SemaTemplate.cpp revision 42963612a4187b55685b7f75489c11abd3fa100e
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/SmallBitVector.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32using namespace clang;
33using namespace sema;
34
35// Exported for use by Parser.
36SourceRange
37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38                              unsigned N) {
39  if (!N) return SourceRange();
40  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41}
42
43/// \brief Determine whether the declaration found is acceptable as the name
44/// of a template and, if so, return that template declaration. Otherwise,
45/// returns NULL.
46static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
47                                           NamedDecl *Orig,
48                                           bool AllowFunctionTemplates) {
49  NamedDecl *D = Orig->getUnderlyingDecl();
50
51  if (isa<TemplateDecl>(D)) {
52    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53      return 0;
54
55    return Orig;
56  }
57
58  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
59    // C++ [temp.local]p1:
60    //   Like normal (non-template) classes, class templates have an
61    //   injected-class-name (Clause 9). The injected-class-name
62    //   can be used with or without a template-argument-list. When
63    //   it is used without a template-argument-list, it is
64    //   equivalent to the injected-class-name followed by the
65    //   template-parameters of the class template enclosed in
66    //   <>. When it is used with a template-argument-list, it
67    //   refers to the specified class template specialization,
68    //   which could be the current specialization or another
69    //   specialization.
70    if (Record->isInjectedClassName()) {
71      Record = cast<CXXRecordDecl>(Record->getDeclContext());
72      if (Record->getDescribedClassTemplate())
73        return Record->getDescribedClassTemplate();
74
75      if (ClassTemplateSpecializationDecl *Spec
76            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77        return Spec->getSpecializedTemplate();
78    }
79
80    return 0;
81  }
82
83  return 0;
84}
85
86void Sema::FilterAcceptableTemplateNames(LookupResult &R,
87                                         bool AllowFunctionTemplates) {
88  // The set of class templates we've already seen.
89  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90  LookupResult::Filter filter = R.makeFilter();
91  while (filter.hasNext()) {
92    NamedDecl *Orig = filter.next();
93    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94                                               AllowFunctionTemplates);
95    if (!Repl)
96      filter.erase();
97    else if (Repl != Orig) {
98
99      // C++ [temp.local]p3:
100      //   A lookup that finds an injected-class-name (10.2) can result in an
101      //   ambiguity in certain cases (for example, if it is found in more than
102      //   one base class). If all of the injected-class-names that are found
103      //   refer to specializations of the same class template, and if the name
104      //   is used as a template-name, the reference refers to the class
105      //   template itself and not a specialization thereof, and is not
106      //   ambiguous.
107      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108        if (!ClassTemplates.insert(ClassTmpl)) {
109          filter.erase();
110          continue;
111        }
112
113      // FIXME: we promote access to public here as a workaround to
114      // the fact that LookupResult doesn't let us remember that we
115      // found this template through a particular injected class name,
116      // which means we end up doing nasty things to the invariants.
117      // Pretending that access is public is *much* safer.
118      filter.replace(Repl, AS_public);
119    }
120  }
121  filter.done();
122}
123
124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125                                         bool AllowFunctionTemplates) {
126  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128      return true;
129
130  return false;
131}
132
133TemplateNameKind Sema::isTemplateName(Scope *S,
134                                      CXXScopeSpec &SS,
135                                      bool hasTemplateKeyword,
136                                      UnqualifiedId &Name,
137                                      ParsedType ObjectTypePtr,
138                                      bool EnteringContext,
139                                      TemplateTy &TemplateResult,
140                                      bool &MemberOfUnknownSpecialization) {
141  assert(getLangOpts().CPlusPlus && "No template names in C!");
142
143  DeclarationName TName;
144  MemberOfUnknownSpecialization = false;
145
146  switch (Name.getKind()) {
147  case UnqualifiedId::IK_Identifier:
148    TName = DeclarationName(Name.Identifier);
149    break;
150
151  case UnqualifiedId::IK_OperatorFunctionId:
152    TName = Context.DeclarationNames.getCXXOperatorName(
153                                              Name.OperatorFunctionId.Operator);
154    break;
155
156  case UnqualifiedId::IK_LiteralOperatorId:
157    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158    break;
159
160  default:
161    return TNK_Non_template;
162  }
163
164  QualType ObjectType = ObjectTypePtr.get();
165
166  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168                     MemberOfUnknownSpecialization);
169  if (R.empty()) return TNK_Non_template;
170  if (R.isAmbiguous()) {
171    // Suppress diagnostics;  we'll redo this lookup later.
172    R.suppressDiagnostics();
173
174    // FIXME: we might have ambiguous templates, in which case we
175    // should at least parse them properly!
176    return TNK_Non_template;
177  }
178
179  TemplateName Template;
180  TemplateNameKind TemplateKind;
181
182  unsigned ResultCount = R.end() - R.begin();
183  if (ResultCount > 1) {
184    // We assume that we'll preserve the qualifier from a function
185    // template name in other ways.
186    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187    TemplateKind = TNK_Function_template;
188
189    // We'll do this lookup again later.
190    R.suppressDiagnostics();
191  } else {
192    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193
194    if (SS.isSet() && !SS.isInvalid()) {
195      NestedNameSpecifier *Qualifier
196        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197      Template = Context.getQualifiedTemplateName(Qualifier,
198                                                  hasTemplateKeyword, TD);
199    } else {
200      Template = TemplateName(TD);
201    }
202
203    if (isa<FunctionTemplateDecl>(TD)) {
204      TemplateKind = TNK_Function_template;
205
206      // We'll do this lookup again later.
207      R.suppressDiagnostics();
208    } else {
209      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210             isa<TypeAliasTemplateDecl>(TD));
211      TemplateKind = TNK_Type_template;
212    }
213  }
214
215  TemplateResult = TemplateTy::make(Template);
216  return TemplateKind;
217}
218
219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220                                       SourceLocation IILoc,
221                                       Scope *S,
222                                       const CXXScopeSpec *SS,
223                                       TemplateTy &SuggestedTemplate,
224                                       TemplateNameKind &SuggestedKind) {
225  // We can't recover unless there's a dependent scope specifier preceding the
226  // template name.
227  // FIXME: Typo correction?
228  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229      computeDeclContext(*SS))
230    return false;
231
232  // The code is missing a 'template' keyword prior to the dependent template
233  // name.
234  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235  Diag(IILoc, diag::err_template_kw_missing)
236    << Qualifier << II.getName()
237    << FixItHint::CreateInsertion(IILoc, "template ");
238  SuggestedTemplate
239    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240  SuggestedKind = TNK_Dependent_template_name;
241  return true;
242}
243
244void Sema::LookupTemplateName(LookupResult &Found,
245                              Scope *S, CXXScopeSpec &SS,
246                              QualType ObjectType,
247                              bool EnteringContext,
248                              bool &MemberOfUnknownSpecialization) {
249  // Determine where to perform name lookup
250  MemberOfUnknownSpecialization = false;
251  DeclContext *LookupCtx = 0;
252  bool isDependent = false;
253  if (!ObjectType.isNull()) {
254    // This nested-name-specifier occurs in a member access expression, e.g.,
255    // x->B::f, and we are looking into the type of the object.
256    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257    LookupCtx = computeDeclContext(ObjectType);
258    isDependent = ObjectType->isDependentType();
259    assert((isDependent || !ObjectType->isIncompleteType()) &&
260           "Caller should have completed object type");
261
262    // Template names cannot appear inside an Objective-C class or object type.
263    if (ObjectType->isObjCObjectOrInterfaceType()) {
264      Found.clear();
265      return;
266    }
267  } else if (SS.isSet()) {
268    // This nested-name-specifier occurs after another nested-name-specifier,
269    // so long into the context associated with the prior nested-name-specifier.
270    LookupCtx = computeDeclContext(SS, EnteringContext);
271    isDependent = isDependentScopeSpecifier(SS);
272
273    // The declaration context must be complete.
274    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
275      return;
276  }
277
278  bool ObjectTypeSearchedInScope = false;
279  bool AllowFunctionTemplatesInLookup = true;
280  if (LookupCtx) {
281    // Perform "qualified" name lookup into the declaration context we
282    // computed, which is either the type of the base of a member access
283    // expression or the declaration context associated with a prior
284    // nested-name-specifier.
285    LookupQualifiedName(Found, LookupCtx);
286    if (!ObjectType.isNull() && Found.empty()) {
287      // C++ [basic.lookup.classref]p1:
288      //   In a class member access expression (5.2.5), if the . or -> token is
289      //   immediately followed by an identifier followed by a <, the
290      //   identifier must be looked up to determine whether the < is the
291      //   beginning of a template argument list (14.2) or a less-than operator.
292      //   The identifier is first looked up in the class of the object
293      //   expression. If the identifier is not found, it is then looked up in
294      //   the context of the entire postfix-expression and shall name a class
295      //   or function template.
296      if (S) LookupName(Found, S);
297      ObjectTypeSearchedInScope = true;
298      AllowFunctionTemplatesInLookup = false;
299    }
300  } else if (isDependent && (!S || ObjectType.isNull())) {
301    // We cannot look into a dependent object type or nested nme
302    // specifier.
303    MemberOfUnknownSpecialization = true;
304    return;
305  } else {
306    // Perform unqualified name lookup in the current scope.
307    LookupName(Found, S);
308
309    if (!ObjectType.isNull())
310      AllowFunctionTemplatesInLookup = false;
311  }
312
313  if (Found.empty() && !isDependent) {
314    // If we did not find any names, attempt to correct any typos.
315    DeclarationName Name = Found.getLookupName();
316    Found.clear();
317    // Simple filter callback that, for keywords, only accepts the C++ *_cast
318    CorrectionCandidateCallback FilterCCC;
319    FilterCCC.WantTypeSpecifiers = false;
320    FilterCCC.WantExpressionKeywords = false;
321    FilterCCC.WantRemainingKeywords = false;
322    FilterCCC.WantCXXNamedCasts = true;
323    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
324                                               Found.getLookupKind(), S, &SS,
325                                               FilterCCC, LookupCtx)) {
326      Found.setLookupName(Corrected.getCorrection());
327      if (Corrected.getCorrectionDecl())
328        Found.addDecl(Corrected.getCorrectionDecl());
329      FilterAcceptableTemplateNames(Found);
330      if (!Found.empty()) {
331        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
332        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
333        if (LookupCtx)
334          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
335            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
336            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
337        else
338          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
339            << Name << CorrectedQuotedStr
340            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
341        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
342          Diag(Template->getLocation(), diag::note_previous_decl)
343            << CorrectedQuotedStr;
344      }
345    } else {
346      Found.setLookupName(Name);
347    }
348  }
349
350  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
351  if (Found.empty()) {
352    if (isDependent)
353      MemberOfUnknownSpecialization = true;
354    return;
355  }
356
357  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
358    // C++ [basic.lookup.classref]p1:
359    //   [...] If the lookup in the class of the object expression finds a
360    //   template, the name is also looked up in the context of the entire
361    //   postfix-expression and [...]
362    //
363    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
364                            LookupOrdinaryName);
365    LookupName(FoundOuter, S);
366    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
367
368    if (FoundOuter.empty()) {
369      //   - if the name is not found, the name found in the class of the
370      //     object expression is used, otherwise
371    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
372               FoundOuter.isAmbiguous()) {
373      //   - if the name is found in the context of the entire
374      //     postfix-expression and does not name a class template, the name
375      //     found in the class of the object expression is used, otherwise
376      FoundOuter.clear();
377    } else if (!Found.isSuppressingDiagnostics()) {
378      //   - if the name found is a class template, it must refer to the same
379      //     entity as the one found in the class of the object expression,
380      //     otherwise the program is ill-formed.
381      if (!Found.isSingleResult() ||
382          Found.getFoundDecl()->getCanonicalDecl()
383            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
384        Diag(Found.getNameLoc(),
385             diag::ext_nested_name_member_ref_lookup_ambiguous)
386          << Found.getLookupName()
387          << ObjectType;
388        Diag(Found.getRepresentativeDecl()->getLocation(),
389             diag::note_ambig_member_ref_object_type)
390          << ObjectType;
391        Diag(FoundOuter.getFoundDecl()->getLocation(),
392             diag::note_ambig_member_ref_scope);
393
394        // Recover by taking the template that we found in the object
395        // expression's type.
396      }
397    }
398  }
399}
400
401/// ActOnDependentIdExpression - Handle a dependent id-expression that
402/// was just parsed.  This is only possible with an explicit scope
403/// specifier naming a dependent type.
404ExprResult
405Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
406                                 SourceLocation TemplateKWLoc,
407                                 const DeclarationNameInfo &NameInfo,
408                                 bool isAddressOfOperand,
409                           const TemplateArgumentListInfo *TemplateArgs) {
410  DeclContext *DC = getFunctionLevelDeclContext();
411
412  if (!isAddressOfOperand &&
413      isa<CXXMethodDecl>(DC) &&
414      cast<CXXMethodDecl>(DC)->isInstance()) {
415    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
416
417    // Since the 'this' expression is synthesized, we don't need to
418    // perform the double-lookup check.
419    NamedDecl *FirstQualifierInScope = 0;
420
421    return Owned(CXXDependentScopeMemberExpr::Create(Context,
422                                                     /*This*/ 0, ThisType,
423                                                     /*IsArrow*/ true,
424                                                     /*Op*/ SourceLocation(),
425                                               SS.getWithLocInContext(Context),
426                                                     TemplateKWLoc,
427                                                     FirstQualifierInScope,
428                                                     NameInfo,
429                                                     TemplateArgs));
430  }
431
432  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
433}
434
435ExprResult
436Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
437                                SourceLocation TemplateKWLoc,
438                                const DeclarationNameInfo &NameInfo,
439                                const TemplateArgumentListInfo *TemplateArgs) {
440  return Owned(DependentScopeDeclRefExpr::Create(Context,
441                                               SS.getWithLocInContext(Context),
442                                                 TemplateKWLoc,
443                                                 NameInfo,
444                                                 TemplateArgs));
445}
446
447/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
448/// that the template parameter 'PrevDecl' is being shadowed by a new
449/// declaration at location Loc. Returns true to indicate that this is
450/// an error, and false otherwise.
451void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
452  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
453
454  // Microsoft Visual C++ permits template parameters to be shadowed.
455  if (getLangOpts().MicrosoftExt)
456    return;
457
458  // C++ [temp.local]p4:
459  //   A template-parameter shall not be redeclared within its
460  //   scope (including nested scopes).
461  Diag(Loc, diag::err_template_param_shadow)
462    << cast<NamedDecl>(PrevDecl)->getDeclName();
463  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
464  return;
465}
466
467/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
468/// the parameter D to reference the templated declaration and return a pointer
469/// to the template declaration. Otherwise, do nothing to D and return null.
470TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
471  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
472    D = Temp->getTemplatedDecl();
473    return Temp;
474  }
475  return 0;
476}
477
478ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
479                                             SourceLocation EllipsisLoc) const {
480  assert(Kind == Template &&
481         "Only template template arguments can be pack expansions here");
482  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
483         "Template template argument pack expansion without packs");
484  ParsedTemplateArgument Result(*this);
485  Result.EllipsisLoc = EllipsisLoc;
486  return Result;
487}
488
489static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
490                                            const ParsedTemplateArgument &Arg) {
491
492  switch (Arg.getKind()) {
493  case ParsedTemplateArgument::Type: {
494    TypeSourceInfo *DI;
495    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
496    if (!DI)
497      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
498    return TemplateArgumentLoc(TemplateArgument(T), DI);
499  }
500
501  case ParsedTemplateArgument::NonType: {
502    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
503    return TemplateArgumentLoc(TemplateArgument(E), E);
504  }
505
506  case ParsedTemplateArgument::Template: {
507    TemplateName Template = Arg.getAsTemplate().get();
508    TemplateArgument TArg;
509    if (Arg.getEllipsisLoc().isValid())
510      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
511    else
512      TArg = Template;
513    return TemplateArgumentLoc(TArg,
514                               Arg.getScopeSpec().getWithLocInContext(
515                                                              SemaRef.Context),
516                               Arg.getLocation(),
517                               Arg.getEllipsisLoc());
518  }
519  }
520
521  llvm_unreachable("Unhandled parsed template argument");
522}
523
524/// \brief Translates template arguments as provided by the parser
525/// into template arguments used by semantic analysis.
526void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
527                                      TemplateArgumentListInfo &TemplateArgs) {
528 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
529   TemplateArgs.addArgument(translateTemplateArgument(*this,
530                                                      TemplateArgsIn[I]));
531}
532
533/// ActOnTypeParameter - Called when a C++ template type parameter
534/// (e.g., "typename T") has been parsed. Typename specifies whether
535/// the keyword "typename" was used to declare the type parameter
536/// (otherwise, "class" was used), and KeyLoc is the location of the
537/// "class" or "typename" keyword. ParamName is the name of the
538/// parameter (NULL indicates an unnamed template parameter) and
539/// ParamNameLoc is the location of the parameter name (if any).
540/// If the type parameter has a default argument, it will be added
541/// later via ActOnTypeParameterDefault.
542Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
543                               SourceLocation EllipsisLoc,
544                               SourceLocation KeyLoc,
545                               IdentifierInfo *ParamName,
546                               SourceLocation ParamNameLoc,
547                               unsigned Depth, unsigned Position,
548                               SourceLocation EqualLoc,
549                               ParsedType DefaultArg) {
550  assert(S->isTemplateParamScope() &&
551         "Template type parameter not in template parameter scope!");
552  bool Invalid = false;
553
554  if (ParamName) {
555    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
556                                           LookupOrdinaryName,
557                                           ForRedeclaration);
558    if (PrevDecl && PrevDecl->isTemplateParameter()) {
559      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
560      PrevDecl = 0;
561    }
562  }
563
564  SourceLocation Loc = ParamNameLoc;
565  if (!ParamName)
566    Loc = KeyLoc;
567
568  TemplateTypeParmDecl *Param
569    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
570                                   KeyLoc, Loc, Depth, Position, ParamName,
571                                   Typename, Ellipsis);
572  Param->setAccess(AS_public);
573  if (Invalid)
574    Param->setInvalidDecl();
575
576  if (ParamName) {
577    // Add the template parameter into the current scope.
578    S->AddDecl(Param);
579    IdResolver.AddDecl(Param);
580  }
581
582  // C++0x [temp.param]p9:
583  //   A default template-argument may be specified for any kind of
584  //   template-parameter that is not a template parameter pack.
585  if (DefaultArg && Ellipsis) {
586    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
587    DefaultArg = ParsedType();
588  }
589
590  // Handle the default argument, if provided.
591  if (DefaultArg) {
592    TypeSourceInfo *DefaultTInfo;
593    GetTypeFromParser(DefaultArg, &DefaultTInfo);
594
595    assert(DefaultTInfo && "expected source information for type");
596
597    // Check for unexpanded parameter packs.
598    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
599                                        UPPC_DefaultArgument))
600      return Param;
601
602    // Check the template argument itself.
603    if (CheckTemplateArgument(Param, DefaultTInfo)) {
604      Param->setInvalidDecl();
605      return Param;
606    }
607
608    Param->setDefaultArgument(DefaultTInfo, false);
609  }
610
611  return Param;
612}
613
614/// \brief Check that the type of a non-type template parameter is
615/// well-formed.
616///
617/// \returns the (possibly-promoted) parameter type if valid;
618/// otherwise, produces a diagnostic and returns a NULL type.
619QualType
620Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
621  // We don't allow variably-modified types as the type of non-type template
622  // parameters.
623  if (T->isVariablyModifiedType()) {
624    Diag(Loc, diag::err_variably_modified_nontype_template_param)
625      << T;
626    return QualType();
627  }
628
629  // C++ [temp.param]p4:
630  //
631  // A non-type template-parameter shall have one of the following
632  // (optionally cv-qualified) types:
633  //
634  //       -- integral or enumeration type,
635  if (T->isIntegralOrEnumerationType() ||
636      //   -- pointer to object or pointer to function,
637      T->isPointerType() ||
638      //   -- reference to object or reference to function,
639      T->isReferenceType() ||
640      //   -- pointer to member,
641      T->isMemberPointerType() ||
642      //   -- std::nullptr_t.
643      T->isNullPtrType() ||
644      // If T is a dependent type, we can't do the check now, so we
645      // assume that it is well-formed.
646      T->isDependentType()) {
647    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
648    // are ignored when determining its type.
649    return T.getUnqualifiedType();
650  }
651
652  // C++ [temp.param]p8:
653  //
654  //   A non-type template-parameter of type "array of T" or
655  //   "function returning T" is adjusted to be of type "pointer to
656  //   T" or "pointer to function returning T", respectively.
657  else if (T->isArrayType())
658    // FIXME: Keep the type prior to promotion?
659    return Context.getArrayDecayedType(T);
660  else if (T->isFunctionType())
661    // FIXME: Keep the type prior to promotion?
662    return Context.getPointerType(T);
663
664  Diag(Loc, diag::err_template_nontype_parm_bad_type)
665    << T;
666
667  return QualType();
668}
669
670Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
671                                          unsigned Depth,
672                                          unsigned Position,
673                                          SourceLocation EqualLoc,
674                                          Expr *Default) {
675  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
676  QualType T = TInfo->getType();
677
678  assert(S->isTemplateParamScope() &&
679         "Non-type template parameter not in template parameter scope!");
680  bool Invalid = false;
681
682  IdentifierInfo *ParamName = D.getIdentifier();
683  if (ParamName) {
684    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
685                                           LookupOrdinaryName,
686                                           ForRedeclaration);
687    if (PrevDecl && PrevDecl->isTemplateParameter()) {
688      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
689      PrevDecl = 0;
690    }
691  }
692
693  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
694  if (T.isNull()) {
695    T = Context.IntTy; // Recover with an 'int' type.
696    Invalid = true;
697  }
698
699  bool IsParameterPack = D.hasEllipsis();
700  NonTypeTemplateParmDecl *Param
701    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
702                                      D.getLocStart(),
703                                      D.getIdentifierLoc(),
704                                      Depth, Position, ParamName, T,
705                                      IsParameterPack, TInfo);
706  Param->setAccess(AS_public);
707
708  if (Invalid)
709    Param->setInvalidDecl();
710
711  if (D.getIdentifier()) {
712    // Add the template parameter into the current scope.
713    S->AddDecl(Param);
714    IdResolver.AddDecl(Param);
715  }
716
717  // C++0x [temp.param]p9:
718  //   A default template-argument may be specified for any kind of
719  //   template-parameter that is not a template parameter pack.
720  if (Default && IsParameterPack) {
721    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
722    Default = 0;
723  }
724
725  // Check the well-formedness of the default template argument, if provided.
726  if (Default) {
727    // Check for unexpanded parameter packs.
728    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
729      return Param;
730
731    TemplateArgument Converted;
732    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
733    if (DefaultRes.isInvalid()) {
734      Param->setInvalidDecl();
735      return Param;
736    }
737    Default = DefaultRes.take();
738
739    Param->setDefaultArgument(Default, false);
740  }
741
742  return Param;
743}
744
745/// ActOnTemplateTemplateParameter - Called when a C++ template template
746/// parameter (e.g. T in template <template <typename> class T> class array)
747/// has been parsed. S is the current scope.
748Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
749                                           SourceLocation TmpLoc,
750                                           TemplateParameterList *Params,
751                                           SourceLocation EllipsisLoc,
752                                           IdentifierInfo *Name,
753                                           SourceLocation NameLoc,
754                                           unsigned Depth,
755                                           unsigned Position,
756                                           SourceLocation EqualLoc,
757                                           ParsedTemplateArgument Default) {
758  assert(S->isTemplateParamScope() &&
759         "Template template parameter not in template parameter scope!");
760
761  // Construct the parameter object.
762  bool IsParameterPack = EllipsisLoc.isValid();
763  TemplateTemplateParmDecl *Param =
764    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
765                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
766                                     Depth, Position, IsParameterPack,
767                                     Name, Params);
768  Param->setAccess(AS_public);
769
770  // If the template template parameter has a name, then link the identifier
771  // into the scope and lookup mechanisms.
772  if (Name) {
773    S->AddDecl(Param);
774    IdResolver.AddDecl(Param);
775  }
776
777  if (Params->size() == 0) {
778    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
779    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
780    Param->setInvalidDecl();
781  }
782
783  // C++0x [temp.param]p9:
784  //   A default template-argument may be specified for any kind of
785  //   template-parameter that is not a template parameter pack.
786  if (IsParameterPack && !Default.isInvalid()) {
787    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
788    Default = ParsedTemplateArgument();
789  }
790
791  if (!Default.isInvalid()) {
792    // Check only that we have a template template argument. We don't want to
793    // try to check well-formedness now, because our template template parameter
794    // might have dependent types in its template parameters, which we wouldn't
795    // be able to match now.
796    //
797    // If none of the template template parameter's template arguments mention
798    // other template parameters, we could actually perform more checking here.
799    // However, it isn't worth doing.
800    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
801    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
802      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
803        << DefaultArg.getSourceRange();
804      return Param;
805    }
806
807    // Check for unexpanded parameter packs.
808    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
809                                        DefaultArg.getArgument().getAsTemplate(),
810                                        UPPC_DefaultArgument))
811      return Param;
812
813    Param->setDefaultArgument(DefaultArg, false);
814  }
815
816  return Param;
817}
818
819/// ActOnTemplateParameterList - Builds a TemplateParameterList that
820/// contains the template parameters in Params/NumParams.
821TemplateParameterList *
822Sema::ActOnTemplateParameterList(unsigned Depth,
823                                 SourceLocation ExportLoc,
824                                 SourceLocation TemplateLoc,
825                                 SourceLocation LAngleLoc,
826                                 Decl **Params, unsigned NumParams,
827                                 SourceLocation RAngleLoc) {
828  if (ExportLoc.isValid())
829    Diag(ExportLoc, diag::warn_template_export_unsupported);
830
831  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
832                                       (NamedDecl**)Params, NumParams,
833                                       RAngleLoc);
834}
835
836static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
837  if (SS.isSet())
838    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
839}
840
841DeclResult
842Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
843                         SourceLocation KWLoc, CXXScopeSpec &SS,
844                         IdentifierInfo *Name, SourceLocation NameLoc,
845                         AttributeList *Attr,
846                         TemplateParameterList *TemplateParams,
847                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
848                         unsigned NumOuterTemplateParamLists,
849                         TemplateParameterList** OuterTemplateParamLists) {
850  assert(TemplateParams && TemplateParams->size() > 0 &&
851         "No template parameters");
852  assert(TUK != TUK_Reference && "Can only declare or define class templates");
853  bool Invalid = false;
854
855  // Check that we can declare a template here.
856  if (CheckTemplateDeclScope(S, TemplateParams))
857    return true;
858
859  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
860  assert(Kind != TTK_Enum && "can't build template of enumerated type");
861
862  // There is no such thing as an unnamed class template.
863  if (!Name) {
864    Diag(KWLoc, diag::err_template_unnamed_class);
865    return true;
866  }
867
868  // Find any previous declaration with this name.
869  DeclContext *SemanticContext;
870  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
871                        ForRedeclaration);
872  if (SS.isNotEmpty() && !SS.isInvalid()) {
873    SemanticContext = computeDeclContext(SS, true);
874    if (!SemanticContext) {
875      // FIXME: Horrible, horrible hack! We can't currently represent this
876      // in the AST, and historically we have just ignored such friend
877      // class templates, so don't complain here.
878      if (TUK != TUK_Friend)
879        Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
880          << SS.getScopeRep() << SS.getRange();
881      return true;
882    }
883
884    if (RequireCompleteDeclContext(SS, SemanticContext))
885      return true;
886
887    // If we're adding a template to a dependent context, we may need to
888    // rebuilding some of the types used within the template parameter list,
889    // now that we know what the current instantiation is.
890    if (SemanticContext->isDependentContext()) {
891      ContextRAII SavedContext(*this, SemanticContext);
892      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
893        Invalid = true;
894    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
895      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
896
897    LookupQualifiedName(Previous, SemanticContext);
898  } else {
899    SemanticContext = CurContext;
900    LookupName(Previous, S);
901  }
902
903  if (Previous.isAmbiguous())
904    return true;
905
906  NamedDecl *PrevDecl = 0;
907  if (Previous.begin() != Previous.end())
908    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
909
910  // If there is a previous declaration with the same name, check
911  // whether this is a valid redeclaration.
912  ClassTemplateDecl *PrevClassTemplate
913    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
914
915  // We may have found the injected-class-name of a class template,
916  // class template partial specialization, or class template specialization.
917  // In these cases, grab the template that is being defined or specialized.
918  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
919      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
920    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
921    PrevClassTemplate
922      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
923    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
924      PrevClassTemplate
925        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
926            ->getSpecializedTemplate();
927    }
928  }
929
930  if (TUK == TUK_Friend) {
931    // C++ [namespace.memdef]p3:
932    //   [...] When looking for a prior declaration of a class or a function
933    //   declared as a friend, and when the name of the friend class or
934    //   function is neither a qualified name nor a template-id, scopes outside
935    //   the innermost enclosing namespace scope are not considered.
936    if (!SS.isSet()) {
937      DeclContext *OutermostContext = CurContext;
938      while (!OutermostContext->isFileContext())
939        OutermostContext = OutermostContext->getLookupParent();
940
941      if (PrevDecl &&
942          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
943           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
944        SemanticContext = PrevDecl->getDeclContext();
945      } else {
946        // Declarations in outer scopes don't matter. However, the outermost
947        // context we computed is the semantic context for our new
948        // declaration.
949        PrevDecl = PrevClassTemplate = 0;
950        SemanticContext = OutermostContext;
951      }
952    }
953
954    if (CurContext->isDependentContext()) {
955      // If this is a dependent context, we don't want to link the friend
956      // class template to the template in scope, because that would perform
957      // checking of the template parameter lists that can't be performed
958      // until the outer context is instantiated.
959      PrevDecl = PrevClassTemplate = 0;
960    }
961  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
962    PrevDecl = PrevClassTemplate = 0;
963
964  if (PrevClassTemplate) {
965    // Ensure that the template parameter lists are compatible.
966    if (!TemplateParameterListsAreEqual(TemplateParams,
967                                   PrevClassTemplate->getTemplateParameters(),
968                                        /*Complain=*/true,
969                                        TPL_TemplateMatch))
970      return true;
971
972    // C++ [temp.class]p4:
973    //   In a redeclaration, partial specialization, explicit
974    //   specialization or explicit instantiation of a class template,
975    //   the class-key shall agree in kind with the original class
976    //   template declaration (7.1.5.3).
977    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
978    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
979                                      TUK == TUK_Definition,  KWLoc, *Name)) {
980      Diag(KWLoc, diag::err_use_with_wrong_tag)
981        << Name
982        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
983      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
984      Kind = PrevRecordDecl->getTagKind();
985    }
986
987    // Check for redefinition of this class template.
988    if (TUK == TUK_Definition) {
989      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
990        Diag(NameLoc, diag::err_redefinition) << Name;
991        Diag(Def->getLocation(), diag::note_previous_definition);
992        // FIXME: Would it make sense to try to "forget" the previous
993        // definition, as part of error recovery?
994        return true;
995      }
996    }
997  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
998    // Maybe we will complain about the shadowed template parameter.
999    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1000    // Just pretend that we didn't see the previous declaration.
1001    PrevDecl = 0;
1002  } else if (PrevDecl) {
1003    // C++ [temp]p5:
1004    //   A class template shall not have the same name as any other
1005    //   template, class, function, object, enumeration, enumerator,
1006    //   namespace, or type in the same scope (3.3), except as specified
1007    //   in (14.5.4).
1008    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1009    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1010    return true;
1011  }
1012
1013  // Check the template parameter list of this declaration, possibly
1014  // merging in the template parameter list from the previous class
1015  // template declaration.
1016  if (CheckTemplateParameterList(TemplateParams,
1017            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1018                                 (SS.isSet() && SemanticContext &&
1019                                  SemanticContext->isRecord() &&
1020                                  SemanticContext->isDependentContext())
1021                                   ? TPC_ClassTemplateMember
1022                                   : TPC_ClassTemplate))
1023    Invalid = true;
1024
1025  if (SS.isSet()) {
1026    // If the name of the template was qualified, we must be defining the
1027    // template out-of-line.
1028    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
1029        !(TUK == TUK_Friend && CurContext->isDependentContext())) {
1030      Diag(NameLoc, diag::err_member_def_does_not_match)
1031        << Name << SemanticContext << SS.getRange();
1032      Invalid = true;
1033    }
1034  }
1035
1036  CXXRecordDecl *NewClass =
1037    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1038                          PrevClassTemplate?
1039                            PrevClassTemplate->getTemplatedDecl() : 0,
1040                          /*DelayTypeCreation=*/true);
1041  SetNestedNameSpecifier(NewClass, SS);
1042  if (NumOuterTemplateParamLists > 0)
1043    NewClass->setTemplateParameterListsInfo(Context,
1044                                            NumOuterTemplateParamLists,
1045                                            OuterTemplateParamLists);
1046
1047  // Add alignment attributes if necessary; these attributes are checked when
1048  // the ASTContext lays out the structure.
1049  AddAlignmentAttributesForRecord(NewClass);
1050  AddMsStructLayoutForRecord(NewClass);
1051
1052  ClassTemplateDecl *NewTemplate
1053    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1054                                DeclarationName(Name), TemplateParams,
1055                                NewClass, PrevClassTemplate);
1056  NewClass->setDescribedClassTemplate(NewTemplate);
1057
1058  if (ModulePrivateLoc.isValid())
1059    NewTemplate->setModulePrivate();
1060
1061  // Build the type for the class template declaration now.
1062  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1063  T = Context.getInjectedClassNameType(NewClass, T);
1064  assert(T->isDependentType() && "Class template type is not dependent?");
1065  (void)T;
1066
1067  // If we are providing an explicit specialization of a member that is a
1068  // class template, make a note of that.
1069  if (PrevClassTemplate &&
1070      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1071    PrevClassTemplate->setMemberSpecialization();
1072
1073  // Set the access specifier.
1074  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1075    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1076
1077  // Set the lexical context of these templates
1078  NewClass->setLexicalDeclContext(CurContext);
1079  NewTemplate->setLexicalDeclContext(CurContext);
1080
1081  if (TUK == TUK_Definition)
1082    NewClass->startDefinition();
1083
1084  if (Attr)
1085    ProcessDeclAttributeList(S, NewClass, Attr);
1086
1087  if (TUK != TUK_Friend)
1088    PushOnScopeChains(NewTemplate, S);
1089  else {
1090    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1091      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1092      NewClass->setAccess(PrevClassTemplate->getAccess());
1093    }
1094
1095    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1096                                       PrevClassTemplate != NULL);
1097
1098    // Friend templates are visible in fairly strange ways.
1099    if (!CurContext->isDependentContext()) {
1100      DeclContext *DC = SemanticContext->getRedeclContext();
1101      DC->makeDeclVisibleInContext(NewTemplate);
1102      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1103        PushOnScopeChains(NewTemplate, EnclosingScope,
1104                          /* AddToContext = */ false);
1105    }
1106
1107    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1108                                            NewClass->getLocation(),
1109                                            NewTemplate,
1110                                    /*FIXME:*/NewClass->getLocation());
1111    Friend->setAccess(AS_public);
1112    CurContext->addDecl(Friend);
1113  }
1114
1115  if (Invalid) {
1116    NewTemplate->setInvalidDecl();
1117    NewClass->setInvalidDecl();
1118  }
1119  return NewTemplate;
1120}
1121
1122/// \brief Diagnose the presence of a default template argument on a
1123/// template parameter, which is ill-formed in certain contexts.
1124///
1125/// \returns true if the default template argument should be dropped.
1126static bool DiagnoseDefaultTemplateArgument(Sema &S,
1127                                            Sema::TemplateParamListContext TPC,
1128                                            SourceLocation ParamLoc,
1129                                            SourceRange DefArgRange) {
1130  switch (TPC) {
1131  case Sema::TPC_ClassTemplate:
1132  case Sema::TPC_TypeAliasTemplate:
1133    return false;
1134
1135  case Sema::TPC_FunctionTemplate:
1136  case Sema::TPC_FriendFunctionTemplateDefinition:
1137    // C++ [temp.param]p9:
1138    //   A default template-argument shall not be specified in a
1139    //   function template declaration or a function template
1140    //   definition [...]
1141    //   If a friend function template declaration specifies a default
1142    //   template-argument, that declaration shall be a definition and shall be
1143    //   the only declaration of the function template in the translation unit.
1144    // (C++98/03 doesn't have this wording; see DR226).
1145    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus0x ?
1146         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1147           : diag::ext_template_parameter_default_in_function_template)
1148      << DefArgRange;
1149    return false;
1150
1151  case Sema::TPC_ClassTemplateMember:
1152    // C++0x [temp.param]p9:
1153    //   A default template-argument shall not be specified in the
1154    //   template-parameter-lists of the definition of a member of a
1155    //   class template that appears outside of the member's class.
1156    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1157      << DefArgRange;
1158    return true;
1159
1160  case Sema::TPC_FriendFunctionTemplate:
1161    // C++ [temp.param]p9:
1162    //   A default template-argument shall not be specified in a
1163    //   friend template declaration.
1164    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1165      << DefArgRange;
1166    return true;
1167
1168    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1169    // for friend function templates if there is only a single
1170    // declaration (and it is a definition). Strange!
1171  }
1172
1173  llvm_unreachable("Invalid TemplateParamListContext!");
1174}
1175
1176/// \brief Check for unexpanded parameter packs within the template parameters
1177/// of a template template parameter, recursively.
1178static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1179                                             TemplateTemplateParmDecl *TTP) {
1180  TemplateParameterList *Params = TTP->getTemplateParameters();
1181  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1182    NamedDecl *P = Params->getParam(I);
1183    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1184      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1185                                            NTTP->getTypeSourceInfo(),
1186                                      Sema::UPPC_NonTypeTemplateParameterType))
1187        return true;
1188
1189      continue;
1190    }
1191
1192    if (TemplateTemplateParmDecl *InnerTTP
1193                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1194      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1195        return true;
1196  }
1197
1198  return false;
1199}
1200
1201/// \brief Checks the validity of a template parameter list, possibly
1202/// considering the template parameter list from a previous
1203/// declaration.
1204///
1205/// If an "old" template parameter list is provided, it must be
1206/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1207/// template parameter list.
1208///
1209/// \param NewParams Template parameter list for a new template
1210/// declaration. This template parameter list will be updated with any
1211/// default arguments that are carried through from the previous
1212/// template parameter list.
1213///
1214/// \param OldParams If provided, template parameter list from a
1215/// previous declaration of the same template. Default template
1216/// arguments will be merged from the old template parameter list to
1217/// the new template parameter list.
1218///
1219/// \param TPC Describes the context in which we are checking the given
1220/// template parameter list.
1221///
1222/// \returns true if an error occurred, false otherwise.
1223bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1224                                      TemplateParameterList *OldParams,
1225                                      TemplateParamListContext TPC) {
1226  bool Invalid = false;
1227
1228  // C++ [temp.param]p10:
1229  //   The set of default template-arguments available for use with a
1230  //   template declaration or definition is obtained by merging the
1231  //   default arguments from the definition (if in scope) and all
1232  //   declarations in scope in the same way default function
1233  //   arguments are (8.3.6).
1234  bool SawDefaultArgument = false;
1235  SourceLocation PreviousDefaultArgLoc;
1236
1237  // Dummy initialization to avoid warnings.
1238  TemplateParameterList::iterator OldParam = NewParams->end();
1239  if (OldParams)
1240    OldParam = OldParams->begin();
1241
1242  bool RemoveDefaultArguments = false;
1243  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1244                                    NewParamEnd = NewParams->end();
1245       NewParam != NewParamEnd; ++NewParam) {
1246    // Variables used to diagnose redundant default arguments
1247    bool RedundantDefaultArg = false;
1248    SourceLocation OldDefaultLoc;
1249    SourceLocation NewDefaultLoc;
1250
1251    // Variable used to diagnose missing default arguments
1252    bool MissingDefaultArg = false;
1253
1254    // Variable used to diagnose non-final parameter packs
1255    bool SawParameterPack = false;
1256
1257    if (TemplateTypeParmDecl *NewTypeParm
1258          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1259      // Check the presence of a default argument here.
1260      if (NewTypeParm->hasDefaultArgument() &&
1261          DiagnoseDefaultTemplateArgument(*this, TPC,
1262                                          NewTypeParm->getLocation(),
1263               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1264                                                       .getSourceRange()))
1265        NewTypeParm->removeDefaultArgument();
1266
1267      // Merge default arguments for template type parameters.
1268      TemplateTypeParmDecl *OldTypeParm
1269          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1270
1271      if (NewTypeParm->isParameterPack()) {
1272        assert(!NewTypeParm->hasDefaultArgument() &&
1273               "Parameter packs can't have a default argument!");
1274        SawParameterPack = true;
1275      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1276                 NewTypeParm->hasDefaultArgument()) {
1277        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1278        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1279        SawDefaultArgument = true;
1280        RedundantDefaultArg = true;
1281        PreviousDefaultArgLoc = NewDefaultLoc;
1282      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1283        // Merge the default argument from the old declaration to the
1284        // new declaration.
1285        SawDefaultArgument = true;
1286        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1287                                        true);
1288        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1289      } else if (NewTypeParm->hasDefaultArgument()) {
1290        SawDefaultArgument = true;
1291        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1292      } else if (SawDefaultArgument)
1293        MissingDefaultArg = true;
1294    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1295               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1296      // Check for unexpanded parameter packs.
1297      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1298                                          NewNonTypeParm->getTypeSourceInfo(),
1299                                          UPPC_NonTypeTemplateParameterType)) {
1300        Invalid = true;
1301        continue;
1302      }
1303
1304      // Check the presence of a default argument here.
1305      if (NewNonTypeParm->hasDefaultArgument() &&
1306          DiagnoseDefaultTemplateArgument(*this, TPC,
1307                                          NewNonTypeParm->getLocation(),
1308                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1309        NewNonTypeParm->removeDefaultArgument();
1310      }
1311
1312      // Merge default arguments for non-type template parameters
1313      NonTypeTemplateParmDecl *OldNonTypeParm
1314        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1315      if (NewNonTypeParm->isParameterPack()) {
1316        assert(!NewNonTypeParm->hasDefaultArgument() &&
1317               "Parameter packs can't have a default argument!");
1318        SawParameterPack = true;
1319      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1320          NewNonTypeParm->hasDefaultArgument()) {
1321        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1322        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1323        SawDefaultArgument = true;
1324        RedundantDefaultArg = true;
1325        PreviousDefaultArgLoc = NewDefaultLoc;
1326      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1327        // Merge the default argument from the old declaration to the
1328        // new declaration.
1329        SawDefaultArgument = true;
1330        // FIXME: We need to create a new kind of "default argument"
1331        // expression that points to a previous non-type template
1332        // parameter.
1333        NewNonTypeParm->setDefaultArgument(
1334                                         OldNonTypeParm->getDefaultArgument(),
1335                                         /*Inherited=*/ true);
1336        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1337      } else if (NewNonTypeParm->hasDefaultArgument()) {
1338        SawDefaultArgument = true;
1339        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1340      } else if (SawDefaultArgument)
1341        MissingDefaultArg = true;
1342    } else {
1343      TemplateTemplateParmDecl *NewTemplateParm
1344        = cast<TemplateTemplateParmDecl>(*NewParam);
1345
1346      // Check for unexpanded parameter packs, recursively.
1347      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1348        Invalid = true;
1349        continue;
1350      }
1351
1352      // Check the presence of a default argument here.
1353      if (NewTemplateParm->hasDefaultArgument() &&
1354          DiagnoseDefaultTemplateArgument(*this, TPC,
1355                                          NewTemplateParm->getLocation(),
1356                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1357        NewTemplateParm->removeDefaultArgument();
1358
1359      // Merge default arguments for template template parameters
1360      TemplateTemplateParmDecl *OldTemplateParm
1361        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1362      if (NewTemplateParm->isParameterPack()) {
1363        assert(!NewTemplateParm->hasDefaultArgument() &&
1364               "Parameter packs can't have a default argument!");
1365        SawParameterPack = true;
1366      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1367          NewTemplateParm->hasDefaultArgument()) {
1368        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1369        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1370        SawDefaultArgument = true;
1371        RedundantDefaultArg = true;
1372        PreviousDefaultArgLoc = NewDefaultLoc;
1373      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1374        // Merge the default argument from the old declaration to the
1375        // new declaration.
1376        SawDefaultArgument = true;
1377        // FIXME: We need to create a new kind of "default argument" expression
1378        // that points to a previous template template parameter.
1379        NewTemplateParm->setDefaultArgument(
1380                                          OldTemplateParm->getDefaultArgument(),
1381                                          /*Inherited=*/ true);
1382        PreviousDefaultArgLoc
1383          = OldTemplateParm->getDefaultArgument().getLocation();
1384      } else if (NewTemplateParm->hasDefaultArgument()) {
1385        SawDefaultArgument = true;
1386        PreviousDefaultArgLoc
1387          = NewTemplateParm->getDefaultArgument().getLocation();
1388      } else if (SawDefaultArgument)
1389        MissingDefaultArg = true;
1390    }
1391
1392    // C++0x [temp.param]p11:
1393    //   If a template parameter of a primary class template or alias template
1394    //   is a template parameter pack, it shall be the last template parameter.
1395    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1396        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1397      Diag((*NewParam)->getLocation(),
1398           diag::err_template_param_pack_must_be_last_template_parameter);
1399      Invalid = true;
1400    }
1401
1402    if (RedundantDefaultArg) {
1403      // C++ [temp.param]p12:
1404      //   A template-parameter shall not be given default arguments
1405      //   by two different declarations in the same scope.
1406      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1407      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1408      Invalid = true;
1409    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1410      // C++ [temp.param]p11:
1411      //   If a template-parameter of a class template has a default
1412      //   template-argument, each subsequent template-parameter shall either
1413      //   have a default template-argument supplied or be a template parameter
1414      //   pack.
1415      Diag((*NewParam)->getLocation(),
1416           diag::err_template_param_default_arg_missing);
1417      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1418      Invalid = true;
1419      RemoveDefaultArguments = true;
1420    }
1421
1422    // If we have an old template parameter list that we're merging
1423    // in, move on to the next parameter.
1424    if (OldParams)
1425      ++OldParam;
1426  }
1427
1428  // We were missing some default arguments at the end of the list, so remove
1429  // all of the default arguments.
1430  if (RemoveDefaultArguments) {
1431    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1432                                      NewParamEnd = NewParams->end();
1433         NewParam != NewParamEnd; ++NewParam) {
1434      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1435        TTP->removeDefaultArgument();
1436      else if (NonTypeTemplateParmDecl *NTTP
1437                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1438        NTTP->removeDefaultArgument();
1439      else
1440        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1441    }
1442  }
1443
1444  return Invalid;
1445}
1446
1447namespace {
1448
1449/// A class which looks for a use of a certain level of template
1450/// parameter.
1451struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1452  typedef RecursiveASTVisitor<DependencyChecker> super;
1453
1454  unsigned Depth;
1455  bool Match;
1456
1457  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1458    NamedDecl *ND = Params->getParam(0);
1459    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1460      Depth = PD->getDepth();
1461    } else if (NonTypeTemplateParmDecl *PD =
1462                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1463      Depth = PD->getDepth();
1464    } else {
1465      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1466    }
1467  }
1468
1469  bool Matches(unsigned ParmDepth) {
1470    if (ParmDepth >= Depth) {
1471      Match = true;
1472      return true;
1473    }
1474    return false;
1475  }
1476
1477  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1478    return !Matches(T->getDepth());
1479  }
1480
1481  bool TraverseTemplateName(TemplateName N) {
1482    if (TemplateTemplateParmDecl *PD =
1483          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1484      if (Matches(PD->getDepth())) return false;
1485    return super::TraverseTemplateName(N);
1486  }
1487
1488  bool VisitDeclRefExpr(DeclRefExpr *E) {
1489    if (NonTypeTemplateParmDecl *PD =
1490          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1491      if (PD->getDepth() == Depth) {
1492        Match = true;
1493        return false;
1494      }
1495    }
1496    return super::VisitDeclRefExpr(E);
1497  }
1498
1499  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1500    return TraverseType(T->getInjectedSpecializationType());
1501  }
1502};
1503}
1504
1505/// Determines whether a given type depends on the given parameter
1506/// list.
1507static bool
1508DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1509  DependencyChecker Checker(Params);
1510  Checker.TraverseType(T);
1511  return Checker.Match;
1512}
1513
1514// Find the source range corresponding to the named type in the given
1515// nested-name-specifier, if any.
1516static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1517                                                       QualType T,
1518                                                       const CXXScopeSpec &SS) {
1519  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1520  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1521    if (const Type *CurType = NNS->getAsType()) {
1522      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1523        return NNSLoc.getTypeLoc().getSourceRange();
1524    } else
1525      break;
1526
1527    NNSLoc = NNSLoc.getPrefix();
1528  }
1529
1530  return SourceRange();
1531}
1532
1533/// \brief Match the given template parameter lists to the given scope
1534/// specifier, returning the template parameter list that applies to the
1535/// name.
1536///
1537/// \param DeclStartLoc the start of the declaration that has a scope
1538/// specifier or a template parameter list.
1539///
1540/// \param DeclLoc The location of the declaration itself.
1541///
1542/// \param SS the scope specifier that will be matched to the given template
1543/// parameter lists. This scope specifier precedes a qualified name that is
1544/// being declared.
1545///
1546/// \param ParamLists the template parameter lists, from the outermost to the
1547/// innermost template parameter lists.
1548///
1549/// \param NumParamLists the number of template parameter lists in ParamLists.
1550///
1551/// \param IsFriend Whether to apply the slightly different rules for
1552/// matching template parameters to scope specifiers in friend
1553/// declarations.
1554///
1555/// \param IsExplicitSpecialization will be set true if the entity being
1556/// declared is an explicit specialization, false otherwise.
1557///
1558/// \returns the template parameter list, if any, that corresponds to the
1559/// name that is preceded by the scope specifier @p SS. This template
1560/// parameter list may have template parameters (if we're declaring a
1561/// template) or may have no template parameters (if we're declaring a
1562/// template specialization), or may be NULL (if what we're declaring isn't
1563/// itself a template).
1564TemplateParameterList *
1565Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1566                                              SourceLocation DeclLoc,
1567                                              const CXXScopeSpec &SS,
1568                                          TemplateParameterList **ParamLists,
1569                                              unsigned NumParamLists,
1570                                              bool IsFriend,
1571                                              bool &IsExplicitSpecialization,
1572                                              bool &Invalid) {
1573  IsExplicitSpecialization = false;
1574  Invalid = false;
1575
1576  // The sequence of nested types to which we will match up the template
1577  // parameter lists. We first build this list by starting with the type named
1578  // by the nested-name-specifier and walking out until we run out of types.
1579  SmallVector<QualType, 4> NestedTypes;
1580  QualType T;
1581  if (SS.getScopeRep()) {
1582    if (CXXRecordDecl *Record
1583              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1584      T = Context.getTypeDeclType(Record);
1585    else
1586      T = QualType(SS.getScopeRep()->getAsType(), 0);
1587  }
1588
1589  // If we found an explicit specialization that prevents us from needing
1590  // 'template<>' headers, this will be set to the location of that
1591  // explicit specialization.
1592  SourceLocation ExplicitSpecLoc;
1593
1594  while (!T.isNull()) {
1595    NestedTypes.push_back(T);
1596
1597    // Retrieve the parent of a record type.
1598    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1599      // If this type is an explicit specialization, we're done.
1600      if (ClassTemplateSpecializationDecl *Spec
1601          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1602        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1603            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1604          ExplicitSpecLoc = Spec->getLocation();
1605          break;
1606        }
1607      } else if (Record->getTemplateSpecializationKind()
1608                                                == TSK_ExplicitSpecialization) {
1609        ExplicitSpecLoc = Record->getLocation();
1610        break;
1611      }
1612
1613      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1614        T = Context.getTypeDeclType(Parent);
1615      else
1616        T = QualType();
1617      continue;
1618    }
1619
1620    if (const TemplateSpecializationType *TST
1621                                     = T->getAs<TemplateSpecializationType>()) {
1622      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1623        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1624          T = Context.getTypeDeclType(Parent);
1625        else
1626          T = QualType();
1627        continue;
1628      }
1629    }
1630
1631    // Look one step prior in a dependent template specialization type.
1632    if (const DependentTemplateSpecializationType *DependentTST
1633                          = T->getAs<DependentTemplateSpecializationType>()) {
1634      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1635        T = QualType(NNS->getAsType(), 0);
1636      else
1637        T = QualType();
1638      continue;
1639    }
1640
1641    // Look one step prior in a dependent name type.
1642    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1643      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1644        T = QualType(NNS->getAsType(), 0);
1645      else
1646        T = QualType();
1647      continue;
1648    }
1649
1650    // Retrieve the parent of an enumeration type.
1651    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1652      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1653      // check here.
1654      EnumDecl *Enum = EnumT->getDecl();
1655
1656      // Get to the parent type.
1657      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1658        T = Context.getTypeDeclType(Parent);
1659      else
1660        T = QualType();
1661      continue;
1662    }
1663
1664    T = QualType();
1665  }
1666  // Reverse the nested types list, since we want to traverse from the outermost
1667  // to the innermost while checking template-parameter-lists.
1668  std::reverse(NestedTypes.begin(), NestedTypes.end());
1669
1670  // C++0x [temp.expl.spec]p17:
1671  //   A member or a member template may be nested within many
1672  //   enclosing class templates. In an explicit specialization for
1673  //   such a member, the member declaration shall be preceded by a
1674  //   template<> for each enclosing class template that is
1675  //   explicitly specialized.
1676  bool SawNonEmptyTemplateParameterList = false;
1677  unsigned ParamIdx = 0;
1678  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1679       ++TypeIdx) {
1680    T = NestedTypes[TypeIdx];
1681
1682    // Whether we expect a 'template<>' header.
1683    bool NeedEmptyTemplateHeader = false;
1684
1685    // Whether we expect a template header with parameters.
1686    bool NeedNonemptyTemplateHeader = false;
1687
1688    // For a dependent type, the set of template parameters that we
1689    // expect to see.
1690    TemplateParameterList *ExpectedTemplateParams = 0;
1691
1692    // C++0x [temp.expl.spec]p15:
1693    //   A member or a member template may be nested within many enclosing
1694    //   class templates. In an explicit specialization for such a member, the
1695    //   member declaration shall be preceded by a template<> for each
1696    //   enclosing class template that is explicitly specialized.
1697    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1698      if (ClassTemplatePartialSpecializationDecl *Partial
1699            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1700        ExpectedTemplateParams = Partial->getTemplateParameters();
1701        NeedNonemptyTemplateHeader = true;
1702      } else if (Record->isDependentType()) {
1703        if (Record->getDescribedClassTemplate()) {
1704          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1705                                                      ->getTemplateParameters();
1706          NeedNonemptyTemplateHeader = true;
1707        }
1708      } else if (ClassTemplateSpecializationDecl *Spec
1709                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1710        // C++0x [temp.expl.spec]p4:
1711        //   Members of an explicitly specialized class template are defined
1712        //   in the same manner as members of normal classes, and not using
1713        //   the template<> syntax.
1714        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1715          NeedEmptyTemplateHeader = true;
1716        else
1717          continue;
1718      } else if (Record->getTemplateSpecializationKind()) {
1719        if (Record->getTemplateSpecializationKind()
1720                                                != TSK_ExplicitSpecialization &&
1721            TypeIdx == NumTypes - 1)
1722          IsExplicitSpecialization = true;
1723
1724        continue;
1725      }
1726    } else if (const TemplateSpecializationType *TST
1727                                     = T->getAs<TemplateSpecializationType>()) {
1728      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1729        ExpectedTemplateParams = Template->getTemplateParameters();
1730        NeedNonemptyTemplateHeader = true;
1731      }
1732    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1733      // FIXME:  We actually could/should check the template arguments here
1734      // against the corresponding template parameter list.
1735      NeedNonemptyTemplateHeader = false;
1736    }
1737
1738    // C++ [temp.expl.spec]p16:
1739    //   In an explicit specialization declaration for a member of a class
1740    //   template or a member template that ap- pears in namespace scope, the
1741    //   member template and some of its enclosing class templates may remain
1742    //   unspecialized, except that the declaration shall not explicitly
1743    //   specialize a class member template if its en- closing class templates
1744    //   are not explicitly specialized as well.
1745    if (ParamIdx < NumParamLists) {
1746      if (ParamLists[ParamIdx]->size() == 0) {
1747        if (SawNonEmptyTemplateParameterList) {
1748          Diag(DeclLoc, diag::err_specialize_member_of_template)
1749            << ParamLists[ParamIdx]->getSourceRange();
1750          Invalid = true;
1751          IsExplicitSpecialization = false;
1752          return 0;
1753        }
1754      } else
1755        SawNonEmptyTemplateParameterList = true;
1756    }
1757
1758    if (NeedEmptyTemplateHeader) {
1759      // If we're on the last of the types, and we need a 'template<>' header
1760      // here, then it's an explicit specialization.
1761      if (TypeIdx == NumTypes - 1)
1762        IsExplicitSpecialization = true;
1763
1764      if (ParamIdx < NumParamLists) {
1765        if (ParamLists[ParamIdx]->size() > 0) {
1766          // The header has template parameters when it shouldn't. Complain.
1767          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1768               diag::err_template_param_list_matches_nontemplate)
1769            << T
1770            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1771                           ParamLists[ParamIdx]->getRAngleLoc())
1772            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1773          Invalid = true;
1774          return 0;
1775        }
1776
1777        // Consume this template header.
1778        ++ParamIdx;
1779        continue;
1780      }
1781
1782      if (!IsFriend) {
1783        // We don't have a template header, but we should.
1784        SourceLocation ExpectedTemplateLoc;
1785        if (NumParamLists > 0)
1786          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1787        else
1788          ExpectedTemplateLoc = DeclStartLoc;
1789
1790        Diag(DeclLoc, diag::err_template_spec_needs_header)
1791          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1792          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1793      }
1794
1795      continue;
1796    }
1797
1798    if (NeedNonemptyTemplateHeader) {
1799      // In friend declarations we can have template-ids which don't
1800      // depend on the corresponding template parameter lists.  But
1801      // assume that empty parameter lists are supposed to match this
1802      // template-id.
1803      if (IsFriend && T->isDependentType()) {
1804        if (ParamIdx < NumParamLists &&
1805            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1806          ExpectedTemplateParams = 0;
1807        else
1808          continue;
1809      }
1810
1811      if (ParamIdx < NumParamLists) {
1812        // Check the template parameter list, if we can.
1813        if (ExpectedTemplateParams &&
1814            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1815                                            ExpectedTemplateParams,
1816                                            true, TPL_TemplateMatch))
1817          Invalid = true;
1818
1819        if (!Invalid &&
1820            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1821                                       TPC_ClassTemplateMember))
1822          Invalid = true;
1823
1824        ++ParamIdx;
1825        continue;
1826      }
1827
1828      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1829        << T
1830        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1831      Invalid = true;
1832      continue;
1833    }
1834  }
1835
1836  // If there were at least as many template-ids as there were template
1837  // parameter lists, then there are no template parameter lists remaining for
1838  // the declaration itself.
1839  if (ParamIdx >= NumParamLists)
1840    return 0;
1841
1842  // If there were too many template parameter lists, complain about that now.
1843  if (ParamIdx < NumParamLists - 1) {
1844    bool HasAnyExplicitSpecHeader = false;
1845    bool AllExplicitSpecHeaders = true;
1846    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1847      if (ParamLists[I]->size() == 0)
1848        HasAnyExplicitSpecHeader = true;
1849      else
1850        AllExplicitSpecHeaders = false;
1851    }
1852
1853    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1854         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1855                               : diag::err_template_spec_extra_headers)
1856      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1857                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1858
1859    // If there was a specialization somewhere, such that 'template<>' is
1860    // not required, and there were any 'template<>' headers, note where the
1861    // specialization occurred.
1862    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1863      Diag(ExplicitSpecLoc,
1864           diag::note_explicit_template_spec_does_not_need_header)
1865        << NestedTypes.back();
1866
1867    // We have a template parameter list with no corresponding scope, which
1868    // means that the resulting template declaration can't be instantiated
1869    // properly (we'll end up with dependent nodes when we shouldn't).
1870    if (!AllExplicitSpecHeaders)
1871      Invalid = true;
1872  }
1873
1874  // C++ [temp.expl.spec]p16:
1875  //   In an explicit specialization declaration for a member of a class
1876  //   template or a member template that ap- pears in namespace scope, the
1877  //   member template and some of its enclosing class templates may remain
1878  //   unspecialized, except that the declaration shall not explicitly
1879  //   specialize a class member template if its en- closing class templates
1880  //   are not explicitly specialized as well.
1881  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1882      SawNonEmptyTemplateParameterList) {
1883    Diag(DeclLoc, diag::err_specialize_member_of_template)
1884      << ParamLists[ParamIdx]->getSourceRange();
1885    Invalid = true;
1886    IsExplicitSpecialization = false;
1887    return 0;
1888  }
1889
1890  // Return the last template parameter list, which corresponds to the
1891  // entity being declared.
1892  return ParamLists[NumParamLists - 1];
1893}
1894
1895void Sema::NoteAllFoundTemplates(TemplateName Name) {
1896  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1897    Diag(Template->getLocation(), diag::note_template_declared_here)
1898      << (isa<FunctionTemplateDecl>(Template)? 0
1899          : isa<ClassTemplateDecl>(Template)? 1
1900          : isa<TypeAliasTemplateDecl>(Template)? 2
1901          : 3)
1902      << Template->getDeclName();
1903    return;
1904  }
1905
1906  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1907    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1908                                          IEnd = OST->end();
1909         I != IEnd; ++I)
1910      Diag((*I)->getLocation(), diag::note_template_declared_here)
1911        << 0 << (*I)->getDeclName();
1912
1913    return;
1914  }
1915}
1916
1917QualType Sema::CheckTemplateIdType(TemplateName Name,
1918                                   SourceLocation TemplateLoc,
1919                                   TemplateArgumentListInfo &TemplateArgs) {
1920  DependentTemplateName *DTN
1921    = Name.getUnderlying().getAsDependentTemplateName();
1922  if (DTN && DTN->isIdentifier())
1923    // When building a template-id where the template-name is dependent,
1924    // assume the template is a type template. Either our assumption is
1925    // correct, or the code is ill-formed and will be diagnosed when the
1926    // dependent name is substituted.
1927    return Context.getDependentTemplateSpecializationType(ETK_None,
1928                                                          DTN->getQualifier(),
1929                                                          DTN->getIdentifier(),
1930                                                          TemplateArgs);
1931
1932  TemplateDecl *Template = Name.getAsTemplateDecl();
1933  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1934    // We might have a substituted template template parameter pack. If so,
1935    // build a template specialization type for it.
1936    if (Name.getAsSubstTemplateTemplateParmPack())
1937      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1938
1939    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1940      << Name;
1941    NoteAllFoundTemplates(Name);
1942    return QualType();
1943  }
1944
1945  // Check that the template argument list is well-formed for this
1946  // template.
1947  SmallVector<TemplateArgument, 4> Converted;
1948  bool ExpansionIntoFixedList = false;
1949  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1950                                false, Converted, &ExpansionIntoFixedList))
1951    return QualType();
1952
1953  QualType CanonType;
1954
1955  bool InstantiationDependent = false;
1956  TypeAliasTemplateDecl *AliasTemplate = 0;
1957  if (!ExpansionIntoFixedList &&
1958      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1959    // Find the canonical type for this type alias template specialization.
1960    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1961    if (Pattern->isInvalidDecl())
1962      return QualType();
1963
1964    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1965                                      Converted.data(), Converted.size());
1966
1967    // Only substitute for the innermost template argument list.
1968    MultiLevelTemplateArgumentList TemplateArgLists;
1969    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1970    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1971    for (unsigned I = 0; I < Depth; ++I)
1972      TemplateArgLists.addOuterTemplateArguments(0, 0);
1973
1974    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1975    CanonType = SubstType(Pattern->getUnderlyingType(),
1976                          TemplateArgLists, AliasTemplate->getLocation(),
1977                          AliasTemplate->getDeclName());
1978    if (CanonType.isNull())
1979      return QualType();
1980  } else if (Name.isDependent() ||
1981             TemplateSpecializationType::anyDependentTemplateArguments(
1982               TemplateArgs, InstantiationDependent)) {
1983    // This class template specialization is a dependent
1984    // type. Therefore, its canonical type is another class template
1985    // specialization type that contains all of the converted
1986    // arguments in canonical form. This ensures that, e.g., A<T> and
1987    // A<T, T> have identical types when A is declared as:
1988    //
1989    //   template<typename T, typename U = T> struct A;
1990    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1991    CanonType = Context.getTemplateSpecializationType(CanonName,
1992                                                      Converted.data(),
1993                                                      Converted.size());
1994
1995    // FIXME: CanonType is not actually the canonical type, and unfortunately
1996    // it is a TemplateSpecializationType that we will never use again.
1997    // In the future, we need to teach getTemplateSpecializationType to only
1998    // build the canonical type and return that to us.
1999    CanonType = Context.getCanonicalType(CanonType);
2000
2001    // This might work out to be a current instantiation, in which
2002    // case the canonical type needs to be the InjectedClassNameType.
2003    //
2004    // TODO: in theory this could be a simple hashtable lookup; most
2005    // changes to CurContext don't change the set of current
2006    // instantiations.
2007    if (isa<ClassTemplateDecl>(Template)) {
2008      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2009        // If we get out to a namespace, we're done.
2010        if (Ctx->isFileContext()) break;
2011
2012        // If this isn't a record, keep looking.
2013        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2014        if (!Record) continue;
2015
2016        // Look for one of the two cases with InjectedClassNameTypes
2017        // and check whether it's the same template.
2018        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2019            !Record->getDescribedClassTemplate())
2020          continue;
2021
2022        // Fetch the injected class name type and check whether its
2023        // injected type is equal to the type we just built.
2024        QualType ICNT = Context.getTypeDeclType(Record);
2025        QualType Injected = cast<InjectedClassNameType>(ICNT)
2026          ->getInjectedSpecializationType();
2027
2028        if (CanonType != Injected->getCanonicalTypeInternal())
2029          continue;
2030
2031        // If so, the canonical type of this TST is the injected
2032        // class name type of the record we just found.
2033        assert(ICNT.isCanonical());
2034        CanonType = ICNT;
2035        break;
2036      }
2037    }
2038  } else if (ClassTemplateDecl *ClassTemplate
2039               = dyn_cast<ClassTemplateDecl>(Template)) {
2040    // Find the class template specialization declaration that
2041    // corresponds to these arguments.
2042    void *InsertPos = 0;
2043    ClassTemplateSpecializationDecl *Decl
2044      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2045                                          InsertPos);
2046    if (!Decl) {
2047      // This is the first time we have referenced this class template
2048      // specialization. Create the canonical declaration and add it to
2049      // the set of specializations.
2050      Decl = ClassTemplateSpecializationDecl::Create(Context,
2051                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2052                                                ClassTemplate->getDeclContext(),
2053                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2054                                                ClassTemplate->getLocation(),
2055                                                     ClassTemplate,
2056                                                     Converted.data(),
2057                                                     Converted.size(), 0);
2058      ClassTemplate->AddSpecialization(Decl, InsertPos);
2059      Decl->setLexicalDeclContext(CurContext);
2060    }
2061
2062    CanonType = Context.getTypeDeclType(Decl);
2063    assert(isa<RecordType>(CanonType) &&
2064           "type of non-dependent specialization is not a RecordType");
2065  }
2066
2067  // Build the fully-sugared type for this class template
2068  // specialization, which refers back to the class template
2069  // specialization we created or found.
2070  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2071}
2072
2073TypeResult
2074Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2075                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2076                          SourceLocation LAngleLoc,
2077                          ASTTemplateArgsPtr TemplateArgsIn,
2078                          SourceLocation RAngleLoc,
2079                          bool IsCtorOrDtorName) {
2080  if (SS.isInvalid())
2081    return true;
2082
2083  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2084
2085  // Translate the parser's template argument list in our AST format.
2086  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2087  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2088
2089  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2090    QualType T
2091      = Context.getDependentTemplateSpecializationType(ETK_None,
2092                                                       DTN->getQualifier(),
2093                                                       DTN->getIdentifier(),
2094                                                       TemplateArgs);
2095    // Build type-source information.
2096    TypeLocBuilder TLB;
2097    DependentTemplateSpecializationTypeLoc SpecTL
2098      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2099    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2100    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2101    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2102    SpecTL.setTemplateNameLoc(TemplateLoc);
2103    SpecTL.setLAngleLoc(LAngleLoc);
2104    SpecTL.setRAngleLoc(RAngleLoc);
2105    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2106      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2107    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2108  }
2109
2110  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2111  TemplateArgsIn.release();
2112
2113  if (Result.isNull())
2114    return true;
2115
2116  // Build type-source information.
2117  TypeLocBuilder TLB;
2118  TemplateSpecializationTypeLoc SpecTL
2119    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2120  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2121  SpecTL.setTemplateNameLoc(TemplateLoc);
2122  SpecTL.setLAngleLoc(LAngleLoc);
2123  SpecTL.setRAngleLoc(RAngleLoc);
2124  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2125    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2126
2127  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2128  // constructor or destructor name (in such a case, the scope specifier
2129  // will be attached to the enclosing Decl or Expr node).
2130  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2131    // Create an elaborated-type-specifier containing the nested-name-specifier.
2132    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2133    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2134    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2135    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2136  }
2137
2138  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2139}
2140
2141TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2142                                        TypeSpecifierType TagSpec,
2143                                        SourceLocation TagLoc,
2144                                        CXXScopeSpec &SS,
2145                                        SourceLocation TemplateKWLoc,
2146                                        TemplateTy TemplateD,
2147                                        SourceLocation TemplateLoc,
2148                                        SourceLocation LAngleLoc,
2149                                        ASTTemplateArgsPtr TemplateArgsIn,
2150                                        SourceLocation RAngleLoc) {
2151  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2152
2153  // Translate the parser's template argument list in our AST format.
2154  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2155  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2156
2157  // Determine the tag kind
2158  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2159  ElaboratedTypeKeyword Keyword
2160    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2161
2162  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2163    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2164                                                          DTN->getQualifier(),
2165                                                          DTN->getIdentifier(),
2166                                                                TemplateArgs);
2167
2168    // Build type-source information.
2169    TypeLocBuilder TLB;
2170    DependentTemplateSpecializationTypeLoc SpecTL
2171      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2172    SpecTL.setElaboratedKeywordLoc(TagLoc);
2173    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2174    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2175    SpecTL.setTemplateNameLoc(TemplateLoc);
2176    SpecTL.setLAngleLoc(LAngleLoc);
2177    SpecTL.setRAngleLoc(RAngleLoc);
2178    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2179      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2180    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2181  }
2182
2183  if (TypeAliasTemplateDecl *TAT =
2184        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2185    // C++0x [dcl.type.elab]p2:
2186    //   If the identifier resolves to a typedef-name or the simple-template-id
2187    //   resolves to an alias template specialization, the
2188    //   elaborated-type-specifier is ill-formed.
2189    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2190    Diag(TAT->getLocation(), diag::note_declared_at);
2191  }
2192
2193  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2194  if (Result.isNull())
2195    return TypeResult(true);
2196
2197  // Check the tag kind
2198  if (const RecordType *RT = Result->getAs<RecordType>()) {
2199    RecordDecl *D = RT->getDecl();
2200
2201    IdentifierInfo *Id = D->getIdentifier();
2202    assert(Id && "templated class must have an identifier");
2203
2204    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2205                                      TagLoc, *Id)) {
2206      Diag(TagLoc, diag::err_use_with_wrong_tag)
2207        << Result
2208        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2209      Diag(D->getLocation(), diag::note_previous_use);
2210    }
2211  }
2212
2213  // Provide source-location information for the template specialization.
2214  TypeLocBuilder TLB;
2215  TemplateSpecializationTypeLoc SpecTL
2216    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2217  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2218  SpecTL.setTemplateNameLoc(TemplateLoc);
2219  SpecTL.setLAngleLoc(LAngleLoc);
2220  SpecTL.setRAngleLoc(RAngleLoc);
2221  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2222    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2223
2224  // Construct an elaborated type containing the nested-name-specifier (if any)
2225  // and tag keyword.
2226  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2227  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2228  ElabTL.setElaboratedKeywordLoc(TagLoc);
2229  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2230  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2231}
2232
2233ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2234                                     SourceLocation TemplateKWLoc,
2235                                     LookupResult &R,
2236                                     bool RequiresADL,
2237                                 const TemplateArgumentListInfo *TemplateArgs) {
2238  // FIXME: Can we do any checking at this point? I guess we could check the
2239  // template arguments that we have against the template name, if the template
2240  // name refers to a single template. That's not a terribly common case,
2241  // though.
2242  // foo<int> could identify a single function unambiguously
2243  // This approach does NOT work, since f<int>(1);
2244  // gets resolved prior to resorting to overload resolution
2245  // i.e., template<class T> void f(double);
2246  //       vs template<class T, class U> void f(U);
2247
2248  // These should be filtered out by our callers.
2249  assert(!R.empty() && "empty lookup results when building templateid");
2250  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2251
2252  // We don't want lookup warnings at this point.
2253  R.suppressDiagnostics();
2254
2255  UnresolvedLookupExpr *ULE
2256    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2257                                   SS.getWithLocInContext(Context),
2258                                   TemplateKWLoc,
2259                                   R.getLookupNameInfo(),
2260                                   RequiresADL, TemplateArgs,
2261                                   R.begin(), R.end());
2262
2263  return Owned(ULE);
2264}
2265
2266// We actually only call this from template instantiation.
2267ExprResult
2268Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2269                                   SourceLocation TemplateKWLoc,
2270                                   const DeclarationNameInfo &NameInfo,
2271                             const TemplateArgumentListInfo *TemplateArgs) {
2272  assert(TemplateArgs || TemplateKWLoc.isValid());
2273  DeclContext *DC;
2274  if (!(DC = computeDeclContext(SS, false)) ||
2275      DC->isDependentContext() ||
2276      RequireCompleteDeclContext(SS, DC))
2277    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2278
2279  bool MemberOfUnknownSpecialization;
2280  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2281  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2282                     MemberOfUnknownSpecialization);
2283
2284  if (R.isAmbiguous())
2285    return ExprError();
2286
2287  if (R.empty()) {
2288    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2289      << NameInfo.getName() << SS.getRange();
2290    return ExprError();
2291  }
2292
2293  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2294    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2295      << (NestedNameSpecifier*) SS.getScopeRep()
2296      << NameInfo.getName() << SS.getRange();
2297    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2298    return ExprError();
2299  }
2300
2301  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2302}
2303
2304/// \brief Form a dependent template name.
2305///
2306/// This action forms a dependent template name given the template
2307/// name and its (presumably dependent) scope specifier. For
2308/// example, given "MetaFun::template apply", the scope specifier \p
2309/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2310/// of the "template" keyword, and "apply" is the \p Name.
2311TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2312                                                  CXXScopeSpec &SS,
2313                                                  SourceLocation TemplateKWLoc,
2314                                                  UnqualifiedId &Name,
2315                                                  ParsedType ObjectType,
2316                                                  bool EnteringContext,
2317                                                  TemplateTy &Result) {
2318  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2319    Diag(TemplateKWLoc,
2320         getLangOpts().CPlusPlus0x ?
2321           diag::warn_cxx98_compat_template_outside_of_template :
2322           diag::ext_template_outside_of_template)
2323      << FixItHint::CreateRemoval(TemplateKWLoc);
2324
2325  DeclContext *LookupCtx = 0;
2326  if (SS.isSet())
2327    LookupCtx = computeDeclContext(SS, EnteringContext);
2328  if (!LookupCtx && ObjectType)
2329    LookupCtx = computeDeclContext(ObjectType.get());
2330  if (LookupCtx) {
2331    // C++0x [temp.names]p5:
2332    //   If a name prefixed by the keyword template is not the name of
2333    //   a template, the program is ill-formed. [Note: the keyword
2334    //   template may not be applied to non-template members of class
2335    //   templates. -end note ] [ Note: as is the case with the
2336    //   typename prefix, the template prefix is allowed in cases
2337    //   where it is not strictly necessary; i.e., when the
2338    //   nested-name-specifier or the expression on the left of the ->
2339    //   or . is not dependent on a template-parameter, or the use
2340    //   does not appear in the scope of a template. -end note]
2341    //
2342    // Note: C++03 was more strict here, because it banned the use of
2343    // the "template" keyword prior to a template-name that was not a
2344    // dependent name. C++ DR468 relaxed this requirement (the
2345    // "template" keyword is now permitted). We follow the C++0x
2346    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2347    bool MemberOfUnknownSpecialization;
2348    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2349                                          ObjectType, EnteringContext, Result,
2350                                          MemberOfUnknownSpecialization);
2351    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2352        isa<CXXRecordDecl>(LookupCtx) &&
2353        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2354         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2355      // This is a dependent template. Handle it below.
2356    } else if (TNK == TNK_Non_template) {
2357      Diag(Name.getLocStart(),
2358           diag::err_template_kw_refers_to_non_template)
2359        << GetNameFromUnqualifiedId(Name).getName()
2360        << Name.getSourceRange()
2361        << TemplateKWLoc;
2362      return TNK_Non_template;
2363    } else {
2364      // We found something; return it.
2365      return TNK;
2366    }
2367  }
2368
2369  NestedNameSpecifier *Qualifier
2370    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2371
2372  switch (Name.getKind()) {
2373  case UnqualifiedId::IK_Identifier:
2374    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2375                                                              Name.Identifier));
2376    return TNK_Dependent_template_name;
2377
2378  case UnqualifiedId::IK_OperatorFunctionId:
2379    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2380                                             Name.OperatorFunctionId.Operator));
2381    return TNK_Dependent_template_name;
2382
2383  case UnqualifiedId::IK_LiteralOperatorId:
2384    llvm_unreachable(
2385            "We don't support these; Parse shouldn't have allowed propagation");
2386
2387  default:
2388    break;
2389  }
2390
2391  Diag(Name.getLocStart(),
2392       diag::err_template_kw_refers_to_non_template)
2393    << GetNameFromUnqualifiedId(Name).getName()
2394    << Name.getSourceRange()
2395    << TemplateKWLoc;
2396  return TNK_Non_template;
2397}
2398
2399bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2400                                     const TemplateArgumentLoc &AL,
2401                          SmallVectorImpl<TemplateArgument> &Converted) {
2402  const TemplateArgument &Arg = AL.getArgument();
2403
2404  // Check template type parameter.
2405  switch(Arg.getKind()) {
2406  case TemplateArgument::Type:
2407    // C++ [temp.arg.type]p1:
2408    //   A template-argument for a template-parameter which is a
2409    //   type shall be a type-id.
2410    break;
2411  case TemplateArgument::Template: {
2412    // We have a template type parameter but the template argument
2413    // is a template without any arguments.
2414    SourceRange SR = AL.getSourceRange();
2415    TemplateName Name = Arg.getAsTemplate();
2416    Diag(SR.getBegin(), diag::err_template_missing_args)
2417      << Name << SR;
2418    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2419      Diag(Decl->getLocation(), diag::note_template_decl_here);
2420
2421    return true;
2422  }
2423  default: {
2424    // We have a template type parameter but the template argument
2425    // is not a type.
2426    SourceRange SR = AL.getSourceRange();
2427    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2428    Diag(Param->getLocation(), diag::note_template_param_here);
2429
2430    return true;
2431  }
2432  }
2433
2434  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2435    return true;
2436
2437  // Add the converted template type argument.
2438  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2439
2440  // Objective-C ARC:
2441  //   If an explicitly-specified template argument type is a lifetime type
2442  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2443  if (getLangOpts().ObjCAutoRefCount &&
2444      ArgType->isObjCLifetimeType() &&
2445      !ArgType.getObjCLifetime()) {
2446    Qualifiers Qs;
2447    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2448    ArgType = Context.getQualifiedType(ArgType, Qs);
2449  }
2450
2451  Converted.push_back(TemplateArgument(ArgType));
2452  return false;
2453}
2454
2455/// \brief Substitute template arguments into the default template argument for
2456/// the given template type parameter.
2457///
2458/// \param SemaRef the semantic analysis object for which we are performing
2459/// the substitution.
2460///
2461/// \param Template the template that we are synthesizing template arguments
2462/// for.
2463///
2464/// \param TemplateLoc the location of the template name that started the
2465/// template-id we are checking.
2466///
2467/// \param RAngleLoc the location of the right angle bracket ('>') that
2468/// terminates the template-id.
2469///
2470/// \param Param the template template parameter whose default we are
2471/// substituting into.
2472///
2473/// \param Converted the list of template arguments provided for template
2474/// parameters that precede \p Param in the template parameter list.
2475/// \returns the substituted template argument, or NULL if an error occurred.
2476static TypeSourceInfo *
2477SubstDefaultTemplateArgument(Sema &SemaRef,
2478                             TemplateDecl *Template,
2479                             SourceLocation TemplateLoc,
2480                             SourceLocation RAngleLoc,
2481                             TemplateTypeParmDecl *Param,
2482                         SmallVectorImpl<TemplateArgument> &Converted) {
2483  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2484
2485  // If the argument type is dependent, instantiate it now based
2486  // on the previously-computed template arguments.
2487  if (ArgType->getType()->isDependentType()) {
2488    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2489                                      Converted.data(), Converted.size());
2490
2491    MultiLevelTemplateArgumentList AllTemplateArgs
2492      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2493
2494    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2495                                     Template, Converted.data(),
2496                                     Converted.size(),
2497                                     SourceRange(TemplateLoc, RAngleLoc));
2498
2499    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2500                                Param->getDefaultArgumentLoc(),
2501                                Param->getDeclName());
2502  }
2503
2504  return ArgType;
2505}
2506
2507/// \brief Substitute template arguments into the default template argument for
2508/// the given non-type template parameter.
2509///
2510/// \param SemaRef the semantic analysis object for which we are performing
2511/// the substitution.
2512///
2513/// \param Template the template that we are synthesizing template arguments
2514/// for.
2515///
2516/// \param TemplateLoc the location of the template name that started the
2517/// template-id we are checking.
2518///
2519/// \param RAngleLoc the location of the right angle bracket ('>') that
2520/// terminates the template-id.
2521///
2522/// \param Param the non-type template parameter whose default we are
2523/// substituting into.
2524///
2525/// \param Converted the list of template arguments provided for template
2526/// parameters that precede \p Param in the template parameter list.
2527///
2528/// \returns the substituted template argument, or NULL if an error occurred.
2529static ExprResult
2530SubstDefaultTemplateArgument(Sema &SemaRef,
2531                             TemplateDecl *Template,
2532                             SourceLocation TemplateLoc,
2533                             SourceLocation RAngleLoc,
2534                             NonTypeTemplateParmDecl *Param,
2535                        SmallVectorImpl<TemplateArgument> &Converted) {
2536  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2537                                    Converted.data(), Converted.size());
2538
2539  MultiLevelTemplateArgumentList AllTemplateArgs
2540    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2541
2542  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2543                                   Template, Converted.data(),
2544                                   Converted.size(),
2545                                   SourceRange(TemplateLoc, RAngleLoc));
2546
2547  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2548}
2549
2550/// \brief Substitute template arguments into the default template argument for
2551/// the given template template parameter.
2552///
2553/// \param SemaRef the semantic analysis object for which we are performing
2554/// the substitution.
2555///
2556/// \param Template the template that we are synthesizing template arguments
2557/// for.
2558///
2559/// \param TemplateLoc the location of the template name that started the
2560/// template-id we are checking.
2561///
2562/// \param RAngleLoc the location of the right angle bracket ('>') that
2563/// terminates the template-id.
2564///
2565/// \param Param the template template parameter whose default we are
2566/// substituting into.
2567///
2568/// \param Converted the list of template arguments provided for template
2569/// parameters that precede \p Param in the template parameter list.
2570///
2571/// \param QualifierLoc Will be set to the nested-name-specifier (with
2572/// source-location information) that precedes the template name.
2573///
2574/// \returns the substituted template argument, or NULL if an error occurred.
2575static TemplateName
2576SubstDefaultTemplateArgument(Sema &SemaRef,
2577                             TemplateDecl *Template,
2578                             SourceLocation TemplateLoc,
2579                             SourceLocation RAngleLoc,
2580                             TemplateTemplateParmDecl *Param,
2581                       SmallVectorImpl<TemplateArgument> &Converted,
2582                             NestedNameSpecifierLoc &QualifierLoc) {
2583  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2584                                    Converted.data(), Converted.size());
2585
2586  MultiLevelTemplateArgumentList AllTemplateArgs
2587    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2588
2589  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2590                                   Template, Converted.data(),
2591                                   Converted.size(),
2592                                   SourceRange(TemplateLoc, RAngleLoc));
2593
2594  // Substitute into the nested-name-specifier first,
2595  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2596  if (QualifierLoc) {
2597    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2598                                                       AllTemplateArgs);
2599    if (!QualifierLoc)
2600      return TemplateName();
2601  }
2602
2603  return SemaRef.SubstTemplateName(QualifierLoc,
2604                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2605                              Param->getDefaultArgument().getTemplateNameLoc(),
2606                                   AllTemplateArgs);
2607}
2608
2609/// \brief If the given template parameter has a default template
2610/// argument, substitute into that default template argument and
2611/// return the corresponding template argument.
2612TemplateArgumentLoc
2613Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2614                                              SourceLocation TemplateLoc,
2615                                              SourceLocation RAngleLoc,
2616                                              Decl *Param,
2617                      SmallVectorImpl<TemplateArgument> &Converted) {
2618   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2619    if (!TypeParm->hasDefaultArgument())
2620      return TemplateArgumentLoc();
2621
2622    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2623                                                      TemplateLoc,
2624                                                      RAngleLoc,
2625                                                      TypeParm,
2626                                                      Converted);
2627    if (DI)
2628      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2629
2630    return TemplateArgumentLoc();
2631  }
2632
2633  if (NonTypeTemplateParmDecl *NonTypeParm
2634        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2635    if (!NonTypeParm->hasDefaultArgument())
2636      return TemplateArgumentLoc();
2637
2638    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2639                                                  TemplateLoc,
2640                                                  RAngleLoc,
2641                                                  NonTypeParm,
2642                                                  Converted);
2643    if (Arg.isInvalid())
2644      return TemplateArgumentLoc();
2645
2646    Expr *ArgE = Arg.takeAs<Expr>();
2647    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2648  }
2649
2650  TemplateTemplateParmDecl *TempTempParm
2651    = cast<TemplateTemplateParmDecl>(Param);
2652  if (!TempTempParm->hasDefaultArgument())
2653    return TemplateArgumentLoc();
2654
2655
2656  NestedNameSpecifierLoc QualifierLoc;
2657  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2658                                                    TemplateLoc,
2659                                                    RAngleLoc,
2660                                                    TempTempParm,
2661                                                    Converted,
2662                                                    QualifierLoc);
2663  if (TName.isNull())
2664    return TemplateArgumentLoc();
2665
2666  return TemplateArgumentLoc(TemplateArgument(TName),
2667                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2668                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2669}
2670
2671/// \brief Check that the given template argument corresponds to the given
2672/// template parameter.
2673///
2674/// \param Param The template parameter against which the argument will be
2675/// checked.
2676///
2677/// \param Arg The template argument.
2678///
2679/// \param Template The template in which the template argument resides.
2680///
2681/// \param TemplateLoc The location of the template name for the template
2682/// whose argument list we're matching.
2683///
2684/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2685/// the template argument list.
2686///
2687/// \param ArgumentPackIndex The index into the argument pack where this
2688/// argument will be placed. Only valid if the parameter is a parameter pack.
2689///
2690/// \param Converted The checked, converted argument will be added to the
2691/// end of this small vector.
2692///
2693/// \param CTAK Describes how we arrived at this particular template argument:
2694/// explicitly written, deduced, etc.
2695///
2696/// \returns true on error, false otherwise.
2697bool Sema::CheckTemplateArgument(NamedDecl *Param,
2698                                 const TemplateArgumentLoc &Arg,
2699                                 NamedDecl *Template,
2700                                 SourceLocation TemplateLoc,
2701                                 SourceLocation RAngleLoc,
2702                                 unsigned ArgumentPackIndex,
2703                            SmallVectorImpl<TemplateArgument> &Converted,
2704                                 CheckTemplateArgumentKind CTAK) {
2705  // Check template type parameters.
2706  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2707    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2708
2709  // Check non-type template parameters.
2710  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2711    // Do substitution on the type of the non-type template parameter
2712    // with the template arguments we've seen thus far.  But if the
2713    // template has a dependent context then we cannot substitute yet.
2714    QualType NTTPType = NTTP->getType();
2715    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2716      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2717
2718    if (NTTPType->isDependentType() &&
2719        !isa<TemplateTemplateParmDecl>(Template) &&
2720        !Template->getDeclContext()->isDependentContext()) {
2721      // Do substitution on the type of the non-type template parameter.
2722      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2723                                 NTTP, Converted.data(), Converted.size(),
2724                                 SourceRange(TemplateLoc, RAngleLoc));
2725
2726      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2727                                        Converted.data(), Converted.size());
2728      NTTPType = SubstType(NTTPType,
2729                           MultiLevelTemplateArgumentList(TemplateArgs),
2730                           NTTP->getLocation(),
2731                           NTTP->getDeclName());
2732      // If that worked, check the non-type template parameter type
2733      // for validity.
2734      if (!NTTPType.isNull())
2735        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2736                                                     NTTP->getLocation());
2737      if (NTTPType.isNull())
2738        return true;
2739    }
2740
2741    switch (Arg.getArgument().getKind()) {
2742    case TemplateArgument::Null:
2743      llvm_unreachable("Should never see a NULL template argument here");
2744
2745    case TemplateArgument::Expression: {
2746      TemplateArgument Result;
2747      ExprResult Res =
2748        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2749                              Result, CTAK);
2750      if (Res.isInvalid())
2751        return true;
2752
2753      Converted.push_back(Result);
2754      break;
2755    }
2756
2757    case TemplateArgument::Declaration:
2758    case TemplateArgument::Integral:
2759      // We've already checked this template argument, so just copy
2760      // it to the list of converted arguments.
2761      Converted.push_back(Arg.getArgument());
2762      break;
2763
2764    case TemplateArgument::Template:
2765    case TemplateArgument::TemplateExpansion:
2766      // We were given a template template argument. It may not be ill-formed;
2767      // see below.
2768      if (DependentTemplateName *DTN
2769            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2770                                              .getAsDependentTemplateName()) {
2771        // We have a template argument such as \c T::template X, which we
2772        // parsed as a template template argument. However, since we now
2773        // know that we need a non-type template argument, convert this
2774        // template name into an expression.
2775
2776        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2777                                     Arg.getTemplateNameLoc());
2778
2779        CXXScopeSpec SS;
2780        SS.Adopt(Arg.getTemplateQualifierLoc());
2781        // FIXME: the template-template arg was a DependentTemplateName,
2782        // so it was provided with a template keyword. However, its source
2783        // location is not stored in the template argument structure.
2784        SourceLocation TemplateKWLoc;
2785        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2786                                                SS.getWithLocInContext(Context),
2787                                                               TemplateKWLoc,
2788                                                               NameInfo, 0));
2789
2790        // If we parsed the template argument as a pack expansion, create a
2791        // pack expansion expression.
2792        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2793          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2794          if (E.isInvalid())
2795            return true;
2796        }
2797
2798        TemplateArgument Result;
2799        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2800        if (E.isInvalid())
2801          return true;
2802
2803        Converted.push_back(Result);
2804        break;
2805      }
2806
2807      // We have a template argument that actually does refer to a class
2808      // template, alias template, or template template parameter, and
2809      // therefore cannot be a non-type template argument.
2810      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2811        << Arg.getSourceRange();
2812
2813      Diag(Param->getLocation(), diag::note_template_param_here);
2814      return true;
2815
2816    case TemplateArgument::Type: {
2817      // We have a non-type template parameter but the template
2818      // argument is a type.
2819
2820      // C++ [temp.arg]p2:
2821      //   In a template-argument, an ambiguity between a type-id and
2822      //   an expression is resolved to a type-id, regardless of the
2823      //   form of the corresponding template-parameter.
2824      //
2825      // We warn specifically about this case, since it can be rather
2826      // confusing for users.
2827      QualType T = Arg.getArgument().getAsType();
2828      SourceRange SR = Arg.getSourceRange();
2829      if (T->isFunctionType())
2830        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2831      else
2832        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2833      Diag(Param->getLocation(), diag::note_template_param_here);
2834      return true;
2835    }
2836
2837    case TemplateArgument::Pack:
2838      llvm_unreachable("Caller must expand template argument packs");
2839    }
2840
2841    return false;
2842  }
2843
2844
2845  // Check template template parameters.
2846  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2847
2848  // Substitute into the template parameter list of the template
2849  // template parameter, since previously-supplied template arguments
2850  // may appear within the template template parameter.
2851  {
2852    // Set up a template instantiation context.
2853    LocalInstantiationScope Scope(*this);
2854    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2855                               TempParm, Converted.data(), Converted.size(),
2856                               SourceRange(TemplateLoc, RAngleLoc));
2857
2858    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2859                                      Converted.data(), Converted.size());
2860    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2861                      SubstDecl(TempParm, CurContext,
2862                                MultiLevelTemplateArgumentList(TemplateArgs)));
2863    if (!TempParm)
2864      return true;
2865  }
2866
2867  switch (Arg.getArgument().getKind()) {
2868  case TemplateArgument::Null:
2869    llvm_unreachable("Should never see a NULL template argument here");
2870
2871  case TemplateArgument::Template:
2872  case TemplateArgument::TemplateExpansion:
2873    if (CheckTemplateArgument(TempParm, Arg))
2874      return true;
2875
2876    Converted.push_back(Arg.getArgument());
2877    break;
2878
2879  case TemplateArgument::Expression:
2880  case TemplateArgument::Type:
2881    // We have a template template parameter but the template
2882    // argument does not refer to a template.
2883    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2884      << getLangOpts().CPlusPlus0x;
2885    return true;
2886
2887  case TemplateArgument::Declaration:
2888    llvm_unreachable("Declaration argument with template template parameter");
2889  case TemplateArgument::Integral:
2890    llvm_unreachable("Integral argument with template template parameter");
2891
2892  case TemplateArgument::Pack:
2893    llvm_unreachable("Caller must expand template argument packs");
2894  }
2895
2896  return false;
2897}
2898
2899/// \brief Diagnose an arity mismatch in the
2900static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2901                                  SourceLocation TemplateLoc,
2902                                  TemplateArgumentListInfo &TemplateArgs) {
2903  TemplateParameterList *Params = Template->getTemplateParameters();
2904  unsigned NumParams = Params->size();
2905  unsigned NumArgs = TemplateArgs.size();
2906
2907  SourceRange Range;
2908  if (NumArgs > NumParams)
2909    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
2910                        TemplateArgs.getRAngleLoc());
2911  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2912    << (NumArgs > NumParams)
2913    << (isa<ClassTemplateDecl>(Template)? 0 :
2914        isa<FunctionTemplateDecl>(Template)? 1 :
2915        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2916    << Template << Range;
2917  S.Diag(Template->getLocation(), diag::note_template_decl_here)
2918    << Params->getSourceRange();
2919  return true;
2920}
2921
2922/// \brief Check that the given template argument list is well-formed
2923/// for specializing the given template.
2924bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2925                                     SourceLocation TemplateLoc,
2926                                     TemplateArgumentListInfo &TemplateArgs,
2927                                     bool PartialTemplateArgs,
2928                          SmallVectorImpl<TemplateArgument> &Converted,
2929                                     bool *ExpansionIntoFixedList) {
2930  if (ExpansionIntoFixedList)
2931    *ExpansionIntoFixedList = false;
2932
2933  TemplateParameterList *Params = Template->getTemplateParameters();
2934  unsigned NumParams = Params->size();
2935  unsigned NumArgs = TemplateArgs.size();
2936  bool Invalid = false;
2937
2938  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2939
2940  bool HasParameterPack =
2941    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2942
2943  // C++ [temp.arg]p1:
2944  //   [...] The type and form of each template-argument specified in
2945  //   a template-id shall match the type and form specified for the
2946  //   corresponding parameter declared by the template in its
2947  //   template-parameter-list.
2948  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2949  SmallVector<TemplateArgument, 2> ArgumentPack;
2950  TemplateParameterList::iterator Param = Params->begin(),
2951                               ParamEnd = Params->end();
2952  unsigned ArgIdx = 0;
2953  LocalInstantiationScope InstScope(*this, true);
2954  bool SawPackExpansion = false;
2955  while (Param != ParamEnd) {
2956    if (ArgIdx < NumArgs) {
2957      // If we have an expanded parameter pack, make sure we don't have too
2958      // many arguments.
2959      // FIXME: This really should fall out from the normal arity checking.
2960      if (NonTypeTemplateParmDecl *NTTP
2961                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2962        if (NTTP->isExpandedParameterPack() &&
2963            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2964          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2965            << true
2966            << (isa<ClassTemplateDecl>(Template)? 0 :
2967                isa<FunctionTemplateDecl>(Template)? 1 :
2968                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2969            << Template;
2970          Diag(Template->getLocation(), diag::note_template_decl_here)
2971            << Params->getSourceRange();
2972          return true;
2973        }
2974      }
2975
2976      // Check the template argument we were given.
2977      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2978                                TemplateLoc, RAngleLoc,
2979                                ArgumentPack.size(), Converted))
2980        return true;
2981
2982      if ((*Param)->isTemplateParameterPack()) {
2983        // The template parameter was a template parameter pack, so take the
2984        // deduced argument and place it on the argument pack. Note that we
2985        // stay on the same template parameter so that we can deduce more
2986        // arguments.
2987        ArgumentPack.push_back(Converted.back());
2988        Converted.pop_back();
2989      } else {
2990        // Move to the next template parameter.
2991        ++Param;
2992      }
2993
2994      // If this template argument is a pack expansion, record that fact
2995      // and break out; we can't actually check any more.
2996      if (TemplateArgs[ArgIdx].getArgument().isPackExpansion()) {
2997        SawPackExpansion = true;
2998        ++ArgIdx;
2999        break;
3000      }
3001
3002      ++ArgIdx;
3003      continue;
3004    }
3005
3006    // If we're checking a partial template argument list, we're done.
3007    if (PartialTemplateArgs) {
3008      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3009        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3010                                                         ArgumentPack.data(),
3011                                                         ArgumentPack.size()));
3012
3013      return Invalid;
3014    }
3015
3016    // If we have a template parameter pack with no more corresponding
3017    // arguments, just break out now and we'll fill in the argument pack below.
3018    if ((*Param)->isTemplateParameterPack())
3019      break;
3020
3021    // Check whether we have a default argument.
3022    TemplateArgumentLoc Arg;
3023
3024    // Retrieve the default template argument from the template
3025    // parameter. For each kind of template parameter, we substitute the
3026    // template arguments provided thus far and any "outer" template arguments
3027    // (when the template parameter was part of a nested template) into
3028    // the default argument.
3029    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3030      if (!TTP->hasDefaultArgument())
3031        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3032                                     TemplateArgs);
3033
3034      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3035                                                             Template,
3036                                                             TemplateLoc,
3037                                                             RAngleLoc,
3038                                                             TTP,
3039                                                             Converted);
3040      if (!ArgType)
3041        return true;
3042
3043      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3044                                ArgType);
3045    } else if (NonTypeTemplateParmDecl *NTTP
3046                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3047      if (!NTTP->hasDefaultArgument())
3048        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3049                                     TemplateArgs);
3050
3051      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3052                                                              TemplateLoc,
3053                                                              RAngleLoc,
3054                                                              NTTP,
3055                                                              Converted);
3056      if (E.isInvalid())
3057        return true;
3058
3059      Expr *Ex = E.takeAs<Expr>();
3060      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3061    } else {
3062      TemplateTemplateParmDecl *TempParm
3063        = cast<TemplateTemplateParmDecl>(*Param);
3064
3065      if (!TempParm->hasDefaultArgument())
3066        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3067                                     TemplateArgs);
3068
3069      NestedNameSpecifierLoc QualifierLoc;
3070      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3071                                                       TemplateLoc,
3072                                                       RAngleLoc,
3073                                                       TempParm,
3074                                                       Converted,
3075                                                       QualifierLoc);
3076      if (Name.isNull())
3077        return true;
3078
3079      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3080                           TempParm->getDefaultArgument().getTemplateNameLoc());
3081    }
3082
3083    // Introduce an instantiation record that describes where we are using
3084    // the default template argument.
3085    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3086                                        Converted.data(), Converted.size(),
3087                                        SourceRange(TemplateLoc, RAngleLoc));
3088
3089    // Check the default template argument.
3090    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3091                              RAngleLoc, 0, Converted))
3092      return true;
3093
3094    // Core issue 150 (assumed resolution): if this is a template template
3095    // parameter, keep track of the default template arguments from the
3096    // template definition.
3097    if (isTemplateTemplateParameter)
3098      TemplateArgs.addArgument(Arg);
3099
3100    // Move to the next template parameter and argument.
3101    ++Param;
3102    ++ArgIdx;
3103  }
3104
3105  // If we saw a pack expansion, then directly convert the remaining arguments,
3106  // because we don't know what parameters they'll match up with.
3107  if (SawPackExpansion) {
3108    bool AddToArgumentPack
3109      = Param != ParamEnd && (*Param)->isTemplateParameterPack();
3110    while (ArgIdx < NumArgs) {
3111      if (AddToArgumentPack)
3112        ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3113      else
3114        Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3115      ++ArgIdx;
3116    }
3117
3118    // Push the argument pack onto the list of converted arguments.
3119    if (AddToArgumentPack) {
3120      if (ArgumentPack.empty())
3121        Converted.push_back(TemplateArgument(0, 0));
3122      else {
3123        Converted.push_back(
3124          TemplateArgument::CreatePackCopy(Context,
3125                                           ArgumentPack.data(),
3126                                           ArgumentPack.size()));
3127        ArgumentPack.clear();
3128      }
3129    } else if (ExpansionIntoFixedList) {
3130      // We have expanded a pack into a fixed list.
3131      *ExpansionIntoFixedList = true;
3132    }
3133
3134    return Invalid;
3135  }
3136
3137  // If we have any leftover arguments, then there were too many arguments.
3138  // Complain and fail.
3139  if (ArgIdx < NumArgs)
3140    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3141
3142  // If we have an expanded parameter pack, make sure we don't have too
3143  // many arguments.
3144  // FIXME: This really should fall out from the normal arity checking.
3145  if (Param != ParamEnd) {
3146    if (NonTypeTemplateParmDecl *NTTP
3147          = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3148      if (NTTP->isExpandedParameterPack() &&
3149          ArgumentPack.size() < NTTP->getNumExpansionTypes()) {
3150        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3151          << false
3152          << (isa<ClassTemplateDecl>(Template)? 0 :
3153              isa<FunctionTemplateDecl>(Template)? 1 :
3154              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3155          << Template;
3156        Diag(Template->getLocation(), diag::note_template_decl_here)
3157          << Params->getSourceRange();
3158        return true;
3159      }
3160    }
3161  }
3162
3163  // Form argument packs for each of the parameter packs remaining.
3164  while (Param != ParamEnd) {
3165    // If we're checking a partial list of template arguments, don't fill
3166    // in arguments for non-template parameter packs.
3167    if ((*Param)->isTemplateParameterPack()) {
3168      if (!HasParameterPack)
3169        return true;
3170      if (ArgumentPack.empty())
3171        Converted.push_back(TemplateArgument(0, 0));
3172      else {
3173        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3174                                                          ArgumentPack.data(),
3175                                                         ArgumentPack.size()));
3176        ArgumentPack.clear();
3177      }
3178    } else if (!PartialTemplateArgs)
3179      return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3180
3181    ++Param;
3182  }
3183
3184  return Invalid;
3185}
3186
3187namespace {
3188  class UnnamedLocalNoLinkageFinder
3189    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3190  {
3191    Sema &S;
3192    SourceRange SR;
3193
3194    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3195
3196  public:
3197    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3198
3199    bool Visit(QualType T) {
3200      return inherited::Visit(T.getTypePtr());
3201    }
3202
3203#define TYPE(Class, Parent) \
3204    bool Visit##Class##Type(const Class##Type *);
3205#define ABSTRACT_TYPE(Class, Parent) \
3206    bool Visit##Class##Type(const Class##Type *) { return false; }
3207#define NON_CANONICAL_TYPE(Class, Parent) \
3208    bool Visit##Class##Type(const Class##Type *) { return false; }
3209#include "clang/AST/TypeNodes.def"
3210
3211    bool VisitTagDecl(const TagDecl *Tag);
3212    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3213  };
3214}
3215
3216bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3217  return false;
3218}
3219
3220bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3221  return Visit(T->getElementType());
3222}
3223
3224bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3225  return Visit(T->getPointeeType());
3226}
3227
3228bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3229                                                    const BlockPointerType* T) {
3230  return Visit(T->getPointeeType());
3231}
3232
3233bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3234                                                const LValueReferenceType* T) {
3235  return Visit(T->getPointeeType());
3236}
3237
3238bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3239                                                const RValueReferenceType* T) {
3240  return Visit(T->getPointeeType());
3241}
3242
3243bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3244                                                  const MemberPointerType* T) {
3245  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3246}
3247
3248bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3249                                                  const ConstantArrayType* T) {
3250  return Visit(T->getElementType());
3251}
3252
3253bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3254                                                 const IncompleteArrayType* T) {
3255  return Visit(T->getElementType());
3256}
3257
3258bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3259                                                   const VariableArrayType* T) {
3260  return Visit(T->getElementType());
3261}
3262
3263bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3264                                            const DependentSizedArrayType* T) {
3265  return Visit(T->getElementType());
3266}
3267
3268bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3269                                         const DependentSizedExtVectorType* T) {
3270  return Visit(T->getElementType());
3271}
3272
3273bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3274  return Visit(T->getElementType());
3275}
3276
3277bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3278  return Visit(T->getElementType());
3279}
3280
3281bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3282                                                  const FunctionProtoType* T) {
3283  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3284                                         AEnd = T->arg_type_end();
3285       A != AEnd; ++A) {
3286    if (Visit(*A))
3287      return true;
3288  }
3289
3290  return Visit(T->getResultType());
3291}
3292
3293bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3294                                               const FunctionNoProtoType* T) {
3295  return Visit(T->getResultType());
3296}
3297
3298bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3299                                                  const UnresolvedUsingType*) {
3300  return false;
3301}
3302
3303bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3304  return false;
3305}
3306
3307bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3308  return Visit(T->getUnderlyingType());
3309}
3310
3311bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3312  return false;
3313}
3314
3315bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3316                                                    const UnaryTransformType*) {
3317  return false;
3318}
3319
3320bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3321  return Visit(T->getDeducedType());
3322}
3323
3324bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3325  return VisitTagDecl(T->getDecl());
3326}
3327
3328bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3329  return VisitTagDecl(T->getDecl());
3330}
3331
3332bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3333                                                 const TemplateTypeParmType*) {
3334  return false;
3335}
3336
3337bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3338                                        const SubstTemplateTypeParmPackType *) {
3339  return false;
3340}
3341
3342bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3343                                            const TemplateSpecializationType*) {
3344  return false;
3345}
3346
3347bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3348                                              const InjectedClassNameType* T) {
3349  return VisitTagDecl(T->getDecl());
3350}
3351
3352bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3353                                                   const DependentNameType* T) {
3354  return VisitNestedNameSpecifier(T->getQualifier());
3355}
3356
3357bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3358                                 const DependentTemplateSpecializationType* T) {
3359  return VisitNestedNameSpecifier(T->getQualifier());
3360}
3361
3362bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3363                                                   const PackExpansionType* T) {
3364  return Visit(T->getPattern());
3365}
3366
3367bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3368  return false;
3369}
3370
3371bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3372                                                   const ObjCInterfaceType *) {
3373  return false;
3374}
3375
3376bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3377                                                const ObjCObjectPointerType *) {
3378  return false;
3379}
3380
3381bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3382  return Visit(T->getValueType());
3383}
3384
3385bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3386  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3387    S.Diag(SR.getBegin(),
3388           S.getLangOpts().CPlusPlus0x ?
3389             diag::warn_cxx98_compat_template_arg_local_type :
3390             diag::ext_template_arg_local_type)
3391      << S.Context.getTypeDeclType(Tag) << SR;
3392    return true;
3393  }
3394
3395  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3396    S.Diag(SR.getBegin(),
3397           S.getLangOpts().CPlusPlus0x ?
3398             diag::warn_cxx98_compat_template_arg_unnamed_type :
3399             diag::ext_template_arg_unnamed_type) << SR;
3400    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3401    return true;
3402  }
3403
3404  return false;
3405}
3406
3407bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3408                                                    NestedNameSpecifier *NNS) {
3409  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3410    return true;
3411
3412  switch (NNS->getKind()) {
3413  case NestedNameSpecifier::Identifier:
3414  case NestedNameSpecifier::Namespace:
3415  case NestedNameSpecifier::NamespaceAlias:
3416  case NestedNameSpecifier::Global:
3417    return false;
3418
3419  case NestedNameSpecifier::TypeSpec:
3420  case NestedNameSpecifier::TypeSpecWithTemplate:
3421    return Visit(QualType(NNS->getAsType(), 0));
3422  }
3423  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3424}
3425
3426
3427/// \brief Check a template argument against its corresponding
3428/// template type parameter.
3429///
3430/// This routine implements the semantics of C++ [temp.arg.type]. It
3431/// returns true if an error occurred, and false otherwise.
3432bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3433                                 TypeSourceInfo *ArgInfo) {
3434  assert(ArgInfo && "invalid TypeSourceInfo");
3435  QualType Arg = ArgInfo->getType();
3436  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3437
3438  if (Arg->isVariablyModifiedType()) {
3439    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3440  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3441    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3442  }
3443
3444  // C++03 [temp.arg.type]p2:
3445  //   A local type, a type with no linkage, an unnamed type or a type
3446  //   compounded from any of these types shall not be used as a
3447  //   template-argument for a template type-parameter.
3448  //
3449  // C++11 allows these, and even in C++03 we allow them as an extension with
3450  // a warning.
3451  if (LangOpts.CPlusPlus0x ?
3452     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3453                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3454      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3455                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3456      Arg->hasUnnamedOrLocalType()) {
3457    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3458    (void)Finder.Visit(Context.getCanonicalType(Arg));
3459  }
3460
3461  return false;
3462}
3463
3464enum NullPointerValueKind {
3465  NPV_NotNullPointer,
3466  NPV_NullPointer,
3467  NPV_Error
3468};
3469
3470/// \brief Determine whether the given template argument is a null pointer
3471/// value of the appropriate type.
3472static NullPointerValueKind
3473isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
3474                                   QualType ParamType, Expr *Arg) {
3475  if (Arg->isValueDependent() || Arg->isTypeDependent())
3476    return NPV_NotNullPointer;
3477
3478  if (!S.getLangOpts().CPlusPlus0x)
3479    return NPV_NotNullPointer;
3480
3481  // Determine whether we have a constant expression.
3482  Expr::EvalResult EvalResult;
3483  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
3484      EvalResult.HasSideEffects)
3485    return NPV_NotNullPointer;
3486
3487  // C++11 [temp.arg.nontype]p1:
3488  //   - an address constant expression of type std::nullptr_t
3489  if (Arg->getType()->isNullPtrType())
3490    return NPV_NullPointer;
3491
3492  //   - a constant expression that evaluates to a null pointer value (4.10); or
3493  //   - a constant expression that evaluates to a null member pointer value
3494  //     (4.11); or
3495  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
3496      (EvalResult.Val.isMemberPointer() &&
3497       !EvalResult.Val.getMemberPointerDecl())) {
3498    // If our expression has an appropriate type, we've succeeded.
3499    bool ObjCLifetimeConversion;
3500    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
3501        S.IsQualificationConversion(Arg->getType(), ParamType, false,
3502                                     ObjCLifetimeConversion))
3503      return NPV_NullPointer;
3504
3505    // The types didn't match, but we know we got a null pointer; complain,
3506    // then recover as if the types were correct.
3507    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
3508      << Arg->getType() << ParamType << Arg->getSourceRange();
3509    S.Diag(Param->getLocation(), diag::note_template_param_here);
3510    return NPV_NullPointer;
3511  }
3512
3513  // If we don't have a null pointer value, but we do have a NULL pointer
3514  // constant, suggest a cast to the appropriate type.
3515  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
3516    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
3517    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
3518      << ParamType
3519      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
3520      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
3521                                    ")");
3522    S.Diag(Param->getLocation(), diag::note_template_param_here);
3523    return NPV_NullPointer;
3524  }
3525
3526  // FIXME: If we ever want to support general, address-constant expressions
3527  // as non-type template arguments, we should return the ExprResult here to
3528  // be interpreted by the caller.
3529  return NPV_NotNullPointer;
3530}
3531
3532/// \brief Checks whether the given template argument is the address
3533/// of an object or function according to C++ [temp.arg.nontype]p1.
3534static bool
3535CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3536                                               NonTypeTemplateParmDecl *Param,
3537                                               QualType ParamType,
3538                                               Expr *ArgIn,
3539                                               TemplateArgument &Converted) {
3540  bool Invalid = false;
3541  Expr *Arg = ArgIn;
3542  QualType ArgType = Arg->getType();
3543
3544  // If our parameter has pointer type, check for a null template value.
3545  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
3546    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3547    case NPV_NullPointer:
3548      Converted = TemplateArgument((Decl *)0);
3549      return false;
3550
3551    case NPV_Error:
3552      return true;
3553
3554    case NPV_NotNullPointer:
3555      break;
3556    }
3557  }
3558
3559  // See through any implicit casts we added to fix the type.
3560  Arg = Arg->IgnoreImpCasts();
3561
3562  // C++ [temp.arg.nontype]p1:
3563  //
3564  //   A template-argument for a non-type, non-template
3565  //   template-parameter shall be one of: [...]
3566  //
3567  //     -- the address of an object or function with external
3568  //        linkage, including function templates and function
3569  //        template-ids but excluding non-static class members,
3570  //        expressed as & id-expression where the & is optional if
3571  //        the name refers to a function or array, or if the
3572  //        corresponding template-parameter is a reference; or
3573
3574  // In C++98/03 mode, give an extension warning on any extra parentheses.
3575  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3576  bool ExtraParens = false;
3577  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3578    if (!Invalid && !ExtraParens) {
3579      S.Diag(Arg->getLocStart(),
3580             S.getLangOpts().CPlusPlus0x ?
3581               diag::warn_cxx98_compat_template_arg_extra_parens :
3582               diag::ext_template_arg_extra_parens)
3583        << Arg->getSourceRange();
3584      ExtraParens = true;
3585    }
3586
3587    Arg = Parens->getSubExpr();
3588  }
3589
3590  while (SubstNonTypeTemplateParmExpr *subst =
3591           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3592    Arg = subst->getReplacement()->IgnoreImpCasts();
3593
3594  bool AddressTaken = false;
3595  SourceLocation AddrOpLoc;
3596  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3597    if (UnOp->getOpcode() == UO_AddrOf) {
3598      Arg = UnOp->getSubExpr();
3599      AddressTaken = true;
3600      AddrOpLoc = UnOp->getOperatorLoc();
3601    }
3602  }
3603
3604  if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3605    Converted = TemplateArgument(ArgIn);
3606    return false;
3607  }
3608
3609  while (SubstNonTypeTemplateParmExpr *subst =
3610           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3611    Arg = subst->getReplacement()->IgnoreImpCasts();
3612
3613  // Stop checking the precise nature of the argument if it is value dependent,
3614  // it should be checked when instantiated.
3615  if (Arg->isValueDependent()) {
3616    Converted = TemplateArgument(ArgIn);
3617    return false;
3618  }
3619
3620  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3621  if (!DRE) {
3622    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3623    << Arg->getSourceRange();
3624    S.Diag(Param->getLocation(), diag::note_template_param_here);
3625    return true;
3626  }
3627
3628  if (!isa<ValueDecl>(DRE->getDecl())) {
3629    S.Diag(Arg->getLocStart(),
3630           diag::err_template_arg_not_object_or_func_form)
3631      << Arg->getSourceRange();
3632    S.Diag(Param->getLocation(), diag::note_template_param_here);
3633    return true;
3634  }
3635
3636  NamedDecl *Entity = DRE->getDecl();
3637
3638  // Cannot refer to non-static data members
3639  if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
3640    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3641      << Field << Arg->getSourceRange();
3642    S.Diag(Param->getLocation(), diag::note_template_param_here);
3643    return true;
3644  }
3645
3646  // Cannot refer to non-static member functions
3647  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
3648    if (!Method->isStatic()) {
3649      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3650        << Method << Arg->getSourceRange();
3651      S.Diag(Param->getLocation(), diag::note_template_param_here);
3652      return true;
3653    }
3654  }
3655
3656  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
3657  VarDecl *Var = dyn_cast<VarDecl>(Entity);
3658
3659  // A non-type template argument must refer to an object or function.
3660  if (!Func && !Var) {
3661    // We found something, but we don't know specifically what it is.
3662    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
3663      << Arg->getSourceRange();
3664    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3665    return true;
3666  }
3667
3668  // Address / reference template args must have external linkage in C++98.
3669  if (Entity->getLinkage() == InternalLinkage) {
3670    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus0x ?
3671             diag::warn_cxx98_compat_template_arg_object_internal :
3672             diag::ext_template_arg_object_internal)
3673      << !Func << Entity << Arg->getSourceRange();
3674    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3675      << !Func;
3676  } else if (Entity->getLinkage() == NoLinkage) {
3677    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
3678      << !Func << Entity << Arg->getSourceRange();
3679    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3680      << !Func;
3681    return true;
3682  }
3683
3684  if (Func) {
3685    // If the template parameter has pointer type, the function decays.
3686    if (ParamType->isPointerType() && !AddressTaken)
3687      ArgType = S.Context.getPointerType(Func->getType());
3688    else if (AddressTaken && ParamType->isReferenceType()) {
3689      // If we originally had an address-of operator, but the
3690      // parameter has reference type, complain and (if things look
3691      // like they will work) drop the address-of operator.
3692      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3693                                            ParamType.getNonReferenceType())) {
3694        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3695          << ParamType;
3696        S.Diag(Param->getLocation(), diag::note_template_param_here);
3697        return true;
3698      }
3699
3700      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3701        << ParamType
3702        << FixItHint::CreateRemoval(AddrOpLoc);
3703      S.Diag(Param->getLocation(), diag::note_template_param_here);
3704
3705      ArgType = Func->getType();
3706    }
3707  } else {
3708    // A value of reference type is not an object.
3709    if (Var->getType()->isReferenceType()) {
3710      S.Diag(Arg->getLocStart(),
3711             diag::err_template_arg_reference_var)
3712        << Var->getType() << Arg->getSourceRange();
3713      S.Diag(Param->getLocation(), diag::note_template_param_here);
3714      return true;
3715    }
3716
3717    // A template argument must have static storage duration.
3718    // FIXME: Ensure this works for thread_local as well as __thread.
3719    if (Var->isThreadSpecified()) {
3720      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
3721        << Arg->getSourceRange();
3722      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
3723      return true;
3724    }
3725
3726    // If the template parameter has pointer type, we must have taken
3727    // the address of this object.
3728    if (ParamType->isReferenceType()) {
3729      if (AddressTaken) {
3730        // If we originally had an address-of operator, but the
3731        // parameter has reference type, complain and (if things look
3732        // like they will work) drop the address-of operator.
3733        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3734                                            ParamType.getNonReferenceType())) {
3735          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3736            << ParamType;
3737          S.Diag(Param->getLocation(), diag::note_template_param_here);
3738          return true;
3739        }
3740
3741        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3742          << ParamType
3743          << FixItHint::CreateRemoval(AddrOpLoc);
3744        S.Diag(Param->getLocation(), diag::note_template_param_here);
3745
3746        ArgType = Var->getType();
3747      }
3748    } else if (!AddressTaken && ParamType->isPointerType()) {
3749      if (Var->getType()->isArrayType()) {
3750        // Array-to-pointer decay.
3751        ArgType = S.Context.getArrayDecayedType(Var->getType());
3752      } else {
3753        // If the template parameter has pointer type but the address of
3754        // this object was not taken, complain and (possibly) recover by
3755        // taking the address of the entity.
3756        ArgType = S.Context.getPointerType(Var->getType());
3757        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3758          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3759            << ParamType;
3760          S.Diag(Param->getLocation(), diag::note_template_param_here);
3761          return true;
3762        }
3763
3764        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3765          << ParamType
3766          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3767
3768        S.Diag(Param->getLocation(), diag::note_template_param_here);
3769      }
3770    }
3771  }
3772
3773  bool ObjCLifetimeConversion;
3774  if (ParamType->isPointerType() &&
3775      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3776      S.IsQualificationConversion(ArgType, ParamType, false,
3777                                  ObjCLifetimeConversion)) {
3778    // For pointer-to-object types, qualification conversions are
3779    // permitted.
3780  } else {
3781    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3782      if (!ParamRef->getPointeeType()->isFunctionType()) {
3783        // C++ [temp.arg.nontype]p5b3:
3784        //   For a non-type template-parameter of type reference to
3785        //   object, no conversions apply. The type referred to by the
3786        //   reference may be more cv-qualified than the (otherwise
3787        //   identical) type of the template- argument. The
3788        //   template-parameter is bound directly to the
3789        //   template-argument, which shall be an lvalue.
3790
3791        // FIXME: Other qualifiers?
3792        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3793        unsigned ArgQuals = ArgType.getCVRQualifiers();
3794
3795        if ((ParamQuals | ArgQuals) != ParamQuals) {
3796          S.Diag(Arg->getLocStart(),
3797                 diag::err_template_arg_ref_bind_ignores_quals)
3798            << ParamType << Arg->getType()
3799            << Arg->getSourceRange();
3800          S.Diag(Param->getLocation(), diag::note_template_param_here);
3801          return true;
3802        }
3803      }
3804    }
3805
3806    // At this point, the template argument refers to an object or
3807    // function with external linkage. We now need to check whether the
3808    // argument and parameter types are compatible.
3809    if (!S.Context.hasSameUnqualifiedType(ArgType,
3810                                          ParamType.getNonReferenceType())) {
3811      // We can't perform this conversion or binding.
3812      if (ParamType->isReferenceType())
3813        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3814          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3815      else
3816        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3817          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3818      S.Diag(Param->getLocation(), diag::note_template_param_here);
3819      return true;
3820    }
3821  }
3822
3823  // Create the template argument.
3824  Converted = TemplateArgument(Entity->getCanonicalDecl());
3825  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity);
3826  return false;
3827}
3828
3829/// \brief Checks whether the given template argument is a pointer to
3830/// member constant according to C++ [temp.arg.nontype]p1.
3831static bool CheckTemplateArgumentPointerToMember(Sema &S,
3832                                                 NonTypeTemplateParmDecl *Param,
3833                                                 QualType ParamType,
3834                                                 Expr *&ResultArg,
3835                                                 TemplateArgument &Converted) {
3836  bool Invalid = false;
3837
3838  // Check for a null pointer value.
3839  Expr *Arg = ResultArg;
3840  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3841  case NPV_Error:
3842    return true;
3843  case NPV_NullPointer:
3844    Converted = TemplateArgument((Decl *)0);
3845    return false;
3846  case NPV_NotNullPointer:
3847    break;
3848  }
3849
3850  bool ObjCLifetimeConversion;
3851  if (S.IsQualificationConversion(Arg->getType(),
3852                                  ParamType.getNonReferenceType(),
3853                                  false, ObjCLifetimeConversion)) {
3854    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
3855                              Arg->getValueKind()).take();
3856    ResultArg = Arg;
3857  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
3858                ParamType.getNonReferenceType())) {
3859    // We can't perform this conversion.
3860    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3861      << Arg->getType() << ParamType << Arg->getSourceRange();
3862    S.Diag(Param->getLocation(), diag::note_template_param_here);
3863    return true;
3864  }
3865
3866  // See through any implicit casts we added to fix the type.
3867  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3868    Arg = Cast->getSubExpr();
3869
3870  // C++ [temp.arg.nontype]p1:
3871  //
3872  //   A template-argument for a non-type, non-template
3873  //   template-parameter shall be one of: [...]
3874  //
3875  //     -- a pointer to member expressed as described in 5.3.1.
3876  DeclRefExpr *DRE = 0;
3877
3878  // In C++98/03 mode, give an extension warning on any extra parentheses.
3879  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3880  bool ExtraParens = false;
3881  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3882    if (!Invalid && !ExtraParens) {
3883      S.Diag(Arg->getLocStart(),
3884             S.getLangOpts().CPlusPlus0x ?
3885               diag::warn_cxx98_compat_template_arg_extra_parens :
3886               diag::ext_template_arg_extra_parens)
3887        << Arg->getSourceRange();
3888      ExtraParens = true;
3889    }
3890
3891    Arg = Parens->getSubExpr();
3892  }
3893
3894  while (SubstNonTypeTemplateParmExpr *subst =
3895           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3896    Arg = subst->getReplacement()->IgnoreImpCasts();
3897
3898  // A pointer-to-member constant written &Class::member.
3899  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3900    if (UnOp->getOpcode() == UO_AddrOf) {
3901      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3902      if (DRE && !DRE->getQualifier())
3903        DRE = 0;
3904    }
3905  }
3906  // A constant of pointer-to-member type.
3907  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3908    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3909      if (VD->getType()->isMemberPointerType()) {
3910        if (isa<NonTypeTemplateParmDecl>(VD) ||
3911            (isa<VarDecl>(VD) &&
3912             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
3913          if (Arg->isTypeDependent() || Arg->isValueDependent())
3914            Converted = TemplateArgument(Arg);
3915          else
3916            Converted = TemplateArgument(VD->getCanonicalDecl());
3917          return Invalid;
3918        }
3919      }
3920    }
3921
3922    DRE = 0;
3923  }
3924
3925  if (!DRE)
3926    return S.Diag(Arg->getLocStart(),
3927                  diag::err_template_arg_not_pointer_to_member_form)
3928      << Arg->getSourceRange();
3929
3930  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3931    assert((isa<FieldDecl>(DRE->getDecl()) ||
3932            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3933           "Only non-static member pointers can make it here");
3934
3935    // Okay: this is the address of a non-static member, and therefore
3936    // a member pointer constant.
3937    if (Arg->isTypeDependent() || Arg->isValueDependent())
3938      Converted = TemplateArgument(Arg);
3939    else
3940      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3941    return Invalid;
3942  }
3943
3944  // We found something else, but we don't know specifically what it is.
3945  S.Diag(Arg->getLocStart(),
3946         diag::err_template_arg_not_pointer_to_member_form)
3947    << Arg->getSourceRange();
3948  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3949  return true;
3950}
3951
3952/// \brief Check a template argument against its corresponding
3953/// non-type template parameter.
3954///
3955/// This routine implements the semantics of C++ [temp.arg.nontype].
3956/// If an error occurred, it returns ExprError(); otherwise, it
3957/// returns the converted template argument. \p
3958/// InstantiatedParamType is the type of the non-type template
3959/// parameter after it has been instantiated.
3960ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3961                                       QualType InstantiatedParamType, Expr *Arg,
3962                                       TemplateArgument &Converted,
3963                                       CheckTemplateArgumentKind CTAK) {
3964  SourceLocation StartLoc = Arg->getLocStart();
3965
3966  // If either the parameter has a dependent type or the argument is
3967  // type-dependent, there's nothing we can check now.
3968  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3969    // FIXME: Produce a cloned, canonical expression?
3970    Converted = TemplateArgument(Arg);
3971    return Owned(Arg);
3972  }
3973
3974  // C++ [temp.arg.nontype]p5:
3975  //   The following conversions are performed on each expression used
3976  //   as a non-type template-argument. If a non-type
3977  //   template-argument cannot be converted to the type of the
3978  //   corresponding template-parameter then the program is
3979  //   ill-formed.
3980  QualType ParamType = InstantiatedParamType;
3981  if (ParamType->isIntegralOrEnumerationType()) {
3982    // C++11:
3983    //   -- for a non-type template-parameter of integral or
3984    //      enumeration type, conversions permitted in a converted
3985    //      constant expression are applied.
3986    //
3987    // C++98:
3988    //   -- for a non-type template-parameter of integral or
3989    //      enumeration type, integral promotions (4.5) and integral
3990    //      conversions (4.7) are applied.
3991
3992    if (CTAK == CTAK_Deduced &&
3993        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
3994      // C++ [temp.deduct.type]p17:
3995      //   If, in the declaration of a function template with a non-type
3996      //   template-parameter, the non-type template-parameter is used
3997      //   in an expression in the function parameter-list and, if the
3998      //   corresponding template-argument is deduced, the
3999      //   template-argument type shall match the type of the
4000      //   template-parameter exactly, except that a template-argument
4001      //   deduced from an array bound may be of any integral type.
4002      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4003        << Arg->getType().getUnqualifiedType()
4004        << ParamType.getUnqualifiedType();
4005      Diag(Param->getLocation(), diag::note_template_param_here);
4006      return ExprError();
4007    }
4008
4009    if (getLangOpts().CPlusPlus0x) {
4010      // We can't check arbitrary value-dependent arguments.
4011      // FIXME: If there's no viable conversion to the template parameter type,
4012      // we should be able to diagnose that prior to instantiation.
4013      if (Arg->isValueDependent()) {
4014        Converted = TemplateArgument(Arg);
4015        return Owned(Arg);
4016      }
4017
4018      // C++ [temp.arg.nontype]p1:
4019      //   A template-argument for a non-type, non-template template-parameter
4020      //   shall be one of:
4021      //
4022      //     -- for a non-type template-parameter of integral or enumeration
4023      //        type, a converted constant expression of the type of the
4024      //        template-parameter; or
4025      llvm::APSInt Value;
4026      ExprResult ArgResult =
4027        CheckConvertedConstantExpression(Arg, ParamType, Value,
4028                                         CCEK_TemplateArg);
4029      if (ArgResult.isInvalid())
4030        return ExprError();
4031
4032      // Widen the argument value to sizeof(parameter type). This is almost
4033      // always a no-op, except when the parameter type is bool. In
4034      // that case, this may extend the argument from 1 bit to 8 bits.
4035      QualType IntegerType = ParamType;
4036      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4037        IntegerType = Enum->getDecl()->getIntegerType();
4038      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4039
4040      Converted = TemplateArgument(Value, Context.getCanonicalType(ParamType));
4041      return ArgResult;
4042    }
4043
4044    ExprResult ArgResult = DefaultLvalueConversion(Arg);
4045    if (ArgResult.isInvalid())
4046      return ExprError();
4047    Arg = ArgResult.take();
4048
4049    QualType ArgType = Arg->getType();
4050
4051    // C++ [temp.arg.nontype]p1:
4052    //   A template-argument for a non-type, non-template
4053    //   template-parameter shall be one of:
4054    //
4055    //     -- an integral constant-expression of integral or enumeration
4056    //        type; or
4057    //     -- the name of a non-type template-parameter; or
4058    SourceLocation NonConstantLoc;
4059    llvm::APSInt Value;
4060    if (!ArgType->isIntegralOrEnumerationType()) {
4061      Diag(Arg->getLocStart(),
4062           diag::err_template_arg_not_integral_or_enumeral)
4063        << ArgType << Arg->getSourceRange();
4064      Diag(Param->getLocation(), diag::note_template_param_here);
4065      return ExprError();
4066    } else if (!Arg->isValueDependent()) {
4067      Arg = VerifyIntegerConstantExpression(Arg, &Value,
4068        PDiag(diag::err_template_arg_not_ice) << ArgType, false).take();
4069      if (!Arg)
4070        return ExprError();
4071    }
4072
4073    // From here on out, all we care about are the unqualified forms
4074    // of the parameter and argument types.
4075    ParamType = ParamType.getUnqualifiedType();
4076    ArgType = ArgType.getUnqualifiedType();
4077
4078    // Try to convert the argument to the parameter's type.
4079    if (Context.hasSameType(ParamType, ArgType)) {
4080      // Okay: no conversion necessary
4081    } else if (ParamType->isBooleanType()) {
4082      // This is an integral-to-boolean conversion.
4083      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4084    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4085               !ParamType->isEnumeralType()) {
4086      // This is an integral promotion or conversion.
4087      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4088    } else {
4089      // We can't perform this conversion.
4090      Diag(Arg->getLocStart(),
4091           diag::err_template_arg_not_convertible)
4092        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4093      Diag(Param->getLocation(), diag::note_template_param_here);
4094      return ExprError();
4095    }
4096
4097    // Add the value of this argument to the list of converted
4098    // arguments. We use the bitwidth and signedness of the template
4099    // parameter.
4100    if (Arg->isValueDependent()) {
4101      // The argument is value-dependent. Create a new
4102      // TemplateArgument with the converted expression.
4103      Converted = TemplateArgument(Arg);
4104      return Owned(Arg);
4105    }
4106
4107    QualType IntegerType = Context.getCanonicalType(ParamType);
4108    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4109      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4110
4111    if (ParamType->isBooleanType()) {
4112      // Value must be zero or one.
4113      Value = Value != 0;
4114      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4115      if (Value.getBitWidth() != AllowedBits)
4116        Value = Value.extOrTrunc(AllowedBits);
4117      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4118    } else {
4119      llvm::APSInt OldValue = Value;
4120
4121      // Coerce the template argument's value to the value it will have
4122      // based on the template parameter's type.
4123      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4124      if (Value.getBitWidth() != AllowedBits)
4125        Value = Value.extOrTrunc(AllowedBits);
4126      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4127
4128      // Complain if an unsigned parameter received a negative value.
4129      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4130               && (OldValue.isSigned() && OldValue.isNegative())) {
4131        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4132          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4133          << Arg->getSourceRange();
4134        Diag(Param->getLocation(), diag::note_template_param_here);
4135      }
4136
4137      // Complain if we overflowed the template parameter's type.
4138      unsigned RequiredBits;
4139      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4140        RequiredBits = OldValue.getActiveBits();
4141      else if (OldValue.isUnsigned())
4142        RequiredBits = OldValue.getActiveBits() + 1;
4143      else
4144        RequiredBits = OldValue.getMinSignedBits();
4145      if (RequiredBits > AllowedBits) {
4146        Diag(Arg->getLocStart(),
4147             diag::warn_template_arg_too_large)
4148          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4149          << Arg->getSourceRange();
4150        Diag(Param->getLocation(), diag::note_template_param_here);
4151      }
4152    }
4153
4154    Converted = TemplateArgument(Value,
4155                                 ParamType->isEnumeralType()
4156                                   ? Context.getCanonicalType(ParamType)
4157                                   : IntegerType);
4158    return Owned(Arg);
4159  }
4160
4161  QualType ArgType = Arg->getType();
4162  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4163
4164  // Handle pointer-to-function, reference-to-function, and
4165  // pointer-to-member-function all in (roughly) the same way.
4166  if (// -- For a non-type template-parameter of type pointer to
4167      //    function, only the function-to-pointer conversion (4.3) is
4168      //    applied. If the template-argument represents a set of
4169      //    overloaded functions (or a pointer to such), the matching
4170      //    function is selected from the set (13.4).
4171      (ParamType->isPointerType() &&
4172       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4173      // -- For a non-type template-parameter of type reference to
4174      //    function, no conversions apply. If the template-argument
4175      //    represents a set of overloaded functions, the matching
4176      //    function is selected from the set (13.4).
4177      (ParamType->isReferenceType() &&
4178       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4179      // -- For a non-type template-parameter of type pointer to
4180      //    member function, no conversions apply. If the
4181      //    template-argument represents a set of overloaded member
4182      //    functions, the matching member function is selected from
4183      //    the set (13.4).
4184      (ParamType->isMemberPointerType() &&
4185       ParamType->getAs<MemberPointerType>()->getPointeeType()
4186         ->isFunctionType())) {
4187
4188    if (Arg->getType() == Context.OverloadTy) {
4189      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4190                                                                true,
4191                                                                FoundResult)) {
4192        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4193          return ExprError();
4194
4195        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4196        ArgType = Arg->getType();
4197      } else
4198        return ExprError();
4199    }
4200
4201    if (!ParamType->isMemberPointerType()) {
4202      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4203                                                         ParamType,
4204                                                         Arg, Converted))
4205        return ExprError();
4206      return Owned(Arg);
4207    }
4208
4209    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4210                                             Converted))
4211      return ExprError();
4212    return Owned(Arg);
4213  }
4214
4215  if (ParamType->isPointerType()) {
4216    //   -- for a non-type template-parameter of type pointer to
4217    //      object, qualification conversions (4.4) and the
4218    //      array-to-pointer conversion (4.2) are applied.
4219    // C++0x also allows a value of std::nullptr_t.
4220    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4221           "Only object pointers allowed here");
4222
4223    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4224                                                       ParamType,
4225                                                       Arg, Converted))
4226      return ExprError();
4227    return Owned(Arg);
4228  }
4229
4230  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4231    //   -- For a non-type template-parameter of type reference to
4232    //      object, no conversions apply. The type referred to by the
4233    //      reference may be more cv-qualified than the (otherwise
4234    //      identical) type of the template-argument. The
4235    //      template-parameter is bound directly to the
4236    //      template-argument, which must be an lvalue.
4237    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4238           "Only object references allowed here");
4239
4240    if (Arg->getType() == Context.OverloadTy) {
4241      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4242                                                 ParamRefType->getPointeeType(),
4243                                                                true,
4244                                                                FoundResult)) {
4245        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4246          return ExprError();
4247
4248        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4249        ArgType = Arg->getType();
4250      } else
4251        return ExprError();
4252    }
4253
4254    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4255                                                       ParamType,
4256                                                       Arg, Converted))
4257      return ExprError();
4258    return Owned(Arg);
4259  }
4260
4261  // Deal with parameters of type std::nullptr_t.
4262  if (ParamType->isNullPtrType()) {
4263    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4264      Converted = TemplateArgument(Arg);
4265      return Owned(Arg);
4266    }
4267
4268    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4269    case NPV_NotNullPointer:
4270      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4271        << Arg->getType() << ParamType;
4272      Diag(Param->getLocation(), diag::note_template_param_here);
4273      return ExprError();
4274
4275    case NPV_Error:
4276      return ExprError();
4277
4278    case NPV_NullPointer:
4279      Converted = TemplateArgument((Decl *)0);
4280      return Owned(Arg);;
4281    }
4282  }
4283
4284  //     -- For a non-type template-parameter of type pointer to data
4285  //        member, qualification conversions (4.4) are applied.
4286  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4287
4288  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4289                                           Converted))
4290    return ExprError();
4291  return Owned(Arg);
4292}
4293
4294/// \brief Check a template argument against its corresponding
4295/// template template parameter.
4296///
4297/// This routine implements the semantics of C++ [temp.arg.template].
4298/// It returns true if an error occurred, and false otherwise.
4299bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4300                                 const TemplateArgumentLoc &Arg) {
4301  TemplateName Name = Arg.getArgument().getAsTemplate();
4302  TemplateDecl *Template = Name.getAsTemplateDecl();
4303  if (!Template) {
4304    // Any dependent template name is fine.
4305    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4306    return false;
4307  }
4308
4309  // C++0x [temp.arg.template]p1:
4310  //   A template-argument for a template template-parameter shall be
4311  //   the name of a class template or an alias template, expressed as an
4312  //   id-expression. When the template-argument names a class template, only
4313  //   primary class templates are considered when matching the
4314  //   template template argument with the corresponding parameter;
4315  //   partial specializations are not considered even if their
4316  //   parameter lists match that of the template template parameter.
4317  //
4318  // Note that we also allow template template parameters here, which
4319  // will happen when we are dealing with, e.g., class template
4320  // partial specializations.
4321  if (!isa<ClassTemplateDecl>(Template) &&
4322      !isa<TemplateTemplateParmDecl>(Template) &&
4323      !isa<TypeAliasTemplateDecl>(Template)) {
4324    assert(isa<FunctionTemplateDecl>(Template) &&
4325           "Only function templates are possible here");
4326    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4327    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4328      << Template;
4329  }
4330
4331  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4332                                         Param->getTemplateParameters(),
4333                                         true,
4334                                         TPL_TemplateTemplateArgumentMatch,
4335                                         Arg.getLocation());
4336}
4337
4338/// \brief Given a non-type template argument that refers to a
4339/// declaration and the type of its corresponding non-type template
4340/// parameter, produce an expression that properly refers to that
4341/// declaration.
4342ExprResult
4343Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4344                                              QualType ParamType,
4345                                              SourceLocation Loc) {
4346  assert(Arg.getKind() == TemplateArgument::Declaration &&
4347         "Only declaration template arguments permitted here");
4348
4349  // For a NULL non-type template argument, return nullptr casted to the
4350  // parameter's type.
4351  if (!Arg.getAsDecl()) {
4352    return ImpCastExprToType(
4353             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4354                             ParamType,
4355                             ParamType->getAs<MemberPointerType>()
4356                               ? CK_NullToMemberPointer
4357                               : CK_NullToPointer);
4358  }
4359
4360  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4361
4362  if (VD->getDeclContext()->isRecord() &&
4363      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4364    // If the value is a class member, we might have a pointer-to-member.
4365    // Determine whether the non-type template template parameter is of
4366    // pointer-to-member type. If so, we need to build an appropriate
4367    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4368    // would refer to the member itself.
4369    if (ParamType->isMemberPointerType()) {
4370      QualType ClassType
4371        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4372      NestedNameSpecifier *Qualifier
4373        = NestedNameSpecifier::Create(Context, 0, false,
4374                                      ClassType.getTypePtr());
4375      CXXScopeSpec SS;
4376      SS.MakeTrivial(Context, Qualifier, Loc);
4377
4378      // The actual value-ness of this is unimportant, but for
4379      // internal consistency's sake, references to instance methods
4380      // are r-values.
4381      ExprValueKind VK = VK_LValue;
4382      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4383        VK = VK_RValue;
4384
4385      ExprResult RefExpr = BuildDeclRefExpr(VD,
4386                                            VD->getType().getNonReferenceType(),
4387                                            VK,
4388                                            Loc,
4389                                            &SS);
4390      if (RefExpr.isInvalid())
4391        return ExprError();
4392
4393      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4394
4395      // We might need to perform a trailing qualification conversion, since
4396      // the element type on the parameter could be more qualified than the
4397      // element type in the expression we constructed.
4398      bool ObjCLifetimeConversion;
4399      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4400                                    ParamType.getUnqualifiedType(), false,
4401                                    ObjCLifetimeConversion))
4402        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4403
4404      assert(!RefExpr.isInvalid() &&
4405             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4406                                 ParamType.getUnqualifiedType()));
4407      return move(RefExpr);
4408    }
4409  }
4410
4411  QualType T = VD->getType().getNonReferenceType();
4412  if (ParamType->isPointerType()) {
4413    // When the non-type template parameter is a pointer, take the
4414    // address of the declaration.
4415    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4416    if (RefExpr.isInvalid())
4417      return ExprError();
4418
4419    if (T->isFunctionType() || T->isArrayType()) {
4420      // Decay functions and arrays.
4421      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4422      if (RefExpr.isInvalid())
4423        return ExprError();
4424
4425      return move(RefExpr);
4426    }
4427
4428    // Take the address of everything else
4429    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4430  }
4431
4432  ExprValueKind VK = VK_RValue;
4433
4434  // If the non-type template parameter has reference type, qualify the
4435  // resulting declaration reference with the extra qualifiers on the
4436  // type that the reference refers to.
4437  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4438    VK = VK_LValue;
4439    T = Context.getQualifiedType(T,
4440                              TargetRef->getPointeeType().getQualifiers());
4441  }
4442
4443  return BuildDeclRefExpr(VD, T, VK, Loc);
4444}
4445
4446/// \brief Construct a new expression that refers to the given
4447/// integral template argument with the given source-location
4448/// information.
4449///
4450/// This routine takes care of the mapping from an integral template
4451/// argument (which may have any integral type) to the appropriate
4452/// literal value.
4453ExprResult
4454Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4455                                                  SourceLocation Loc) {
4456  assert(Arg.getKind() == TemplateArgument::Integral &&
4457         "Operation is only valid for integral template arguments");
4458  QualType T = Arg.getIntegralType();
4459  if (T->isAnyCharacterType()) {
4460    CharacterLiteral::CharacterKind Kind;
4461    if (T->isWideCharType())
4462      Kind = CharacterLiteral::Wide;
4463    else if (T->isChar16Type())
4464      Kind = CharacterLiteral::UTF16;
4465    else if (T->isChar32Type())
4466      Kind = CharacterLiteral::UTF32;
4467    else
4468      Kind = CharacterLiteral::Ascii;
4469
4470    return Owned(new (Context) CharacterLiteral(
4471                                            Arg.getAsIntegral()->getZExtValue(),
4472                                            Kind, T, Loc));
4473  }
4474
4475  if (T->isBooleanType())
4476    return Owned(new (Context) CXXBoolLiteralExpr(
4477                                            Arg.getAsIntegral()->getBoolValue(),
4478                                            T, Loc));
4479
4480  if (T->isNullPtrType())
4481    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4482
4483  // If this is an enum type that we're instantiating, we need to use an integer
4484  // type the same size as the enumerator.  We don't want to build an
4485  // IntegerLiteral with enum type.
4486  QualType BT;
4487  if (const EnumType *ET = T->getAs<EnumType>())
4488    BT = ET->getDecl()->getIntegerType();
4489  else
4490    BT = T;
4491
4492  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4493  if (T->isEnumeralType()) {
4494    // FIXME: This is a hack. We need a better way to handle substituted
4495    // non-type template parameters.
4496    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4497                               Context.getTrivialTypeSourceInfo(T, Loc),
4498                               Loc, Loc);
4499  }
4500
4501  return Owned(E);
4502}
4503
4504/// \brief Match two template parameters within template parameter lists.
4505static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4506                                       bool Complain,
4507                                     Sema::TemplateParameterListEqualKind Kind,
4508                                       SourceLocation TemplateArgLoc) {
4509  // Check the actual kind (type, non-type, template).
4510  if (Old->getKind() != New->getKind()) {
4511    if (Complain) {
4512      unsigned NextDiag = diag::err_template_param_different_kind;
4513      if (TemplateArgLoc.isValid()) {
4514        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4515        NextDiag = diag::note_template_param_different_kind;
4516      }
4517      S.Diag(New->getLocation(), NextDiag)
4518        << (Kind != Sema::TPL_TemplateMatch);
4519      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4520        << (Kind != Sema::TPL_TemplateMatch);
4521    }
4522
4523    return false;
4524  }
4525
4526  // Check that both are parameter packs are neither are parameter packs.
4527  // However, if we are matching a template template argument to a
4528  // template template parameter, the template template parameter can have
4529  // a parameter pack where the template template argument does not.
4530  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4531      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4532        Old->isTemplateParameterPack())) {
4533    if (Complain) {
4534      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4535      if (TemplateArgLoc.isValid()) {
4536        S.Diag(TemplateArgLoc,
4537             diag::err_template_arg_template_params_mismatch);
4538        NextDiag = diag::note_template_parameter_pack_non_pack;
4539      }
4540
4541      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4542                      : isa<NonTypeTemplateParmDecl>(New)? 1
4543                      : 2;
4544      S.Diag(New->getLocation(), NextDiag)
4545        << ParamKind << New->isParameterPack();
4546      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4547        << ParamKind << Old->isParameterPack();
4548    }
4549
4550    return false;
4551  }
4552
4553  // For non-type template parameters, check the type of the parameter.
4554  if (NonTypeTemplateParmDecl *OldNTTP
4555                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4556    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4557
4558    // If we are matching a template template argument to a template
4559    // template parameter and one of the non-type template parameter types
4560    // is dependent, then we must wait until template instantiation time
4561    // to actually compare the arguments.
4562    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4563        (OldNTTP->getType()->isDependentType() ||
4564         NewNTTP->getType()->isDependentType()))
4565      return true;
4566
4567    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4568      if (Complain) {
4569        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4570        if (TemplateArgLoc.isValid()) {
4571          S.Diag(TemplateArgLoc,
4572                 diag::err_template_arg_template_params_mismatch);
4573          NextDiag = diag::note_template_nontype_parm_different_type;
4574        }
4575        S.Diag(NewNTTP->getLocation(), NextDiag)
4576          << NewNTTP->getType()
4577          << (Kind != Sema::TPL_TemplateMatch);
4578        S.Diag(OldNTTP->getLocation(),
4579               diag::note_template_nontype_parm_prev_declaration)
4580          << OldNTTP->getType();
4581      }
4582
4583      return false;
4584    }
4585
4586    return true;
4587  }
4588
4589  // For template template parameters, check the template parameter types.
4590  // The template parameter lists of template template
4591  // parameters must agree.
4592  if (TemplateTemplateParmDecl *OldTTP
4593                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4594    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4595    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4596                                            OldTTP->getTemplateParameters(),
4597                                            Complain,
4598                                        (Kind == Sema::TPL_TemplateMatch
4599                                           ? Sema::TPL_TemplateTemplateParmMatch
4600                                           : Kind),
4601                                            TemplateArgLoc);
4602  }
4603
4604  return true;
4605}
4606
4607/// \brief Diagnose a known arity mismatch when comparing template argument
4608/// lists.
4609static
4610void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4611                                                TemplateParameterList *New,
4612                                                TemplateParameterList *Old,
4613                                      Sema::TemplateParameterListEqualKind Kind,
4614                                                SourceLocation TemplateArgLoc) {
4615  unsigned NextDiag = diag::err_template_param_list_different_arity;
4616  if (TemplateArgLoc.isValid()) {
4617    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4618    NextDiag = diag::note_template_param_list_different_arity;
4619  }
4620  S.Diag(New->getTemplateLoc(), NextDiag)
4621    << (New->size() > Old->size())
4622    << (Kind != Sema::TPL_TemplateMatch)
4623    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4624  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4625    << (Kind != Sema::TPL_TemplateMatch)
4626    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4627}
4628
4629/// \brief Determine whether the given template parameter lists are
4630/// equivalent.
4631///
4632/// \param New  The new template parameter list, typically written in the
4633/// source code as part of a new template declaration.
4634///
4635/// \param Old  The old template parameter list, typically found via
4636/// name lookup of the template declared with this template parameter
4637/// list.
4638///
4639/// \param Complain  If true, this routine will produce a diagnostic if
4640/// the template parameter lists are not equivalent.
4641///
4642/// \param Kind describes how we are to match the template parameter lists.
4643///
4644/// \param TemplateArgLoc If this source location is valid, then we
4645/// are actually checking the template parameter list of a template
4646/// argument (New) against the template parameter list of its
4647/// corresponding template template parameter (Old). We produce
4648/// slightly different diagnostics in this scenario.
4649///
4650/// \returns True if the template parameter lists are equal, false
4651/// otherwise.
4652bool
4653Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4654                                     TemplateParameterList *Old,
4655                                     bool Complain,
4656                                     TemplateParameterListEqualKind Kind,
4657                                     SourceLocation TemplateArgLoc) {
4658  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4659    if (Complain)
4660      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4661                                                 TemplateArgLoc);
4662
4663    return false;
4664  }
4665
4666  // C++0x [temp.arg.template]p3:
4667  //   A template-argument matches a template template-parameter (call it P)
4668  //   when each of the template parameters in the template-parameter-list of
4669  //   the template-argument's corresponding class template or alias template
4670  //   (call it A) matches the corresponding template parameter in the
4671  //   template-parameter-list of P. [...]
4672  TemplateParameterList::iterator NewParm = New->begin();
4673  TemplateParameterList::iterator NewParmEnd = New->end();
4674  for (TemplateParameterList::iterator OldParm = Old->begin(),
4675                                    OldParmEnd = Old->end();
4676       OldParm != OldParmEnd; ++OldParm) {
4677    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4678        !(*OldParm)->isTemplateParameterPack()) {
4679      if (NewParm == NewParmEnd) {
4680        if (Complain)
4681          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4682                                                     TemplateArgLoc);
4683
4684        return false;
4685      }
4686
4687      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4688                                      Kind, TemplateArgLoc))
4689        return false;
4690
4691      ++NewParm;
4692      continue;
4693    }
4694
4695    // C++0x [temp.arg.template]p3:
4696    //   [...] When P's template- parameter-list contains a template parameter
4697    //   pack (14.5.3), the template parameter pack will match zero or more
4698    //   template parameters or template parameter packs in the
4699    //   template-parameter-list of A with the same type and form as the
4700    //   template parameter pack in P (ignoring whether those template
4701    //   parameters are template parameter packs).
4702    for (; NewParm != NewParmEnd; ++NewParm) {
4703      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4704                                      Kind, TemplateArgLoc))
4705        return false;
4706    }
4707  }
4708
4709  // Make sure we exhausted all of the arguments.
4710  if (NewParm != NewParmEnd) {
4711    if (Complain)
4712      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4713                                                 TemplateArgLoc);
4714
4715    return false;
4716  }
4717
4718  return true;
4719}
4720
4721/// \brief Check whether a template can be declared within this scope.
4722///
4723/// If the template declaration is valid in this scope, returns
4724/// false. Otherwise, issues a diagnostic and returns true.
4725bool
4726Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4727  if (!S)
4728    return false;
4729
4730  // Find the nearest enclosing declaration scope.
4731  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4732         (S->getFlags() & Scope::TemplateParamScope) != 0)
4733    S = S->getParent();
4734
4735  // C++ [temp]p2:
4736  //   A template-declaration can appear only as a namespace scope or
4737  //   class scope declaration.
4738  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4739  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4740      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4741    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4742             << TemplateParams->getSourceRange();
4743
4744  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4745    Ctx = Ctx->getParent();
4746
4747  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4748    return false;
4749
4750  return Diag(TemplateParams->getTemplateLoc(),
4751              diag::err_template_outside_namespace_or_class_scope)
4752    << TemplateParams->getSourceRange();
4753}
4754
4755/// \brief Determine what kind of template specialization the given declaration
4756/// is.
4757static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4758  if (!D)
4759    return TSK_Undeclared;
4760
4761  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4762    return Record->getTemplateSpecializationKind();
4763  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4764    return Function->getTemplateSpecializationKind();
4765  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4766    return Var->getTemplateSpecializationKind();
4767
4768  return TSK_Undeclared;
4769}
4770
4771/// \brief Check whether a specialization is well-formed in the current
4772/// context.
4773///
4774/// This routine determines whether a template specialization can be declared
4775/// in the current context (C++ [temp.expl.spec]p2).
4776///
4777/// \param S the semantic analysis object for which this check is being
4778/// performed.
4779///
4780/// \param Specialized the entity being specialized or instantiated, which
4781/// may be a kind of template (class template, function template, etc.) or
4782/// a member of a class template (member function, static data member,
4783/// member class).
4784///
4785/// \param PrevDecl the previous declaration of this entity, if any.
4786///
4787/// \param Loc the location of the explicit specialization or instantiation of
4788/// this entity.
4789///
4790/// \param IsPartialSpecialization whether this is a partial specialization of
4791/// a class template.
4792///
4793/// \returns true if there was an error that we cannot recover from, false
4794/// otherwise.
4795static bool CheckTemplateSpecializationScope(Sema &S,
4796                                             NamedDecl *Specialized,
4797                                             NamedDecl *PrevDecl,
4798                                             SourceLocation Loc,
4799                                             bool IsPartialSpecialization) {
4800  // Keep these "kind" numbers in sync with the %select statements in the
4801  // various diagnostics emitted by this routine.
4802  int EntityKind = 0;
4803  if (isa<ClassTemplateDecl>(Specialized))
4804    EntityKind = IsPartialSpecialization? 1 : 0;
4805  else if (isa<FunctionTemplateDecl>(Specialized))
4806    EntityKind = 2;
4807  else if (isa<CXXMethodDecl>(Specialized))
4808    EntityKind = 3;
4809  else if (isa<VarDecl>(Specialized))
4810    EntityKind = 4;
4811  else if (isa<RecordDecl>(Specialized))
4812    EntityKind = 5;
4813  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus0x)
4814    EntityKind = 6;
4815  else {
4816    S.Diag(Loc, diag::err_template_spec_unknown_kind)
4817      << S.getLangOpts().CPlusPlus0x;
4818    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4819    return true;
4820  }
4821
4822  // C++ [temp.expl.spec]p2:
4823  //   An explicit specialization shall be declared in the namespace
4824  //   of which the template is a member, or, for member templates, in
4825  //   the namespace of which the enclosing class or enclosing class
4826  //   template is a member. An explicit specialization of a member
4827  //   function, member class or static data member of a class
4828  //   template shall be declared in the namespace of which the class
4829  //   template is a member. Such a declaration may also be a
4830  //   definition. If the declaration is not a definition, the
4831  //   specialization may be defined later in the name- space in which
4832  //   the explicit specialization was declared, or in a namespace
4833  //   that encloses the one in which the explicit specialization was
4834  //   declared.
4835  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4836    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4837      << Specialized;
4838    return true;
4839  }
4840
4841  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4842    if (S.getLangOpts().MicrosoftExt) {
4843      // Do not warn for class scope explicit specialization during
4844      // instantiation, warning was already emitted during pattern
4845      // semantic analysis.
4846      if (!S.ActiveTemplateInstantiations.size())
4847        S.Diag(Loc, diag::ext_function_specialization_in_class)
4848          << Specialized;
4849    } else {
4850      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4851        << Specialized;
4852      return true;
4853    }
4854  }
4855
4856  if (S.CurContext->isRecord() &&
4857      !S.CurContext->Equals(Specialized->getDeclContext())) {
4858    // Make sure that we're specializing in the right record context.
4859    // Otherwise, things can go horribly wrong.
4860    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4861      << Specialized;
4862    return true;
4863  }
4864
4865  // C++ [temp.class.spec]p6:
4866  //   A class template partial specialization may be declared or redeclared
4867  //   in any namespace scope in which its definition may be defined (14.5.1
4868  //   and 14.5.2).
4869  bool ComplainedAboutScope = false;
4870  DeclContext *SpecializedContext
4871    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4872  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4873  if ((!PrevDecl ||
4874       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4875       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4876    // C++ [temp.exp.spec]p2:
4877    //   An explicit specialization shall be declared in the namespace of which
4878    //   the template is a member, or, for member templates, in the namespace
4879    //   of which the enclosing class or enclosing class template is a member.
4880    //   An explicit specialization of a member function, member class or
4881    //   static data member of a class template shall be declared in the
4882    //   namespace of which the class template is a member.
4883    //
4884    // C++0x [temp.expl.spec]p2:
4885    //   An explicit specialization shall be declared in a namespace enclosing
4886    //   the specialized template.
4887    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
4888      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
4889      if (isa<TranslationUnitDecl>(SpecializedContext)) {
4890        assert(!IsCPlusPlus0xExtension &&
4891               "DC encloses TU but isn't in enclosing namespace set");
4892        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
4893          << EntityKind << Specialized;
4894      } else if (isa<NamespaceDecl>(SpecializedContext)) {
4895        int Diag;
4896        if (!IsCPlusPlus0xExtension)
4897          Diag = diag::err_template_spec_decl_out_of_scope;
4898        else if (!S.getLangOpts().CPlusPlus0x)
4899          Diag = diag::ext_template_spec_decl_out_of_scope;
4900        else
4901          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
4902        S.Diag(Loc, Diag)
4903          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
4904      }
4905
4906      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4907      ComplainedAboutScope =
4908        !(IsCPlusPlus0xExtension && S.getLangOpts().CPlusPlus0x);
4909    }
4910  }
4911
4912  // Make sure that this redeclaration (or definition) occurs in an enclosing
4913  // namespace.
4914  // Note that HandleDeclarator() performs this check for explicit
4915  // specializations of function templates, static data members, and member
4916  // functions, so we skip the check here for those kinds of entities.
4917  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4918  // Should we refactor that check, so that it occurs later?
4919  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4920      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4921        isa<FunctionDecl>(Specialized))) {
4922    if (isa<TranslationUnitDecl>(SpecializedContext))
4923      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4924        << EntityKind << Specialized;
4925    else if (isa<NamespaceDecl>(SpecializedContext))
4926      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4927        << EntityKind << Specialized
4928        << cast<NamedDecl>(SpecializedContext);
4929
4930    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4931  }
4932
4933  // FIXME: check for specialization-after-instantiation errors and such.
4934
4935  return false;
4936}
4937
4938/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4939/// that checks non-type template partial specialization arguments.
4940static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4941                                                NonTypeTemplateParmDecl *Param,
4942                                                  const TemplateArgument *Args,
4943                                                        unsigned NumArgs) {
4944  for (unsigned I = 0; I != NumArgs; ++I) {
4945    if (Args[I].getKind() == TemplateArgument::Pack) {
4946      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4947                                                           Args[I].pack_begin(),
4948                                                           Args[I].pack_size()))
4949        return true;
4950
4951      continue;
4952    }
4953
4954    Expr *ArgExpr = Args[I].getAsExpr();
4955    if (!ArgExpr) {
4956      continue;
4957    }
4958
4959    // We can have a pack expansion of any of the bullets below.
4960    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4961      ArgExpr = Expansion->getPattern();
4962
4963    // Strip off any implicit casts we added as part of type checking.
4964    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4965      ArgExpr = ICE->getSubExpr();
4966
4967    // C++ [temp.class.spec]p8:
4968    //   A non-type argument is non-specialized if it is the name of a
4969    //   non-type parameter. All other non-type arguments are
4970    //   specialized.
4971    //
4972    // Below, we check the two conditions that only apply to
4973    // specialized non-type arguments, so skip any non-specialized
4974    // arguments.
4975    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4976      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4977        continue;
4978
4979    // C++ [temp.class.spec]p9:
4980    //   Within the argument list of a class template partial
4981    //   specialization, the following restrictions apply:
4982    //     -- A partially specialized non-type argument expression
4983    //        shall not involve a template parameter of the partial
4984    //        specialization except when the argument expression is a
4985    //        simple identifier.
4986    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4987      S.Diag(ArgExpr->getLocStart(),
4988           diag::err_dependent_non_type_arg_in_partial_spec)
4989        << ArgExpr->getSourceRange();
4990      return true;
4991    }
4992
4993    //     -- The type of a template parameter corresponding to a
4994    //        specialized non-type argument shall not be dependent on a
4995    //        parameter of the specialization.
4996    if (Param->getType()->isDependentType()) {
4997      S.Diag(ArgExpr->getLocStart(),
4998           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4999        << Param->getType()
5000        << ArgExpr->getSourceRange();
5001      S.Diag(Param->getLocation(), diag::note_template_param_here);
5002      return true;
5003    }
5004  }
5005
5006  return false;
5007}
5008
5009/// \brief Check the non-type template arguments of a class template
5010/// partial specialization according to C++ [temp.class.spec]p9.
5011///
5012/// \param TemplateParams the template parameters of the primary class
5013/// template.
5014///
5015/// \param TemplateArg the template arguments of the class template
5016/// partial specialization.
5017///
5018/// \returns true if there was an error, false otherwise.
5019static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
5020                                        TemplateParameterList *TemplateParams,
5021                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5022  const TemplateArgument *ArgList = TemplateArgs.data();
5023
5024  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5025    NonTypeTemplateParmDecl *Param
5026      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5027    if (!Param)
5028      continue;
5029
5030    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5031                                                           &ArgList[I], 1))
5032      return true;
5033  }
5034
5035  return false;
5036}
5037
5038DeclResult
5039Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5040                                       TagUseKind TUK,
5041                                       SourceLocation KWLoc,
5042                                       SourceLocation ModulePrivateLoc,
5043                                       CXXScopeSpec &SS,
5044                                       TemplateTy TemplateD,
5045                                       SourceLocation TemplateNameLoc,
5046                                       SourceLocation LAngleLoc,
5047                                       ASTTemplateArgsPtr TemplateArgsIn,
5048                                       SourceLocation RAngleLoc,
5049                                       AttributeList *Attr,
5050                               MultiTemplateParamsArg TemplateParameterLists) {
5051  assert(TUK != TUK_Reference && "References are not specializations");
5052
5053  // NOTE: KWLoc is the location of the tag keyword. This will instead
5054  // store the location of the outermost template keyword in the declaration.
5055  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5056    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
5057
5058  // Find the class template we're specializing
5059  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5060  ClassTemplateDecl *ClassTemplate
5061    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5062
5063  if (!ClassTemplate) {
5064    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5065      << (Name.getAsTemplateDecl() &&
5066          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5067    return true;
5068  }
5069
5070  bool isExplicitSpecialization = false;
5071  bool isPartialSpecialization = false;
5072
5073  // Check the validity of the template headers that introduce this
5074  // template.
5075  // FIXME: We probably shouldn't complain about these headers for
5076  // friend declarations.
5077  bool Invalid = false;
5078  TemplateParameterList *TemplateParams
5079    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
5080                                              TemplateNameLoc,
5081                                              SS,
5082                        (TemplateParameterList**)TemplateParameterLists.get(),
5083                                              TemplateParameterLists.size(),
5084                                              TUK == TUK_Friend,
5085                                              isExplicitSpecialization,
5086                                              Invalid);
5087  if (Invalid)
5088    return true;
5089
5090  if (TemplateParams && TemplateParams->size() > 0) {
5091    isPartialSpecialization = true;
5092
5093    if (TUK == TUK_Friend) {
5094      Diag(KWLoc, diag::err_partial_specialization_friend)
5095        << SourceRange(LAngleLoc, RAngleLoc);
5096      return true;
5097    }
5098
5099    // C++ [temp.class.spec]p10:
5100    //   The template parameter list of a specialization shall not
5101    //   contain default template argument values.
5102    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5103      Decl *Param = TemplateParams->getParam(I);
5104      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5105        if (TTP->hasDefaultArgument()) {
5106          Diag(TTP->getDefaultArgumentLoc(),
5107               diag::err_default_arg_in_partial_spec);
5108          TTP->removeDefaultArgument();
5109        }
5110      } else if (NonTypeTemplateParmDecl *NTTP
5111                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5112        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5113          Diag(NTTP->getDefaultArgumentLoc(),
5114               diag::err_default_arg_in_partial_spec)
5115            << DefArg->getSourceRange();
5116          NTTP->removeDefaultArgument();
5117        }
5118      } else {
5119        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5120        if (TTP->hasDefaultArgument()) {
5121          Diag(TTP->getDefaultArgument().getLocation(),
5122               diag::err_default_arg_in_partial_spec)
5123            << TTP->getDefaultArgument().getSourceRange();
5124          TTP->removeDefaultArgument();
5125        }
5126      }
5127    }
5128  } else if (TemplateParams) {
5129    if (TUK == TUK_Friend)
5130      Diag(KWLoc, diag::err_template_spec_friend)
5131        << FixItHint::CreateRemoval(
5132                                SourceRange(TemplateParams->getTemplateLoc(),
5133                                            TemplateParams->getRAngleLoc()))
5134        << SourceRange(LAngleLoc, RAngleLoc);
5135    else
5136      isExplicitSpecialization = true;
5137  } else if (TUK != TUK_Friend) {
5138    Diag(KWLoc, diag::err_template_spec_needs_header)
5139      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5140    isExplicitSpecialization = true;
5141  }
5142
5143  // Check that the specialization uses the same tag kind as the
5144  // original template.
5145  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5146  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5147  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5148                                    Kind, TUK == TUK_Definition, KWLoc,
5149                                    *ClassTemplate->getIdentifier())) {
5150    Diag(KWLoc, diag::err_use_with_wrong_tag)
5151      << ClassTemplate
5152      << FixItHint::CreateReplacement(KWLoc,
5153                            ClassTemplate->getTemplatedDecl()->getKindName());
5154    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5155         diag::note_previous_use);
5156    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5157  }
5158
5159  // Translate the parser's template argument list in our AST format.
5160  TemplateArgumentListInfo TemplateArgs;
5161  TemplateArgs.setLAngleLoc(LAngleLoc);
5162  TemplateArgs.setRAngleLoc(RAngleLoc);
5163  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5164
5165  // Check for unexpanded parameter packs in any of the template arguments.
5166  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5167    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5168                                        UPPC_PartialSpecialization))
5169      return true;
5170
5171  // Check that the template argument list is well-formed for this
5172  // template.
5173  SmallVector<TemplateArgument, 4> Converted;
5174  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5175                                TemplateArgs, false, Converted))
5176    return true;
5177
5178  // Find the class template (partial) specialization declaration that
5179  // corresponds to these arguments.
5180  if (isPartialSpecialization) {
5181    if (CheckClassTemplatePartialSpecializationArgs(*this,
5182                                         ClassTemplate->getTemplateParameters(),
5183                                         Converted))
5184      return true;
5185
5186    bool InstantiationDependent;
5187    if (!Name.isDependent() &&
5188        !TemplateSpecializationType::anyDependentTemplateArguments(
5189                                             TemplateArgs.getArgumentArray(),
5190                                                         TemplateArgs.size(),
5191                                                     InstantiationDependent)) {
5192      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5193        << ClassTemplate->getDeclName();
5194      isPartialSpecialization = false;
5195    }
5196  }
5197
5198  void *InsertPos = 0;
5199  ClassTemplateSpecializationDecl *PrevDecl = 0;
5200
5201  if (isPartialSpecialization)
5202    // FIXME: Template parameter list matters, too
5203    PrevDecl
5204      = ClassTemplate->findPartialSpecialization(Converted.data(),
5205                                                 Converted.size(),
5206                                                 InsertPos);
5207  else
5208    PrevDecl
5209      = ClassTemplate->findSpecialization(Converted.data(),
5210                                          Converted.size(), InsertPos);
5211
5212  ClassTemplateSpecializationDecl *Specialization = 0;
5213
5214  // Check whether we can declare a class template specialization in
5215  // the current scope.
5216  if (TUK != TUK_Friend &&
5217      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5218                                       TemplateNameLoc,
5219                                       isPartialSpecialization))
5220    return true;
5221
5222  // The canonical type
5223  QualType CanonType;
5224  if (PrevDecl &&
5225      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5226               TUK == TUK_Friend)) {
5227    // Since the only prior class template specialization with these
5228    // arguments was referenced but not declared, or we're only
5229    // referencing this specialization as a friend, reuse that
5230    // declaration node as our own, updating its source location and
5231    // the list of outer template parameters to reflect our new declaration.
5232    Specialization = PrevDecl;
5233    Specialization->setLocation(TemplateNameLoc);
5234    if (TemplateParameterLists.size() > 0) {
5235      Specialization->setTemplateParameterListsInfo(Context,
5236                                              TemplateParameterLists.size(),
5237                    (TemplateParameterList**) TemplateParameterLists.release());
5238    }
5239    PrevDecl = 0;
5240    CanonType = Context.getTypeDeclType(Specialization);
5241  } else if (isPartialSpecialization) {
5242    // Build the canonical type that describes the converted template
5243    // arguments of the class template partial specialization.
5244    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5245    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5246                                                      Converted.data(),
5247                                                      Converted.size());
5248
5249    if (Context.hasSameType(CanonType,
5250                        ClassTemplate->getInjectedClassNameSpecialization())) {
5251      // C++ [temp.class.spec]p9b3:
5252      //
5253      //   -- The argument list of the specialization shall not be identical
5254      //      to the implicit argument list of the primary template.
5255      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5256        << (TUK == TUK_Definition)
5257        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5258      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5259                                ClassTemplate->getIdentifier(),
5260                                TemplateNameLoc,
5261                                Attr,
5262                                TemplateParams,
5263                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5264                                TemplateParameterLists.size() - 1,
5265                  (TemplateParameterList**) TemplateParameterLists.release());
5266    }
5267
5268    // Create a new class template partial specialization declaration node.
5269    ClassTemplatePartialSpecializationDecl *PrevPartial
5270      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5271    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5272                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5273    ClassTemplatePartialSpecializationDecl *Partial
5274      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5275                                             ClassTemplate->getDeclContext(),
5276                                                       KWLoc, TemplateNameLoc,
5277                                                       TemplateParams,
5278                                                       ClassTemplate,
5279                                                       Converted.data(),
5280                                                       Converted.size(),
5281                                                       TemplateArgs,
5282                                                       CanonType,
5283                                                       PrevPartial,
5284                                                       SequenceNumber);
5285    SetNestedNameSpecifier(Partial, SS);
5286    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5287      Partial->setTemplateParameterListsInfo(Context,
5288                                             TemplateParameterLists.size() - 1,
5289                    (TemplateParameterList**) TemplateParameterLists.release());
5290    }
5291
5292    if (!PrevPartial)
5293      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5294    Specialization = Partial;
5295
5296    // If we are providing an explicit specialization of a member class
5297    // template specialization, make a note of that.
5298    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5299      PrevPartial->setMemberSpecialization();
5300
5301    // Check that all of the template parameters of the class template
5302    // partial specialization are deducible from the template
5303    // arguments. If not, this class template partial specialization
5304    // will never be used.
5305    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5306    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5307                               TemplateParams->getDepth(),
5308                               DeducibleParams);
5309
5310    if (!DeducibleParams.all()) {
5311      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5312      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5313        << (NumNonDeducible > 1)
5314        << SourceRange(TemplateNameLoc, RAngleLoc);
5315      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5316        if (!DeducibleParams[I]) {
5317          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5318          if (Param->getDeclName())
5319            Diag(Param->getLocation(),
5320                 diag::note_partial_spec_unused_parameter)
5321              << Param->getDeclName();
5322          else
5323            Diag(Param->getLocation(),
5324                 diag::note_partial_spec_unused_parameter)
5325              << "<anonymous>";
5326        }
5327      }
5328    }
5329  } else {
5330    // Create a new class template specialization declaration node for
5331    // this explicit specialization or friend declaration.
5332    Specialization
5333      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5334                                             ClassTemplate->getDeclContext(),
5335                                                KWLoc, TemplateNameLoc,
5336                                                ClassTemplate,
5337                                                Converted.data(),
5338                                                Converted.size(),
5339                                                PrevDecl);
5340    SetNestedNameSpecifier(Specialization, SS);
5341    if (TemplateParameterLists.size() > 0) {
5342      Specialization->setTemplateParameterListsInfo(Context,
5343                                              TemplateParameterLists.size(),
5344                    (TemplateParameterList**) TemplateParameterLists.release());
5345    }
5346
5347    if (!PrevDecl)
5348      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5349
5350    CanonType = Context.getTypeDeclType(Specialization);
5351  }
5352
5353  // C++ [temp.expl.spec]p6:
5354  //   If a template, a member template or the member of a class template is
5355  //   explicitly specialized then that specialization shall be declared
5356  //   before the first use of that specialization that would cause an implicit
5357  //   instantiation to take place, in every translation unit in which such a
5358  //   use occurs; no diagnostic is required.
5359  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5360    bool Okay = false;
5361    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5362      // Is there any previous explicit specialization declaration?
5363      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5364        Okay = true;
5365        break;
5366      }
5367    }
5368
5369    if (!Okay) {
5370      SourceRange Range(TemplateNameLoc, RAngleLoc);
5371      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5372        << Context.getTypeDeclType(Specialization) << Range;
5373
5374      Diag(PrevDecl->getPointOfInstantiation(),
5375           diag::note_instantiation_required_here)
5376        << (PrevDecl->getTemplateSpecializationKind()
5377                                                != TSK_ImplicitInstantiation);
5378      return true;
5379    }
5380  }
5381
5382  // If this is not a friend, note that this is an explicit specialization.
5383  if (TUK != TUK_Friend)
5384    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5385
5386  // Check that this isn't a redefinition of this specialization.
5387  if (TUK == TUK_Definition) {
5388    if (RecordDecl *Def = Specialization->getDefinition()) {
5389      SourceRange Range(TemplateNameLoc, RAngleLoc);
5390      Diag(TemplateNameLoc, diag::err_redefinition)
5391        << Context.getTypeDeclType(Specialization) << Range;
5392      Diag(Def->getLocation(), diag::note_previous_definition);
5393      Specialization->setInvalidDecl();
5394      return true;
5395    }
5396  }
5397
5398  if (Attr)
5399    ProcessDeclAttributeList(S, Specialization, Attr);
5400
5401  if (ModulePrivateLoc.isValid())
5402    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5403      << (isPartialSpecialization? 1 : 0)
5404      << FixItHint::CreateRemoval(ModulePrivateLoc);
5405
5406  // Build the fully-sugared type for this class template
5407  // specialization as the user wrote in the specialization
5408  // itself. This means that we'll pretty-print the type retrieved
5409  // from the specialization's declaration the way that the user
5410  // actually wrote the specialization, rather than formatting the
5411  // name based on the "canonical" representation used to store the
5412  // template arguments in the specialization.
5413  TypeSourceInfo *WrittenTy
5414    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5415                                                TemplateArgs, CanonType);
5416  if (TUK != TUK_Friend) {
5417    Specialization->setTypeAsWritten(WrittenTy);
5418    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5419  }
5420  TemplateArgsIn.release();
5421
5422  // C++ [temp.expl.spec]p9:
5423  //   A template explicit specialization is in the scope of the
5424  //   namespace in which the template was defined.
5425  //
5426  // We actually implement this paragraph where we set the semantic
5427  // context (in the creation of the ClassTemplateSpecializationDecl),
5428  // but we also maintain the lexical context where the actual
5429  // definition occurs.
5430  Specialization->setLexicalDeclContext(CurContext);
5431
5432  // We may be starting the definition of this specialization.
5433  if (TUK == TUK_Definition)
5434    Specialization->startDefinition();
5435
5436  if (TUK == TUK_Friend) {
5437    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5438                                            TemplateNameLoc,
5439                                            WrittenTy,
5440                                            /*FIXME:*/KWLoc);
5441    Friend->setAccess(AS_public);
5442    CurContext->addDecl(Friend);
5443  } else {
5444    // Add the specialization into its lexical context, so that it can
5445    // be seen when iterating through the list of declarations in that
5446    // context. However, specializations are not found by name lookup.
5447    CurContext->addDecl(Specialization);
5448  }
5449  return Specialization;
5450}
5451
5452Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5453                              MultiTemplateParamsArg TemplateParameterLists,
5454                                    Declarator &D) {
5455  return HandleDeclarator(S, D, move(TemplateParameterLists));
5456}
5457
5458Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5459                               MultiTemplateParamsArg TemplateParameterLists,
5460                                            Declarator &D) {
5461  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5462  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5463
5464  if (FTI.hasPrototype) {
5465    // FIXME: Diagnose arguments without names in C.
5466  }
5467
5468  Scope *ParentScope = FnBodyScope->getParent();
5469
5470  D.setFunctionDefinitionKind(FDK_Definition);
5471  Decl *DP = HandleDeclarator(ParentScope, D,
5472                              move(TemplateParameterLists));
5473  if (FunctionTemplateDecl *FunctionTemplate
5474        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5475    return ActOnStartOfFunctionDef(FnBodyScope,
5476                                   FunctionTemplate->getTemplatedDecl());
5477  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5478    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5479  return 0;
5480}
5481
5482/// \brief Strips various properties off an implicit instantiation
5483/// that has just been explicitly specialized.
5484static void StripImplicitInstantiation(NamedDecl *D) {
5485  // FIXME: "make check" is clean if the call to dropAttrs() is commented out.
5486  D->dropAttrs();
5487
5488  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5489    FD->setInlineSpecified(false);
5490  }
5491}
5492
5493/// \brief Compute the diagnostic location for an explicit instantiation
5494//  declaration or definition.
5495static SourceLocation DiagLocForExplicitInstantiation(
5496    NamedDecl* D, SourceLocation PointOfInstantiation) {
5497  // Explicit instantiations following a specialization have no effect and
5498  // hence no PointOfInstantiation. In that case, walk decl backwards
5499  // until a valid name loc is found.
5500  SourceLocation PrevDiagLoc = PointOfInstantiation;
5501  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5502       Prev = Prev->getPreviousDecl()) {
5503    PrevDiagLoc = Prev->getLocation();
5504  }
5505  assert(PrevDiagLoc.isValid() &&
5506         "Explicit instantiation without point of instantiation?");
5507  return PrevDiagLoc;
5508}
5509
5510/// \brief Diagnose cases where we have an explicit template specialization
5511/// before/after an explicit template instantiation, producing diagnostics
5512/// for those cases where they are required and determining whether the
5513/// new specialization/instantiation will have any effect.
5514///
5515/// \param NewLoc the location of the new explicit specialization or
5516/// instantiation.
5517///
5518/// \param NewTSK the kind of the new explicit specialization or instantiation.
5519///
5520/// \param PrevDecl the previous declaration of the entity.
5521///
5522/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5523///
5524/// \param PrevPointOfInstantiation if valid, indicates where the previus
5525/// declaration was instantiated (either implicitly or explicitly).
5526///
5527/// \param HasNoEffect will be set to true to indicate that the new
5528/// specialization or instantiation has no effect and should be ignored.
5529///
5530/// \returns true if there was an error that should prevent the introduction of
5531/// the new declaration into the AST, false otherwise.
5532bool
5533Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5534                                             TemplateSpecializationKind NewTSK,
5535                                             NamedDecl *PrevDecl,
5536                                             TemplateSpecializationKind PrevTSK,
5537                                        SourceLocation PrevPointOfInstantiation,
5538                                             bool &HasNoEffect) {
5539  HasNoEffect = false;
5540
5541  switch (NewTSK) {
5542  case TSK_Undeclared:
5543  case TSK_ImplicitInstantiation:
5544    llvm_unreachable("Don't check implicit instantiations here");
5545
5546  case TSK_ExplicitSpecialization:
5547    switch (PrevTSK) {
5548    case TSK_Undeclared:
5549    case TSK_ExplicitSpecialization:
5550      // Okay, we're just specializing something that is either already
5551      // explicitly specialized or has merely been mentioned without any
5552      // instantiation.
5553      return false;
5554
5555    case TSK_ImplicitInstantiation:
5556      if (PrevPointOfInstantiation.isInvalid()) {
5557        // The declaration itself has not actually been instantiated, so it is
5558        // still okay to specialize it.
5559        StripImplicitInstantiation(PrevDecl);
5560        return false;
5561      }
5562      // Fall through
5563
5564    case TSK_ExplicitInstantiationDeclaration:
5565    case TSK_ExplicitInstantiationDefinition:
5566      assert((PrevTSK == TSK_ImplicitInstantiation ||
5567              PrevPointOfInstantiation.isValid()) &&
5568             "Explicit instantiation without point of instantiation?");
5569
5570      // C++ [temp.expl.spec]p6:
5571      //   If a template, a member template or the member of a class template
5572      //   is explicitly specialized then that specialization shall be declared
5573      //   before the first use of that specialization that would cause an
5574      //   implicit instantiation to take place, in every translation unit in
5575      //   which such a use occurs; no diagnostic is required.
5576      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5577        // Is there any previous explicit specialization declaration?
5578        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5579          return false;
5580      }
5581
5582      Diag(NewLoc, diag::err_specialization_after_instantiation)
5583        << PrevDecl;
5584      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5585        << (PrevTSK != TSK_ImplicitInstantiation);
5586
5587      return true;
5588    }
5589
5590  case TSK_ExplicitInstantiationDeclaration:
5591    switch (PrevTSK) {
5592    case TSK_ExplicitInstantiationDeclaration:
5593      // This explicit instantiation declaration is redundant (that's okay).
5594      HasNoEffect = true;
5595      return false;
5596
5597    case TSK_Undeclared:
5598    case TSK_ImplicitInstantiation:
5599      // We're explicitly instantiating something that may have already been
5600      // implicitly instantiated; that's fine.
5601      return false;
5602
5603    case TSK_ExplicitSpecialization:
5604      // C++0x [temp.explicit]p4:
5605      //   For a given set of template parameters, if an explicit instantiation
5606      //   of a template appears after a declaration of an explicit
5607      //   specialization for that template, the explicit instantiation has no
5608      //   effect.
5609      HasNoEffect = true;
5610      return false;
5611
5612    case TSK_ExplicitInstantiationDefinition:
5613      // C++0x [temp.explicit]p10:
5614      //   If an entity is the subject of both an explicit instantiation
5615      //   declaration and an explicit instantiation definition in the same
5616      //   translation unit, the definition shall follow the declaration.
5617      Diag(NewLoc,
5618           diag::err_explicit_instantiation_declaration_after_definition);
5619
5620      // Explicit instantiations following a specialization have no effect and
5621      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5622      // until a valid name loc is found.
5623      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5624           diag::note_explicit_instantiation_definition_here);
5625      HasNoEffect = true;
5626      return false;
5627    }
5628
5629  case TSK_ExplicitInstantiationDefinition:
5630    switch (PrevTSK) {
5631    case TSK_Undeclared:
5632    case TSK_ImplicitInstantiation:
5633      // We're explicitly instantiating something that may have already been
5634      // implicitly instantiated; that's fine.
5635      return false;
5636
5637    case TSK_ExplicitSpecialization:
5638      // C++ DR 259, C++0x [temp.explicit]p4:
5639      //   For a given set of template parameters, if an explicit
5640      //   instantiation of a template appears after a declaration of
5641      //   an explicit specialization for that template, the explicit
5642      //   instantiation has no effect.
5643      //
5644      // In C++98/03 mode, we only give an extension warning here, because it
5645      // is not harmful to try to explicitly instantiate something that
5646      // has been explicitly specialized.
5647      Diag(NewLoc, getLangOpts().CPlusPlus0x ?
5648           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5649           diag::ext_explicit_instantiation_after_specialization)
5650        << PrevDecl;
5651      Diag(PrevDecl->getLocation(),
5652           diag::note_previous_template_specialization);
5653      HasNoEffect = true;
5654      return false;
5655
5656    case TSK_ExplicitInstantiationDeclaration:
5657      // We're explicity instantiating a definition for something for which we
5658      // were previously asked to suppress instantiations. That's fine.
5659
5660      // C++0x [temp.explicit]p4:
5661      //   For a given set of template parameters, if an explicit instantiation
5662      //   of a template appears after a declaration of an explicit
5663      //   specialization for that template, the explicit instantiation has no
5664      //   effect.
5665      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5666        // Is there any previous explicit specialization declaration?
5667        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5668          HasNoEffect = true;
5669          break;
5670        }
5671      }
5672
5673      return false;
5674
5675    case TSK_ExplicitInstantiationDefinition:
5676      // C++0x [temp.spec]p5:
5677      //   For a given template and a given set of template-arguments,
5678      //     - an explicit instantiation definition shall appear at most once
5679      //       in a program,
5680      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5681        << PrevDecl;
5682      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5683           diag::note_previous_explicit_instantiation);
5684      HasNoEffect = true;
5685      return false;
5686    }
5687  }
5688
5689  llvm_unreachable("Missing specialization/instantiation case?");
5690}
5691
5692/// \brief Perform semantic analysis for the given dependent function
5693/// template specialization.  The only possible way to get a dependent
5694/// function template specialization is with a friend declaration,
5695/// like so:
5696///
5697///   template <class T> void foo(T);
5698///   template <class T> class A {
5699///     friend void foo<>(T);
5700///   };
5701///
5702/// There really isn't any useful analysis we can do here, so we
5703/// just store the information.
5704bool
5705Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5706                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5707                                                   LookupResult &Previous) {
5708  // Remove anything from Previous that isn't a function template in
5709  // the correct context.
5710  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5711  LookupResult::Filter F = Previous.makeFilter();
5712  while (F.hasNext()) {
5713    NamedDecl *D = F.next()->getUnderlyingDecl();
5714    if (!isa<FunctionTemplateDecl>(D) ||
5715        !FDLookupContext->InEnclosingNamespaceSetOf(
5716                              D->getDeclContext()->getRedeclContext()))
5717      F.erase();
5718  }
5719  F.done();
5720
5721  // Should this be diagnosed here?
5722  if (Previous.empty()) return true;
5723
5724  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5725                                         ExplicitTemplateArgs);
5726  return false;
5727}
5728
5729/// \brief Perform semantic analysis for the given function template
5730/// specialization.
5731///
5732/// This routine performs all of the semantic analysis required for an
5733/// explicit function template specialization. On successful completion,
5734/// the function declaration \p FD will become a function template
5735/// specialization.
5736///
5737/// \param FD the function declaration, which will be updated to become a
5738/// function template specialization.
5739///
5740/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5741/// if any. Note that this may be valid info even when 0 arguments are
5742/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5743/// as it anyway contains info on the angle brackets locations.
5744///
5745/// \param Previous the set of declarations that may be specialized by
5746/// this function specialization.
5747bool
5748Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5749                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5750                                          LookupResult &Previous) {
5751  // The set of function template specializations that could match this
5752  // explicit function template specialization.
5753  UnresolvedSet<8> Candidates;
5754
5755  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5756  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5757         I != E; ++I) {
5758    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5759    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5760      // Only consider templates found within the same semantic lookup scope as
5761      // FD.
5762      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5763                                Ovl->getDeclContext()->getRedeclContext()))
5764        continue;
5765
5766      // C++ [temp.expl.spec]p11:
5767      //   A trailing template-argument can be left unspecified in the
5768      //   template-id naming an explicit function template specialization
5769      //   provided it can be deduced from the function argument type.
5770      // Perform template argument deduction to determine whether we may be
5771      // specializing this template.
5772      // FIXME: It is somewhat wasteful to build
5773      TemplateDeductionInfo Info(Context, FD->getLocation());
5774      FunctionDecl *Specialization = 0;
5775      if (TemplateDeductionResult TDK
5776            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5777                                      FD->getType(),
5778                                      Specialization,
5779                                      Info)) {
5780        // FIXME: Template argument deduction failed; record why it failed, so
5781        // that we can provide nifty diagnostics.
5782        (void)TDK;
5783        continue;
5784      }
5785
5786      // Record this candidate.
5787      Candidates.addDecl(Specialization, I.getAccess());
5788    }
5789  }
5790
5791  // Find the most specialized function template.
5792  UnresolvedSetIterator Result
5793    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5794                         TPOC_Other, 0, FD->getLocation(),
5795                  PDiag(diag::err_function_template_spec_no_match)
5796                    << FD->getDeclName(),
5797                  PDiag(diag::err_function_template_spec_ambiguous)
5798                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5799                  PDiag(diag::note_function_template_spec_matched));
5800  if (Result == Candidates.end())
5801    return true;
5802
5803  // Ignore access information;  it doesn't figure into redeclaration checking.
5804  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5805
5806  FunctionTemplateSpecializationInfo *SpecInfo
5807    = Specialization->getTemplateSpecializationInfo();
5808  assert(SpecInfo && "Function template specialization info missing?");
5809
5810  // Note: do not overwrite location info if previous template
5811  // specialization kind was explicit.
5812  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5813  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
5814    Specialization->setLocation(FD->getLocation());
5815    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
5816    // function can differ from the template declaration with respect to
5817    // the constexpr specifier.
5818    Specialization->setConstexpr(FD->isConstexpr());
5819  }
5820
5821  // FIXME: Check if the prior specialization has a point of instantiation.
5822  // If so, we have run afoul of .
5823
5824  // If this is a friend declaration, then we're not really declaring
5825  // an explicit specialization.
5826  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5827
5828  // Check the scope of this explicit specialization.
5829  if (!isFriend &&
5830      CheckTemplateSpecializationScope(*this,
5831                                       Specialization->getPrimaryTemplate(),
5832                                       Specialization, FD->getLocation(),
5833                                       false))
5834    return true;
5835
5836  // C++ [temp.expl.spec]p6:
5837  //   If a template, a member template or the member of a class template is
5838  //   explicitly specialized then that specialization shall be declared
5839  //   before the first use of that specialization that would cause an implicit
5840  //   instantiation to take place, in every translation unit in which such a
5841  //   use occurs; no diagnostic is required.
5842  bool HasNoEffect = false;
5843  if (!isFriend &&
5844      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5845                                             TSK_ExplicitSpecialization,
5846                                             Specialization,
5847                                   SpecInfo->getTemplateSpecializationKind(),
5848                                         SpecInfo->getPointOfInstantiation(),
5849                                             HasNoEffect))
5850    return true;
5851
5852  // Mark the prior declaration as an explicit specialization, so that later
5853  // clients know that this is an explicit specialization.
5854  if (!isFriend) {
5855    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5856    MarkUnusedFileScopedDecl(Specialization);
5857  }
5858
5859  // Turn the given function declaration into a function template
5860  // specialization, with the template arguments from the previous
5861  // specialization.
5862  // Take copies of (semantic and syntactic) template argument lists.
5863  const TemplateArgumentList* TemplArgs = new (Context)
5864    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5865  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5866                                        TemplArgs, /*InsertPos=*/0,
5867                                    SpecInfo->getTemplateSpecializationKind(),
5868                                        ExplicitTemplateArgs);
5869  FD->setStorageClass(Specialization->getStorageClass());
5870
5871  // The "previous declaration" for this function template specialization is
5872  // the prior function template specialization.
5873  Previous.clear();
5874  Previous.addDecl(Specialization);
5875  return false;
5876}
5877
5878/// \brief Perform semantic analysis for the given non-template member
5879/// specialization.
5880///
5881/// This routine performs all of the semantic analysis required for an
5882/// explicit member function specialization. On successful completion,
5883/// the function declaration \p FD will become a member function
5884/// specialization.
5885///
5886/// \param Member the member declaration, which will be updated to become a
5887/// specialization.
5888///
5889/// \param Previous the set of declarations, one of which may be specialized
5890/// by this function specialization;  the set will be modified to contain the
5891/// redeclared member.
5892bool
5893Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5894  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5895
5896  // Try to find the member we are instantiating.
5897  NamedDecl *Instantiation = 0;
5898  NamedDecl *InstantiatedFrom = 0;
5899  MemberSpecializationInfo *MSInfo = 0;
5900
5901  if (Previous.empty()) {
5902    // Nowhere to look anyway.
5903  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5904    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5905           I != E; ++I) {
5906      NamedDecl *D = (*I)->getUnderlyingDecl();
5907      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5908        if (Context.hasSameType(Function->getType(), Method->getType())) {
5909          Instantiation = Method;
5910          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5911          MSInfo = Method->getMemberSpecializationInfo();
5912          break;
5913        }
5914      }
5915    }
5916  } else if (isa<VarDecl>(Member)) {
5917    VarDecl *PrevVar;
5918    if (Previous.isSingleResult() &&
5919        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5920      if (PrevVar->isStaticDataMember()) {
5921        Instantiation = PrevVar;
5922        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5923        MSInfo = PrevVar->getMemberSpecializationInfo();
5924      }
5925  } else if (isa<RecordDecl>(Member)) {
5926    CXXRecordDecl *PrevRecord;
5927    if (Previous.isSingleResult() &&
5928        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5929      Instantiation = PrevRecord;
5930      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5931      MSInfo = PrevRecord->getMemberSpecializationInfo();
5932    }
5933  } else if (isa<EnumDecl>(Member)) {
5934    EnumDecl *PrevEnum;
5935    if (Previous.isSingleResult() &&
5936        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
5937      Instantiation = PrevEnum;
5938      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
5939      MSInfo = PrevEnum->getMemberSpecializationInfo();
5940    }
5941  }
5942
5943  if (!Instantiation) {
5944    // There is no previous declaration that matches. Since member
5945    // specializations are always out-of-line, the caller will complain about
5946    // this mismatch later.
5947    return false;
5948  }
5949
5950  // If this is a friend, just bail out here before we start turning
5951  // things into explicit specializations.
5952  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5953    // Preserve instantiation information.
5954    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5955      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5956                                      cast<CXXMethodDecl>(InstantiatedFrom),
5957        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5958    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5959      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5960                                      cast<CXXRecordDecl>(InstantiatedFrom),
5961        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5962    }
5963
5964    Previous.clear();
5965    Previous.addDecl(Instantiation);
5966    return false;
5967  }
5968
5969  // Make sure that this is a specialization of a member.
5970  if (!InstantiatedFrom) {
5971    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5972      << Member;
5973    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5974    return true;
5975  }
5976
5977  // C++ [temp.expl.spec]p6:
5978  //   If a template, a member template or the member of a class template is
5979  //   explicitly specialized then that specialization shall be declared
5980  //   before the first use of that specialization that would cause an implicit
5981  //   instantiation to take place, in every translation unit in which such a
5982  //   use occurs; no diagnostic is required.
5983  assert(MSInfo && "Member specialization info missing?");
5984
5985  bool HasNoEffect = false;
5986  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5987                                             TSK_ExplicitSpecialization,
5988                                             Instantiation,
5989                                     MSInfo->getTemplateSpecializationKind(),
5990                                           MSInfo->getPointOfInstantiation(),
5991                                             HasNoEffect))
5992    return true;
5993
5994  // Check the scope of this explicit specialization.
5995  if (CheckTemplateSpecializationScope(*this,
5996                                       InstantiatedFrom,
5997                                       Instantiation, Member->getLocation(),
5998                                       false))
5999    return true;
6000
6001  // Note that this is an explicit instantiation of a member.
6002  // the original declaration to note that it is an explicit specialization
6003  // (if it was previously an implicit instantiation). This latter step
6004  // makes bookkeeping easier.
6005  if (isa<FunctionDecl>(Member)) {
6006    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6007    if (InstantiationFunction->getTemplateSpecializationKind() ==
6008          TSK_ImplicitInstantiation) {
6009      InstantiationFunction->setTemplateSpecializationKind(
6010                                                  TSK_ExplicitSpecialization);
6011      InstantiationFunction->setLocation(Member->getLocation());
6012    }
6013
6014    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6015                                        cast<CXXMethodDecl>(InstantiatedFrom),
6016                                                  TSK_ExplicitSpecialization);
6017    MarkUnusedFileScopedDecl(InstantiationFunction);
6018  } else if (isa<VarDecl>(Member)) {
6019    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6020    if (InstantiationVar->getTemplateSpecializationKind() ==
6021          TSK_ImplicitInstantiation) {
6022      InstantiationVar->setTemplateSpecializationKind(
6023                                                  TSK_ExplicitSpecialization);
6024      InstantiationVar->setLocation(Member->getLocation());
6025    }
6026
6027    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
6028                                                cast<VarDecl>(InstantiatedFrom),
6029                                                TSK_ExplicitSpecialization);
6030    MarkUnusedFileScopedDecl(InstantiationVar);
6031  } else if (isa<CXXRecordDecl>(Member)) {
6032    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6033    if (InstantiationClass->getTemplateSpecializationKind() ==
6034          TSK_ImplicitInstantiation) {
6035      InstantiationClass->setTemplateSpecializationKind(
6036                                                   TSK_ExplicitSpecialization);
6037      InstantiationClass->setLocation(Member->getLocation());
6038    }
6039
6040    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6041                                        cast<CXXRecordDecl>(InstantiatedFrom),
6042                                                   TSK_ExplicitSpecialization);
6043  } else {
6044    assert(isa<EnumDecl>(Member) && "Only member enums remain");
6045    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6046    if (InstantiationEnum->getTemplateSpecializationKind() ==
6047          TSK_ImplicitInstantiation) {
6048      InstantiationEnum->setTemplateSpecializationKind(
6049                                                   TSK_ExplicitSpecialization);
6050      InstantiationEnum->setLocation(Member->getLocation());
6051    }
6052
6053    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6054        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6055  }
6056
6057  // Save the caller the trouble of having to figure out which declaration
6058  // this specialization matches.
6059  Previous.clear();
6060  Previous.addDecl(Instantiation);
6061  return false;
6062}
6063
6064/// \brief Check the scope of an explicit instantiation.
6065///
6066/// \returns true if a serious error occurs, false otherwise.
6067static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6068                                            SourceLocation InstLoc,
6069                                            bool WasQualifiedName) {
6070  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6071  DeclContext *CurContext = S.CurContext->getRedeclContext();
6072
6073  if (CurContext->isRecord()) {
6074    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6075      << D;
6076    return true;
6077  }
6078
6079  // C++11 [temp.explicit]p3:
6080  //   An explicit instantiation shall appear in an enclosing namespace of its
6081  //   template. If the name declared in the explicit instantiation is an
6082  //   unqualified name, the explicit instantiation shall appear in the
6083  //   namespace where its template is declared or, if that namespace is inline
6084  //   (7.3.1), any namespace from its enclosing namespace set.
6085  //
6086  // This is DR275, which we do not retroactively apply to C++98/03.
6087  if (WasQualifiedName) {
6088    if (CurContext->Encloses(OrigContext))
6089      return false;
6090  } else {
6091    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6092      return false;
6093  }
6094
6095  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6096    if (WasQualifiedName)
6097      S.Diag(InstLoc,
6098             S.getLangOpts().CPlusPlus0x?
6099               diag::err_explicit_instantiation_out_of_scope :
6100               diag::warn_explicit_instantiation_out_of_scope_0x)
6101        << D << NS;
6102    else
6103      S.Diag(InstLoc,
6104             S.getLangOpts().CPlusPlus0x?
6105               diag::err_explicit_instantiation_unqualified_wrong_namespace :
6106               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6107        << D << NS;
6108  } else
6109    S.Diag(InstLoc,
6110           S.getLangOpts().CPlusPlus0x?
6111             diag::err_explicit_instantiation_must_be_global :
6112             diag::warn_explicit_instantiation_must_be_global_0x)
6113      << D;
6114  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6115  return false;
6116}
6117
6118/// \brief Determine whether the given scope specifier has a template-id in it.
6119static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6120  if (!SS.isSet())
6121    return false;
6122
6123  // C++11 [temp.explicit]p3:
6124  //   If the explicit instantiation is for a member function, a member class
6125  //   or a static data member of a class template specialization, the name of
6126  //   the class template specialization in the qualified-id for the member
6127  //   name shall be a simple-template-id.
6128  //
6129  // C++98 has the same restriction, just worded differently.
6130  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6131       NNS; NNS = NNS->getPrefix())
6132    if (const Type *T = NNS->getAsType())
6133      if (isa<TemplateSpecializationType>(T))
6134        return true;
6135
6136  return false;
6137}
6138
6139// Explicit instantiation of a class template specialization
6140DeclResult
6141Sema::ActOnExplicitInstantiation(Scope *S,
6142                                 SourceLocation ExternLoc,
6143                                 SourceLocation TemplateLoc,
6144                                 unsigned TagSpec,
6145                                 SourceLocation KWLoc,
6146                                 const CXXScopeSpec &SS,
6147                                 TemplateTy TemplateD,
6148                                 SourceLocation TemplateNameLoc,
6149                                 SourceLocation LAngleLoc,
6150                                 ASTTemplateArgsPtr TemplateArgsIn,
6151                                 SourceLocation RAngleLoc,
6152                                 AttributeList *Attr) {
6153  // Find the class template we're specializing
6154  TemplateName Name = TemplateD.getAsVal<TemplateName>();
6155  ClassTemplateDecl *ClassTemplate
6156    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
6157
6158  // Check that the specialization uses the same tag kind as the
6159  // original template.
6160  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6161  assert(Kind != TTK_Enum &&
6162         "Invalid enum tag in class template explicit instantiation!");
6163  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6164                                    Kind, /*isDefinition*/false, KWLoc,
6165                                    *ClassTemplate->getIdentifier())) {
6166    Diag(KWLoc, diag::err_use_with_wrong_tag)
6167      << ClassTemplate
6168      << FixItHint::CreateReplacement(KWLoc,
6169                            ClassTemplate->getTemplatedDecl()->getKindName());
6170    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6171         diag::note_previous_use);
6172    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6173  }
6174
6175  // C++0x [temp.explicit]p2:
6176  //   There are two forms of explicit instantiation: an explicit instantiation
6177  //   definition and an explicit instantiation declaration. An explicit
6178  //   instantiation declaration begins with the extern keyword. [...]
6179  TemplateSpecializationKind TSK
6180    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6181                           : TSK_ExplicitInstantiationDeclaration;
6182
6183  // Translate the parser's template argument list in our AST format.
6184  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6185  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6186
6187  // Check that the template argument list is well-formed for this
6188  // template.
6189  SmallVector<TemplateArgument, 4> Converted;
6190  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6191                                TemplateArgs, false, Converted))
6192    return true;
6193
6194  // Find the class template specialization declaration that
6195  // corresponds to these arguments.
6196  void *InsertPos = 0;
6197  ClassTemplateSpecializationDecl *PrevDecl
6198    = ClassTemplate->findSpecialization(Converted.data(),
6199                                        Converted.size(), InsertPos);
6200
6201  TemplateSpecializationKind PrevDecl_TSK
6202    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6203
6204  // C++0x [temp.explicit]p2:
6205  //   [...] An explicit instantiation shall appear in an enclosing
6206  //   namespace of its template. [...]
6207  //
6208  // This is C++ DR 275.
6209  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6210                                      SS.isSet()))
6211    return true;
6212
6213  ClassTemplateSpecializationDecl *Specialization = 0;
6214
6215  bool HasNoEffect = false;
6216  if (PrevDecl) {
6217    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6218                                               PrevDecl, PrevDecl_TSK,
6219                                            PrevDecl->getPointOfInstantiation(),
6220                                               HasNoEffect))
6221      return PrevDecl;
6222
6223    // Even though HasNoEffect == true means that this explicit instantiation
6224    // has no effect on semantics, we go on to put its syntax in the AST.
6225
6226    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6227        PrevDecl_TSK == TSK_Undeclared) {
6228      // Since the only prior class template specialization with these
6229      // arguments was referenced but not declared, reuse that
6230      // declaration node as our own, updating the source location
6231      // for the template name to reflect our new declaration.
6232      // (Other source locations will be updated later.)
6233      Specialization = PrevDecl;
6234      Specialization->setLocation(TemplateNameLoc);
6235      PrevDecl = 0;
6236    }
6237  }
6238
6239  if (!Specialization) {
6240    // Create a new class template specialization declaration node for
6241    // this explicit specialization.
6242    Specialization
6243      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6244                                             ClassTemplate->getDeclContext(),
6245                                                KWLoc, TemplateNameLoc,
6246                                                ClassTemplate,
6247                                                Converted.data(),
6248                                                Converted.size(),
6249                                                PrevDecl);
6250    SetNestedNameSpecifier(Specialization, SS);
6251
6252    if (!HasNoEffect && !PrevDecl) {
6253      // Insert the new specialization.
6254      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6255    }
6256  }
6257
6258  // Build the fully-sugared type for this explicit instantiation as
6259  // the user wrote in the explicit instantiation itself. This means
6260  // that we'll pretty-print the type retrieved from the
6261  // specialization's declaration the way that the user actually wrote
6262  // the explicit instantiation, rather than formatting the name based
6263  // on the "canonical" representation used to store the template
6264  // arguments in the specialization.
6265  TypeSourceInfo *WrittenTy
6266    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6267                                                TemplateArgs,
6268                                  Context.getTypeDeclType(Specialization));
6269  Specialization->setTypeAsWritten(WrittenTy);
6270  TemplateArgsIn.release();
6271
6272  // Set source locations for keywords.
6273  Specialization->setExternLoc(ExternLoc);
6274  Specialization->setTemplateKeywordLoc(TemplateLoc);
6275
6276  if (Attr)
6277    ProcessDeclAttributeList(S, Specialization, Attr);
6278
6279  // Add the explicit instantiation into its lexical context. However,
6280  // since explicit instantiations are never found by name lookup, we
6281  // just put it into the declaration context directly.
6282  Specialization->setLexicalDeclContext(CurContext);
6283  CurContext->addDecl(Specialization);
6284
6285  // Syntax is now OK, so return if it has no other effect on semantics.
6286  if (HasNoEffect) {
6287    // Set the template specialization kind.
6288    Specialization->setTemplateSpecializationKind(TSK);
6289    return Specialization;
6290  }
6291
6292  // C++ [temp.explicit]p3:
6293  //   A definition of a class template or class member template
6294  //   shall be in scope at the point of the explicit instantiation of
6295  //   the class template or class member template.
6296  //
6297  // This check comes when we actually try to perform the
6298  // instantiation.
6299  ClassTemplateSpecializationDecl *Def
6300    = cast_or_null<ClassTemplateSpecializationDecl>(
6301                                              Specialization->getDefinition());
6302  if (!Def)
6303    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6304  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6305    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6306    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6307  }
6308
6309  // Instantiate the members of this class template specialization.
6310  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6311                                       Specialization->getDefinition());
6312  if (Def) {
6313    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6314
6315    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6316    // TSK_ExplicitInstantiationDefinition
6317    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6318        TSK == TSK_ExplicitInstantiationDefinition)
6319      Def->setTemplateSpecializationKind(TSK);
6320
6321    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6322  }
6323
6324  // Set the template specialization kind.
6325  Specialization->setTemplateSpecializationKind(TSK);
6326  return Specialization;
6327}
6328
6329// Explicit instantiation of a member class of a class template.
6330DeclResult
6331Sema::ActOnExplicitInstantiation(Scope *S,
6332                                 SourceLocation ExternLoc,
6333                                 SourceLocation TemplateLoc,
6334                                 unsigned TagSpec,
6335                                 SourceLocation KWLoc,
6336                                 CXXScopeSpec &SS,
6337                                 IdentifierInfo *Name,
6338                                 SourceLocation NameLoc,
6339                                 AttributeList *Attr) {
6340
6341  bool Owned = false;
6342  bool IsDependent = false;
6343  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6344                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6345                        /*ModulePrivateLoc=*/SourceLocation(),
6346                        MultiTemplateParamsArg(*this, 0, 0),
6347                        Owned, IsDependent, SourceLocation(), false,
6348                        TypeResult());
6349  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6350
6351  if (!TagD)
6352    return true;
6353
6354  TagDecl *Tag = cast<TagDecl>(TagD);
6355  assert(!Tag->isEnum() && "shouldn't see enumerations here");
6356
6357  if (Tag->isInvalidDecl())
6358    return true;
6359
6360  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6361  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6362  if (!Pattern) {
6363    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6364      << Context.getTypeDeclType(Record);
6365    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6366    return true;
6367  }
6368
6369  // C++0x [temp.explicit]p2:
6370  //   If the explicit instantiation is for a class or member class, the
6371  //   elaborated-type-specifier in the declaration shall include a
6372  //   simple-template-id.
6373  //
6374  // C++98 has the same restriction, just worded differently.
6375  if (!ScopeSpecifierHasTemplateId(SS))
6376    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6377      << Record << SS.getRange();
6378
6379  // C++0x [temp.explicit]p2:
6380  //   There are two forms of explicit instantiation: an explicit instantiation
6381  //   definition and an explicit instantiation declaration. An explicit
6382  //   instantiation declaration begins with the extern keyword. [...]
6383  TemplateSpecializationKind TSK
6384    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6385                           : TSK_ExplicitInstantiationDeclaration;
6386
6387  // C++0x [temp.explicit]p2:
6388  //   [...] An explicit instantiation shall appear in an enclosing
6389  //   namespace of its template. [...]
6390  //
6391  // This is C++ DR 275.
6392  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6393
6394  // Verify that it is okay to explicitly instantiate here.
6395  CXXRecordDecl *PrevDecl
6396    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6397  if (!PrevDecl && Record->getDefinition())
6398    PrevDecl = Record;
6399  if (PrevDecl) {
6400    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6401    bool HasNoEffect = false;
6402    assert(MSInfo && "No member specialization information?");
6403    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6404                                               PrevDecl,
6405                                        MSInfo->getTemplateSpecializationKind(),
6406                                             MSInfo->getPointOfInstantiation(),
6407                                               HasNoEffect))
6408      return true;
6409    if (HasNoEffect)
6410      return TagD;
6411  }
6412
6413  CXXRecordDecl *RecordDef
6414    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6415  if (!RecordDef) {
6416    // C++ [temp.explicit]p3:
6417    //   A definition of a member class of a class template shall be in scope
6418    //   at the point of an explicit instantiation of the member class.
6419    CXXRecordDecl *Def
6420      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6421    if (!Def) {
6422      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6423        << 0 << Record->getDeclName() << Record->getDeclContext();
6424      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6425        << Pattern;
6426      return true;
6427    } else {
6428      if (InstantiateClass(NameLoc, Record, Def,
6429                           getTemplateInstantiationArgs(Record),
6430                           TSK))
6431        return true;
6432
6433      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6434      if (!RecordDef)
6435        return true;
6436    }
6437  }
6438
6439  // Instantiate all of the members of the class.
6440  InstantiateClassMembers(NameLoc, RecordDef,
6441                          getTemplateInstantiationArgs(Record), TSK);
6442
6443  if (TSK == TSK_ExplicitInstantiationDefinition)
6444    MarkVTableUsed(NameLoc, RecordDef, true);
6445
6446  // FIXME: We don't have any representation for explicit instantiations of
6447  // member classes. Such a representation is not needed for compilation, but it
6448  // should be available for clients that want to see all of the declarations in
6449  // the source code.
6450  return TagD;
6451}
6452
6453DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6454                                            SourceLocation ExternLoc,
6455                                            SourceLocation TemplateLoc,
6456                                            Declarator &D) {
6457  // Explicit instantiations always require a name.
6458  // TODO: check if/when DNInfo should replace Name.
6459  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6460  DeclarationName Name = NameInfo.getName();
6461  if (!Name) {
6462    if (!D.isInvalidType())
6463      Diag(D.getDeclSpec().getLocStart(),
6464           diag::err_explicit_instantiation_requires_name)
6465        << D.getDeclSpec().getSourceRange()
6466        << D.getSourceRange();
6467
6468    return true;
6469  }
6470
6471  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6472  // we find one that is.
6473  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6474         (S->getFlags() & Scope::TemplateParamScope) != 0)
6475    S = S->getParent();
6476
6477  // Determine the type of the declaration.
6478  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6479  QualType R = T->getType();
6480  if (R.isNull())
6481    return true;
6482
6483  // C++ [dcl.stc]p1:
6484  //   A storage-class-specifier shall not be specified in [...] an explicit
6485  //   instantiation (14.7.2) directive.
6486  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6487    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6488      << Name;
6489    return true;
6490  } else if (D.getDeclSpec().getStorageClassSpec()
6491                                                != DeclSpec::SCS_unspecified) {
6492    // Complain about then remove the storage class specifier.
6493    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6494      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6495
6496    D.getMutableDeclSpec().ClearStorageClassSpecs();
6497  }
6498
6499  // C++0x [temp.explicit]p1:
6500  //   [...] An explicit instantiation of a function template shall not use the
6501  //   inline or constexpr specifiers.
6502  // Presumably, this also applies to member functions of class templates as
6503  // well.
6504  if (D.getDeclSpec().isInlineSpecified())
6505    Diag(D.getDeclSpec().getInlineSpecLoc(),
6506         getLangOpts().CPlusPlus0x ?
6507           diag::err_explicit_instantiation_inline :
6508           diag::warn_explicit_instantiation_inline_0x)
6509      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6510  if (D.getDeclSpec().isConstexprSpecified())
6511    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6512    // not already specified.
6513    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6514         diag::err_explicit_instantiation_constexpr);
6515
6516  // C++0x [temp.explicit]p2:
6517  //   There are two forms of explicit instantiation: an explicit instantiation
6518  //   definition and an explicit instantiation declaration. An explicit
6519  //   instantiation declaration begins with the extern keyword. [...]
6520  TemplateSpecializationKind TSK
6521    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6522                           : TSK_ExplicitInstantiationDeclaration;
6523
6524  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6525  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6526
6527  if (!R->isFunctionType()) {
6528    // C++ [temp.explicit]p1:
6529    //   A [...] static data member of a class template can be explicitly
6530    //   instantiated from the member definition associated with its class
6531    //   template.
6532    if (Previous.isAmbiguous())
6533      return true;
6534
6535    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6536    if (!Prev || !Prev->isStaticDataMember()) {
6537      // We expect to see a data data member here.
6538      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6539        << Name;
6540      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6541           P != PEnd; ++P)
6542        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6543      return true;
6544    }
6545
6546    if (!Prev->getInstantiatedFromStaticDataMember()) {
6547      // FIXME: Check for explicit specialization?
6548      Diag(D.getIdentifierLoc(),
6549           diag::err_explicit_instantiation_data_member_not_instantiated)
6550        << Prev;
6551      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6552      // FIXME: Can we provide a note showing where this was declared?
6553      return true;
6554    }
6555
6556    // C++0x [temp.explicit]p2:
6557    //   If the explicit instantiation is for a member function, a member class
6558    //   or a static data member of a class template specialization, the name of
6559    //   the class template specialization in the qualified-id for the member
6560    //   name shall be a simple-template-id.
6561    //
6562    // C++98 has the same restriction, just worded differently.
6563    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6564      Diag(D.getIdentifierLoc(),
6565           diag::ext_explicit_instantiation_without_qualified_id)
6566        << Prev << D.getCXXScopeSpec().getRange();
6567
6568    // Check the scope of this explicit instantiation.
6569    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6570
6571    // Verify that it is okay to explicitly instantiate here.
6572    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6573    assert(MSInfo && "Missing static data member specialization info?");
6574    bool HasNoEffect = false;
6575    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6576                                        MSInfo->getTemplateSpecializationKind(),
6577                                              MSInfo->getPointOfInstantiation(),
6578                                               HasNoEffect))
6579      return true;
6580    if (HasNoEffect)
6581      return (Decl*) 0;
6582
6583    // Instantiate static data member.
6584    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6585    if (TSK == TSK_ExplicitInstantiationDefinition)
6586      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6587
6588    // FIXME: Create an ExplicitInstantiation node?
6589    return (Decl*) 0;
6590  }
6591
6592  // If the declarator is a template-id, translate the parser's template
6593  // argument list into our AST format.
6594  bool HasExplicitTemplateArgs = false;
6595  TemplateArgumentListInfo TemplateArgs;
6596  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6597    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6598    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6599    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6600    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6601                                       TemplateId->getTemplateArgs(),
6602                                       TemplateId->NumArgs);
6603    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6604    HasExplicitTemplateArgs = true;
6605    TemplateArgsPtr.release();
6606  }
6607
6608  // C++ [temp.explicit]p1:
6609  //   A [...] function [...] can be explicitly instantiated from its template.
6610  //   A member function [...] of a class template can be explicitly
6611  //  instantiated from the member definition associated with its class
6612  //  template.
6613  UnresolvedSet<8> Matches;
6614  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6615       P != PEnd; ++P) {
6616    NamedDecl *Prev = *P;
6617    if (!HasExplicitTemplateArgs) {
6618      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6619        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6620          Matches.clear();
6621
6622          Matches.addDecl(Method, P.getAccess());
6623          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6624            break;
6625        }
6626      }
6627    }
6628
6629    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6630    if (!FunTmpl)
6631      continue;
6632
6633    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6634    FunctionDecl *Specialization = 0;
6635    if (TemplateDeductionResult TDK
6636          = DeduceTemplateArguments(FunTmpl,
6637                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6638                                    R, Specialization, Info)) {
6639      // FIXME: Keep track of almost-matches?
6640      (void)TDK;
6641      continue;
6642    }
6643
6644    Matches.addDecl(Specialization, P.getAccess());
6645  }
6646
6647  // Find the most specialized function template specialization.
6648  UnresolvedSetIterator Result
6649    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6650                         D.getIdentifierLoc(),
6651                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6652                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6653                         PDiag(diag::note_explicit_instantiation_candidate));
6654
6655  if (Result == Matches.end())
6656    return true;
6657
6658  // Ignore access control bits, we don't need them for redeclaration checking.
6659  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6660
6661  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6662    Diag(D.getIdentifierLoc(),
6663         diag::err_explicit_instantiation_member_function_not_instantiated)
6664      << Specialization
6665      << (Specialization->getTemplateSpecializationKind() ==
6666          TSK_ExplicitSpecialization);
6667    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6668    return true;
6669  }
6670
6671  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6672  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6673    PrevDecl = Specialization;
6674
6675  if (PrevDecl) {
6676    bool HasNoEffect = false;
6677    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6678                                               PrevDecl,
6679                                     PrevDecl->getTemplateSpecializationKind(),
6680                                          PrevDecl->getPointOfInstantiation(),
6681                                               HasNoEffect))
6682      return true;
6683
6684    // FIXME: We may still want to build some representation of this
6685    // explicit specialization.
6686    if (HasNoEffect)
6687      return (Decl*) 0;
6688  }
6689
6690  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6691  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6692  if (Attr)
6693    ProcessDeclAttributeList(S, Specialization, Attr);
6694
6695  if (TSK == TSK_ExplicitInstantiationDefinition)
6696    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6697
6698  // C++0x [temp.explicit]p2:
6699  //   If the explicit instantiation is for a member function, a member class
6700  //   or a static data member of a class template specialization, the name of
6701  //   the class template specialization in the qualified-id for the member
6702  //   name shall be a simple-template-id.
6703  //
6704  // C++98 has the same restriction, just worded differently.
6705  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6706  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6707      D.getCXXScopeSpec().isSet() &&
6708      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6709    Diag(D.getIdentifierLoc(),
6710         diag::ext_explicit_instantiation_without_qualified_id)
6711    << Specialization << D.getCXXScopeSpec().getRange();
6712
6713  CheckExplicitInstantiationScope(*this,
6714                   FunTmpl? (NamedDecl *)FunTmpl
6715                          : Specialization->getInstantiatedFromMemberFunction(),
6716                                  D.getIdentifierLoc(),
6717                                  D.getCXXScopeSpec().isSet());
6718
6719  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6720  return (Decl*) 0;
6721}
6722
6723TypeResult
6724Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6725                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6726                        SourceLocation TagLoc, SourceLocation NameLoc) {
6727  // This has to hold, because SS is expected to be defined.
6728  assert(Name && "Expected a name in a dependent tag");
6729
6730  NestedNameSpecifier *NNS
6731    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6732  if (!NNS)
6733    return true;
6734
6735  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6736
6737  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6738    Diag(NameLoc, diag::err_dependent_tag_decl)
6739      << (TUK == TUK_Definition) << Kind << SS.getRange();
6740    return true;
6741  }
6742
6743  // Create the resulting type.
6744  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6745  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6746
6747  // Create type-source location information for this type.
6748  TypeLocBuilder TLB;
6749  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6750  TL.setElaboratedKeywordLoc(TagLoc);
6751  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6752  TL.setNameLoc(NameLoc);
6753  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6754}
6755
6756TypeResult
6757Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6758                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6759                        SourceLocation IdLoc) {
6760  if (SS.isInvalid())
6761    return true;
6762
6763  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6764    Diag(TypenameLoc,
6765         getLangOpts().CPlusPlus0x ?
6766           diag::warn_cxx98_compat_typename_outside_of_template :
6767           diag::ext_typename_outside_of_template)
6768      << FixItHint::CreateRemoval(TypenameLoc);
6769
6770  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6771  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6772                                 TypenameLoc, QualifierLoc, II, IdLoc);
6773  if (T.isNull())
6774    return true;
6775
6776  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6777  if (isa<DependentNameType>(T)) {
6778    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6779    TL.setElaboratedKeywordLoc(TypenameLoc);
6780    TL.setQualifierLoc(QualifierLoc);
6781    TL.setNameLoc(IdLoc);
6782  } else {
6783    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6784    TL.setElaboratedKeywordLoc(TypenameLoc);
6785    TL.setQualifierLoc(QualifierLoc);
6786    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6787  }
6788
6789  return CreateParsedType(T, TSI);
6790}
6791
6792TypeResult
6793Sema::ActOnTypenameType(Scope *S,
6794                        SourceLocation TypenameLoc,
6795                        const CXXScopeSpec &SS,
6796                        SourceLocation TemplateKWLoc,
6797                        TemplateTy TemplateIn,
6798                        SourceLocation TemplateNameLoc,
6799                        SourceLocation LAngleLoc,
6800                        ASTTemplateArgsPtr TemplateArgsIn,
6801                        SourceLocation RAngleLoc) {
6802  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6803    Diag(TypenameLoc,
6804         getLangOpts().CPlusPlus0x ?
6805           diag::warn_cxx98_compat_typename_outside_of_template :
6806           diag::ext_typename_outside_of_template)
6807      << FixItHint::CreateRemoval(TypenameLoc);
6808
6809  // Translate the parser's template argument list in our AST format.
6810  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6811  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6812
6813  TemplateName Template = TemplateIn.get();
6814  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6815    // Construct a dependent template specialization type.
6816    assert(DTN && "dependent template has non-dependent name?");
6817    assert(DTN->getQualifier()
6818           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6819    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6820                                                          DTN->getQualifier(),
6821                                                          DTN->getIdentifier(),
6822                                                                TemplateArgs);
6823
6824    // Create source-location information for this type.
6825    TypeLocBuilder Builder;
6826    DependentTemplateSpecializationTypeLoc SpecTL
6827    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6828    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
6829    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6830    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6831    SpecTL.setTemplateNameLoc(TemplateNameLoc);
6832    SpecTL.setLAngleLoc(LAngleLoc);
6833    SpecTL.setRAngleLoc(RAngleLoc);
6834    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6835      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6836    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6837  }
6838
6839  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6840  if (T.isNull())
6841    return true;
6842
6843  // Provide source-location information for the template specialization type.
6844  TypeLocBuilder Builder;
6845  TemplateSpecializationTypeLoc SpecTL
6846    = Builder.push<TemplateSpecializationTypeLoc>(T);
6847  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
6848  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6849  SpecTL.setLAngleLoc(LAngleLoc);
6850  SpecTL.setRAngleLoc(RAngleLoc);
6851  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6852    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6853
6854  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6855  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6856  TL.setElaboratedKeywordLoc(TypenameLoc);
6857  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6858
6859  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6860  return CreateParsedType(T, TSI);
6861}
6862
6863
6864/// \brief Build the type that describes a C++ typename specifier,
6865/// e.g., "typename T::type".
6866QualType
6867Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6868                        SourceLocation KeywordLoc,
6869                        NestedNameSpecifierLoc QualifierLoc,
6870                        const IdentifierInfo &II,
6871                        SourceLocation IILoc) {
6872  CXXScopeSpec SS;
6873  SS.Adopt(QualifierLoc);
6874
6875  DeclContext *Ctx = computeDeclContext(SS);
6876  if (!Ctx) {
6877    // If the nested-name-specifier is dependent and couldn't be
6878    // resolved to a type, build a typename type.
6879    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6880    return Context.getDependentNameType(Keyword,
6881                                        QualifierLoc.getNestedNameSpecifier(),
6882                                        &II);
6883  }
6884
6885  // If the nested-name-specifier refers to the current instantiation,
6886  // the "typename" keyword itself is superfluous. In C++03, the
6887  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6888  // allows such extraneous "typename" keywords, and we retroactively
6889  // apply this DR to C++03 code with only a warning. In any case we continue.
6890
6891  if (RequireCompleteDeclContext(SS, Ctx))
6892    return QualType();
6893
6894  DeclarationName Name(&II);
6895  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6896  LookupQualifiedName(Result, Ctx);
6897  unsigned DiagID = 0;
6898  Decl *Referenced = 0;
6899  switch (Result.getResultKind()) {
6900  case LookupResult::NotFound:
6901    DiagID = diag::err_typename_nested_not_found;
6902    break;
6903
6904  case LookupResult::FoundUnresolvedValue: {
6905    // We found a using declaration that is a value. Most likely, the using
6906    // declaration itself is meant to have the 'typename' keyword.
6907    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6908                          IILoc);
6909    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6910      << Name << Ctx << FullRange;
6911    if (UnresolvedUsingValueDecl *Using
6912          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6913      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6914      Diag(Loc, diag::note_using_value_decl_missing_typename)
6915        << FixItHint::CreateInsertion(Loc, "typename ");
6916    }
6917  }
6918  // Fall through to create a dependent typename type, from which we can recover
6919  // better.
6920
6921  case LookupResult::NotFoundInCurrentInstantiation:
6922    // Okay, it's a member of an unknown instantiation.
6923    return Context.getDependentNameType(Keyword,
6924                                        QualifierLoc.getNestedNameSpecifier(),
6925                                        &II);
6926
6927  case LookupResult::Found:
6928    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6929      // We found a type. Build an ElaboratedType, since the
6930      // typename-specifier was just sugar.
6931      return Context.getElaboratedType(ETK_Typename,
6932                                       QualifierLoc.getNestedNameSpecifier(),
6933                                       Context.getTypeDeclType(Type));
6934    }
6935
6936    DiagID = diag::err_typename_nested_not_type;
6937    Referenced = Result.getFoundDecl();
6938    break;
6939
6940  case LookupResult::FoundOverloaded:
6941    DiagID = diag::err_typename_nested_not_type;
6942    Referenced = *Result.begin();
6943    break;
6944
6945  case LookupResult::Ambiguous:
6946    return QualType();
6947  }
6948
6949  // If we get here, it's because name lookup did not find a
6950  // type. Emit an appropriate diagnostic and return an error.
6951  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6952                        IILoc);
6953  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6954  if (Referenced)
6955    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6956      << Name;
6957  return QualType();
6958}
6959
6960namespace {
6961  // See Sema::RebuildTypeInCurrentInstantiation
6962  class CurrentInstantiationRebuilder
6963    : public TreeTransform<CurrentInstantiationRebuilder> {
6964    SourceLocation Loc;
6965    DeclarationName Entity;
6966
6967  public:
6968    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6969
6970    CurrentInstantiationRebuilder(Sema &SemaRef,
6971                                  SourceLocation Loc,
6972                                  DeclarationName Entity)
6973    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6974      Loc(Loc), Entity(Entity) { }
6975
6976    /// \brief Determine whether the given type \p T has already been
6977    /// transformed.
6978    ///
6979    /// For the purposes of type reconstruction, a type has already been
6980    /// transformed if it is NULL or if it is not dependent.
6981    bool AlreadyTransformed(QualType T) {
6982      return T.isNull() || !T->isDependentType();
6983    }
6984
6985    /// \brief Returns the location of the entity whose type is being
6986    /// rebuilt.
6987    SourceLocation getBaseLocation() { return Loc; }
6988
6989    /// \brief Returns the name of the entity whose type is being rebuilt.
6990    DeclarationName getBaseEntity() { return Entity; }
6991
6992    /// \brief Sets the "base" location and entity when that
6993    /// information is known based on another transformation.
6994    void setBase(SourceLocation Loc, DeclarationName Entity) {
6995      this->Loc = Loc;
6996      this->Entity = Entity;
6997    }
6998
6999    ExprResult TransformLambdaExpr(LambdaExpr *E) {
7000      // Lambdas never need to be transformed.
7001      return E;
7002    }
7003  };
7004}
7005
7006/// \brief Rebuilds a type within the context of the current instantiation.
7007///
7008/// The type \p T is part of the type of an out-of-line member definition of
7009/// a class template (or class template partial specialization) that was parsed
7010/// and constructed before we entered the scope of the class template (or
7011/// partial specialization thereof). This routine will rebuild that type now
7012/// that we have entered the declarator's scope, which may produce different
7013/// canonical types, e.g.,
7014///
7015/// \code
7016/// template<typename T>
7017/// struct X {
7018///   typedef T* pointer;
7019///   pointer data();
7020/// };
7021///
7022/// template<typename T>
7023/// typename X<T>::pointer X<T>::data() { ... }
7024/// \endcode
7025///
7026/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7027/// since we do not know that we can look into X<T> when we parsed the type.
7028/// This function will rebuild the type, performing the lookup of "pointer"
7029/// in X<T> and returning an ElaboratedType whose canonical type is the same
7030/// as the canonical type of T*, allowing the return types of the out-of-line
7031/// definition and the declaration to match.
7032TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7033                                                        SourceLocation Loc,
7034                                                        DeclarationName Name) {
7035  if (!T || !T->getType()->isDependentType())
7036    return T;
7037
7038  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7039  return Rebuilder.TransformType(T);
7040}
7041
7042ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7043  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7044                                          DeclarationName());
7045  return Rebuilder.TransformExpr(E);
7046}
7047
7048bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7049  if (SS.isInvalid())
7050    return true;
7051
7052  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7053  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7054                                          DeclarationName());
7055  NestedNameSpecifierLoc Rebuilt
7056    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7057  if (!Rebuilt)
7058    return true;
7059
7060  SS.Adopt(Rebuilt);
7061  return false;
7062}
7063
7064/// \brief Rebuild the template parameters now that we know we're in a current
7065/// instantiation.
7066bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7067                                               TemplateParameterList *Params) {
7068  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7069    Decl *Param = Params->getParam(I);
7070
7071    // There is nothing to rebuild in a type parameter.
7072    if (isa<TemplateTypeParmDecl>(Param))
7073      continue;
7074
7075    // Rebuild the template parameter list of a template template parameter.
7076    if (TemplateTemplateParmDecl *TTP
7077        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7078      if (RebuildTemplateParamsInCurrentInstantiation(
7079            TTP->getTemplateParameters()))
7080        return true;
7081
7082      continue;
7083    }
7084
7085    // Rebuild the type of a non-type template parameter.
7086    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7087    TypeSourceInfo *NewTSI
7088      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7089                                          NTTP->getLocation(),
7090                                          NTTP->getDeclName());
7091    if (!NewTSI)
7092      return true;
7093
7094    if (NewTSI != NTTP->getTypeSourceInfo()) {
7095      NTTP->setTypeSourceInfo(NewTSI);
7096      NTTP->setType(NewTSI->getType());
7097    }
7098  }
7099
7100  return false;
7101}
7102
7103/// \brief Produces a formatted string that describes the binding of
7104/// template parameters to template arguments.
7105std::string
7106Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7107                                      const TemplateArgumentList &Args) {
7108  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7109}
7110
7111std::string
7112Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7113                                      const TemplateArgument *Args,
7114                                      unsigned NumArgs) {
7115  SmallString<128> Str;
7116  llvm::raw_svector_ostream Out(Str);
7117
7118  if (!Params || Params->size() == 0 || NumArgs == 0)
7119    return std::string();
7120
7121  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7122    if (I >= NumArgs)
7123      break;
7124
7125    if (I == 0)
7126      Out << "[with ";
7127    else
7128      Out << ", ";
7129
7130    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7131      Out << Id->getName();
7132    } else {
7133      Out << '$' << I;
7134    }
7135
7136    Out << " = ";
7137    Args[I].print(getPrintingPolicy(), Out);
7138  }
7139
7140  Out << ']';
7141  return Out.str();
7142}
7143
7144void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7145  if (!FD)
7146    return;
7147  FD->setLateTemplateParsed(Flag);
7148}
7149
7150bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7151  DeclContext *DC = CurContext;
7152
7153  while (DC) {
7154    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7155      const FunctionDecl *FD = RD->isLocalClass();
7156      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7157    } else if (DC->isTranslationUnit() || DC->isNamespace())
7158      return false;
7159
7160    DC = DC->getParent();
7161  }
7162  return false;
7163}
7164