SemaTemplate.cpp revision 3b56c002591b59c6c257951f6613b44de83fa860
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2
3//
4//                     The LLVM Compiler Infrastructure
5//
6// This file is distributed under the University of Illinois Open Source
7// License. See LICENSE.TXT for details.
8//===----------------------------------------------------------------------===/
9
10//
11//  This file implements semantic analysis for C++ templates.
12//===----------------------------------------------------------------------===/
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Basic/LangOptions.h"
21
22using namespace clang;
23
24/// isTemplateName - Determines whether the identifier II is a
25/// template name in the current scope, and returns the template
26/// declaration if II names a template. An optional CXXScope can be
27/// passed to indicate the C++ scope in which the identifier will be
28/// found.
29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
30                                      TemplateTy &TemplateResult,
31                                      const CXXScopeSpec *SS) {
32  NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName);
33
34  TemplateNameKind TNK = TNK_Non_template;
35  TemplateDecl *Template = 0;
36
37  if (IIDecl) {
38    if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
39      if (isa<FunctionTemplateDecl>(IIDecl))
40        TNK = TNK_Function_template;
41      else if (isa<ClassTemplateDecl>(IIDecl) ||
42               isa<TemplateTemplateParmDecl>(IIDecl))
43        TNK = TNK_Type_template;
44      else
45        assert(false && "Unknown template declaration kind");
46    } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
47      // C++ [temp.local]p1:
48      //   Like normal (non-template) classes, class templates have an
49      //   injected-class-name (Clause 9). The injected-class-name
50      //   can be used with or without a template-argument-list. When
51      //   it is used without a template-argument-list, it is
52      //   equivalent to the injected-class-name followed by the
53      //   template-parameters of the class template enclosed in
54      //   <>. When it is used with a template-argument-list, it
55      //   refers to the specified class template specialization,
56      //   which could be the current specialization or another
57      //   specialization.
58      if (Record->isInjectedClassName()) {
59        Record = cast<CXXRecordDecl>(Context.getCanonicalDecl(Record));
60        if ((Template = Record->getDescribedClassTemplate()))
61          TNK = TNK_Type_template;
62        else if (ClassTemplateSpecializationDecl *Spec
63                   = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
64          Template = Spec->getSpecializedTemplate();
65          TNK = TNK_Type_template;
66        }
67      }
68    }
69
70    // FIXME: What follows is a gross hack.
71    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(IIDecl)) {
72      if (FD->getType()->isDependentType()) {
73        TemplateResult = TemplateTy::make(FD);
74        return TNK_Function_template;
75      }
76    } else if (OverloadedFunctionDecl *Ovl
77                 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
78      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
79                                                  FEnd = Ovl->function_end();
80           F != FEnd; ++F) {
81        if ((*F)->getType()->isDependentType()) {
82          TemplateResult = TemplateTy::make(Ovl);
83          return TNK_Function_template;
84        }
85      }
86    }
87
88    if (TNK != TNK_Non_template) {
89      if (SS && SS->isSet() && !SS->isInvalid()) {
90        NestedNameSpecifier *Qualifier
91          = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
92        TemplateResult
93          = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
94                                                              false,
95                                                              Template));
96      } else
97        TemplateResult = TemplateTy::make(TemplateName(Template));
98    }
99  }
100  return TNK;
101}
102
103/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
104/// that the template parameter 'PrevDecl' is being shadowed by a new
105/// declaration at location Loc. Returns true to indicate that this is
106/// an error, and false otherwise.
107bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
108  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
109
110  // Microsoft Visual C++ permits template parameters to be shadowed.
111  if (getLangOptions().Microsoft)
112    return false;
113
114  // C++ [temp.local]p4:
115  //   A template-parameter shall not be redeclared within its
116  //   scope (including nested scopes).
117  Diag(Loc, diag::err_template_param_shadow)
118    << cast<NamedDecl>(PrevDecl)->getDeclName();
119  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
120  return true;
121}
122
123/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
124/// the parameter D to reference the templated declaration and return a pointer
125/// to the template declaration. Otherwise, do nothing to D and return null.
126TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
127  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
128    D = DeclPtrTy::make(Temp->getTemplatedDecl());
129    return Temp;
130  }
131  return 0;
132}
133
134/// ActOnTypeParameter - Called when a C++ template type parameter
135/// (e.g., "typename T") has been parsed. Typename specifies whether
136/// the keyword "typename" was used to declare the type parameter
137/// (otherwise, "class" was used), and KeyLoc is the location of the
138/// "class" or "typename" keyword. ParamName is the name of the
139/// parameter (NULL indicates an unnamed template parameter) and
140/// ParamName is the location of the parameter name (if any).
141/// If the type parameter has a default argument, it will be added
142/// later via ActOnTypeParameterDefault.
143Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename,
144                                         SourceLocation KeyLoc,
145                                         IdentifierInfo *ParamName,
146                                         SourceLocation ParamNameLoc,
147                                         unsigned Depth, unsigned Position) {
148  assert(S->isTemplateParamScope() &&
149	 "Template type parameter not in template parameter scope!");
150  bool Invalid = false;
151
152  if (ParamName) {
153    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
154    if (PrevDecl && PrevDecl->isTemplateParameter())
155      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
156							   PrevDecl);
157  }
158
159  SourceLocation Loc = ParamNameLoc;
160  if (!ParamName)
161    Loc = KeyLoc;
162
163  TemplateTypeParmDecl *Param
164    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
165                                   Depth, Position, ParamName, Typename);
166  if (Invalid)
167    Param->setInvalidDecl();
168
169  if (ParamName) {
170    // Add the template parameter into the current scope.
171    S->AddDecl(DeclPtrTy::make(Param));
172    IdResolver.AddDecl(Param);
173  }
174
175  return DeclPtrTy::make(Param);
176}
177
178/// ActOnTypeParameterDefault - Adds a default argument (the type
179/// Default) to the given template type parameter (TypeParam).
180void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
181                                     SourceLocation EqualLoc,
182                                     SourceLocation DefaultLoc,
183                                     TypeTy *DefaultT) {
184  TemplateTypeParmDecl *Parm
185    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
186  QualType Default = QualType::getFromOpaquePtr(DefaultT);
187
188  // C++ [temp.param]p14:
189  //   A template-parameter shall not be used in its own default argument.
190  // FIXME: Implement this check! Needs a recursive walk over the types.
191
192  // Check the template argument itself.
193  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
194    Parm->setInvalidDecl();
195    return;
196  }
197
198  Parm->setDefaultArgument(Default, DefaultLoc, false);
199}
200
201/// \brief Check that the type of a non-type template parameter is
202/// well-formed.
203///
204/// \returns the (possibly-promoted) parameter type if valid;
205/// otherwise, produces a diagnostic and returns a NULL type.
206QualType
207Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
208  // C++ [temp.param]p4:
209  //
210  // A non-type template-parameter shall have one of the following
211  // (optionally cv-qualified) types:
212  //
213  //       -- integral or enumeration type,
214  if (T->isIntegralType() || T->isEnumeralType() ||
215      //   -- pointer to object or pointer to function,
216      (T->isPointerType() &&
217       (T->getAsPointerType()->getPointeeType()->isObjectType() ||
218        T->getAsPointerType()->getPointeeType()->isFunctionType())) ||
219      //   -- reference to object or reference to function,
220      T->isReferenceType() ||
221      //   -- pointer to member.
222      T->isMemberPointerType() ||
223      // If T is a dependent type, we can't do the check now, so we
224      // assume that it is well-formed.
225      T->isDependentType())
226    return T;
227  // C++ [temp.param]p8:
228  //
229  //   A non-type template-parameter of type "array of T" or
230  //   "function returning T" is adjusted to be of type "pointer to
231  //   T" or "pointer to function returning T", respectively.
232  else if (T->isArrayType())
233    // FIXME: Keep the type prior to promotion?
234    return Context.getArrayDecayedType(T);
235  else if (T->isFunctionType())
236    // FIXME: Keep the type prior to promotion?
237    return Context.getPointerType(T);
238
239  Diag(Loc, diag::err_template_nontype_parm_bad_type)
240    << T;
241
242  return QualType();
243}
244
245/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
246/// template parameter (e.g., "int Size" in "template<int Size>
247/// class Array") has been parsed. S is the current scope and D is
248/// the parsed declarator.
249Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
250                                                    unsigned Depth,
251                                                    unsigned Position) {
252  QualType T = GetTypeForDeclarator(D, S);
253
254  assert(S->isTemplateParamScope() &&
255         "Non-type template parameter not in template parameter scope!");
256  bool Invalid = false;
257
258  IdentifierInfo *ParamName = D.getIdentifier();
259  if (ParamName) {
260    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
261    if (PrevDecl && PrevDecl->isTemplateParameter())
262      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
263                                                           PrevDecl);
264  }
265
266  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
267  if (T.isNull()) {
268    T = Context.IntTy; // Recover with an 'int' type.
269    Invalid = true;
270  }
271
272  NonTypeTemplateParmDecl *Param
273    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
274                                      Depth, Position, ParamName, T);
275  if (Invalid)
276    Param->setInvalidDecl();
277
278  if (D.getIdentifier()) {
279    // Add the template parameter into the current scope.
280    S->AddDecl(DeclPtrTy::make(Param));
281    IdResolver.AddDecl(Param);
282  }
283  return DeclPtrTy::make(Param);
284}
285
286/// \brief Adds a default argument to the given non-type template
287/// parameter.
288void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
289                                                SourceLocation EqualLoc,
290                                                ExprArg DefaultE) {
291  NonTypeTemplateParmDecl *TemplateParm
292    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
293  Expr *Default = static_cast<Expr *>(DefaultE.get());
294
295  // C++ [temp.param]p14:
296  //   A template-parameter shall not be used in its own default argument.
297  // FIXME: Implement this check! Needs a recursive walk over the types.
298
299  // Check the well-formedness of the default template argument.
300  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default)) {
301    TemplateParm->setInvalidDecl();
302    return;
303  }
304
305  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
306}
307
308
309/// ActOnTemplateTemplateParameter - Called when a C++ template template
310/// parameter (e.g. T in template <template <typename> class T> class array)
311/// has been parsed. S is the current scope.
312Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
313                                                     SourceLocation TmpLoc,
314                                                     TemplateParamsTy *Params,
315                                                     IdentifierInfo *Name,
316                                                     SourceLocation NameLoc,
317                                                     unsigned Depth,
318                                                     unsigned Position)
319{
320  assert(S->isTemplateParamScope() &&
321         "Template template parameter not in template parameter scope!");
322
323  // Construct the parameter object.
324  TemplateTemplateParmDecl *Param =
325    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
326                                     Position, Name,
327                                     (TemplateParameterList*)Params);
328
329  // Make sure the parameter is valid.
330  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
331  // do anything yet. However, if the template parameter list or (eventual)
332  // default value is ever invalidated, that will propagate here.
333  bool Invalid = false;
334  if (Invalid) {
335    Param->setInvalidDecl();
336  }
337
338  // If the tt-param has a name, then link the identifier into the scope
339  // and lookup mechanisms.
340  if (Name) {
341    S->AddDecl(DeclPtrTy::make(Param));
342    IdResolver.AddDecl(Param);
343  }
344
345  return DeclPtrTy::make(Param);
346}
347
348/// \brief Adds a default argument to the given template template
349/// parameter.
350void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
351                                                 SourceLocation EqualLoc,
352                                                 ExprArg DefaultE) {
353  TemplateTemplateParmDecl *TemplateParm
354    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
355
356  // Since a template-template parameter's default argument is an
357  // id-expression, it must be a DeclRefExpr.
358  DeclRefExpr *Default
359    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
360
361  // C++ [temp.param]p14:
362  //   A template-parameter shall not be used in its own default argument.
363  // FIXME: Implement this check! Needs a recursive walk over the types.
364
365  // Check the well-formedness of the template argument.
366  if (!isa<TemplateDecl>(Default->getDecl())) {
367    Diag(Default->getSourceRange().getBegin(),
368         diag::err_template_arg_must_be_template)
369      << Default->getSourceRange();
370    TemplateParm->setInvalidDecl();
371    return;
372  }
373  if (CheckTemplateArgument(TemplateParm, Default)) {
374    TemplateParm->setInvalidDecl();
375    return;
376  }
377
378  DefaultE.release();
379  TemplateParm->setDefaultArgument(Default);
380}
381
382/// ActOnTemplateParameterList - Builds a TemplateParameterList that
383/// contains the template parameters in Params/NumParams.
384Sema::TemplateParamsTy *
385Sema::ActOnTemplateParameterList(unsigned Depth,
386                                 SourceLocation ExportLoc,
387                                 SourceLocation TemplateLoc,
388                                 SourceLocation LAngleLoc,
389                                 DeclPtrTy *Params, unsigned NumParams,
390                                 SourceLocation RAngleLoc) {
391  if (ExportLoc.isValid())
392    Diag(ExportLoc, diag::note_template_export_unsupported);
393
394  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
395                                       (Decl**)Params, NumParams, RAngleLoc);
396}
397
398Sema::DeclResult
399Sema::ActOnClassTemplate(Scope *S, unsigned TagSpec, TagKind TK,
400                         SourceLocation KWLoc, const CXXScopeSpec &SS,
401                         IdentifierInfo *Name, SourceLocation NameLoc,
402                         AttributeList *Attr,
403                         MultiTemplateParamsArg TemplateParameterLists,
404                         AccessSpecifier AS) {
405  assert(TemplateParameterLists.size() > 0 && "No template parameter lists?");
406  assert(TK != TK_Reference && "Can only declare or define class templates");
407  bool Invalid = false;
408
409  // Check that we can declare a template here.
410  if (CheckTemplateDeclScope(S, TemplateParameterLists))
411    return true;
412
413  TagDecl::TagKind Kind;
414  switch (TagSpec) {
415  default: assert(0 && "Unknown tag type!");
416  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
417  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
418  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
419  }
420
421  // There is no such thing as an unnamed class template.
422  if (!Name) {
423    Diag(KWLoc, diag::err_template_unnamed_class);
424    return true;
425  }
426
427  // Find any previous declaration with this name.
428  LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName,
429                                           true);
430  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
431  NamedDecl *PrevDecl = 0;
432  if (Previous.begin() != Previous.end())
433    PrevDecl = *Previous.begin();
434
435  DeclContext *SemanticContext = CurContext;
436  if (SS.isNotEmpty() && !SS.isInvalid()) {
437    SemanticContext = computeDeclContext(SS);
438
439    // FIXME: need to match up several levels of template parameter lists here.
440  }
441
442  // FIXME: member templates!
443  TemplateParameterList *TemplateParams
444    = static_cast<TemplateParameterList *>(*TemplateParameterLists.release());
445
446  // If there is a previous declaration with the same name, check
447  // whether this is a valid redeclaration.
448  ClassTemplateDecl *PrevClassTemplate
449    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
450  if (PrevClassTemplate) {
451    // Ensure that the template parameter lists are compatible.
452    if (!TemplateParameterListsAreEqual(TemplateParams,
453                                   PrevClassTemplate->getTemplateParameters(),
454                                        /*Complain=*/true))
455      return true;
456
457    // C++ [temp.class]p4:
458    //   In a redeclaration, partial specialization, explicit
459    //   specialization or explicit instantiation of a class template,
460    //   the class-key shall agree in kind with the original class
461    //   template declaration (7.1.5.3).
462    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
463    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
464      Diag(KWLoc, diag::err_use_with_wrong_tag)
465        << Name
466        << CodeModificationHint::CreateReplacement(KWLoc,
467                            PrevRecordDecl->getKindName());
468      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
469      Kind = PrevRecordDecl->getTagKind();
470    }
471
472    // Check for redefinition of this class template.
473    if (TK == TK_Definition) {
474      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
475        Diag(NameLoc, diag::err_redefinition) << Name;
476        Diag(Def->getLocation(), diag::note_previous_definition);
477        // FIXME: Would it make sense to try to "forget" the previous
478        // definition, as part of error recovery?
479        return true;
480      }
481    }
482  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
483    // Maybe we will complain about the shadowed template parameter.
484    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
485    // Just pretend that we didn't see the previous declaration.
486    PrevDecl = 0;
487  } else if (PrevDecl) {
488    // C++ [temp]p5:
489    //   A class template shall not have the same name as any other
490    //   template, class, function, object, enumeration, enumerator,
491    //   namespace, or type in the same scope (3.3), except as specified
492    //   in (14.5.4).
493    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
494    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
495    return true;
496  }
497
498  // Check the template parameter list of this declaration, possibly
499  // merging in the template parameter list from the previous class
500  // template declaration.
501  if (CheckTemplateParameterList(TemplateParams,
502            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
503    Invalid = true;
504
505  // FIXME: If we had a scope specifier, we better have a previous template
506  // declaration!
507
508  CXXRecordDecl *NewClass =
509    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name,
510                          PrevClassTemplate?
511                            PrevClassTemplate->getTemplatedDecl() : 0,
512                          /*DelayTypeCreation=*/true);
513
514  ClassTemplateDecl *NewTemplate
515    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
516                                DeclarationName(Name), TemplateParams,
517                                NewClass, PrevClassTemplate);
518  NewClass->setDescribedClassTemplate(NewTemplate);
519
520  // Build the type for the class template declaration now.
521  QualType T =
522    Context.getTypeDeclType(NewClass,
523                            PrevClassTemplate?
524                              PrevClassTemplate->getTemplatedDecl() : 0);
525  assert(T->isDependentType() && "Class template type is not dependent?");
526  (void)T;
527
528  // Set the access specifier.
529  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
530
531  // Set the lexical context of these templates
532  NewClass->setLexicalDeclContext(CurContext);
533  NewTemplate->setLexicalDeclContext(CurContext);
534
535  if (TK == TK_Definition)
536    NewClass->startDefinition();
537
538  if (Attr)
539    ProcessDeclAttributeList(NewClass, Attr);
540
541  PushOnScopeChains(NewTemplate, S);
542
543  if (Invalid) {
544    NewTemplate->setInvalidDecl();
545    NewClass->setInvalidDecl();
546  }
547  return DeclPtrTy::make(NewTemplate);
548}
549
550/// \brief Checks the validity of a template parameter list, possibly
551/// considering the template parameter list from a previous
552/// declaration.
553///
554/// If an "old" template parameter list is provided, it must be
555/// equivalent (per TemplateParameterListsAreEqual) to the "new"
556/// template parameter list.
557///
558/// \param NewParams Template parameter list for a new template
559/// declaration. This template parameter list will be updated with any
560/// default arguments that are carried through from the previous
561/// template parameter list.
562///
563/// \param OldParams If provided, template parameter list from a
564/// previous declaration of the same template. Default template
565/// arguments will be merged from the old template parameter list to
566/// the new template parameter list.
567///
568/// \returns true if an error occurred, false otherwise.
569bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
570                                      TemplateParameterList *OldParams) {
571  bool Invalid = false;
572
573  // C++ [temp.param]p10:
574  //   The set of default template-arguments available for use with a
575  //   template declaration or definition is obtained by merging the
576  //   default arguments from the definition (if in scope) and all
577  //   declarations in scope in the same way default function
578  //   arguments are (8.3.6).
579  bool SawDefaultArgument = false;
580  SourceLocation PreviousDefaultArgLoc;
581
582  // Dummy initialization to avoid warnings.
583  TemplateParameterList::iterator OldParam = NewParams->end();
584  if (OldParams)
585    OldParam = OldParams->begin();
586
587  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
588                                    NewParamEnd = NewParams->end();
589       NewParam != NewParamEnd; ++NewParam) {
590    // Variables used to diagnose redundant default arguments
591    bool RedundantDefaultArg = false;
592    SourceLocation OldDefaultLoc;
593    SourceLocation NewDefaultLoc;
594
595    // Variables used to diagnose missing default arguments
596    bool MissingDefaultArg = false;
597
598    // Merge default arguments for template type parameters.
599    if (TemplateTypeParmDecl *NewTypeParm
600          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
601      TemplateTypeParmDecl *OldTypeParm
602          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
603
604      if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
605          NewTypeParm->hasDefaultArgument()) {
606        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
607        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
608        SawDefaultArgument = true;
609        RedundantDefaultArg = true;
610        PreviousDefaultArgLoc = NewDefaultLoc;
611      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
612        // Merge the default argument from the old declaration to the
613        // new declaration.
614        SawDefaultArgument = true;
615        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
616                                        OldTypeParm->getDefaultArgumentLoc(),
617                                        true);
618        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
619      } else if (NewTypeParm->hasDefaultArgument()) {
620        SawDefaultArgument = true;
621        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
622      } else if (SawDefaultArgument)
623        MissingDefaultArg = true;
624    }
625    // Merge default arguments for non-type template parameters
626    else if (NonTypeTemplateParmDecl *NewNonTypeParm
627               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
628      NonTypeTemplateParmDecl *OldNonTypeParm
629        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
630      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
631          NewNonTypeParm->hasDefaultArgument()) {
632        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
633        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
634        SawDefaultArgument = true;
635        RedundantDefaultArg = true;
636        PreviousDefaultArgLoc = NewDefaultLoc;
637      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
638        // Merge the default argument from the old declaration to the
639        // new declaration.
640        SawDefaultArgument = true;
641        // FIXME: We need to create a new kind of "default argument"
642        // expression that points to a previous template template
643        // parameter.
644        NewNonTypeParm->setDefaultArgument(
645                                        OldNonTypeParm->getDefaultArgument());
646        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
647      } else if (NewNonTypeParm->hasDefaultArgument()) {
648        SawDefaultArgument = true;
649        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
650      } else if (SawDefaultArgument)
651        MissingDefaultArg = true;
652    }
653    // Merge default arguments for template template parameters
654    else {
655      TemplateTemplateParmDecl *NewTemplateParm
656        = cast<TemplateTemplateParmDecl>(*NewParam);
657      TemplateTemplateParmDecl *OldTemplateParm
658        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
659      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
660          NewTemplateParm->hasDefaultArgument()) {
661        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
662        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
663        SawDefaultArgument = true;
664        RedundantDefaultArg = true;
665        PreviousDefaultArgLoc = NewDefaultLoc;
666      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
667        // Merge the default argument from the old declaration to the
668        // new declaration.
669        SawDefaultArgument = true;
670        // FIXME: We need to create a new kind of "default argument" expression
671        // that points to a previous template template parameter.
672        NewTemplateParm->setDefaultArgument(
673                                        OldTemplateParm->getDefaultArgument());
674        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
675      } else if (NewTemplateParm->hasDefaultArgument()) {
676        SawDefaultArgument = true;
677        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
678      } else if (SawDefaultArgument)
679        MissingDefaultArg = true;
680    }
681
682    if (RedundantDefaultArg) {
683      // C++ [temp.param]p12:
684      //   A template-parameter shall not be given default arguments
685      //   by two different declarations in the same scope.
686      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
687      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
688      Invalid = true;
689    } else if (MissingDefaultArg) {
690      // C++ [temp.param]p11:
691      //   If a template-parameter has a default template-argument,
692      //   all subsequent template-parameters shall have a default
693      //   template-argument supplied.
694      Diag((*NewParam)->getLocation(),
695           diag::err_template_param_default_arg_missing);
696      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
697      Invalid = true;
698    }
699
700    // If we have an old template parameter list that we're merging
701    // in, move on to the next parameter.
702    if (OldParams)
703      ++OldParam;
704  }
705
706  return Invalid;
707}
708
709/// \brief Translates template arguments as provided by the parser
710/// into template arguments used by semantic analysis.
711static void
712translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
713                           SourceLocation *TemplateArgLocs,
714                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
715  TemplateArgs.reserve(TemplateArgsIn.size());
716
717  void **Args = TemplateArgsIn.getArgs();
718  bool *ArgIsType = TemplateArgsIn.getArgIsType();
719  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
720    TemplateArgs.push_back(
721      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
722                                       QualType::getFromOpaquePtr(Args[Arg]))
723                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
724  }
725}
726
727/// \brief Build a canonical version of a template argument list.
728///
729/// This function builds a canonical version of the given template
730/// argument list, where each of the template arguments has been
731/// converted into its canonical form. This routine is typically used
732/// to canonicalize a template argument list when the template name
733/// itself is dependent. When the template name refers to an actual
734/// template declaration, Sema::CheckTemplateArgumentList should be
735/// used to check and canonicalize the template arguments.
736///
737/// \param TemplateArgs The incoming template arguments.
738///
739/// \param NumTemplateArgs The number of template arguments in \p
740/// TemplateArgs.
741///
742/// \param Canonical A vector to be filled with the canonical versions
743/// of the template arguments.
744///
745/// \param Context The ASTContext in which the template arguments live.
746static void CanonicalizeTemplateArguments(const TemplateArgument *TemplateArgs,
747                                          unsigned NumTemplateArgs,
748                            llvm::SmallVectorImpl<TemplateArgument> &Canonical,
749                                          ASTContext &Context) {
750  Canonical.reserve(NumTemplateArgs);
751  for (unsigned Idx = 0; Idx < NumTemplateArgs; ++Idx) {
752    switch (TemplateArgs[Idx].getKind()) {
753    case TemplateArgument::Null:
754      assert(false && "Should never see a NULL template argument here");
755      break;
756
757    case TemplateArgument::Expression:
758      // FIXME: Build canonical expression (!)
759      Canonical.push_back(TemplateArgs[Idx]);
760      break;
761
762    case TemplateArgument::Declaration:
763      Canonical.push_back(
764                 TemplateArgument(SourceLocation(),
765                    Context.getCanonicalDecl(TemplateArgs[Idx].getAsDecl())));
766      break;
767
768    case TemplateArgument::Integral:
769      Canonical.push_back(TemplateArgument(SourceLocation(),
770                                           *TemplateArgs[Idx].getAsIntegral(),
771                                        TemplateArgs[Idx].getIntegralType()));
772      break;
773
774    case TemplateArgument::Type: {
775      QualType CanonType
776        = Context.getCanonicalType(TemplateArgs[Idx].getAsType());
777      Canonical.push_back(TemplateArgument(SourceLocation(), CanonType));
778      break;
779    }
780    }
781  }
782}
783
784QualType Sema::CheckTemplateIdType(TemplateName Name,
785                                   SourceLocation TemplateLoc,
786                                   SourceLocation LAngleLoc,
787                                   const TemplateArgument *TemplateArgs,
788                                   unsigned NumTemplateArgs,
789                                   SourceLocation RAngleLoc) {
790  TemplateDecl *Template = Name.getAsTemplateDecl();
791  if (!Template) {
792    // The template name does not resolve to a template, so we just
793    // build a dependent template-id type.
794
795    // Canonicalize the template arguments to build the canonical
796    // template-id type.
797    llvm::SmallVector<TemplateArgument, 16> CanonicalTemplateArgs;
798    CanonicalizeTemplateArguments(TemplateArgs, NumTemplateArgs,
799                                  CanonicalTemplateArgs, Context);
800
801    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
802    QualType CanonType
803      = Context.getTemplateSpecializationType(CanonName,
804                                              &CanonicalTemplateArgs[0],
805                                              CanonicalTemplateArgs.size());
806
807    // Build the dependent template-id type.
808    return Context.getTemplateSpecializationType(Name, TemplateArgs,
809                                                 NumTemplateArgs, CanonType);
810  }
811
812  // Check that the template argument list is well-formed for this
813  // template.
814  TemplateArgumentListBuilder ConvertedTemplateArgs(Context);
815  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
816                                TemplateArgs, NumTemplateArgs, RAngleLoc,
817                                ConvertedTemplateArgs))
818    return QualType();
819
820  assert((ConvertedTemplateArgs.size() ==
821            Template->getTemplateParameters()->size()) &&
822         "Converted template argument list is too short!");
823
824  QualType CanonType;
825
826  if (TemplateSpecializationType::anyDependentTemplateArguments(
827                                                      TemplateArgs,
828                                                      NumTemplateArgs)) {
829    // This class template specialization is a dependent
830    // type. Therefore, its canonical type is another class template
831    // specialization type that contains all of the converted
832    // arguments in canonical form. This ensures that, e.g., A<T> and
833    // A<T, T> have identical types when A is declared as:
834    //
835    //   template<typename T, typename U = T> struct A;
836    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
837    CanonType = Context.getTemplateSpecializationType(CanonName,
838                                    ConvertedTemplateArgs.getFlatArgumentList(),
839                                    ConvertedTemplateArgs.flatSize());
840  } else if (ClassTemplateDecl *ClassTemplate
841               = dyn_cast<ClassTemplateDecl>(Template)) {
842    // Find the class template specialization declaration that
843    // corresponds to these arguments.
844    llvm::FoldingSetNodeID ID;
845    ClassTemplateSpecializationDecl::Profile(ID,
846                                    ConvertedTemplateArgs.getFlatArgumentList(),
847                                    ConvertedTemplateArgs.flatSize());
848    void *InsertPos = 0;
849    ClassTemplateSpecializationDecl *Decl
850      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
851    if (!Decl) {
852      // This is the first time we have referenced this class template
853      // specialization. Create the canonical declaration and add it to
854      // the set of specializations.
855      Decl = ClassTemplateSpecializationDecl::Create(Context,
856                                    ClassTemplate->getDeclContext(),
857                                    TemplateLoc,
858                                    ClassTemplate,
859                                    ConvertedTemplateArgs, 0);
860      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
861      Decl->setLexicalDeclContext(CurContext);
862    }
863
864    CanonType = Context.getTypeDeclType(Decl);
865  }
866
867  // Build the fully-sugared type for this class template
868  // specialization, which refers back to the class template
869  // specialization we created or found.
870  return Context.getTemplateSpecializationType(Name, TemplateArgs,
871                                               NumTemplateArgs, CanonType);
872}
873
874Action::TypeResult
875Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
876                          SourceLocation LAngleLoc,
877                          ASTTemplateArgsPtr TemplateArgsIn,
878                          SourceLocation *TemplateArgLocs,
879                          SourceLocation RAngleLoc) {
880  TemplateName Template = TemplateD.getAsVal<TemplateName>();
881
882  // Translate the parser's template argument list in our AST format.
883  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
884  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
885
886  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
887                                        TemplateArgs.data(),
888                                        TemplateArgs.size(),
889                                        RAngleLoc);
890  TemplateArgsIn.release();
891
892  if (Result.isNull())
893    return true;
894
895  return Result.getAsOpaquePtr();
896}
897
898/// \brief Form a dependent template name.
899///
900/// This action forms a dependent template name given the template
901/// name and its (presumably dependent) scope specifier. For
902/// example, given "MetaFun::template apply", the scope specifier \p
903/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
904/// of the "template" keyword, and "apply" is the \p Name.
905Sema::TemplateTy
906Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
907                                 const IdentifierInfo &Name,
908                                 SourceLocation NameLoc,
909                                 const CXXScopeSpec &SS) {
910  if (!SS.isSet() || SS.isInvalid())
911    return TemplateTy();
912
913  NestedNameSpecifier *Qualifier
914    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
915
916  // FIXME: member of the current instantiation
917
918  if (!Qualifier->isDependent()) {
919    // C++0x [temp.names]p5:
920    //   If a name prefixed by the keyword template is not the name of
921    //   a template, the program is ill-formed. [Note: the keyword
922    //   template may not be applied to non-template members of class
923    //   templates. -end note ] [ Note: as is the case with the
924    //   typename prefix, the template prefix is allowed in cases
925    //   where it is not strictly necessary; i.e., when the
926    //   nested-name-specifier or the expression on the left of the ->
927    //   or . is not dependent on a template-parameter, or the use
928    //   does not appear in the scope of a template. -end note]
929    //
930    // Note: C++03 was more strict here, because it banned the use of
931    // the "template" keyword prior to a template-name that was not a
932    // dependent name. C++ DR468 relaxed this requirement (the
933    // "template" keyword is now permitted). We follow the C++0x
934    // rules, even in C++03 mode, retroactively applying the DR.
935    TemplateTy Template;
936    TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS);
937    if (TNK == TNK_Non_template) {
938      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
939        << &Name;
940      return TemplateTy();
941    }
942
943    return Template;
944  }
945
946  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
947}
948
949/// \brief Check that the given template argument list is well-formed
950/// for specializing the given template.
951bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
952                                     SourceLocation TemplateLoc,
953                                     SourceLocation LAngleLoc,
954                                     const TemplateArgument *TemplateArgs,
955                                     unsigned NumTemplateArgs,
956                                     SourceLocation RAngleLoc,
957                                     TemplateArgumentListBuilder &Converted) {
958  TemplateParameterList *Params = Template->getTemplateParameters();
959  unsigned NumParams = Params->size();
960  unsigned NumArgs = NumTemplateArgs;
961  bool Invalid = false;
962
963  if (NumArgs > NumParams ||
964      NumArgs < Params->getMinRequiredArguments()) {
965    // FIXME: point at either the first arg beyond what we can handle,
966    // or the '>', depending on whether we have too many or too few
967    // arguments.
968    SourceRange Range;
969    if (NumArgs > NumParams)
970      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
971    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
972      << (NumArgs > NumParams)
973      << (isa<ClassTemplateDecl>(Template)? 0 :
974          isa<FunctionTemplateDecl>(Template)? 1 :
975          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
976      << Template << Range;
977    Diag(Template->getLocation(), diag::note_template_decl_here)
978      << Params->getSourceRange();
979    Invalid = true;
980  }
981
982  // C++ [temp.arg]p1:
983  //   [...] The type and form of each template-argument specified in
984  //   a template-id shall match the type and form specified for the
985  //   corresponding parameter declared by the template in its
986  //   template-parameter-list.
987  unsigned ArgIdx = 0;
988  for (TemplateParameterList::iterator Param = Params->begin(),
989                                       ParamEnd = Params->end();
990       Param != ParamEnd; ++Param, ++ArgIdx) {
991    // Decode the template argument
992    TemplateArgument Arg;
993    if (ArgIdx >= NumArgs) {
994      // Retrieve the default template argument from the template
995      // parameter.
996      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
997        if (!TTP->hasDefaultArgument())
998          break;
999
1000        QualType ArgType = TTP->getDefaultArgument();
1001
1002        // If the argument type is dependent, instantiate it now based
1003        // on the previously-computed template arguments.
1004        if (ArgType->isDependentType()) {
1005          InstantiatingTemplate Inst(*this, TemplateLoc,
1006                                     Template, Converted.getFlatArgumentList(),
1007                                     Converted.flatSize(),
1008                                     SourceRange(TemplateLoc, RAngleLoc));
1009
1010          TemplateArgumentList TemplateArgs(Context, Converted,
1011                                            /*CopyArgs=*/false,
1012                                            /*FlattenArgs=*/false);
1013          ArgType = InstantiateType(ArgType, TemplateArgs,
1014                                    TTP->getDefaultArgumentLoc(),
1015                                    TTP->getDeclName());
1016        }
1017
1018        if (ArgType.isNull())
1019          return true;
1020
1021        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1022      } else if (NonTypeTemplateParmDecl *NTTP
1023                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1024        if (!NTTP->hasDefaultArgument())
1025          break;
1026
1027        InstantiatingTemplate Inst(*this, TemplateLoc,
1028                                   Template, Converted.getFlatArgumentList(),
1029                                   Converted.flatSize(),
1030                                   SourceRange(TemplateLoc, RAngleLoc));
1031
1032        TemplateArgumentList TemplateArgs(Context, Converted,
1033                                          /*CopyArgs=*/false,
1034                                          /*FlattenArgs=*/false);
1035
1036        Sema::OwningExprResult E = InstantiateExpr(NTTP->getDefaultArgument(),
1037                                                   TemplateArgs);
1038        if (E.isInvalid())
1039          return true;
1040
1041        Arg = TemplateArgument(E.takeAs<Expr>());
1042      } else {
1043        TemplateTemplateParmDecl *TempParm
1044          = cast<TemplateTemplateParmDecl>(*Param);
1045
1046        if (!TempParm->hasDefaultArgument())
1047          break;
1048
1049        // FIXME: Instantiate default argument
1050        Arg = TemplateArgument(TempParm->getDefaultArgument());
1051      }
1052    } else {
1053      // Retrieve the template argument produced by the user.
1054      Arg = TemplateArgs[ArgIdx];
1055    }
1056
1057
1058    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1059      // Check template type parameters.
1060      if (Arg.getKind() == TemplateArgument::Type) {
1061        if (CheckTemplateArgument(TTP, Arg.getAsType(), Arg.getLocation()))
1062          Invalid = true;
1063
1064        // Add the converted template type argument.
1065        Converted.push_back(
1066                 TemplateArgument(Arg.getLocation(),
1067                                  Context.getCanonicalType(Arg.getAsType())));
1068        continue;
1069      }
1070
1071      // C++ [temp.arg.type]p1:
1072      //   A template-argument for a template-parameter which is a
1073      //   type shall be a type-id.
1074
1075      // We have a template type parameter but the template argument
1076      // is not a type.
1077      Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1078      Diag((*Param)->getLocation(), diag::note_template_param_here);
1079      Invalid = true;
1080    } else if (NonTypeTemplateParmDecl *NTTP
1081                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1082      // Check non-type template parameters.
1083
1084      // Instantiate the type of the non-type template parameter with
1085      // the template arguments we've seen thus far.
1086      QualType NTTPType = NTTP->getType();
1087      if (NTTPType->isDependentType()) {
1088        // Instantiate the type of the non-type template parameter.
1089        InstantiatingTemplate Inst(*this, TemplateLoc,
1090                                   Template, Converted.getFlatArgumentList(),
1091                                   Converted.flatSize(),
1092                                   SourceRange(TemplateLoc, RAngleLoc));
1093
1094        TemplateArgumentList TemplateArgs(Context, Converted,
1095                                          /*CopyArgs=*/false,
1096                                          /*FlattenArgs=*/false);
1097        NTTPType = InstantiateType(NTTPType, TemplateArgs,
1098                                   NTTP->getLocation(),
1099                                   NTTP->getDeclName());
1100        // If that worked, check the non-type template parameter type
1101        // for validity.
1102        if (!NTTPType.isNull())
1103          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1104                                                       NTTP->getLocation());
1105
1106        if (NTTPType.isNull()) {
1107          Invalid = true;
1108          break;
1109        }
1110      }
1111
1112      switch (Arg.getKind()) {
1113      case TemplateArgument::Null:
1114        assert(false && "Should never see a NULL template argument here");
1115        break;
1116
1117      case TemplateArgument::Expression: {
1118        Expr *E = Arg.getAsExpr();
1119        if (CheckTemplateArgument(NTTP, NTTPType, E, &Converted))
1120          Invalid = true;
1121        break;
1122      }
1123
1124      case TemplateArgument::Declaration:
1125      case TemplateArgument::Integral:
1126        // We've already checked this template argument, so just copy
1127        // it to the list of converted arguments.
1128        Converted.push_back(Arg);
1129        break;
1130
1131      case TemplateArgument::Type:
1132        // We have a non-type template parameter but the template
1133        // argument is a type.
1134
1135        // C++ [temp.arg]p2:
1136        //   In a template-argument, an ambiguity between a type-id and
1137        //   an expression is resolved to a type-id, regardless of the
1138        //   form of the corresponding template-parameter.
1139        //
1140        // We warn specifically about this case, since it can be rather
1141        // confusing for users.
1142        if (Arg.getAsType()->isFunctionType())
1143          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1144            << Arg.getAsType();
1145        else
1146          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1147        Diag((*Param)->getLocation(), diag::note_template_param_here);
1148        Invalid = true;
1149      }
1150    } else {
1151      // Check template template parameters.
1152      TemplateTemplateParmDecl *TempParm
1153        = cast<TemplateTemplateParmDecl>(*Param);
1154
1155      switch (Arg.getKind()) {
1156      case TemplateArgument::Null:
1157        assert(false && "Should never see a NULL template argument here");
1158        break;
1159
1160      case TemplateArgument::Expression: {
1161        Expr *ArgExpr = Arg.getAsExpr();
1162        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1163            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1164          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1165            Invalid = true;
1166
1167          // Add the converted template argument.
1168          Decl *D
1169            = Context.getCanonicalDecl(cast<DeclRefExpr>(ArgExpr)->getDecl());
1170          Converted.push_back(TemplateArgument(Arg.getLocation(), D));
1171          continue;
1172        }
1173      }
1174        // fall through
1175
1176      case TemplateArgument::Type: {
1177        // We have a template template parameter but the template
1178        // argument does not refer to a template.
1179        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1180        Invalid = true;
1181        break;
1182      }
1183
1184      case TemplateArgument::Declaration:
1185        // We've already checked this template argument, so just copy
1186        // it to the list of converted arguments.
1187        Converted.push_back(Arg);
1188        break;
1189
1190      case TemplateArgument::Integral:
1191        assert(false && "Integral argument with template template parameter");
1192        break;
1193      }
1194    }
1195  }
1196
1197  return Invalid;
1198}
1199
1200/// \brief Check a template argument against its corresponding
1201/// template type parameter.
1202///
1203/// This routine implements the semantics of C++ [temp.arg.type]. It
1204/// returns true if an error occurred, and false otherwise.
1205bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1206                                 QualType Arg, SourceLocation ArgLoc) {
1207  // C++ [temp.arg.type]p2:
1208  //   A local type, a type with no linkage, an unnamed type or a type
1209  //   compounded from any of these types shall not be used as a
1210  //   template-argument for a template type-parameter.
1211  //
1212  // FIXME: Perform the recursive and no-linkage type checks.
1213  const TagType *Tag = 0;
1214  if (const EnumType *EnumT = Arg->getAsEnumType())
1215    Tag = EnumT;
1216  else if (const RecordType *RecordT = Arg->getAsRecordType())
1217    Tag = RecordT;
1218  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1219    return Diag(ArgLoc, diag::err_template_arg_local_type)
1220      << QualType(Tag, 0);
1221  else if (Tag && !Tag->getDecl()->getDeclName() &&
1222           !Tag->getDecl()->getTypedefForAnonDecl()) {
1223    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1224    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1225    return true;
1226  }
1227
1228  return false;
1229}
1230
1231/// \brief Checks whether the given template argument is the address
1232/// of an object or function according to C++ [temp.arg.nontype]p1.
1233bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1234                                                          NamedDecl *&Entity) {
1235  bool Invalid = false;
1236
1237  // See through any implicit casts we added to fix the type.
1238  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1239    Arg = Cast->getSubExpr();
1240
1241  // C++0x allows nullptr, and there's no further checking to be done for that.
1242  if (Arg->getType()->isNullPtrType())
1243    return false;
1244
1245  // C++ [temp.arg.nontype]p1:
1246  //
1247  //   A template-argument for a non-type, non-template
1248  //   template-parameter shall be one of: [...]
1249  //
1250  //     -- the address of an object or function with external
1251  //        linkage, including function templates and function
1252  //        template-ids but excluding non-static class members,
1253  //        expressed as & id-expression where the & is optional if
1254  //        the name refers to a function or array, or if the
1255  //        corresponding template-parameter is a reference; or
1256  DeclRefExpr *DRE = 0;
1257
1258  // Ignore (and complain about) any excess parentheses.
1259  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1260    if (!Invalid) {
1261      Diag(Arg->getSourceRange().getBegin(),
1262           diag::err_template_arg_extra_parens)
1263        << Arg->getSourceRange();
1264      Invalid = true;
1265    }
1266
1267    Arg = Parens->getSubExpr();
1268  }
1269
1270  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1271    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1272      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1273  } else
1274    DRE = dyn_cast<DeclRefExpr>(Arg);
1275
1276  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1277    return Diag(Arg->getSourceRange().getBegin(),
1278                diag::err_template_arg_not_object_or_func_form)
1279      << Arg->getSourceRange();
1280
1281  // Cannot refer to non-static data members
1282  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1283    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1284      << Field << Arg->getSourceRange();
1285
1286  // Cannot refer to non-static member functions
1287  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1288    if (!Method->isStatic())
1289      return Diag(Arg->getSourceRange().getBegin(),
1290                  diag::err_template_arg_method)
1291        << Method << Arg->getSourceRange();
1292
1293  // Functions must have external linkage.
1294  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1295    if (Func->getStorageClass() == FunctionDecl::Static) {
1296      Diag(Arg->getSourceRange().getBegin(),
1297           diag::err_template_arg_function_not_extern)
1298        << Func << Arg->getSourceRange();
1299      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1300        << true;
1301      return true;
1302    }
1303
1304    // Okay: we've named a function with external linkage.
1305    Entity = Func;
1306    return Invalid;
1307  }
1308
1309  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1310    if (!Var->hasGlobalStorage()) {
1311      Diag(Arg->getSourceRange().getBegin(),
1312           diag::err_template_arg_object_not_extern)
1313        << Var << Arg->getSourceRange();
1314      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1315        << true;
1316      return true;
1317    }
1318
1319    // Okay: we've named an object with external linkage
1320    Entity = Var;
1321    return Invalid;
1322  }
1323
1324  // We found something else, but we don't know specifically what it is.
1325  Diag(Arg->getSourceRange().getBegin(),
1326       diag::err_template_arg_not_object_or_func)
1327      << Arg->getSourceRange();
1328  Diag(DRE->getDecl()->getLocation(),
1329       diag::note_template_arg_refers_here);
1330  return true;
1331}
1332
1333/// \brief Checks whether the given template argument is a pointer to
1334/// member constant according to C++ [temp.arg.nontype]p1.
1335bool
1336Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1337  bool Invalid = false;
1338
1339  // See through any implicit casts we added to fix the type.
1340  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1341    Arg = Cast->getSubExpr();
1342
1343  // C++0x allows nullptr, and there's no further checking to be done for that.
1344  if (Arg->getType()->isNullPtrType())
1345    return false;
1346
1347  // C++ [temp.arg.nontype]p1:
1348  //
1349  //   A template-argument for a non-type, non-template
1350  //   template-parameter shall be one of: [...]
1351  //
1352  //     -- a pointer to member expressed as described in 5.3.1.
1353  QualifiedDeclRefExpr *DRE = 0;
1354
1355  // Ignore (and complain about) any excess parentheses.
1356  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1357    if (!Invalid) {
1358      Diag(Arg->getSourceRange().getBegin(),
1359           diag::err_template_arg_extra_parens)
1360        << Arg->getSourceRange();
1361      Invalid = true;
1362    }
1363
1364    Arg = Parens->getSubExpr();
1365  }
1366
1367  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1368    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1369      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1370
1371  if (!DRE)
1372    return Diag(Arg->getSourceRange().getBegin(),
1373                diag::err_template_arg_not_pointer_to_member_form)
1374      << Arg->getSourceRange();
1375
1376  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1377    assert((isa<FieldDecl>(DRE->getDecl()) ||
1378            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1379           "Only non-static member pointers can make it here");
1380
1381    // Okay: this is the address of a non-static member, and therefore
1382    // a member pointer constant.
1383    Member = DRE->getDecl();
1384    return Invalid;
1385  }
1386
1387  // We found something else, but we don't know specifically what it is.
1388  Diag(Arg->getSourceRange().getBegin(),
1389       diag::err_template_arg_not_pointer_to_member_form)
1390      << Arg->getSourceRange();
1391  Diag(DRE->getDecl()->getLocation(),
1392       diag::note_template_arg_refers_here);
1393  return true;
1394}
1395
1396/// \brief Check a template argument against its corresponding
1397/// non-type template parameter.
1398///
1399/// This routine implements the semantics of C++ [temp.arg.nontype].
1400/// It returns true if an error occurred, and false otherwise. \p
1401/// InstantiatedParamType is the type of the non-type template
1402/// parameter after it has been instantiated.
1403///
1404/// If Converted is non-NULL and no errors occur, the value
1405/// of this argument will be added to the end of the Converted vector.
1406bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1407                                 QualType InstantiatedParamType, Expr *&Arg,
1408                                 TemplateArgumentListBuilder *Converted) {
1409  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1410
1411  // If either the parameter has a dependent type or the argument is
1412  // type-dependent, there's nothing we can check now.
1413  // FIXME: Add template argument to Converted!
1414  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1415    // FIXME: Produce a cloned, canonical expression?
1416    if (Converted)
1417      Converted->push_back(TemplateArgument(Arg));
1418    return false;
1419  }
1420
1421  // C++ [temp.arg.nontype]p5:
1422  //   The following conversions are performed on each expression used
1423  //   as a non-type template-argument. If a non-type
1424  //   template-argument cannot be converted to the type of the
1425  //   corresponding template-parameter then the program is
1426  //   ill-formed.
1427  //
1428  //     -- for a non-type template-parameter of integral or
1429  //        enumeration type, integral promotions (4.5) and integral
1430  //        conversions (4.7) are applied.
1431  QualType ParamType = InstantiatedParamType;
1432  QualType ArgType = Arg->getType();
1433  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1434    // C++ [temp.arg.nontype]p1:
1435    //   A template-argument for a non-type, non-template
1436    //   template-parameter shall be one of:
1437    //
1438    //     -- an integral constant-expression of integral or enumeration
1439    //        type; or
1440    //     -- the name of a non-type template-parameter; or
1441    SourceLocation NonConstantLoc;
1442    llvm::APSInt Value;
1443    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1444      Diag(Arg->getSourceRange().getBegin(),
1445           diag::err_template_arg_not_integral_or_enumeral)
1446        << ArgType << Arg->getSourceRange();
1447      Diag(Param->getLocation(), diag::note_template_param_here);
1448      return true;
1449    } else if (!Arg->isValueDependent() &&
1450               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1451      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1452        << ArgType << Arg->getSourceRange();
1453      return true;
1454    }
1455
1456    // FIXME: We need some way to more easily get the unqualified form
1457    // of the types without going all the way to the
1458    // canonical type.
1459    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1460      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1461    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1462      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1463
1464    // Try to convert the argument to the parameter's type.
1465    if (ParamType == ArgType) {
1466      // Okay: no conversion necessary
1467    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1468               !ParamType->isEnumeralType()) {
1469      // This is an integral promotion or conversion.
1470      ImpCastExprToType(Arg, ParamType);
1471    } else {
1472      // We can't perform this conversion.
1473      Diag(Arg->getSourceRange().getBegin(),
1474           diag::err_template_arg_not_convertible)
1475        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1476      Diag(Param->getLocation(), diag::note_template_param_here);
1477      return true;
1478    }
1479
1480    QualType IntegerType = Context.getCanonicalType(ParamType);
1481    if (const EnumType *Enum = IntegerType->getAsEnumType())
1482      IntegerType = Enum->getDecl()->getIntegerType();
1483
1484    if (!Arg->isValueDependent()) {
1485      // Check that an unsigned parameter does not receive a negative
1486      // value.
1487      if (IntegerType->isUnsignedIntegerType()
1488          && (Value.isSigned() && Value.isNegative())) {
1489        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1490          << Value.toString(10) << Param->getType()
1491          << Arg->getSourceRange();
1492        Diag(Param->getLocation(), diag::note_template_param_here);
1493        return true;
1494      }
1495
1496      // Check that we don't overflow the template parameter type.
1497      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1498      if (Value.getActiveBits() > AllowedBits) {
1499        Diag(Arg->getSourceRange().getBegin(),
1500             diag::err_template_arg_too_large)
1501          << Value.toString(10) << Param->getType()
1502          << Arg->getSourceRange();
1503        Diag(Param->getLocation(), diag::note_template_param_here);
1504        return true;
1505      }
1506
1507      if (Value.getBitWidth() != AllowedBits)
1508        Value.extOrTrunc(AllowedBits);
1509      Value.setIsSigned(IntegerType->isSignedIntegerType());
1510    }
1511
1512    if (Converted) {
1513      // Add the value of this argument to the list of converted
1514      // arguments. We use the bitwidth and signedness of the template
1515      // parameter.
1516      if (Arg->isValueDependent()) {
1517        // The argument is value-dependent. Create a new
1518        // TemplateArgument with the converted expression.
1519        Converted->push_back(TemplateArgument(Arg));
1520        return false;
1521      }
1522
1523      Converted->push_back(TemplateArgument(StartLoc, Value,
1524                      ParamType->isEnumeralType() ? ParamType : IntegerType));
1525    }
1526
1527    return false;
1528  }
1529
1530  // Handle pointer-to-function, reference-to-function, and
1531  // pointer-to-member-function all in (roughly) the same way.
1532  if (// -- For a non-type template-parameter of type pointer to
1533      //    function, only the function-to-pointer conversion (4.3) is
1534      //    applied. If the template-argument represents a set of
1535      //    overloaded functions (or a pointer to such), the matching
1536      //    function is selected from the set (13.4).
1537      // In C++0x, any std::nullptr_t value can be converted.
1538      (ParamType->isPointerType() &&
1539       ParamType->getAsPointerType()->getPointeeType()->isFunctionType()) ||
1540      // -- For a non-type template-parameter of type reference to
1541      //    function, no conversions apply. If the template-argument
1542      //    represents a set of overloaded functions, the matching
1543      //    function is selected from the set (13.4).
1544      (ParamType->isReferenceType() &&
1545       ParamType->getAsReferenceType()->getPointeeType()->isFunctionType()) ||
1546      // -- For a non-type template-parameter of type pointer to
1547      //    member function, no conversions apply. If the
1548      //    template-argument represents a set of overloaded member
1549      //    functions, the matching member function is selected from
1550      //    the set (13.4).
1551      // Again, C++0x allows a std::nullptr_t value.
1552      (ParamType->isMemberPointerType() &&
1553       ParamType->getAsMemberPointerType()->getPointeeType()
1554         ->isFunctionType())) {
1555    if (Context.hasSameUnqualifiedType(ArgType,
1556                                       ParamType.getNonReferenceType())) {
1557      // We don't have to do anything: the types already match.
1558    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1559                 ParamType->isMemberPointerType())) {
1560      ArgType = ParamType;
1561      ImpCastExprToType(Arg, ParamType);
1562    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1563      ArgType = Context.getPointerType(ArgType);
1564      ImpCastExprToType(Arg, ArgType);
1565    } else if (FunctionDecl *Fn
1566                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1567      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1568        return true;
1569
1570      FixOverloadedFunctionReference(Arg, Fn);
1571      ArgType = Arg->getType();
1572      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1573        ArgType = Context.getPointerType(Arg->getType());
1574        ImpCastExprToType(Arg, ArgType);
1575      }
1576    }
1577
1578    if (!Context.hasSameUnqualifiedType(ArgType,
1579                                        ParamType.getNonReferenceType())) {
1580      // We can't perform this conversion.
1581      Diag(Arg->getSourceRange().getBegin(),
1582           diag::err_template_arg_not_convertible)
1583        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1584      Diag(Param->getLocation(), diag::note_template_param_here);
1585      return true;
1586    }
1587
1588    if (ParamType->isMemberPointerType()) {
1589      NamedDecl *Member = 0;
1590      if (CheckTemplateArgumentPointerToMember(Arg, Member))
1591        return true;
1592
1593      if (Converted) {
1594        Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
1595        Converted->push_back(TemplateArgument(StartLoc, Member));
1596      }
1597
1598      return false;
1599    }
1600
1601    NamedDecl *Entity = 0;
1602    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1603      return true;
1604
1605    if (Converted) {
1606      Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
1607      Converted->push_back(TemplateArgument(StartLoc, Entity));
1608    }
1609    return false;
1610  }
1611
1612  if (ParamType->isPointerType()) {
1613    //   -- for a non-type template-parameter of type pointer to
1614    //      object, qualification conversions (4.4) and the
1615    //      array-to-pointer conversion (4.2) are applied.
1616    // C++0x also allows a value of std::nullptr_t.
1617    assert(ParamType->getAsPointerType()->getPointeeType()->isObjectType() &&
1618           "Only object pointers allowed here");
1619
1620    if (ArgType->isNullPtrType()) {
1621      ArgType = ParamType;
1622      ImpCastExprToType(Arg, ParamType);
1623    } else if (ArgType->isArrayType()) {
1624      ArgType = Context.getArrayDecayedType(ArgType);
1625      ImpCastExprToType(Arg, ArgType);
1626    }
1627
1628    if (IsQualificationConversion(ArgType, ParamType)) {
1629      ArgType = ParamType;
1630      ImpCastExprToType(Arg, ParamType);
1631    }
1632
1633    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
1634      // We can't perform this conversion.
1635      Diag(Arg->getSourceRange().getBegin(),
1636           diag::err_template_arg_not_convertible)
1637        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1638      Diag(Param->getLocation(), diag::note_template_param_here);
1639      return true;
1640    }
1641
1642    NamedDecl *Entity = 0;
1643    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1644      return true;
1645
1646    if (Converted) {
1647      Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
1648      Converted->push_back(TemplateArgument(StartLoc, Entity));
1649    }
1650
1651    return false;
1652  }
1653
1654  if (const ReferenceType *ParamRefType = ParamType->getAsReferenceType()) {
1655    //   -- For a non-type template-parameter of type reference to
1656    //      object, no conversions apply. The type referred to by the
1657    //      reference may be more cv-qualified than the (otherwise
1658    //      identical) type of the template-argument. The
1659    //      template-parameter is bound directly to the
1660    //      template-argument, which must be an lvalue.
1661    assert(ParamRefType->getPointeeType()->isObjectType() &&
1662           "Only object references allowed here");
1663
1664    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
1665      Diag(Arg->getSourceRange().getBegin(),
1666           diag::err_template_arg_no_ref_bind)
1667        << InstantiatedParamType << Arg->getType()
1668        << Arg->getSourceRange();
1669      Diag(Param->getLocation(), diag::note_template_param_here);
1670      return true;
1671    }
1672
1673    unsigned ParamQuals
1674      = Context.getCanonicalType(ParamType).getCVRQualifiers();
1675    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
1676
1677    if ((ParamQuals | ArgQuals) != ParamQuals) {
1678      Diag(Arg->getSourceRange().getBegin(),
1679           diag::err_template_arg_ref_bind_ignores_quals)
1680        << InstantiatedParamType << Arg->getType()
1681        << Arg->getSourceRange();
1682      Diag(Param->getLocation(), diag::note_template_param_here);
1683      return true;
1684    }
1685
1686    NamedDecl *Entity = 0;
1687    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1688      return true;
1689
1690    if (Converted) {
1691      Entity = cast<NamedDecl>(Context.getCanonicalDecl(Entity));
1692      Converted->push_back(TemplateArgument(StartLoc, Entity));
1693    }
1694
1695    return false;
1696  }
1697
1698  //     -- For a non-type template-parameter of type pointer to data
1699  //        member, qualification conversions (4.4) are applied.
1700  // C++0x allows std::nullptr_t values.
1701  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
1702
1703  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
1704    // Types match exactly: nothing more to do here.
1705  } else if (ArgType->isNullPtrType()) {
1706    ImpCastExprToType(Arg, ParamType);
1707  } else if (IsQualificationConversion(ArgType, ParamType)) {
1708    ImpCastExprToType(Arg, ParamType);
1709  } else {
1710    // We can't perform this conversion.
1711    Diag(Arg->getSourceRange().getBegin(),
1712         diag::err_template_arg_not_convertible)
1713      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1714    Diag(Param->getLocation(), diag::note_template_param_here);
1715    return true;
1716  }
1717
1718  NamedDecl *Member = 0;
1719  if (CheckTemplateArgumentPointerToMember(Arg, Member))
1720    return true;
1721
1722  if (Converted) {
1723    Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
1724    Converted->push_back(TemplateArgument(StartLoc, Member));
1725  }
1726
1727  return false;
1728}
1729
1730/// \brief Check a template argument against its corresponding
1731/// template template parameter.
1732///
1733/// This routine implements the semantics of C++ [temp.arg.template].
1734/// It returns true if an error occurred, and false otherwise.
1735bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
1736                                 DeclRefExpr *Arg) {
1737  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
1738  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
1739
1740  // C++ [temp.arg.template]p1:
1741  //   A template-argument for a template template-parameter shall be
1742  //   the name of a class template, expressed as id-expression. Only
1743  //   primary class templates are considered when matching the
1744  //   template template argument with the corresponding parameter;
1745  //   partial specializations are not considered even if their
1746  //   parameter lists match that of the template template parameter.
1747  if (!isa<ClassTemplateDecl>(Template)) {
1748    assert(isa<FunctionTemplateDecl>(Template) &&
1749           "Only function templates are possible here");
1750    Diag(Arg->getSourceRange().getBegin(),
1751         diag::note_template_arg_refers_here_func)
1752      << Template;
1753  }
1754
1755  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
1756                                         Param->getTemplateParameters(),
1757                                         true, true,
1758                                         Arg->getSourceRange().getBegin());
1759}
1760
1761/// \brief Determine whether the given template parameter lists are
1762/// equivalent.
1763///
1764/// \param New  The new template parameter list, typically written in the
1765/// source code as part of a new template declaration.
1766///
1767/// \param Old  The old template parameter list, typically found via
1768/// name lookup of the template declared with this template parameter
1769/// list.
1770///
1771/// \param Complain  If true, this routine will produce a diagnostic if
1772/// the template parameter lists are not equivalent.
1773///
1774/// \param IsTemplateTemplateParm  If true, this routine is being
1775/// called to compare the template parameter lists of a template
1776/// template parameter.
1777///
1778/// \param TemplateArgLoc If this source location is valid, then we
1779/// are actually checking the template parameter list of a template
1780/// argument (New) against the template parameter list of its
1781/// corresponding template template parameter (Old). We produce
1782/// slightly different diagnostics in this scenario.
1783///
1784/// \returns True if the template parameter lists are equal, false
1785/// otherwise.
1786bool
1787Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
1788                                     TemplateParameterList *Old,
1789                                     bool Complain,
1790                                     bool IsTemplateTemplateParm,
1791                                     SourceLocation TemplateArgLoc) {
1792  if (Old->size() != New->size()) {
1793    if (Complain) {
1794      unsigned NextDiag = diag::err_template_param_list_different_arity;
1795      if (TemplateArgLoc.isValid()) {
1796        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
1797        NextDiag = diag::note_template_param_list_different_arity;
1798      }
1799      Diag(New->getTemplateLoc(), NextDiag)
1800          << (New->size() > Old->size())
1801          << IsTemplateTemplateParm
1802          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
1803      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
1804        << IsTemplateTemplateParm
1805        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
1806    }
1807
1808    return false;
1809  }
1810
1811  for (TemplateParameterList::iterator OldParm = Old->begin(),
1812         OldParmEnd = Old->end(), NewParm = New->begin();
1813       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
1814    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
1815      unsigned NextDiag = diag::err_template_param_different_kind;
1816      if (TemplateArgLoc.isValid()) {
1817        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
1818        NextDiag = diag::note_template_param_different_kind;
1819      }
1820      Diag((*NewParm)->getLocation(), NextDiag)
1821        << IsTemplateTemplateParm;
1822      Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
1823        << IsTemplateTemplateParm;
1824      return false;
1825    }
1826
1827    if (isa<TemplateTypeParmDecl>(*OldParm)) {
1828      // Okay; all template type parameters are equivalent (since we
1829      // know we're at the same index).
1830#if 0
1831      // FIXME: Enable this code in debug mode *after* we properly go through
1832      // and "instantiate" the template parameter lists of template template
1833      // parameters. It's only after this instantiation that (1) any dependent
1834      // types within the template parameter list of the template template
1835      // parameter can be checked, and (2) the template type parameter depths
1836      // will match up.
1837      QualType OldParmType
1838        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
1839      QualType NewParmType
1840        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
1841      assert(Context.getCanonicalType(OldParmType) ==
1842             Context.getCanonicalType(NewParmType) &&
1843             "type parameter mismatch?");
1844#endif
1845    } else if (NonTypeTemplateParmDecl *OldNTTP
1846                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
1847      // The types of non-type template parameters must agree.
1848      NonTypeTemplateParmDecl *NewNTTP
1849        = cast<NonTypeTemplateParmDecl>(*NewParm);
1850      if (Context.getCanonicalType(OldNTTP->getType()) !=
1851            Context.getCanonicalType(NewNTTP->getType())) {
1852        if (Complain) {
1853          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
1854          if (TemplateArgLoc.isValid()) {
1855            Diag(TemplateArgLoc,
1856                 diag::err_template_arg_template_params_mismatch);
1857            NextDiag = diag::note_template_nontype_parm_different_type;
1858          }
1859          Diag(NewNTTP->getLocation(), NextDiag)
1860            << NewNTTP->getType()
1861            << IsTemplateTemplateParm;
1862          Diag(OldNTTP->getLocation(),
1863               diag::note_template_nontype_parm_prev_declaration)
1864            << OldNTTP->getType();
1865        }
1866        return false;
1867      }
1868    } else {
1869      // The template parameter lists of template template
1870      // parameters must agree.
1871      // FIXME: Could we perform a faster "type" comparison here?
1872      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
1873             "Only template template parameters handled here");
1874      TemplateTemplateParmDecl *OldTTP
1875        = cast<TemplateTemplateParmDecl>(*OldParm);
1876      TemplateTemplateParmDecl *NewTTP
1877        = cast<TemplateTemplateParmDecl>(*NewParm);
1878      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
1879                                          OldTTP->getTemplateParameters(),
1880                                          Complain,
1881                                          /*IsTemplateTemplateParm=*/true,
1882                                          TemplateArgLoc))
1883        return false;
1884    }
1885  }
1886
1887  return true;
1888}
1889
1890/// \brief Check whether a template can be declared within this scope.
1891///
1892/// If the template declaration is valid in this scope, returns
1893/// false. Otherwise, issues a diagnostic and returns true.
1894bool
1895Sema::CheckTemplateDeclScope(Scope *S,
1896                             MultiTemplateParamsArg &TemplateParameterLists) {
1897  assert(TemplateParameterLists.size() > 0 && "Not a template");
1898
1899  // Find the nearest enclosing declaration scope.
1900  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1901         (S->getFlags() & Scope::TemplateParamScope) != 0)
1902    S = S->getParent();
1903
1904  TemplateParameterList *TemplateParams =
1905    static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
1906  SourceLocation TemplateLoc = TemplateParams->getTemplateLoc();
1907  SourceRange TemplateRange
1908    = SourceRange(TemplateLoc, TemplateParams->getRAngleLoc());
1909
1910  // C++ [temp]p2:
1911  //   A template-declaration can appear only as a namespace scope or
1912  //   class scope declaration.
1913  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1914  while (Ctx && isa<LinkageSpecDecl>(Ctx)) {
1915    if (cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
1916      return Diag(TemplateLoc, diag::err_template_linkage)
1917        << TemplateRange;
1918
1919    Ctx = Ctx->getParent();
1920  }
1921
1922  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
1923    return false;
1924
1925  return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope)
1926    << TemplateRange;
1927}
1928
1929/// \brief Check whether a class template specialization or explicit
1930/// instantiation in the current context is well-formed.
1931///
1932/// This routine determines whether a class template specialization or
1933/// explicit instantiation can be declared in the current context
1934/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
1935/// appropriate diagnostics if there was an error. It returns true if
1936// there was an error that we cannot recover from, and false otherwise.
1937bool
1938Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
1939                                   ClassTemplateSpecializationDecl *PrevDecl,
1940                                            SourceLocation TemplateNameLoc,
1941                                            SourceRange ScopeSpecifierRange,
1942                                            bool ExplicitInstantiation) {
1943  // C++ [temp.expl.spec]p2:
1944  //   An explicit specialization shall be declared in the namespace
1945  //   of which the template is a member, or, for member templates, in
1946  //   the namespace of which the enclosing class or enclosing class
1947  //   template is a member. An explicit specialization of a member
1948  //   function, member class or static data member of a class
1949  //   template shall be declared in the namespace of which the class
1950  //   template is a member. Such a declaration may also be a
1951  //   definition. If the declaration is not a definition, the
1952  //   specialization may be defined later in the name- space in which
1953  //   the explicit specialization was declared, or in a namespace
1954  //   that encloses the one in which the explicit specialization was
1955  //   declared.
1956  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1957    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
1958      << ExplicitInstantiation << ClassTemplate;
1959    return true;
1960  }
1961
1962  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
1963  DeclContext *TemplateContext
1964    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
1965  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
1966      !ExplicitInstantiation) {
1967    // There is no prior declaration of this entity, so this
1968    // specialization must be in the same context as the template
1969    // itself.
1970    if (DC != TemplateContext) {
1971      if (isa<TranslationUnitDecl>(TemplateContext))
1972        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
1973          << ClassTemplate << ScopeSpecifierRange;
1974      else if (isa<NamespaceDecl>(TemplateContext))
1975        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
1976          << ClassTemplate << cast<NamedDecl>(TemplateContext)
1977          << ScopeSpecifierRange;
1978
1979      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
1980    }
1981
1982    return false;
1983  }
1984
1985  // We have a previous declaration of this entity. Make sure that
1986  // this redeclaration (or definition) occurs in an enclosing namespace.
1987  if (!CurContext->Encloses(TemplateContext)) {
1988    // FIXME:  In C++98,  we  would like  to  turn these  errors into  warnings,
1989    // dependent on a -Wc++0x flag.
1990    bool SuppressedDiag = false;
1991    if (isa<TranslationUnitDecl>(TemplateContext)) {
1992      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
1993        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
1994          << ExplicitInstantiation << ClassTemplate << ScopeSpecifierRange;
1995      else
1996        SuppressedDiag = true;
1997    } else if (isa<NamespaceDecl>(TemplateContext)) {
1998      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
1999        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
2000          << ExplicitInstantiation << ClassTemplate
2001          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2002      else
2003        SuppressedDiag = true;
2004    }
2005
2006    if (!SuppressedDiag)
2007      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2008  }
2009
2010  return false;
2011}
2012
2013Sema::DeclResult
2014Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagKind TK,
2015                                       SourceLocation KWLoc,
2016                                       const CXXScopeSpec &SS,
2017                                       TemplateTy TemplateD,
2018                                       SourceLocation TemplateNameLoc,
2019                                       SourceLocation LAngleLoc,
2020                                       ASTTemplateArgsPtr TemplateArgsIn,
2021                                       SourceLocation *TemplateArgLocs,
2022                                       SourceLocation RAngleLoc,
2023                                       AttributeList *Attr,
2024                               MultiTemplateParamsArg TemplateParameterLists) {
2025  // Find the class template we're specializing
2026  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2027  ClassTemplateDecl *ClassTemplate
2028    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2029
2030  bool isPartialSpecialization = false;
2031
2032  // Check the validity of the template headers that introduce this
2033  // template.
2034  // FIXME: Once we have member templates, we'll need to check
2035  // C++ [temp.expl.spec]p17-18, where we could have multiple levels of
2036  // template<> headers.
2037  if (TemplateParameterLists.size() == 0)
2038    Diag(KWLoc, diag::err_template_spec_needs_header)
2039      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2040  else {
2041    TemplateParameterList *TemplateParams
2042      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2043    if (TemplateParameterLists.size() > 1) {
2044      Diag(TemplateParams->getTemplateLoc(),
2045           diag::err_template_spec_extra_headers);
2046      return true;
2047    }
2048
2049    // FIXME: We'll need more checks, here!
2050    if (TemplateParams->size() > 0)
2051      isPartialSpecialization = true;
2052  }
2053
2054  // Check that the specialization uses the same tag kind as the
2055  // original template.
2056  TagDecl::TagKind Kind;
2057  switch (TagSpec) {
2058  default: assert(0 && "Unknown tag type!");
2059  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2060  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2061  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2062  }
2063  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2064                                    Kind, KWLoc,
2065                                    *ClassTemplate->getIdentifier())) {
2066    Diag(KWLoc, diag::err_use_with_wrong_tag)
2067      << ClassTemplate
2068      << CodeModificationHint::CreateReplacement(KWLoc,
2069                            ClassTemplate->getTemplatedDecl()->getKindName());
2070    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2071         diag::note_previous_use);
2072    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2073  }
2074
2075  // Translate the parser's template argument list in our AST format.
2076  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2077  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2078
2079  // Check that the template argument list is well-formed for this
2080  // template.
2081  TemplateArgumentListBuilder ConvertedTemplateArgs(Context);
2082  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2083                                &TemplateArgs[0], TemplateArgs.size(),
2084                                RAngleLoc, ConvertedTemplateArgs))
2085    return true;
2086
2087  assert((ConvertedTemplateArgs.size() ==
2088            ClassTemplate->getTemplateParameters()->size()) &&
2089         "Converted template argument list is too short!");
2090
2091  // Find the class template (partial) specialization declaration that
2092  // corresponds to these arguments.
2093  llvm::FoldingSetNodeID ID;
2094  if (isPartialSpecialization)
2095    // FIXME: Template parameter list matters, too
2096    ClassTemplatePartialSpecializationDecl::Profile(ID,
2097                                    ConvertedTemplateArgs.getFlatArgumentList(),
2098                                              ConvertedTemplateArgs.flatSize());
2099  else
2100    ClassTemplateSpecializationDecl::Profile(ID,
2101                                    ConvertedTemplateArgs.getFlatArgumentList(),
2102                                             ConvertedTemplateArgs.flatSize());
2103  void *InsertPos = 0;
2104  ClassTemplateSpecializationDecl *PrevDecl = 0;
2105
2106  if (isPartialSpecialization)
2107    PrevDecl
2108      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2109                                                                    InsertPos);
2110  else
2111    PrevDecl
2112      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2113
2114  ClassTemplateSpecializationDecl *Specialization = 0;
2115
2116  // Check whether we can declare a class template specialization in
2117  // the current scope.
2118  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2119                                            TemplateNameLoc,
2120                                            SS.getRange(),
2121                                            /*ExplicitInstantiation=*/false))
2122    return true;
2123
2124  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2125    // Since the only prior class template specialization with these
2126    // arguments was referenced but not declared, reuse that
2127    // declaration node as our own, updating its source location to
2128    // reflect our new declaration.
2129    Specialization = PrevDecl;
2130    Specialization->setLocation(TemplateNameLoc);
2131    PrevDecl = 0;
2132  } else if (isPartialSpecialization) {
2133    // FIXME: extra checking for partial specializations
2134
2135    // Create a new class template partial specialization declaration node.
2136    TemplateParameterList *TemplateParams
2137      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2138    ClassTemplatePartialSpecializationDecl *PrevPartial
2139      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2140    ClassTemplatePartialSpecializationDecl *Partial
2141      = ClassTemplatePartialSpecializationDecl::Create(Context,
2142                                             ClassTemplate->getDeclContext(),
2143                                                       TemplateNameLoc,
2144                                                       TemplateParams,
2145                                                       ClassTemplate,
2146                                                       ConvertedTemplateArgs,
2147                                                       PrevPartial);
2148
2149    if (PrevPartial) {
2150      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2151      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2152    } else {
2153      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2154    }
2155    Specialization = Partial;
2156  } else {
2157    // Create a new class template specialization declaration node for
2158    // this explicit specialization.
2159    Specialization
2160      = ClassTemplateSpecializationDecl::Create(Context,
2161                                             ClassTemplate->getDeclContext(),
2162                                                TemplateNameLoc,
2163                                                ClassTemplate,
2164                                                ConvertedTemplateArgs,
2165                                                PrevDecl);
2166
2167    if (PrevDecl) {
2168      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2169      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2170    } else {
2171      ClassTemplate->getSpecializations().InsertNode(Specialization,
2172                                                     InsertPos);
2173    }
2174  }
2175
2176  // Note that this is an explicit specialization.
2177  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2178
2179  // Check that this isn't a redefinition of this specialization.
2180  if (TK == TK_Definition) {
2181    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2182      // FIXME: Should also handle explicit specialization after implicit
2183      // instantiation with a special diagnostic.
2184      SourceRange Range(TemplateNameLoc, RAngleLoc);
2185      Diag(TemplateNameLoc, diag::err_redefinition)
2186        << Context.getTypeDeclType(Specialization) << Range;
2187      Diag(Def->getLocation(), diag::note_previous_definition);
2188      Specialization->setInvalidDecl();
2189      return true;
2190    }
2191  }
2192
2193  // Build the fully-sugared type for this class template
2194  // specialization as the user wrote in the specialization
2195  // itself. This means that we'll pretty-print the type retrieved
2196  // from the specialization's declaration the way that the user
2197  // actually wrote the specialization, rather than formatting the
2198  // name based on the "canonical" representation used to store the
2199  // template arguments in the specialization.
2200  QualType WrittenTy
2201    = Context.getTemplateSpecializationType(Name,
2202                                            &TemplateArgs[0],
2203                                            TemplateArgs.size(),
2204                                  Context.getTypeDeclType(Specialization));
2205  Specialization->setTypeAsWritten(WrittenTy);
2206  TemplateArgsIn.release();
2207
2208  // C++ [temp.expl.spec]p9:
2209  //   A template explicit specialization is in the scope of the
2210  //   namespace in which the template was defined.
2211  //
2212  // We actually implement this paragraph where we set the semantic
2213  // context (in the creation of the ClassTemplateSpecializationDecl),
2214  // but we also maintain the lexical context where the actual
2215  // definition occurs.
2216  Specialization->setLexicalDeclContext(CurContext);
2217
2218  // We may be starting the definition of this specialization.
2219  if (TK == TK_Definition)
2220    Specialization->startDefinition();
2221
2222  // Add the specialization into its lexical context, so that it can
2223  // be seen when iterating through the list of declarations in that
2224  // context. However, specializations are not found by name lookup.
2225  CurContext->addDecl(Context, Specialization);
2226  return DeclPtrTy::make(Specialization);
2227}
2228
2229// Explicit instantiation of a class template specialization
2230Sema::DeclResult
2231Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2232                                 unsigned TagSpec,
2233                                 SourceLocation KWLoc,
2234                                 const CXXScopeSpec &SS,
2235                                 TemplateTy TemplateD,
2236                                 SourceLocation TemplateNameLoc,
2237                                 SourceLocation LAngleLoc,
2238                                 ASTTemplateArgsPtr TemplateArgsIn,
2239                                 SourceLocation *TemplateArgLocs,
2240                                 SourceLocation RAngleLoc,
2241                                 AttributeList *Attr) {
2242  // Find the class template we're specializing
2243  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2244  ClassTemplateDecl *ClassTemplate
2245    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2246
2247  // Check that the specialization uses the same tag kind as the
2248  // original template.
2249  TagDecl::TagKind Kind;
2250  switch (TagSpec) {
2251  default: assert(0 && "Unknown tag type!");
2252  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2253  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2254  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2255  }
2256  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2257                                    Kind, KWLoc,
2258                                    *ClassTemplate->getIdentifier())) {
2259    Diag(KWLoc, diag::err_use_with_wrong_tag)
2260      << ClassTemplate
2261      << CodeModificationHint::CreateReplacement(KWLoc,
2262                            ClassTemplate->getTemplatedDecl()->getKindName());
2263    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2264         diag::note_previous_use);
2265    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2266  }
2267
2268  // C++0x [temp.explicit]p2:
2269  //   [...] An explicit instantiation shall appear in an enclosing
2270  //   namespace of its template. [...]
2271  //
2272  // This is C++ DR 275.
2273  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
2274                                            TemplateNameLoc,
2275                                            SS.getRange(),
2276                                            /*ExplicitInstantiation=*/true))
2277    return true;
2278
2279  // Translate the parser's template argument list in our AST format.
2280  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2281  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2282
2283  // Check that the template argument list is well-formed for this
2284  // template.
2285  TemplateArgumentListBuilder ConvertedTemplateArgs(Context);
2286  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2287                                TemplateArgs.data(), TemplateArgs.size(),
2288                                RAngleLoc, ConvertedTemplateArgs))
2289    return true;
2290
2291  assert((ConvertedTemplateArgs.size() ==
2292            ClassTemplate->getTemplateParameters()->size()) &&
2293         "Converted template argument list is too short!");
2294
2295  // Find the class template specialization declaration that
2296  // corresponds to these arguments.
2297  llvm::FoldingSetNodeID ID;
2298  ClassTemplateSpecializationDecl::Profile(ID,
2299                                    ConvertedTemplateArgs.getFlatArgumentList(),
2300                                           ConvertedTemplateArgs.flatSize());
2301  void *InsertPos = 0;
2302  ClassTemplateSpecializationDecl *PrevDecl
2303    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2304
2305  ClassTemplateSpecializationDecl *Specialization = 0;
2306
2307  bool SpecializationRequiresInstantiation = true;
2308  if (PrevDecl) {
2309    if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
2310      // This particular specialization has already been declared or
2311      // instantiated. We cannot explicitly instantiate it.
2312      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
2313        << Context.getTypeDeclType(PrevDecl);
2314      Diag(PrevDecl->getLocation(),
2315           diag::note_previous_explicit_instantiation);
2316      return DeclPtrTy::make(PrevDecl);
2317    }
2318
2319    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
2320      // C++ DR 259, C++0x [temp.explicit]p4:
2321      //   For a given set of template parameters, if an explicit
2322      //   instantiation of a template appears after a declaration of
2323      //   an explicit specialization for that template, the explicit
2324      //   instantiation has no effect.
2325      if (!getLangOptions().CPlusPlus0x) {
2326        Diag(TemplateNameLoc,
2327             diag::ext_explicit_instantiation_after_specialization)
2328          << Context.getTypeDeclType(PrevDecl);
2329        Diag(PrevDecl->getLocation(),
2330             diag::note_previous_template_specialization);
2331      }
2332
2333      // Create a new class template specialization declaration node
2334      // for this explicit specialization. This node is only used to
2335      // record the existence of this explicit instantiation for
2336      // accurate reproduction of the source code; we don't actually
2337      // use it for anything, since it is semantically irrelevant.
2338      Specialization
2339        = ClassTemplateSpecializationDecl::Create(Context,
2340                                             ClassTemplate->getDeclContext(),
2341                                                  TemplateNameLoc,
2342                                                  ClassTemplate,
2343                                                  ConvertedTemplateArgs, 0);
2344      Specialization->setLexicalDeclContext(CurContext);
2345      CurContext->addDecl(Context, Specialization);
2346      return DeclPtrTy::make(Specialization);
2347    }
2348
2349    // If we have already (implicitly) instantiated this
2350    // specialization, there is less work to do.
2351    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
2352      SpecializationRequiresInstantiation = false;
2353
2354    // Since the only prior class template specialization with these
2355    // arguments was referenced but not declared, reuse that
2356    // declaration node as our own, updating its source location to
2357    // reflect our new declaration.
2358    Specialization = PrevDecl;
2359    Specialization->setLocation(TemplateNameLoc);
2360    PrevDecl = 0;
2361  } else {
2362    // Create a new class template specialization declaration node for
2363    // this explicit specialization.
2364    Specialization
2365      = ClassTemplateSpecializationDecl::Create(Context,
2366                                             ClassTemplate->getDeclContext(),
2367                                                TemplateNameLoc,
2368                                                ClassTemplate,
2369                                                ConvertedTemplateArgs, 0);
2370
2371    ClassTemplate->getSpecializations().InsertNode(Specialization,
2372                                                   InsertPos);
2373  }
2374
2375  // Build the fully-sugared type for this explicit instantiation as
2376  // the user wrote in the explicit instantiation itself. This means
2377  // that we'll pretty-print the type retrieved from the
2378  // specialization's declaration the way that the user actually wrote
2379  // the explicit instantiation, rather than formatting the name based
2380  // on the "canonical" representation used to store the template
2381  // arguments in the specialization.
2382  QualType WrittenTy
2383    = Context.getTemplateSpecializationType(Name,
2384                                            TemplateArgs.data(),
2385                                            TemplateArgs.size(),
2386                                  Context.getTypeDeclType(Specialization));
2387  Specialization->setTypeAsWritten(WrittenTy);
2388  TemplateArgsIn.release();
2389
2390  // Add the explicit instantiation into its lexical context. However,
2391  // since explicit instantiations are never found by name lookup, we
2392  // just put it into the declaration context directly.
2393  Specialization->setLexicalDeclContext(CurContext);
2394  CurContext->addDecl(Context, Specialization);
2395
2396  // C++ [temp.explicit]p3:
2397  //   A definition of a class template or class member template
2398  //   shall be in scope at the point of the explicit instantiation of
2399  //   the class template or class member template.
2400  //
2401  // This check comes when we actually try to perform the
2402  // instantiation.
2403  if (SpecializationRequiresInstantiation)
2404    InstantiateClassTemplateSpecialization(Specialization, true);
2405  else // Instantiate the members of this class template specialization.
2406    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization);
2407
2408  return DeclPtrTy::make(Specialization);
2409}
2410
2411// Explicit instantiation of a member class of a class template.
2412Sema::DeclResult
2413Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2414                                 unsigned TagSpec,
2415                                 SourceLocation KWLoc,
2416                                 const CXXScopeSpec &SS,
2417                                 IdentifierInfo *Name,
2418                                 SourceLocation NameLoc,
2419                                 AttributeList *Attr) {
2420
2421  bool Owned = false;
2422  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TK_Reference,
2423                            KWLoc, SS, Name, NameLoc, Attr, AS_none, Owned);
2424  if (!TagD)
2425    return true;
2426
2427  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
2428  if (Tag->isEnum()) {
2429    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
2430      << Context.getTypeDeclType(Tag);
2431    return true;
2432  }
2433
2434  if (Tag->isInvalidDecl())
2435    return true;
2436
2437  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
2438  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
2439  if (!Pattern) {
2440    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
2441      << Context.getTypeDeclType(Record);
2442    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
2443    return true;
2444  }
2445
2446  // C++0x [temp.explicit]p2:
2447  //   [...] An explicit instantiation shall appear in an enclosing
2448  //   namespace of its template. [...]
2449  //
2450  // This is C++ DR 275.
2451  if (getLangOptions().CPlusPlus0x) {
2452    // FIXME: In C++98, we would like to turn these errors into warnings,
2453    // dependent on a -Wc++0x flag.
2454    DeclContext *PatternContext
2455      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
2456    if (!CurContext->Encloses(PatternContext)) {
2457      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
2458        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
2459      Diag(Pattern->getLocation(), diag::note_previous_declaration);
2460    }
2461  }
2462
2463  if (!Record->getDefinition(Context)) {
2464    // If the class has a definition, instantiate it (and all of its
2465    // members, recursively).
2466    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
2467    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
2468                                    getTemplateInstantiationArgs(Record),
2469                                    /*ExplicitInstantiation=*/true))
2470      return true;
2471  } else // Instantiate all of the members of class.
2472    InstantiateClassMembers(TemplateLoc, Record,
2473                            getTemplateInstantiationArgs(Record));
2474
2475  // FIXME: We don't have any representation for explicit instantiations of
2476  // member classes. Such a representation is not needed for compilation, but it
2477  // should be available for clients that want to see all of the declarations in
2478  // the source code.
2479  return TagD;
2480}
2481
2482Sema::TypeResult
2483Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2484                        const IdentifierInfo &II, SourceLocation IdLoc) {
2485  NestedNameSpecifier *NNS
2486    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2487  if (!NNS)
2488    return true;
2489
2490  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
2491  if (T.isNull())
2492    return true;
2493  return T.getAsOpaquePtr();
2494}
2495
2496Sema::TypeResult
2497Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2498                        SourceLocation TemplateLoc, TypeTy *Ty) {
2499  QualType T = QualType::getFromOpaquePtr(Ty);
2500  NestedNameSpecifier *NNS
2501    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2502  const TemplateSpecializationType *TemplateId
2503    = T->getAsTemplateSpecializationType();
2504  assert(TemplateId && "Expected a template specialization type");
2505
2506  if (NNS->isDependent())
2507    return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
2508
2509  return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
2510}
2511
2512/// \brief Build the type that describes a C++ typename specifier,
2513/// e.g., "typename T::type".
2514QualType
2515Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
2516                        SourceRange Range) {
2517  CXXRecordDecl *CurrentInstantiation = 0;
2518  if (NNS->isDependent()) {
2519    CurrentInstantiation = getCurrentInstantiationOf(NNS);
2520
2521    // If the nested-name-specifier does not refer to the current
2522    // instantiation, then build a typename type.
2523    if (!CurrentInstantiation)
2524      return Context.getTypenameType(NNS, &II);
2525  }
2526
2527  DeclContext *Ctx = 0;
2528
2529  if (CurrentInstantiation)
2530    Ctx = CurrentInstantiation;
2531  else {
2532    CXXScopeSpec SS;
2533    SS.setScopeRep(NNS);
2534    SS.setRange(Range);
2535    if (RequireCompleteDeclContext(SS))
2536      return QualType();
2537
2538    Ctx = computeDeclContext(SS);
2539  }
2540  assert(Ctx && "No declaration context?");
2541
2542  DeclarationName Name(&II);
2543  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
2544                                            false);
2545  unsigned DiagID = 0;
2546  Decl *Referenced = 0;
2547  switch (Result.getKind()) {
2548  case LookupResult::NotFound:
2549    if (Ctx->isTranslationUnit())
2550      DiagID = diag::err_typename_nested_not_found_global;
2551    else
2552      DiagID = diag::err_typename_nested_not_found;
2553    break;
2554
2555  case LookupResult::Found:
2556    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
2557      // We found a type. Build a QualifiedNameType, since the
2558      // typename-specifier was just sugar. FIXME: Tell
2559      // QualifiedNameType that it has a "typename" prefix.
2560      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
2561    }
2562
2563    DiagID = diag::err_typename_nested_not_type;
2564    Referenced = Result.getAsDecl();
2565    break;
2566
2567  case LookupResult::FoundOverloaded:
2568    DiagID = diag::err_typename_nested_not_type;
2569    Referenced = *Result.begin();
2570    break;
2571
2572  case LookupResult::AmbiguousBaseSubobjectTypes:
2573  case LookupResult::AmbiguousBaseSubobjects:
2574  case LookupResult::AmbiguousReference:
2575    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
2576    return QualType();
2577  }
2578
2579  // If we get here, it's because name lookup did not find a
2580  // type. Emit an appropriate diagnostic and return an error.
2581  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
2582    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
2583  else
2584    Diag(Range.getEnd(), DiagID) << Range << Name;
2585  if (Referenced)
2586    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
2587      << Name;
2588  return QualType();
2589}
2590