SemaStmt.cpp revision f2dd68fb37a62571a4985c8dd05310ac90d07ef0
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               SourceLocation LeadingEmptyMacroLoc) {
51  return Owned(new (Context) NullStmt(SemiLoc, LeadingEmptyMacroLoc));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  VarDecl *var = cast<VarDecl>(DG.getSingleDecl());
70
71  // suppress any potential 'unused variable' warning.
72  var->setUsed();
73
74  // foreach variables are never actually initialized in the way that
75  // the parser came up with.
76  var->setInit(0);
77
78  // In ARC, we don't need to retain the iteration variable of a fast
79  // enumeration loop.  Rather than actually trying to catch that
80  // during declaration processing, we remove the consequences here.
81  if (getLangOptions().ObjCAutoRefCount) {
82    QualType type = var->getType();
83
84    // Only do this if we inferred the lifetime.  Inferred lifetime
85    // will show up as a local qualifier because explicit lifetime
86    // should have shown up as an AttributedType instead.
87    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
88      // Add 'const' and mark the variable as pseudo-strong.
89      var->setType(type.withConst());
90      var->setARCPseudoStrong(true);
91    }
92  }
93}
94
95void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
96  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
97    return DiagnoseUnusedExprResult(Label->getSubStmt());
98
99  const Expr *E = dyn_cast_or_null<Expr>(S);
100  if (!E)
101    return;
102
103  SourceLocation Loc;
104  SourceRange R1, R2;
105  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
106    return;
107
108  // Okay, we have an unused result.  Depending on what the base expression is,
109  // we might want to make a more specific diagnostic.  Check for one of these
110  // cases now.
111  unsigned DiagID = diag::warn_unused_expr;
112  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
113    E = Temps->getSubExpr();
114  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
115    E = TempExpr->getSubExpr();
116
117  E = E->IgnoreParenImpCasts();
118  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
119    if (E->getType()->isVoidType())
120      return;
121
122    // If the callee has attribute pure, const, or warn_unused_result, warn with
123    // a more specific message to make it clear what is happening.
124    if (const Decl *FD = CE->getCalleeDecl()) {
125      if (FD->getAttr<WarnUnusedResultAttr>()) {
126        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
127        return;
128      }
129      if (FD->getAttr<PureAttr>()) {
130        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
131        return;
132      }
133      if (FD->getAttr<ConstAttr>()) {
134        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
135        return;
136      }
137    }
138  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
139    if (getLangOptions().ObjCAutoRefCount && ME->isDelegateInitCall()) {
140      Diag(Loc, diag::err_arc_unused_init_message) << R1;
141      return;
142    }
143    const ObjCMethodDecl *MD = ME->getMethodDecl();
144    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
145      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
146      return;
147    }
148  } else if (isa<ObjCPropertyRefExpr>(E)) {
149    DiagID = diag::warn_unused_property_expr;
150  } else if (const CXXFunctionalCastExpr *FC
151                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
152    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
153        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
154      return;
155  }
156  // Diagnose "(void*) blah" as a typo for "(void) blah".
157  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
158    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
159    QualType T = TI->getType();
160
161    // We really do want to use the non-canonical type here.
162    if (T == Context.VoidPtrTy) {
163      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
164
165      Diag(Loc, diag::warn_unused_voidptr)
166        << FixItHint::CreateRemoval(TL.getStarLoc());
167      return;
168    }
169  }
170
171  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
172}
173
174StmtResult
175Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
176                        MultiStmtArg elts, bool isStmtExpr) {
177  unsigned NumElts = elts.size();
178  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
179  // If we're in C89 mode, check that we don't have any decls after stmts.  If
180  // so, emit an extension diagnostic.
181  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
182    // Note that __extension__ can be around a decl.
183    unsigned i = 0;
184    // Skip over all declarations.
185    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
186      /*empty*/;
187
188    // We found the end of the list or a statement.  Scan for another declstmt.
189    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
190      /*empty*/;
191
192    if (i != NumElts) {
193      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
194      Diag(D->getLocation(), diag::ext_mixed_decls_code);
195    }
196  }
197  // Warn about unused expressions in statements.
198  for (unsigned i = 0; i != NumElts; ++i) {
199    // Ignore statements that are last in a statement expression.
200    if (isStmtExpr && i == NumElts - 1)
201      continue;
202
203    DiagnoseUnusedExprResult(Elts[i]);
204  }
205
206  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
207}
208
209StmtResult
210Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
211                    SourceLocation DotDotDotLoc, Expr *RHSVal,
212                    SourceLocation ColonLoc) {
213  assert((LHSVal != 0) && "missing expression in case statement");
214
215  // C99 6.8.4.2p3: The expression shall be an integer constant.
216  // However, GCC allows any evaluatable integer expression.
217  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
218      VerifyIntegerConstantExpression(LHSVal))
219    return StmtError();
220
221  // GCC extension: The expression shall be an integer constant.
222
223  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
224      VerifyIntegerConstantExpression(RHSVal)) {
225    RHSVal = 0;  // Recover by just forgetting about it.
226  }
227
228  if (getCurFunction()->SwitchStack.empty()) {
229    Diag(CaseLoc, diag::err_case_not_in_switch);
230    return StmtError();
231  }
232
233  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
234                                        ColonLoc);
235  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
236  return Owned(CS);
237}
238
239/// ActOnCaseStmtBody - This installs a statement as the body of a case.
240void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
241  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
242  CS->setSubStmt(SubStmt);
243}
244
245StmtResult
246Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
247                       Stmt *SubStmt, Scope *CurScope) {
248  if (getCurFunction()->SwitchStack.empty()) {
249    Diag(DefaultLoc, diag::err_default_not_in_switch);
250    return Owned(SubStmt);
251  }
252
253  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
254  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
255  return Owned(DS);
256}
257
258StmtResult
259Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
260                     SourceLocation ColonLoc, Stmt *SubStmt) {
261
262  // If the label was multiply defined, reject it now.
263  if (TheDecl->getStmt()) {
264    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
265    Diag(TheDecl->getLocation(), diag::note_previous_definition);
266    return Owned(SubStmt);
267  }
268
269  // Otherwise, things are good.  Fill in the declaration and return it.
270  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
271  TheDecl->setStmt(LS);
272  if (!TheDecl->isGnuLocal())
273    TheDecl->setLocation(IdentLoc);
274  return Owned(LS);
275}
276
277StmtResult
278Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
279                  Stmt *thenStmt, SourceLocation ElseLoc,
280                  Stmt *elseStmt) {
281  ExprResult CondResult(CondVal.release());
282
283  VarDecl *ConditionVar = 0;
284  if (CondVar) {
285    ConditionVar = cast<VarDecl>(CondVar);
286    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
287    if (CondResult.isInvalid())
288      return StmtError();
289  }
290  Expr *ConditionExpr = CondResult.takeAs<Expr>();
291  if (!ConditionExpr)
292    return StmtError();
293
294  DiagnoseUnusedExprResult(thenStmt);
295
296  // Warn if the if block has a null body without an else value.
297  // this helps prevent bugs due to typos, such as
298  // if (condition);
299  //   do_stuff();
300  //
301  if (!elseStmt) {
302    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
303      // But do not warn if the body is a macro that expands to nothing, e.g:
304      //
305      // #define CALL(x)
306      // if (condition)
307      //   CALL(0);
308      //
309      if (!stmt->hasLeadingEmptyMacro())
310        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
311  }
312
313  DiagnoseUnusedExprResult(elseStmt);
314
315  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
316                                    thenStmt, ElseLoc, elseStmt));
317}
318
319/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
320/// the specified width and sign.  If an overflow occurs, detect it and emit
321/// the specified diagnostic.
322void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
323                                              unsigned NewWidth, bool NewSign,
324                                              SourceLocation Loc,
325                                              unsigned DiagID) {
326  // Perform a conversion to the promoted condition type if needed.
327  if (NewWidth > Val.getBitWidth()) {
328    // If this is an extension, just do it.
329    Val = Val.extend(NewWidth);
330    Val.setIsSigned(NewSign);
331
332    // If the input was signed and negative and the output is
333    // unsigned, don't bother to warn: this is implementation-defined
334    // behavior.
335    // FIXME: Introduce a second, default-ignored warning for this case?
336  } else if (NewWidth < Val.getBitWidth()) {
337    // If this is a truncation, check for overflow.
338    llvm::APSInt ConvVal(Val);
339    ConvVal = ConvVal.trunc(NewWidth);
340    ConvVal.setIsSigned(NewSign);
341    ConvVal = ConvVal.extend(Val.getBitWidth());
342    ConvVal.setIsSigned(Val.isSigned());
343    if (ConvVal != Val)
344      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
345
346    // Regardless of whether a diagnostic was emitted, really do the
347    // truncation.
348    Val = Val.trunc(NewWidth);
349    Val.setIsSigned(NewSign);
350  } else if (NewSign != Val.isSigned()) {
351    // Convert the sign to match the sign of the condition.  This can cause
352    // overflow as well: unsigned(INTMIN)
353    // We don't diagnose this overflow, because it is implementation-defined
354    // behavior.
355    // FIXME: Introduce a second, default-ignored warning for this case?
356    llvm::APSInt OldVal(Val);
357    Val.setIsSigned(NewSign);
358  }
359}
360
361namespace {
362  struct CaseCompareFunctor {
363    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
364                    const llvm::APSInt &RHS) {
365      return LHS.first < RHS;
366    }
367    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
368                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
369      return LHS.first < RHS.first;
370    }
371    bool operator()(const llvm::APSInt &LHS,
372                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
373      return LHS < RHS.first;
374    }
375  };
376}
377
378/// CmpCaseVals - Comparison predicate for sorting case values.
379///
380static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
381                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
382  if (lhs.first < rhs.first)
383    return true;
384
385  if (lhs.first == rhs.first &&
386      lhs.second->getCaseLoc().getRawEncoding()
387       < rhs.second->getCaseLoc().getRawEncoding())
388    return true;
389  return false;
390}
391
392/// CmpEnumVals - Comparison predicate for sorting enumeration values.
393///
394static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
395                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
396{
397  return lhs.first < rhs.first;
398}
399
400/// EqEnumVals - Comparison preficate for uniqing enumeration values.
401///
402static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
403                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
404{
405  return lhs.first == rhs.first;
406}
407
408/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
409/// potentially integral-promoted expression @p expr.
410static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
411  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
412    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
413    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
414    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
415      return TypeBeforePromotion;
416    }
417  }
418  return expr->getType();
419}
420
421StmtResult
422Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
423                             Decl *CondVar) {
424  ExprResult CondResult;
425
426  VarDecl *ConditionVar = 0;
427  if (CondVar) {
428    ConditionVar = cast<VarDecl>(CondVar);
429    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
430    if (CondResult.isInvalid())
431      return StmtError();
432
433    Cond = CondResult.release();
434  }
435
436  if (!Cond)
437    return StmtError();
438
439  CondResult
440    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
441                          PDiag(diag::err_typecheck_statement_requires_integer),
442                                   PDiag(diag::err_switch_incomplete_class_type)
443                                     << Cond->getSourceRange(),
444                                   PDiag(diag::err_switch_explicit_conversion),
445                                         PDiag(diag::note_switch_conversion),
446                                   PDiag(diag::err_switch_multiple_conversions),
447                                         PDiag(diag::note_switch_conversion),
448                                         PDiag(0));
449  if (CondResult.isInvalid()) return StmtError();
450  Cond = CondResult.take();
451
452  if (!CondVar) {
453    CheckImplicitConversions(Cond, SwitchLoc);
454    CondResult = MaybeCreateExprWithCleanups(Cond);
455    if (CondResult.isInvalid())
456      return StmtError();
457    Cond = CondResult.take();
458  }
459
460  getCurFunction()->setHasBranchIntoScope();
461
462  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
463  getCurFunction()->SwitchStack.push_back(SS);
464  return Owned(SS);
465}
466
467static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
468  if (Val.getBitWidth() < BitWidth)
469    Val = Val.extend(BitWidth);
470  else if (Val.getBitWidth() > BitWidth)
471    Val = Val.trunc(BitWidth);
472  Val.setIsSigned(IsSigned);
473}
474
475StmtResult
476Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
477                            Stmt *BodyStmt) {
478  SwitchStmt *SS = cast<SwitchStmt>(Switch);
479  assert(SS == getCurFunction()->SwitchStack.back() &&
480         "switch stack missing push/pop!");
481
482  SS->setBody(BodyStmt, SwitchLoc);
483  getCurFunction()->SwitchStack.pop_back();
484
485  if (SS->getCond() == 0)
486    return StmtError();
487
488  Expr *CondExpr = SS->getCond();
489  Expr *CondExprBeforePromotion = CondExpr;
490  QualType CondTypeBeforePromotion =
491      GetTypeBeforeIntegralPromotion(CondExpr);
492
493  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
494  ExprResult CondResult = UsualUnaryConversions(CondExpr);
495  if (CondResult.isInvalid())
496    return StmtError();
497  CondExpr = CondResult.take();
498  QualType CondType = CondExpr->getType();
499  SS->setCond(CondExpr);
500
501  // C++ 6.4.2.p2:
502  // Integral promotions are performed (on the switch condition).
503  //
504  // A case value unrepresentable by the original switch condition
505  // type (before the promotion) doesn't make sense, even when it can
506  // be represented by the promoted type.  Therefore we need to find
507  // the pre-promotion type of the switch condition.
508  if (!CondExpr->isTypeDependent()) {
509    // We have already converted the expression to an integral or enumeration
510    // type, when we started the switch statement. If we don't have an
511    // appropriate type now, just return an error.
512    if (!CondType->isIntegralOrEnumerationType())
513      return StmtError();
514
515    if (CondExpr->isKnownToHaveBooleanValue()) {
516      // switch(bool_expr) {...} is often a programmer error, e.g.
517      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
518      // One can always use an if statement instead of switch(bool_expr).
519      Diag(SwitchLoc, diag::warn_bool_switch_condition)
520          << CondExpr->getSourceRange();
521    }
522  }
523
524  // Get the bitwidth of the switched-on value before promotions.  We must
525  // convert the integer case values to this width before comparison.
526  bool HasDependentValue
527    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
528  unsigned CondWidth
529    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
530  bool CondIsSigned
531    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
532
533  // Accumulate all of the case values in a vector so that we can sort them
534  // and detect duplicates.  This vector contains the APInt for the case after
535  // it has been converted to the condition type.
536  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
537  CaseValsTy CaseVals;
538
539  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
540  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
541  CaseRangesTy CaseRanges;
542
543  DefaultStmt *TheDefaultStmt = 0;
544
545  bool CaseListIsErroneous = false;
546
547  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
548       SC = SC->getNextSwitchCase()) {
549
550    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
551      if (TheDefaultStmt) {
552        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
553        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
554
555        // FIXME: Remove the default statement from the switch block so that
556        // we'll return a valid AST.  This requires recursing down the AST and
557        // finding it, not something we are set up to do right now.  For now,
558        // just lop the entire switch stmt out of the AST.
559        CaseListIsErroneous = true;
560      }
561      TheDefaultStmt = DS;
562
563    } else {
564      CaseStmt *CS = cast<CaseStmt>(SC);
565
566      // We already verified that the expression has a i-c-e value (C99
567      // 6.8.4.2p3) - get that value now.
568      Expr *Lo = CS->getLHS();
569
570      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
571        HasDependentValue = true;
572        break;
573      }
574
575      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
576
577      // Convert the value to the same width/sign as the condition.
578      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
579                                         Lo->getLocStart(),
580                                         diag::warn_case_value_overflow);
581
582      // If the LHS is not the same type as the condition, insert an implicit
583      // cast.
584      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
585      CS->setLHS(Lo);
586
587      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
588      if (CS->getRHS()) {
589        if (CS->getRHS()->isTypeDependent() ||
590            CS->getRHS()->isValueDependent()) {
591          HasDependentValue = true;
592          break;
593        }
594        CaseRanges.push_back(std::make_pair(LoVal, CS));
595      } else
596        CaseVals.push_back(std::make_pair(LoVal, CS));
597    }
598  }
599
600  if (!HasDependentValue) {
601    // If we don't have a default statement, check whether the
602    // condition is constant.
603    llvm::APSInt ConstantCondValue;
604    bool HasConstantCond = false;
605    bool ShouldCheckConstantCond = false;
606    if (!HasDependentValue && !TheDefaultStmt) {
607      Expr::EvalResult Result;
608      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
609      if (HasConstantCond) {
610        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
611        ConstantCondValue = Result.Val.getInt();
612        ShouldCheckConstantCond = true;
613
614        assert(ConstantCondValue.getBitWidth() == CondWidth &&
615               ConstantCondValue.isSigned() == CondIsSigned);
616      }
617    }
618
619    // Sort all the scalar case values so we can easily detect duplicates.
620    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
621
622    if (!CaseVals.empty()) {
623      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
624        if (ShouldCheckConstantCond &&
625            CaseVals[i].first == ConstantCondValue)
626          ShouldCheckConstantCond = false;
627
628        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
629          // If we have a duplicate, report it.
630          Diag(CaseVals[i].second->getLHS()->getLocStart(),
631               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
632          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
633               diag::note_duplicate_case_prev);
634          // FIXME: We really want to remove the bogus case stmt from the
635          // substmt, but we have no way to do this right now.
636          CaseListIsErroneous = true;
637        }
638      }
639    }
640
641    // Detect duplicate case ranges, which usually don't exist at all in
642    // the first place.
643    if (!CaseRanges.empty()) {
644      // Sort all the case ranges by their low value so we can easily detect
645      // overlaps between ranges.
646      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
647
648      // Scan the ranges, computing the high values and removing empty ranges.
649      std::vector<llvm::APSInt> HiVals;
650      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
651        llvm::APSInt &LoVal = CaseRanges[i].first;
652        CaseStmt *CR = CaseRanges[i].second;
653        Expr *Hi = CR->getRHS();
654        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
655
656        // Convert the value to the same width/sign as the condition.
657        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
658                                           Hi->getLocStart(),
659                                           diag::warn_case_value_overflow);
660
661        // If the LHS is not the same type as the condition, insert an implicit
662        // cast.
663        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
664        CR->setRHS(Hi);
665
666        // If the low value is bigger than the high value, the case is empty.
667        if (LoVal > HiVal) {
668          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
669            << SourceRange(CR->getLHS()->getLocStart(),
670                           Hi->getLocEnd());
671          CaseRanges.erase(CaseRanges.begin()+i);
672          --i, --e;
673          continue;
674        }
675
676        if (ShouldCheckConstantCond &&
677            LoVal <= ConstantCondValue &&
678            ConstantCondValue <= HiVal)
679          ShouldCheckConstantCond = false;
680
681        HiVals.push_back(HiVal);
682      }
683
684      // Rescan the ranges, looking for overlap with singleton values and other
685      // ranges.  Since the range list is sorted, we only need to compare case
686      // ranges with their neighbors.
687      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
688        llvm::APSInt &CRLo = CaseRanges[i].first;
689        llvm::APSInt &CRHi = HiVals[i];
690        CaseStmt *CR = CaseRanges[i].second;
691
692        // Check to see whether the case range overlaps with any
693        // singleton cases.
694        CaseStmt *OverlapStmt = 0;
695        llvm::APSInt OverlapVal(32);
696
697        // Find the smallest value >= the lower bound.  If I is in the
698        // case range, then we have overlap.
699        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
700                                                  CaseVals.end(), CRLo,
701                                                  CaseCompareFunctor());
702        if (I != CaseVals.end() && I->first < CRHi) {
703          OverlapVal  = I->first;   // Found overlap with scalar.
704          OverlapStmt = I->second;
705        }
706
707        // Find the smallest value bigger than the upper bound.
708        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
709        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
710          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
711          OverlapStmt = (I-1)->second;
712        }
713
714        // Check to see if this case stmt overlaps with the subsequent
715        // case range.
716        if (i && CRLo <= HiVals[i-1]) {
717          OverlapVal  = HiVals[i-1];       // Found overlap with range.
718          OverlapStmt = CaseRanges[i-1].second;
719        }
720
721        if (OverlapStmt) {
722          // If we have a duplicate, report it.
723          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
724            << OverlapVal.toString(10);
725          Diag(OverlapStmt->getLHS()->getLocStart(),
726               diag::note_duplicate_case_prev);
727          // FIXME: We really want to remove the bogus case stmt from the
728          // substmt, but we have no way to do this right now.
729          CaseListIsErroneous = true;
730        }
731      }
732    }
733
734    // Complain if we have a constant condition and we didn't find a match.
735    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
736      // TODO: it would be nice if we printed enums as enums, chars as
737      // chars, etc.
738      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
739        << ConstantCondValue.toString(10)
740        << CondExpr->getSourceRange();
741    }
742
743    // Check to see if switch is over an Enum and handles all of its
744    // values.  We only issue a warning if there is not 'default:', but
745    // we still do the analysis to preserve this information in the AST
746    // (which can be used by flow-based analyes).
747    //
748    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
749
750    // If switch has default case, then ignore it.
751    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
752      const EnumDecl *ED = ET->getDecl();
753      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
754        EnumValsTy;
755      EnumValsTy EnumVals;
756
757      // Gather all enum values, set their type and sort them,
758      // allowing easier comparison with CaseVals.
759      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
760           EDI != ED->enumerator_end(); ++EDI) {
761        llvm::APSInt Val = EDI->getInitVal();
762        AdjustAPSInt(Val, CondWidth, CondIsSigned);
763        EnumVals.push_back(std::make_pair(Val, *EDI));
764      }
765      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
766      EnumValsTy::iterator EIend =
767        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
768
769      // See which case values aren't in enum.
770      // TODO: we might want to check whether case values are out of the
771      // enum even if we don't want to check whether all cases are handled.
772      if (!TheDefaultStmt) {
773        EnumValsTy::const_iterator EI = EnumVals.begin();
774        for (CaseValsTy::const_iterator CI = CaseVals.begin();
775             CI != CaseVals.end(); CI++) {
776          while (EI != EIend && EI->first < CI->first)
777            EI++;
778          if (EI == EIend || EI->first > CI->first)
779            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
780              << ED->getDeclName();
781        }
782        // See which of case ranges aren't in enum
783        EI = EnumVals.begin();
784        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
785             RI != CaseRanges.end() && EI != EIend; RI++) {
786          while (EI != EIend && EI->first < RI->first)
787            EI++;
788
789          if (EI == EIend || EI->first != RI->first) {
790            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
791              << ED->getDeclName();
792          }
793
794          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
795          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
796          while (EI != EIend && EI->first < Hi)
797            EI++;
798          if (EI == EIend || EI->first != Hi)
799            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
800              << ED->getDeclName();
801        }
802      }
803
804      // Check which enum vals aren't in switch
805      CaseValsTy::const_iterator CI = CaseVals.begin();
806      CaseRangesTy::const_iterator RI = CaseRanges.begin();
807      bool hasCasesNotInSwitch = false;
808
809      llvm::SmallVector<DeclarationName,8> UnhandledNames;
810
811      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
812        // Drop unneeded case values
813        llvm::APSInt CIVal;
814        while (CI != CaseVals.end() && CI->first < EI->first)
815          CI++;
816
817        if (CI != CaseVals.end() && CI->first == EI->first)
818          continue;
819
820        // Drop unneeded case ranges
821        for (; RI != CaseRanges.end(); RI++) {
822          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
823          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
824          if (EI->first <= Hi)
825            break;
826        }
827
828        if (RI == CaseRanges.end() || EI->first < RI->first) {
829          hasCasesNotInSwitch = true;
830          if (!TheDefaultStmt)
831            UnhandledNames.push_back(EI->second->getDeclName());
832        }
833      }
834
835      // Produce a nice diagnostic if multiple values aren't handled.
836      switch (UnhandledNames.size()) {
837      case 0: break;
838      case 1:
839        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
840          << UnhandledNames[0];
841        break;
842      case 2:
843        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
844          << UnhandledNames[0] << UnhandledNames[1];
845        break;
846      case 3:
847        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
848          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
849        break;
850      default:
851        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
852          << (unsigned)UnhandledNames.size()
853          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
854        break;
855      }
856
857      if (!hasCasesNotInSwitch)
858        SS->setAllEnumCasesCovered();
859    }
860  }
861
862  // FIXME: If the case list was broken is some way, we don't have a good system
863  // to patch it up.  Instead, just return the whole substmt as broken.
864  if (CaseListIsErroneous)
865    return StmtError();
866
867  return Owned(SS);
868}
869
870StmtResult
871Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
872                     Decl *CondVar, Stmt *Body) {
873  ExprResult CondResult(Cond.release());
874
875  VarDecl *ConditionVar = 0;
876  if (CondVar) {
877    ConditionVar = cast<VarDecl>(CondVar);
878    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
879    if (CondResult.isInvalid())
880      return StmtError();
881  }
882  Expr *ConditionExpr = CondResult.take();
883  if (!ConditionExpr)
884    return StmtError();
885
886  DiagnoseUnusedExprResult(Body);
887
888  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
889                                       Body, WhileLoc));
890}
891
892StmtResult
893Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
894                  SourceLocation WhileLoc, SourceLocation CondLParen,
895                  Expr *Cond, SourceLocation CondRParen) {
896  assert(Cond && "ActOnDoStmt(): missing expression");
897
898  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
899  if (CondResult.isInvalid() || CondResult.isInvalid())
900    return StmtError();
901  Cond = CondResult.take();
902
903  CheckImplicitConversions(Cond, DoLoc);
904  CondResult = MaybeCreateExprWithCleanups(Cond);
905  if (CondResult.isInvalid())
906    return StmtError();
907  Cond = CondResult.take();
908
909  DiagnoseUnusedExprResult(Body);
910
911  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
912}
913
914StmtResult
915Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
916                   Stmt *First, FullExprArg second, Decl *secondVar,
917                   FullExprArg third,
918                   SourceLocation RParenLoc, Stmt *Body) {
919  if (!getLangOptions().CPlusPlus) {
920    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
921      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
922      // declare identifiers for objects having storage class 'auto' or
923      // 'register'.
924      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
925           DI!=DE; ++DI) {
926        VarDecl *VD = dyn_cast<VarDecl>(*DI);
927        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
928          VD = 0;
929        if (VD == 0)
930          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
931        // FIXME: mark decl erroneous!
932      }
933    }
934  }
935
936  ExprResult SecondResult(second.release());
937  VarDecl *ConditionVar = 0;
938  if (secondVar) {
939    ConditionVar = cast<VarDecl>(secondVar);
940    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
941    if (SecondResult.isInvalid())
942      return StmtError();
943  }
944
945  Expr *Third  = third.release().takeAs<Expr>();
946
947  DiagnoseUnusedExprResult(First);
948  DiagnoseUnusedExprResult(Third);
949  DiagnoseUnusedExprResult(Body);
950
951  return Owned(new (Context) ForStmt(Context, First,
952                                     SecondResult.take(), ConditionVar,
953                                     Third, Body, ForLoc, LParenLoc,
954                                     RParenLoc));
955}
956
957/// In an Objective C collection iteration statement:
958///   for (x in y)
959/// x can be an arbitrary l-value expression.  Bind it up as a
960/// full-expression.
961StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
962  CheckImplicitConversions(E);
963  ExprResult Result = MaybeCreateExprWithCleanups(E);
964  if (Result.isInvalid()) return StmtError();
965  return Owned(static_cast<Stmt*>(Result.get()));
966}
967
968StmtResult
969Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
970                                 SourceLocation LParenLoc,
971                                 Stmt *First, Expr *Second,
972                                 SourceLocation RParenLoc, Stmt *Body) {
973  if (First) {
974    QualType FirstType;
975    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
976      if (!DS->isSingleDecl())
977        return StmtError(Diag((*DS->decl_begin())->getLocation(),
978                         diag::err_toomany_element_decls));
979
980      VarDecl *D = cast<VarDecl>(DS->getSingleDecl());
981      FirstType = D->getType();
982      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
983      // declare identifiers for objects having storage class 'auto' or
984      // 'register'.
985      if (!D->hasLocalStorage())
986        return StmtError(Diag(D->getLocation(),
987                              diag::err_non_variable_decl_in_for));
988    } else {
989      Expr *FirstE = cast<Expr>(First);
990      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
991        return StmtError(Diag(First->getLocStart(),
992                   diag::err_selector_element_not_lvalue)
993          << First->getSourceRange());
994
995      FirstType = static_cast<Expr*>(First)->getType();
996    }
997    if (!FirstType->isDependentType() &&
998        !FirstType->isObjCObjectPointerType() &&
999        !FirstType->isBlockPointerType())
1000        Diag(ForLoc, diag::err_selector_element_type)
1001          << FirstType << First->getSourceRange();
1002  }
1003  if (Second && !Second->isTypeDependent()) {
1004    ExprResult Result = DefaultFunctionArrayLvalueConversion(Second);
1005    if (Result.isInvalid())
1006      return StmtError();
1007    Second = Result.take();
1008    QualType SecondType = Second->getType();
1009    if (!SecondType->isObjCObjectPointerType())
1010      Diag(ForLoc, diag::err_collection_expr_type)
1011        << SecondType << Second->getSourceRange();
1012    else if (const ObjCObjectPointerType *OPT =
1013             SecondType->getAsObjCInterfacePointerType()) {
1014      llvm::SmallVector<IdentifierInfo *, 4> KeyIdents;
1015      IdentifierInfo* selIdent =
1016        &Context.Idents.get("countByEnumeratingWithState");
1017      KeyIdents.push_back(selIdent);
1018      selIdent = &Context.Idents.get("objects");
1019      KeyIdents.push_back(selIdent);
1020      selIdent = &Context.Idents.get("count");
1021      KeyIdents.push_back(selIdent);
1022      Selector CSelector = Context.Selectors.getSelector(3, &KeyIdents[0]);
1023      if (ObjCInterfaceDecl *IDecl = OPT->getInterfaceDecl()) {
1024        if (!IDecl->isForwardDecl() &&
1025            !IDecl->lookupInstanceMethod(CSelector) &&
1026            !LookupMethodInQualifiedType(CSelector, OPT, true)) {
1027          // Must further look into private implementation methods.
1028          if (!LookupPrivateInstanceMethod(CSelector, IDecl))
1029            Diag(ForLoc, diag::warn_collection_expr_type)
1030              << SecondType << CSelector << Second->getSourceRange();
1031        }
1032      }
1033    }
1034  }
1035  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1036                                                   ForLoc, RParenLoc));
1037}
1038
1039namespace {
1040
1041enum BeginEndFunction {
1042  BEF_begin,
1043  BEF_end
1044};
1045
1046/// Build a variable declaration for a for-range statement.
1047static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1048                                     QualType Type, const char *Name) {
1049  DeclContext *DC = SemaRef.CurContext;
1050  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1051  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1052  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1053                                  TInfo, SC_Auto, SC_None);
1054  Decl->setImplicit();
1055  return Decl;
1056}
1057
1058/// Finish building a variable declaration for a for-range statement.
1059/// \return true if an error occurs.
1060static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1061                                  SourceLocation Loc, int diag) {
1062  // Deduce the type for the iterator variable now rather than leaving it to
1063  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1064  TypeSourceInfo *InitTSI = 0;
1065  if (Init->getType()->isVoidType() ||
1066      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1067    SemaRef.Diag(Loc, diag) << Init->getType();
1068  if (!InitTSI) {
1069    Decl->setInvalidDecl();
1070    return true;
1071  }
1072  Decl->setTypeSourceInfo(InitTSI);
1073  Decl->setType(InitTSI->getType());
1074
1075  // In ARC, infer lifetime.
1076  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1077  // we're doing the equivalent of fast iteration.
1078  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
1079      SemaRef.inferObjCARCLifetime(Decl))
1080    Decl->setInvalidDecl();
1081
1082  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1083                               /*TypeMayContainAuto=*/false);
1084  SemaRef.FinalizeDeclaration(Decl);
1085  SemaRef.CurContext->addHiddenDecl(Decl);
1086  return false;
1087}
1088
1089/// Produce a note indicating which begin/end function was implicitly called
1090/// by a C++0x for-range statement. This is often not obvious from the code,
1091/// nor from the diagnostics produced when analysing the implicit expressions
1092/// required in a for-range statement.
1093void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1094                                  BeginEndFunction BEF) {
1095  CallExpr *CE = dyn_cast<CallExpr>(E);
1096  if (!CE)
1097    return;
1098  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1099  if (!D)
1100    return;
1101  SourceLocation Loc = D->getLocation();
1102
1103  std::string Description;
1104  bool IsTemplate = false;
1105  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1106    Description = SemaRef.getTemplateArgumentBindingsText(
1107      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1108    IsTemplate = true;
1109  }
1110
1111  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1112    << BEF << IsTemplate << Description << E->getType();
1113}
1114
1115/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1116/// given LookupResult is non-empty, it is assumed to describe a member which
1117/// will be invoked. Otherwise, the function will be found via argument
1118/// dependent lookup.
1119static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1120                                            SourceLocation Loc,
1121                                            VarDecl *Decl,
1122                                            BeginEndFunction BEF,
1123                                            const DeclarationNameInfo &NameInfo,
1124                                            LookupResult &MemberLookup,
1125                                            Expr *Range) {
1126  ExprResult CallExpr;
1127  if (!MemberLookup.empty()) {
1128    ExprResult MemberRef =
1129      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1130                                       /*IsPtr=*/false, CXXScopeSpec(),
1131                                       /*Qualifier=*/0, MemberLookup,
1132                                       /*TemplateArgs=*/0);
1133    if (MemberRef.isInvalid())
1134      return ExprError();
1135    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1136                                     Loc, 0);
1137    if (CallExpr.isInvalid())
1138      return ExprError();
1139  } else {
1140    UnresolvedSet<0> FoundNames;
1141    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1142    // std is an associated namespace.
1143    UnresolvedLookupExpr *Fn =
1144      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1145                                   NestedNameSpecifierLoc(), NameInfo,
1146                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1147                                   FoundNames.begin(), FoundNames.end(),
1148                                   /*LookInStdNamespace=*/true);
1149    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1150                                               0);
1151    if (CallExpr.isInvalid()) {
1152      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1153        << Range->getType();
1154      return ExprError();
1155    }
1156  }
1157  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1158                            diag::err_for_range_iter_deduction_failure)) {
1159    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1160    return ExprError();
1161  }
1162  return CallExpr;
1163}
1164
1165}
1166
1167/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1168///
1169/// C++0x [stmt.ranged]:
1170///   A range-based for statement is equivalent to
1171///
1172///   {
1173///     auto && __range = range-init;
1174///     for ( auto __begin = begin-expr,
1175///           __end = end-expr;
1176///           __begin != __end;
1177///           ++__begin ) {
1178///       for-range-declaration = *__begin;
1179///       statement
1180///     }
1181///   }
1182///
1183/// The body of the loop is not available yet, since it cannot be analysed until
1184/// we have determined the type of the for-range-declaration.
1185StmtResult
1186Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1187                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1188                           SourceLocation RParenLoc) {
1189  if (!First || !Range)
1190    return StmtError();
1191
1192  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1193  assert(DS && "first part of for range not a decl stmt");
1194
1195  if (!DS->isSingleDecl()) {
1196    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1197    return StmtError();
1198  }
1199  if (DS->getSingleDecl()->isInvalidDecl())
1200    return StmtError();
1201
1202  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1203    return StmtError();
1204
1205  // Build  auto && __range = range-init
1206  SourceLocation RangeLoc = Range->getLocStart();
1207  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1208                                           Context.getAutoRRefDeductType(),
1209                                           "__range");
1210  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1211                            diag::err_for_range_deduction_failure))
1212    return StmtError();
1213
1214  // Claim the type doesn't contain auto: we've already done the checking.
1215  DeclGroupPtrTy RangeGroup =
1216    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1217  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1218  if (RangeDecl.isInvalid())
1219    return StmtError();
1220
1221  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1222                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1223                              RParenLoc);
1224}
1225
1226/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1227StmtResult
1228Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1229                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1230                           Expr *Inc, Stmt *LoopVarDecl,
1231                           SourceLocation RParenLoc) {
1232  Scope *S = getCurScope();
1233
1234  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1235  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1236  QualType RangeVarType = RangeVar->getType();
1237
1238  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1239  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1240
1241  StmtResult BeginEndDecl = BeginEnd;
1242  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1243
1244  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1245    SourceLocation RangeLoc = RangeVar->getLocation();
1246
1247    ExprResult RangeRef = BuildDeclRefExpr(RangeVar,
1248                                           RangeVarType.getNonReferenceType(),
1249                                           VK_LValue, ColonLoc);
1250    if (RangeRef.isInvalid())
1251      return StmtError();
1252
1253    QualType AutoType = Context.getAutoDeductType();
1254    Expr *Range = RangeVar->getInit();
1255    if (!Range)
1256      return StmtError();
1257    QualType RangeType = Range->getType();
1258
1259    if (RequireCompleteType(RangeLoc, RangeType,
1260                            PDiag(diag::err_for_range_incomplete_type)))
1261      return StmtError();
1262
1263    // Build auto __begin = begin-expr, __end = end-expr.
1264    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1265                                             "__begin");
1266    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1267                                           "__end");
1268
1269    // Build begin-expr and end-expr and attach to __begin and __end variables.
1270    ExprResult BeginExpr, EndExpr;
1271    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1272      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1273      //   __range + __bound, respectively, where __bound is the array bound. If
1274      //   _RangeT is an array of unknown size or an array of incomplete type,
1275      //   the program is ill-formed;
1276
1277      // begin-expr is __range.
1278      BeginExpr = RangeRef;
1279      if (FinishForRangeVarDecl(*this, BeginVar, RangeRef.get(), ColonLoc,
1280                                diag::err_for_range_iter_deduction_failure)) {
1281        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1282        return StmtError();
1283      }
1284
1285      // Find the array bound.
1286      ExprResult BoundExpr;
1287      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1288        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1289                                                 Context.getPointerDiffType(),
1290                                                 RangeLoc));
1291      else if (const VariableArrayType *VAT =
1292               dyn_cast<VariableArrayType>(UnqAT))
1293        BoundExpr = VAT->getSizeExpr();
1294      else {
1295        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1296        // UnqAT is not incomplete and Range is not type-dependent.
1297        assert(0 && "Unexpected array type in for-range");
1298        return StmtError();
1299      }
1300
1301      // end-expr is __range + __bound.
1302      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, RangeRef.get(),
1303                           BoundExpr.get());
1304      if (EndExpr.isInvalid())
1305        return StmtError();
1306      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1307                                diag::err_for_range_iter_deduction_failure)) {
1308        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1309        return StmtError();
1310      }
1311    } else {
1312      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1313                                        ColonLoc);
1314      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1315                                      ColonLoc);
1316
1317      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1318      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1319
1320      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1321        // - if _RangeT is a class type, the unqualified-ids begin and end are
1322        //   looked up in the scope of class _RangeT as if by class member access
1323        //   lookup (3.4.5), and if either (or both) finds at least one
1324        //   declaration, begin-expr and end-expr are __range.begin() and
1325        //   __range.end(), respectively;
1326        LookupQualifiedName(BeginMemberLookup, D);
1327        LookupQualifiedName(EndMemberLookup, D);
1328
1329        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1330          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1331            << RangeType << BeginMemberLookup.empty();
1332          return StmtError();
1333        }
1334      } else {
1335        // - otherwise, begin-expr and end-expr are begin(__range) and
1336        //   end(__range), respectively, where begin and end are looked up with
1337        //   argument-dependent lookup (3.4.2). For the purposes of this name
1338        //   lookup, namespace std is an associated namespace.
1339      }
1340
1341      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1342                                            BEF_begin, BeginNameInfo,
1343                                            BeginMemberLookup, RangeRef.get());
1344      if (BeginExpr.isInvalid())
1345        return StmtError();
1346
1347      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1348                                          BEF_end, EndNameInfo,
1349                                          EndMemberLookup, RangeRef.get());
1350      if (EndExpr.isInvalid())
1351        return StmtError();
1352    }
1353
1354    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1355    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1356    if (!Context.hasSameType(BeginType, EndType)) {
1357      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1358        << BeginType << EndType;
1359      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1360      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1361    }
1362
1363    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1364    // Claim the type doesn't contain auto: we've already done the checking.
1365    DeclGroupPtrTy BeginEndGroup =
1366      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1367    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1368
1369    ExprResult BeginRef = BuildDeclRefExpr(BeginVar,
1370                                           BeginType.getNonReferenceType(),
1371                                           VK_LValue, ColonLoc);
1372    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1373                                         VK_LValue, ColonLoc);
1374
1375    // Build and check __begin != __end expression.
1376    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1377                           BeginRef.get(), EndRef.get());
1378    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1379    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1380    if (NotEqExpr.isInvalid()) {
1381      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1382      if (!Context.hasSameType(BeginType, EndType))
1383        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1384      return StmtError();
1385    }
1386
1387    // Build and check ++__begin expression.
1388    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1389    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1390    if (IncrExpr.isInvalid()) {
1391      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1392      return StmtError();
1393    }
1394
1395    // Build and check *__begin  expression.
1396    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1397    if (DerefExpr.isInvalid()) {
1398      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1399      return StmtError();
1400    }
1401
1402    // Attach  *__begin  as initializer for VD.
1403    if (!LoopVar->isInvalidDecl()) {
1404      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1405                           /*TypeMayContainAuto=*/true);
1406      if (LoopVar->isInvalidDecl())
1407        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1408    }
1409  } else {
1410    // The range is implicitly used as a placeholder when it is dependent.
1411    RangeVar->setUsed();
1412  }
1413
1414  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1415                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1416                                             NotEqExpr.take(), IncrExpr.take(),
1417                                             LoopVarDS, /*Body=*/0, ForLoc,
1418                                             ColonLoc, RParenLoc));
1419}
1420
1421/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1422/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1423/// body cannot be performed until after the type of the range variable is
1424/// determined.
1425StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1426  if (!S || !B)
1427    return StmtError();
1428
1429  cast<CXXForRangeStmt>(S)->setBody(B);
1430  return S;
1431}
1432
1433StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1434                               SourceLocation LabelLoc,
1435                               LabelDecl *TheDecl) {
1436  getCurFunction()->setHasBranchIntoScope();
1437  TheDecl->setUsed();
1438  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1439}
1440
1441StmtResult
1442Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1443                            Expr *E) {
1444  // Convert operand to void*
1445  if (!E->isTypeDependent()) {
1446    QualType ETy = E->getType();
1447    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1448    ExprResult ExprRes = Owned(E);
1449    AssignConvertType ConvTy =
1450      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1451    if (ExprRes.isInvalid())
1452      return StmtError();
1453    E = ExprRes.take();
1454    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1455      return StmtError();
1456  }
1457
1458  getCurFunction()->setHasIndirectGoto();
1459
1460  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1461}
1462
1463StmtResult
1464Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1465  Scope *S = CurScope->getContinueParent();
1466  if (!S) {
1467    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1468    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1469  }
1470
1471  return Owned(new (Context) ContinueStmt(ContinueLoc));
1472}
1473
1474StmtResult
1475Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1476  Scope *S = CurScope->getBreakParent();
1477  if (!S) {
1478    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1479    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1480  }
1481
1482  return Owned(new (Context) BreakStmt(BreakLoc));
1483}
1484
1485/// \brief Determine whether the given expression is a candidate for
1486/// copy elision in either a return statement or a throw expression.
1487///
1488/// \param ReturnType If we're determining the copy elision candidate for
1489/// a return statement, this is the return type of the function. If we're
1490/// determining the copy elision candidate for a throw expression, this will
1491/// be a NULL type.
1492///
1493/// \param E The expression being returned from the function or block, or
1494/// being thrown.
1495///
1496/// \param AllowFunctionParameter Whether we allow function parameters to
1497/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1498/// we re-use this logic to determine whether we should try to move as part of
1499/// a return or throw (which does allow function parameters).
1500///
1501/// \returns The NRVO candidate variable, if the return statement may use the
1502/// NRVO, or NULL if there is no such candidate.
1503const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1504                                             Expr *E,
1505                                             bool AllowFunctionParameter) {
1506  QualType ExprType = E->getType();
1507  // - in a return statement in a function with ...
1508  // ... a class return type ...
1509  if (!ReturnType.isNull()) {
1510    if (!ReturnType->isRecordType())
1511      return 0;
1512    // ... the same cv-unqualified type as the function return type ...
1513    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1514      return 0;
1515  }
1516
1517  // ... the expression is the name of a non-volatile automatic object
1518  // (other than a function or catch-clause parameter)) ...
1519  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1520  if (!DR)
1521    return 0;
1522  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1523  if (!VD)
1524    return 0;
1525
1526  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1527      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1528      !VD->getType().isVolatileQualified() &&
1529      ((VD->getKind() == Decl::Var) ||
1530       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1531    return VD;
1532
1533  return 0;
1534}
1535
1536/// \brief Perform the initialization of a potentially-movable value, which
1537/// is the result of return value.
1538///
1539/// This routine implements C++0x [class.copy]p33, which attempts to treat
1540/// returned lvalues as rvalues in certain cases (to prefer move construction),
1541/// then falls back to treating them as lvalues if that failed.
1542ExprResult
1543Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1544                                      const VarDecl *NRVOCandidate,
1545                                      QualType ResultType,
1546                                      Expr *Value,
1547                                      bool AllowNRVO) {
1548  // C++0x [class.copy]p33:
1549  //   When the criteria for elision of a copy operation are met or would
1550  //   be met save for the fact that the source object is a function
1551  //   parameter, and the object to be copied is designated by an lvalue,
1552  //   overload resolution to select the constructor for the copy is first
1553  //   performed as if the object were designated by an rvalue.
1554  ExprResult Res = ExprError();
1555  if (AllowNRVO &&
1556      (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
1557    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1558                              Value->getType(), CK_LValueToRValue,
1559                              Value, VK_XValue);
1560
1561    Expr *InitExpr = &AsRvalue;
1562    InitializationKind Kind
1563      = InitializationKind::CreateCopy(Value->getLocStart(),
1564                                       Value->getLocStart());
1565    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1566
1567    //   [...] If overload resolution fails, or if the type of the first
1568    //   parameter of the selected constructor is not an rvalue reference
1569    //   to the object's type (possibly cv-qualified), overload resolution
1570    //   is performed again, considering the object as an lvalue.
1571    if (Seq) {
1572      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1573           StepEnd = Seq.step_end();
1574           Step != StepEnd; ++Step) {
1575        if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
1576          continue;
1577
1578        CXXConstructorDecl *Constructor
1579        = cast<CXXConstructorDecl>(Step->Function.Function);
1580
1581        const RValueReferenceType *RRefType
1582          = Constructor->getParamDecl(0)->getType()
1583                                                 ->getAs<RValueReferenceType>();
1584
1585        // If we don't meet the criteria, break out now.
1586        if (!RRefType ||
1587            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1588                            Context.getTypeDeclType(Constructor->getParent())))
1589          break;
1590
1591        // Promote "AsRvalue" to the heap, since we now need this
1592        // expression node to persist.
1593        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1594                                         CK_LValueToRValue, Value, 0,
1595                                         VK_XValue);
1596
1597        // Complete type-checking the initialization of the return type
1598        // using the constructor we found.
1599        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1600      }
1601    }
1602  }
1603
1604  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1605  // above, or overload resolution failed. Either way, we need to try
1606  // (again) now with the return value expression as written.
1607  if (Res.isInvalid())
1608    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1609
1610  return Res;
1611}
1612
1613/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1614///
1615StmtResult
1616Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1617  // If this is the first return we've seen in the block, infer the type of
1618  // the block from it.
1619  BlockScopeInfo *CurBlock = getCurBlock();
1620  if (CurBlock->ReturnType.isNull()) {
1621    if (RetValExp) {
1622      // Don't call UsualUnaryConversions(), since we don't want to do
1623      // integer promotions here.
1624      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1625      if (Result.isInvalid())
1626        return StmtError();
1627      RetValExp = Result.take();
1628
1629      if (!RetValExp->isTypeDependent()) {
1630        CurBlock->ReturnType = RetValExp->getType();
1631        if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1632          // We have to remove a 'const' added to copied-in variable which was
1633          // part of the implementation spec. and not the actual qualifier for
1634          // the variable.
1635          if (CDRE->isConstQualAdded())
1636            CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1637        }
1638      } else
1639        CurBlock->ReturnType = Context.DependentTy;
1640    } else
1641      CurBlock->ReturnType = Context.VoidTy;
1642  }
1643  QualType FnRetType = CurBlock->ReturnType;
1644
1645  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1646    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1647      << getCurFunctionOrMethodDecl()->getDeclName();
1648    return StmtError();
1649  }
1650
1651  // Otherwise, verify that this result type matches the previous one.  We are
1652  // pickier with blocks than for normal functions because we don't have GCC
1653  // compatibility to worry about here.
1654  ReturnStmt *Result = 0;
1655  if (CurBlock->ReturnType->isVoidType()) {
1656    if (RetValExp && !RetValExp->isTypeDependent() &&
1657        (!getLangOptions().CPlusPlus || !RetValExp->getType()->isVoidType())) {
1658      Diag(ReturnLoc, diag::err_return_block_has_expr);
1659      RetValExp = 0;
1660    }
1661    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1662  } else if (!RetValExp) {
1663    if (!CurBlock->ReturnType->isDependentType())
1664      return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1665
1666    Result = new (Context) ReturnStmt(ReturnLoc, 0, 0);
1667  } else {
1668    const VarDecl *NRVOCandidate = 0;
1669
1670    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1671      // we have a non-void block with an expression, continue checking
1672
1673      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1674      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1675      // function return.
1676
1677      // In C++ the return statement is handled via a copy initialization.
1678      // the C version of which boils down to CheckSingleAssignmentConstraints.
1679      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1680      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1681                                                                     FnRetType,
1682                                                           NRVOCandidate != 0);
1683      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1684                                                       FnRetType, RetValExp);
1685      if (Res.isInvalid()) {
1686        // FIXME: Cleanup temporaries here, anyway?
1687        return StmtError();
1688      }
1689
1690      if (RetValExp) {
1691        CheckImplicitConversions(RetValExp, ReturnLoc);
1692        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1693      }
1694
1695      RetValExp = Res.takeAs<Expr>();
1696      if (RetValExp)
1697        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1698    }
1699
1700    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1701  }
1702
1703  // If we need to check for the named return value optimization, save the
1704  // return statement in our scope for later processing.
1705  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1706      !CurContext->isDependentContext())
1707    FunctionScopes.back()->Returns.push_back(Result);
1708
1709  return Owned(Result);
1710}
1711
1712StmtResult
1713Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1714  // Check for unexpanded parameter packs.
1715  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1716    return StmtError();
1717
1718  if (getCurBlock())
1719    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1720
1721  QualType FnRetType;
1722  QualType DeclaredRetType;
1723  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1724    FnRetType = FD->getResultType();
1725    DeclaredRetType = FnRetType;
1726    if (FD->hasAttr<NoReturnAttr>() ||
1727        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1728      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1729        << getCurFunctionOrMethodDecl()->getDeclName();
1730  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1731    DeclaredRetType = MD->getResultType();
1732    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
1733      // In the implementation of a method with a related return type, the
1734      // type used to type-check the validity of return statements within the
1735      // method body is a pointer to the type of the class being implemented.
1736      FnRetType = Context.getObjCInterfaceType(MD->getClassInterface());
1737      FnRetType = Context.getObjCObjectPointerType(FnRetType);
1738    } else {
1739      FnRetType = DeclaredRetType;
1740    }
1741  } else // If we don't have a function/method context, bail.
1742    return StmtError();
1743
1744  ReturnStmt *Result = 0;
1745  if (FnRetType->isVoidType()) {
1746    if (RetValExp) {
1747      if (!RetValExp->isTypeDependent()) {
1748        // C99 6.8.6.4p1 (ext_ since GCC warns)
1749        unsigned D = diag::ext_return_has_expr;
1750        if (RetValExp->getType()->isVoidType())
1751          D = diag::ext_return_has_void_expr;
1752        else {
1753          ExprResult Result = Owned(RetValExp);
1754          Result = IgnoredValueConversions(Result.take());
1755          if (Result.isInvalid())
1756            return StmtError();
1757          RetValExp = Result.take();
1758          RetValExp = ImpCastExprToType(RetValExp,
1759                                        Context.VoidTy, CK_ToVoid).take();
1760        }
1761
1762        // return (some void expression); is legal in C++.
1763        if (D != diag::ext_return_has_void_expr ||
1764            !getLangOptions().CPlusPlus) {
1765          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1766
1767          int FunctionKind = 0;
1768          if (isa<ObjCMethodDecl>(CurDecl))
1769            FunctionKind = 1;
1770          else if (isa<CXXConstructorDecl>(CurDecl))
1771            FunctionKind = 2;
1772          else if (isa<CXXDestructorDecl>(CurDecl))
1773            FunctionKind = 3;
1774
1775          Diag(ReturnLoc, D)
1776            << CurDecl->getDeclName() << FunctionKind
1777            << RetValExp->getSourceRange();
1778        }
1779      }
1780
1781      CheckImplicitConversions(RetValExp, ReturnLoc);
1782      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1783    }
1784
1785    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1786  } else if (!RetValExp && !FnRetType->isDependentType()) {
1787    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1788    // C99 6.8.6.4p1 (ext_ since GCC warns)
1789    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1790
1791    if (FunctionDecl *FD = getCurFunctionDecl())
1792      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1793    else
1794      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1795    Result = new (Context) ReturnStmt(ReturnLoc);
1796  } else {
1797    const VarDecl *NRVOCandidate = 0;
1798    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1799      // we have a non-void function with an expression, continue checking
1800
1801      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1802      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1803      // function return.
1804
1805      // In C++ the return statement is handled via a copy initialization,
1806      // the C version of which boils down to CheckSingleAssignmentConstraints.
1807      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1808      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1809                                                                     FnRetType,
1810                                                            NRVOCandidate != 0);
1811      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1812                                                       FnRetType, RetValExp);
1813      if (Res.isInvalid()) {
1814        // FIXME: Cleanup temporaries here, anyway?
1815        return StmtError();
1816      }
1817
1818      RetValExp = Res.takeAs<Expr>();
1819      if (RetValExp)
1820        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1821    }
1822
1823    if (RetValExp) {
1824      // If we type-checked an Objective-C method's return type based
1825      // on a related return type, we may need to adjust the return
1826      // type again. Do so now.
1827      if (DeclaredRetType != FnRetType) {
1828        ExprResult result = PerformImplicitConversion(RetValExp,
1829                                                      DeclaredRetType,
1830                                                      AA_Returning);
1831        if (result.isInvalid()) return StmtError();
1832        RetValExp = result.take();
1833      }
1834
1835      CheckImplicitConversions(RetValExp, ReturnLoc);
1836      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1837    }
1838    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1839  }
1840
1841  // If we need to check for the named return value optimization, save the
1842  // return statement in our scope for later processing.
1843  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1844      !CurContext->isDependentContext())
1845    FunctionScopes.back()->Returns.push_back(Result);
1846
1847  return Owned(Result);
1848}
1849
1850/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1851/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1852/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1853/// provide a strong guidance to not use it.
1854///
1855/// This method checks to see if the argument is an acceptable l-value and
1856/// returns false if it is a case we can handle.
1857static bool CheckAsmLValue(const Expr *E, Sema &S) {
1858  // Type dependent expressions will be checked during instantiation.
1859  if (E->isTypeDependent())
1860    return false;
1861
1862  if (E->isLValue())
1863    return false;  // Cool, this is an lvalue.
1864
1865  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1866  // are supposed to allow.
1867  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1868  if (E != E2 && E2->isLValue()) {
1869    if (!S.getLangOptions().HeinousExtensions)
1870      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1871        << E->getSourceRange();
1872    else
1873      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1874        << E->getSourceRange();
1875    // Accept, even if we emitted an error diagnostic.
1876    return false;
1877  }
1878
1879  // None of the above, just randomly invalid non-lvalue.
1880  return true;
1881}
1882
1883/// isOperandMentioned - Return true if the specified operand # is mentioned
1884/// anywhere in the decomposed asm string.
1885static bool isOperandMentioned(unsigned OpNo,
1886                         llvm::ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
1887  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
1888    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
1889    if (!Piece.isOperand()) continue;
1890
1891    // If this is a reference to the input and if the input was the smaller
1892    // one, then we have to reject this asm.
1893    if (Piece.getOperandNo() == OpNo)
1894      return true;
1895  }
1896
1897  return false;
1898}
1899
1900StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1901                              bool IsVolatile, unsigned NumOutputs,
1902                              unsigned NumInputs, IdentifierInfo **Names,
1903                              MultiExprArg constraints, MultiExprArg exprs,
1904                              Expr *asmString, MultiExprArg clobbers,
1905                              SourceLocation RParenLoc, bool MSAsm) {
1906  unsigned NumClobbers = clobbers.size();
1907  StringLiteral **Constraints =
1908    reinterpret_cast<StringLiteral**>(constraints.get());
1909  Expr **Exprs = exprs.get();
1910  StringLiteral *AsmString = cast<StringLiteral>(asmString);
1911  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1912
1913  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1914
1915  // The parser verifies that there is a string literal here.
1916  if (AsmString->isWide())
1917    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1918      << AsmString->getSourceRange());
1919
1920  for (unsigned i = 0; i != NumOutputs; i++) {
1921    StringLiteral *Literal = Constraints[i];
1922    if (Literal->isWide())
1923      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1924        << Literal->getSourceRange());
1925
1926    llvm::StringRef OutputName;
1927    if (Names[i])
1928      OutputName = Names[i]->getName();
1929
1930    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1931    if (!Context.Target.validateOutputConstraint(Info))
1932      return StmtError(Diag(Literal->getLocStart(),
1933                            diag::err_asm_invalid_output_constraint)
1934                       << Info.getConstraintStr());
1935
1936    // Check that the output exprs are valid lvalues.
1937    Expr *OutputExpr = Exprs[i];
1938    if (CheckAsmLValue(OutputExpr, *this)) {
1939      return StmtError(Diag(OutputExpr->getLocStart(),
1940                  diag::err_asm_invalid_lvalue_in_output)
1941        << OutputExpr->getSourceRange());
1942    }
1943
1944    OutputConstraintInfos.push_back(Info);
1945  }
1946
1947  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1948
1949  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1950    StringLiteral *Literal = Constraints[i];
1951    if (Literal->isWide())
1952      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1953        << Literal->getSourceRange());
1954
1955    llvm::StringRef InputName;
1956    if (Names[i])
1957      InputName = Names[i]->getName();
1958
1959    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1960    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1961                                                NumOutputs, Info)) {
1962      return StmtError(Diag(Literal->getLocStart(),
1963                            diag::err_asm_invalid_input_constraint)
1964                       << Info.getConstraintStr());
1965    }
1966
1967    Expr *InputExpr = Exprs[i];
1968
1969    // Only allow void types for memory constraints.
1970    if (Info.allowsMemory() && !Info.allowsRegister()) {
1971      if (CheckAsmLValue(InputExpr, *this))
1972        return StmtError(Diag(InputExpr->getLocStart(),
1973                              diag::err_asm_invalid_lvalue_in_input)
1974                         << Info.getConstraintStr()
1975                         << InputExpr->getSourceRange());
1976    }
1977
1978    if (Info.allowsRegister()) {
1979      if (InputExpr->getType()->isVoidType()) {
1980        return StmtError(Diag(InputExpr->getLocStart(),
1981                              diag::err_asm_invalid_type_in_input)
1982          << InputExpr->getType() << Info.getConstraintStr()
1983          << InputExpr->getSourceRange());
1984      }
1985    }
1986
1987    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
1988    if (Result.isInvalid())
1989      return StmtError();
1990
1991    Exprs[i] = Result.take();
1992    InputConstraintInfos.push_back(Info);
1993  }
1994
1995  // Check that the clobbers are valid.
1996  for (unsigned i = 0; i != NumClobbers; i++) {
1997    StringLiteral *Literal = Clobbers[i];
1998    if (Literal->isWide())
1999      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
2000        << Literal->getSourceRange());
2001
2002    llvm::StringRef Clobber = Literal->getString();
2003
2004    if (!Context.Target.isValidClobber(Clobber))
2005      return StmtError(Diag(Literal->getLocStart(),
2006                  diag::err_asm_unknown_register_name) << Clobber);
2007  }
2008
2009  AsmStmt *NS =
2010    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
2011                          NumOutputs, NumInputs, Names, Constraints, Exprs,
2012                          AsmString, NumClobbers, Clobbers, RParenLoc);
2013  // Validate the asm string, ensuring it makes sense given the operands we
2014  // have.
2015  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
2016  unsigned DiagOffs;
2017  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
2018    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
2019           << AsmString->getSourceRange();
2020    return StmtError();
2021  }
2022
2023  // Validate tied input operands for type mismatches.
2024  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
2025    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2026
2027    // If this is a tied constraint, verify that the output and input have
2028    // either exactly the same type, or that they are int/ptr operands with the
2029    // same size (int/long, int*/long, are ok etc).
2030    if (!Info.hasTiedOperand()) continue;
2031
2032    unsigned TiedTo = Info.getTiedOperand();
2033    unsigned InputOpNo = i+NumOutputs;
2034    Expr *OutputExpr = Exprs[TiedTo];
2035    Expr *InputExpr = Exprs[InputOpNo];
2036    QualType InTy = InputExpr->getType();
2037    QualType OutTy = OutputExpr->getType();
2038    if (Context.hasSameType(InTy, OutTy))
2039      continue;  // All types can be tied to themselves.
2040
2041    // Decide if the input and output are in the same domain (integer/ptr or
2042    // floating point.
2043    enum AsmDomain {
2044      AD_Int, AD_FP, AD_Other
2045    } InputDomain, OutputDomain;
2046
2047    if (InTy->isIntegerType() || InTy->isPointerType())
2048      InputDomain = AD_Int;
2049    else if (InTy->isRealFloatingType())
2050      InputDomain = AD_FP;
2051    else
2052      InputDomain = AD_Other;
2053
2054    if (OutTy->isIntegerType() || OutTy->isPointerType())
2055      OutputDomain = AD_Int;
2056    else if (OutTy->isRealFloatingType())
2057      OutputDomain = AD_FP;
2058    else
2059      OutputDomain = AD_Other;
2060
2061    // They are ok if they are the same size and in the same domain.  This
2062    // allows tying things like:
2063    //   void* to int*
2064    //   void* to int            if they are the same size.
2065    //   double to long double   if they are the same size.
2066    //
2067    uint64_t OutSize = Context.getTypeSize(OutTy);
2068    uint64_t InSize = Context.getTypeSize(InTy);
2069    if (OutSize == InSize && InputDomain == OutputDomain &&
2070        InputDomain != AD_Other)
2071      continue;
2072
2073    // If the smaller input/output operand is not mentioned in the asm string,
2074    // then we can promote the smaller one to a larger input and the asm string
2075    // won't notice.
2076    bool SmallerValueMentioned = false;
2077
2078    // If this is a reference to the input and if the input was the smaller
2079    // one, then we have to reject this asm.
2080    if (isOperandMentioned(InputOpNo, Pieces)) {
2081      // This is a use in the asm string of the smaller operand.  Since we
2082      // codegen this by promoting to a wider value, the asm will get printed
2083      // "wrong".
2084      SmallerValueMentioned |= InSize < OutSize;
2085    }
2086    if (isOperandMentioned(TiedTo, Pieces)) {
2087      // If this is a reference to the output, and if the output is the larger
2088      // value, then it's ok because we'll promote the input to the larger type.
2089      SmallerValueMentioned |= OutSize < InSize;
2090    }
2091
2092    // If the smaller value wasn't mentioned in the asm string, and if the
2093    // output was a register, just extend the shorter one to the size of the
2094    // larger one.
2095    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2096        OutputConstraintInfos[TiedTo].allowsRegister())
2097      continue;
2098
2099    // Either both of the operands were mentioned or the smaller one was
2100    // mentioned.  One more special case that we'll allow: if the tied input is
2101    // integer, unmentioned, and is a constant, then we'll allow truncating it
2102    // down to the size of the destination.
2103    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2104        !isOperandMentioned(InputOpNo, Pieces) &&
2105        InputExpr->isEvaluatable(Context)) {
2106      CastKind castKind =
2107        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2108      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2109      Exprs[InputOpNo] = InputExpr;
2110      NS->setInputExpr(i, InputExpr);
2111      continue;
2112    }
2113
2114    Diag(InputExpr->getLocStart(),
2115         diag::err_asm_tying_incompatible_types)
2116      << InTy << OutTy << OutputExpr->getSourceRange()
2117      << InputExpr->getSourceRange();
2118    return StmtError();
2119  }
2120
2121  return Owned(NS);
2122}
2123
2124StmtResult
2125Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2126                           SourceLocation RParen, Decl *Parm,
2127                           Stmt *Body) {
2128  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2129  if (Var && Var->isInvalidDecl())
2130    return StmtError();
2131
2132  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2133}
2134
2135StmtResult
2136Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2137  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2138}
2139
2140StmtResult
2141Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2142                         MultiStmtArg CatchStmts, Stmt *Finally) {
2143  if (!getLangOptions().ObjCExceptions)
2144    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2145
2146  getCurFunction()->setHasBranchProtectedScope();
2147  unsigned NumCatchStmts = CatchStmts.size();
2148  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2149                                     CatchStmts.release(),
2150                                     NumCatchStmts,
2151                                     Finally));
2152}
2153
2154StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2155                                                  Expr *Throw) {
2156  if (Throw) {
2157    Throw = MaybeCreateExprWithCleanups(Throw);
2158    ExprResult Result = DefaultLvalueConversion(Throw);
2159    if (Result.isInvalid())
2160      return StmtError();
2161
2162    Throw = Result.take();
2163    QualType ThrowType = Throw->getType();
2164    // Make sure the expression type is an ObjC pointer or "void *".
2165    if (!ThrowType->isDependentType() &&
2166        !ThrowType->isObjCObjectPointerType()) {
2167      const PointerType *PT = ThrowType->getAs<PointerType>();
2168      if (!PT || !PT->getPointeeType()->isVoidType())
2169        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2170                         << Throw->getType() << Throw->getSourceRange());
2171    }
2172  }
2173
2174  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2175}
2176
2177StmtResult
2178Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2179                           Scope *CurScope) {
2180  if (!getLangOptions().ObjCExceptions)
2181    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2182
2183  if (!Throw) {
2184    // @throw without an expression designates a rethrow (which much occur
2185    // in the context of an @catch clause).
2186    Scope *AtCatchParent = CurScope;
2187    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2188      AtCatchParent = AtCatchParent->getParent();
2189    if (!AtCatchParent)
2190      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2191  }
2192
2193  return BuildObjCAtThrowStmt(AtLoc, Throw);
2194}
2195
2196StmtResult
2197Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2198                                  Stmt *SyncBody) {
2199  getCurFunction()->setHasBranchProtectedScope();
2200
2201  ExprResult Result = DefaultLvalueConversion(SyncExpr);
2202  if (Result.isInvalid())
2203    return StmtError();
2204
2205  SyncExpr = Result.take();
2206  // Make sure the expression type is an ObjC pointer or "void *".
2207  if (!SyncExpr->getType()->isDependentType() &&
2208      !SyncExpr->getType()->isObjCObjectPointerType()) {
2209    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
2210    if (!PT || !PT->getPointeeType()->isVoidType())
2211      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
2212                       << SyncExpr->getType() << SyncExpr->getSourceRange());
2213  }
2214
2215  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2216}
2217
2218/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2219/// and creates a proper catch handler from them.
2220StmtResult
2221Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2222                         Stmt *HandlerBlock) {
2223  // There's nothing to test that ActOnExceptionDecl didn't already test.
2224  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2225                                          cast_or_null<VarDecl>(ExDecl),
2226                                          HandlerBlock));
2227}
2228
2229StmtResult
2230Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
2231  getCurFunction()->setHasBranchProtectedScope();
2232  return Owned(new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body));
2233}
2234
2235namespace {
2236
2237class TypeWithHandler {
2238  QualType t;
2239  CXXCatchStmt *stmt;
2240public:
2241  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2242  : t(type), stmt(statement) {}
2243
2244  // An arbitrary order is fine as long as it places identical
2245  // types next to each other.
2246  bool operator<(const TypeWithHandler &y) const {
2247    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2248      return true;
2249    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2250      return false;
2251    else
2252      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2253  }
2254
2255  bool operator==(const TypeWithHandler& other) const {
2256    return t == other.t;
2257  }
2258
2259  CXXCatchStmt *getCatchStmt() const { return stmt; }
2260  SourceLocation getTypeSpecStartLoc() const {
2261    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2262  }
2263};
2264
2265}
2266
2267/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2268/// handlers and creates a try statement from them.
2269StmtResult
2270Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2271                       MultiStmtArg RawHandlers) {
2272  // Don't report an error if 'try' is used in system headers.
2273  if (!getLangOptions().CXXExceptions &&
2274      !getSourceManager().isInSystemHeader(TryLoc))
2275      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2276
2277  unsigned NumHandlers = RawHandlers.size();
2278  assert(NumHandlers > 0 &&
2279         "The parser shouldn't call this if there are no handlers.");
2280  Stmt **Handlers = RawHandlers.get();
2281
2282  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2283
2284  for (unsigned i = 0; i < NumHandlers; ++i) {
2285    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
2286    if (!Handler->getExceptionDecl()) {
2287      if (i < NumHandlers - 1)
2288        return StmtError(Diag(Handler->getLocStart(),
2289                              diag::err_early_catch_all));
2290
2291      continue;
2292    }
2293
2294    const QualType CaughtType = Handler->getCaughtType();
2295    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2296    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2297  }
2298
2299  // Detect handlers for the same type as an earlier one.
2300  if (NumHandlers > 1) {
2301    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2302
2303    TypeWithHandler prev = TypesWithHandlers[0];
2304    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2305      TypeWithHandler curr = TypesWithHandlers[i];
2306
2307      if (curr == prev) {
2308        Diag(curr.getTypeSpecStartLoc(),
2309             diag::warn_exception_caught_by_earlier_handler)
2310          << curr.getCatchStmt()->getCaughtType().getAsString();
2311        Diag(prev.getTypeSpecStartLoc(),
2312             diag::note_previous_exception_handler)
2313          << prev.getCatchStmt()->getCaughtType().getAsString();
2314      }
2315
2316      prev = curr;
2317    }
2318  }
2319
2320  getCurFunction()->setHasBranchProtectedScope();
2321
2322  // FIXME: We should detect handlers that cannot catch anything because an
2323  // earlier handler catches a superclass. Need to find a method that is not
2324  // quadratic for this.
2325  // Neither of these are explicitly forbidden, but every compiler detects them
2326  // and warns.
2327
2328  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2329                                  Handlers, NumHandlers));
2330}
2331
2332StmtResult
2333Sema::ActOnSEHTryBlock(bool IsCXXTry,
2334                       SourceLocation TryLoc,
2335                       Stmt *TryBlock,
2336                       Stmt *Handler) {
2337  assert(TryBlock && Handler);
2338
2339  getCurFunction()->setHasBranchProtectedScope();
2340
2341  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2342}
2343
2344StmtResult
2345Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2346                          Expr *FilterExpr,
2347                          Stmt *Block) {
2348  assert(FilterExpr && Block);
2349
2350  if(!FilterExpr->getType()->isIntegerType()) {
2351    return StmtError(Diag(FilterExpr->getExprLoc(),
2352                     diag::err_filter_expression_integral)
2353                     << FilterExpr->getType());
2354  }
2355
2356  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2357}
2358
2359StmtResult
2360Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2361                           Stmt *Block) {
2362  assert(Block);
2363  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2364}
2365