SemaTemplate.cpp revision 2d88708cbe4e4ec5e04e4acb6bd7f5be68557379
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ParsedTemplate.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "llvm/ADT/StringExtras.h"
28using namespace clang;
29using namespace sema;
30
31/// \brief Determine whether the declaration found is acceptable as the name
32/// of a template and, if so, return that template declaration. Otherwise,
33/// returns NULL.
34static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
35                                           NamedDecl *Orig) {
36  NamedDecl *D = Orig->getUnderlyingDecl();
37
38  if (isa<TemplateDecl>(D))
39    return Orig;
40
41  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
42    // C++ [temp.local]p1:
43    //   Like normal (non-template) classes, class templates have an
44    //   injected-class-name (Clause 9). The injected-class-name
45    //   can be used with or without a template-argument-list. When
46    //   it is used without a template-argument-list, it is
47    //   equivalent to the injected-class-name followed by the
48    //   template-parameters of the class template enclosed in
49    //   <>. When it is used with a template-argument-list, it
50    //   refers to the specified class template specialization,
51    //   which could be the current specialization or another
52    //   specialization.
53    if (Record->isInjectedClassName()) {
54      Record = cast<CXXRecordDecl>(Record->getDeclContext());
55      if (Record->getDescribedClassTemplate())
56        return Record->getDescribedClassTemplate();
57
58      if (ClassTemplateSpecializationDecl *Spec
59            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
60        return Spec->getSpecializedTemplate();
61    }
62
63    return 0;
64  }
65
66  return 0;
67}
68
69static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
70  // The set of class templates we've already seen.
71  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
72  LookupResult::Filter filter = R.makeFilter();
73  while (filter.hasNext()) {
74    NamedDecl *Orig = filter.next();
75    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
76    if (!Repl)
77      filter.erase();
78    else if (Repl != Orig) {
79
80      // C++ [temp.local]p3:
81      //   A lookup that finds an injected-class-name (10.2) can result in an
82      //   ambiguity in certain cases (for example, if it is found in more than
83      //   one base class). If all of the injected-class-names that are found
84      //   refer to specializations of the same class template, and if the name
85      //   is followed by a template-argument-list, the reference refers to the
86      //   class template itself and not a specialization thereof, and is not
87      //   ambiguous.
88      //
89      // FIXME: Will we eventually have to do the same for alias templates?
90      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
91        if (!ClassTemplates.insert(ClassTmpl)) {
92          filter.erase();
93          continue;
94        }
95
96      // FIXME: we promote access to public here as a workaround to
97      // the fact that LookupResult doesn't let us remember that we
98      // found this template through a particular injected class name,
99      // which means we end up doing nasty things to the invariants.
100      // Pretending that access is public is *much* safer.
101      filter.replace(Repl, AS_public);
102    }
103  }
104  filter.done();
105}
106
107TemplateNameKind Sema::isTemplateName(Scope *S,
108                                      CXXScopeSpec &SS,
109                                      bool hasTemplateKeyword,
110                                      UnqualifiedId &Name,
111                                      ParsedType ObjectTypePtr,
112                                      bool EnteringContext,
113                                      TemplateTy &TemplateResult,
114                                      bool &MemberOfUnknownSpecialization) {
115  assert(getLangOptions().CPlusPlus && "No template names in C!");
116
117  DeclarationName TName;
118  MemberOfUnknownSpecialization = false;
119
120  switch (Name.getKind()) {
121  case UnqualifiedId::IK_Identifier:
122    TName = DeclarationName(Name.Identifier);
123    break;
124
125  case UnqualifiedId::IK_OperatorFunctionId:
126    TName = Context.DeclarationNames.getCXXOperatorName(
127                                              Name.OperatorFunctionId.Operator);
128    break;
129
130  case UnqualifiedId::IK_LiteralOperatorId:
131    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
132    break;
133
134  default:
135    return TNK_Non_template;
136  }
137
138  QualType ObjectType = ObjectTypePtr.get();
139
140  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
141                 LookupOrdinaryName);
142  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
143                     MemberOfUnknownSpecialization);
144  if (R.empty() || R.isAmbiguous()) {
145    R.suppressDiagnostics();
146    return TNK_Non_template;
147  }
148
149  TemplateName Template;
150  TemplateNameKind TemplateKind;
151
152  unsigned ResultCount = R.end() - R.begin();
153  if (ResultCount > 1) {
154    // We assume that we'll preserve the qualifier from a function
155    // template name in other ways.
156    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
157    TemplateKind = TNK_Function_template;
158
159    // We'll do this lookup again later.
160    R.suppressDiagnostics();
161  } else {
162    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
163
164    if (SS.isSet() && !SS.isInvalid()) {
165      NestedNameSpecifier *Qualifier
166        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
167      Template = Context.getQualifiedTemplateName(Qualifier,
168                                                  hasTemplateKeyword, TD);
169    } else {
170      Template = TemplateName(TD);
171    }
172
173    if (isa<FunctionTemplateDecl>(TD)) {
174      TemplateKind = TNK_Function_template;
175
176      // We'll do this lookup again later.
177      R.suppressDiagnostics();
178    } else {
179      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
180      TemplateKind = TNK_Type_template;
181    }
182  }
183
184  TemplateResult = TemplateTy::make(Template);
185  return TemplateKind;
186}
187
188bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
189                                       SourceLocation IILoc,
190                                       Scope *S,
191                                       const CXXScopeSpec *SS,
192                                       TemplateTy &SuggestedTemplate,
193                                       TemplateNameKind &SuggestedKind) {
194  // We can't recover unless there's a dependent scope specifier preceding the
195  // template name.
196  // FIXME: Typo correction?
197  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
198      computeDeclContext(*SS))
199    return false;
200
201  // The code is missing a 'template' keyword prior to the dependent template
202  // name.
203  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
204  Diag(IILoc, diag::err_template_kw_missing)
205    << Qualifier << II.getName()
206    << FixItHint::CreateInsertion(IILoc, "template ");
207  SuggestedTemplate
208    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
209  SuggestedKind = TNK_Dependent_template_name;
210  return true;
211}
212
213void Sema::LookupTemplateName(LookupResult &Found,
214                              Scope *S, CXXScopeSpec &SS,
215                              QualType ObjectType,
216                              bool EnteringContext,
217                              bool &MemberOfUnknownSpecialization) {
218  // Determine where to perform name lookup
219  MemberOfUnknownSpecialization = false;
220  DeclContext *LookupCtx = 0;
221  bool isDependent = false;
222  if (!ObjectType.isNull()) {
223    // This nested-name-specifier occurs in a member access expression, e.g.,
224    // x->B::f, and we are looking into the type of the object.
225    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
226    LookupCtx = computeDeclContext(ObjectType);
227    isDependent = ObjectType->isDependentType();
228    assert((isDependent || !ObjectType->isIncompleteType()) &&
229           "Caller should have completed object type");
230  } else if (SS.isSet()) {
231    // This nested-name-specifier occurs after another nested-name-specifier,
232    // so long into the context associated with the prior nested-name-specifier.
233    LookupCtx = computeDeclContext(SS, EnteringContext);
234    isDependent = isDependentScopeSpecifier(SS);
235
236    // The declaration context must be complete.
237    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
238      return;
239  }
240
241  bool ObjectTypeSearchedInScope = false;
242  if (LookupCtx) {
243    // Perform "qualified" name lookup into the declaration context we
244    // computed, which is either the type of the base of a member access
245    // expression or the declaration context associated with a prior
246    // nested-name-specifier.
247    LookupQualifiedName(Found, LookupCtx);
248
249    if (!ObjectType.isNull() && Found.empty()) {
250      // C++ [basic.lookup.classref]p1:
251      //   In a class member access expression (5.2.5), if the . or -> token is
252      //   immediately followed by an identifier followed by a <, the
253      //   identifier must be looked up to determine whether the < is the
254      //   beginning of a template argument list (14.2) or a less-than operator.
255      //   The identifier is first looked up in the class of the object
256      //   expression. If the identifier is not found, it is then looked up in
257      //   the context of the entire postfix-expression and shall name a class
258      //   or function template.
259      if (S) LookupName(Found, S);
260      ObjectTypeSearchedInScope = true;
261    }
262  } else if (isDependent && (!S || ObjectType.isNull())) {
263    // We cannot look into a dependent object type or nested nme
264    // specifier.
265    MemberOfUnknownSpecialization = true;
266    return;
267  } else {
268    // Perform unqualified name lookup in the current scope.
269    LookupName(Found, S);
270  }
271
272  if (Found.empty() && !isDependent) {
273    // If we did not find any names, attempt to correct any typos.
274    DeclarationName Name = Found.getLookupName();
275    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
276                                                false, CTC_CXXCasts)) {
277      FilterAcceptableTemplateNames(Context, Found);
278      if (!Found.empty()) {
279        if (LookupCtx)
280          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
281            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
282            << FixItHint::CreateReplacement(Found.getNameLoc(),
283                                          Found.getLookupName().getAsString());
284        else
285          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
286            << Name << Found.getLookupName()
287            << FixItHint::CreateReplacement(Found.getNameLoc(),
288                                          Found.getLookupName().getAsString());
289        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
290          Diag(Template->getLocation(), diag::note_previous_decl)
291            << Template->getDeclName();
292      }
293    } else {
294      Found.clear();
295      Found.setLookupName(Name);
296    }
297  }
298
299  FilterAcceptableTemplateNames(Context, Found);
300  if (Found.empty()) {
301    if (isDependent)
302      MemberOfUnknownSpecialization = true;
303    return;
304  }
305
306  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
307    // C++ [basic.lookup.classref]p1:
308    //   [...] If the lookup in the class of the object expression finds a
309    //   template, the name is also looked up in the context of the entire
310    //   postfix-expression and [...]
311    //
312    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
313                            LookupOrdinaryName);
314    LookupName(FoundOuter, S);
315    FilterAcceptableTemplateNames(Context, FoundOuter);
316
317    if (FoundOuter.empty()) {
318      //   - if the name is not found, the name found in the class of the
319      //     object expression is used, otherwise
320    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
321      //   - if the name is found in the context of the entire
322      //     postfix-expression and does not name a class template, the name
323      //     found in the class of the object expression is used, otherwise
324    } else if (!Found.isSuppressingDiagnostics()) {
325      //   - if the name found is a class template, it must refer to the same
326      //     entity as the one found in the class of the object expression,
327      //     otherwise the program is ill-formed.
328      if (!Found.isSingleResult() ||
329          Found.getFoundDecl()->getCanonicalDecl()
330            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
331        Diag(Found.getNameLoc(),
332             diag::ext_nested_name_member_ref_lookup_ambiguous)
333          << Found.getLookupName()
334          << ObjectType;
335        Diag(Found.getRepresentativeDecl()->getLocation(),
336             diag::note_ambig_member_ref_object_type)
337          << ObjectType;
338        Diag(FoundOuter.getFoundDecl()->getLocation(),
339             diag::note_ambig_member_ref_scope);
340
341        // Recover by taking the template that we found in the object
342        // expression's type.
343      }
344    }
345  }
346}
347
348/// ActOnDependentIdExpression - Handle a dependent id-expression that
349/// was just parsed.  This is only possible with an explicit scope
350/// specifier naming a dependent type.
351ExprResult
352Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
353                                 const DeclarationNameInfo &NameInfo,
354                                 bool isAddressOfOperand,
355                           const TemplateArgumentListInfo *TemplateArgs) {
356  NestedNameSpecifier *Qualifier
357    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
358
359  DeclContext *DC = getFunctionLevelDeclContext();
360
361  if (!isAddressOfOperand &&
362      isa<CXXMethodDecl>(DC) &&
363      cast<CXXMethodDecl>(DC)->isInstance()) {
364    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
365
366    // Since the 'this' expression is synthesized, we don't need to
367    // perform the double-lookup check.
368    NamedDecl *FirstQualifierInScope = 0;
369
370    return Owned(CXXDependentScopeMemberExpr::Create(Context,
371                                                     /*This*/ 0, ThisType,
372                                                     /*IsArrow*/ true,
373                                                     /*Op*/ SourceLocation(),
374                                                     Qualifier, SS.getRange(),
375                                                     FirstQualifierInScope,
376                                                     NameInfo,
377                                                     TemplateArgs));
378  }
379
380  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
381}
382
383ExprResult
384Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
385                                const DeclarationNameInfo &NameInfo,
386                                const TemplateArgumentListInfo *TemplateArgs) {
387  return Owned(DependentScopeDeclRefExpr::Create(Context,
388               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
389                                                 SS.getRange(),
390                                                 NameInfo,
391                                                 TemplateArgs));
392}
393
394/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
395/// that the template parameter 'PrevDecl' is being shadowed by a new
396/// declaration at location Loc. Returns true to indicate that this is
397/// an error, and false otherwise.
398bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
399  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
400
401  // Microsoft Visual C++ permits template parameters to be shadowed.
402  if (getLangOptions().Microsoft)
403    return false;
404
405  // C++ [temp.local]p4:
406  //   A template-parameter shall not be redeclared within its
407  //   scope (including nested scopes).
408  Diag(Loc, diag::err_template_param_shadow)
409    << cast<NamedDecl>(PrevDecl)->getDeclName();
410  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
411  return true;
412}
413
414/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
415/// the parameter D to reference the templated declaration and return a pointer
416/// to the template declaration. Otherwise, do nothing to D and return null.
417TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
418  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
419    D = Temp->getTemplatedDecl();
420    return Temp;
421  }
422  return 0;
423}
424
425static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
426                                            const ParsedTemplateArgument &Arg) {
427
428  switch (Arg.getKind()) {
429  case ParsedTemplateArgument::Type: {
430    TypeSourceInfo *DI;
431    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
432    if (!DI)
433      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
434    return TemplateArgumentLoc(TemplateArgument(T), DI);
435  }
436
437  case ParsedTemplateArgument::NonType: {
438    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
439    return TemplateArgumentLoc(TemplateArgument(E), E);
440  }
441
442  case ParsedTemplateArgument::Template: {
443    TemplateName Template = Arg.getAsTemplate().get();
444    return TemplateArgumentLoc(TemplateArgument(Template),
445                               Arg.getScopeSpec().getRange(),
446                               Arg.getLocation());
447  }
448  }
449
450  llvm_unreachable("Unhandled parsed template argument");
451  return TemplateArgumentLoc();
452}
453
454/// \brief Translates template arguments as provided by the parser
455/// into template arguments used by semantic analysis.
456void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
457                                      TemplateArgumentListInfo &TemplateArgs) {
458 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
459   TemplateArgs.addArgument(translateTemplateArgument(*this,
460                                                      TemplateArgsIn[I]));
461}
462
463/// ActOnTypeParameter - Called when a C++ template type parameter
464/// (e.g., "typename T") has been parsed. Typename specifies whether
465/// the keyword "typename" was used to declare the type parameter
466/// (otherwise, "class" was used), and KeyLoc is the location of the
467/// "class" or "typename" keyword. ParamName is the name of the
468/// parameter (NULL indicates an unnamed template parameter) and
469/// ParamName is the location of the parameter name (if any).
470/// If the type parameter has a default argument, it will be added
471/// later via ActOnTypeParameterDefault.
472Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
473                               SourceLocation EllipsisLoc,
474                               SourceLocation KeyLoc,
475                               IdentifierInfo *ParamName,
476                               SourceLocation ParamNameLoc,
477                               unsigned Depth, unsigned Position,
478                               SourceLocation EqualLoc,
479                               ParsedType DefaultArg) {
480  assert(S->isTemplateParamScope() &&
481         "Template type parameter not in template parameter scope!");
482  bool Invalid = false;
483
484  if (ParamName) {
485    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
486                                           LookupOrdinaryName,
487                                           ForRedeclaration);
488    if (PrevDecl && PrevDecl->isTemplateParameter())
489      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
490                                                           PrevDecl);
491  }
492
493  SourceLocation Loc = ParamNameLoc;
494  if (!ParamName)
495    Loc = KeyLoc;
496
497  TemplateTypeParmDecl *Param
498    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
499                                   Loc, Depth, Position, ParamName, Typename,
500                                   Ellipsis);
501  if (Invalid)
502    Param->setInvalidDecl();
503
504  if (ParamName) {
505    // Add the template parameter into the current scope.
506    S->AddDecl(Param);
507    IdResolver.AddDecl(Param);
508  }
509
510  // Handle the default argument, if provided.
511  if (DefaultArg) {
512    TypeSourceInfo *DefaultTInfo;
513    GetTypeFromParser(DefaultArg, &DefaultTInfo);
514
515    assert(DefaultTInfo && "expected source information for type");
516
517    // C++0x [temp.param]p9:
518    // A default template-argument may be specified for any kind of
519    // template-parameter that is not a template parameter pack.
520    if (Ellipsis) {
521      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
522      return Param;
523    }
524
525    // Check the template argument itself.
526    if (CheckTemplateArgument(Param, DefaultTInfo)) {
527      Param->setInvalidDecl();
528      return Param;
529    }
530
531    Param->setDefaultArgument(DefaultTInfo, false);
532  }
533
534  return Param;
535}
536
537/// \brief Check that the type of a non-type template parameter is
538/// well-formed.
539///
540/// \returns the (possibly-promoted) parameter type if valid;
541/// otherwise, produces a diagnostic and returns a NULL type.
542QualType
543Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
544  // We don't allow variably-modified types as the type of non-type template
545  // parameters.
546  if (T->isVariablyModifiedType()) {
547    Diag(Loc, diag::err_variably_modified_nontype_template_param)
548      << T;
549    return QualType();
550  }
551
552  // C++ [temp.param]p4:
553  //
554  // A non-type template-parameter shall have one of the following
555  // (optionally cv-qualified) types:
556  //
557  //       -- integral or enumeration type,
558  if (T->isIntegralOrEnumerationType() ||
559      //   -- pointer to object or pointer to function,
560      T->isPointerType() ||
561      //   -- reference to object or reference to function,
562      T->isReferenceType() ||
563      //   -- pointer to member.
564      T->isMemberPointerType() ||
565      // If T is a dependent type, we can't do the check now, so we
566      // assume that it is well-formed.
567      T->isDependentType())
568    return T;
569  // C++ [temp.param]p8:
570  //
571  //   A non-type template-parameter of type "array of T" or
572  //   "function returning T" is adjusted to be of type "pointer to
573  //   T" or "pointer to function returning T", respectively.
574  else if (T->isArrayType())
575    // FIXME: Keep the type prior to promotion?
576    return Context.getArrayDecayedType(T);
577  else if (T->isFunctionType())
578    // FIXME: Keep the type prior to promotion?
579    return Context.getPointerType(T);
580
581  Diag(Loc, diag::err_template_nontype_parm_bad_type)
582    << T;
583
584  return QualType();
585}
586
587Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
588                                          unsigned Depth,
589                                          unsigned Position,
590                                          SourceLocation EqualLoc,
591                                          Expr *Default) {
592  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
593  QualType T = TInfo->getType();
594
595  assert(S->isTemplateParamScope() &&
596         "Non-type template parameter not in template parameter scope!");
597  bool Invalid = false;
598
599  IdentifierInfo *ParamName = D.getIdentifier();
600  if (ParamName) {
601    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
602                                           LookupOrdinaryName,
603                                           ForRedeclaration);
604    if (PrevDecl && PrevDecl->isTemplateParameter())
605      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
606                                                           PrevDecl);
607  }
608
609  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
610  if (T.isNull()) {
611    T = Context.IntTy; // Recover with an 'int' type.
612    Invalid = true;
613  }
614
615  NonTypeTemplateParmDecl *Param
616    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
617                                      D.getIdentifierLoc(),
618                                      Depth, Position, ParamName, T, TInfo);
619  if (Invalid)
620    Param->setInvalidDecl();
621
622  if (D.getIdentifier()) {
623    // Add the template parameter into the current scope.
624    S->AddDecl(Param);
625    IdResolver.AddDecl(Param);
626  }
627
628  // Check the well-formedness of the default template argument, if provided.
629  if (Default) {
630    TemplateArgument Converted;
631    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
632      Param->setInvalidDecl();
633      return Param;
634    }
635
636    Param->setDefaultArgument(Default, false);
637  }
638
639  return Param;
640}
641
642/// ActOnTemplateTemplateParameter - Called when a C++ template template
643/// parameter (e.g. T in template <template <typename> class T> class array)
644/// has been parsed. S is the current scope.
645Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
646                                           SourceLocation TmpLoc,
647                                           TemplateParamsTy *Params,
648                                           IdentifierInfo *Name,
649                                           SourceLocation NameLoc,
650                                           unsigned Depth,
651                                           unsigned Position,
652                                           SourceLocation EqualLoc,
653                                       const ParsedTemplateArgument &Default) {
654  assert(S->isTemplateParamScope() &&
655         "Template template parameter not in template parameter scope!");
656
657  // Construct the parameter object.
658  TemplateTemplateParmDecl *Param =
659    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
660                                     TmpLoc, Depth, Position, Name,
661                                     (TemplateParameterList*)Params);
662
663  // If the template template parameter has a name, then link the identifier
664  // into the scope and lookup mechanisms.
665  if (Name) {
666    S->AddDecl(Param);
667    IdResolver.AddDecl(Param);
668  }
669
670  if (!Default.isInvalid()) {
671    // Check only that we have a template template argument. We don't want to
672    // try to check well-formedness now, because our template template parameter
673    // might have dependent types in its template parameters, which we wouldn't
674    // be able to match now.
675    //
676    // If none of the template template parameter's template arguments mention
677    // other template parameters, we could actually perform more checking here.
678    // However, it isn't worth doing.
679    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
680    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
681      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
682        << DefaultArg.getSourceRange();
683      return Param;
684    }
685
686    Param->setDefaultArgument(DefaultArg, false);
687  }
688
689  return Param;
690}
691
692/// ActOnTemplateParameterList - Builds a TemplateParameterList that
693/// contains the template parameters in Params/NumParams.
694Sema::TemplateParamsTy *
695Sema::ActOnTemplateParameterList(unsigned Depth,
696                                 SourceLocation ExportLoc,
697                                 SourceLocation TemplateLoc,
698                                 SourceLocation LAngleLoc,
699                                 Decl **Params, unsigned NumParams,
700                                 SourceLocation RAngleLoc) {
701  if (ExportLoc.isValid())
702    Diag(ExportLoc, diag::warn_template_export_unsupported);
703
704  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
705                                       (NamedDecl**)Params, NumParams,
706                                       RAngleLoc);
707}
708
709static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
710  if (SS.isSet())
711    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
712                        SS.getRange());
713}
714
715Sema::DeclResult
716Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
717                         SourceLocation KWLoc, CXXScopeSpec &SS,
718                         IdentifierInfo *Name, SourceLocation NameLoc,
719                         AttributeList *Attr,
720                         TemplateParameterList *TemplateParams,
721                         AccessSpecifier AS) {
722  assert(TemplateParams && TemplateParams->size() > 0 &&
723         "No template parameters");
724  assert(TUK != TUK_Reference && "Can only declare or define class templates");
725  bool Invalid = false;
726
727  // Check that we can declare a template here.
728  if (CheckTemplateDeclScope(S, TemplateParams))
729    return true;
730
731  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
732  assert(Kind != TTK_Enum && "can't build template of enumerated type");
733
734  // There is no such thing as an unnamed class template.
735  if (!Name) {
736    Diag(KWLoc, diag::err_template_unnamed_class);
737    return true;
738  }
739
740  // Find any previous declaration with this name.
741  DeclContext *SemanticContext;
742  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
743                        ForRedeclaration);
744  if (SS.isNotEmpty() && !SS.isInvalid()) {
745    SemanticContext = computeDeclContext(SS, true);
746    if (!SemanticContext) {
747      // FIXME: Produce a reasonable diagnostic here
748      return true;
749    }
750
751    if (RequireCompleteDeclContext(SS, SemanticContext))
752      return true;
753
754    LookupQualifiedName(Previous, SemanticContext);
755  } else {
756    SemanticContext = CurContext;
757    LookupName(Previous, S);
758  }
759
760  if (Previous.isAmbiguous())
761    return true;
762
763  NamedDecl *PrevDecl = 0;
764  if (Previous.begin() != Previous.end())
765    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
766
767  // If there is a previous declaration with the same name, check
768  // whether this is a valid redeclaration.
769  ClassTemplateDecl *PrevClassTemplate
770    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
771
772  // We may have found the injected-class-name of a class template,
773  // class template partial specialization, or class template specialization.
774  // In these cases, grab the template that is being defined or specialized.
775  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
776      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
777    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
778    PrevClassTemplate
779      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
780    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
781      PrevClassTemplate
782        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
783            ->getSpecializedTemplate();
784    }
785  }
786
787  if (TUK == TUK_Friend) {
788    // C++ [namespace.memdef]p3:
789    //   [...] When looking for a prior declaration of a class or a function
790    //   declared as a friend, and when the name of the friend class or
791    //   function is neither a qualified name nor a template-id, scopes outside
792    //   the innermost enclosing namespace scope are not considered.
793    if (!SS.isSet()) {
794      DeclContext *OutermostContext = CurContext;
795      while (!OutermostContext->isFileContext())
796        OutermostContext = OutermostContext->getLookupParent();
797
798      if (PrevDecl &&
799          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
800           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
801        SemanticContext = PrevDecl->getDeclContext();
802      } else {
803        // Declarations in outer scopes don't matter. However, the outermost
804        // context we computed is the semantic context for our new
805        // declaration.
806        PrevDecl = PrevClassTemplate = 0;
807        SemanticContext = OutermostContext;
808      }
809    }
810
811    if (CurContext->isDependentContext()) {
812      // If this is a dependent context, we don't want to link the friend
813      // class template to the template in scope, because that would perform
814      // checking of the template parameter lists that can't be performed
815      // until the outer context is instantiated.
816      PrevDecl = PrevClassTemplate = 0;
817    }
818  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
819    PrevDecl = PrevClassTemplate = 0;
820
821  if (PrevClassTemplate) {
822    // Ensure that the template parameter lists are compatible.
823    if (!TemplateParameterListsAreEqual(TemplateParams,
824                                   PrevClassTemplate->getTemplateParameters(),
825                                        /*Complain=*/true,
826                                        TPL_TemplateMatch))
827      return true;
828
829    // C++ [temp.class]p4:
830    //   In a redeclaration, partial specialization, explicit
831    //   specialization or explicit instantiation of a class template,
832    //   the class-key shall agree in kind with the original class
833    //   template declaration (7.1.5.3).
834    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
835    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
836      Diag(KWLoc, diag::err_use_with_wrong_tag)
837        << Name
838        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
839      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
840      Kind = PrevRecordDecl->getTagKind();
841    }
842
843    // Check for redefinition of this class template.
844    if (TUK == TUK_Definition) {
845      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
846        Diag(NameLoc, diag::err_redefinition) << Name;
847        Diag(Def->getLocation(), diag::note_previous_definition);
848        // FIXME: Would it make sense to try to "forget" the previous
849        // definition, as part of error recovery?
850        return true;
851      }
852    }
853  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
854    // Maybe we will complain about the shadowed template parameter.
855    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
856    // Just pretend that we didn't see the previous declaration.
857    PrevDecl = 0;
858  } else if (PrevDecl) {
859    // C++ [temp]p5:
860    //   A class template shall not have the same name as any other
861    //   template, class, function, object, enumeration, enumerator,
862    //   namespace, or type in the same scope (3.3), except as specified
863    //   in (14.5.4).
864    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
865    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
866    return true;
867  }
868
869  // Check the template parameter list of this declaration, possibly
870  // merging in the template parameter list from the previous class
871  // template declaration.
872  if (CheckTemplateParameterList(TemplateParams,
873            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
874                                 TPC_ClassTemplate))
875    Invalid = true;
876
877  if (SS.isSet()) {
878    // If the name of the template was qualified, we must be defining the
879    // template out-of-line.
880    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
881        !(TUK == TUK_Friend && CurContext->isDependentContext()))
882      Diag(NameLoc, diag::err_member_def_does_not_match)
883        << Name << SemanticContext << SS.getRange();
884  }
885
886  CXXRecordDecl *NewClass =
887    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
888                          PrevClassTemplate?
889                            PrevClassTemplate->getTemplatedDecl() : 0,
890                          /*DelayTypeCreation=*/true);
891  SetNestedNameSpecifier(NewClass, SS);
892
893  ClassTemplateDecl *NewTemplate
894    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
895                                DeclarationName(Name), TemplateParams,
896                                NewClass, PrevClassTemplate);
897  NewClass->setDescribedClassTemplate(NewTemplate);
898
899  // Build the type for the class template declaration now.
900  QualType T = NewTemplate->getInjectedClassNameSpecialization();
901  T = Context.getInjectedClassNameType(NewClass, T);
902  assert(T->isDependentType() && "Class template type is not dependent?");
903  (void)T;
904
905  // If we are providing an explicit specialization of a member that is a
906  // class template, make a note of that.
907  if (PrevClassTemplate &&
908      PrevClassTemplate->getInstantiatedFromMemberTemplate())
909    PrevClassTemplate->setMemberSpecialization();
910
911  // Set the access specifier.
912  if (!Invalid && TUK != TUK_Friend)
913    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
914
915  // Set the lexical context of these templates
916  NewClass->setLexicalDeclContext(CurContext);
917  NewTemplate->setLexicalDeclContext(CurContext);
918
919  if (TUK == TUK_Definition)
920    NewClass->startDefinition();
921
922  if (Attr)
923    ProcessDeclAttributeList(S, NewClass, Attr);
924
925  if (TUK != TUK_Friend)
926    PushOnScopeChains(NewTemplate, S);
927  else {
928    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
929      NewTemplate->setAccess(PrevClassTemplate->getAccess());
930      NewClass->setAccess(PrevClassTemplate->getAccess());
931    }
932
933    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
934                                       PrevClassTemplate != NULL);
935
936    // Friend templates are visible in fairly strange ways.
937    if (!CurContext->isDependentContext()) {
938      DeclContext *DC = SemanticContext->getLookupContext();
939      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
940      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
941        PushOnScopeChains(NewTemplate, EnclosingScope,
942                          /* AddToContext = */ false);
943    }
944
945    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
946                                            NewClass->getLocation(),
947                                            NewTemplate,
948                                    /*FIXME:*/NewClass->getLocation());
949    Friend->setAccess(AS_public);
950    CurContext->addDecl(Friend);
951  }
952
953  if (Invalid) {
954    NewTemplate->setInvalidDecl();
955    NewClass->setInvalidDecl();
956  }
957  return NewTemplate;
958}
959
960/// \brief Diagnose the presence of a default template argument on a
961/// template parameter, which is ill-formed in certain contexts.
962///
963/// \returns true if the default template argument should be dropped.
964static bool DiagnoseDefaultTemplateArgument(Sema &S,
965                                            Sema::TemplateParamListContext TPC,
966                                            SourceLocation ParamLoc,
967                                            SourceRange DefArgRange) {
968  switch (TPC) {
969  case Sema::TPC_ClassTemplate:
970    return false;
971
972  case Sema::TPC_FunctionTemplate:
973    // C++ [temp.param]p9:
974    //   A default template-argument shall not be specified in a
975    //   function template declaration or a function template
976    //   definition [...]
977    // (This sentence is not in C++0x, per DR226).
978    if (!S.getLangOptions().CPlusPlus0x)
979      S.Diag(ParamLoc,
980             diag::err_template_parameter_default_in_function_template)
981        << DefArgRange;
982    return false;
983
984  case Sema::TPC_ClassTemplateMember:
985    // C++0x [temp.param]p9:
986    //   A default template-argument shall not be specified in the
987    //   template-parameter-lists of the definition of a member of a
988    //   class template that appears outside of the member's class.
989    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
990      << DefArgRange;
991    return true;
992
993  case Sema::TPC_FriendFunctionTemplate:
994    // C++ [temp.param]p9:
995    //   A default template-argument shall not be specified in a
996    //   friend template declaration.
997    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
998      << DefArgRange;
999    return true;
1000
1001    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1002    // for friend function templates if there is only a single
1003    // declaration (and it is a definition). Strange!
1004  }
1005
1006  return false;
1007}
1008
1009/// \brief Checks the validity of a template parameter list, possibly
1010/// considering the template parameter list from a previous
1011/// declaration.
1012///
1013/// If an "old" template parameter list is provided, it must be
1014/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1015/// template parameter list.
1016///
1017/// \param NewParams Template parameter list for a new template
1018/// declaration. This template parameter list will be updated with any
1019/// default arguments that are carried through from the previous
1020/// template parameter list.
1021///
1022/// \param OldParams If provided, template parameter list from a
1023/// previous declaration of the same template. Default template
1024/// arguments will be merged from the old template parameter list to
1025/// the new template parameter list.
1026///
1027/// \param TPC Describes the context in which we are checking the given
1028/// template parameter list.
1029///
1030/// \returns true if an error occurred, false otherwise.
1031bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1032                                      TemplateParameterList *OldParams,
1033                                      TemplateParamListContext TPC) {
1034  bool Invalid = false;
1035
1036  // C++ [temp.param]p10:
1037  //   The set of default template-arguments available for use with a
1038  //   template declaration or definition is obtained by merging the
1039  //   default arguments from the definition (if in scope) and all
1040  //   declarations in scope in the same way default function
1041  //   arguments are (8.3.6).
1042  bool SawDefaultArgument = false;
1043  SourceLocation PreviousDefaultArgLoc;
1044
1045  bool SawParameterPack = false;
1046  SourceLocation ParameterPackLoc;
1047
1048  // Dummy initialization to avoid warnings.
1049  TemplateParameterList::iterator OldParam = NewParams->end();
1050  if (OldParams)
1051    OldParam = OldParams->begin();
1052
1053  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1054                                    NewParamEnd = NewParams->end();
1055       NewParam != NewParamEnd; ++NewParam) {
1056    // Variables used to diagnose redundant default arguments
1057    bool RedundantDefaultArg = false;
1058    SourceLocation OldDefaultLoc;
1059    SourceLocation NewDefaultLoc;
1060
1061    // Variables used to diagnose missing default arguments
1062    bool MissingDefaultArg = false;
1063
1064    // C++0x [temp.param]p11:
1065    // If a template parameter of a class template is a template parameter pack,
1066    // it must be the last template parameter.
1067    if (SawParameterPack) {
1068      Diag(ParameterPackLoc,
1069           diag::err_template_param_pack_must_be_last_template_parameter);
1070      Invalid = true;
1071    }
1072
1073    if (TemplateTypeParmDecl *NewTypeParm
1074          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1075      // Check the presence of a default argument here.
1076      if (NewTypeParm->hasDefaultArgument() &&
1077          DiagnoseDefaultTemplateArgument(*this, TPC,
1078                                          NewTypeParm->getLocation(),
1079               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1080                                                       .getSourceRange()))
1081        NewTypeParm->removeDefaultArgument();
1082
1083      // Merge default arguments for template type parameters.
1084      TemplateTypeParmDecl *OldTypeParm
1085          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1086
1087      if (NewTypeParm->isParameterPack()) {
1088        assert(!NewTypeParm->hasDefaultArgument() &&
1089               "Parameter packs can't have a default argument!");
1090        SawParameterPack = true;
1091        ParameterPackLoc = NewTypeParm->getLocation();
1092      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1093                 NewTypeParm->hasDefaultArgument()) {
1094        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1095        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1096        SawDefaultArgument = true;
1097        RedundantDefaultArg = true;
1098        PreviousDefaultArgLoc = NewDefaultLoc;
1099      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1100        // Merge the default argument from the old declaration to the
1101        // new declaration.
1102        SawDefaultArgument = true;
1103        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1104                                        true);
1105        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1106      } else if (NewTypeParm->hasDefaultArgument()) {
1107        SawDefaultArgument = true;
1108        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1109      } else if (SawDefaultArgument)
1110        MissingDefaultArg = true;
1111    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1112               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1113      // Check the presence of a default argument here.
1114      if (NewNonTypeParm->hasDefaultArgument() &&
1115          DiagnoseDefaultTemplateArgument(*this, TPC,
1116                                          NewNonTypeParm->getLocation(),
1117                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1118        NewNonTypeParm->removeDefaultArgument();
1119      }
1120
1121      // Merge default arguments for non-type template parameters
1122      NonTypeTemplateParmDecl *OldNonTypeParm
1123        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1124      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1125          NewNonTypeParm->hasDefaultArgument()) {
1126        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1127        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1128        SawDefaultArgument = true;
1129        RedundantDefaultArg = true;
1130        PreviousDefaultArgLoc = NewDefaultLoc;
1131      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1132        // Merge the default argument from the old declaration to the
1133        // new declaration.
1134        SawDefaultArgument = true;
1135        // FIXME: We need to create a new kind of "default argument"
1136        // expression that points to a previous template template
1137        // parameter.
1138        NewNonTypeParm->setDefaultArgument(
1139                                         OldNonTypeParm->getDefaultArgument(),
1140                                         /*Inherited=*/ true);
1141        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1142      } else if (NewNonTypeParm->hasDefaultArgument()) {
1143        SawDefaultArgument = true;
1144        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1145      } else if (SawDefaultArgument)
1146        MissingDefaultArg = true;
1147    } else {
1148      // Check the presence of a default argument here.
1149      TemplateTemplateParmDecl *NewTemplateParm
1150        = cast<TemplateTemplateParmDecl>(*NewParam);
1151      if (NewTemplateParm->hasDefaultArgument() &&
1152          DiagnoseDefaultTemplateArgument(*this, TPC,
1153                                          NewTemplateParm->getLocation(),
1154                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1155        NewTemplateParm->removeDefaultArgument();
1156
1157      // Merge default arguments for template template parameters
1158      TemplateTemplateParmDecl *OldTemplateParm
1159        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1160      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1161          NewTemplateParm->hasDefaultArgument()) {
1162        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1163        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1164        SawDefaultArgument = true;
1165        RedundantDefaultArg = true;
1166        PreviousDefaultArgLoc = NewDefaultLoc;
1167      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1168        // Merge the default argument from the old declaration to the
1169        // new declaration.
1170        SawDefaultArgument = true;
1171        // FIXME: We need to create a new kind of "default argument" expression
1172        // that points to a previous template template parameter.
1173        NewTemplateParm->setDefaultArgument(
1174                                          OldTemplateParm->getDefaultArgument(),
1175                                          /*Inherited=*/ true);
1176        PreviousDefaultArgLoc
1177          = OldTemplateParm->getDefaultArgument().getLocation();
1178      } else if (NewTemplateParm->hasDefaultArgument()) {
1179        SawDefaultArgument = true;
1180        PreviousDefaultArgLoc
1181          = NewTemplateParm->getDefaultArgument().getLocation();
1182      } else if (SawDefaultArgument)
1183        MissingDefaultArg = true;
1184    }
1185
1186    if (RedundantDefaultArg) {
1187      // C++ [temp.param]p12:
1188      //   A template-parameter shall not be given default arguments
1189      //   by two different declarations in the same scope.
1190      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1191      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1192      Invalid = true;
1193    } else if (MissingDefaultArg) {
1194      // C++ [temp.param]p11:
1195      //   If a template-parameter has a default template-argument,
1196      //   all subsequent template-parameters shall have a default
1197      //   template-argument supplied.
1198      Diag((*NewParam)->getLocation(),
1199           diag::err_template_param_default_arg_missing);
1200      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1201      Invalid = true;
1202    }
1203
1204    // If we have an old template parameter list that we're merging
1205    // in, move on to the next parameter.
1206    if (OldParams)
1207      ++OldParam;
1208  }
1209
1210  return Invalid;
1211}
1212
1213/// \brief Match the given template parameter lists to the given scope
1214/// specifier, returning the template parameter list that applies to the
1215/// name.
1216///
1217/// \param DeclStartLoc the start of the declaration that has a scope
1218/// specifier or a template parameter list.
1219///
1220/// \param SS the scope specifier that will be matched to the given template
1221/// parameter lists. This scope specifier precedes a qualified name that is
1222/// being declared.
1223///
1224/// \param ParamLists the template parameter lists, from the outermost to the
1225/// innermost template parameter lists.
1226///
1227/// \param NumParamLists the number of template parameter lists in ParamLists.
1228///
1229/// \param IsFriend Whether to apply the slightly different rules for
1230/// matching template parameters to scope specifiers in friend
1231/// declarations.
1232///
1233/// \param IsExplicitSpecialization will be set true if the entity being
1234/// declared is an explicit specialization, false otherwise.
1235///
1236/// \returns the template parameter list, if any, that corresponds to the
1237/// name that is preceded by the scope specifier @p SS. This template
1238/// parameter list may be have template parameters (if we're declaring a
1239/// template) or may have no template parameters (if we're declaring a
1240/// template specialization), or may be NULL (if we were's declaring isn't
1241/// itself a template).
1242TemplateParameterList *
1243Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1244                                              const CXXScopeSpec &SS,
1245                                          TemplateParameterList **ParamLists,
1246                                              unsigned NumParamLists,
1247                                              bool IsFriend,
1248                                              bool &IsExplicitSpecialization,
1249                                              bool &Invalid) {
1250  IsExplicitSpecialization = false;
1251
1252  // Find the template-ids that occur within the nested-name-specifier. These
1253  // template-ids will match up with the template parameter lists.
1254  llvm::SmallVector<const TemplateSpecializationType *, 4>
1255    TemplateIdsInSpecifier;
1256  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1257    ExplicitSpecializationsInSpecifier;
1258  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1259       NNS; NNS = NNS->getPrefix()) {
1260    const Type *T = NNS->getAsType();
1261    if (!T) break;
1262
1263    // C++0x [temp.expl.spec]p17:
1264    //   A member or a member template may be nested within many
1265    //   enclosing class templates. In an explicit specialization for
1266    //   such a member, the member declaration shall be preceded by a
1267    //   template<> for each enclosing class template that is
1268    //   explicitly specialized.
1269    //
1270    // Following the existing practice of GNU and EDG, we allow a typedef of a
1271    // template specialization type.
1272    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1273      T = TT->LookThroughTypedefs().getTypePtr();
1274
1275    if (const TemplateSpecializationType *SpecType
1276                                  = dyn_cast<TemplateSpecializationType>(T)) {
1277      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1278      if (!Template)
1279        continue; // FIXME: should this be an error? probably...
1280
1281      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1282        ClassTemplateSpecializationDecl *SpecDecl
1283          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1284        // If the nested name specifier refers to an explicit specialization,
1285        // we don't need a template<> header.
1286        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1287          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1288          continue;
1289        }
1290      }
1291
1292      TemplateIdsInSpecifier.push_back(SpecType);
1293    }
1294  }
1295
1296  // Reverse the list of template-ids in the scope specifier, so that we can
1297  // more easily match up the template-ids and the template parameter lists.
1298  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1299
1300  SourceLocation FirstTemplateLoc = DeclStartLoc;
1301  if (NumParamLists)
1302    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1303
1304  // Match the template-ids found in the specifier to the template parameter
1305  // lists.
1306  unsigned Idx = 0;
1307  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1308       Idx != NumTemplateIds; ++Idx) {
1309    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1310    bool DependentTemplateId = TemplateId->isDependentType();
1311    if (Idx >= NumParamLists) {
1312      // We have a template-id without a corresponding template parameter
1313      // list.
1314
1315      // ...which is fine if this is a friend declaration.
1316      if (IsFriend) {
1317        IsExplicitSpecialization = true;
1318        break;
1319      }
1320
1321      if (DependentTemplateId) {
1322        // FIXME: the location information here isn't great.
1323        Diag(SS.getRange().getBegin(),
1324             diag::err_template_spec_needs_template_parameters)
1325          << TemplateId
1326          << SS.getRange();
1327        Invalid = true;
1328      } else {
1329        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1330          << SS.getRange()
1331          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1332        IsExplicitSpecialization = true;
1333      }
1334      return 0;
1335    }
1336
1337    // Check the template parameter list against its corresponding template-id.
1338    if (DependentTemplateId) {
1339      TemplateParameterList *ExpectedTemplateParams = 0;
1340
1341      // Are there cases in (e.g.) friends where this won't match?
1342      if (const InjectedClassNameType *Injected
1343            = TemplateId->getAs<InjectedClassNameType>()) {
1344        CXXRecordDecl *Record = Injected->getDecl();
1345        if (ClassTemplatePartialSpecializationDecl *Partial =
1346              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1347          ExpectedTemplateParams = Partial->getTemplateParameters();
1348        else
1349          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1350            ->getTemplateParameters();
1351      }
1352
1353      if (ExpectedTemplateParams)
1354        TemplateParameterListsAreEqual(ParamLists[Idx],
1355                                       ExpectedTemplateParams,
1356                                       true, TPL_TemplateMatch);
1357
1358      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1359    } else if (ParamLists[Idx]->size() > 0)
1360      Diag(ParamLists[Idx]->getTemplateLoc(),
1361           diag::err_template_param_list_matches_nontemplate)
1362        << TemplateId
1363        << ParamLists[Idx]->getSourceRange();
1364    else
1365      IsExplicitSpecialization = true;
1366  }
1367
1368  // If there were at least as many template-ids as there were template
1369  // parameter lists, then there are no template parameter lists remaining for
1370  // the declaration itself.
1371  if (Idx >= NumParamLists)
1372    return 0;
1373
1374  // If there were too many template parameter lists, complain about that now.
1375  if (Idx != NumParamLists - 1) {
1376    while (Idx < NumParamLists - 1) {
1377      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1378      Diag(ParamLists[Idx]->getTemplateLoc(),
1379           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1380                               : diag::err_template_spec_extra_headers)
1381        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1382                       ParamLists[Idx]->getRAngleLoc());
1383
1384      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1385        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1386             diag::note_explicit_template_spec_does_not_need_header)
1387          << ExplicitSpecializationsInSpecifier.back();
1388        ExplicitSpecializationsInSpecifier.pop_back();
1389      }
1390
1391      // We have a template parameter list with no corresponding scope, which
1392      // means that the resulting template declaration can't be instantiated
1393      // properly (we'll end up with dependent nodes when we shouldn't).
1394      if (!isExplicitSpecHeader)
1395        Invalid = true;
1396
1397      ++Idx;
1398    }
1399  }
1400
1401  // Return the last template parameter list, which corresponds to the
1402  // entity being declared.
1403  return ParamLists[NumParamLists - 1];
1404}
1405
1406QualType Sema::CheckTemplateIdType(TemplateName Name,
1407                                   SourceLocation TemplateLoc,
1408                              const TemplateArgumentListInfo &TemplateArgs) {
1409  TemplateDecl *Template = Name.getAsTemplateDecl();
1410  if (!Template) {
1411    // The template name does not resolve to a template, so we just
1412    // build a dependent template-id type.
1413    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1414  }
1415
1416  // Check that the template argument list is well-formed for this
1417  // template.
1418  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1419                                        TemplateArgs.size());
1420  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1421                                false, Converted))
1422    return QualType();
1423
1424  assert((Converted.structuredSize() ==
1425            Template->getTemplateParameters()->size()) &&
1426         "Converted template argument list is too short!");
1427
1428  QualType CanonType;
1429
1430  if (Name.isDependent() ||
1431      TemplateSpecializationType::anyDependentTemplateArguments(
1432                                                      TemplateArgs)) {
1433    // This class template specialization is a dependent
1434    // type. Therefore, its canonical type is another class template
1435    // specialization type that contains all of the converted
1436    // arguments in canonical form. This ensures that, e.g., A<T> and
1437    // A<T, T> have identical types when A is declared as:
1438    //
1439    //   template<typename T, typename U = T> struct A;
1440    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1441    CanonType = Context.getTemplateSpecializationType(CanonName,
1442                                                   Converted.getFlatArguments(),
1443                                                   Converted.flatSize());
1444
1445    // FIXME: CanonType is not actually the canonical type, and unfortunately
1446    // it is a TemplateSpecializationType that we will never use again.
1447    // In the future, we need to teach getTemplateSpecializationType to only
1448    // build the canonical type and return that to us.
1449    CanonType = Context.getCanonicalType(CanonType);
1450
1451    // This might work out to be a current instantiation, in which
1452    // case the canonical type needs to be the InjectedClassNameType.
1453    //
1454    // TODO: in theory this could be a simple hashtable lookup; most
1455    // changes to CurContext don't change the set of current
1456    // instantiations.
1457    if (isa<ClassTemplateDecl>(Template)) {
1458      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1459        // If we get out to a namespace, we're done.
1460        if (Ctx->isFileContext()) break;
1461
1462        // If this isn't a record, keep looking.
1463        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1464        if (!Record) continue;
1465
1466        // Look for one of the two cases with InjectedClassNameTypes
1467        // and check whether it's the same template.
1468        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1469            !Record->getDescribedClassTemplate())
1470          continue;
1471
1472        // Fetch the injected class name type and check whether its
1473        // injected type is equal to the type we just built.
1474        QualType ICNT = Context.getTypeDeclType(Record);
1475        QualType Injected = cast<InjectedClassNameType>(ICNT)
1476          ->getInjectedSpecializationType();
1477
1478        if (CanonType != Injected->getCanonicalTypeInternal())
1479          continue;
1480
1481        // If so, the canonical type of this TST is the injected
1482        // class name type of the record we just found.
1483        assert(ICNT.isCanonical());
1484        CanonType = ICNT;
1485        break;
1486      }
1487    }
1488  } else if (ClassTemplateDecl *ClassTemplate
1489               = dyn_cast<ClassTemplateDecl>(Template)) {
1490    // Find the class template specialization declaration that
1491    // corresponds to these arguments.
1492    void *InsertPos = 0;
1493    ClassTemplateSpecializationDecl *Decl
1494      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
1495                                          Converted.flatSize(), InsertPos);
1496    if (!Decl) {
1497      // This is the first time we have referenced this class template
1498      // specialization. Create the canonical declaration and add it to
1499      // the set of specializations.
1500      Decl = ClassTemplateSpecializationDecl::Create(Context,
1501                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1502                                                ClassTemplate->getDeclContext(),
1503                                                ClassTemplate->getLocation(),
1504                                                ClassTemplate,
1505                                                Converted, 0);
1506      ClassTemplate->AddSpecialization(Decl, InsertPos);
1507      Decl->setLexicalDeclContext(CurContext);
1508    }
1509
1510    CanonType = Context.getTypeDeclType(Decl);
1511    assert(isa<RecordType>(CanonType) &&
1512           "type of non-dependent specialization is not a RecordType");
1513  }
1514
1515  // Build the fully-sugared type for this class template
1516  // specialization, which refers back to the class template
1517  // specialization we created or found.
1518  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1519}
1520
1521Action::TypeResult
1522Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1523                          SourceLocation LAngleLoc,
1524                          ASTTemplateArgsPtr TemplateArgsIn,
1525                          SourceLocation RAngleLoc) {
1526  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1527
1528  // Translate the parser's template argument list in our AST format.
1529  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1530  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1531
1532  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1533  TemplateArgsIn.release();
1534
1535  if (Result.isNull())
1536    return true;
1537
1538  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1539  TemplateSpecializationTypeLoc TL
1540    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1541  TL.setTemplateNameLoc(TemplateLoc);
1542  TL.setLAngleLoc(LAngleLoc);
1543  TL.setRAngleLoc(RAngleLoc);
1544  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1545    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1546
1547  return CreateParsedType(Result, DI);
1548}
1549
1550Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1551                                              TagUseKind TUK,
1552                                              DeclSpec::TST TagSpec,
1553                                              SourceLocation TagLoc) {
1554  if (TypeResult.isInvalid())
1555    return Sema::TypeResult();
1556
1557  // FIXME: preserve source info, ideally without copying the DI.
1558  TypeSourceInfo *DI;
1559  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1560
1561  // Verify the tag specifier.
1562  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1563
1564  if (const RecordType *RT = Type->getAs<RecordType>()) {
1565    RecordDecl *D = RT->getDecl();
1566
1567    IdentifierInfo *Id = D->getIdentifier();
1568    assert(Id && "templated class must have an identifier");
1569
1570    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1571      Diag(TagLoc, diag::err_use_with_wrong_tag)
1572        << Type
1573        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1574      Diag(D->getLocation(), diag::note_previous_use);
1575    }
1576  }
1577
1578  ElaboratedTypeKeyword Keyword
1579    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1580  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1581
1582  return ParsedType::make(ElabType);
1583}
1584
1585ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1586                                                 LookupResult &R,
1587                                                 bool RequiresADL,
1588                                 const TemplateArgumentListInfo &TemplateArgs) {
1589  // FIXME: Can we do any checking at this point? I guess we could check the
1590  // template arguments that we have against the template name, if the template
1591  // name refers to a single template. That's not a terribly common case,
1592  // though.
1593
1594  // These should be filtered out by our callers.
1595  assert(!R.empty() && "empty lookup results when building templateid");
1596  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1597
1598  NestedNameSpecifier *Qualifier = 0;
1599  SourceRange QualifierRange;
1600  if (SS.isSet()) {
1601    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1602    QualifierRange = SS.getRange();
1603  }
1604
1605  // We don't want lookup warnings at this point.
1606  R.suppressDiagnostics();
1607
1608  bool Dependent
1609    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1610                                              &TemplateArgs);
1611  UnresolvedLookupExpr *ULE
1612    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1613                                   Qualifier, QualifierRange,
1614                                   R.getLookupNameInfo(),
1615                                   RequiresADL, TemplateArgs,
1616                                   R.begin(), R.end());
1617
1618  return Owned(ULE);
1619}
1620
1621// We actually only call this from template instantiation.
1622ExprResult
1623Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1624                                   const DeclarationNameInfo &NameInfo,
1625                             const TemplateArgumentListInfo &TemplateArgs) {
1626  DeclContext *DC;
1627  if (!(DC = computeDeclContext(SS, false)) ||
1628      DC->isDependentContext() ||
1629      RequireCompleteDeclContext(SS, DC))
1630    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1631
1632  bool MemberOfUnknownSpecialization;
1633  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1634  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1635                     MemberOfUnknownSpecialization);
1636
1637  if (R.isAmbiguous())
1638    return ExprError();
1639
1640  if (R.empty()) {
1641    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1642      << NameInfo.getName() << SS.getRange();
1643    return ExprError();
1644  }
1645
1646  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1647    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1648      << (NestedNameSpecifier*) SS.getScopeRep()
1649      << NameInfo.getName() << SS.getRange();
1650    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1651    return ExprError();
1652  }
1653
1654  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1655}
1656
1657/// \brief Form a dependent template name.
1658///
1659/// This action forms a dependent template name given the template
1660/// name and its (presumably dependent) scope specifier. For
1661/// example, given "MetaFun::template apply", the scope specifier \p
1662/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1663/// of the "template" keyword, and "apply" is the \p Name.
1664TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1665                                                  SourceLocation TemplateKWLoc,
1666                                                  CXXScopeSpec &SS,
1667                                                  UnqualifiedId &Name,
1668                                                  ParsedType ObjectType,
1669                                                  bool EnteringContext,
1670                                                  TemplateTy &Result) {
1671  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1672      !getLangOptions().CPlusPlus0x)
1673    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1674      << FixItHint::CreateRemoval(TemplateKWLoc);
1675
1676  DeclContext *LookupCtx = 0;
1677  if (SS.isSet())
1678    LookupCtx = computeDeclContext(SS, EnteringContext);
1679  if (!LookupCtx && ObjectType)
1680    LookupCtx = computeDeclContext(ObjectType.get());
1681  if (LookupCtx) {
1682    // C++0x [temp.names]p5:
1683    //   If a name prefixed by the keyword template is not the name of
1684    //   a template, the program is ill-formed. [Note: the keyword
1685    //   template may not be applied to non-template members of class
1686    //   templates. -end note ] [ Note: as is the case with the
1687    //   typename prefix, the template prefix is allowed in cases
1688    //   where it is not strictly necessary; i.e., when the
1689    //   nested-name-specifier or the expression on the left of the ->
1690    //   or . is not dependent on a template-parameter, or the use
1691    //   does not appear in the scope of a template. -end note]
1692    //
1693    // Note: C++03 was more strict here, because it banned the use of
1694    // the "template" keyword prior to a template-name that was not a
1695    // dependent name. C++ DR468 relaxed this requirement (the
1696    // "template" keyword is now permitted). We follow the C++0x
1697    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1698    bool MemberOfUnknownSpecialization;
1699    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1700                                          ObjectType, EnteringContext, Result,
1701                                          MemberOfUnknownSpecialization);
1702    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1703        isa<CXXRecordDecl>(LookupCtx) &&
1704        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1705      // This is a dependent template. Handle it below.
1706    } else if (TNK == TNK_Non_template) {
1707      Diag(Name.getSourceRange().getBegin(),
1708           diag::err_template_kw_refers_to_non_template)
1709        << GetNameFromUnqualifiedId(Name).getName()
1710        << Name.getSourceRange()
1711        << TemplateKWLoc;
1712      return TNK_Non_template;
1713    } else {
1714      // We found something; return it.
1715      return TNK;
1716    }
1717  }
1718
1719  NestedNameSpecifier *Qualifier
1720    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1721
1722  switch (Name.getKind()) {
1723  case UnqualifiedId::IK_Identifier:
1724    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1725                                                              Name.Identifier));
1726    return TNK_Dependent_template_name;
1727
1728  case UnqualifiedId::IK_OperatorFunctionId:
1729    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1730                                             Name.OperatorFunctionId.Operator));
1731    return TNK_Dependent_template_name;
1732
1733  case UnqualifiedId::IK_LiteralOperatorId:
1734    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1735
1736  default:
1737    break;
1738  }
1739
1740  Diag(Name.getSourceRange().getBegin(),
1741       diag::err_template_kw_refers_to_non_template)
1742    << GetNameFromUnqualifiedId(Name).getName()
1743    << Name.getSourceRange()
1744    << TemplateKWLoc;
1745  return TNK_Non_template;
1746}
1747
1748bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1749                                     const TemplateArgumentLoc &AL,
1750                                     TemplateArgumentListBuilder &Converted) {
1751  const TemplateArgument &Arg = AL.getArgument();
1752
1753  // Check template type parameter.
1754  switch(Arg.getKind()) {
1755  case TemplateArgument::Type:
1756    // C++ [temp.arg.type]p1:
1757    //   A template-argument for a template-parameter which is a
1758    //   type shall be a type-id.
1759    break;
1760  case TemplateArgument::Template: {
1761    // We have a template type parameter but the template argument
1762    // is a template without any arguments.
1763    SourceRange SR = AL.getSourceRange();
1764    TemplateName Name = Arg.getAsTemplate();
1765    Diag(SR.getBegin(), diag::err_template_missing_args)
1766      << Name << SR;
1767    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1768      Diag(Decl->getLocation(), diag::note_template_decl_here);
1769
1770    return true;
1771  }
1772  default: {
1773    // We have a template type parameter but the template argument
1774    // is not a type.
1775    SourceRange SR = AL.getSourceRange();
1776    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1777    Diag(Param->getLocation(), diag::note_template_param_here);
1778
1779    return true;
1780  }
1781  }
1782
1783  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1784    return true;
1785
1786  // Add the converted template type argument.
1787  Converted.Append(
1788                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1789  return false;
1790}
1791
1792/// \brief Substitute template arguments into the default template argument for
1793/// the given template type parameter.
1794///
1795/// \param SemaRef the semantic analysis object for which we are performing
1796/// the substitution.
1797///
1798/// \param Template the template that we are synthesizing template arguments
1799/// for.
1800///
1801/// \param TemplateLoc the location of the template name that started the
1802/// template-id we are checking.
1803///
1804/// \param RAngleLoc the location of the right angle bracket ('>') that
1805/// terminates the template-id.
1806///
1807/// \param Param the template template parameter whose default we are
1808/// substituting into.
1809///
1810/// \param Converted the list of template arguments provided for template
1811/// parameters that precede \p Param in the template parameter list.
1812///
1813/// \returns the substituted template argument, or NULL if an error occurred.
1814static TypeSourceInfo *
1815SubstDefaultTemplateArgument(Sema &SemaRef,
1816                             TemplateDecl *Template,
1817                             SourceLocation TemplateLoc,
1818                             SourceLocation RAngleLoc,
1819                             TemplateTypeParmDecl *Param,
1820                             TemplateArgumentListBuilder &Converted) {
1821  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1822
1823  // If the argument type is dependent, instantiate it now based
1824  // on the previously-computed template arguments.
1825  if (ArgType->getType()->isDependentType()) {
1826    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1827                                      /*TakeArgs=*/false);
1828
1829    MultiLevelTemplateArgumentList AllTemplateArgs
1830      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1831
1832    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1833                                     Template, Converted.getFlatArguments(),
1834                                     Converted.flatSize(),
1835                                     SourceRange(TemplateLoc, RAngleLoc));
1836
1837    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1838                                Param->getDefaultArgumentLoc(),
1839                                Param->getDeclName());
1840  }
1841
1842  return ArgType;
1843}
1844
1845/// \brief Substitute template arguments into the default template argument for
1846/// the given non-type template parameter.
1847///
1848/// \param SemaRef the semantic analysis object for which we are performing
1849/// the substitution.
1850///
1851/// \param Template the template that we are synthesizing template arguments
1852/// for.
1853///
1854/// \param TemplateLoc the location of the template name that started the
1855/// template-id we are checking.
1856///
1857/// \param RAngleLoc the location of the right angle bracket ('>') that
1858/// terminates the template-id.
1859///
1860/// \param Param the non-type template parameter whose default we are
1861/// substituting into.
1862///
1863/// \param Converted the list of template arguments provided for template
1864/// parameters that precede \p Param in the template parameter list.
1865///
1866/// \returns the substituted template argument, or NULL if an error occurred.
1867static ExprResult
1868SubstDefaultTemplateArgument(Sema &SemaRef,
1869                             TemplateDecl *Template,
1870                             SourceLocation TemplateLoc,
1871                             SourceLocation RAngleLoc,
1872                             NonTypeTemplateParmDecl *Param,
1873                             TemplateArgumentListBuilder &Converted) {
1874  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1875                                    /*TakeArgs=*/false);
1876
1877  MultiLevelTemplateArgumentList AllTemplateArgs
1878    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1879
1880  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1881                                   Template, Converted.getFlatArguments(),
1882                                   Converted.flatSize(),
1883                                   SourceRange(TemplateLoc, RAngleLoc));
1884
1885  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1886}
1887
1888/// \brief Substitute template arguments into the default template argument for
1889/// the given template template parameter.
1890///
1891/// \param SemaRef the semantic analysis object for which we are performing
1892/// the substitution.
1893///
1894/// \param Template the template that we are synthesizing template arguments
1895/// for.
1896///
1897/// \param TemplateLoc the location of the template name that started the
1898/// template-id we are checking.
1899///
1900/// \param RAngleLoc the location of the right angle bracket ('>') that
1901/// terminates the template-id.
1902///
1903/// \param Param the template template parameter whose default we are
1904/// substituting into.
1905///
1906/// \param Converted the list of template arguments provided for template
1907/// parameters that precede \p Param in the template parameter list.
1908///
1909/// \returns the substituted template argument, or NULL if an error occurred.
1910static TemplateName
1911SubstDefaultTemplateArgument(Sema &SemaRef,
1912                             TemplateDecl *Template,
1913                             SourceLocation TemplateLoc,
1914                             SourceLocation RAngleLoc,
1915                             TemplateTemplateParmDecl *Param,
1916                             TemplateArgumentListBuilder &Converted) {
1917  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1918                                    /*TakeArgs=*/false);
1919
1920  MultiLevelTemplateArgumentList AllTemplateArgs
1921    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1922
1923  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1924                                   Template, Converted.getFlatArguments(),
1925                                   Converted.flatSize(),
1926                                   SourceRange(TemplateLoc, RAngleLoc));
1927
1928  return SemaRef.SubstTemplateName(
1929                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1930                              Param->getDefaultArgument().getTemplateNameLoc(),
1931                                   AllTemplateArgs);
1932}
1933
1934/// \brief If the given template parameter has a default template
1935/// argument, substitute into that default template argument and
1936/// return the corresponding template argument.
1937TemplateArgumentLoc
1938Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1939                                              SourceLocation TemplateLoc,
1940                                              SourceLocation RAngleLoc,
1941                                              Decl *Param,
1942                                     TemplateArgumentListBuilder &Converted) {
1943  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1944    if (!TypeParm->hasDefaultArgument())
1945      return TemplateArgumentLoc();
1946
1947    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1948                                                      TemplateLoc,
1949                                                      RAngleLoc,
1950                                                      TypeParm,
1951                                                      Converted);
1952    if (DI)
1953      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1954
1955    return TemplateArgumentLoc();
1956  }
1957
1958  if (NonTypeTemplateParmDecl *NonTypeParm
1959        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1960    if (!NonTypeParm->hasDefaultArgument())
1961      return TemplateArgumentLoc();
1962
1963    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1964                                                        TemplateLoc,
1965                                                        RAngleLoc,
1966                                                        NonTypeParm,
1967                                                        Converted);
1968    if (Arg.isInvalid())
1969      return TemplateArgumentLoc();
1970
1971    Expr *ArgE = Arg.takeAs<Expr>();
1972    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1973  }
1974
1975  TemplateTemplateParmDecl *TempTempParm
1976    = cast<TemplateTemplateParmDecl>(Param);
1977  if (!TempTempParm->hasDefaultArgument())
1978    return TemplateArgumentLoc();
1979
1980  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1981                                                    TemplateLoc,
1982                                                    RAngleLoc,
1983                                                    TempTempParm,
1984                                                    Converted);
1985  if (TName.isNull())
1986    return TemplateArgumentLoc();
1987
1988  return TemplateArgumentLoc(TemplateArgument(TName),
1989                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1990                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1991}
1992
1993/// \brief Check that the given template argument corresponds to the given
1994/// template parameter.
1995bool Sema::CheckTemplateArgument(NamedDecl *Param,
1996                                 const TemplateArgumentLoc &Arg,
1997                                 TemplateDecl *Template,
1998                                 SourceLocation TemplateLoc,
1999                                 SourceLocation RAngleLoc,
2000                                 TemplateArgumentListBuilder &Converted,
2001                                 CheckTemplateArgumentKind CTAK) {
2002  // Check template type parameters.
2003  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2004    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2005
2006  // Check non-type template parameters.
2007  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2008    // Do substitution on the type of the non-type template parameter
2009    // with the template arguments we've seen thus far.
2010    QualType NTTPType = NTTP->getType();
2011    if (NTTPType->isDependentType()) {
2012      // Do substitution on the type of the non-type template parameter.
2013      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2014                                 NTTP, Converted.getFlatArguments(),
2015                                 Converted.flatSize(),
2016                                 SourceRange(TemplateLoc, RAngleLoc));
2017
2018      TemplateArgumentList TemplateArgs(Context, Converted,
2019                                        /*TakeArgs=*/false);
2020      NTTPType = SubstType(NTTPType,
2021                           MultiLevelTemplateArgumentList(TemplateArgs),
2022                           NTTP->getLocation(),
2023                           NTTP->getDeclName());
2024      // If that worked, check the non-type template parameter type
2025      // for validity.
2026      if (!NTTPType.isNull())
2027        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2028                                                     NTTP->getLocation());
2029      if (NTTPType.isNull())
2030        return true;
2031    }
2032
2033    switch (Arg.getArgument().getKind()) {
2034    case TemplateArgument::Null:
2035      assert(false && "Should never see a NULL template argument here");
2036      return true;
2037
2038    case TemplateArgument::Expression: {
2039      Expr *E = Arg.getArgument().getAsExpr();
2040      TemplateArgument Result;
2041      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2042        return true;
2043
2044      Converted.Append(Result);
2045      break;
2046    }
2047
2048    case TemplateArgument::Declaration:
2049    case TemplateArgument::Integral:
2050      // We've already checked this template argument, so just copy
2051      // it to the list of converted arguments.
2052      Converted.Append(Arg.getArgument());
2053      break;
2054
2055    case TemplateArgument::Template:
2056      // We were given a template template argument. It may not be ill-formed;
2057      // see below.
2058      if (DependentTemplateName *DTN
2059            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2060        // We have a template argument such as \c T::template X, which we
2061        // parsed as a template template argument. However, since we now
2062        // know that we need a non-type template argument, convert this
2063        // template name into an expression.
2064
2065        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2066                                     Arg.getTemplateNameLoc());
2067
2068        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2069                                                    DTN->getQualifier(),
2070                                               Arg.getTemplateQualifierRange(),
2071                                                    NameInfo);
2072
2073        TemplateArgument Result;
2074        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2075          return true;
2076
2077        Converted.Append(Result);
2078        break;
2079      }
2080
2081      // We have a template argument that actually does refer to a class
2082      // template, template alias, or template template parameter, and
2083      // therefore cannot be a non-type template argument.
2084      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2085        << Arg.getSourceRange();
2086
2087      Diag(Param->getLocation(), diag::note_template_param_here);
2088      return true;
2089
2090    case TemplateArgument::Type: {
2091      // We have a non-type template parameter but the template
2092      // argument is a type.
2093
2094      // C++ [temp.arg]p2:
2095      //   In a template-argument, an ambiguity between a type-id and
2096      //   an expression is resolved to a type-id, regardless of the
2097      //   form of the corresponding template-parameter.
2098      //
2099      // We warn specifically about this case, since it can be rather
2100      // confusing for users.
2101      QualType T = Arg.getArgument().getAsType();
2102      SourceRange SR = Arg.getSourceRange();
2103      if (T->isFunctionType())
2104        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2105      else
2106        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2107      Diag(Param->getLocation(), diag::note_template_param_here);
2108      return true;
2109    }
2110
2111    case TemplateArgument::Pack:
2112      llvm_unreachable("Caller must expand template argument packs");
2113      break;
2114    }
2115
2116    return false;
2117  }
2118
2119
2120  // Check template template parameters.
2121  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2122
2123  // Substitute into the template parameter list of the template
2124  // template parameter, since previously-supplied template arguments
2125  // may appear within the template template parameter.
2126  {
2127    // Set up a template instantiation context.
2128    LocalInstantiationScope Scope(*this);
2129    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2130                               TempParm, Converted.getFlatArguments(),
2131                               Converted.flatSize(),
2132                               SourceRange(TemplateLoc, RAngleLoc));
2133
2134    TemplateArgumentList TemplateArgs(Context, Converted,
2135                                      /*TakeArgs=*/false);
2136    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2137                      SubstDecl(TempParm, CurContext,
2138                                MultiLevelTemplateArgumentList(TemplateArgs)));
2139    if (!TempParm)
2140      return true;
2141
2142    // FIXME: TempParam is leaked.
2143  }
2144
2145  switch (Arg.getArgument().getKind()) {
2146  case TemplateArgument::Null:
2147    assert(false && "Should never see a NULL template argument here");
2148    return true;
2149
2150  case TemplateArgument::Template:
2151    if (CheckTemplateArgument(TempParm, Arg))
2152      return true;
2153
2154    Converted.Append(Arg.getArgument());
2155    break;
2156
2157  case TemplateArgument::Expression:
2158  case TemplateArgument::Type:
2159    // We have a template template parameter but the template
2160    // argument does not refer to a template.
2161    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2162    return true;
2163
2164  case TemplateArgument::Declaration:
2165    llvm_unreachable(
2166                       "Declaration argument with template template parameter");
2167    break;
2168  case TemplateArgument::Integral:
2169    llvm_unreachable(
2170                          "Integral argument with template template parameter");
2171    break;
2172
2173  case TemplateArgument::Pack:
2174    llvm_unreachable("Caller must expand template argument packs");
2175    break;
2176  }
2177
2178  return false;
2179}
2180
2181/// \brief Check that the given template argument list is well-formed
2182/// for specializing the given template.
2183bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2184                                     SourceLocation TemplateLoc,
2185                                const TemplateArgumentListInfo &TemplateArgs,
2186                                     bool PartialTemplateArgs,
2187                                     TemplateArgumentListBuilder &Converted) {
2188  TemplateParameterList *Params = Template->getTemplateParameters();
2189  unsigned NumParams = Params->size();
2190  unsigned NumArgs = TemplateArgs.size();
2191  bool Invalid = false;
2192
2193  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2194
2195  bool HasParameterPack =
2196    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2197
2198  if ((NumArgs > NumParams && !HasParameterPack) ||
2199      (NumArgs < Params->getMinRequiredArguments() &&
2200       !PartialTemplateArgs)) {
2201    // FIXME: point at either the first arg beyond what we can handle,
2202    // or the '>', depending on whether we have too many or too few
2203    // arguments.
2204    SourceRange Range;
2205    if (NumArgs > NumParams)
2206      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2207    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2208      << (NumArgs > NumParams)
2209      << (isa<ClassTemplateDecl>(Template)? 0 :
2210          isa<FunctionTemplateDecl>(Template)? 1 :
2211          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2212      << Template << Range;
2213    Diag(Template->getLocation(), diag::note_template_decl_here)
2214      << Params->getSourceRange();
2215    Invalid = true;
2216  }
2217
2218  // C++ [temp.arg]p1:
2219  //   [...] The type and form of each template-argument specified in
2220  //   a template-id shall match the type and form specified for the
2221  //   corresponding parameter declared by the template in its
2222  //   template-parameter-list.
2223  unsigned ArgIdx = 0;
2224  for (TemplateParameterList::iterator Param = Params->begin(),
2225                                       ParamEnd = Params->end();
2226       Param != ParamEnd; ++Param, ++ArgIdx) {
2227    if (ArgIdx > NumArgs && PartialTemplateArgs)
2228      break;
2229
2230    // If we have a template parameter pack, check every remaining template
2231    // argument against that template parameter pack.
2232    if ((*Param)->isTemplateParameterPack()) {
2233      Converted.BeginPack();
2234      for (; ArgIdx < NumArgs; ++ArgIdx) {
2235        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2236                                  TemplateLoc, RAngleLoc, Converted)) {
2237          Invalid = true;
2238          break;
2239        }
2240      }
2241      Converted.EndPack();
2242      continue;
2243    }
2244
2245    if (ArgIdx < NumArgs) {
2246      // Check the template argument we were given.
2247      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2248                                TemplateLoc, RAngleLoc, Converted))
2249        return true;
2250
2251      continue;
2252    }
2253
2254    // We have a default template argument that we will use.
2255    TemplateArgumentLoc Arg;
2256
2257    // Retrieve the default template argument from the template
2258    // parameter. For each kind of template parameter, we substitute the
2259    // template arguments provided thus far and any "outer" template arguments
2260    // (when the template parameter was part of a nested template) into
2261    // the default argument.
2262    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2263      if (!TTP->hasDefaultArgument()) {
2264        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2265        break;
2266      }
2267
2268      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2269                                                             Template,
2270                                                             TemplateLoc,
2271                                                             RAngleLoc,
2272                                                             TTP,
2273                                                             Converted);
2274      if (!ArgType)
2275        return true;
2276
2277      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2278                                ArgType);
2279    } else if (NonTypeTemplateParmDecl *NTTP
2280                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2281      if (!NTTP->hasDefaultArgument()) {
2282        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2283        break;
2284      }
2285
2286      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2287                                                              TemplateLoc,
2288                                                              RAngleLoc,
2289                                                              NTTP,
2290                                                              Converted);
2291      if (E.isInvalid())
2292        return true;
2293
2294      Expr *Ex = E.takeAs<Expr>();
2295      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2296    } else {
2297      TemplateTemplateParmDecl *TempParm
2298        = cast<TemplateTemplateParmDecl>(*Param);
2299
2300      if (!TempParm->hasDefaultArgument()) {
2301        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2302        break;
2303      }
2304
2305      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2306                                                       TemplateLoc,
2307                                                       RAngleLoc,
2308                                                       TempParm,
2309                                                       Converted);
2310      if (Name.isNull())
2311        return true;
2312
2313      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2314                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2315                  TempParm->getDefaultArgument().getTemplateNameLoc());
2316    }
2317
2318    // Introduce an instantiation record that describes where we are using
2319    // the default template argument.
2320    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2321                                        Converted.getFlatArguments(),
2322                                        Converted.flatSize(),
2323                                        SourceRange(TemplateLoc, RAngleLoc));
2324
2325    // Check the default template argument.
2326    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2327                              RAngleLoc, Converted))
2328      return true;
2329  }
2330
2331  return Invalid;
2332}
2333
2334/// \brief Check a template argument against its corresponding
2335/// template type parameter.
2336///
2337/// This routine implements the semantics of C++ [temp.arg.type]. It
2338/// returns true if an error occurred, and false otherwise.
2339bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2340                                 TypeSourceInfo *ArgInfo) {
2341  assert(ArgInfo && "invalid TypeSourceInfo");
2342  QualType Arg = ArgInfo->getType();
2343
2344  // C++ [temp.arg.type]p2:
2345  //   A local type, a type with no linkage, an unnamed type or a type
2346  //   compounded from any of these types shall not be used as a
2347  //   template-argument for a template type-parameter.
2348  //
2349  // FIXME: Perform the unnamed type check.
2350  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2351  const TagType *Tag = 0;
2352  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2353    Tag = EnumT;
2354  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2355    Tag = RecordT;
2356  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2357    SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2358    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2359      << QualType(Tag, 0) << SR;
2360  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2361           !Tag->getDecl()->getTypedefForAnonDecl()) {
2362    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2363    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2364    return true;
2365  } else if (Arg->isVariablyModifiedType()) {
2366    Diag(SR.getBegin(), diag::err_variably_modified_template_arg)
2367      << Arg;
2368    return true;
2369  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2370    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2371  }
2372
2373  return false;
2374}
2375
2376/// \brief Checks whether the given template argument is the address
2377/// of an object or function according to C++ [temp.arg.nontype]p1.
2378static bool
2379CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2380                                               NonTypeTemplateParmDecl *Param,
2381                                               QualType ParamType,
2382                                               Expr *ArgIn,
2383                                               TemplateArgument &Converted) {
2384  bool Invalid = false;
2385  Expr *Arg = ArgIn;
2386  QualType ArgType = Arg->getType();
2387
2388  // See through any implicit casts we added to fix the type.
2389  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2390    Arg = Cast->getSubExpr();
2391
2392  // C++ [temp.arg.nontype]p1:
2393  //
2394  //   A template-argument for a non-type, non-template
2395  //   template-parameter shall be one of: [...]
2396  //
2397  //     -- the address of an object or function with external
2398  //        linkage, including function templates and function
2399  //        template-ids but excluding non-static class members,
2400  //        expressed as & id-expression where the & is optional if
2401  //        the name refers to a function or array, or if the
2402  //        corresponding template-parameter is a reference; or
2403  DeclRefExpr *DRE = 0;
2404
2405  // Ignore (and complain about) any excess parentheses.
2406  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2407    if (!Invalid) {
2408      S.Diag(Arg->getSourceRange().getBegin(),
2409             diag::err_template_arg_extra_parens)
2410        << Arg->getSourceRange();
2411      Invalid = true;
2412    }
2413
2414    Arg = Parens->getSubExpr();
2415  }
2416
2417  bool AddressTaken = false;
2418  SourceLocation AddrOpLoc;
2419  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2420    if (UnOp->getOpcode() == UO_AddrOf) {
2421      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2422      AddressTaken = true;
2423      AddrOpLoc = UnOp->getOperatorLoc();
2424    }
2425  } else
2426    DRE = dyn_cast<DeclRefExpr>(Arg);
2427
2428  if (!DRE) {
2429    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2430      << Arg->getSourceRange();
2431    S.Diag(Param->getLocation(), diag::note_template_param_here);
2432    return true;
2433  }
2434
2435  // Stop checking the precise nature of the argument if it is value dependent,
2436  // it should be checked when instantiated.
2437  if (Arg->isValueDependent()) {
2438    Converted = TemplateArgument(ArgIn->Retain());
2439    return false;
2440  }
2441
2442  if (!isa<ValueDecl>(DRE->getDecl())) {
2443    S.Diag(Arg->getSourceRange().getBegin(),
2444           diag::err_template_arg_not_object_or_func_form)
2445      << Arg->getSourceRange();
2446    S.Diag(Param->getLocation(), diag::note_template_param_here);
2447    return true;
2448  }
2449
2450  NamedDecl *Entity = 0;
2451
2452  // Cannot refer to non-static data members
2453  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2454    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2455      << Field << Arg->getSourceRange();
2456    S.Diag(Param->getLocation(), diag::note_template_param_here);
2457    return true;
2458  }
2459
2460  // Cannot refer to non-static member functions
2461  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2462    if (!Method->isStatic()) {
2463      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2464        << Method << Arg->getSourceRange();
2465      S.Diag(Param->getLocation(), diag::note_template_param_here);
2466      return true;
2467    }
2468
2469  // Functions must have external linkage.
2470  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2471    if (!isExternalLinkage(Func->getLinkage())) {
2472      S.Diag(Arg->getSourceRange().getBegin(),
2473             diag::err_template_arg_function_not_extern)
2474        << Func << Arg->getSourceRange();
2475      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2476        << true;
2477      return true;
2478    }
2479
2480    // Okay: we've named a function with external linkage.
2481    Entity = Func;
2482
2483    // If the template parameter has pointer type, the function decays.
2484    if (ParamType->isPointerType() && !AddressTaken)
2485      ArgType = S.Context.getPointerType(Func->getType());
2486    else if (AddressTaken && ParamType->isReferenceType()) {
2487      // If we originally had an address-of operator, but the
2488      // parameter has reference type, complain and (if things look
2489      // like they will work) drop the address-of operator.
2490      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2491                                            ParamType.getNonReferenceType())) {
2492        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2493          << ParamType;
2494        S.Diag(Param->getLocation(), diag::note_template_param_here);
2495        return true;
2496      }
2497
2498      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2499        << ParamType
2500        << FixItHint::CreateRemoval(AddrOpLoc);
2501      S.Diag(Param->getLocation(), diag::note_template_param_here);
2502
2503      ArgType = Func->getType();
2504    }
2505  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2506    if (!isExternalLinkage(Var->getLinkage())) {
2507      S.Diag(Arg->getSourceRange().getBegin(),
2508             diag::err_template_arg_object_not_extern)
2509        << Var << Arg->getSourceRange();
2510      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2511        << true;
2512      return true;
2513    }
2514
2515    // A value of reference type is not an object.
2516    if (Var->getType()->isReferenceType()) {
2517      S.Diag(Arg->getSourceRange().getBegin(),
2518             diag::err_template_arg_reference_var)
2519        << Var->getType() << Arg->getSourceRange();
2520      S.Diag(Param->getLocation(), diag::note_template_param_here);
2521      return true;
2522    }
2523
2524    // Okay: we've named an object with external linkage
2525    Entity = Var;
2526
2527    // If the template parameter has pointer type, we must have taken
2528    // the address of this object.
2529    if (ParamType->isReferenceType()) {
2530      if (AddressTaken) {
2531        // If we originally had an address-of operator, but the
2532        // parameter has reference type, complain and (if things look
2533        // like they will work) drop the address-of operator.
2534        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2535                                            ParamType.getNonReferenceType())) {
2536          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2537            << ParamType;
2538          S.Diag(Param->getLocation(), diag::note_template_param_here);
2539          return true;
2540        }
2541
2542        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2543          << ParamType
2544          << FixItHint::CreateRemoval(AddrOpLoc);
2545        S.Diag(Param->getLocation(), diag::note_template_param_here);
2546
2547        ArgType = Var->getType();
2548      }
2549    } else if (!AddressTaken && ParamType->isPointerType()) {
2550      if (Var->getType()->isArrayType()) {
2551        // Array-to-pointer decay.
2552        ArgType = S.Context.getArrayDecayedType(Var->getType());
2553      } else {
2554        // If the template parameter has pointer type but the address of
2555        // this object was not taken, complain and (possibly) recover by
2556        // taking the address of the entity.
2557        ArgType = S.Context.getPointerType(Var->getType());
2558        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2559          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2560            << ParamType;
2561          S.Diag(Param->getLocation(), diag::note_template_param_here);
2562          return true;
2563        }
2564
2565        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2566          << ParamType
2567          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2568
2569        S.Diag(Param->getLocation(), diag::note_template_param_here);
2570      }
2571    }
2572  } else {
2573    // We found something else, but we don't know specifically what it is.
2574    S.Diag(Arg->getSourceRange().getBegin(),
2575           diag::err_template_arg_not_object_or_func)
2576      << Arg->getSourceRange();
2577    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2578    return true;
2579  }
2580
2581  if (ParamType->isPointerType() &&
2582      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2583      S.IsQualificationConversion(ArgType, ParamType)) {
2584    // For pointer-to-object types, qualification conversions are
2585    // permitted.
2586  } else {
2587    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2588      if (!ParamRef->getPointeeType()->isFunctionType()) {
2589        // C++ [temp.arg.nontype]p5b3:
2590        //   For a non-type template-parameter of type reference to
2591        //   object, no conversions apply. The type referred to by the
2592        //   reference may be more cv-qualified than the (otherwise
2593        //   identical) type of the template- argument. The
2594        //   template-parameter is bound directly to the
2595        //   template-argument, which shall be an lvalue.
2596
2597        // FIXME: Other qualifiers?
2598        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2599        unsigned ArgQuals = ArgType.getCVRQualifiers();
2600
2601        if ((ParamQuals | ArgQuals) != ParamQuals) {
2602          S.Diag(Arg->getSourceRange().getBegin(),
2603                 diag::err_template_arg_ref_bind_ignores_quals)
2604            << ParamType << Arg->getType()
2605            << Arg->getSourceRange();
2606          S.Diag(Param->getLocation(), diag::note_template_param_here);
2607          return true;
2608        }
2609      }
2610    }
2611
2612    // At this point, the template argument refers to an object or
2613    // function with external linkage. We now need to check whether the
2614    // argument and parameter types are compatible.
2615    if (!S.Context.hasSameUnqualifiedType(ArgType,
2616                                          ParamType.getNonReferenceType())) {
2617      // We can't perform this conversion or binding.
2618      if (ParamType->isReferenceType())
2619        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2620          << ParamType << Arg->getType() << Arg->getSourceRange();
2621      else
2622        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2623          << Arg->getType() << ParamType << Arg->getSourceRange();
2624      S.Diag(Param->getLocation(), diag::note_template_param_here);
2625      return true;
2626    }
2627  }
2628
2629  // Create the template argument.
2630  Converted = TemplateArgument(Entity->getCanonicalDecl());
2631  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2632  return false;
2633}
2634
2635/// \brief Checks whether the given template argument is a pointer to
2636/// member constant according to C++ [temp.arg.nontype]p1.
2637bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2638                                                TemplateArgument &Converted) {
2639  bool Invalid = false;
2640
2641  // See through any implicit casts we added to fix the type.
2642  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2643    Arg = Cast->getSubExpr();
2644
2645  // C++ [temp.arg.nontype]p1:
2646  //
2647  //   A template-argument for a non-type, non-template
2648  //   template-parameter shall be one of: [...]
2649  //
2650  //     -- a pointer to member expressed as described in 5.3.1.
2651  DeclRefExpr *DRE = 0;
2652
2653  // Ignore (and complain about) any excess parentheses.
2654  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2655    if (!Invalid) {
2656      Diag(Arg->getSourceRange().getBegin(),
2657           diag::err_template_arg_extra_parens)
2658        << Arg->getSourceRange();
2659      Invalid = true;
2660    }
2661
2662    Arg = Parens->getSubExpr();
2663  }
2664
2665  // A pointer-to-member constant written &Class::member.
2666  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2667    if (UnOp->getOpcode() == UO_AddrOf) {
2668      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2669      if (DRE && !DRE->getQualifier())
2670        DRE = 0;
2671    }
2672  }
2673  // A constant of pointer-to-member type.
2674  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2675    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2676      if (VD->getType()->isMemberPointerType()) {
2677        if (isa<NonTypeTemplateParmDecl>(VD) ||
2678            (isa<VarDecl>(VD) &&
2679             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2680          if (Arg->isTypeDependent() || Arg->isValueDependent())
2681            Converted = TemplateArgument(Arg->Retain());
2682          else
2683            Converted = TemplateArgument(VD->getCanonicalDecl());
2684          return Invalid;
2685        }
2686      }
2687    }
2688
2689    DRE = 0;
2690  }
2691
2692  if (!DRE)
2693    return Diag(Arg->getSourceRange().getBegin(),
2694                diag::err_template_arg_not_pointer_to_member_form)
2695      << Arg->getSourceRange();
2696
2697  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2698    assert((isa<FieldDecl>(DRE->getDecl()) ||
2699            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2700           "Only non-static member pointers can make it here");
2701
2702    // Okay: this is the address of a non-static member, and therefore
2703    // a member pointer constant.
2704    if (Arg->isTypeDependent() || Arg->isValueDependent())
2705      Converted = TemplateArgument(Arg->Retain());
2706    else
2707      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2708    return Invalid;
2709  }
2710
2711  // We found something else, but we don't know specifically what it is.
2712  Diag(Arg->getSourceRange().getBegin(),
2713       diag::err_template_arg_not_pointer_to_member_form)
2714      << Arg->getSourceRange();
2715  Diag(DRE->getDecl()->getLocation(),
2716       diag::note_template_arg_refers_here);
2717  return true;
2718}
2719
2720/// \brief Check a template argument against its corresponding
2721/// non-type template parameter.
2722///
2723/// This routine implements the semantics of C++ [temp.arg.nontype].
2724/// It returns true if an error occurred, and false otherwise. \p
2725/// InstantiatedParamType is the type of the non-type template
2726/// parameter after it has been instantiated.
2727///
2728/// If no error was detected, Converted receives the converted template argument.
2729bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2730                                 QualType InstantiatedParamType, Expr *&Arg,
2731                                 TemplateArgument &Converted,
2732                                 CheckTemplateArgumentKind CTAK) {
2733  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2734
2735  // If either the parameter has a dependent type or the argument is
2736  // type-dependent, there's nothing we can check now.
2737  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2738    // FIXME: Produce a cloned, canonical expression?
2739    Converted = TemplateArgument(Arg);
2740    return false;
2741  }
2742
2743  // C++ [temp.arg.nontype]p5:
2744  //   The following conversions are performed on each expression used
2745  //   as a non-type template-argument. If a non-type
2746  //   template-argument cannot be converted to the type of the
2747  //   corresponding template-parameter then the program is
2748  //   ill-formed.
2749  //
2750  //     -- for a non-type template-parameter of integral or
2751  //        enumeration type, integral promotions (4.5) and integral
2752  //        conversions (4.7) are applied.
2753  QualType ParamType = InstantiatedParamType;
2754  QualType ArgType = Arg->getType();
2755  if (ParamType->isIntegralOrEnumerationType()) {
2756    // C++ [temp.arg.nontype]p1:
2757    //   A template-argument for a non-type, non-template
2758    //   template-parameter shall be one of:
2759    //
2760    //     -- an integral constant-expression of integral or enumeration
2761    //        type; or
2762    //     -- the name of a non-type template-parameter; or
2763    SourceLocation NonConstantLoc;
2764    llvm::APSInt Value;
2765    if (!ArgType->isIntegralOrEnumerationType()) {
2766      Diag(Arg->getSourceRange().getBegin(),
2767           diag::err_template_arg_not_integral_or_enumeral)
2768        << ArgType << Arg->getSourceRange();
2769      Diag(Param->getLocation(), diag::note_template_param_here);
2770      return true;
2771    } else if (!Arg->isValueDependent() &&
2772               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2773      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2774        << ArgType << Arg->getSourceRange();
2775      return true;
2776    }
2777
2778    // From here on out, all we care about are the unqualified forms
2779    // of the parameter and argument types.
2780    ParamType = ParamType.getUnqualifiedType();
2781    ArgType = ArgType.getUnqualifiedType();
2782
2783    // Try to convert the argument to the parameter's type.
2784    if (Context.hasSameType(ParamType, ArgType)) {
2785      // Okay: no conversion necessary
2786    } else if (CTAK == CTAK_Deduced) {
2787      // C++ [temp.deduct.type]p17:
2788      //   If, in the declaration of a function template with a non-type
2789      //   template-parameter, the non-type template- parameter is used
2790      //   in an expression in the function parameter-list and, if the
2791      //   corresponding template-argument is deduced, the
2792      //   template-argument type shall match the type of the
2793      //   template-parameter exactly, except that a template-argument
2794      //   deduced from an array bound may be of any integral type.
2795      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2796        << ArgType << ParamType;
2797      Diag(Param->getLocation(), diag::note_template_param_here);
2798      return true;
2799    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2800               !ParamType->isEnumeralType()) {
2801      // This is an integral promotion or conversion.
2802      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
2803    } else {
2804      // We can't perform this conversion.
2805      Diag(Arg->getSourceRange().getBegin(),
2806           diag::err_template_arg_not_convertible)
2807        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2808      Diag(Param->getLocation(), diag::note_template_param_here);
2809      return true;
2810    }
2811
2812    QualType IntegerType = Context.getCanonicalType(ParamType);
2813    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2814      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2815
2816    if (!Arg->isValueDependent()) {
2817      llvm::APSInt OldValue = Value;
2818
2819      // Coerce the template argument's value to the value it will have
2820      // based on the template parameter's type.
2821      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2822      if (Value.getBitWidth() != AllowedBits)
2823        Value.extOrTrunc(AllowedBits);
2824      Value.setIsSigned(IntegerType->isSignedIntegerType());
2825
2826      // Complain if an unsigned parameter received a negative value.
2827      if (IntegerType->isUnsignedIntegerType()
2828          && (OldValue.isSigned() && OldValue.isNegative())) {
2829        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2830          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2831          << Arg->getSourceRange();
2832        Diag(Param->getLocation(), diag::note_template_param_here);
2833      }
2834
2835      // Complain if we overflowed the template parameter's type.
2836      unsigned RequiredBits;
2837      if (IntegerType->isUnsignedIntegerType())
2838        RequiredBits = OldValue.getActiveBits();
2839      else if (OldValue.isUnsigned())
2840        RequiredBits = OldValue.getActiveBits() + 1;
2841      else
2842        RequiredBits = OldValue.getMinSignedBits();
2843      if (RequiredBits > AllowedBits) {
2844        Diag(Arg->getSourceRange().getBegin(),
2845             diag::warn_template_arg_too_large)
2846          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2847          << Arg->getSourceRange();
2848        Diag(Param->getLocation(), diag::note_template_param_here);
2849      }
2850    }
2851
2852    // Add the value of this argument to the list of converted
2853    // arguments. We use the bitwidth and signedness of the template
2854    // parameter.
2855    if (Arg->isValueDependent()) {
2856      // The argument is value-dependent. Create a new
2857      // TemplateArgument with the converted expression.
2858      Converted = TemplateArgument(Arg);
2859      return false;
2860    }
2861
2862    Converted = TemplateArgument(Value,
2863                                 ParamType->isEnumeralType() ? ParamType
2864                                                             : IntegerType);
2865    return false;
2866  }
2867
2868  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2869
2870  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2871  // from a template argument of type std::nullptr_t to a non-type
2872  // template parameter of type pointer to object, pointer to
2873  // function, or pointer-to-member, respectively.
2874  if (ArgType->isNullPtrType() &&
2875      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2876    Converted = TemplateArgument((NamedDecl *)0);
2877    return false;
2878  }
2879
2880  // Handle pointer-to-function, reference-to-function, and
2881  // pointer-to-member-function all in (roughly) the same way.
2882  if (// -- For a non-type template-parameter of type pointer to
2883      //    function, only the function-to-pointer conversion (4.3) is
2884      //    applied. If the template-argument represents a set of
2885      //    overloaded functions (or a pointer to such), the matching
2886      //    function is selected from the set (13.4).
2887      (ParamType->isPointerType() &&
2888       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2889      // -- For a non-type template-parameter of type reference to
2890      //    function, no conversions apply. If the template-argument
2891      //    represents a set of overloaded functions, the matching
2892      //    function is selected from the set (13.4).
2893      (ParamType->isReferenceType() &&
2894       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2895      // -- For a non-type template-parameter of type pointer to
2896      //    member function, no conversions apply. If the
2897      //    template-argument represents a set of overloaded member
2898      //    functions, the matching member function is selected from
2899      //    the set (13.4).
2900      (ParamType->isMemberPointerType() &&
2901       ParamType->getAs<MemberPointerType>()->getPointeeType()
2902         ->isFunctionType())) {
2903
2904    if (Arg->getType() == Context.OverloadTy) {
2905      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2906                                                                true,
2907                                                                FoundResult)) {
2908        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2909          return true;
2910
2911        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2912        ArgType = Arg->getType();
2913      } else
2914        return true;
2915    }
2916
2917    if (!ParamType->isMemberPointerType())
2918      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2919                                                            ParamType,
2920                                                            Arg, Converted);
2921
2922    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2923      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
2924    } else if (!Context.hasSameUnqualifiedType(ArgType,
2925                                           ParamType.getNonReferenceType())) {
2926      // We can't perform this conversion.
2927      Diag(Arg->getSourceRange().getBegin(),
2928           diag::err_template_arg_not_convertible)
2929        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2930      Diag(Param->getLocation(), diag::note_template_param_here);
2931      return true;
2932    }
2933
2934    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2935  }
2936
2937  if (ParamType->isPointerType()) {
2938    //   -- for a non-type template-parameter of type pointer to
2939    //      object, qualification conversions (4.4) and the
2940    //      array-to-pointer conversion (4.2) are applied.
2941    // C++0x also allows a value of std::nullptr_t.
2942    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
2943           "Only object pointers allowed here");
2944
2945    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2946                                                          ParamType,
2947                                                          Arg, Converted);
2948  }
2949
2950  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2951    //   -- For a non-type template-parameter of type reference to
2952    //      object, no conversions apply. The type referred to by the
2953    //      reference may be more cv-qualified than the (otherwise
2954    //      identical) type of the template-argument. The
2955    //      template-parameter is bound directly to the
2956    //      template-argument, which must be an lvalue.
2957    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
2958           "Only object references allowed here");
2959
2960    if (Arg->getType() == Context.OverloadTy) {
2961      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2962                                                 ParamRefType->getPointeeType(),
2963                                                                true,
2964                                                                FoundResult)) {
2965        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2966          return true;
2967
2968        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2969        ArgType = Arg->getType();
2970      } else
2971        return true;
2972    }
2973
2974    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2975                                                          ParamType,
2976                                                          Arg, Converted);
2977  }
2978
2979  //     -- For a non-type template-parameter of type pointer to data
2980  //        member, qualification conversions (4.4) are applied.
2981  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2982
2983  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2984    // Types match exactly: nothing more to do here.
2985  } else if (IsQualificationConversion(ArgType, ParamType)) {
2986    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
2987  } else {
2988    // We can't perform this conversion.
2989    Diag(Arg->getSourceRange().getBegin(),
2990         diag::err_template_arg_not_convertible)
2991      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2992    Diag(Param->getLocation(), diag::note_template_param_here);
2993    return true;
2994  }
2995
2996  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2997}
2998
2999/// \brief Check a template argument against its corresponding
3000/// template template parameter.
3001///
3002/// This routine implements the semantics of C++ [temp.arg.template].
3003/// It returns true if an error occurred, and false otherwise.
3004bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3005                                 const TemplateArgumentLoc &Arg) {
3006  TemplateName Name = Arg.getArgument().getAsTemplate();
3007  TemplateDecl *Template = Name.getAsTemplateDecl();
3008  if (!Template) {
3009    // Any dependent template name is fine.
3010    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3011    return false;
3012  }
3013
3014  // C++ [temp.arg.template]p1:
3015  //   A template-argument for a template template-parameter shall be
3016  //   the name of a class template, expressed as id-expression. Only
3017  //   primary class templates are considered when matching the
3018  //   template template argument with the corresponding parameter;
3019  //   partial specializations are not considered even if their
3020  //   parameter lists match that of the template template parameter.
3021  //
3022  // Note that we also allow template template parameters here, which
3023  // will happen when we are dealing with, e.g., class template
3024  // partial specializations.
3025  if (!isa<ClassTemplateDecl>(Template) &&
3026      !isa<TemplateTemplateParmDecl>(Template)) {
3027    assert(isa<FunctionTemplateDecl>(Template) &&
3028           "Only function templates are possible here");
3029    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3030    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3031      << Template;
3032  }
3033
3034  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3035                                         Param->getTemplateParameters(),
3036                                         true,
3037                                         TPL_TemplateTemplateArgumentMatch,
3038                                         Arg.getLocation());
3039}
3040
3041/// \brief Given a non-type template argument that refers to a
3042/// declaration and the type of its corresponding non-type template
3043/// parameter, produce an expression that properly refers to that
3044/// declaration.
3045ExprResult
3046Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3047                                              QualType ParamType,
3048                                              SourceLocation Loc) {
3049  assert(Arg.getKind() == TemplateArgument::Declaration &&
3050         "Only declaration template arguments permitted here");
3051  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3052
3053  if (VD->getDeclContext()->isRecord() &&
3054      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3055    // If the value is a class member, we might have a pointer-to-member.
3056    // Determine whether the non-type template template parameter is of
3057    // pointer-to-member type. If so, we need to build an appropriate
3058    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3059    // would refer to the member itself.
3060    if (ParamType->isMemberPointerType()) {
3061      QualType ClassType
3062        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3063      NestedNameSpecifier *Qualifier
3064        = NestedNameSpecifier::Create(Context, 0, false,
3065                                      ClassType.getTypePtr());
3066      CXXScopeSpec SS;
3067      SS.setScopeRep(Qualifier);
3068      ExprResult RefExpr = BuildDeclRefExpr(VD,
3069                                           VD->getType().getNonReferenceType(),
3070                                                  Loc,
3071                                                  &SS);
3072      if (RefExpr.isInvalid())
3073        return ExprError();
3074
3075      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3076
3077      // We might need to perform a trailing qualification conversion, since
3078      // the element type on the parameter could be more qualified than the
3079      // element type in the expression we constructed.
3080      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3081                                    ParamType.getUnqualifiedType())) {
3082        Expr *RefE = RefExpr.takeAs<Expr>();
3083        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3084        RefExpr = Owned(RefE);
3085      }
3086
3087      assert(!RefExpr.isInvalid() &&
3088             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3089                                 ParamType.getUnqualifiedType()));
3090      return move(RefExpr);
3091    }
3092  }
3093
3094  QualType T = VD->getType().getNonReferenceType();
3095  if (ParamType->isPointerType()) {
3096    // When the non-type template parameter is a pointer, take the
3097    // address of the declaration.
3098    ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3099    if (RefExpr.isInvalid())
3100      return ExprError();
3101
3102    if (T->isFunctionType() || T->isArrayType()) {
3103      // Decay functions and arrays.
3104      Expr *RefE = (Expr *)RefExpr.get();
3105      DefaultFunctionArrayConversion(RefE);
3106      if (RefE != RefExpr.get()) {
3107        RefExpr.release();
3108        RefExpr = Owned(RefE);
3109      }
3110
3111      return move(RefExpr);
3112    }
3113
3114    // Take the address of everything else
3115    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3116  }
3117
3118  // If the non-type template parameter has reference type, qualify the
3119  // resulting declaration reference with the extra qualifiers on the
3120  // type that the reference refers to.
3121  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3122    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3123
3124  return BuildDeclRefExpr(VD, T, Loc);
3125}
3126
3127/// \brief Construct a new expression that refers to the given
3128/// integral template argument with the given source-location
3129/// information.
3130///
3131/// This routine takes care of the mapping from an integral template
3132/// argument (which may have any integral type) to the appropriate
3133/// literal value.
3134ExprResult
3135Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3136                                                  SourceLocation Loc) {
3137  assert(Arg.getKind() == TemplateArgument::Integral &&
3138         "Operation is only value for integral template arguments");
3139  QualType T = Arg.getIntegralType();
3140  if (T->isCharType() || T->isWideCharType())
3141    return Owned(new (Context) CharacterLiteral(
3142                                             Arg.getAsIntegral()->getZExtValue(),
3143                                             T->isWideCharType(),
3144                                             T,
3145                                             Loc));
3146  if (T->isBooleanType())
3147    return Owned(new (Context) CXXBoolLiteralExpr(
3148                                            Arg.getAsIntegral()->getBoolValue(),
3149                                            T,
3150                                            Loc));
3151
3152  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3153}
3154
3155
3156/// \brief Determine whether the given template parameter lists are
3157/// equivalent.
3158///
3159/// \param New  The new template parameter list, typically written in the
3160/// source code as part of a new template declaration.
3161///
3162/// \param Old  The old template parameter list, typically found via
3163/// name lookup of the template declared with this template parameter
3164/// list.
3165///
3166/// \param Complain  If true, this routine will produce a diagnostic if
3167/// the template parameter lists are not equivalent.
3168///
3169/// \param Kind describes how we are to match the template parameter lists.
3170///
3171/// \param TemplateArgLoc If this source location is valid, then we
3172/// are actually checking the template parameter list of a template
3173/// argument (New) against the template parameter list of its
3174/// corresponding template template parameter (Old). We produce
3175/// slightly different diagnostics in this scenario.
3176///
3177/// \returns True if the template parameter lists are equal, false
3178/// otherwise.
3179bool
3180Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3181                                     TemplateParameterList *Old,
3182                                     bool Complain,
3183                                     TemplateParameterListEqualKind Kind,
3184                                     SourceLocation TemplateArgLoc) {
3185  if (Old->size() != New->size()) {
3186    if (Complain) {
3187      unsigned NextDiag = diag::err_template_param_list_different_arity;
3188      if (TemplateArgLoc.isValid()) {
3189        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3190        NextDiag = diag::note_template_param_list_different_arity;
3191      }
3192      Diag(New->getTemplateLoc(), NextDiag)
3193          << (New->size() > Old->size())
3194          << (Kind != TPL_TemplateMatch)
3195          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3196      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3197        << (Kind != TPL_TemplateMatch)
3198        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3199    }
3200
3201    return false;
3202  }
3203
3204  for (TemplateParameterList::iterator OldParm = Old->begin(),
3205         OldParmEnd = Old->end(), NewParm = New->begin();
3206       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3207    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3208      if (Complain) {
3209        unsigned NextDiag = diag::err_template_param_different_kind;
3210        if (TemplateArgLoc.isValid()) {
3211          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3212          NextDiag = diag::note_template_param_different_kind;
3213        }
3214        Diag((*NewParm)->getLocation(), NextDiag)
3215          << (Kind != TPL_TemplateMatch);
3216        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3217          << (Kind != TPL_TemplateMatch);
3218      }
3219      return false;
3220    }
3221
3222    if (TemplateTypeParmDecl *OldTTP
3223                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3224      // Template type parameters are equivalent if either both are template
3225      // type parameter packs or neither are (since we know we're at the same
3226      // index).
3227      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3228      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3229        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3230        // allow one to match a template parameter pack in the template
3231        // parameter list of a template template parameter to one or more
3232        // template parameters in the template parameter list of the
3233        // corresponding template template argument.
3234        if (Complain) {
3235          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3236          if (TemplateArgLoc.isValid()) {
3237            Diag(TemplateArgLoc,
3238                 diag::err_template_arg_template_params_mismatch);
3239            NextDiag = diag::note_template_parameter_pack_non_pack;
3240          }
3241          Diag(NewTTP->getLocation(), NextDiag)
3242            << 0 << NewTTP->isParameterPack();
3243          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3244            << 0 << OldTTP->isParameterPack();
3245        }
3246        return false;
3247      }
3248    } else if (NonTypeTemplateParmDecl *OldNTTP
3249                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3250      // The types of non-type template parameters must agree.
3251      NonTypeTemplateParmDecl *NewNTTP
3252        = cast<NonTypeTemplateParmDecl>(*NewParm);
3253
3254      // If we are matching a template template argument to a template
3255      // template parameter and one of the non-type template parameter types
3256      // is dependent, then we must wait until template instantiation time
3257      // to actually compare the arguments.
3258      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3259          (OldNTTP->getType()->isDependentType() ||
3260           NewNTTP->getType()->isDependentType()))
3261        continue;
3262
3263      if (Context.getCanonicalType(OldNTTP->getType()) !=
3264            Context.getCanonicalType(NewNTTP->getType())) {
3265        if (Complain) {
3266          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3267          if (TemplateArgLoc.isValid()) {
3268            Diag(TemplateArgLoc,
3269                 diag::err_template_arg_template_params_mismatch);
3270            NextDiag = diag::note_template_nontype_parm_different_type;
3271          }
3272          Diag(NewNTTP->getLocation(), NextDiag)
3273            << NewNTTP->getType()
3274            << (Kind != TPL_TemplateMatch);
3275          Diag(OldNTTP->getLocation(),
3276               diag::note_template_nontype_parm_prev_declaration)
3277            << OldNTTP->getType();
3278        }
3279        return false;
3280      }
3281    } else {
3282      // The template parameter lists of template template
3283      // parameters must agree.
3284      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3285             "Only template template parameters handled here");
3286      TemplateTemplateParmDecl *OldTTP
3287        = cast<TemplateTemplateParmDecl>(*OldParm);
3288      TemplateTemplateParmDecl *NewTTP
3289        = cast<TemplateTemplateParmDecl>(*NewParm);
3290      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3291                                          OldTTP->getTemplateParameters(),
3292                                          Complain,
3293              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3294                                          TemplateArgLoc))
3295        return false;
3296    }
3297  }
3298
3299  return true;
3300}
3301
3302/// \brief Check whether a template can be declared within this scope.
3303///
3304/// If the template declaration is valid in this scope, returns
3305/// false. Otherwise, issues a diagnostic and returns true.
3306bool
3307Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3308  // Find the nearest enclosing declaration scope.
3309  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3310         (S->getFlags() & Scope::TemplateParamScope) != 0)
3311    S = S->getParent();
3312
3313  // C++ [temp]p2:
3314  //   A template-declaration can appear only as a namespace scope or
3315  //   class scope declaration.
3316  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3317  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3318      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3319    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3320             << TemplateParams->getSourceRange();
3321
3322  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3323    Ctx = Ctx->getParent();
3324
3325  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3326    return false;
3327
3328  return Diag(TemplateParams->getTemplateLoc(),
3329              diag::err_template_outside_namespace_or_class_scope)
3330    << TemplateParams->getSourceRange();
3331}
3332
3333/// \brief Determine what kind of template specialization the given declaration
3334/// is.
3335static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3336  if (!D)
3337    return TSK_Undeclared;
3338
3339  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3340    return Record->getTemplateSpecializationKind();
3341  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3342    return Function->getTemplateSpecializationKind();
3343  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3344    return Var->getTemplateSpecializationKind();
3345
3346  return TSK_Undeclared;
3347}
3348
3349/// \brief Check whether a specialization is well-formed in the current
3350/// context.
3351///
3352/// This routine determines whether a template specialization can be declared
3353/// in the current context (C++ [temp.expl.spec]p2).
3354///
3355/// \param S the semantic analysis object for which this check is being
3356/// performed.
3357///
3358/// \param Specialized the entity being specialized or instantiated, which
3359/// may be a kind of template (class template, function template, etc.) or
3360/// a member of a class template (member function, static data member,
3361/// member class).
3362///
3363/// \param PrevDecl the previous declaration of this entity, if any.
3364///
3365/// \param Loc the location of the explicit specialization or instantiation of
3366/// this entity.
3367///
3368/// \param IsPartialSpecialization whether this is a partial specialization of
3369/// a class template.
3370///
3371/// \returns true if there was an error that we cannot recover from, false
3372/// otherwise.
3373static bool CheckTemplateSpecializationScope(Sema &S,
3374                                             NamedDecl *Specialized,
3375                                             NamedDecl *PrevDecl,
3376                                             SourceLocation Loc,
3377                                             bool IsPartialSpecialization) {
3378  // Keep these "kind" numbers in sync with the %select statements in the
3379  // various diagnostics emitted by this routine.
3380  int EntityKind = 0;
3381  bool isTemplateSpecialization = false;
3382  if (isa<ClassTemplateDecl>(Specialized)) {
3383    EntityKind = IsPartialSpecialization? 1 : 0;
3384    isTemplateSpecialization = true;
3385  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3386    EntityKind = 2;
3387    isTemplateSpecialization = true;
3388  } else if (isa<CXXMethodDecl>(Specialized))
3389    EntityKind = 3;
3390  else if (isa<VarDecl>(Specialized))
3391    EntityKind = 4;
3392  else if (isa<RecordDecl>(Specialized))
3393    EntityKind = 5;
3394  else {
3395    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3396    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3397    return true;
3398  }
3399
3400  // C++ [temp.expl.spec]p2:
3401  //   An explicit specialization shall be declared in the namespace
3402  //   of which the template is a member, or, for member templates, in
3403  //   the namespace of which the enclosing class or enclosing class
3404  //   template is a member. An explicit specialization of a member
3405  //   function, member class or static data member of a class
3406  //   template shall be declared in the namespace of which the class
3407  //   template is a member. Such a declaration may also be a
3408  //   definition. If the declaration is not a definition, the
3409  //   specialization may be defined later in the name- space in which
3410  //   the explicit specialization was declared, or in a namespace
3411  //   that encloses the one in which the explicit specialization was
3412  //   declared.
3413  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3414    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3415      << Specialized;
3416    return true;
3417  }
3418
3419  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3420    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3421      << Specialized;
3422    return true;
3423  }
3424
3425  // C++ [temp.class.spec]p6:
3426  //   A class template partial specialization may be declared or redeclared
3427  //   in any namespace scope in which its definition may be defined (14.5.1
3428  //   and 14.5.2).
3429  bool ComplainedAboutScope = false;
3430  DeclContext *SpecializedContext
3431    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3432  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3433  if ((!PrevDecl ||
3434       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3435       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3436    // There is no prior declaration of this entity, so this
3437    // specialization must be in the same context as the template
3438    // itself.
3439    if (!DC->Equals(SpecializedContext)) {
3440      if (isa<TranslationUnitDecl>(SpecializedContext))
3441        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3442        << EntityKind << Specialized;
3443      else if (isa<NamespaceDecl>(SpecializedContext))
3444        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3445        << EntityKind << Specialized
3446        << cast<NamedDecl>(SpecializedContext);
3447
3448      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3449      ComplainedAboutScope = true;
3450    }
3451  }
3452
3453  // Make sure that this redeclaration (or definition) occurs in an enclosing
3454  // namespace.
3455  // Note that HandleDeclarator() performs this check for explicit
3456  // specializations of function templates, static data members, and member
3457  // functions, so we skip the check here for those kinds of entities.
3458  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3459  // Should we refactor that check, so that it occurs later?
3460  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3461      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3462        isa<FunctionDecl>(Specialized))) {
3463    if (isa<TranslationUnitDecl>(SpecializedContext))
3464      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3465        << EntityKind << Specialized;
3466    else if (isa<NamespaceDecl>(SpecializedContext))
3467      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3468        << EntityKind << Specialized
3469        << cast<NamedDecl>(SpecializedContext);
3470
3471    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3472  }
3473
3474  // FIXME: check for specialization-after-instantiation errors and such.
3475
3476  return false;
3477}
3478
3479/// \brief Check the non-type template arguments of a class template
3480/// partial specialization according to C++ [temp.class.spec]p9.
3481///
3482/// \param TemplateParams the template parameters of the primary class
3483/// template.
3484///
3485/// \param TemplateArg the template arguments of the class template
3486/// partial specialization.
3487///
3488/// \param MirrorsPrimaryTemplate will be set true if the class
3489/// template partial specialization arguments are identical to the
3490/// implicit template arguments of the primary template. This is not
3491/// necessarily an error (C++0x), and it is left to the caller to diagnose
3492/// this condition when it is an error.
3493///
3494/// \returns true if there was an error, false otherwise.
3495bool Sema::CheckClassTemplatePartialSpecializationArgs(
3496                                        TemplateParameterList *TemplateParams,
3497                             const TemplateArgumentListBuilder &TemplateArgs,
3498                                        bool &MirrorsPrimaryTemplate) {
3499  // FIXME: the interface to this function will have to change to
3500  // accommodate variadic templates.
3501  MirrorsPrimaryTemplate = true;
3502
3503  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3504
3505  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3506    // Determine whether the template argument list of the partial
3507    // specialization is identical to the implicit argument list of
3508    // the primary template. The caller may need to diagnostic this as
3509    // an error per C++ [temp.class.spec]p9b3.
3510    if (MirrorsPrimaryTemplate) {
3511      if (TemplateTypeParmDecl *TTP
3512            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3513        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3514              Context.getCanonicalType(ArgList[I].getAsType()))
3515          MirrorsPrimaryTemplate = false;
3516      } else if (TemplateTemplateParmDecl *TTP
3517                   = dyn_cast<TemplateTemplateParmDecl>(
3518                                                 TemplateParams->getParam(I))) {
3519        TemplateName Name = ArgList[I].getAsTemplate();
3520        TemplateTemplateParmDecl *ArgDecl
3521          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3522        if (!ArgDecl ||
3523            ArgDecl->getIndex() != TTP->getIndex() ||
3524            ArgDecl->getDepth() != TTP->getDepth())
3525          MirrorsPrimaryTemplate = false;
3526      }
3527    }
3528
3529    NonTypeTemplateParmDecl *Param
3530      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3531    if (!Param) {
3532      continue;
3533    }
3534
3535    Expr *ArgExpr = ArgList[I].getAsExpr();
3536    if (!ArgExpr) {
3537      MirrorsPrimaryTemplate = false;
3538      continue;
3539    }
3540
3541    // C++ [temp.class.spec]p8:
3542    //   A non-type argument is non-specialized if it is the name of a
3543    //   non-type parameter. All other non-type arguments are
3544    //   specialized.
3545    //
3546    // Below, we check the two conditions that only apply to
3547    // specialized non-type arguments, so skip any non-specialized
3548    // arguments.
3549    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3550      if (NonTypeTemplateParmDecl *NTTP
3551            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3552        if (MirrorsPrimaryTemplate &&
3553            (Param->getIndex() != NTTP->getIndex() ||
3554             Param->getDepth() != NTTP->getDepth()))
3555          MirrorsPrimaryTemplate = false;
3556
3557        continue;
3558      }
3559
3560    // C++ [temp.class.spec]p9:
3561    //   Within the argument list of a class template partial
3562    //   specialization, the following restrictions apply:
3563    //     -- A partially specialized non-type argument expression
3564    //        shall not involve a template parameter of the partial
3565    //        specialization except when the argument expression is a
3566    //        simple identifier.
3567    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3568      Diag(ArgExpr->getLocStart(),
3569           diag::err_dependent_non_type_arg_in_partial_spec)
3570        << ArgExpr->getSourceRange();
3571      return true;
3572    }
3573
3574    //     -- The type of a template parameter corresponding to a
3575    //        specialized non-type argument shall not be dependent on a
3576    //        parameter of the specialization.
3577    if (Param->getType()->isDependentType()) {
3578      Diag(ArgExpr->getLocStart(),
3579           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3580        << Param->getType()
3581        << ArgExpr->getSourceRange();
3582      Diag(Param->getLocation(), diag::note_template_param_here);
3583      return true;
3584    }
3585
3586    MirrorsPrimaryTemplate = false;
3587  }
3588
3589  return false;
3590}
3591
3592/// \brief Retrieve the previous declaration of the given declaration.
3593static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3594  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3595    return VD->getPreviousDeclaration();
3596  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3597    return FD->getPreviousDeclaration();
3598  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3599    return TD->getPreviousDeclaration();
3600  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3601    return TD->getPreviousDeclaration();
3602  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3603    return FTD->getPreviousDeclaration();
3604  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3605    return CTD->getPreviousDeclaration();
3606  return 0;
3607}
3608
3609DeclResult
3610Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3611                                       TagUseKind TUK,
3612                                       SourceLocation KWLoc,
3613                                       CXXScopeSpec &SS,
3614                                       TemplateTy TemplateD,
3615                                       SourceLocation TemplateNameLoc,
3616                                       SourceLocation LAngleLoc,
3617                                       ASTTemplateArgsPtr TemplateArgsIn,
3618                                       SourceLocation RAngleLoc,
3619                                       AttributeList *Attr,
3620                               MultiTemplateParamsArg TemplateParameterLists) {
3621  assert(TUK != TUK_Reference && "References are not specializations");
3622
3623  // Find the class template we're specializing
3624  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3625  ClassTemplateDecl *ClassTemplate
3626    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3627
3628  if (!ClassTemplate) {
3629    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3630      << (Name.getAsTemplateDecl() &&
3631          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3632    return true;
3633  }
3634
3635  bool isExplicitSpecialization = false;
3636  bool isPartialSpecialization = false;
3637
3638  // Check the validity of the template headers that introduce this
3639  // template.
3640  // FIXME: We probably shouldn't complain about these headers for
3641  // friend declarations.
3642  bool Invalid = false;
3643  TemplateParameterList *TemplateParams
3644    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3645                        (TemplateParameterList**)TemplateParameterLists.get(),
3646                                              TemplateParameterLists.size(),
3647                                              TUK == TUK_Friend,
3648                                              isExplicitSpecialization,
3649                                              Invalid);
3650  if (Invalid)
3651    return true;
3652
3653  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3654  if (TemplateParams)
3655    --NumMatchedTemplateParamLists;
3656
3657  if (TemplateParams && TemplateParams->size() > 0) {
3658    isPartialSpecialization = true;
3659
3660    // C++ [temp.class.spec]p10:
3661    //   The template parameter list of a specialization shall not
3662    //   contain default template argument values.
3663    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3664      Decl *Param = TemplateParams->getParam(I);
3665      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3666        if (TTP->hasDefaultArgument()) {
3667          Diag(TTP->getDefaultArgumentLoc(),
3668               diag::err_default_arg_in_partial_spec);
3669          TTP->removeDefaultArgument();
3670        }
3671      } else if (NonTypeTemplateParmDecl *NTTP
3672                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3673        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3674          Diag(NTTP->getDefaultArgumentLoc(),
3675               diag::err_default_arg_in_partial_spec)
3676            << DefArg->getSourceRange();
3677          NTTP->removeDefaultArgument();
3678        }
3679      } else {
3680        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3681        if (TTP->hasDefaultArgument()) {
3682          Diag(TTP->getDefaultArgument().getLocation(),
3683               diag::err_default_arg_in_partial_spec)
3684            << TTP->getDefaultArgument().getSourceRange();
3685          TTP->removeDefaultArgument();
3686        }
3687      }
3688    }
3689  } else if (TemplateParams) {
3690    if (TUK == TUK_Friend)
3691      Diag(KWLoc, diag::err_template_spec_friend)
3692        << FixItHint::CreateRemoval(
3693                                SourceRange(TemplateParams->getTemplateLoc(),
3694                                            TemplateParams->getRAngleLoc()))
3695        << SourceRange(LAngleLoc, RAngleLoc);
3696    else
3697      isExplicitSpecialization = true;
3698  } else if (TUK != TUK_Friend) {
3699    Diag(KWLoc, diag::err_template_spec_needs_header)
3700      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3701    isExplicitSpecialization = true;
3702  }
3703
3704  // Check that the specialization uses the same tag kind as the
3705  // original template.
3706  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3707  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3708  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3709                                    Kind, KWLoc,
3710                                    *ClassTemplate->getIdentifier())) {
3711    Diag(KWLoc, diag::err_use_with_wrong_tag)
3712      << ClassTemplate
3713      << FixItHint::CreateReplacement(KWLoc,
3714                            ClassTemplate->getTemplatedDecl()->getKindName());
3715    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3716         diag::note_previous_use);
3717    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3718  }
3719
3720  // Translate the parser's template argument list in our AST format.
3721  TemplateArgumentListInfo TemplateArgs;
3722  TemplateArgs.setLAngleLoc(LAngleLoc);
3723  TemplateArgs.setRAngleLoc(RAngleLoc);
3724  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3725
3726  // Check that the template argument list is well-formed for this
3727  // template.
3728  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3729                                        TemplateArgs.size());
3730  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3731                                TemplateArgs, false, Converted))
3732    return true;
3733
3734  assert((Converted.structuredSize() ==
3735            ClassTemplate->getTemplateParameters()->size()) &&
3736         "Converted template argument list is too short!");
3737
3738  // Find the class template (partial) specialization declaration that
3739  // corresponds to these arguments.
3740  if (isPartialSpecialization) {
3741    bool MirrorsPrimaryTemplate;
3742    if (CheckClassTemplatePartialSpecializationArgs(
3743                                         ClassTemplate->getTemplateParameters(),
3744                                         Converted, MirrorsPrimaryTemplate))
3745      return true;
3746
3747    if (MirrorsPrimaryTemplate) {
3748      // C++ [temp.class.spec]p9b3:
3749      //
3750      //   -- The argument list of the specialization shall not be identical
3751      //      to the implicit argument list of the primary template.
3752      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3753        << (TUK == TUK_Definition)
3754        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3755      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3756                                ClassTemplate->getIdentifier(),
3757                                TemplateNameLoc,
3758                                Attr,
3759                                TemplateParams,
3760                                AS_none);
3761    }
3762
3763    // FIXME: Diagnose friend partial specializations
3764
3765    if (!Name.isDependent() &&
3766        !TemplateSpecializationType::anyDependentTemplateArguments(
3767                                             TemplateArgs.getArgumentArray(),
3768                                                         TemplateArgs.size())) {
3769      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3770        << ClassTemplate->getDeclName();
3771      isPartialSpecialization = false;
3772    }
3773  }
3774
3775  void *InsertPos = 0;
3776  ClassTemplateSpecializationDecl *PrevDecl = 0;
3777
3778  if (isPartialSpecialization)
3779    // FIXME: Template parameter list matters, too
3780    PrevDecl
3781      = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(),
3782                                                 Converted.flatSize(),
3783                                                 InsertPos);
3784  else
3785    PrevDecl
3786      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
3787                                          Converted.flatSize(), InsertPos);
3788
3789  ClassTemplateSpecializationDecl *Specialization = 0;
3790
3791  // Check whether we can declare a class template specialization in
3792  // the current scope.
3793  if (TUK != TUK_Friend &&
3794      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3795                                       TemplateNameLoc,
3796                                       isPartialSpecialization))
3797    return true;
3798
3799  // The canonical type
3800  QualType CanonType;
3801  if (PrevDecl &&
3802      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3803               TUK == TUK_Friend)) {
3804    // Since the only prior class template specialization with these
3805    // arguments was referenced but not declared, or we're only
3806    // referencing this specialization as a friend, reuse that
3807    // declaration node as our own, updating its source location to
3808    // reflect our new declaration.
3809    Specialization = PrevDecl;
3810    Specialization->setLocation(TemplateNameLoc);
3811    PrevDecl = 0;
3812    CanonType = Context.getTypeDeclType(Specialization);
3813  } else if (isPartialSpecialization) {
3814    // Build the canonical type that describes the converted template
3815    // arguments of the class template partial specialization.
3816    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3817    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3818                                                  Converted.getFlatArguments(),
3819                                                  Converted.flatSize());
3820
3821    // Create a new class template partial specialization declaration node.
3822    ClassTemplatePartialSpecializationDecl *PrevPartial
3823      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3824    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3825                            : ClassTemplate->getNextPartialSpecSequenceNumber();
3826    ClassTemplatePartialSpecializationDecl *Partial
3827      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3828                                             ClassTemplate->getDeclContext(),
3829                                                       TemplateNameLoc,
3830                                                       TemplateParams,
3831                                                       ClassTemplate,
3832                                                       Converted,
3833                                                       TemplateArgs,
3834                                                       CanonType,
3835                                                       PrevPartial,
3836                                                       SequenceNumber);
3837    SetNestedNameSpecifier(Partial, SS);
3838    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
3839      Partial->setTemplateParameterListsInfo(Context,
3840                                             NumMatchedTemplateParamLists,
3841                    (TemplateParameterList**) TemplateParameterLists.release());
3842    }
3843
3844    if (!PrevPartial)
3845      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
3846    Specialization = Partial;
3847
3848    // If we are providing an explicit specialization of a member class
3849    // template specialization, make a note of that.
3850    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3851      PrevPartial->setMemberSpecialization();
3852
3853    // Check that all of the template parameters of the class template
3854    // partial specialization are deducible from the template
3855    // arguments. If not, this class template partial specialization
3856    // will never be used.
3857    llvm::SmallVector<bool, 8> DeducibleParams;
3858    DeducibleParams.resize(TemplateParams->size());
3859    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3860                               TemplateParams->getDepth(),
3861                               DeducibleParams);
3862    unsigned NumNonDeducible = 0;
3863    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3864      if (!DeducibleParams[I])
3865        ++NumNonDeducible;
3866
3867    if (NumNonDeducible) {
3868      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3869        << (NumNonDeducible > 1)
3870        << SourceRange(TemplateNameLoc, RAngleLoc);
3871      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3872        if (!DeducibleParams[I]) {
3873          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3874          if (Param->getDeclName())
3875            Diag(Param->getLocation(),
3876                 diag::note_partial_spec_unused_parameter)
3877              << Param->getDeclName();
3878          else
3879            Diag(Param->getLocation(),
3880                 diag::note_partial_spec_unused_parameter)
3881              << "<anonymous>";
3882        }
3883      }
3884    }
3885  } else {
3886    // Create a new class template specialization declaration node for
3887    // this explicit specialization or friend declaration.
3888    Specialization
3889      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3890                                             ClassTemplate->getDeclContext(),
3891                                                TemplateNameLoc,
3892                                                ClassTemplate,
3893                                                Converted,
3894                                                PrevDecl);
3895    SetNestedNameSpecifier(Specialization, SS);
3896    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
3897      Specialization->setTemplateParameterListsInfo(Context,
3898                                                  NumMatchedTemplateParamLists,
3899                    (TemplateParameterList**) TemplateParameterLists.release());
3900    }
3901
3902    if (!PrevDecl)
3903      ClassTemplate->AddSpecialization(Specialization, InsertPos);
3904
3905    CanonType = Context.getTypeDeclType(Specialization);
3906  }
3907
3908  // C++ [temp.expl.spec]p6:
3909  //   If a template, a member template or the member of a class template is
3910  //   explicitly specialized then that specialization shall be declared
3911  //   before the first use of that specialization that would cause an implicit
3912  //   instantiation to take place, in every translation unit in which such a
3913  //   use occurs; no diagnostic is required.
3914  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3915    bool Okay = false;
3916    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3917      // Is there any previous explicit specialization declaration?
3918      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3919        Okay = true;
3920        break;
3921      }
3922    }
3923
3924    if (!Okay) {
3925      SourceRange Range(TemplateNameLoc, RAngleLoc);
3926      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3927        << Context.getTypeDeclType(Specialization) << Range;
3928
3929      Diag(PrevDecl->getPointOfInstantiation(),
3930           diag::note_instantiation_required_here)
3931        << (PrevDecl->getTemplateSpecializationKind()
3932                                                != TSK_ImplicitInstantiation);
3933      return true;
3934    }
3935  }
3936
3937  // If this is not a friend, note that this is an explicit specialization.
3938  if (TUK != TUK_Friend)
3939    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3940
3941  // Check that this isn't a redefinition of this specialization.
3942  if (TUK == TUK_Definition) {
3943    if (RecordDecl *Def = Specialization->getDefinition()) {
3944      SourceRange Range(TemplateNameLoc, RAngleLoc);
3945      Diag(TemplateNameLoc, diag::err_redefinition)
3946        << Context.getTypeDeclType(Specialization) << Range;
3947      Diag(Def->getLocation(), diag::note_previous_definition);
3948      Specialization->setInvalidDecl();
3949      return true;
3950    }
3951  }
3952
3953  // Build the fully-sugared type for this class template
3954  // specialization as the user wrote in the specialization
3955  // itself. This means that we'll pretty-print the type retrieved
3956  // from the specialization's declaration the way that the user
3957  // actually wrote the specialization, rather than formatting the
3958  // name based on the "canonical" representation used to store the
3959  // template arguments in the specialization.
3960  TypeSourceInfo *WrittenTy
3961    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3962                                                TemplateArgs, CanonType);
3963  if (TUK != TUK_Friend) {
3964    Specialization->setTypeAsWritten(WrittenTy);
3965    if (TemplateParams)
3966      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
3967  }
3968  TemplateArgsIn.release();
3969
3970  // C++ [temp.expl.spec]p9:
3971  //   A template explicit specialization is in the scope of the
3972  //   namespace in which the template was defined.
3973  //
3974  // We actually implement this paragraph where we set the semantic
3975  // context (in the creation of the ClassTemplateSpecializationDecl),
3976  // but we also maintain the lexical context where the actual
3977  // definition occurs.
3978  Specialization->setLexicalDeclContext(CurContext);
3979
3980  // We may be starting the definition of this specialization.
3981  if (TUK == TUK_Definition)
3982    Specialization->startDefinition();
3983
3984  if (TUK == TUK_Friend) {
3985    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3986                                            TemplateNameLoc,
3987                                            WrittenTy,
3988                                            /*FIXME:*/KWLoc);
3989    Friend->setAccess(AS_public);
3990    CurContext->addDecl(Friend);
3991  } else {
3992    // Add the specialization into its lexical context, so that it can
3993    // be seen when iterating through the list of declarations in that
3994    // context. However, specializations are not found by name lookup.
3995    CurContext->addDecl(Specialization);
3996  }
3997  return Specialization;
3998}
3999
4000Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4001                              MultiTemplateParamsArg TemplateParameterLists,
4002                                    Declarator &D) {
4003  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4004}
4005
4006Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4007                               MultiTemplateParamsArg TemplateParameterLists,
4008                                            Declarator &D) {
4009  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4010  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4011         "Not a function declarator!");
4012  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4013
4014  if (FTI.hasPrototype) {
4015    // FIXME: Diagnose arguments without names in C.
4016  }
4017
4018  Scope *ParentScope = FnBodyScope->getParent();
4019
4020  Decl *DP = HandleDeclarator(ParentScope, D,
4021                              move(TemplateParameterLists),
4022                              /*IsFunctionDefinition=*/true);
4023  if (FunctionTemplateDecl *FunctionTemplate
4024        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4025    return ActOnStartOfFunctionDef(FnBodyScope,
4026                                   FunctionTemplate->getTemplatedDecl());
4027  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4028    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4029  return 0;
4030}
4031
4032/// \brief Strips various properties off an implicit instantiation
4033/// that has just been explicitly specialized.
4034static void StripImplicitInstantiation(NamedDecl *D) {
4035  D->dropAttrs();
4036
4037  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4038    FD->setInlineSpecified(false);
4039  }
4040}
4041
4042/// \brief Diagnose cases where we have an explicit template specialization
4043/// before/after an explicit template instantiation, producing diagnostics
4044/// for those cases where they are required and determining whether the
4045/// new specialization/instantiation will have any effect.
4046///
4047/// \param NewLoc the location of the new explicit specialization or
4048/// instantiation.
4049///
4050/// \param NewTSK the kind of the new explicit specialization or instantiation.
4051///
4052/// \param PrevDecl the previous declaration of the entity.
4053///
4054/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4055///
4056/// \param PrevPointOfInstantiation if valid, indicates where the previus
4057/// declaration was instantiated (either implicitly or explicitly).
4058///
4059/// \param HasNoEffect will be set to true to indicate that the new
4060/// specialization or instantiation has no effect and should be ignored.
4061///
4062/// \returns true if there was an error that should prevent the introduction of
4063/// the new declaration into the AST, false otherwise.
4064bool
4065Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4066                                             TemplateSpecializationKind NewTSK,
4067                                             NamedDecl *PrevDecl,
4068                                             TemplateSpecializationKind PrevTSK,
4069                                        SourceLocation PrevPointOfInstantiation,
4070                                             bool &HasNoEffect) {
4071  HasNoEffect = false;
4072
4073  switch (NewTSK) {
4074  case TSK_Undeclared:
4075  case TSK_ImplicitInstantiation:
4076    assert(false && "Don't check implicit instantiations here");
4077    return false;
4078
4079  case TSK_ExplicitSpecialization:
4080    switch (PrevTSK) {
4081    case TSK_Undeclared:
4082    case TSK_ExplicitSpecialization:
4083      // Okay, we're just specializing something that is either already
4084      // explicitly specialized or has merely been mentioned without any
4085      // instantiation.
4086      return false;
4087
4088    case TSK_ImplicitInstantiation:
4089      if (PrevPointOfInstantiation.isInvalid()) {
4090        // The declaration itself has not actually been instantiated, so it is
4091        // still okay to specialize it.
4092        StripImplicitInstantiation(PrevDecl);
4093        return false;
4094      }
4095      // Fall through
4096
4097    case TSK_ExplicitInstantiationDeclaration:
4098    case TSK_ExplicitInstantiationDefinition:
4099      assert((PrevTSK == TSK_ImplicitInstantiation ||
4100              PrevPointOfInstantiation.isValid()) &&
4101             "Explicit instantiation without point of instantiation?");
4102
4103      // C++ [temp.expl.spec]p6:
4104      //   If a template, a member template or the member of a class template
4105      //   is explicitly specialized then that specialization shall be declared
4106      //   before the first use of that specialization that would cause an
4107      //   implicit instantiation to take place, in every translation unit in
4108      //   which such a use occurs; no diagnostic is required.
4109      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4110        // Is there any previous explicit specialization declaration?
4111        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4112          return false;
4113      }
4114
4115      Diag(NewLoc, diag::err_specialization_after_instantiation)
4116        << PrevDecl;
4117      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4118        << (PrevTSK != TSK_ImplicitInstantiation);
4119
4120      return true;
4121    }
4122    break;
4123
4124  case TSK_ExplicitInstantiationDeclaration:
4125    switch (PrevTSK) {
4126    case TSK_ExplicitInstantiationDeclaration:
4127      // This explicit instantiation declaration is redundant (that's okay).
4128      HasNoEffect = true;
4129      return false;
4130
4131    case TSK_Undeclared:
4132    case TSK_ImplicitInstantiation:
4133      // We're explicitly instantiating something that may have already been
4134      // implicitly instantiated; that's fine.
4135      return false;
4136
4137    case TSK_ExplicitSpecialization:
4138      // C++0x [temp.explicit]p4:
4139      //   For a given set of template parameters, if an explicit instantiation
4140      //   of a template appears after a declaration of an explicit
4141      //   specialization for that template, the explicit instantiation has no
4142      //   effect.
4143      HasNoEffect = true;
4144      return false;
4145
4146    case TSK_ExplicitInstantiationDefinition:
4147      // C++0x [temp.explicit]p10:
4148      //   If an entity is the subject of both an explicit instantiation
4149      //   declaration and an explicit instantiation definition in the same
4150      //   translation unit, the definition shall follow the declaration.
4151      Diag(NewLoc,
4152           diag::err_explicit_instantiation_declaration_after_definition);
4153      Diag(PrevPointOfInstantiation,
4154           diag::note_explicit_instantiation_definition_here);
4155      assert(PrevPointOfInstantiation.isValid() &&
4156             "Explicit instantiation without point of instantiation?");
4157      HasNoEffect = true;
4158      return false;
4159    }
4160    break;
4161
4162  case TSK_ExplicitInstantiationDefinition:
4163    switch (PrevTSK) {
4164    case TSK_Undeclared:
4165    case TSK_ImplicitInstantiation:
4166      // We're explicitly instantiating something that may have already been
4167      // implicitly instantiated; that's fine.
4168      return false;
4169
4170    case TSK_ExplicitSpecialization:
4171      // C++ DR 259, C++0x [temp.explicit]p4:
4172      //   For a given set of template parameters, if an explicit
4173      //   instantiation of a template appears after a declaration of
4174      //   an explicit specialization for that template, the explicit
4175      //   instantiation has no effect.
4176      //
4177      // In C++98/03 mode, we only give an extension warning here, because it
4178      // is not harmful to try to explicitly instantiate something that
4179      // has been explicitly specialized.
4180      if (!getLangOptions().CPlusPlus0x) {
4181        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4182          << PrevDecl;
4183        Diag(PrevDecl->getLocation(),
4184             diag::note_previous_template_specialization);
4185      }
4186      HasNoEffect = true;
4187      return false;
4188
4189    case TSK_ExplicitInstantiationDeclaration:
4190      // We're explicity instantiating a definition for something for which we
4191      // were previously asked to suppress instantiations. That's fine.
4192      return false;
4193
4194    case TSK_ExplicitInstantiationDefinition:
4195      // C++0x [temp.spec]p5:
4196      //   For a given template and a given set of template-arguments,
4197      //     - an explicit instantiation definition shall appear at most once
4198      //       in a program,
4199      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4200        << PrevDecl;
4201      Diag(PrevPointOfInstantiation,
4202           diag::note_previous_explicit_instantiation);
4203      HasNoEffect = true;
4204      return false;
4205    }
4206    break;
4207  }
4208
4209  assert(false && "Missing specialization/instantiation case?");
4210
4211  return false;
4212}
4213
4214/// \brief Perform semantic analysis for the given dependent function
4215/// template specialization.  The only possible way to get a dependent
4216/// function template specialization is with a friend declaration,
4217/// like so:
4218///
4219///   template <class T> void foo(T);
4220///   template <class T> class A {
4221///     friend void foo<>(T);
4222///   };
4223///
4224/// There really isn't any useful analysis we can do here, so we
4225/// just store the information.
4226bool
4227Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4228                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4229                                                   LookupResult &Previous) {
4230  // Remove anything from Previous that isn't a function template in
4231  // the correct context.
4232  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4233  LookupResult::Filter F = Previous.makeFilter();
4234  while (F.hasNext()) {
4235    NamedDecl *D = F.next()->getUnderlyingDecl();
4236    if (!isa<FunctionTemplateDecl>(D) ||
4237        !FDLookupContext->Equals(D->getDeclContext()->getLookupContext()))
4238      F.erase();
4239  }
4240  F.done();
4241
4242  // Should this be diagnosed here?
4243  if (Previous.empty()) return true;
4244
4245  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4246                                         ExplicitTemplateArgs);
4247  return false;
4248}
4249
4250/// \brief Perform semantic analysis for the given function template
4251/// specialization.
4252///
4253/// This routine performs all of the semantic analysis required for an
4254/// explicit function template specialization. On successful completion,
4255/// the function declaration \p FD will become a function template
4256/// specialization.
4257///
4258/// \param FD the function declaration, which will be updated to become a
4259/// function template specialization.
4260///
4261/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4262/// if any. Note that this may be valid info even when 0 arguments are
4263/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4264/// as it anyway contains info on the angle brackets locations.
4265///
4266/// \param PrevDecl the set of declarations that may be specialized by
4267/// this function specialization.
4268bool
4269Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4270                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4271                                          LookupResult &Previous) {
4272  // The set of function template specializations that could match this
4273  // explicit function template specialization.
4274  UnresolvedSet<8> Candidates;
4275
4276  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4277  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4278         I != E; ++I) {
4279    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4280    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4281      // Only consider templates found within the same semantic lookup scope as
4282      // FD.
4283      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4284        continue;
4285
4286      // C++ [temp.expl.spec]p11:
4287      //   A trailing template-argument can be left unspecified in the
4288      //   template-id naming an explicit function template specialization
4289      //   provided it can be deduced from the function argument type.
4290      // Perform template argument deduction to determine whether we may be
4291      // specializing this template.
4292      // FIXME: It is somewhat wasteful to build
4293      TemplateDeductionInfo Info(Context, FD->getLocation());
4294      FunctionDecl *Specialization = 0;
4295      if (TemplateDeductionResult TDK
4296            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4297                                      FD->getType(),
4298                                      Specialization,
4299                                      Info)) {
4300        // FIXME: Template argument deduction failed; record why it failed, so
4301        // that we can provide nifty diagnostics.
4302        (void)TDK;
4303        continue;
4304      }
4305
4306      // Record this candidate.
4307      Candidates.addDecl(Specialization, I.getAccess());
4308    }
4309  }
4310
4311  // Find the most specialized function template.
4312  UnresolvedSetIterator Result
4313    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4314                         TPOC_Other, FD->getLocation(),
4315                  PDiag(diag::err_function_template_spec_no_match)
4316                    << FD->getDeclName(),
4317                  PDiag(diag::err_function_template_spec_ambiguous)
4318                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4319                  PDiag(diag::note_function_template_spec_matched));
4320  if (Result == Candidates.end())
4321    return true;
4322
4323  // Ignore access information;  it doesn't figure into redeclaration checking.
4324  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4325  Specialization->setLocation(FD->getLocation());
4326
4327  // FIXME: Check if the prior specialization has a point of instantiation.
4328  // If so, we have run afoul of .
4329
4330  // If this is a friend declaration, then we're not really declaring
4331  // an explicit specialization.
4332  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4333
4334  // Check the scope of this explicit specialization.
4335  if (!isFriend &&
4336      CheckTemplateSpecializationScope(*this,
4337                                       Specialization->getPrimaryTemplate(),
4338                                       Specialization, FD->getLocation(),
4339                                       false))
4340    return true;
4341
4342  // C++ [temp.expl.spec]p6:
4343  //   If a template, a member template or the member of a class template is
4344  //   explicitly specialized then that specialization shall be declared
4345  //   before the first use of that specialization that would cause an implicit
4346  //   instantiation to take place, in every translation unit in which such a
4347  //   use occurs; no diagnostic is required.
4348  FunctionTemplateSpecializationInfo *SpecInfo
4349    = Specialization->getTemplateSpecializationInfo();
4350  assert(SpecInfo && "Function template specialization info missing?");
4351
4352  bool HasNoEffect = false;
4353  if (!isFriend &&
4354      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4355                                             TSK_ExplicitSpecialization,
4356                                             Specialization,
4357                                   SpecInfo->getTemplateSpecializationKind(),
4358                                         SpecInfo->getPointOfInstantiation(),
4359                                             HasNoEffect))
4360    return true;
4361
4362  // Mark the prior declaration as an explicit specialization, so that later
4363  // clients know that this is an explicit specialization.
4364  if (!isFriend) {
4365    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4366    MarkUnusedFileScopedDecl(Specialization);
4367  }
4368
4369  // Turn the given function declaration into a function template
4370  // specialization, with the template arguments from the previous
4371  // specialization.
4372  // Take copies of (semantic and syntactic) template argument lists.
4373  const TemplateArgumentList* TemplArgs = new (Context)
4374    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4375  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4376    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4377  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4378                                        TemplArgs, /*InsertPos=*/0,
4379                                    SpecInfo->getTemplateSpecializationKind(),
4380                                        TemplArgsAsWritten);
4381
4382  // The "previous declaration" for this function template specialization is
4383  // the prior function template specialization.
4384  Previous.clear();
4385  Previous.addDecl(Specialization);
4386  return false;
4387}
4388
4389/// \brief Perform semantic analysis for the given non-template member
4390/// specialization.
4391///
4392/// This routine performs all of the semantic analysis required for an
4393/// explicit member function specialization. On successful completion,
4394/// the function declaration \p FD will become a member function
4395/// specialization.
4396///
4397/// \param Member the member declaration, which will be updated to become a
4398/// specialization.
4399///
4400/// \param Previous the set of declarations, one of which may be specialized
4401/// by this function specialization;  the set will be modified to contain the
4402/// redeclared member.
4403bool
4404Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4405  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4406
4407  // Try to find the member we are instantiating.
4408  NamedDecl *Instantiation = 0;
4409  NamedDecl *InstantiatedFrom = 0;
4410  MemberSpecializationInfo *MSInfo = 0;
4411
4412  if (Previous.empty()) {
4413    // Nowhere to look anyway.
4414  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4415    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4416           I != E; ++I) {
4417      NamedDecl *D = (*I)->getUnderlyingDecl();
4418      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4419        if (Context.hasSameType(Function->getType(), Method->getType())) {
4420          Instantiation = Method;
4421          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4422          MSInfo = Method->getMemberSpecializationInfo();
4423          break;
4424        }
4425      }
4426    }
4427  } else if (isa<VarDecl>(Member)) {
4428    VarDecl *PrevVar;
4429    if (Previous.isSingleResult() &&
4430        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4431      if (PrevVar->isStaticDataMember()) {
4432        Instantiation = PrevVar;
4433        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4434        MSInfo = PrevVar->getMemberSpecializationInfo();
4435      }
4436  } else if (isa<RecordDecl>(Member)) {
4437    CXXRecordDecl *PrevRecord;
4438    if (Previous.isSingleResult() &&
4439        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4440      Instantiation = PrevRecord;
4441      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4442      MSInfo = PrevRecord->getMemberSpecializationInfo();
4443    }
4444  }
4445
4446  if (!Instantiation) {
4447    // There is no previous declaration that matches. Since member
4448    // specializations are always out-of-line, the caller will complain about
4449    // this mismatch later.
4450    return false;
4451  }
4452
4453  // If this is a friend, just bail out here before we start turning
4454  // things into explicit specializations.
4455  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4456    // Preserve instantiation information.
4457    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4458      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4459                                      cast<CXXMethodDecl>(InstantiatedFrom),
4460        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4461    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4462      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4463                                      cast<CXXRecordDecl>(InstantiatedFrom),
4464        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4465    }
4466
4467    Previous.clear();
4468    Previous.addDecl(Instantiation);
4469    return false;
4470  }
4471
4472  // Make sure that this is a specialization of a member.
4473  if (!InstantiatedFrom) {
4474    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4475      << Member;
4476    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4477    return true;
4478  }
4479
4480  // C++ [temp.expl.spec]p6:
4481  //   If a template, a member template or the member of a class template is
4482  //   explicitly specialized then that spe- cialization shall be declared
4483  //   before the first use of that specialization that would cause an implicit
4484  //   instantiation to take place, in every translation unit in which such a
4485  //   use occurs; no diagnostic is required.
4486  assert(MSInfo && "Member specialization info missing?");
4487
4488  bool HasNoEffect = false;
4489  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4490                                             TSK_ExplicitSpecialization,
4491                                             Instantiation,
4492                                     MSInfo->getTemplateSpecializationKind(),
4493                                           MSInfo->getPointOfInstantiation(),
4494                                             HasNoEffect))
4495    return true;
4496
4497  // Check the scope of this explicit specialization.
4498  if (CheckTemplateSpecializationScope(*this,
4499                                       InstantiatedFrom,
4500                                       Instantiation, Member->getLocation(),
4501                                       false))
4502    return true;
4503
4504  // Note that this is an explicit instantiation of a member.
4505  // the original declaration to note that it is an explicit specialization
4506  // (if it was previously an implicit instantiation). This latter step
4507  // makes bookkeeping easier.
4508  if (isa<FunctionDecl>(Member)) {
4509    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4510    if (InstantiationFunction->getTemplateSpecializationKind() ==
4511          TSK_ImplicitInstantiation) {
4512      InstantiationFunction->setTemplateSpecializationKind(
4513                                                  TSK_ExplicitSpecialization);
4514      InstantiationFunction->setLocation(Member->getLocation());
4515    }
4516
4517    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4518                                        cast<CXXMethodDecl>(InstantiatedFrom),
4519                                                  TSK_ExplicitSpecialization);
4520    MarkUnusedFileScopedDecl(InstantiationFunction);
4521  } else if (isa<VarDecl>(Member)) {
4522    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4523    if (InstantiationVar->getTemplateSpecializationKind() ==
4524          TSK_ImplicitInstantiation) {
4525      InstantiationVar->setTemplateSpecializationKind(
4526                                                  TSK_ExplicitSpecialization);
4527      InstantiationVar->setLocation(Member->getLocation());
4528    }
4529
4530    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4531                                                cast<VarDecl>(InstantiatedFrom),
4532                                                TSK_ExplicitSpecialization);
4533    MarkUnusedFileScopedDecl(InstantiationVar);
4534  } else {
4535    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4536    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4537    if (InstantiationClass->getTemplateSpecializationKind() ==
4538          TSK_ImplicitInstantiation) {
4539      InstantiationClass->setTemplateSpecializationKind(
4540                                                   TSK_ExplicitSpecialization);
4541      InstantiationClass->setLocation(Member->getLocation());
4542    }
4543
4544    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4545                                        cast<CXXRecordDecl>(InstantiatedFrom),
4546                                                   TSK_ExplicitSpecialization);
4547  }
4548
4549  // Save the caller the trouble of having to figure out which declaration
4550  // this specialization matches.
4551  Previous.clear();
4552  Previous.addDecl(Instantiation);
4553  return false;
4554}
4555
4556/// \brief Check the scope of an explicit instantiation.
4557///
4558/// \returns true if a serious error occurs, false otherwise.
4559static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4560                                            SourceLocation InstLoc,
4561                                            bool WasQualifiedName) {
4562  DeclContext *ExpectedContext
4563    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4564  DeclContext *CurContext = S.CurContext->getLookupContext();
4565
4566  if (CurContext->isRecord()) {
4567    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4568      << D;
4569    return true;
4570  }
4571
4572  // C++0x [temp.explicit]p2:
4573  //   An explicit instantiation shall appear in an enclosing namespace of its
4574  //   template.
4575  //
4576  // This is DR275, which we do not retroactively apply to C++98/03.
4577  if (S.getLangOptions().CPlusPlus0x &&
4578      !CurContext->Encloses(ExpectedContext)) {
4579    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4580      S.Diag(InstLoc,
4581             S.getLangOptions().CPlusPlus0x?
4582                 diag::err_explicit_instantiation_out_of_scope
4583               : diag::warn_explicit_instantiation_out_of_scope_0x)
4584        << D << NS;
4585    else
4586      S.Diag(InstLoc,
4587             S.getLangOptions().CPlusPlus0x?
4588                 diag::err_explicit_instantiation_must_be_global
4589               : diag::warn_explicit_instantiation_out_of_scope_0x)
4590        << D;
4591    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4592    return false;
4593  }
4594
4595  // C++0x [temp.explicit]p2:
4596  //   If the name declared in the explicit instantiation is an unqualified
4597  //   name, the explicit instantiation shall appear in the namespace where
4598  //   its template is declared or, if that namespace is inline (7.3.1), any
4599  //   namespace from its enclosing namespace set.
4600  if (WasQualifiedName)
4601    return false;
4602
4603  if (CurContext->Equals(ExpectedContext))
4604    return false;
4605
4606  S.Diag(InstLoc,
4607         S.getLangOptions().CPlusPlus0x?
4608             diag::err_explicit_instantiation_unqualified_wrong_namespace
4609           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4610    << D << ExpectedContext;
4611  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4612  return false;
4613}
4614
4615/// \brief Determine whether the given scope specifier has a template-id in it.
4616static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4617  if (!SS.isSet())
4618    return false;
4619
4620  // C++0x [temp.explicit]p2:
4621  //   If the explicit instantiation is for a member function, a member class
4622  //   or a static data member of a class template specialization, the name of
4623  //   the class template specialization in the qualified-id for the member
4624  //   name shall be a simple-template-id.
4625  //
4626  // C++98 has the same restriction, just worded differently.
4627  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4628       NNS; NNS = NNS->getPrefix())
4629    if (Type *T = NNS->getAsType())
4630      if (isa<TemplateSpecializationType>(T))
4631        return true;
4632
4633  return false;
4634}
4635
4636// Explicit instantiation of a class template specialization
4637Sema::DeclResult
4638Sema::ActOnExplicitInstantiation(Scope *S,
4639                                 SourceLocation ExternLoc,
4640                                 SourceLocation TemplateLoc,
4641                                 unsigned TagSpec,
4642                                 SourceLocation KWLoc,
4643                                 const CXXScopeSpec &SS,
4644                                 TemplateTy TemplateD,
4645                                 SourceLocation TemplateNameLoc,
4646                                 SourceLocation LAngleLoc,
4647                                 ASTTemplateArgsPtr TemplateArgsIn,
4648                                 SourceLocation RAngleLoc,
4649                                 AttributeList *Attr) {
4650  // Find the class template we're specializing
4651  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4652  ClassTemplateDecl *ClassTemplate
4653    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4654
4655  // Check that the specialization uses the same tag kind as the
4656  // original template.
4657  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4658  assert(Kind != TTK_Enum &&
4659         "Invalid enum tag in class template explicit instantiation!");
4660  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4661                                    Kind, KWLoc,
4662                                    *ClassTemplate->getIdentifier())) {
4663    Diag(KWLoc, diag::err_use_with_wrong_tag)
4664      << ClassTemplate
4665      << FixItHint::CreateReplacement(KWLoc,
4666                            ClassTemplate->getTemplatedDecl()->getKindName());
4667    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4668         diag::note_previous_use);
4669    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4670  }
4671
4672  // C++0x [temp.explicit]p2:
4673  //   There are two forms of explicit instantiation: an explicit instantiation
4674  //   definition and an explicit instantiation declaration. An explicit
4675  //   instantiation declaration begins with the extern keyword. [...]
4676  TemplateSpecializationKind TSK
4677    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4678                           : TSK_ExplicitInstantiationDeclaration;
4679
4680  // Translate the parser's template argument list in our AST format.
4681  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4682  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4683
4684  // Check that the template argument list is well-formed for this
4685  // template.
4686  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4687                                        TemplateArgs.size());
4688  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4689                                TemplateArgs, false, Converted))
4690    return true;
4691
4692  assert((Converted.structuredSize() ==
4693            ClassTemplate->getTemplateParameters()->size()) &&
4694         "Converted template argument list is too short!");
4695
4696  // Find the class template specialization declaration that
4697  // corresponds to these arguments.
4698  void *InsertPos = 0;
4699  ClassTemplateSpecializationDecl *PrevDecl
4700    = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
4701                                        Converted.flatSize(), InsertPos);
4702
4703  TemplateSpecializationKind PrevDecl_TSK
4704    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
4705
4706  // C++0x [temp.explicit]p2:
4707  //   [...] An explicit instantiation shall appear in an enclosing
4708  //   namespace of its template. [...]
4709  //
4710  // This is C++ DR 275.
4711  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4712                                      SS.isSet()))
4713    return true;
4714
4715  ClassTemplateSpecializationDecl *Specialization = 0;
4716
4717  bool ReusedDecl = false;
4718  bool HasNoEffect = false;
4719  if (PrevDecl) {
4720    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4721                                               PrevDecl, PrevDecl_TSK,
4722                                            PrevDecl->getPointOfInstantiation(),
4723                                               HasNoEffect))
4724      return PrevDecl;
4725
4726    // Even though HasNoEffect == true means that this explicit instantiation
4727    // has no effect on semantics, we go on to put its syntax in the AST.
4728
4729    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
4730        PrevDecl_TSK == TSK_Undeclared) {
4731      // Since the only prior class template specialization with these
4732      // arguments was referenced but not declared, reuse that
4733      // declaration node as our own, updating the source location
4734      // for the template name to reflect our new declaration.
4735      // (Other source locations will be updated later.)
4736      Specialization = PrevDecl;
4737      Specialization->setLocation(TemplateNameLoc);
4738      PrevDecl = 0;
4739      ReusedDecl = true;
4740    }
4741  }
4742
4743  if (!Specialization) {
4744    // Create a new class template specialization declaration node for
4745    // this explicit specialization.
4746    Specialization
4747      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4748                                             ClassTemplate->getDeclContext(),
4749                                                TemplateNameLoc,
4750                                                ClassTemplate,
4751                                                Converted, PrevDecl);
4752    SetNestedNameSpecifier(Specialization, SS);
4753
4754    if (!HasNoEffect && !PrevDecl) {
4755      // Insert the new specialization.
4756      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4757    }
4758  }
4759
4760  // Build the fully-sugared type for this explicit instantiation as
4761  // the user wrote in the explicit instantiation itself. This means
4762  // that we'll pretty-print the type retrieved from the
4763  // specialization's declaration the way that the user actually wrote
4764  // the explicit instantiation, rather than formatting the name based
4765  // on the "canonical" representation used to store the template
4766  // arguments in the specialization.
4767  TypeSourceInfo *WrittenTy
4768    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4769                                                TemplateArgs,
4770                                  Context.getTypeDeclType(Specialization));
4771  Specialization->setTypeAsWritten(WrittenTy);
4772  TemplateArgsIn.release();
4773
4774  // Set source locations for keywords.
4775  Specialization->setExternLoc(ExternLoc);
4776  Specialization->setTemplateKeywordLoc(TemplateLoc);
4777
4778  // Add the explicit instantiation into its lexical context. However,
4779  // since explicit instantiations are never found by name lookup, we
4780  // just put it into the declaration context directly.
4781  Specialization->setLexicalDeclContext(CurContext);
4782  CurContext->addDecl(Specialization);
4783
4784  // Syntax is now OK, so return if it has no other effect on semantics.
4785  if (HasNoEffect) {
4786    // Set the template specialization kind.
4787    Specialization->setTemplateSpecializationKind(TSK);
4788    return Specialization;
4789  }
4790
4791  // C++ [temp.explicit]p3:
4792  //   A definition of a class template or class member template
4793  //   shall be in scope at the point of the explicit instantiation of
4794  //   the class template or class member template.
4795  //
4796  // This check comes when we actually try to perform the
4797  // instantiation.
4798  ClassTemplateSpecializationDecl *Def
4799    = cast_or_null<ClassTemplateSpecializationDecl>(
4800                                              Specialization->getDefinition());
4801  if (!Def)
4802    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4803  else if (TSK == TSK_ExplicitInstantiationDefinition) {
4804    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4805    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
4806  }
4807
4808  // Instantiate the members of this class template specialization.
4809  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4810                                       Specialization->getDefinition());
4811  if (Def) {
4812    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4813
4814    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4815    // TSK_ExplicitInstantiationDefinition
4816    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4817        TSK == TSK_ExplicitInstantiationDefinition)
4818      Def->setTemplateSpecializationKind(TSK);
4819
4820    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4821  }
4822
4823  // Set the template specialization kind.
4824  Specialization->setTemplateSpecializationKind(TSK);
4825  return Specialization;
4826}
4827
4828// Explicit instantiation of a member class of a class template.
4829DeclResult
4830Sema::ActOnExplicitInstantiation(Scope *S,
4831                                 SourceLocation ExternLoc,
4832                                 SourceLocation TemplateLoc,
4833                                 unsigned TagSpec,
4834                                 SourceLocation KWLoc,
4835                                 CXXScopeSpec &SS,
4836                                 IdentifierInfo *Name,
4837                                 SourceLocation NameLoc,
4838                                 AttributeList *Attr) {
4839
4840  bool Owned = false;
4841  bool IsDependent = false;
4842  Decl *TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4843                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
4844                        MultiTemplateParamsArg(*this, 0, 0),
4845                        Owned, IsDependent);
4846  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4847
4848  if (!TagD)
4849    return true;
4850
4851  TagDecl *Tag = cast<TagDecl>(TagD);
4852  if (Tag->isEnum()) {
4853    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4854      << Context.getTypeDeclType(Tag);
4855    return true;
4856  }
4857
4858  if (Tag->isInvalidDecl())
4859    return true;
4860
4861  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4862  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4863  if (!Pattern) {
4864    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4865      << Context.getTypeDeclType(Record);
4866    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4867    return true;
4868  }
4869
4870  // C++0x [temp.explicit]p2:
4871  //   If the explicit instantiation is for a class or member class, the
4872  //   elaborated-type-specifier in the declaration shall include a
4873  //   simple-template-id.
4874  //
4875  // C++98 has the same restriction, just worded differently.
4876  if (!ScopeSpecifierHasTemplateId(SS))
4877    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
4878      << Record << SS.getRange();
4879
4880  // C++0x [temp.explicit]p2:
4881  //   There are two forms of explicit instantiation: an explicit instantiation
4882  //   definition and an explicit instantiation declaration. An explicit
4883  //   instantiation declaration begins with the extern keyword. [...]
4884  TemplateSpecializationKind TSK
4885    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4886                           : TSK_ExplicitInstantiationDeclaration;
4887
4888  // C++0x [temp.explicit]p2:
4889  //   [...] An explicit instantiation shall appear in an enclosing
4890  //   namespace of its template. [...]
4891  //
4892  // This is C++ DR 275.
4893  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4894
4895  // Verify that it is okay to explicitly instantiate here.
4896  CXXRecordDecl *PrevDecl
4897    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4898  if (!PrevDecl && Record->getDefinition())
4899    PrevDecl = Record;
4900  if (PrevDecl) {
4901    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4902    bool HasNoEffect = false;
4903    assert(MSInfo && "No member specialization information?");
4904    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4905                                               PrevDecl,
4906                                        MSInfo->getTemplateSpecializationKind(),
4907                                             MSInfo->getPointOfInstantiation(),
4908                                               HasNoEffect))
4909      return true;
4910    if (HasNoEffect)
4911      return TagD;
4912  }
4913
4914  CXXRecordDecl *RecordDef
4915    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4916  if (!RecordDef) {
4917    // C++ [temp.explicit]p3:
4918    //   A definition of a member class of a class template shall be in scope
4919    //   at the point of an explicit instantiation of the member class.
4920    CXXRecordDecl *Def
4921      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4922    if (!Def) {
4923      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4924        << 0 << Record->getDeclName() << Record->getDeclContext();
4925      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4926        << Pattern;
4927      return true;
4928    } else {
4929      if (InstantiateClass(NameLoc, Record, Def,
4930                           getTemplateInstantiationArgs(Record),
4931                           TSK))
4932        return true;
4933
4934      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4935      if (!RecordDef)
4936        return true;
4937    }
4938  }
4939
4940  // Instantiate all of the members of the class.
4941  InstantiateClassMembers(NameLoc, RecordDef,
4942                          getTemplateInstantiationArgs(Record), TSK);
4943
4944  if (TSK == TSK_ExplicitInstantiationDefinition)
4945    MarkVTableUsed(NameLoc, RecordDef, true);
4946
4947  // FIXME: We don't have any representation for explicit instantiations of
4948  // member classes. Such a representation is not needed for compilation, but it
4949  // should be available for clients that want to see all of the declarations in
4950  // the source code.
4951  return TagD;
4952}
4953
4954Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4955                                                  SourceLocation ExternLoc,
4956                                                  SourceLocation TemplateLoc,
4957                                                  Declarator &D) {
4958  // Explicit instantiations always require a name.
4959  // TODO: check if/when DNInfo should replace Name.
4960  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4961  DeclarationName Name = NameInfo.getName();
4962  if (!Name) {
4963    if (!D.isInvalidType())
4964      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4965           diag::err_explicit_instantiation_requires_name)
4966        << D.getDeclSpec().getSourceRange()
4967        << D.getSourceRange();
4968
4969    return true;
4970  }
4971
4972  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4973  // we find one that is.
4974  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4975         (S->getFlags() & Scope::TemplateParamScope) != 0)
4976    S = S->getParent();
4977
4978  // Determine the type of the declaration.
4979  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
4980  QualType R = T->getType();
4981  if (R.isNull())
4982    return true;
4983
4984  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4985    // Cannot explicitly instantiate a typedef.
4986    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4987      << Name;
4988    return true;
4989  }
4990
4991  // C++0x [temp.explicit]p1:
4992  //   [...] An explicit instantiation of a function template shall not use the
4993  //   inline or constexpr specifiers.
4994  // Presumably, this also applies to member functions of class templates as
4995  // well.
4996  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4997    Diag(D.getDeclSpec().getInlineSpecLoc(),
4998         diag::err_explicit_instantiation_inline)
4999      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5000
5001  // FIXME: check for constexpr specifier.
5002
5003  // C++0x [temp.explicit]p2:
5004  //   There are two forms of explicit instantiation: an explicit instantiation
5005  //   definition and an explicit instantiation declaration. An explicit
5006  //   instantiation declaration begins with the extern keyword. [...]
5007  TemplateSpecializationKind TSK
5008    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5009                           : TSK_ExplicitInstantiationDeclaration;
5010
5011  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5012  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5013
5014  if (!R->isFunctionType()) {
5015    // C++ [temp.explicit]p1:
5016    //   A [...] static data member of a class template can be explicitly
5017    //   instantiated from the member definition associated with its class
5018    //   template.
5019    if (Previous.isAmbiguous())
5020      return true;
5021
5022    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5023    if (!Prev || !Prev->isStaticDataMember()) {
5024      // We expect to see a data data member here.
5025      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5026        << Name;
5027      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5028           P != PEnd; ++P)
5029        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5030      return true;
5031    }
5032
5033    if (!Prev->getInstantiatedFromStaticDataMember()) {
5034      // FIXME: Check for explicit specialization?
5035      Diag(D.getIdentifierLoc(),
5036           diag::err_explicit_instantiation_data_member_not_instantiated)
5037        << Prev;
5038      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5039      // FIXME: Can we provide a note showing where this was declared?
5040      return true;
5041    }
5042
5043    // C++0x [temp.explicit]p2:
5044    //   If the explicit instantiation is for a member function, a member class
5045    //   or a static data member of a class template specialization, the name of
5046    //   the class template specialization in the qualified-id for the member
5047    //   name shall be a simple-template-id.
5048    //
5049    // C++98 has the same restriction, just worded differently.
5050    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5051      Diag(D.getIdentifierLoc(),
5052           diag::ext_explicit_instantiation_without_qualified_id)
5053        << Prev << D.getCXXScopeSpec().getRange();
5054
5055    // Check the scope of this explicit instantiation.
5056    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5057
5058    // Verify that it is okay to explicitly instantiate here.
5059    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5060    assert(MSInfo && "Missing static data member specialization info?");
5061    bool HasNoEffect = false;
5062    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5063                                        MSInfo->getTemplateSpecializationKind(),
5064                                              MSInfo->getPointOfInstantiation(),
5065                                               HasNoEffect))
5066      return true;
5067    if (HasNoEffect)
5068      return (Decl*) 0;
5069
5070    // Instantiate static data member.
5071    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5072    if (TSK == TSK_ExplicitInstantiationDefinition)
5073      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5074
5075    // FIXME: Create an ExplicitInstantiation node?
5076    return (Decl*) 0;
5077  }
5078
5079  // If the declarator is a template-id, translate the parser's template
5080  // argument list into our AST format.
5081  bool HasExplicitTemplateArgs = false;
5082  TemplateArgumentListInfo TemplateArgs;
5083  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5084    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5085    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5086    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5087    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5088                                       TemplateId->getTemplateArgs(),
5089                                       TemplateId->NumArgs);
5090    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5091    HasExplicitTemplateArgs = true;
5092    TemplateArgsPtr.release();
5093  }
5094
5095  // C++ [temp.explicit]p1:
5096  //   A [...] function [...] can be explicitly instantiated from its template.
5097  //   A member function [...] of a class template can be explicitly
5098  //  instantiated from the member definition associated with its class
5099  //  template.
5100  UnresolvedSet<8> Matches;
5101  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5102       P != PEnd; ++P) {
5103    NamedDecl *Prev = *P;
5104    if (!HasExplicitTemplateArgs) {
5105      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5106        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5107          Matches.clear();
5108
5109          Matches.addDecl(Method, P.getAccess());
5110          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5111            break;
5112        }
5113      }
5114    }
5115
5116    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5117    if (!FunTmpl)
5118      continue;
5119
5120    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5121    FunctionDecl *Specialization = 0;
5122    if (TemplateDeductionResult TDK
5123          = DeduceTemplateArguments(FunTmpl,
5124                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5125                                    R, Specialization, Info)) {
5126      // FIXME: Keep track of almost-matches?
5127      (void)TDK;
5128      continue;
5129    }
5130
5131    Matches.addDecl(Specialization, P.getAccess());
5132  }
5133
5134  // Find the most specialized function template specialization.
5135  UnresolvedSetIterator Result
5136    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5137                         D.getIdentifierLoc(),
5138                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5139                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5140                         PDiag(diag::note_explicit_instantiation_candidate));
5141
5142  if (Result == Matches.end())
5143    return true;
5144
5145  // Ignore access control bits, we don't need them for redeclaration checking.
5146  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5147
5148  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5149    Diag(D.getIdentifierLoc(),
5150         diag::err_explicit_instantiation_member_function_not_instantiated)
5151      << Specialization
5152      << (Specialization->getTemplateSpecializationKind() ==
5153          TSK_ExplicitSpecialization);
5154    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5155    return true;
5156  }
5157
5158  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5159  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5160    PrevDecl = Specialization;
5161
5162  if (PrevDecl) {
5163    bool HasNoEffect = false;
5164    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5165                                               PrevDecl,
5166                                     PrevDecl->getTemplateSpecializationKind(),
5167                                          PrevDecl->getPointOfInstantiation(),
5168                                               HasNoEffect))
5169      return true;
5170
5171    // FIXME: We may still want to build some representation of this
5172    // explicit specialization.
5173    if (HasNoEffect)
5174      return (Decl*) 0;
5175  }
5176
5177  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5178
5179  if (TSK == TSK_ExplicitInstantiationDefinition)
5180    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5181
5182  // C++0x [temp.explicit]p2:
5183  //   If the explicit instantiation is for a member function, a member class
5184  //   or a static data member of a class template specialization, the name of
5185  //   the class template specialization in the qualified-id for the member
5186  //   name shall be a simple-template-id.
5187  //
5188  // C++98 has the same restriction, just worded differently.
5189  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5190  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5191      D.getCXXScopeSpec().isSet() &&
5192      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5193    Diag(D.getIdentifierLoc(),
5194         diag::ext_explicit_instantiation_without_qualified_id)
5195    << Specialization << D.getCXXScopeSpec().getRange();
5196
5197  CheckExplicitInstantiationScope(*this,
5198                   FunTmpl? (NamedDecl *)FunTmpl
5199                          : Specialization->getInstantiatedFromMemberFunction(),
5200                                  D.getIdentifierLoc(),
5201                                  D.getCXXScopeSpec().isSet());
5202
5203  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5204  return (Decl*) 0;
5205}
5206
5207Sema::TypeResult
5208Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5209                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5210                        SourceLocation TagLoc, SourceLocation NameLoc) {
5211  // This has to hold, because SS is expected to be defined.
5212  assert(Name && "Expected a name in a dependent tag");
5213
5214  NestedNameSpecifier *NNS
5215    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5216  if (!NNS)
5217    return true;
5218
5219  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5220
5221  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5222    Diag(NameLoc, diag::err_dependent_tag_decl)
5223      << (TUK == TUK_Definition) << Kind << SS.getRange();
5224    return true;
5225  }
5226
5227  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5228  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5229}
5230
5231Sema::TypeResult
5232Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5233                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5234                        SourceLocation IdLoc) {
5235  NestedNameSpecifier *NNS
5236    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5237  if (!NNS)
5238    return true;
5239
5240  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5241      !getLangOptions().CPlusPlus0x)
5242    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5243      << FixItHint::CreateRemoval(TypenameLoc);
5244
5245  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5246                                 TypenameLoc, SS.getRange(), IdLoc);
5247  if (T.isNull())
5248    return true;
5249
5250  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5251  if (isa<DependentNameType>(T)) {
5252    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5253    TL.setKeywordLoc(TypenameLoc);
5254    TL.setQualifierRange(SS.getRange());
5255    TL.setNameLoc(IdLoc);
5256  } else {
5257    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5258    TL.setKeywordLoc(TypenameLoc);
5259    TL.setQualifierRange(SS.getRange());
5260    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5261  }
5262
5263  return CreateParsedType(T, TSI);
5264}
5265
5266Sema::TypeResult
5267Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5268                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5269                        ParsedType Ty) {
5270  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5271      !getLangOptions().CPlusPlus0x)
5272    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5273      << FixItHint::CreateRemoval(TypenameLoc);
5274
5275  TypeSourceInfo *InnerTSI = 0;
5276  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5277
5278  assert(isa<TemplateSpecializationType>(T) &&
5279         "Expected a template specialization type");
5280
5281  if (computeDeclContext(SS, false)) {
5282    // If we can compute a declaration context, then the "typename"
5283    // keyword was superfluous. Just build an ElaboratedType to keep
5284    // track of the nested-name-specifier.
5285
5286    // Push the inner type, preserving its source locations if possible.
5287    TypeLocBuilder Builder;
5288    if (InnerTSI)
5289      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5290    else
5291      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5292
5293    /* Note: NNS already embedded in template specialization type T. */
5294    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5295    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5296    TL.setKeywordLoc(TypenameLoc);
5297    TL.setQualifierRange(SS.getRange());
5298
5299    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5300    return CreateParsedType(T, TSI);
5301  }
5302
5303  // TODO: it's really silly that we make a template specialization
5304  // type earlier only to drop it again here.
5305  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5306  DependentTemplateName *DTN =
5307    TST->getTemplateName().getAsDependentTemplateName();
5308  assert(DTN && "dependent template has non-dependent name?");
5309  assert(DTN->getQualifier()
5310         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5311  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5312                                                     DTN->getQualifier(),
5313                                                     DTN->getIdentifier(),
5314                                                     TST->getNumArgs(),
5315                                                     TST->getArgs());
5316  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5317  DependentTemplateSpecializationTypeLoc TL =
5318    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5319  if (InnerTSI) {
5320    TemplateSpecializationTypeLoc TSTL =
5321      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5322    TL.setLAngleLoc(TSTL.getLAngleLoc());
5323    TL.setRAngleLoc(TSTL.getRAngleLoc());
5324    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5325      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5326  } else {
5327    TL.initializeLocal(SourceLocation());
5328  }
5329  TL.setKeywordLoc(TypenameLoc);
5330  TL.setQualifierRange(SS.getRange());
5331  return CreateParsedType(T, TSI);
5332}
5333
5334/// \brief Build the type that describes a C++ typename specifier,
5335/// e.g., "typename T::type".
5336QualType
5337Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5338                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5339                        SourceLocation KeywordLoc, SourceRange NNSRange,
5340                        SourceLocation IILoc) {
5341  CXXScopeSpec SS;
5342  SS.setScopeRep(NNS);
5343  SS.setRange(NNSRange);
5344
5345  DeclContext *Ctx = computeDeclContext(SS);
5346  if (!Ctx) {
5347    // If the nested-name-specifier is dependent and couldn't be
5348    // resolved to a type, build a typename type.
5349    assert(NNS->isDependent());
5350    return Context.getDependentNameType(Keyword, NNS, &II);
5351  }
5352
5353  // If the nested-name-specifier refers to the current instantiation,
5354  // the "typename" keyword itself is superfluous. In C++03, the
5355  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5356  // allows such extraneous "typename" keywords, and we retroactively
5357  // apply this DR to C++03 code with only a warning. In any case we continue.
5358
5359  if (RequireCompleteDeclContext(SS, Ctx))
5360    return QualType();
5361
5362  DeclarationName Name(&II);
5363  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5364  LookupQualifiedName(Result, Ctx);
5365  unsigned DiagID = 0;
5366  Decl *Referenced = 0;
5367  switch (Result.getResultKind()) {
5368  case LookupResult::NotFound:
5369    DiagID = diag::err_typename_nested_not_found;
5370    break;
5371
5372  case LookupResult::NotFoundInCurrentInstantiation:
5373    // Okay, it's a member of an unknown instantiation.
5374    return Context.getDependentNameType(Keyword, NNS, &II);
5375
5376  case LookupResult::Found:
5377    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5378      // We found a type. Build an ElaboratedType, since the
5379      // typename-specifier was just sugar.
5380      return Context.getElaboratedType(ETK_Typename, NNS,
5381                                       Context.getTypeDeclType(Type));
5382    }
5383
5384    DiagID = diag::err_typename_nested_not_type;
5385    Referenced = Result.getFoundDecl();
5386    break;
5387
5388  case LookupResult::FoundUnresolvedValue:
5389    llvm_unreachable("unresolved using decl in non-dependent context");
5390    return QualType();
5391
5392  case LookupResult::FoundOverloaded:
5393    DiagID = diag::err_typename_nested_not_type;
5394    Referenced = *Result.begin();
5395    break;
5396
5397  case LookupResult::Ambiguous:
5398    return QualType();
5399  }
5400
5401  // If we get here, it's because name lookup did not find a
5402  // type. Emit an appropriate diagnostic and return an error.
5403  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5404                        IILoc);
5405  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5406  if (Referenced)
5407    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5408      << Name;
5409  return QualType();
5410}
5411
5412namespace {
5413  // See Sema::RebuildTypeInCurrentInstantiation
5414  class CurrentInstantiationRebuilder
5415    : public TreeTransform<CurrentInstantiationRebuilder> {
5416    SourceLocation Loc;
5417    DeclarationName Entity;
5418
5419  public:
5420    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5421
5422    CurrentInstantiationRebuilder(Sema &SemaRef,
5423                                  SourceLocation Loc,
5424                                  DeclarationName Entity)
5425    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5426      Loc(Loc), Entity(Entity) { }
5427
5428    /// \brief Determine whether the given type \p T has already been
5429    /// transformed.
5430    ///
5431    /// For the purposes of type reconstruction, a type has already been
5432    /// transformed if it is NULL or if it is not dependent.
5433    bool AlreadyTransformed(QualType T) {
5434      return T.isNull() || !T->isDependentType();
5435    }
5436
5437    /// \brief Returns the location of the entity whose type is being
5438    /// rebuilt.
5439    SourceLocation getBaseLocation() { return Loc; }
5440
5441    /// \brief Returns the name of the entity whose type is being rebuilt.
5442    DeclarationName getBaseEntity() { return Entity; }
5443
5444    /// \brief Sets the "base" location and entity when that
5445    /// information is known based on another transformation.
5446    void setBase(SourceLocation Loc, DeclarationName Entity) {
5447      this->Loc = Loc;
5448      this->Entity = Entity;
5449    }
5450  };
5451}
5452
5453/// \brief Rebuilds a type within the context of the current instantiation.
5454///
5455/// The type \p T is part of the type of an out-of-line member definition of
5456/// a class template (or class template partial specialization) that was parsed
5457/// and constructed before we entered the scope of the class template (or
5458/// partial specialization thereof). This routine will rebuild that type now
5459/// that we have entered the declarator's scope, which may produce different
5460/// canonical types, e.g.,
5461///
5462/// \code
5463/// template<typename T>
5464/// struct X {
5465///   typedef T* pointer;
5466///   pointer data();
5467/// };
5468///
5469/// template<typename T>
5470/// typename X<T>::pointer X<T>::data() { ... }
5471/// \endcode
5472///
5473/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5474/// since we do not know that we can look into X<T> when we parsed the type.
5475/// This function will rebuild the type, performing the lookup of "pointer"
5476/// in X<T> and returning an ElaboratedType whose canonical type is the same
5477/// as the canonical type of T*, allowing the return types of the out-of-line
5478/// definition and the declaration to match.
5479TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5480                                                        SourceLocation Loc,
5481                                                        DeclarationName Name) {
5482  if (!T || !T->getType()->isDependentType())
5483    return T;
5484
5485  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5486  return Rebuilder.TransformType(T);
5487}
5488
5489ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5490  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5491                                          DeclarationName());
5492  return Rebuilder.TransformExpr(E);
5493}
5494
5495bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5496  if (SS.isInvalid()) return true;
5497
5498  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5499  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5500                                          DeclarationName());
5501  NestedNameSpecifier *Rebuilt =
5502    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5503  if (!Rebuilt) return true;
5504
5505  SS.setScopeRep(Rebuilt);
5506  return false;
5507}
5508
5509/// \brief Produces a formatted string that describes the binding of
5510/// template parameters to template arguments.
5511std::string
5512Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5513                                      const TemplateArgumentList &Args) {
5514  // FIXME: For variadic templates, we'll need to get the structured list.
5515  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5516                                         Args.flat_size());
5517}
5518
5519std::string
5520Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5521                                      const TemplateArgument *Args,
5522                                      unsigned NumArgs) {
5523  std::string Result;
5524
5525  if (!Params || Params->size() == 0 || NumArgs == 0)
5526    return Result;
5527
5528  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5529    if (I >= NumArgs)
5530      break;
5531
5532    if (I == 0)
5533      Result += "[with ";
5534    else
5535      Result += ", ";
5536
5537    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5538      Result += Id->getName();
5539    } else {
5540      Result += '$';
5541      Result += llvm::utostr(I);
5542    }
5543
5544    Result += " = ";
5545
5546    switch (Args[I].getKind()) {
5547      case TemplateArgument::Null:
5548        Result += "<no value>";
5549        break;
5550
5551      case TemplateArgument::Type: {
5552        std::string TypeStr;
5553        Args[I].getAsType().getAsStringInternal(TypeStr,
5554                                                Context.PrintingPolicy);
5555        Result += TypeStr;
5556        break;
5557      }
5558
5559      case TemplateArgument::Declaration: {
5560        bool Unnamed = true;
5561        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5562          if (ND->getDeclName()) {
5563            Unnamed = false;
5564            Result += ND->getNameAsString();
5565          }
5566        }
5567
5568        if (Unnamed) {
5569          Result += "<anonymous>";
5570        }
5571        break;
5572      }
5573
5574      case TemplateArgument::Template: {
5575        std::string Str;
5576        llvm::raw_string_ostream OS(Str);
5577        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5578        Result += OS.str();
5579        break;
5580      }
5581
5582      case TemplateArgument::Integral: {
5583        Result += Args[I].getAsIntegral()->toString(10);
5584        break;
5585      }
5586
5587      case TemplateArgument::Expression: {
5588        // FIXME: This is non-optimal, since we're regurgitating the
5589        // expression we were given.
5590        std::string Str;
5591        {
5592          llvm::raw_string_ostream OS(Str);
5593          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5594                                           Context.PrintingPolicy);
5595        }
5596        Result += Str;
5597        break;
5598      }
5599
5600      case TemplateArgument::Pack:
5601        // FIXME: Format template argument packs
5602        Result += "<template argument pack>";
5603        break;
5604    }
5605  }
5606
5607  Result += ']';
5608  return Result;
5609}
5610