/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
721///
722Action::OwningStmtResult
723Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
724
725  // If this is the first return we've seen in the block, infer the type of
726  // the block from it.
727  if (CurBlock->ReturnType == 0) {
728    if (RetValExp) {
729      // Don't call UsualUnaryConversions(), since we don't want to do
730      // integer promotions here.
731      DefaultFunctionArrayConversion(RetValExp);
732      CurBlock->ReturnType = RetValExp->getType().getTypePtr();
733    } else
734      CurBlock->ReturnType = Context.VoidTy.getTypePtr();
735    return Owned(new ReturnStmt(ReturnLoc, RetValExp));
736  }
737
738  // Otherwise, verify that this result type matches the previous one.  We are
739  // pickier with blocks than for normal functions because we don't have GCC
740  // compatibility to worry about here.
741  if (CurBlock->ReturnType->isVoidType()) {
742    if (RetValExp) {
743      Diag(ReturnLoc, diag::err_return_block_has_expr);
744      delete RetValExp;
745      RetValExp = 0;
746    }
747    return Owned(new ReturnStmt(ReturnLoc, RetValExp));
748  }
749
750  if (!RetValExp)
751    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
752
753  // we have a non-void block with an expression, continue checking
754  QualType RetValType = RetValExp->getType();
755
756  // For now, restrict multiple return statements in a block to have
757  // strict compatible types only.
758  QualType BlockQT = QualType(CurBlock->ReturnType, 0);
759  if (Context.getCanonicalType(BlockQT).getTypePtr()
760      != Context.getCanonicalType(RetValType).getTypePtr()) {
761    // FIXME: non-localizable string in diagnostic
762    DiagnoseAssignmentResult(Incompatible, ReturnLoc, BlockQT,
763                             RetValType, RetValExp, "returning");
764    return StmtError();
765  }
766
767  if (RetValExp) CheckReturnStackAddr(RetValExp, BlockQT, ReturnLoc);
768
769  return Owned(new ReturnStmt(ReturnLoc, RetValExp));
770}
771
772Action::OwningStmtResult
773Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
774  Expr *RetValExp = static_cast<Expr *>(rex.release());
775  if (CurBlock)
776    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
777
778  QualType FnRetType;
779  if (FunctionDecl *FD = getCurFunctionDecl())
780    FnRetType = FD->getResultType();
781  else
782    FnRetType = getCurMethodDecl()->getResultType();
783
784  if (FnRetType->isVoidType()) {
785    if (RetValExp) {// C99 6.8.6.4p1 (ext_ since GCC warns)
786      unsigned D = diag::ext_return_has_expr;
787      if (RetValExp->getType()->isVoidType())
788        D = diag::ext_return_has_void_expr;
789
790      // return (some void expression); is legal in C++.
791      if (D != diag::ext_return_has_void_expr ||
792          !getLangOptions().CPlusPlus) {
793        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
794        Diag(ReturnLoc, D)
795          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
796          << RetValExp->getSourceRange();
797      }
798    }
799    return Owned(new ReturnStmt(ReturnLoc, RetValExp));
800  }
801
802  if (!RetValExp) {
803    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
804    // C99 6.8.6.4p1 (ext_ since GCC warns)
805    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
806
807    if (FunctionDecl *FD = getCurFunctionDecl())
808      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
809    else
810      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
811    return Owned(new ReturnStmt(ReturnLoc, (Expr*)0));
812  }
813
814  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
815    // we have a non-void function with an expression, continue checking
816    QualType RetValType = RetValExp->getType();
817
818    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
819    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
820    // function return.
821
822    // In C++ the return statement is handled via a copy initialization.
823    // the C version of which boils down to CheckSingleAssignmentConstraints.
824    // FIXME: Leaks RetValExp.
825    if (PerformCopyInitialization(RetValExp, FnRetType, "returning"))
826      return StmtError();
827
828    if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
829  }
830
831  return Owned(new ReturnStmt(ReturnLoc, RetValExp));
832}
833
834Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
835                                          bool IsSimple,
836                                          bool IsVolatile,
837                                          unsigned NumOutputs,
838                                          unsigned NumInputs,
839                                          std::string *Names,
840                                          MultiExprArg constraints,
841                                          MultiExprArg exprs,
842                                          ExprArg asmString,
843                                          MultiExprArg clobbers,
844                                          SourceLocation RParenLoc) {
845  unsigned NumClobbers = clobbers.size();
846  StringLiteral **Constraints =
847    reinterpret_cast<StringLiteral**>(constraints.get());
848  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
849  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
850  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
851
852  // The parser verifies that there is a string literal here.
853  if (AsmString->isWide())
854    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
855      << AsmString->getSourceRange());
856
857
858  for (unsigned i = 0; i != NumOutputs; i++) {
859    StringLiteral *Literal = Constraints[i];
860    if (Literal->isWide())
861      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
862        << Literal->getSourceRange());
863
864    std::string OutputConstraint(Literal->getStrData(),
865                                 Literal->getByteLength());
866
867    TargetInfo::ConstraintInfo info;
868    if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),info))
869      return StmtError(Diag(Literal->getLocStart(),
870                  diag::err_asm_invalid_output_constraint) << OutputConstraint);
871
872    // Check that the output exprs are valid lvalues.
873    ParenExpr *OutputExpr = cast<ParenExpr>(Exprs[i]);
874    Expr::isLvalueResult Result = OutputExpr->isLvalue(Context);
875    if (Result != Expr::LV_Valid) {
876      return StmtError(Diag(OutputExpr->getSubExpr()->getLocStart(),
877                  diag::err_asm_invalid_lvalue_in_output)
878        << OutputExpr->getSubExpr()->getSourceRange());
879    }
880  }
881
882  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
883    StringLiteral *Literal = Constraints[i];
884    if (Literal->isWide())
885      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
886        << Literal->getSourceRange());
887
888    std::string InputConstraint(Literal->getStrData(),
889                                Literal->getByteLength());
890
891    TargetInfo::ConstraintInfo info;
892    if (!Context.Target.validateInputConstraint(InputConstraint.c_str(),
893                                                &Names[0],
894                                                &Names[0] + NumOutputs, info)) {
895      return StmtError(Diag(Literal->getLocStart(),
896                  diag::err_asm_invalid_input_constraint) << InputConstraint);
897    }
898
899    ParenExpr *InputExpr = cast<ParenExpr>(Exprs[i]);
900
901    // Only allow void types for memory constraints.
902    if ((info & TargetInfo::CI_AllowsMemory)
903        && !(info & TargetInfo::CI_AllowsRegister)) {
904      if (InputExpr->isLvalue(Context) != Expr::LV_Valid)
905        return StmtError(Diag(InputExpr->getSubExpr()->getLocStart(),
906                              diag::err_asm_invalid_lvalue_in_input)
907          << InputConstraint << InputExpr->getSubExpr()->getSourceRange());
908    }
909
910    if (info & TargetInfo::CI_AllowsRegister) {
911      if (InputExpr->getType()->isVoidType()) {
912        return StmtError(Diag(InputExpr->getSubExpr()->getLocStart(),
913                              diag::err_asm_invalid_type_in_input)
914          << InputExpr->getType() << InputConstraint
915          << InputExpr->getSubExpr()->getSourceRange());
916      }
917
918      DefaultFunctionArrayConversion(Exprs[i]);
919    }
920  }
921
922  // Check that the clobbers are valid.
923  for (unsigned i = 0; i != NumClobbers; i++) {
924    StringLiteral *Literal = Clobbers[i];
925    if (Literal->isWide())
926      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
927        << Literal->getSourceRange());
928
929    llvm::SmallString<16> Clobber(Literal->getStrData(),
930                                  Literal->getStrData() +
931                                  Literal->getByteLength());
932
933    if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
934      return StmtError(Diag(Literal->getLocStart(),
935                  diag::err_asm_unknown_register_name) << Clobber.c_str());
936  }
937
938  constraints.release();
939  exprs.release();
940  asmString.release();
941  clobbers.release();
942  return Owned(new AsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
943                           Names, Constraints, Exprs, AsmString, NumClobbers,
944                           Clobbers, RParenLoc));
945}
946
947Action::OwningStmtResult
948Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
949                           SourceLocation RParen, StmtArg Parm,
950                           StmtArg Body, StmtArg catchList) {
951  Stmt *CatchList = static_cast<Stmt*>(catchList.release());
952  ObjCAtCatchStmt *CS = new ObjCAtCatchStmt(AtLoc, RParen,
953    static_cast<Stmt*>(Parm.release()), static_cast<Stmt*>(Body.release()),
954    CatchList);
955  return Owned(CatchList ? CatchList : CS);
956}
957
958Action::OwningStmtResult
959Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
960  return Owned(new ObjCAtFinallyStmt(AtLoc,
961                                     static_cast<Stmt*>(Body.release())));
962}
963
964Action::OwningStmtResult
965Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
966                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
967  return Owned(new ObjCAtTryStmt(AtLoc, static_cast<Stmt*>(Try.release()),
968                                        static_cast<Stmt*>(Catch.release()),
969                                        static_cast<Stmt*>(Finally.release())));
970}
971
972Action::OwningStmtResult
973Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg Throw) {
974  return Owned(new ObjCAtThrowStmt(AtLoc, static_cast<Expr*>(Throw.release())));
975}
976
977Action::OwningStmtResult
978Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
979                                  StmtArg SynchBody) {
980  return Owned(new ObjCAtSynchronizedStmt(AtLoc,
981                     static_cast<Stmt*>(SynchExpr.release()),
982                     static_cast<Stmt*>(SynchBody.release())));
983}
984
985/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
986/// and creates a proper catch handler from them.
987Action::OwningStmtResult
988Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclTy *ExDecl,
989                         StmtArg HandlerBlock) {
990  // There's nothing to test that ActOnExceptionDecl didn't already test.
991  return Owned(new CXXCatchStmt(CatchLoc, static_cast<VarDecl*>(ExDecl),
992                                static_cast<Stmt*>(HandlerBlock.release())));
993}
994
995/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
996/// handlers and creates a try statement from them.
997Action::OwningStmtResult
998Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
999                       MultiStmtArg RawHandlers) {
1000  unsigned NumHandlers = RawHandlers.size();
1001  assert(NumHandlers > 0 &&
1002         "The parser shouldn't call this if there are no handlers.");
1003  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1004
1005  for(unsigned i = 0; i < NumHandlers - 1; ++i) {
1006    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1007    if (!Handler->getExceptionDecl())
1008      return StmtError(Diag(Handler->getLocStart(), diag::err_early_catch_all));
1009  }
1010  // FIXME: We should detect handlers for the same type as an earlier one.
1011  // This one is rather easy.
1012  // FIXME: We should detect handlers that cannot catch anything because an
1013  // earlier handler catches a superclass. Need to find a method that is not
1014  // quadratic for this.
1015  // Neither of these are explicitly forbidden, but every compiler detects them
1016  // and warns.
1017
1018  RawHandlers.release();
1019  return Owned(new CXXTryStmt(TryLoc, static_cast<Stmt*>(TryBlock.release()),
1020                              Handlers, NumHandlers));
1021}
1022