SemaTemplate.cpp revision 486c883ca29f6b50bb8ded372ad5bb2970fd4101
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  // The set of class templates we've already seen.
67  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
68  LookupResult::Filter filter = R.makeFilter();
69  while (filter.hasNext()) {
70    NamedDecl *Orig = filter.next();
71    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
72    if (!Repl)
73      filter.erase();
74    else if (Repl != Orig) {
75
76      // C++ [temp.local]p3:
77      //   A lookup that finds an injected-class-name (10.2) can result in an
78      //   ambiguity in certain cases (for example, if it is found in more than
79      //   one base class). If all of the injected-class-names that are found
80      //   refer to specializations of the same class template, and if the name
81      //   is followed by a template-argument-list, the reference refers to the
82      //   class template itself and not a specialization thereof, and is not
83      //   ambiguous.
84      //
85      // FIXME: Will we eventually have to do the same for alias templates?
86      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
87        if (!ClassTemplates.insert(ClassTmpl)) {
88          filter.erase();
89          continue;
90        }
91
92      filter.replace(Repl);
93    }
94  }
95  filter.done();
96}
97
98TemplateNameKind Sema::isTemplateName(Scope *S,
99                                      CXXScopeSpec &SS,
100                                      UnqualifiedId &Name,
101                                      TypeTy *ObjectTypePtr,
102                                      bool EnteringContext,
103                                      TemplateTy &TemplateResult,
104                                      bool &MemberOfUnknownSpecialization) {
105  assert(getLangOptions().CPlusPlus && "No template names in C!");
106
107  DeclarationName TName;
108  MemberOfUnknownSpecialization = false;
109
110  switch (Name.getKind()) {
111  case UnqualifiedId::IK_Identifier:
112    TName = DeclarationName(Name.Identifier);
113    break;
114
115  case UnqualifiedId::IK_OperatorFunctionId:
116    TName = Context.DeclarationNames.getCXXOperatorName(
117                                              Name.OperatorFunctionId.Operator);
118    break;
119
120  case UnqualifiedId::IK_LiteralOperatorId:
121    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
122    break;
123
124  default:
125    return TNK_Non_template;
126  }
127
128  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
129
130  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
131                 LookupOrdinaryName);
132  R.suppressDiagnostics();
133  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
134                     MemberOfUnknownSpecialization);
135  if (R.empty() || R.isAmbiguous())
136    return TNK_Non_template;
137
138  TemplateName Template;
139  TemplateNameKind TemplateKind;
140
141  unsigned ResultCount = R.end() - R.begin();
142  if (ResultCount > 1) {
143    // We assume that we'll preserve the qualifier from a function
144    // template name in other ways.
145    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
146    TemplateKind = TNK_Function_template;
147  } else {
148    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
149
150    if (SS.isSet() && !SS.isInvalid()) {
151      NestedNameSpecifier *Qualifier
152        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
153      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
154    } else {
155      Template = TemplateName(TD);
156    }
157
158    if (isa<FunctionTemplateDecl>(TD))
159      TemplateKind = TNK_Function_template;
160    else {
161      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
162      TemplateKind = TNK_Type_template;
163    }
164  }
165
166  TemplateResult = TemplateTy::make(Template);
167  return TemplateKind;
168}
169
170bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
171                                       SourceLocation IILoc,
172                                       Scope *S,
173                                       const CXXScopeSpec *SS,
174                                       TemplateTy &SuggestedTemplate,
175                                       TemplateNameKind &SuggestedKind) {
176  // We can't recover unless there's a dependent scope specifier preceding the
177  // template name.
178  // FIXME: Typo correction?
179  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
180      computeDeclContext(*SS))
181    return false;
182
183  // The code is missing a 'template' keyword prior to the dependent template
184  // name.
185  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
186  Diag(IILoc, diag::err_template_kw_missing)
187    << Qualifier << II.getName()
188    << FixItHint::CreateInsertion(IILoc, "template ");
189  SuggestedTemplate
190    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
191  SuggestedKind = TNK_Dependent_template_name;
192  return true;
193}
194
195void Sema::LookupTemplateName(LookupResult &Found,
196                              Scope *S, CXXScopeSpec &SS,
197                              QualType ObjectType,
198                              bool EnteringContext,
199                              bool &MemberOfUnknownSpecialization) {
200  // Determine where to perform name lookup
201  MemberOfUnknownSpecialization = false;
202  DeclContext *LookupCtx = 0;
203  bool isDependent = false;
204  if (!ObjectType.isNull()) {
205    // This nested-name-specifier occurs in a member access expression, e.g.,
206    // x->B::f, and we are looking into the type of the object.
207    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
208    LookupCtx = computeDeclContext(ObjectType);
209    isDependent = ObjectType->isDependentType();
210    assert((isDependent || !ObjectType->isIncompleteType()) &&
211           "Caller should have completed object type");
212  } else if (SS.isSet()) {
213    // This nested-name-specifier occurs after another nested-name-specifier,
214    // so long into the context associated with the prior nested-name-specifier.
215    LookupCtx = computeDeclContext(SS, EnteringContext);
216    isDependent = isDependentScopeSpecifier(SS);
217
218    // The declaration context must be complete.
219    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
220      return;
221  }
222
223  bool ObjectTypeSearchedInScope = false;
224  if (LookupCtx) {
225    // Perform "qualified" name lookup into the declaration context we
226    // computed, which is either the type of the base of a member access
227    // expression or the declaration context associated with a prior
228    // nested-name-specifier.
229    LookupQualifiedName(Found, LookupCtx);
230
231    if (!ObjectType.isNull() && Found.empty()) {
232      // C++ [basic.lookup.classref]p1:
233      //   In a class member access expression (5.2.5), if the . or -> token is
234      //   immediately followed by an identifier followed by a <, the
235      //   identifier must be looked up to determine whether the < is the
236      //   beginning of a template argument list (14.2) or a less-than operator.
237      //   The identifier is first looked up in the class of the object
238      //   expression. If the identifier is not found, it is then looked up in
239      //   the context of the entire postfix-expression and shall name a class
240      //   or function template.
241      //
242      // FIXME: When we're instantiating a template, do we actually have to
243      // look in the scope of the template? Seems fishy...
244      if (S) LookupName(Found, S);
245      ObjectTypeSearchedInScope = true;
246    }
247  } else if (isDependent) {
248    // We cannot look into a dependent object type or nested nme
249    // specifier.
250    MemberOfUnknownSpecialization = true;
251    return;
252  } else {
253    // Perform unqualified name lookup in the current scope.
254    LookupName(Found, S);
255  }
256
257  if (Found.empty() && !isDependent) {
258    // If we did not find any names, attempt to correct any typos.
259    DeclarationName Name = Found.getLookupName();
260    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
261                                                 false, CTC_CXXCasts)) {
262      FilterAcceptableTemplateNames(Context, Found);
263      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
264        if (LookupCtx)
265          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
266            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
267            << FixItHint::CreateReplacement(Found.getNameLoc(),
268                                          Found.getLookupName().getAsString());
269        else
270          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
271            << Name << Found.getLookupName()
272            << FixItHint::CreateReplacement(Found.getNameLoc(),
273                                          Found.getLookupName().getAsString());
274        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
275          Diag(Template->getLocation(), diag::note_previous_decl)
276            << Template->getDeclName();
277      } else
278        Found.clear();
279    } else {
280      Found.clear();
281    }
282  }
283
284  FilterAcceptableTemplateNames(Context, Found);
285  if (Found.empty())
286    return;
287
288  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
289    // C++ [basic.lookup.classref]p1:
290    //   [...] If the lookup in the class of the object expression finds a
291    //   template, the name is also looked up in the context of the entire
292    //   postfix-expression and [...]
293    //
294    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
295                            LookupOrdinaryName);
296    LookupName(FoundOuter, S);
297    FilterAcceptableTemplateNames(Context, FoundOuter);
298
299    if (FoundOuter.empty()) {
300      //   - if the name is not found, the name found in the class of the
301      //     object expression is used, otherwise
302    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
303      //   - if the name is found in the context of the entire
304      //     postfix-expression and does not name a class template, the name
305      //     found in the class of the object expression is used, otherwise
306    } else {
307      //   - if the name found is a class template, it must refer to the same
308      //     entity as the one found in the class of the object expression,
309      //     otherwise the program is ill-formed.
310      if (!Found.isSingleResult() ||
311          Found.getFoundDecl()->getCanonicalDecl()
312            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
313        Diag(Found.getNameLoc(),
314             diag::ext_nested_name_member_ref_lookup_ambiguous)
315          << Found.getLookupName()
316          << ObjectType;
317        Diag(Found.getRepresentativeDecl()->getLocation(),
318             diag::note_ambig_member_ref_object_type)
319          << ObjectType;
320        Diag(FoundOuter.getFoundDecl()->getLocation(),
321             diag::note_ambig_member_ref_scope);
322
323        // Recover by taking the template that we found in the object
324        // expression's type.
325      }
326    }
327  }
328}
329
330/// ActOnDependentIdExpression - Handle a dependent id-expression that
331/// was just parsed.  This is only possible with an explicit scope
332/// specifier naming a dependent type.
333Sema::OwningExprResult
334Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
335                                 DeclarationName Name,
336                                 SourceLocation NameLoc,
337                                 bool isAddressOfOperand,
338                           const TemplateArgumentListInfo *TemplateArgs) {
339  NestedNameSpecifier *Qualifier
340    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
341
342  DeclContext *DC = getFunctionLevelDeclContext();
343
344  if (!isAddressOfOperand &&
345      isa<CXXMethodDecl>(DC) &&
346      cast<CXXMethodDecl>(DC)->isInstance()) {
347    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
348
349    // Since the 'this' expression is synthesized, we don't need to
350    // perform the double-lookup check.
351    NamedDecl *FirstQualifierInScope = 0;
352
353    return Owned(CXXDependentScopeMemberExpr::Create(Context,
354                                                     /*This*/ 0, ThisType,
355                                                     /*IsArrow*/ true,
356                                                     /*Op*/ SourceLocation(),
357                                                     Qualifier, SS.getRange(),
358                                                     FirstQualifierInScope,
359                                                     Name, NameLoc,
360                                                     TemplateArgs));
361  }
362
363  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
364}
365
366Sema::OwningExprResult
367Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
368                                DeclarationName Name,
369                                SourceLocation NameLoc,
370                                const TemplateArgumentListInfo *TemplateArgs) {
371  return Owned(DependentScopeDeclRefExpr::Create(Context,
372               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
373                                                 SS.getRange(),
374                                                 Name, NameLoc,
375                                                 TemplateArgs));
376}
377
378/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
379/// that the template parameter 'PrevDecl' is being shadowed by a new
380/// declaration at location Loc. Returns true to indicate that this is
381/// an error, and false otherwise.
382bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
383  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
384
385  // Microsoft Visual C++ permits template parameters to be shadowed.
386  if (getLangOptions().Microsoft)
387    return false;
388
389  // C++ [temp.local]p4:
390  //   A template-parameter shall not be redeclared within its
391  //   scope (including nested scopes).
392  Diag(Loc, diag::err_template_param_shadow)
393    << cast<NamedDecl>(PrevDecl)->getDeclName();
394  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
395  return true;
396}
397
398/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
399/// the parameter D to reference the templated declaration and return a pointer
400/// to the template declaration. Otherwise, do nothing to D and return null.
401TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
402  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
403    D = DeclPtrTy::make(Temp->getTemplatedDecl());
404    return Temp;
405  }
406  return 0;
407}
408
409static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
410                                            const ParsedTemplateArgument &Arg) {
411
412  switch (Arg.getKind()) {
413  case ParsedTemplateArgument::Type: {
414    TypeSourceInfo *DI;
415    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
416    if (!DI)
417      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
418    return TemplateArgumentLoc(TemplateArgument(T), DI);
419  }
420
421  case ParsedTemplateArgument::NonType: {
422    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
423    return TemplateArgumentLoc(TemplateArgument(E), E);
424  }
425
426  case ParsedTemplateArgument::Template: {
427    TemplateName Template
428      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
429    return TemplateArgumentLoc(TemplateArgument(Template),
430                               Arg.getScopeSpec().getRange(),
431                               Arg.getLocation());
432  }
433  }
434
435  llvm_unreachable("Unhandled parsed template argument");
436  return TemplateArgumentLoc();
437}
438
439/// \brief Translates template arguments as provided by the parser
440/// into template arguments used by semantic analysis.
441void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
442                                      TemplateArgumentListInfo &TemplateArgs) {
443 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
444   TemplateArgs.addArgument(translateTemplateArgument(*this,
445                                                      TemplateArgsIn[I]));
446}
447
448/// ActOnTypeParameter - Called when a C++ template type parameter
449/// (e.g., "typename T") has been parsed. Typename specifies whether
450/// the keyword "typename" was used to declare the type parameter
451/// (otherwise, "class" was used), and KeyLoc is the location of the
452/// "class" or "typename" keyword. ParamName is the name of the
453/// parameter (NULL indicates an unnamed template parameter) and
454/// ParamName is the location of the parameter name (if any).
455/// If the type parameter has a default argument, it will be added
456/// later via ActOnTypeParameterDefault.
457Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
458                                         SourceLocation EllipsisLoc,
459                                         SourceLocation KeyLoc,
460                                         IdentifierInfo *ParamName,
461                                         SourceLocation ParamNameLoc,
462                                         unsigned Depth, unsigned Position) {
463  assert(S->isTemplateParamScope() &&
464         "Template type parameter not in template parameter scope!");
465  bool Invalid = false;
466
467  if (ParamName) {
468    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
469                                           LookupOrdinaryName,
470                                           ForRedeclaration);
471    if (PrevDecl && PrevDecl->isTemplateParameter())
472      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
473                                                           PrevDecl);
474  }
475
476  SourceLocation Loc = ParamNameLoc;
477  if (!ParamName)
478    Loc = KeyLoc;
479
480  TemplateTypeParmDecl *Param
481    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
482                                   Loc, Depth, Position, ParamName, Typename,
483                                   Ellipsis);
484  if (Invalid)
485    Param->setInvalidDecl();
486
487  if (ParamName) {
488    // Add the template parameter into the current scope.
489    S->AddDecl(DeclPtrTy::make(Param));
490    IdResolver.AddDecl(Param);
491  }
492
493  return DeclPtrTy::make(Param);
494}
495
496/// ActOnTypeParameterDefault - Adds a default argument (the type
497/// Default) to the given template type parameter (TypeParam).
498void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
499                                     SourceLocation EqualLoc,
500                                     SourceLocation DefaultLoc,
501                                     TypeTy *DefaultT) {
502  TemplateTypeParmDecl *Parm
503    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
504
505  TypeSourceInfo *DefaultTInfo;
506  GetTypeFromParser(DefaultT, &DefaultTInfo);
507
508  assert(DefaultTInfo && "expected source information for type");
509
510  // C++0x [temp.param]p9:
511  // A default template-argument may be specified for any kind of
512  // template-parameter that is not a template parameter pack.
513  if (Parm->isParameterPack()) {
514    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
515    return;
516  }
517
518  // C++ [temp.param]p14:
519  //   A template-parameter shall not be used in its own default argument.
520  // FIXME: Implement this check! Needs a recursive walk over the types.
521
522  // Check the template argument itself.
523  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
524    Parm->setInvalidDecl();
525    return;
526  }
527
528  Parm->setDefaultArgument(DefaultTInfo, false);
529}
530
531/// \brief Check that the type of a non-type template parameter is
532/// well-formed.
533///
534/// \returns the (possibly-promoted) parameter type if valid;
535/// otherwise, produces a diagnostic and returns a NULL type.
536QualType
537Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
538  // We don't allow variably-modified types as the type of non-type template
539  // parameters.
540  if (T->isVariablyModifiedType()) {
541    Diag(Loc, diag::err_variably_modified_nontype_template_param)
542      << T;
543    return QualType();
544  }
545
546  // C++ [temp.param]p4:
547  //
548  // A non-type template-parameter shall have one of the following
549  // (optionally cv-qualified) types:
550  //
551  //       -- integral or enumeration type,
552  if (T->isIntegralType() || T->isEnumeralType() ||
553      //   -- pointer to object or pointer to function,
554      (T->isPointerType() &&
555       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
556        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
557      //   -- reference to object or reference to function,
558      T->isReferenceType() ||
559      //   -- pointer to member.
560      T->isMemberPointerType() ||
561      // If T is a dependent type, we can't do the check now, so we
562      // assume that it is well-formed.
563      T->isDependentType())
564    return T;
565  // C++ [temp.param]p8:
566  //
567  //   A non-type template-parameter of type "array of T" or
568  //   "function returning T" is adjusted to be of type "pointer to
569  //   T" or "pointer to function returning T", respectively.
570  else if (T->isArrayType())
571    // FIXME: Keep the type prior to promotion?
572    return Context.getArrayDecayedType(T);
573  else if (T->isFunctionType())
574    // FIXME: Keep the type prior to promotion?
575    return Context.getPointerType(T);
576
577  Diag(Loc, diag::err_template_nontype_parm_bad_type)
578    << T;
579
580  return QualType();
581}
582
583/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
584/// template parameter (e.g., "int Size" in "template<int Size>
585/// class Array") has been parsed. S is the current scope and D is
586/// the parsed declarator.
587Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
588                                                    unsigned Depth,
589                                                    unsigned Position) {
590  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
591  QualType T = TInfo->getType();
592
593  assert(S->isTemplateParamScope() &&
594         "Non-type template parameter not in template parameter scope!");
595  bool Invalid = false;
596
597  IdentifierInfo *ParamName = D.getIdentifier();
598  if (ParamName) {
599    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
600                                           LookupOrdinaryName,
601                                           ForRedeclaration);
602    if (PrevDecl && PrevDecl->isTemplateParameter())
603      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
604                                                           PrevDecl);
605  }
606
607  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
608  if (T.isNull()) {
609    T = Context.IntTy; // Recover with an 'int' type.
610    Invalid = true;
611  }
612
613  NonTypeTemplateParmDecl *Param
614    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
615                                      D.getIdentifierLoc(),
616                                      Depth, Position, ParamName, T, TInfo);
617  if (Invalid)
618    Param->setInvalidDecl();
619
620  if (D.getIdentifier()) {
621    // Add the template parameter into the current scope.
622    S->AddDecl(DeclPtrTy::make(Param));
623    IdResolver.AddDecl(Param);
624  }
625  return DeclPtrTy::make(Param);
626}
627
628/// \brief Adds a default argument to the given non-type template
629/// parameter.
630void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
631                                                SourceLocation EqualLoc,
632                                                ExprArg DefaultE) {
633  NonTypeTemplateParmDecl *TemplateParm
634    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
635  Expr *Default = static_cast<Expr *>(DefaultE.get());
636
637  // C++ [temp.param]p14:
638  //   A template-parameter shall not be used in its own default argument.
639  // FIXME: Implement this check! Needs a recursive walk over the types.
640
641  // Check the well-formedness of the default template argument.
642  TemplateArgument Converted;
643  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
644                            Converted)) {
645    TemplateParm->setInvalidDecl();
646    return;
647  }
648
649  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>(), false);
650}
651
652
653/// ActOnTemplateTemplateParameter - Called when a C++ template template
654/// parameter (e.g. T in template <template <typename> class T> class array)
655/// has been parsed. S is the current scope.
656Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
657                                                     SourceLocation TmpLoc,
658                                                     TemplateParamsTy *Params,
659                                                     IdentifierInfo *Name,
660                                                     SourceLocation NameLoc,
661                                                     unsigned Depth,
662                                                     unsigned Position) {
663  assert(S->isTemplateParamScope() &&
664         "Template template parameter not in template parameter scope!");
665
666  // Construct the parameter object.
667  TemplateTemplateParmDecl *Param =
668    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
669                                     TmpLoc, Depth, Position, Name,
670                                     (TemplateParameterList*)Params);
671
672  // Make sure the parameter is valid.
673  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
674  // do anything yet. However, if the template parameter list or (eventual)
675  // default value is ever invalidated, that will propagate here.
676  bool Invalid = false;
677  if (Invalid) {
678    Param->setInvalidDecl();
679  }
680
681  // If the tt-param has a name, then link the identifier into the scope
682  // and lookup mechanisms.
683  if (Name) {
684    S->AddDecl(DeclPtrTy::make(Param));
685    IdResolver.AddDecl(Param);
686  }
687
688  return DeclPtrTy::make(Param);
689}
690
691/// \brief Adds a default argument to the given template template
692/// parameter.
693void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
694                                                 SourceLocation EqualLoc,
695                                        const ParsedTemplateArgument &Default) {
696  TemplateTemplateParmDecl *TemplateParm
697    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
698
699  // C++ [temp.param]p14:
700  //   A template-parameter shall not be used in its own default argument.
701  // FIXME: Implement this check! Needs a recursive walk over the types.
702
703  // Check only that we have a template template argument. We don't want to
704  // try to check well-formedness now, because our template template parameter
705  // might have dependent types in its template parameters, which we wouldn't
706  // be able to match now.
707  //
708  // If none of the template template parameter's template arguments mention
709  // other template parameters, we could actually perform more checking here.
710  // However, it isn't worth doing.
711  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
712  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
713    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
714      << DefaultArg.getSourceRange();
715    return;
716  }
717
718  TemplateParm->setDefaultArgument(DefaultArg, false);
719}
720
721/// ActOnTemplateParameterList - Builds a TemplateParameterList that
722/// contains the template parameters in Params/NumParams.
723Sema::TemplateParamsTy *
724Sema::ActOnTemplateParameterList(unsigned Depth,
725                                 SourceLocation ExportLoc,
726                                 SourceLocation TemplateLoc,
727                                 SourceLocation LAngleLoc,
728                                 DeclPtrTy *Params, unsigned NumParams,
729                                 SourceLocation RAngleLoc) {
730  if (ExportLoc.isValid())
731    Diag(ExportLoc, diag::warn_template_export_unsupported);
732
733  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
734                                       (NamedDecl**)Params, NumParams,
735                                       RAngleLoc);
736}
737
738static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
739  if (SS.isSet())
740    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
741                        SS.getRange());
742}
743
744Sema::DeclResult
745Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
746                         SourceLocation KWLoc, CXXScopeSpec &SS,
747                         IdentifierInfo *Name, SourceLocation NameLoc,
748                         AttributeList *Attr,
749                         TemplateParameterList *TemplateParams,
750                         AccessSpecifier AS) {
751  assert(TemplateParams && TemplateParams->size() > 0 &&
752         "No template parameters");
753  assert(TUK != TUK_Reference && "Can only declare or define class templates");
754  bool Invalid = false;
755
756  // Check that we can declare a template here.
757  if (CheckTemplateDeclScope(S, TemplateParams))
758    return true;
759
760  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
761  assert(Kind != TTK_Enum && "can't build template of enumerated type");
762
763  // There is no such thing as an unnamed class template.
764  if (!Name) {
765    Diag(KWLoc, diag::err_template_unnamed_class);
766    return true;
767  }
768
769  // Find any previous declaration with this name.
770  DeclContext *SemanticContext;
771  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
772                        ForRedeclaration);
773  if (SS.isNotEmpty() && !SS.isInvalid()) {
774    SemanticContext = computeDeclContext(SS, true);
775    if (!SemanticContext) {
776      // FIXME: Produce a reasonable diagnostic here
777      return true;
778    }
779
780    if (RequireCompleteDeclContext(SS, SemanticContext))
781      return true;
782
783    LookupQualifiedName(Previous, SemanticContext);
784  } else {
785    SemanticContext = CurContext;
786    LookupName(Previous, S);
787  }
788
789  if (Previous.isAmbiguous())
790    return true;
791
792  NamedDecl *PrevDecl = 0;
793  if (Previous.begin() != Previous.end())
794    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
795
796  // If there is a previous declaration with the same name, check
797  // whether this is a valid redeclaration.
798  ClassTemplateDecl *PrevClassTemplate
799    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
800
801  // We may have found the injected-class-name of a class template,
802  // class template partial specialization, or class template specialization.
803  // In these cases, grab the template that is being defined or specialized.
804  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
805      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
806    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
807    PrevClassTemplate
808      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
809    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
810      PrevClassTemplate
811        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
812            ->getSpecializedTemplate();
813    }
814  }
815
816  if (TUK == TUK_Friend) {
817    // C++ [namespace.memdef]p3:
818    //   [...] When looking for a prior declaration of a class or a function
819    //   declared as a friend, and when the name of the friend class or
820    //   function is neither a qualified name nor a template-id, scopes outside
821    //   the innermost enclosing namespace scope are not considered.
822    if (!SS.isSet()) {
823      DeclContext *OutermostContext = CurContext;
824      while (!OutermostContext->isFileContext())
825        OutermostContext = OutermostContext->getLookupParent();
826
827      if (PrevDecl &&
828          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
829           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
830        SemanticContext = PrevDecl->getDeclContext();
831      } else {
832        // Declarations in outer scopes don't matter. However, the outermost
833        // context we computed is the semantic context for our new
834        // declaration.
835        PrevDecl = PrevClassTemplate = 0;
836        SemanticContext = OutermostContext;
837      }
838    }
839
840    if (CurContext->isDependentContext()) {
841      // If this is a dependent context, we don't want to link the friend
842      // class template to the template in scope, because that would perform
843      // checking of the template parameter lists that can't be performed
844      // until the outer context is instantiated.
845      PrevDecl = PrevClassTemplate = 0;
846    }
847  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
848    PrevDecl = PrevClassTemplate = 0;
849
850  if (PrevClassTemplate) {
851    // Ensure that the template parameter lists are compatible.
852    if (!TemplateParameterListsAreEqual(TemplateParams,
853                                   PrevClassTemplate->getTemplateParameters(),
854                                        /*Complain=*/true,
855                                        TPL_TemplateMatch))
856      return true;
857
858    // C++ [temp.class]p4:
859    //   In a redeclaration, partial specialization, explicit
860    //   specialization or explicit instantiation of a class template,
861    //   the class-key shall agree in kind with the original class
862    //   template declaration (7.1.5.3).
863    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
864    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
865      Diag(KWLoc, diag::err_use_with_wrong_tag)
866        << Name
867        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
868      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
869      Kind = PrevRecordDecl->getTagKind();
870    }
871
872    // Check for redefinition of this class template.
873    if (TUK == TUK_Definition) {
874      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
875        Diag(NameLoc, diag::err_redefinition) << Name;
876        Diag(Def->getLocation(), diag::note_previous_definition);
877        // FIXME: Would it make sense to try to "forget" the previous
878        // definition, as part of error recovery?
879        return true;
880      }
881    }
882  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
883    // Maybe we will complain about the shadowed template parameter.
884    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
885    // Just pretend that we didn't see the previous declaration.
886    PrevDecl = 0;
887  } else if (PrevDecl) {
888    // C++ [temp]p5:
889    //   A class template shall not have the same name as any other
890    //   template, class, function, object, enumeration, enumerator,
891    //   namespace, or type in the same scope (3.3), except as specified
892    //   in (14.5.4).
893    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
894    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
895    return true;
896  }
897
898  // Check the template parameter list of this declaration, possibly
899  // merging in the template parameter list from the previous class
900  // template declaration.
901  if (CheckTemplateParameterList(TemplateParams,
902            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
903                                 TPC_ClassTemplate))
904    Invalid = true;
905
906  if (SS.isSet()) {
907    // If the name of the template was qualified, we must be defining the
908    // template out-of-line.
909    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
910        !(TUK == TUK_Friend && CurContext->isDependentContext()))
911      Diag(NameLoc, diag::err_member_def_does_not_match)
912        << Name << SemanticContext << SS.getRange();
913  }
914
915  CXXRecordDecl *NewClass =
916    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
917                          PrevClassTemplate?
918                            PrevClassTemplate->getTemplatedDecl() : 0,
919                          /*DelayTypeCreation=*/true);
920  SetNestedNameSpecifier(NewClass, SS);
921
922  ClassTemplateDecl *NewTemplate
923    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
924                                DeclarationName(Name), TemplateParams,
925                                NewClass, PrevClassTemplate);
926  NewClass->setDescribedClassTemplate(NewTemplate);
927
928  // Build the type for the class template declaration now.
929  QualType T = NewTemplate->getInjectedClassNameSpecialization(Context);
930  T = Context.getInjectedClassNameType(NewClass, T);
931  assert(T->isDependentType() && "Class template type is not dependent?");
932  (void)T;
933
934  // If we are providing an explicit specialization of a member that is a
935  // class template, make a note of that.
936  if (PrevClassTemplate &&
937      PrevClassTemplate->getInstantiatedFromMemberTemplate())
938    PrevClassTemplate->setMemberSpecialization();
939
940  // Set the access specifier.
941  if (!Invalid && TUK != TUK_Friend)
942    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
943
944  // Set the lexical context of these templates
945  NewClass->setLexicalDeclContext(CurContext);
946  NewTemplate->setLexicalDeclContext(CurContext);
947
948  if (TUK == TUK_Definition)
949    NewClass->startDefinition();
950
951  if (Attr)
952    ProcessDeclAttributeList(S, NewClass, Attr);
953
954  if (TUK != TUK_Friend)
955    PushOnScopeChains(NewTemplate, S);
956  else {
957    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
958      NewTemplate->setAccess(PrevClassTemplate->getAccess());
959      NewClass->setAccess(PrevClassTemplate->getAccess());
960    }
961
962    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
963                                       PrevClassTemplate != NULL);
964
965    // Friend templates are visible in fairly strange ways.
966    if (!CurContext->isDependentContext()) {
967      DeclContext *DC = SemanticContext->getLookupContext();
968      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
969      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
970        PushOnScopeChains(NewTemplate, EnclosingScope,
971                          /* AddToContext = */ false);
972    }
973
974    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
975                                            NewClass->getLocation(),
976                                            NewTemplate,
977                                    /*FIXME:*/NewClass->getLocation());
978    Friend->setAccess(AS_public);
979    CurContext->addDecl(Friend);
980  }
981
982  if (Invalid) {
983    NewTemplate->setInvalidDecl();
984    NewClass->setInvalidDecl();
985  }
986  return DeclPtrTy::make(NewTemplate);
987}
988
989/// \brief Diagnose the presence of a default template argument on a
990/// template parameter, which is ill-formed in certain contexts.
991///
992/// \returns true if the default template argument should be dropped.
993static bool DiagnoseDefaultTemplateArgument(Sema &S,
994                                            Sema::TemplateParamListContext TPC,
995                                            SourceLocation ParamLoc,
996                                            SourceRange DefArgRange) {
997  switch (TPC) {
998  case Sema::TPC_ClassTemplate:
999    return false;
1000
1001  case Sema::TPC_FunctionTemplate:
1002    // C++ [temp.param]p9:
1003    //   A default template-argument shall not be specified in a
1004    //   function template declaration or a function template
1005    //   definition [...]
1006    // (This sentence is not in C++0x, per DR226).
1007    if (!S.getLangOptions().CPlusPlus0x)
1008      S.Diag(ParamLoc,
1009             diag::err_template_parameter_default_in_function_template)
1010        << DefArgRange;
1011    return false;
1012
1013  case Sema::TPC_ClassTemplateMember:
1014    // C++0x [temp.param]p9:
1015    //   A default template-argument shall not be specified in the
1016    //   template-parameter-lists of the definition of a member of a
1017    //   class template that appears outside of the member's class.
1018    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1019      << DefArgRange;
1020    return true;
1021
1022  case Sema::TPC_FriendFunctionTemplate:
1023    // C++ [temp.param]p9:
1024    //   A default template-argument shall not be specified in a
1025    //   friend template declaration.
1026    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1027      << DefArgRange;
1028    return true;
1029
1030    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1031    // for friend function templates if there is only a single
1032    // declaration (and it is a definition). Strange!
1033  }
1034
1035  return false;
1036}
1037
1038/// \brief Checks the validity of a template parameter list, possibly
1039/// considering the template parameter list from a previous
1040/// declaration.
1041///
1042/// If an "old" template parameter list is provided, it must be
1043/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1044/// template parameter list.
1045///
1046/// \param NewParams Template parameter list for a new template
1047/// declaration. This template parameter list will be updated with any
1048/// default arguments that are carried through from the previous
1049/// template parameter list.
1050///
1051/// \param OldParams If provided, template parameter list from a
1052/// previous declaration of the same template. Default template
1053/// arguments will be merged from the old template parameter list to
1054/// the new template parameter list.
1055///
1056/// \param TPC Describes the context in which we are checking the given
1057/// template parameter list.
1058///
1059/// \returns true if an error occurred, false otherwise.
1060bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1061                                      TemplateParameterList *OldParams,
1062                                      TemplateParamListContext TPC) {
1063  bool Invalid = false;
1064
1065  // C++ [temp.param]p10:
1066  //   The set of default template-arguments available for use with a
1067  //   template declaration or definition is obtained by merging the
1068  //   default arguments from the definition (if in scope) and all
1069  //   declarations in scope in the same way default function
1070  //   arguments are (8.3.6).
1071  bool SawDefaultArgument = false;
1072  SourceLocation PreviousDefaultArgLoc;
1073
1074  bool SawParameterPack = false;
1075  SourceLocation ParameterPackLoc;
1076
1077  // Dummy initialization to avoid warnings.
1078  TemplateParameterList::iterator OldParam = NewParams->end();
1079  if (OldParams)
1080    OldParam = OldParams->begin();
1081
1082  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1083                                    NewParamEnd = NewParams->end();
1084       NewParam != NewParamEnd; ++NewParam) {
1085    // Variables used to diagnose redundant default arguments
1086    bool RedundantDefaultArg = false;
1087    SourceLocation OldDefaultLoc;
1088    SourceLocation NewDefaultLoc;
1089
1090    // Variables used to diagnose missing default arguments
1091    bool MissingDefaultArg = false;
1092
1093    // C++0x [temp.param]p11:
1094    // If a template parameter of a class template is a template parameter pack,
1095    // it must be the last template parameter.
1096    if (SawParameterPack) {
1097      Diag(ParameterPackLoc,
1098           diag::err_template_param_pack_must_be_last_template_parameter);
1099      Invalid = true;
1100    }
1101
1102    if (TemplateTypeParmDecl *NewTypeParm
1103          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1104      // Check the presence of a default argument here.
1105      if (NewTypeParm->hasDefaultArgument() &&
1106          DiagnoseDefaultTemplateArgument(*this, TPC,
1107                                          NewTypeParm->getLocation(),
1108               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1109                                                       .getSourceRange()))
1110        NewTypeParm->removeDefaultArgument();
1111
1112      // Merge default arguments for template type parameters.
1113      TemplateTypeParmDecl *OldTypeParm
1114          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1115
1116      if (NewTypeParm->isParameterPack()) {
1117        assert(!NewTypeParm->hasDefaultArgument() &&
1118               "Parameter packs can't have a default argument!");
1119        SawParameterPack = true;
1120        ParameterPackLoc = NewTypeParm->getLocation();
1121      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1122                 NewTypeParm->hasDefaultArgument()) {
1123        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1124        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1125        SawDefaultArgument = true;
1126        RedundantDefaultArg = true;
1127        PreviousDefaultArgLoc = NewDefaultLoc;
1128      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1129        // Merge the default argument from the old declaration to the
1130        // new declaration.
1131        SawDefaultArgument = true;
1132        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1133                                        true);
1134        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1135      } else if (NewTypeParm->hasDefaultArgument()) {
1136        SawDefaultArgument = true;
1137        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1138      } else if (SawDefaultArgument)
1139        MissingDefaultArg = true;
1140    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1141               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1142      // Check the presence of a default argument here.
1143      if (NewNonTypeParm->hasDefaultArgument() &&
1144          DiagnoseDefaultTemplateArgument(*this, TPC,
1145                                          NewNonTypeParm->getLocation(),
1146                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1147        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1148        NewNonTypeParm->removeDefaultArgument();
1149      }
1150
1151      // Merge default arguments for non-type template parameters
1152      NonTypeTemplateParmDecl *OldNonTypeParm
1153        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1154      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1155          NewNonTypeParm->hasDefaultArgument()) {
1156        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1157        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1158        SawDefaultArgument = true;
1159        RedundantDefaultArg = true;
1160        PreviousDefaultArgLoc = NewDefaultLoc;
1161      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1162        // Merge the default argument from the old declaration to the
1163        // new declaration.
1164        SawDefaultArgument = true;
1165        // FIXME: We need to create a new kind of "default argument"
1166        // expression that points to a previous template template
1167        // parameter.
1168        NewNonTypeParm->setDefaultArgument(
1169                                         OldNonTypeParm->getDefaultArgument(),
1170                                         /*Inherited=*/ true);
1171        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1172      } else if (NewNonTypeParm->hasDefaultArgument()) {
1173        SawDefaultArgument = true;
1174        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1175      } else if (SawDefaultArgument)
1176        MissingDefaultArg = true;
1177    } else {
1178      // Check the presence of a default argument here.
1179      TemplateTemplateParmDecl *NewTemplateParm
1180        = cast<TemplateTemplateParmDecl>(*NewParam);
1181      if (NewTemplateParm->hasDefaultArgument() &&
1182          DiagnoseDefaultTemplateArgument(*this, TPC,
1183                                          NewTemplateParm->getLocation(),
1184                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1185        NewTemplateParm->removeDefaultArgument();
1186
1187      // Merge default arguments for template template parameters
1188      TemplateTemplateParmDecl *OldTemplateParm
1189        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1190      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1191          NewTemplateParm->hasDefaultArgument()) {
1192        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1193        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1194        SawDefaultArgument = true;
1195        RedundantDefaultArg = true;
1196        PreviousDefaultArgLoc = NewDefaultLoc;
1197      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1198        // Merge the default argument from the old declaration to the
1199        // new declaration.
1200        SawDefaultArgument = true;
1201        // FIXME: We need to create a new kind of "default argument" expression
1202        // that points to a previous template template parameter.
1203        NewTemplateParm->setDefaultArgument(
1204                                          OldTemplateParm->getDefaultArgument(),
1205                                          /*Inherited=*/ true);
1206        PreviousDefaultArgLoc
1207          = OldTemplateParm->getDefaultArgument().getLocation();
1208      } else if (NewTemplateParm->hasDefaultArgument()) {
1209        SawDefaultArgument = true;
1210        PreviousDefaultArgLoc
1211          = NewTemplateParm->getDefaultArgument().getLocation();
1212      } else if (SawDefaultArgument)
1213        MissingDefaultArg = true;
1214    }
1215
1216    if (RedundantDefaultArg) {
1217      // C++ [temp.param]p12:
1218      //   A template-parameter shall not be given default arguments
1219      //   by two different declarations in the same scope.
1220      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1221      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1222      Invalid = true;
1223    } else if (MissingDefaultArg) {
1224      // C++ [temp.param]p11:
1225      //   If a template-parameter has a default template-argument,
1226      //   all subsequent template-parameters shall have a default
1227      //   template-argument supplied.
1228      Diag((*NewParam)->getLocation(),
1229           diag::err_template_param_default_arg_missing);
1230      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1231      Invalid = true;
1232    }
1233
1234    // If we have an old template parameter list that we're merging
1235    // in, move on to the next parameter.
1236    if (OldParams)
1237      ++OldParam;
1238  }
1239
1240  return Invalid;
1241}
1242
1243/// \brief Match the given template parameter lists to the given scope
1244/// specifier, returning the template parameter list that applies to the
1245/// name.
1246///
1247/// \param DeclStartLoc the start of the declaration that has a scope
1248/// specifier or a template parameter list.
1249///
1250/// \param SS the scope specifier that will be matched to the given template
1251/// parameter lists. This scope specifier precedes a qualified name that is
1252/// being declared.
1253///
1254/// \param ParamLists the template parameter lists, from the outermost to the
1255/// innermost template parameter lists.
1256///
1257/// \param NumParamLists the number of template parameter lists in ParamLists.
1258///
1259/// \param IsFriend Whether to apply the slightly different rules for
1260/// matching template parameters to scope specifiers in friend
1261/// declarations.
1262///
1263/// \param IsExplicitSpecialization will be set true if the entity being
1264/// declared is an explicit specialization, false otherwise.
1265///
1266/// \returns the template parameter list, if any, that corresponds to the
1267/// name that is preceded by the scope specifier @p SS. This template
1268/// parameter list may be have template parameters (if we're declaring a
1269/// template) or may have no template parameters (if we're declaring a
1270/// template specialization), or may be NULL (if we were's declaring isn't
1271/// itself a template).
1272TemplateParameterList *
1273Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1274                                              const CXXScopeSpec &SS,
1275                                          TemplateParameterList **ParamLists,
1276                                              unsigned NumParamLists,
1277                                              bool IsFriend,
1278                                              bool &IsExplicitSpecialization) {
1279  IsExplicitSpecialization = false;
1280
1281  // Find the template-ids that occur within the nested-name-specifier. These
1282  // template-ids will match up with the template parameter lists.
1283  llvm::SmallVector<const TemplateSpecializationType *, 4>
1284    TemplateIdsInSpecifier;
1285  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1286    ExplicitSpecializationsInSpecifier;
1287  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1288       NNS; NNS = NNS->getPrefix()) {
1289    const Type *T = NNS->getAsType();
1290    if (!T) break;
1291
1292    // C++0x [temp.expl.spec]p17:
1293    //   A member or a member template may be nested within many
1294    //   enclosing class templates. In an explicit specialization for
1295    //   such a member, the member declaration shall be preceded by a
1296    //   template<> for each enclosing class template that is
1297    //   explicitly specialized.
1298    //
1299    // Following the existing practice of GNU and EDG, we allow a typedef of a
1300    // template specialization type.
1301    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1302      T = TT->LookThroughTypedefs().getTypePtr();
1303
1304    if (const TemplateSpecializationType *SpecType
1305                                  = dyn_cast<TemplateSpecializationType>(T)) {
1306      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1307      if (!Template)
1308        continue; // FIXME: should this be an error? probably...
1309
1310      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1311        ClassTemplateSpecializationDecl *SpecDecl
1312          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1313        // If the nested name specifier refers to an explicit specialization,
1314        // we don't need a template<> header.
1315        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1316          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1317          continue;
1318        }
1319      }
1320
1321      TemplateIdsInSpecifier.push_back(SpecType);
1322    }
1323  }
1324
1325  // Reverse the list of template-ids in the scope specifier, so that we can
1326  // more easily match up the template-ids and the template parameter lists.
1327  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1328
1329  SourceLocation FirstTemplateLoc = DeclStartLoc;
1330  if (NumParamLists)
1331    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1332
1333  // Match the template-ids found in the specifier to the template parameter
1334  // lists.
1335  unsigned Idx = 0;
1336  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1337       Idx != NumTemplateIds; ++Idx) {
1338    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1339    bool DependentTemplateId = TemplateId->isDependentType();
1340    if (Idx >= NumParamLists) {
1341      // We have a template-id without a corresponding template parameter
1342      // list.
1343
1344      // ...which is fine if this is a friend declaration.
1345      if (IsFriend) {
1346        IsExplicitSpecialization = true;
1347        break;
1348      }
1349
1350      if (DependentTemplateId) {
1351        // FIXME: the location information here isn't great.
1352        Diag(SS.getRange().getBegin(),
1353             diag::err_template_spec_needs_template_parameters)
1354          << TemplateId
1355          << SS.getRange();
1356      } else {
1357        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1358          << SS.getRange()
1359          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1360        IsExplicitSpecialization = true;
1361      }
1362      return 0;
1363    }
1364
1365    // Check the template parameter list against its corresponding template-id.
1366    if (DependentTemplateId) {
1367      TemplateParameterList *ExpectedTemplateParams = 0;
1368
1369      // Are there cases in (e.g.) friends where this won't match?
1370      if (const InjectedClassNameType *Injected
1371            = TemplateId->getAs<InjectedClassNameType>()) {
1372        CXXRecordDecl *Record = Injected->getDecl();
1373        if (ClassTemplatePartialSpecializationDecl *Partial =
1374              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1375          ExpectedTemplateParams = Partial->getTemplateParameters();
1376        else
1377          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1378            ->getTemplateParameters();
1379      }
1380
1381      if (ExpectedTemplateParams)
1382        TemplateParameterListsAreEqual(ParamLists[Idx],
1383                                       ExpectedTemplateParams,
1384                                       true, TPL_TemplateMatch);
1385
1386      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1387    } else if (ParamLists[Idx]->size() > 0)
1388      Diag(ParamLists[Idx]->getTemplateLoc(),
1389           diag::err_template_param_list_matches_nontemplate)
1390        << TemplateId
1391        << ParamLists[Idx]->getSourceRange();
1392    else
1393      IsExplicitSpecialization = true;
1394  }
1395
1396  // If there were at least as many template-ids as there were template
1397  // parameter lists, then there are no template parameter lists remaining for
1398  // the declaration itself.
1399  if (Idx >= NumParamLists)
1400    return 0;
1401
1402  // If there were too many template parameter lists, complain about that now.
1403  if (Idx != NumParamLists - 1) {
1404    while (Idx < NumParamLists - 1) {
1405      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1406      Diag(ParamLists[Idx]->getTemplateLoc(),
1407           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1408                               : diag::err_template_spec_extra_headers)
1409        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1410                       ParamLists[Idx]->getRAngleLoc());
1411
1412      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1413        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1414             diag::note_explicit_template_spec_does_not_need_header)
1415          << ExplicitSpecializationsInSpecifier.back();
1416        ExplicitSpecializationsInSpecifier.pop_back();
1417      }
1418
1419      ++Idx;
1420    }
1421  }
1422
1423  // Return the last template parameter list, which corresponds to the
1424  // entity being declared.
1425  return ParamLists[NumParamLists - 1];
1426}
1427
1428QualType Sema::CheckTemplateIdType(TemplateName Name,
1429                                   SourceLocation TemplateLoc,
1430                              const TemplateArgumentListInfo &TemplateArgs) {
1431  TemplateDecl *Template = Name.getAsTemplateDecl();
1432  if (!Template) {
1433    // The template name does not resolve to a template, so we just
1434    // build a dependent template-id type.
1435    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1436  }
1437
1438  // Check that the template argument list is well-formed for this
1439  // template.
1440  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1441                                        TemplateArgs.size());
1442  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1443                                false, Converted))
1444    return QualType();
1445
1446  assert((Converted.structuredSize() ==
1447            Template->getTemplateParameters()->size()) &&
1448         "Converted template argument list is too short!");
1449
1450  QualType CanonType;
1451
1452  if (Name.isDependent() ||
1453      TemplateSpecializationType::anyDependentTemplateArguments(
1454                                                      TemplateArgs)) {
1455    // This class template specialization is a dependent
1456    // type. Therefore, its canonical type is another class template
1457    // specialization type that contains all of the converted
1458    // arguments in canonical form. This ensures that, e.g., A<T> and
1459    // A<T, T> have identical types when A is declared as:
1460    //
1461    //   template<typename T, typename U = T> struct A;
1462    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1463    CanonType = Context.getTemplateSpecializationType(CanonName,
1464                                                   Converted.getFlatArguments(),
1465                                                   Converted.flatSize());
1466
1467    // FIXME: CanonType is not actually the canonical type, and unfortunately
1468    // it is a TemplateSpecializationType that we will never use again.
1469    // In the future, we need to teach getTemplateSpecializationType to only
1470    // build the canonical type and return that to us.
1471    CanonType = Context.getCanonicalType(CanonType);
1472
1473    // This might work out to be a current instantiation, in which
1474    // case the canonical type needs to be the InjectedClassNameType.
1475    //
1476    // TODO: in theory this could be a simple hashtable lookup; most
1477    // changes to CurContext don't change the set of current
1478    // instantiations.
1479    if (isa<ClassTemplateDecl>(Template)) {
1480      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1481        // If we get out to a namespace, we're done.
1482        if (Ctx->isFileContext()) break;
1483
1484        // If this isn't a record, keep looking.
1485        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1486        if (!Record) continue;
1487
1488        // Look for one of the two cases with InjectedClassNameTypes
1489        // and check whether it's the same template.
1490        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1491            !Record->getDescribedClassTemplate())
1492          continue;
1493
1494        // Fetch the injected class name type and check whether its
1495        // injected type is equal to the type we just built.
1496        QualType ICNT = Context.getTypeDeclType(Record);
1497        QualType Injected = cast<InjectedClassNameType>(ICNT)
1498          ->getInjectedSpecializationType();
1499
1500        if (CanonType != Injected->getCanonicalTypeInternal())
1501          continue;
1502
1503        // If so, the canonical type of this TST is the injected
1504        // class name type of the record we just found.
1505        assert(ICNT.isCanonical());
1506        CanonType = ICNT;
1507        break;
1508      }
1509    }
1510  } else if (ClassTemplateDecl *ClassTemplate
1511               = dyn_cast<ClassTemplateDecl>(Template)) {
1512    // Find the class template specialization declaration that
1513    // corresponds to these arguments.
1514    llvm::FoldingSetNodeID ID;
1515    ClassTemplateSpecializationDecl::Profile(ID,
1516                                             Converted.getFlatArguments(),
1517                                             Converted.flatSize(),
1518                                             Context);
1519    void *InsertPos = 0;
1520    ClassTemplateSpecializationDecl *Decl
1521      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1522    if (!Decl) {
1523      // This is the first time we have referenced this class template
1524      // specialization. Create the canonical declaration and add it to
1525      // the set of specializations.
1526      Decl = ClassTemplateSpecializationDecl::Create(Context,
1527                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1528                                                ClassTemplate->getDeclContext(),
1529                                                ClassTemplate->getLocation(),
1530                                                ClassTemplate,
1531                                                Converted, 0);
1532      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1533      Decl->setLexicalDeclContext(CurContext);
1534    }
1535
1536    CanonType = Context.getTypeDeclType(Decl);
1537    assert(isa<RecordType>(CanonType) &&
1538           "type of non-dependent specialization is not a RecordType");
1539  }
1540
1541  // Build the fully-sugared type for this class template
1542  // specialization, which refers back to the class template
1543  // specialization we created or found.
1544  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1545}
1546
1547Action::TypeResult
1548Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1549                          SourceLocation LAngleLoc,
1550                          ASTTemplateArgsPtr TemplateArgsIn,
1551                          SourceLocation RAngleLoc) {
1552  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1553
1554  // Translate the parser's template argument list in our AST format.
1555  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1556  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1557
1558  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1559  TemplateArgsIn.release();
1560
1561  if (Result.isNull())
1562    return true;
1563
1564  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1565  TemplateSpecializationTypeLoc TL
1566    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1567  TL.setTemplateNameLoc(TemplateLoc);
1568  TL.setLAngleLoc(LAngleLoc);
1569  TL.setRAngleLoc(RAngleLoc);
1570  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1571    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1572
1573  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1574}
1575
1576Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1577                                              TagUseKind TUK,
1578                                              DeclSpec::TST TagSpec,
1579                                              SourceLocation TagLoc) {
1580  if (TypeResult.isInvalid())
1581    return Sema::TypeResult();
1582
1583  // FIXME: preserve source info, ideally without copying the DI.
1584  TypeSourceInfo *DI;
1585  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1586
1587  // Verify the tag specifier.
1588  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1589
1590  if (const RecordType *RT = Type->getAs<RecordType>()) {
1591    RecordDecl *D = RT->getDecl();
1592
1593    IdentifierInfo *Id = D->getIdentifier();
1594    assert(Id && "templated class must have an identifier");
1595
1596    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1597      Diag(TagLoc, diag::err_use_with_wrong_tag)
1598        << Type
1599        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1600      Diag(D->getLocation(), diag::note_previous_use);
1601    }
1602  }
1603
1604  ElaboratedTypeKeyword Keyword
1605    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1606  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1607
1608  return ElabType.getAsOpaquePtr();
1609}
1610
1611Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1612                                                 LookupResult &R,
1613                                                 bool RequiresADL,
1614                                 const TemplateArgumentListInfo &TemplateArgs) {
1615  // FIXME: Can we do any checking at this point? I guess we could check the
1616  // template arguments that we have against the template name, if the template
1617  // name refers to a single template. That's not a terribly common case,
1618  // though.
1619
1620  // These should be filtered out by our callers.
1621  assert(!R.empty() && "empty lookup results when building templateid");
1622  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1623
1624  NestedNameSpecifier *Qualifier = 0;
1625  SourceRange QualifierRange;
1626  if (SS.isSet()) {
1627    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1628    QualifierRange = SS.getRange();
1629  }
1630
1631  // We don't want lookup warnings at this point.
1632  R.suppressDiagnostics();
1633
1634  bool Dependent
1635    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1636                                              &TemplateArgs);
1637  UnresolvedLookupExpr *ULE
1638    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1639                                   Qualifier, QualifierRange,
1640                                   R.getLookupName(), R.getNameLoc(),
1641                                   RequiresADL, TemplateArgs,
1642                                   R.begin(), R.end());
1643
1644  return Owned(ULE);
1645}
1646
1647// We actually only call this from template instantiation.
1648Sema::OwningExprResult
1649Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1650                                   DeclarationName Name,
1651                                   SourceLocation NameLoc,
1652                             const TemplateArgumentListInfo &TemplateArgs) {
1653  DeclContext *DC;
1654  if (!(DC = computeDeclContext(SS, false)) ||
1655      DC->isDependentContext() ||
1656      RequireCompleteDeclContext(SS, DC))
1657    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1658
1659  bool MemberOfUnknownSpecialization;
1660  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1661  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1662                     MemberOfUnknownSpecialization);
1663
1664  if (R.isAmbiguous())
1665    return ExprError();
1666
1667  if (R.empty()) {
1668    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1669      << Name << SS.getRange();
1670    return ExprError();
1671  }
1672
1673  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1674    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1675      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1676    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1677    return ExprError();
1678  }
1679
1680  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1681}
1682
1683/// \brief Form a dependent template name.
1684///
1685/// This action forms a dependent template name given the template
1686/// name and its (presumably dependent) scope specifier. For
1687/// example, given "MetaFun::template apply", the scope specifier \p
1688/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1689/// of the "template" keyword, and "apply" is the \p Name.
1690Sema::TemplateTy
1691Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1692                                 CXXScopeSpec &SS,
1693                                 UnqualifiedId &Name,
1694                                 TypeTy *ObjectType,
1695                                 bool EnteringContext) {
1696  DeclContext *LookupCtx = 0;
1697  if (SS.isSet())
1698    LookupCtx = computeDeclContext(SS, EnteringContext);
1699  if (!LookupCtx && ObjectType)
1700    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1701  if (LookupCtx) {
1702    // C++0x [temp.names]p5:
1703    //   If a name prefixed by the keyword template is not the name of
1704    //   a template, the program is ill-formed. [Note: the keyword
1705    //   template may not be applied to non-template members of class
1706    //   templates. -end note ] [ Note: as is the case with the
1707    //   typename prefix, the template prefix is allowed in cases
1708    //   where it is not strictly necessary; i.e., when the
1709    //   nested-name-specifier or the expression on the left of the ->
1710    //   or . is not dependent on a template-parameter, or the use
1711    //   does not appear in the scope of a template. -end note]
1712    //
1713    // Note: C++03 was more strict here, because it banned the use of
1714    // the "template" keyword prior to a template-name that was not a
1715    // dependent name. C++ DR468 relaxed this requirement (the
1716    // "template" keyword is now permitted). We follow the C++0x
1717    // rules, even in C++03 mode, retroactively applying the DR.
1718    TemplateTy Template;
1719    bool MemberOfUnknownSpecialization;
1720    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1721                                          EnteringContext, Template,
1722                                          MemberOfUnknownSpecialization);
1723    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1724        isa<CXXRecordDecl>(LookupCtx) &&
1725        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1726      // This is a dependent template.
1727    } else if (TNK == TNK_Non_template) {
1728      Diag(Name.getSourceRange().getBegin(),
1729           diag::err_template_kw_refers_to_non_template)
1730        << GetNameFromUnqualifiedId(Name)
1731        << Name.getSourceRange()
1732        << TemplateKWLoc;
1733      return TemplateTy();
1734    } else {
1735      // We found something; return it.
1736      return Template;
1737    }
1738  }
1739
1740  NestedNameSpecifier *Qualifier
1741    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1742
1743  switch (Name.getKind()) {
1744  case UnqualifiedId::IK_Identifier:
1745    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1746                                                             Name.Identifier));
1747
1748  case UnqualifiedId::IK_OperatorFunctionId:
1749    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1750                                             Name.OperatorFunctionId.Operator));
1751
1752  case UnqualifiedId::IK_LiteralOperatorId:
1753    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1754
1755  default:
1756    break;
1757  }
1758
1759  Diag(Name.getSourceRange().getBegin(),
1760       diag::err_template_kw_refers_to_non_template)
1761    << GetNameFromUnqualifiedId(Name)
1762    << Name.getSourceRange()
1763    << TemplateKWLoc;
1764  return TemplateTy();
1765}
1766
1767bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1768                                     const TemplateArgumentLoc &AL,
1769                                     TemplateArgumentListBuilder &Converted) {
1770  const TemplateArgument &Arg = AL.getArgument();
1771
1772  // Check template type parameter.
1773  switch(Arg.getKind()) {
1774  case TemplateArgument::Type:
1775    // C++ [temp.arg.type]p1:
1776    //   A template-argument for a template-parameter which is a
1777    //   type shall be a type-id.
1778    break;
1779  case TemplateArgument::Template: {
1780    // We have a template type parameter but the template argument
1781    // is a template without any arguments.
1782    SourceRange SR = AL.getSourceRange();
1783    TemplateName Name = Arg.getAsTemplate();
1784    Diag(SR.getBegin(), diag::err_template_missing_args)
1785      << Name << SR;
1786    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1787      Diag(Decl->getLocation(), diag::note_template_decl_here);
1788
1789    return true;
1790  }
1791  default: {
1792    // We have a template type parameter but the template argument
1793    // is not a type.
1794    SourceRange SR = AL.getSourceRange();
1795    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1796    Diag(Param->getLocation(), diag::note_template_param_here);
1797
1798    return true;
1799  }
1800  }
1801
1802  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1803    return true;
1804
1805  // Add the converted template type argument.
1806  Converted.Append(
1807                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1808  return false;
1809}
1810
1811/// \brief Substitute template arguments into the default template argument for
1812/// the given template type parameter.
1813///
1814/// \param SemaRef the semantic analysis object for which we are performing
1815/// the substitution.
1816///
1817/// \param Template the template that we are synthesizing template arguments
1818/// for.
1819///
1820/// \param TemplateLoc the location of the template name that started the
1821/// template-id we are checking.
1822///
1823/// \param RAngleLoc the location of the right angle bracket ('>') that
1824/// terminates the template-id.
1825///
1826/// \param Param the template template parameter whose default we are
1827/// substituting into.
1828///
1829/// \param Converted the list of template arguments provided for template
1830/// parameters that precede \p Param in the template parameter list.
1831///
1832/// \returns the substituted template argument, or NULL if an error occurred.
1833static TypeSourceInfo *
1834SubstDefaultTemplateArgument(Sema &SemaRef,
1835                             TemplateDecl *Template,
1836                             SourceLocation TemplateLoc,
1837                             SourceLocation RAngleLoc,
1838                             TemplateTypeParmDecl *Param,
1839                             TemplateArgumentListBuilder &Converted) {
1840  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1841
1842  // If the argument type is dependent, instantiate it now based
1843  // on the previously-computed template arguments.
1844  if (ArgType->getType()->isDependentType()) {
1845    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1846                                      /*TakeArgs=*/false);
1847
1848    MultiLevelTemplateArgumentList AllTemplateArgs
1849      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1850
1851    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1852                                     Template, Converted.getFlatArguments(),
1853                                     Converted.flatSize(),
1854                                     SourceRange(TemplateLoc, RAngleLoc));
1855
1856    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1857                                Param->getDefaultArgumentLoc(),
1858                                Param->getDeclName());
1859  }
1860
1861  return ArgType;
1862}
1863
1864/// \brief Substitute template arguments into the default template argument for
1865/// the given non-type template parameter.
1866///
1867/// \param SemaRef the semantic analysis object for which we are performing
1868/// the substitution.
1869///
1870/// \param Template the template that we are synthesizing template arguments
1871/// for.
1872///
1873/// \param TemplateLoc the location of the template name that started the
1874/// template-id we are checking.
1875///
1876/// \param RAngleLoc the location of the right angle bracket ('>') that
1877/// terminates the template-id.
1878///
1879/// \param Param the non-type template parameter whose default we are
1880/// substituting into.
1881///
1882/// \param Converted the list of template arguments provided for template
1883/// parameters that precede \p Param in the template parameter list.
1884///
1885/// \returns the substituted template argument, or NULL if an error occurred.
1886static Sema::OwningExprResult
1887SubstDefaultTemplateArgument(Sema &SemaRef,
1888                             TemplateDecl *Template,
1889                             SourceLocation TemplateLoc,
1890                             SourceLocation RAngleLoc,
1891                             NonTypeTemplateParmDecl *Param,
1892                             TemplateArgumentListBuilder &Converted) {
1893  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1894                                    /*TakeArgs=*/false);
1895
1896  MultiLevelTemplateArgumentList AllTemplateArgs
1897    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1898
1899  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1900                                   Template, Converted.getFlatArguments(),
1901                                   Converted.flatSize(),
1902                                   SourceRange(TemplateLoc, RAngleLoc));
1903
1904  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1905}
1906
1907/// \brief Substitute template arguments into the default template argument for
1908/// the given template template parameter.
1909///
1910/// \param SemaRef the semantic analysis object for which we are performing
1911/// the substitution.
1912///
1913/// \param Template the template that we are synthesizing template arguments
1914/// for.
1915///
1916/// \param TemplateLoc the location of the template name that started the
1917/// template-id we are checking.
1918///
1919/// \param RAngleLoc the location of the right angle bracket ('>') that
1920/// terminates the template-id.
1921///
1922/// \param Param the template template parameter whose default we are
1923/// substituting into.
1924///
1925/// \param Converted the list of template arguments provided for template
1926/// parameters that precede \p Param in the template parameter list.
1927///
1928/// \returns the substituted template argument, or NULL if an error occurred.
1929static TemplateName
1930SubstDefaultTemplateArgument(Sema &SemaRef,
1931                             TemplateDecl *Template,
1932                             SourceLocation TemplateLoc,
1933                             SourceLocation RAngleLoc,
1934                             TemplateTemplateParmDecl *Param,
1935                             TemplateArgumentListBuilder &Converted) {
1936  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1937                                    /*TakeArgs=*/false);
1938
1939  MultiLevelTemplateArgumentList AllTemplateArgs
1940    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1941
1942  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1943                                   Template, Converted.getFlatArguments(),
1944                                   Converted.flatSize(),
1945                                   SourceRange(TemplateLoc, RAngleLoc));
1946
1947  return SemaRef.SubstTemplateName(
1948                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1949                              Param->getDefaultArgument().getTemplateNameLoc(),
1950                                   AllTemplateArgs);
1951}
1952
1953/// \brief If the given template parameter has a default template
1954/// argument, substitute into that default template argument and
1955/// return the corresponding template argument.
1956TemplateArgumentLoc
1957Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1958                                              SourceLocation TemplateLoc,
1959                                              SourceLocation RAngleLoc,
1960                                              Decl *Param,
1961                                     TemplateArgumentListBuilder &Converted) {
1962  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1963    if (!TypeParm->hasDefaultArgument())
1964      return TemplateArgumentLoc();
1965
1966    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1967                                                      TemplateLoc,
1968                                                      RAngleLoc,
1969                                                      TypeParm,
1970                                                      Converted);
1971    if (DI)
1972      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1973
1974    return TemplateArgumentLoc();
1975  }
1976
1977  if (NonTypeTemplateParmDecl *NonTypeParm
1978        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1979    if (!NonTypeParm->hasDefaultArgument())
1980      return TemplateArgumentLoc();
1981
1982    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1983                                                        TemplateLoc,
1984                                                        RAngleLoc,
1985                                                        NonTypeParm,
1986                                                        Converted);
1987    if (Arg.isInvalid())
1988      return TemplateArgumentLoc();
1989
1990    Expr *ArgE = Arg.takeAs<Expr>();
1991    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1992  }
1993
1994  TemplateTemplateParmDecl *TempTempParm
1995    = cast<TemplateTemplateParmDecl>(Param);
1996  if (!TempTempParm->hasDefaultArgument())
1997    return TemplateArgumentLoc();
1998
1999  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2000                                                    TemplateLoc,
2001                                                    RAngleLoc,
2002                                                    TempTempParm,
2003                                                    Converted);
2004  if (TName.isNull())
2005    return TemplateArgumentLoc();
2006
2007  return TemplateArgumentLoc(TemplateArgument(TName),
2008                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2009                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2010}
2011
2012/// \brief Check that the given template argument corresponds to the given
2013/// template parameter.
2014bool Sema::CheckTemplateArgument(NamedDecl *Param,
2015                                 const TemplateArgumentLoc &Arg,
2016                                 TemplateDecl *Template,
2017                                 SourceLocation TemplateLoc,
2018                                 SourceLocation RAngleLoc,
2019                                 TemplateArgumentListBuilder &Converted,
2020                                 CheckTemplateArgumentKind CTAK) {
2021  // Check template type parameters.
2022  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2023    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2024
2025  // Check non-type template parameters.
2026  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2027    // Do substitution on the type of the non-type template parameter
2028    // with the template arguments we've seen thus far.
2029    QualType NTTPType = NTTP->getType();
2030    if (NTTPType->isDependentType()) {
2031      // Do substitution on the type of the non-type template parameter.
2032      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2033                                 NTTP, Converted.getFlatArguments(),
2034                                 Converted.flatSize(),
2035                                 SourceRange(TemplateLoc, RAngleLoc));
2036
2037      TemplateArgumentList TemplateArgs(Context, Converted,
2038                                        /*TakeArgs=*/false);
2039      NTTPType = SubstType(NTTPType,
2040                           MultiLevelTemplateArgumentList(TemplateArgs),
2041                           NTTP->getLocation(),
2042                           NTTP->getDeclName());
2043      // If that worked, check the non-type template parameter type
2044      // for validity.
2045      if (!NTTPType.isNull())
2046        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2047                                                     NTTP->getLocation());
2048      if (NTTPType.isNull())
2049        return true;
2050    }
2051
2052    switch (Arg.getArgument().getKind()) {
2053    case TemplateArgument::Null:
2054      assert(false && "Should never see a NULL template argument here");
2055      return true;
2056
2057    case TemplateArgument::Expression: {
2058      Expr *E = Arg.getArgument().getAsExpr();
2059      TemplateArgument Result;
2060      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2061        return true;
2062
2063      Converted.Append(Result);
2064      break;
2065    }
2066
2067    case TemplateArgument::Declaration:
2068    case TemplateArgument::Integral:
2069      // We've already checked this template argument, so just copy
2070      // it to the list of converted arguments.
2071      Converted.Append(Arg.getArgument());
2072      break;
2073
2074    case TemplateArgument::Template:
2075      // We were given a template template argument. It may not be ill-formed;
2076      // see below.
2077      if (DependentTemplateName *DTN
2078            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2079        // We have a template argument such as \c T::template X, which we
2080        // parsed as a template template argument. However, since we now
2081        // know that we need a non-type template argument, convert this
2082        // template name into an expression.
2083        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2084                                                    DTN->getQualifier(),
2085                                               Arg.getTemplateQualifierRange(),
2086                                                    DTN->getIdentifier(),
2087                                                    Arg.getTemplateNameLoc());
2088
2089        TemplateArgument Result;
2090        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2091          return true;
2092
2093        Converted.Append(Result);
2094        break;
2095      }
2096
2097      // We have a template argument that actually does refer to a class
2098      // template, template alias, or template template parameter, and
2099      // therefore cannot be a non-type template argument.
2100      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2101        << Arg.getSourceRange();
2102
2103      Diag(Param->getLocation(), diag::note_template_param_here);
2104      return true;
2105
2106    case TemplateArgument::Type: {
2107      // We have a non-type template parameter but the template
2108      // argument is a type.
2109
2110      // C++ [temp.arg]p2:
2111      //   In a template-argument, an ambiguity between a type-id and
2112      //   an expression is resolved to a type-id, regardless of the
2113      //   form of the corresponding template-parameter.
2114      //
2115      // We warn specifically about this case, since it can be rather
2116      // confusing for users.
2117      QualType T = Arg.getArgument().getAsType();
2118      SourceRange SR = Arg.getSourceRange();
2119      if (T->isFunctionType())
2120        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2121      else
2122        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2123      Diag(Param->getLocation(), diag::note_template_param_here);
2124      return true;
2125    }
2126
2127    case TemplateArgument::Pack:
2128      llvm_unreachable("Caller must expand template argument packs");
2129      break;
2130    }
2131
2132    return false;
2133  }
2134
2135
2136  // Check template template parameters.
2137  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2138
2139  // Substitute into the template parameter list of the template
2140  // template parameter, since previously-supplied template arguments
2141  // may appear within the template template parameter.
2142  {
2143    // Set up a template instantiation context.
2144    LocalInstantiationScope Scope(*this);
2145    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2146                               TempParm, Converted.getFlatArguments(),
2147                               Converted.flatSize(),
2148                               SourceRange(TemplateLoc, RAngleLoc));
2149
2150    TemplateArgumentList TemplateArgs(Context, Converted,
2151                                      /*TakeArgs=*/false);
2152    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2153                      SubstDecl(TempParm, CurContext,
2154                                MultiLevelTemplateArgumentList(TemplateArgs)));
2155    if (!TempParm)
2156      return true;
2157
2158    // FIXME: TempParam is leaked.
2159  }
2160
2161  switch (Arg.getArgument().getKind()) {
2162  case TemplateArgument::Null:
2163    assert(false && "Should never see a NULL template argument here");
2164    return true;
2165
2166  case TemplateArgument::Template:
2167    if (CheckTemplateArgument(TempParm, Arg))
2168      return true;
2169
2170    Converted.Append(Arg.getArgument());
2171    break;
2172
2173  case TemplateArgument::Expression:
2174  case TemplateArgument::Type:
2175    // We have a template template parameter but the template
2176    // argument does not refer to a template.
2177    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2178    return true;
2179
2180  case TemplateArgument::Declaration:
2181    llvm_unreachable(
2182                       "Declaration argument with template template parameter");
2183    break;
2184  case TemplateArgument::Integral:
2185    llvm_unreachable(
2186                          "Integral argument with template template parameter");
2187    break;
2188
2189  case TemplateArgument::Pack:
2190    llvm_unreachable("Caller must expand template argument packs");
2191    break;
2192  }
2193
2194  return false;
2195}
2196
2197/// \brief Check that the given template argument list is well-formed
2198/// for specializing the given template.
2199bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2200                                     SourceLocation TemplateLoc,
2201                                const TemplateArgumentListInfo &TemplateArgs,
2202                                     bool PartialTemplateArgs,
2203                                     TemplateArgumentListBuilder &Converted) {
2204  TemplateParameterList *Params = Template->getTemplateParameters();
2205  unsigned NumParams = Params->size();
2206  unsigned NumArgs = TemplateArgs.size();
2207  bool Invalid = false;
2208
2209  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2210
2211  bool HasParameterPack =
2212    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2213
2214  if ((NumArgs > NumParams && !HasParameterPack) ||
2215      (NumArgs < Params->getMinRequiredArguments() &&
2216       !PartialTemplateArgs)) {
2217    // FIXME: point at either the first arg beyond what we can handle,
2218    // or the '>', depending on whether we have too many or too few
2219    // arguments.
2220    SourceRange Range;
2221    if (NumArgs > NumParams)
2222      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2223    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2224      << (NumArgs > NumParams)
2225      << (isa<ClassTemplateDecl>(Template)? 0 :
2226          isa<FunctionTemplateDecl>(Template)? 1 :
2227          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2228      << Template << Range;
2229    Diag(Template->getLocation(), diag::note_template_decl_here)
2230      << Params->getSourceRange();
2231    Invalid = true;
2232  }
2233
2234  // C++ [temp.arg]p1:
2235  //   [...] The type and form of each template-argument specified in
2236  //   a template-id shall match the type and form specified for the
2237  //   corresponding parameter declared by the template in its
2238  //   template-parameter-list.
2239  unsigned ArgIdx = 0;
2240  for (TemplateParameterList::iterator Param = Params->begin(),
2241                                       ParamEnd = Params->end();
2242       Param != ParamEnd; ++Param, ++ArgIdx) {
2243    if (ArgIdx > NumArgs && PartialTemplateArgs)
2244      break;
2245
2246    // If we have a template parameter pack, check every remaining template
2247    // argument against that template parameter pack.
2248    if ((*Param)->isTemplateParameterPack()) {
2249      Converted.BeginPack();
2250      for (; ArgIdx < NumArgs; ++ArgIdx) {
2251        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2252                                  TemplateLoc, RAngleLoc, Converted)) {
2253          Invalid = true;
2254          break;
2255        }
2256      }
2257      Converted.EndPack();
2258      continue;
2259    }
2260
2261    if (ArgIdx < NumArgs) {
2262      // Check the template argument we were given.
2263      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2264                                TemplateLoc, RAngleLoc, Converted))
2265        return true;
2266
2267      continue;
2268    }
2269
2270    // We have a default template argument that we will use.
2271    TemplateArgumentLoc Arg;
2272
2273    // Retrieve the default template argument from the template
2274    // parameter. For each kind of template parameter, we substitute the
2275    // template arguments provided thus far and any "outer" template arguments
2276    // (when the template parameter was part of a nested template) into
2277    // the default argument.
2278    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2279      if (!TTP->hasDefaultArgument()) {
2280        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2281        break;
2282      }
2283
2284      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2285                                                             Template,
2286                                                             TemplateLoc,
2287                                                             RAngleLoc,
2288                                                             TTP,
2289                                                             Converted);
2290      if (!ArgType)
2291        return true;
2292
2293      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2294                                ArgType);
2295    } else if (NonTypeTemplateParmDecl *NTTP
2296                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2297      if (!NTTP->hasDefaultArgument()) {
2298        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2299        break;
2300      }
2301
2302      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2303                                                              TemplateLoc,
2304                                                              RAngleLoc,
2305                                                              NTTP,
2306                                                              Converted);
2307      if (E.isInvalid())
2308        return true;
2309
2310      Expr *Ex = E.takeAs<Expr>();
2311      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2312    } else {
2313      TemplateTemplateParmDecl *TempParm
2314        = cast<TemplateTemplateParmDecl>(*Param);
2315
2316      if (!TempParm->hasDefaultArgument()) {
2317        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2318        break;
2319      }
2320
2321      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2322                                                       TemplateLoc,
2323                                                       RAngleLoc,
2324                                                       TempParm,
2325                                                       Converted);
2326      if (Name.isNull())
2327        return true;
2328
2329      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2330                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2331                  TempParm->getDefaultArgument().getTemplateNameLoc());
2332    }
2333
2334    // Introduce an instantiation record that describes where we are using
2335    // the default template argument.
2336    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2337                                        Converted.getFlatArguments(),
2338                                        Converted.flatSize(),
2339                                        SourceRange(TemplateLoc, RAngleLoc));
2340
2341    // Check the default template argument.
2342    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2343                              RAngleLoc, Converted))
2344      return true;
2345  }
2346
2347  return Invalid;
2348}
2349
2350/// \brief Check a template argument against its corresponding
2351/// template type parameter.
2352///
2353/// This routine implements the semantics of C++ [temp.arg.type]. It
2354/// returns true if an error occurred, and false otherwise.
2355bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2356                                 TypeSourceInfo *ArgInfo) {
2357  assert(ArgInfo && "invalid TypeSourceInfo");
2358  QualType Arg = ArgInfo->getType();
2359
2360  // C++ [temp.arg.type]p2:
2361  //   A local type, a type with no linkage, an unnamed type or a type
2362  //   compounded from any of these types shall not be used as a
2363  //   template-argument for a template type-parameter.
2364  //
2365  // FIXME: Perform the unnamed type check.
2366  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2367  const TagType *Tag = 0;
2368  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2369    Tag = EnumT;
2370  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2371    Tag = RecordT;
2372  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2373    SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2374    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2375      << QualType(Tag, 0) << SR;
2376  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2377           !Tag->getDecl()->getTypedefForAnonDecl()) {
2378    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2379    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2380    return true;
2381  } else if (Arg->isVariablyModifiedType()) {
2382    Diag(SR.getBegin(), diag::err_variably_modified_template_arg)
2383      << Arg;
2384    return true;
2385  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2386    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2387  }
2388
2389  return false;
2390}
2391
2392/// \brief Checks whether the given template argument is the address
2393/// of an object or function according to C++ [temp.arg.nontype]p1.
2394static bool
2395CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2396                                               NonTypeTemplateParmDecl *Param,
2397                                               QualType ParamType,
2398                                               Expr *ArgIn,
2399                                               TemplateArgument &Converted) {
2400  bool Invalid = false;
2401  Expr *Arg = ArgIn;
2402  QualType ArgType = Arg->getType();
2403
2404  // See through any implicit casts we added to fix the type.
2405  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2406    Arg = Cast->getSubExpr();
2407
2408  // C++ [temp.arg.nontype]p1:
2409  //
2410  //   A template-argument for a non-type, non-template
2411  //   template-parameter shall be one of: [...]
2412  //
2413  //     -- the address of an object or function with external
2414  //        linkage, including function templates and function
2415  //        template-ids but excluding non-static class members,
2416  //        expressed as & id-expression where the & is optional if
2417  //        the name refers to a function or array, or if the
2418  //        corresponding template-parameter is a reference; or
2419  DeclRefExpr *DRE = 0;
2420
2421  // Ignore (and complain about) any excess parentheses.
2422  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2423    if (!Invalid) {
2424      S.Diag(Arg->getSourceRange().getBegin(),
2425             diag::err_template_arg_extra_parens)
2426        << Arg->getSourceRange();
2427      Invalid = true;
2428    }
2429
2430    Arg = Parens->getSubExpr();
2431  }
2432
2433  bool AddressTaken = false;
2434  SourceLocation AddrOpLoc;
2435  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2436    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2437      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2438      AddressTaken = true;
2439      AddrOpLoc = UnOp->getOperatorLoc();
2440    }
2441  } else
2442    DRE = dyn_cast<DeclRefExpr>(Arg);
2443
2444  if (!DRE) {
2445    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2446      << Arg->getSourceRange();
2447    S.Diag(Param->getLocation(), diag::note_template_param_here);
2448    return true;
2449  }
2450
2451  // Stop checking the precise nature of the argument if it is value dependent,
2452  // it should be checked when instantiated.
2453  if (Arg->isValueDependent()) {
2454    Converted = TemplateArgument(ArgIn->Retain());
2455    return false;
2456  }
2457
2458  if (!isa<ValueDecl>(DRE->getDecl())) {
2459    S.Diag(Arg->getSourceRange().getBegin(),
2460           diag::err_template_arg_not_object_or_func_form)
2461      << Arg->getSourceRange();
2462    S.Diag(Param->getLocation(), diag::note_template_param_here);
2463    return true;
2464  }
2465
2466  NamedDecl *Entity = 0;
2467
2468  // Cannot refer to non-static data members
2469  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2470    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2471      << Field << Arg->getSourceRange();
2472    S.Diag(Param->getLocation(), diag::note_template_param_here);
2473    return true;
2474  }
2475
2476  // Cannot refer to non-static member functions
2477  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2478    if (!Method->isStatic()) {
2479      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2480        << Method << Arg->getSourceRange();
2481      S.Diag(Param->getLocation(), diag::note_template_param_here);
2482      return true;
2483    }
2484
2485  // Functions must have external linkage.
2486  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2487    if (!isExternalLinkage(Func->getLinkage())) {
2488      S.Diag(Arg->getSourceRange().getBegin(),
2489             diag::err_template_arg_function_not_extern)
2490        << Func << Arg->getSourceRange();
2491      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2492        << true;
2493      return true;
2494    }
2495
2496    // Okay: we've named a function with external linkage.
2497    Entity = Func;
2498
2499    // If the template parameter has pointer type, the function decays.
2500    if (ParamType->isPointerType() && !AddressTaken)
2501      ArgType = S.Context.getPointerType(Func->getType());
2502    else if (AddressTaken && ParamType->isReferenceType()) {
2503      // If we originally had an address-of operator, but the
2504      // parameter has reference type, complain and (if things look
2505      // like they will work) drop the address-of operator.
2506      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2507                                            ParamType.getNonReferenceType())) {
2508        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2509          << ParamType;
2510        S.Diag(Param->getLocation(), diag::note_template_param_here);
2511        return true;
2512      }
2513
2514      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2515        << ParamType
2516        << FixItHint::CreateRemoval(AddrOpLoc);
2517      S.Diag(Param->getLocation(), diag::note_template_param_here);
2518
2519      ArgType = Func->getType();
2520    }
2521  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2522    if (!isExternalLinkage(Var->getLinkage())) {
2523      S.Diag(Arg->getSourceRange().getBegin(),
2524             diag::err_template_arg_object_not_extern)
2525        << Var << Arg->getSourceRange();
2526      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2527        << true;
2528      return true;
2529    }
2530
2531    // A value of reference type is not an object.
2532    if (Var->getType()->isReferenceType()) {
2533      S.Diag(Arg->getSourceRange().getBegin(),
2534             diag::err_template_arg_reference_var)
2535        << Var->getType() << Arg->getSourceRange();
2536      S.Diag(Param->getLocation(), diag::note_template_param_here);
2537      return true;
2538    }
2539
2540    // Okay: we've named an object with external linkage
2541    Entity = Var;
2542
2543    // If the template parameter has pointer type, we must have taken
2544    // the address of this object.
2545    if (ParamType->isReferenceType()) {
2546      if (AddressTaken) {
2547        // If we originally had an address-of operator, but the
2548        // parameter has reference type, complain and (if things look
2549        // like they will work) drop the address-of operator.
2550        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2551                                            ParamType.getNonReferenceType())) {
2552          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2553            << ParamType;
2554          S.Diag(Param->getLocation(), diag::note_template_param_here);
2555          return true;
2556        }
2557
2558        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2559          << ParamType
2560          << FixItHint::CreateRemoval(AddrOpLoc);
2561        S.Diag(Param->getLocation(), diag::note_template_param_here);
2562
2563        ArgType = Var->getType();
2564      }
2565    } else if (!AddressTaken && ParamType->isPointerType()) {
2566      if (Var->getType()->isArrayType()) {
2567        // Array-to-pointer decay.
2568        ArgType = S.Context.getArrayDecayedType(Var->getType());
2569      } else {
2570        // If the template parameter has pointer type but the address of
2571        // this object was not taken, complain and (possibly) recover by
2572        // taking the address of the entity.
2573        ArgType = S.Context.getPointerType(Var->getType());
2574        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2575          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2576            << ParamType;
2577          S.Diag(Param->getLocation(), diag::note_template_param_here);
2578          return true;
2579        }
2580
2581        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2582          << ParamType
2583          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2584
2585        S.Diag(Param->getLocation(), diag::note_template_param_here);
2586      }
2587    }
2588  } else {
2589    // We found something else, but we don't know specifically what it is.
2590    S.Diag(Arg->getSourceRange().getBegin(),
2591           diag::err_template_arg_not_object_or_func)
2592      << Arg->getSourceRange();
2593    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2594    return true;
2595  }
2596
2597  if (ParamType->isPointerType() &&
2598      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2599      S.IsQualificationConversion(ArgType, ParamType)) {
2600    // For pointer-to-object types, qualification conversions are
2601    // permitted.
2602  } else {
2603    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2604      if (!ParamRef->getPointeeType()->isFunctionType()) {
2605        // C++ [temp.arg.nontype]p5b3:
2606        //   For a non-type template-parameter of type reference to
2607        //   object, no conversions apply. The type referred to by the
2608        //   reference may be more cv-qualified than the (otherwise
2609        //   identical) type of the template- argument. The
2610        //   template-parameter is bound directly to the
2611        //   template-argument, which shall be an lvalue.
2612
2613        // FIXME: Other qualifiers?
2614        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2615        unsigned ArgQuals = ArgType.getCVRQualifiers();
2616
2617        if ((ParamQuals | ArgQuals) != ParamQuals) {
2618          S.Diag(Arg->getSourceRange().getBegin(),
2619                 diag::err_template_arg_ref_bind_ignores_quals)
2620            << ParamType << Arg->getType()
2621            << Arg->getSourceRange();
2622          S.Diag(Param->getLocation(), diag::note_template_param_here);
2623          return true;
2624        }
2625      }
2626    }
2627
2628    // At this point, the template argument refers to an object or
2629    // function with external linkage. We now need to check whether the
2630    // argument and parameter types are compatible.
2631    if (!S.Context.hasSameUnqualifiedType(ArgType,
2632                                          ParamType.getNonReferenceType())) {
2633      // We can't perform this conversion or binding.
2634      if (ParamType->isReferenceType())
2635        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2636          << ParamType << Arg->getType() << Arg->getSourceRange();
2637      else
2638        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2639          << Arg->getType() << ParamType << Arg->getSourceRange();
2640      S.Diag(Param->getLocation(), diag::note_template_param_here);
2641      return true;
2642    }
2643  }
2644
2645  // Create the template argument.
2646  Converted = TemplateArgument(Entity->getCanonicalDecl());
2647  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2648  return false;
2649}
2650
2651/// \brief Checks whether the given template argument is a pointer to
2652/// member constant according to C++ [temp.arg.nontype]p1.
2653bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2654                                                TemplateArgument &Converted) {
2655  bool Invalid = false;
2656
2657  // See through any implicit casts we added to fix the type.
2658  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2659    Arg = Cast->getSubExpr();
2660
2661  // C++ [temp.arg.nontype]p1:
2662  //
2663  //   A template-argument for a non-type, non-template
2664  //   template-parameter shall be one of: [...]
2665  //
2666  //     -- a pointer to member expressed as described in 5.3.1.
2667  DeclRefExpr *DRE = 0;
2668
2669  // Ignore (and complain about) any excess parentheses.
2670  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2671    if (!Invalid) {
2672      Diag(Arg->getSourceRange().getBegin(),
2673           diag::err_template_arg_extra_parens)
2674        << Arg->getSourceRange();
2675      Invalid = true;
2676    }
2677
2678    Arg = Parens->getSubExpr();
2679  }
2680
2681  // A pointer-to-member constant written &Class::member.
2682  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2683    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2684      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2685      if (DRE && !DRE->getQualifier())
2686        DRE = 0;
2687    }
2688  }
2689  // A constant of pointer-to-member type.
2690  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2691    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2692      if (VD->getType()->isMemberPointerType()) {
2693        if (isa<NonTypeTemplateParmDecl>(VD) ||
2694            (isa<VarDecl>(VD) &&
2695             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2696          if (Arg->isTypeDependent() || Arg->isValueDependent())
2697            Converted = TemplateArgument(Arg->Retain());
2698          else
2699            Converted = TemplateArgument(VD->getCanonicalDecl());
2700          return Invalid;
2701        }
2702      }
2703    }
2704
2705    DRE = 0;
2706  }
2707
2708  if (!DRE)
2709    return Diag(Arg->getSourceRange().getBegin(),
2710                diag::err_template_arg_not_pointer_to_member_form)
2711      << Arg->getSourceRange();
2712
2713  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2714    assert((isa<FieldDecl>(DRE->getDecl()) ||
2715            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2716           "Only non-static member pointers can make it here");
2717
2718    // Okay: this is the address of a non-static member, and therefore
2719    // a member pointer constant.
2720    if (Arg->isTypeDependent() || Arg->isValueDependent())
2721      Converted = TemplateArgument(Arg->Retain());
2722    else
2723      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2724    return Invalid;
2725  }
2726
2727  // We found something else, but we don't know specifically what it is.
2728  Diag(Arg->getSourceRange().getBegin(),
2729       diag::err_template_arg_not_pointer_to_member_form)
2730      << Arg->getSourceRange();
2731  Diag(DRE->getDecl()->getLocation(),
2732       diag::note_template_arg_refers_here);
2733  return true;
2734}
2735
2736/// \brief Check a template argument against its corresponding
2737/// non-type template parameter.
2738///
2739/// This routine implements the semantics of C++ [temp.arg.nontype].
2740/// It returns true if an error occurred, and false otherwise. \p
2741/// InstantiatedParamType is the type of the non-type template
2742/// parameter after it has been instantiated.
2743///
2744/// If no error was detected, Converted receives the converted template argument.
2745bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2746                                 QualType InstantiatedParamType, Expr *&Arg,
2747                                 TemplateArgument &Converted,
2748                                 CheckTemplateArgumentKind CTAK) {
2749  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2750
2751  // If either the parameter has a dependent type or the argument is
2752  // type-dependent, there's nothing we can check now.
2753  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2754    // FIXME: Produce a cloned, canonical expression?
2755    Converted = TemplateArgument(Arg);
2756    return false;
2757  }
2758
2759  // C++ [temp.arg.nontype]p5:
2760  //   The following conversions are performed on each expression used
2761  //   as a non-type template-argument. If a non-type
2762  //   template-argument cannot be converted to the type of the
2763  //   corresponding template-parameter then the program is
2764  //   ill-formed.
2765  //
2766  //     -- for a non-type template-parameter of integral or
2767  //        enumeration type, integral promotions (4.5) and integral
2768  //        conversions (4.7) are applied.
2769  QualType ParamType = InstantiatedParamType;
2770  QualType ArgType = Arg->getType();
2771  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2772    // C++ [temp.arg.nontype]p1:
2773    //   A template-argument for a non-type, non-template
2774    //   template-parameter shall be one of:
2775    //
2776    //     -- an integral constant-expression of integral or enumeration
2777    //        type; or
2778    //     -- the name of a non-type template-parameter; or
2779    SourceLocation NonConstantLoc;
2780    llvm::APSInt Value;
2781    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2782      Diag(Arg->getSourceRange().getBegin(),
2783           diag::err_template_arg_not_integral_or_enumeral)
2784        << ArgType << Arg->getSourceRange();
2785      Diag(Param->getLocation(), diag::note_template_param_here);
2786      return true;
2787    } else if (!Arg->isValueDependent() &&
2788               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2789      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2790        << ArgType << Arg->getSourceRange();
2791      return true;
2792    }
2793
2794    // From here on out, all we care about are the unqualified forms
2795    // of the parameter and argument types.
2796    ParamType = ParamType.getUnqualifiedType();
2797    ArgType = ArgType.getUnqualifiedType();
2798
2799    // Try to convert the argument to the parameter's type.
2800    if (Context.hasSameType(ParamType, ArgType)) {
2801      // Okay: no conversion necessary
2802    } else if (CTAK == CTAK_Deduced) {
2803      // C++ [temp.deduct.type]p17:
2804      //   If, in the declaration of a function template with a non-type
2805      //   template-parameter, the non-type template- parameter is used
2806      //   in an expression in the function parameter-list and, if the
2807      //   corresponding template-argument is deduced, the
2808      //   template-argument type shall match the type of the
2809      //   template-parameter exactly, except that a template-argument
2810      //   deduced from an array bound may be of any integral type.
2811      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2812        << ArgType << ParamType;
2813      Diag(Param->getLocation(), diag::note_template_param_here);
2814      return true;
2815    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2816               !ParamType->isEnumeralType()) {
2817      // This is an integral promotion or conversion.
2818      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2819    } else {
2820      // We can't perform this conversion.
2821      Diag(Arg->getSourceRange().getBegin(),
2822           diag::err_template_arg_not_convertible)
2823        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2824      Diag(Param->getLocation(), diag::note_template_param_here);
2825      return true;
2826    }
2827
2828    QualType IntegerType = Context.getCanonicalType(ParamType);
2829    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2830      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2831
2832    if (!Arg->isValueDependent()) {
2833      llvm::APSInt OldValue = Value;
2834
2835      // Coerce the template argument's value to the value it will have
2836      // based on the template parameter's type.
2837      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2838      if (Value.getBitWidth() != AllowedBits)
2839        Value.extOrTrunc(AllowedBits);
2840      Value.setIsSigned(IntegerType->isSignedIntegerType());
2841
2842      // Complain if an unsigned parameter received a negative value.
2843      if (IntegerType->isUnsignedIntegerType()
2844          && (OldValue.isSigned() && OldValue.isNegative())) {
2845        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2846          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2847          << Arg->getSourceRange();
2848        Diag(Param->getLocation(), diag::note_template_param_here);
2849      }
2850
2851      // Complain if we overflowed the template parameter's type.
2852      unsigned RequiredBits;
2853      if (IntegerType->isUnsignedIntegerType())
2854        RequiredBits = OldValue.getActiveBits();
2855      else if (OldValue.isUnsigned())
2856        RequiredBits = OldValue.getActiveBits() + 1;
2857      else
2858        RequiredBits = OldValue.getMinSignedBits();
2859      if (RequiredBits > AllowedBits) {
2860        Diag(Arg->getSourceRange().getBegin(),
2861             diag::warn_template_arg_too_large)
2862          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2863          << Arg->getSourceRange();
2864        Diag(Param->getLocation(), diag::note_template_param_here);
2865      }
2866    }
2867
2868    // Add the value of this argument to the list of converted
2869    // arguments. We use the bitwidth and signedness of the template
2870    // parameter.
2871    if (Arg->isValueDependent()) {
2872      // The argument is value-dependent. Create a new
2873      // TemplateArgument with the converted expression.
2874      Converted = TemplateArgument(Arg);
2875      return false;
2876    }
2877
2878    Converted = TemplateArgument(Value,
2879                                 ParamType->isEnumeralType() ? ParamType
2880                                                             : IntegerType);
2881    return false;
2882  }
2883
2884  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2885
2886  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2887  // from a template argument of type std::nullptr_t to a non-type
2888  // template parameter of type pointer to object, pointer to
2889  // function, or pointer-to-member, respectively.
2890  if (ArgType->isNullPtrType() &&
2891      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2892    Converted = TemplateArgument((NamedDecl *)0);
2893    return false;
2894  }
2895
2896  // Handle pointer-to-function, reference-to-function, and
2897  // pointer-to-member-function all in (roughly) the same way.
2898  if (// -- For a non-type template-parameter of type pointer to
2899      //    function, only the function-to-pointer conversion (4.3) is
2900      //    applied. If the template-argument represents a set of
2901      //    overloaded functions (or a pointer to such), the matching
2902      //    function is selected from the set (13.4).
2903      (ParamType->isPointerType() &&
2904       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2905      // -- For a non-type template-parameter of type reference to
2906      //    function, no conversions apply. If the template-argument
2907      //    represents a set of overloaded functions, the matching
2908      //    function is selected from the set (13.4).
2909      (ParamType->isReferenceType() &&
2910       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2911      // -- For a non-type template-parameter of type pointer to
2912      //    member function, no conversions apply. If the
2913      //    template-argument represents a set of overloaded member
2914      //    functions, the matching member function is selected from
2915      //    the set (13.4).
2916      (ParamType->isMemberPointerType() &&
2917       ParamType->getAs<MemberPointerType>()->getPointeeType()
2918         ->isFunctionType())) {
2919
2920    if (Arg->getType() == Context.OverloadTy) {
2921      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2922                                                                true,
2923                                                                FoundResult)) {
2924        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2925          return true;
2926
2927        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2928        ArgType = Arg->getType();
2929      } else
2930        return true;
2931    }
2932
2933    if (!ParamType->isMemberPointerType())
2934      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2935                                                            ParamType,
2936                                                            Arg, Converted);
2937
2938    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2939      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
2940                        Arg->isLvalue(Context) == Expr::LV_Valid);
2941    } else if (!Context.hasSameUnqualifiedType(ArgType,
2942                                           ParamType.getNonReferenceType())) {
2943      // We can't perform this conversion.
2944      Diag(Arg->getSourceRange().getBegin(),
2945           diag::err_template_arg_not_convertible)
2946        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2947      Diag(Param->getLocation(), diag::note_template_param_here);
2948      return true;
2949    }
2950
2951    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2952  }
2953
2954  if (ParamType->isPointerType()) {
2955    //   -- for a non-type template-parameter of type pointer to
2956    //      object, qualification conversions (4.4) and the
2957    //      array-to-pointer conversion (4.2) are applied.
2958    // C++0x also allows a value of std::nullptr_t.
2959    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2960           "Only object pointers allowed here");
2961
2962    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2963                                                          ParamType,
2964                                                          Arg, Converted);
2965  }
2966
2967  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2968    //   -- For a non-type template-parameter of type reference to
2969    //      object, no conversions apply. The type referred to by the
2970    //      reference may be more cv-qualified than the (otherwise
2971    //      identical) type of the template-argument. The
2972    //      template-parameter is bound directly to the
2973    //      template-argument, which must be an lvalue.
2974    assert(ParamRefType->getPointeeType()->isObjectType() &&
2975           "Only object references allowed here");
2976
2977    if (Arg->getType() == Context.OverloadTy) {
2978      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2979                                                 ParamRefType->getPointeeType(),
2980                                                                true,
2981                                                                FoundResult)) {
2982        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2983          return true;
2984
2985        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2986        ArgType = Arg->getType();
2987      } else
2988        return true;
2989    }
2990
2991    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2992                                                          ParamType,
2993                                                          Arg, Converted);
2994  }
2995
2996  //     -- For a non-type template-parameter of type pointer to data
2997  //        member, qualification conversions (4.4) are applied.
2998  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2999
3000  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3001    // Types match exactly: nothing more to do here.
3002  } else if (IsQualificationConversion(ArgType, ParamType)) {
3003    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp,
3004                      Arg->isLvalue(Context) == Expr::LV_Valid);
3005  } else {
3006    // We can't perform this conversion.
3007    Diag(Arg->getSourceRange().getBegin(),
3008         diag::err_template_arg_not_convertible)
3009      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3010    Diag(Param->getLocation(), diag::note_template_param_here);
3011    return true;
3012  }
3013
3014  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3015}
3016
3017/// \brief Check a template argument against its corresponding
3018/// template template parameter.
3019///
3020/// This routine implements the semantics of C++ [temp.arg.template].
3021/// It returns true if an error occurred, and false otherwise.
3022bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3023                                 const TemplateArgumentLoc &Arg) {
3024  TemplateName Name = Arg.getArgument().getAsTemplate();
3025  TemplateDecl *Template = Name.getAsTemplateDecl();
3026  if (!Template) {
3027    // Any dependent template name is fine.
3028    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3029    return false;
3030  }
3031
3032  // C++ [temp.arg.template]p1:
3033  //   A template-argument for a template template-parameter shall be
3034  //   the name of a class template, expressed as id-expression. Only
3035  //   primary class templates are considered when matching the
3036  //   template template argument with the corresponding parameter;
3037  //   partial specializations are not considered even if their
3038  //   parameter lists match that of the template template parameter.
3039  //
3040  // Note that we also allow template template parameters here, which
3041  // will happen when we are dealing with, e.g., class template
3042  // partial specializations.
3043  if (!isa<ClassTemplateDecl>(Template) &&
3044      !isa<TemplateTemplateParmDecl>(Template)) {
3045    assert(isa<FunctionTemplateDecl>(Template) &&
3046           "Only function templates are possible here");
3047    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3048    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3049      << Template;
3050  }
3051
3052  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3053                                         Param->getTemplateParameters(),
3054                                         true,
3055                                         TPL_TemplateTemplateArgumentMatch,
3056                                         Arg.getLocation());
3057}
3058
3059/// \brief Given a non-type template argument that refers to a
3060/// declaration and the type of its corresponding non-type template
3061/// parameter, produce an expression that properly refers to that
3062/// declaration.
3063Sema::OwningExprResult
3064Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3065                                              QualType ParamType,
3066                                              SourceLocation Loc) {
3067  assert(Arg.getKind() == TemplateArgument::Declaration &&
3068         "Only declaration template arguments permitted here");
3069  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3070
3071  if (VD->getDeclContext()->isRecord() &&
3072      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3073    // If the value is a class member, we might have a pointer-to-member.
3074    // Determine whether the non-type template template parameter is of
3075    // pointer-to-member type. If so, we need to build an appropriate
3076    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3077    // would refer to the member itself.
3078    if (ParamType->isMemberPointerType()) {
3079      QualType ClassType
3080        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3081      NestedNameSpecifier *Qualifier
3082        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
3083      CXXScopeSpec SS;
3084      SS.setScopeRep(Qualifier);
3085      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
3086                                           VD->getType().getNonReferenceType(),
3087                                                  Loc,
3088                                                  &SS);
3089      if (RefExpr.isInvalid())
3090        return ExprError();
3091
3092      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3093
3094      // We might need to perform a trailing qualification conversion, since
3095      // the element type on the parameter could be more qualified than the
3096      // element type in the expression we constructed.
3097      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3098                                    ParamType.getUnqualifiedType())) {
3099        Expr *RefE = RefExpr.takeAs<Expr>();
3100        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(),
3101                          CastExpr::CK_NoOp);
3102        RefExpr = Owned(RefE);
3103      }
3104
3105      assert(!RefExpr.isInvalid() &&
3106             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3107                                 ParamType.getUnqualifiedType()));
3108      return move(RefExpr);
3109    }
3110  }
3111
3112  QualType T = VD->getType().getNonReferenceType();
3113  if (ParamType->isPointerType()) {
3114    // When the non-type template parameter is a pointer, take the
3115    // address of the declaration.
3116    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3117    if (RefExpr.isInvalid())
3118      return ExprError();
3119
3120    if (T->isFunctionType() || T->isArrayType()) {
3121      // Decay functions and arrays.
3122      Expr *RefE = (Expr *)RefExpr.get();
3123      DefaultFunctionArrayConversion(RefE);
3124      if (RefE != RefExpr.get()) {
3125        RefExpr.release();
3126        RefExpr = Owned(RefE);
3127      }
3128
3129      return move(RefExpr);
3130    }
3131
3132    // Take the address of everything else
3133    return CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
3134  }
3135
3136  // If the non-type template parameter has reference type, qualify the
3137  // resulting declaration reference with the extra qualifiers on the
3138  // type that the reference refers to.
3139  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3140    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3141
3142  return BuildDeclRefExpr(VD, T, Loc);
3143}
3144
3145/// \brief Construct a new expression that refers to the given
3146/// integral template argument with the given source-location
3147/// information.
3148///
3149/// This routine takes care of the mapping from an integral template
3150/// argument (which may have any integral type) to the appropriate
3151/// literal value.
3152Sema::OwningExprResult
3153Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3154                                                  SourceLocation Loc) {
3155  assert(Arg.getKind() == TemplateArgument::Integral &&
3156         "Operation is only value for integral template arguments");
3157  QualType T = Arg.getIntegralType();
3158  if (T->isCharType() || T->isWideCharType())
3159    return Owned(new (Context) CharacterLiteral(
3160                                             Arg.getAsIntegral()->getZExtValue(),
3161                                             T->isWideCharType(),
3162                                             T,
3163                                             Loc));
3164  if (T->isBooleanType())
3165    return Owned(new (Context) CXXBoolLiteralExpr(
3166                                            Arg.getAsIntegral()->getBoolValue(),
3167                                            T,
3168                                            Loc));
3169
3170  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
3171}
3172
3173
3174/// \brief Determine whether the given template parameter lists are
3175/// equivalent.
3176///
3177/// \param New  The new template parameter list, typically written in the
3178/// source code as part of a new template declaration.
3179///
3180/// \param Old  The old template parameter list, typically found via
3181/// name lookup of the template declared with this template parameter
3182/// list.
3183///
3184/// \param Complain  If true, this routine will produce a diagnostic if
3185/// the template parameter lists are not equivalent.
3186///
3187/// \param Kind describes how we are to match the template parameter lists.
3188///
3189/// \param TemplateArgLoc If this source location is valid, then we
3190/// are actually checking the template parameter list of a template
3191/// argument (New) against the template parameter list of its
3192/// corresponding template template parameter (Old). We produce
3193/// slightly different diagnostics in this scenario.
3194///
3195/// \returns True if the template parameter lists are equal, false
3196/// otherwise.
3197bool
3198Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3199                                     TemplateParameterList *Old,
3200                                     bool Complain,
3201                                     TemplateParameterListEqualKind Kind,
3202                                     SourceLocation TemplateArgLoc) {
3203  if (Old->size() != New->size()) {
3204    if (Complain) {
3205      unsigned NextDiag = diag::err_template_param_list_different_arity;
3206      if (TemplateArgLoc.isValid()) {
3207        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3208        NextDiag = diag::note_template_param_list_different_arity;
3209      }
3210      Diag(New->getTemplateLoc(), NextDiag)
3211          << (New->size() > Old->size())
3212          << (Kind != TPL_TemplateMatch)
3213          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3214      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3215        << (Kind != TPL_TemplateMatch)
3216        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3217    }
3218
3219    return false;
3220  }
3221
3222  for (TemplateParameterList::iterator OldParm = Old->begin(),
3223         OldParmEnd = Old->end(), NewParm = New->begin();
3224       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3225    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3226      if (Complain) {
3227        unsigned NextDiag = diag::err_template_param_different_kind;
3228        if (TemplateArgLoc.isValid()) {
3229          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3230          NextDiag = diag::note_template_param_different_kind;
3231        }
3232        Diag((*NewParm)->getLocation(), NextDiag)
3233          << (Kind != TPL_TemplateMatch);
3234        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3235          << (Kind != TPL_TemplateMatch);
3236      }
3237      return false;
3238    }
3239
3240    if (TemplateTypeParmDecl *OldTTP
3241                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3242      // Template type parameters are equivalent if either both are template
3243      // type parameter packs or neither are (since we know we're at the same
3244      // index).
3245      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3246      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3247        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3248        // allow one to match a template parameter pack in the template
3249        // parameter list of a template template parameter to one or more
3250        // template parameters in the template parameter list of the
3251        // corresponding template template argument.
3252        if (Complain) {
3253          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3254          if (TemplateArgLoc.isValid()) {
3255            Diag(TemplateArgLoc,
3256                 diag::err_template_arg_template_params_mismatch);
3257            NextDiag = diag::note_template_parameter_pack_non_pack;
3258          }
3259          Diag(NewTTP->getLocation(), NextDiag)
3260            << 0 << NewTTP->isParameterPack();
3261          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3262            << 0 << OldTTP->isParameterPack();
3263        }
3264        return false;
3265      }
3266    } else if (NonTypeTemplateParmDecl *OldNTTP
3267                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3268      // The types of non-type template parameters must agree.
3269      NonTypeTemplateParmDecl *NewNTTP
3270        = cast<NonTypeTemplateParmDecl>(*NewParm);
3271
3272      // If we are matching a template template argument to a template
3273      // template parameter and one of the non-type template parameter types
3274      // is dependent, then we must wait until template instantiation time
3275      // to actually compare the arguments.
3276      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3277          (OldNTTP->getType()->isDependentType() ||
3278           NewNTTP->getType()->isDependentType()))
3279        continue;
3280
3281      if (Context.getCanonicalType(OldNTTP->getType()) !=
3282            Context.getCanonicalType(NewNTTP->getType())) {
3283        if (Complain) {
3284          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3285          if (TemplateArgLoc.isValid()) {
3286            Diag(TemplateArgLoc,
3287                 diag::err_template_arg_template_params_mismatch);
3288            NextDiag = diag::note_template_nontype_parm_different_type;
3289          }
3290          Diag(NewNTTP->getLocation(), NextDiag)
3291            << NewNTTP->getType()
3292            << (Kind != TPL_TemplateMatch);
3293          Diag(OldNTTP->getLocation(),
3294               diag::note_template_nontype_parm_prev_declaration)
3295            << OldNTTP->getType();
3296        }
3297        return false;
3298      }
3299    } else {
3300      // The template parameter lists of template template
3301      // parameters must agree.
3302      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3303             "Only template template parameters handled here");
3304      TemplateTemplateParmDecl *OldTTP
3305        = cast<TemplateTemplateParmDecl>(*OldParm);
3306      TemplateTemplateParmDecl *NewTTP
3307        = cast<TemplateTemplateParmDecl>(*NewParm);
3308      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3309                                          OldTTP->getTemplateParameters(),
3310                                          Complain,
3311              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3312                                          TemplateArgLoc))
3313        return false;
3314    }
3315  }
3316
3317  return true;
3318}
3319
3320/// \brief Check whether a template can be declared within this scope.
3321///
3322/// If the template declaration is valid in this scope, returns
3323/// false. Otherwise, issues a diagnostic and returns true.
3324bool
3325Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3326  // Find the nearest enclosing declaration scope.
3327  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3328         (S->getFlags() & Scope::TemplateParamScope) != 0)
3329    S = S->getParent();
3330
3331  // C++ [temp]p2:
3332  //   A template-declaration can appear only as a namespace scope or
3333  //   class scope declaration.
3334  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3335  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3336      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3337    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3338             << TemplateParams->getSourceRange();
3339
3340  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3341    Ctx = Ctx->getParent();
3342
3343  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3344    return false;
3345
3346  return Diag(TemplateParams->getTemplateLoc(),
3347              diag::err_template_outside_namespace_or_class_scope)
3348    << TemplateParams->getSourceRange();
3349}
3350
3351/// \brief Determine what kind of template specialization the given declaration
3352/// is.
3353static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3354  if (!D)
3355    return TSK_Undeclared;
3356
3357  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3358    return Record->getTemplateSpecializationKind();
3359  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3360    return Function->getTemplateSpecializationKind();
3361  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3362    return Var->getTemplateSpecializationKind();
3363
3364  return TSK_Undeclared;
3365}
3366
3367/// \brief Check whether a specialization is well-formed in the current
3368/// context.
3369///
3370/// This routine determines whether a template specialization can be declared
3371/// in the current context (C++ [temp.expl.spec]p2).
3372///
3373/// \param S the semantic analysis object for which this check is being
3374/// performed.
3375///
3376/// \param Specialized the entity being specialized or instantiated, which
3377/// may be a kind of template (class template, function template, etc.) or
3378/// a member of a class template (member function, static data member,
3379/// member class).
3380///
3381/// \param PrevDecl the previous declaration of this entity, if any.
3382///
3383/// \param Loc the location of the explicit specialization or instantiation of
3384/// this entity.
3385///
3386/// \param IsPartialSpecialization whether this is a partial specialization of
3387/// a class template.
3388///
3389/// \returns true if there was an error that we cannot recover from, false
3390/// otherwise.
3391static bool CheckTemplateSpecializationScope(Sema &S,
3392                                             NamedDecl *Specialized,
3393                                             NamedDecl *PrevDecl,
3394                                             SourceLocation Loc,
3395                                             bool IsPartialSpecialization) {
3396  // Keep these "kind" numbers in sync with the %select statements in the
3397  // various diagnostics emitted by this routine.
3398  int EntityKind = 0;
3399  bool isTemplateSpecialization = false;
3400  if (isa<ClassTemplateDecl>(Specialized)) {
3401    EntityKind = IsPartialSpecialization? 1 : 0;
3402    isTemplateSpecialization = true;
3403  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3404    EntityKind = 2;
3405    isTemplateSpecialization = true;
3406  } else if (isa<CXXMethodDecl>(Specialized))
3407    EntityKind = 3;
3408  else if (isa<VarDecl>(Specialized))
3409    EntityKind = 4;
3410  else if (isa<RecordDecl>(Specialized))
3411    EntityKind = 5;
3412  else {
3413    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3414    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3415    return true;
3416  }
3417
3418  // C++ [temp.expl.spec]p2:
3419  //   An explicit specialization shall be declared in the namespace
3420  //   of which the template is a member, or, for member templates, in
3421  //   the namespace of which the enclosing class or enclosing class
3422  //   template is a member. An explicit specialization of a member
3423  //   function, member class or static data member of a class
3424  //   template shall be declared in the namespace of which the class
3425  //   template is a member. Such a declaration may also be a
3426  //   definition. If the declaration is not a definition, the
3427  //   specialization may be defined later in the name- space in which
3428  //   the explicit specialization was declared, or in a namespace
3429  //   that encloses the one in which the explicit specialization was
3430  //   declared.
3431  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3432    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3433      << Specialized;
3434    return true;
3435  }
3436
3437  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3438    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3439      << Specialized;
3440    return true;
3441  }
3442
3443  // C++ [temp.class.spec]p6:
3444  //   A class template partial specialization may be declared or redeclared
3445  //   in any namespace scope in which its definition may be defined (14.5.1
3446  //   and 14.5.2).
3447  bool ComplainedAboutScope = false;
3448  DeclContext *SpecializedContext
3449    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3450  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3451  if ((!PrevDecl ||
3452       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3453       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3454    // There is no prior declaration of this entity, so this
3455    // specialization must be in the same context as the template
3456    // itself.
3457    if (!DC->Equals(SpecializedContext)) {
3458      if (isa<TranslationUnitDecl>(SpecializedContext))
3459        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3460        << EntityKind << Specialized;
3461      else if (isa<NamespaceDecl>(SpecializedContext))
3462        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3463        << EntityKind << Specialized
3464        << cast<NamedDecl>(SpecializedContext);
3465
3466      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3467      ComplainedAboutScope = true;
3468    }
3469  }
3470
3471  // Make sure that this redeclaration (or definition) occurs in an enclosing
3472  // namespace.
3473  // Note that HandleDeclarator() performs this check for explicit
3474  // specializations of function templates, static data members, and member
3475  // functions, so we skip the check here for those kinds of entities.
3476  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3477  // Should we refactor that check, so that it occurs later?
3478  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3479      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3480        isa<FunctionDecl>(Specialized))) {
3481    if (isa<TranslationUnitDecl>(SpecializedContext))
3482      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3483        << EntityKind << Specialized;
3484    else if (isa<NamespaceDecl>(SpecializedContext))
3485      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3486        << EntityKind << Specialized
3487        << cast<NamedDecl>(SpecializedContext);
3488
3489    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3490  }
3491
3492  // FIXME: check for specialization-after-instantiation errors and such.
3493
3494  return false;
3495}
3496
3497/// \brief Check the non-type template arguments of a class template
3498/// partial specialization according to C++ [temp.class.spec]p9.
3499///
3500/// \param TemplateParams the template parameters of the primary class
3501/// template.
3502///
3503/// \param TemplateArg the template arguments of the class template
3504/// partial specialization.
3505///
3506/// \param MirrorsPrimaryTemplate will be set true if the class
3507/// template partial specialization arguments are identical to the
3508/// implicit template arguments of the primary template. This is not
3509/// necessarily an error (C++0x), and it is left to the caller to diagnose
3510/// this condition when it is an error.
3511///
3512/// \returns true if there was an error, false otherwise.
3513bool Sema::CheckClassTemplatePartialSpecializationArgs(
3514                                        TemplateParameterList *TemplateParams,
3515                             const TemplateArgumentListBuilder &TemplateArgs,
3516                                        bool &MirrorsPrimaryTemplate) {
3517  // FIXME: the interface to this function will have to change to
3518  // accommodate variadic templates.
3519  MirrorsPrimaryTemplate = true;
3520
3521  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3522
3523  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3524    // Determine whether the template argument list of the partial
3525    // specialization is identical to the implicit argument list of
3526    // the primary template. The caller may need to diagnostic this as
3527    // an error per C++ [temp.class.spec]p9b3.
3528    if (MirrorsPrimaryTemplate) {
3529      if (TemplateTypeParmDecl *TTP
3530            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3531        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3532              Context.getCanonicalType(ArgList[I].getAsType()))
3533          MirrorsPrimaryTemplate = false;
3534      } else if (TemplateTemplateParmDecl *TTP
3535                   = dyn_cast<TemplateTemplateParmDecl>(
3536                                                 TemplateParams->getParam(I))) {
3537        TemplateName Name = ArgList[I].getAsTemplate();
3538        TemplateTemplateParmDecl *ArgDecl
3539          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3540        if (!ArgDecl ||
3541            ArgDecl->getIndex() != TTP->getIndex() ||
3542            ArgDecl->getDepth() != TTP->getDepth())
3543          MirrorsPrimaryTemplate = false;
3544      }
3545    }
3546
3547    NonTypeTemplateParmDecl *Param
3548      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3549    if (!Param) {
3550      continue;
3551    }
3552
3553    Expr *ArgExpr = ArgList[I].getAsExpr();
3554    if (!ArgExpr) {
3555      MirrorsPrimaryTemplate = false;
3556      continue;
3557    }
3558
3559    // C++ [temp.class.spec]p8:
3560    //   A non-type argument is non-specialized if it is the name of a
3561    //   non-type parameter. All other non-type arguments are
3562    //   specialized.
3563    //
3564    // Below, we check the two conditions that only apply to
3565    // specialized non-type arguments, so skip any non-specialized
3566    // arguments.
3567    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3568      if (NonTypeTemplateParmDecl *NTTP
3569            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3570        if (MirrorsPrimaryTemplate &&
3571            (Param->getIndex() != NTTP->getIndex() ||
3572             Param->getDepth() != NTTP->getDepth()))
3573          MirrorsPrimaryTemplate = false;
3574
3575        continue;
3576      }
3577
3578    // C++ [temp.class.spec]p9:
3579    //   Within the argument list of a class template partial
3580    //   specialization, the following restrictions apply:
3581    //     -- A partially specialized non-type argument expression
3582    //        shall not involve a template parameter of the partial
3583    //        specialization except when the argument expression is a
3584    //        simple identifier.
3585    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3586      Diag(ArgExpr->getLocStart(),
3587           diag::err_dependent_non_type_arg_in_partial_spec)
3588        << ArgExpr->getSourceRange();
3589      return true;
3590    }
3591
3592    //     -- The type of a template parameter corresponding to a
3593    //        specialized non-type argument shall not be dependent on a
3594    //        parameter of the specialization.
3595    if (Param->getType()->isDependentType()) {
3596      Diag(ArgExpr->getLocStart(),
3597           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3598        << Param->getType()
3599        << ArgExpr->getSourceRange();
3600      Diag(Param->getLocation(), diag::note_template_param_here);
3601      return true;
3602    }
3603
3604    MirrorsPrimaryTemplate = false;
3605  }
3606
3607  return false;
3608}
3609
3610/// \brief Retrieve the previous declaration of the given declaration.
3611static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3612  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3613    return VD->getPreviousDeclaration();
3614  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3615    return FD->getPreviousDeclaration();
3616  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3617    return TD->getPreviousDeclaration();
3618  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3619    return TD->getPreviousDeclaration();
3620  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3621    return FTD->getPreviousDeclaration();
3622  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3623    return CTD->getPreviousDeclaration();
3624  return 0;
3625}
3626
3627Sema::DeclResult
3628Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3629                                       TagUseKind TUK,
3630                                       SourceLocation KWLoc,
3631                                       CXXScopeSpec &SS,
3632                                       TemplateTy TemplateD,
3633                                       SourceLocation TemplateNameLoc,
3634                                       SourceLocation LAngleLoc,
3635                                       ASTTemplateArgsPtr TemplateArgsIn,
3636                                       SourceLocation RAngleLoc,
3637                                       AttributeList *Attr,
3638                               MultiTemplateParamsArg TemplateParameterLists) {
3639  assert(TUK != TUK_Reference && "References are not specializations");
3640
3641  // Find the class template we're specializing
3642  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3643  ClassTemplateDecl *ClassTemplate
3644    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3645
3646  if (!ClassTemplate) {
3647    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3648      << (Name.getAsTemplateDecl() &&
3649          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3650    return true;
3651  }
3652
3653  bool isExplicitSpecialization = false;
3654  bool isPartialSpecialization = false;
3655
3656  // Check the validity of the template headers that introduce this
3657  // template.
3658  // FIXME: We probably shouldn't complain about these headers for
3659  // friend declarations.
3660  TemplateParameterList *TemplateParams
3661    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3662                        (TemplateParameterList**)TemplateParameterLists.get(),
3663                                              TemplateParameterLists.size(),
3664                                              TUK == TUK_Friend,
3665                                              isExplicitSpecialization);
3666  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3667  if (TemplateParams)
3668    --NumMatchedTemplateParamLists;
3669
3670  if (TemplateParams && TemplateParams->size() > 0) {
3671    isPartialSpecialization = true;
3672
3673    // C++ [temp.class.spec]p10:
3674    //   The template parameter list of a specialization shall not
3675    //   contain default template argument values.
3676    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3677      Decl *Param = TemplateParams->getParam(I);
3678      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3679        if (TTP->hasDefaultArgument()) {
3680          Diag(TTP->getDefaultArgumentLoc(),
3681               diag::err_default_arg_in_partial_spec);
3682          TTP->removeDefaultArgument();
3683        }
3684      } else if (NonTypeTemplateParmDecl *NTTP
3685                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3686        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3687          Diag(NTTP->getDefaultArgumentLoc(),
3688               diag::err_default_arg_in_partial_spec)
3689            << DefArg->getSourceRange();
3690          NTTP->removeDefaultArgument();
3691          DefArg->Destroy(Context);
3692        }
3693      } else {
3694        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3695        if (TTP->hasDefaultArgument()) {
3696          Diag(TTP->getDefaultArgument().getLocation(),
3697               diag::err_default_arg_in_partial_spec)
3698            << TTP->getDefaultArgument().getSourceRange();
3699          TTP->removeDefaultArgument();
3700        }
3701      }
3702    }
3703  } else if (TemplateParams) {
3704    if (TUK == TUK_Friend)
3705      Diag(KWLoc, diag::err_template_spec_friend)
3706        << FixItHint::CreateRemoval(
3707                                SourceRange(TemplateParams->getTemplateLoc(),
3708                                            TemplateParams->getRAngleLoc()))
3709        << SourceRange(LAngleLoc, RAngleLoc);
3710    else
3711      isExplicitSpecialization = true;
3712  } else if (TUK != TUK_Friend) {
3713    Diag(KWLoc, diag::err_template_spec_needs_header)
3714      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3715    isExplicitSpecialization = true;
3716  }
3717
3718  // Check that the specialization uses the same tag kind as the
3719  // original template.
3720  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3721  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3722  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3723                                    Kind, KWLoc,
3724                                    *ClassTemplate->getIdentifier())) {
3725    Diag(KWLoc, diag::err_use_with_wrong_tag)
3726      << ClassTemplate
3727      << FixItHint::CreateReplacement(KWLoc,
3728                            ClassTemplate->getTemplatedDecl()->getKindName());
3729    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3730         diag::note_previous_use);
3731    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3732  }
3733
3734  // Translate the parser's template argument list in our AST format.
3735  TemplateArgumentListInfo TemplateArgs;
3736  TemplateArgs.setLAngleLoc(LAngleLoc);
3737  TemplateArgs.setRAngleLoc(RAngleLoc);
3738  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3739
3740  // Check that the template argument list is well-formed for this
3741  // template.
3742  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3743                                        TemplateArgs.size());
3744  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3745                                TemplateArgs, false, Converted))
3746    return true;
3747
3748  assert((Converted.structuredSize() ==
3749            ClassTemplate->getTemplateParameters()->size()) &&
3750         "Converted template argument list is too short!");
3751
3752  // Find the class template (partial) specialization declaration that
3753  // corresponds to these arguments.
3754  llvm::FoldingSetNodeID ID;
3755  if (isPartialSpecialization) {
3756    bool MirrorsPrimaryTemplate;
3757    if (CheckClassTemplatePartialSpecializationArgs(
3758                                         ClassTemplate->getTemplateParameters(),
3759                                         Converted, MirrorsPrimaryTemplate))
3760      return true;
3761
3762    if (MirrorsPrimaryTemplate) {
3763      // C++ [temp.class.spec]p9b3:
3764      //
3765      //   -- The argument list of the specialization shall not be identical
3766      //      to the implicit argument list of the primary template.
3767      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3768        << (TUK == TUK_Definition)
3769        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3770      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3771                                ClassTemplate->getIdentifier(),
3772                                TemplateNameLoc,
3773                                Attr,
3774                                TemplateParams,
3775                                AS_none);
3776    }
3777
3778    // FIXME: Diagnose friend partial specializations
3779
3780    if (!Name.isDependent() &&
3781        !TemplateSpecializationType::anyDependentTemplateArguments(
3782                                             TemplateArgs.getArgumentArray(),
3783                                                         TemplateArgs.size())) {
3784      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3785        << ClassTemplate->getDeclName();
3786      isPartialSpecialization = false;
3787    } else {
3788      // FIXME: Template parameter list matters, too
3789      ClassTemplatePartialSpecializationDecl::Profile(ID,
3790                                                  Converted.getFlatArguments(),
3791                                                      Converted.flatSize(),
3792                                                      Context);
3793    }
3794  }
3795
3796  if (!isPartialSpecialization)
3797    ClassTemplateSpecializationDecl::Profile(ID,
3798                                             Converted.getFlatArguments(),
3799                                             Converted.flatSize(),
3800                                             Context);
3801  void *InsertPos = 0;
3802  ClassTemplateSpecializationDecl *PrevDecl = 0;
3803
3804  if (isPartialSpecialization)
3805    PrevDecl
3806      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3807                                                                    InsertPos);
3808  else
3809    PrevDecl
3810      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3811
3812  ClassTemplateSpecializationDecl *Specialization = 0;
3813
3814  // Check whether we can declare a class template specialization in
3815  // the current scope.
3816  if (TUK != TUK_Friend &&
3817      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3818                                       TemplateNameLoc,
3819                                       isPartialSpecialization))
3820    return true;
3821
3822  // The canonical type
3823  QualType CanonType;
3824  if (PrevDecl &&
3825      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3826               TUK == TUK_Friend)) {
3827    // Since the only prior class template specialization with these
3828    // arguments was referenced but not declared, or we're only
3829    // referencing this specialization as a friend, reuse that
3830    // declaration node as our own, updating its source location to
3831    // reflect our new declaration.
3832    Specialization = PrevDecl;
3833    Specialization->setLocation(TemplateNameLoc);
3834    PrevDecl = 0;
3835    CanonType = Context.getTypeDeclType(Specialization);
3836  } else if (isPartialSpecialization) {
3837    // Build the canonical type that describes the converted template
3838    // arguments of the class template partial specialization.
3839    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3840    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3841                                                  Converted.getFlatArguments(),
3842                                                  Converted.flatSize());
3843
3844    // Create a new class template partial specialization declaration node.
3845    ClassTemplatePartialSpecializationDecl *PrevPartial
3846      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3847    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3848                            : ClassTemplate->getPartialSpecializations().size();
3849    ClassTemplatePartialSpecializationDecl *Partial
3850      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3851                                             ClassTemplate->getDeclContext(),
3852                                                       TemplateNameLoc,
3853                                                       TemplateParams,
3854                                                       ClassTemplate,
3855                                                       Converted,
3856                                                       TemplateArgs,
3857                                                       CanonType,
3858                                                       PrevPartial,
3859                                                       SequenceNumber);
3860    SetNestedNameSpecifier(Partial, SS);
3861    if (NumMatchedTemplateParamLists > 0) {
3862      Partial->setTemplateParameterListsInfo(NumMatchedTemplateParamLists,
3863                    (TemplateParameterList**) TemplateParameterLists.release());
3864    }
3865
3866    if (PrevPartial) {
3867      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3868      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3869    } else {
3870      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3871    }
3872    Specialization = Partial;
3873
3874    // If we are providing an explicit specialization of a member class
3875    // template specialization, make a note of that.
3876    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3877      PrevPartial->setMemberSpecialization();
3878
3879    // Check that all of the template parameters of the class template
3880    // partial specialization are deducible from the template
3881    // arguments. If not, this class template partial specialization
3882    // will never be used.
3883    llvm::SmallVector<bool, 8> DeducibleParams;
3884    DeducibleParams.resize(TemplateParams->size());
3885    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3886                               TemplateParams->getDepth(),
3887                               DeducibleParams);
3888    unsigned NumNonDeducible = 0;
3889    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3890      if (!DeducibleParams[I])
3891        ++NumNonDeducible;
3892
3893    if (NumNonDeducible) {
3894      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3895        << (NumNonDeducible > 1)
3896        << SourceRange(TemplateNameLoc, RAngleLoc);
3897      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3898        if (!DeducibleParams[I]) {
3899          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3900          if (Param->getDeclName())
3901            Diag(Param->getLocation(),
3902                 diag::note_partial_spec_unused_parameter)
3903              << Param->getDeclName();
3904          else
3905            Diag(Param->getLocation(),
3906                 diag::note_partial_spec_unused_parameter)
3907              << std::string("<anonymous>");
3908        }
3909      }
3910    }
3911  } else {
3912    // Create a new class template specialization declaration node for
3913    // this explicit specialization or friend declaration.
3914    Specialization
3915      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3916                                             ClassTemplate->getDeclContext(),
3917                                                TemplateNameLoc,
3918                                                ClassTemplate,
3919                                                Converted,
3920                                                PrevDecl);
3921    SetNestedNameSpecifier(Specialization, SS);
3922    if (NumMatchedTemplateParamLists > 0) {
3923      Specialization->setTemplateParameterListsInfo(
3924                    NumMatchedTemplateParamLists,
3925                    (TemplateParameterList**) TemplateParameterLists.release());
3926    }
3927
3928    if (PrevDecl) {
3929      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3930      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3931    } else {
3932      ClassTemplate->getSpecializations().InsertNode(Specialization,
3933                                                     InsertPos);
3934    }
3935
3936    CanonType = Context.getTypeDeclType(Specialization);
3937  }
3938
3939  // C++ [temp.expl.spec]p6:
3940  //   If a template, a member template or the member of a class template is
3941  //   explicitly specialized then that specialization shall be declared
3942  //   before the first use of that specialization that would cause an implicit
3943  //   instantiation to take place, in every translation unit in which such a
3944  //   use occurs; no diagnostic is required.
3945  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3946    bool Okay = false;
3947    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3948      // Is there any previous explicit specialization declaration?
3949      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3950        Okay = true;
3951        break;
3952      }
3953    }
3954
3955    if (!Okay) {
3956      SourceRange Range(TemplateNameLoc, RAngleLoc);
3957      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3958        << Context.getTypeDeclType(Specialization) << Range;
3959
3960      Diag(PrevDecl->getPointOfInstantiation(),
3961           diag::note_instantiation_required_here)
3962        << (PrevDecl->getTemplateSpecializationKind()
3963                                                != TSK_ImplicitInstantiation);
3964      return true;
3965    }
3966  }
3967
3968  // If this is not a friend, note that this is an explicit specialization.
3969  if (TUK != TUK_Friend)
3970    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3971
3972  // Check that this isn't a redefinition of this specialization.
3973  if (TUK == TUK_Definition) {
3974    if (RecordDecl *Def = Specialization->getDefinition()) {
3975      SourceRange Range(TemplateNameLoc, RAngleLoc);
3976      Diag(TemplateNameLoc, diag::err_redefinition)
3977        << Context.getTypeDeclType(Specialization) << Range;
3978      Diag(Def->getLocation(), diag::note_previous_definition);
3979      Specialization->setInvalidDecl();
3980      return true;
3981    }
3982  }
3983
3984  // Build the fully-sugared type for this class template
3985  // specialization as the user wrote in the specialization
3986  // itself. This means that we'll pretty-print the type retrieved
3987  // from the specialization's declaration the way that the user
3988  // actually wrote the specialization, rather than formatting the
3989  // name based on the "canonical" representation used to store the
3990  // template arguments in the specialization.
3991  TypeSourceInfo *WrittenTy
3992    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3993                                                TemplateArgs, CanonType);
3994  if (TUK != TUK_Friend) {
3995    Specialization->setTypeAsWritten(WrittenTy);
3996    Specialization->setTemplateKeywordLoc(KWLoc);
3997  }
3998  TemplateArgsIn.release();
3999
4000  // C++ [temp.expl.spec]p9:
4001  //   A template explicit specialization is in the scope of the
4002  //   namespace in which the template was defined.
4003  //
4004  // We actually implement this paragraph where we set the semantic
4005  // context (in the creation of the ClassTemplateSpecializationDecl),
4006  // but we also maintain the lexical context where the actual
4007  // definition occurs.
4008  Specialization->setLexicalDeclContext(CurContext);
4009
4010  // We may be starting the definition of this specialization.
4011  if (TUK == TUK_Definition)
4012    Specialization->startDefinition();
4013
4014  if (TUK == TUK_Friend) {
4015    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4016                                            TemplateNameLoc,
4017                                            WrittenTy,
4018                                            /*FIXME:*/KWLoc);
4019    Friend->setAccess(AS_public);
4020    CurContext->addDecl(Friend);
4021  } else {
4022    // Add the specialization into its lexical context, so that it can
4023    // be seen when iterating through the list of declarations in that
4024    // context. However, specializations are not found by name lookup.
4025    CurContext->addDecl(Specialization);
4026  }
4027  return DeclPtrTy::make(Specialization);
4028}
4029
4030Sema::DeclPtrTy
4031Sema::ActOnTemplateDeclarator(Scope *S,
4032                              MultiTemplateParamsArg TemplateParameterLists,
4033                              Declarator &D) {
4034  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4035}
4036
4037Sema::DeclPtrTy
4038Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4039                               MultiTemplateParamsArg TemplateParameterLists,
4040                                      Declarator &D) {
4041  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4042  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4043         "Not a function declarator!");
4044  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4045
4046  if (FTI.hasPrototype) {
4047    // FIXME: Diagnose arguments without names in C.
4048  }
4049
4050  Scope *ParentScope = FnBodyScope->getParent();
4051
4052  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4053                                  move(TemplateParameterLists),
4054                                  /*IsFunctionDefinition=*/true);
4055  if (FunctionTemplateDecl *FunctionTemplate
4056        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
4057    return ActOnStartOfFunctionDef(FnBodyScope,
4058                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
4059  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
4060    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
4061  return DeclPtrTy();
4062}
4063
4064/// \brief Strips various properties off an implicit instantiation
4065/// that has just been explicitly specialized.
4066static void StripImplicitInstantiation(NamedDecl *D) {
4067  D->invalidateAttrs();
4068
4069  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4070    FD->setInlineSpecified(false);
4071  }
4072}
4073
4074/// \brief Diagnose cases where we have an explicit template specialization
4075/// before/after an explicit template instantiation, producing diagnostics
4076/// for those cases where they are required and determining whether the
4077/// new specialization/instantiation will have any effect.
4078///
4079/// \param NewLoc the location of the new explicit specialization or
4080/// instantiation.
4081///
4082/// \param NewTSK the kind of the new explicit specialization or instantiation.
4083///
4084/// \param PrevDecl the previous declaration of the entity.
4085///
4086/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4087///
4088/// \param PrevPointOfInstantiation if valid, indicates where the previus
4089/// declaration was instantiated (either implicitly or explicitly).
4090///
4091/// \param HasNoEffect will be set to true to indicate that the new
4092/// specialization or instantiation has no effect and should be ignored.
4093///
4094/// \returns true if there was an error that should prevent the introduction of
4095/// the new declaration into the AST, false otherwise.
4096bool
4097Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4098                                             TemplateSpecializationKind NewTSK,
4099                                             NamedDecl *PrevDecl,
4100                                             TemplateSpecializationKind PrevTSK,
4101                                        SourceLocation PrevPointOfInstantiation,
4102                                             bool &HasNoEffect) {
4103  HasNoEffect = false;
4104
4105  switch (NewTSK) {
4106  case TSK_Undeclared:
4107  case TSK_ImplicitInstantiation:
4108    assert(false && "Don't check implicit instantiations here");
4109    return false;
4110
4111  case TSK_ExplicitSpecialization:
4112    switch (PrevTSK) {
4113    case TSK_Undeclared:
4114    case TSK_ExplicitSpecialization:
4115      // Okay, we're just specializing something that is either already
4116      // explicitly specialized or has merely been mentioned without any
4117      // instantiation.
4118      return false;
4119
4120    case TSK_ImplicitInstantiation:
4121      if (PrevPointOfInstantiation.isInvalid()) {
4122        // The declaration itself has not actually been instantiated, so it is
4123        // still okay to specialize it.
4124        StripImplicitInstantiation(PrevDecl);
4125        return false;
4126      }
4127      // Fall through
4128
4129    case TSK_ExplicitInstantiationDeclaration:
4130    case TSK_ExplicitInstantiationDefinition:
4131      assert((PrevTSK == TSK_ImplicitInstantiation ||
4132              PrevPointOfInstantiation.isValid()) &&
4133             "Explicit instantiation without point of instantiation?");
4134
4135      // C++ [temp.expl.spec]p6:
4136      //   If a template, a member template or the member of a class template
4137      //   is explicitly specialized then that specialization shall be declared
4138      //   before the first use of that specialization that would cause an
4139      //   implicit instantiation to take place, in every translation unit in
4140      //   which such a use occurs; no diagnostic is required.
4141      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4142        // Is there any previous explicit specialization declaration?
4143        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4144          return false;
4145      }
4146
4147      Diag(NewLoc, diag::err_specialization_after_instantiation)
4148        << PrevDecl;
4149      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4150        << (PrevTSK != TSK_ImplicitInstantiation);
4151
4152      return true;
4153    }
4154    break;
4155
4156  case TSK_ExplicitInstantiationDeclaration:
4157    switch (PrevTSK) {
4158    case TSK_ExplicitInstantiationDeclaration:
4159      // This explicit instantiation declaration is redundant (that's okay).
4160      HasNoEffect = true;
4161      return false;
4162
4163    case TSK_Undeclared:
4164    case TSK_ImplicitInstantiation:
4165      // We're explicitly instantiating something that may have already been
4166      // implicitly instantiated; that's fine.
4167      return false;
4168
4169    case TSK_ExplicitSpecialization:
4170      // C++0x [temp.explicit]p4:
4171      //   For a given set of template parameters, if an explicit instantiation
4172      //   of a template appears after a declaration of an explicit
4173      //   specialization for that template, the explicit instantiation has no
4174      //   effect.
4175      HasNoEffect = true;
4176      return false;
4177
4178    case TSK_ExplicitInstantiationDefinition:
4179      // C++0x [temp.explicit]p10:
4180      //   If an entity is the subject of both an explicit instantiation
4181      //   declaration and an explicit instantiation definition in the same
4182      //   translation unit, the definition shall follow the declaration.
4183      Diag(NewLoc,
4184           diag::err_explicit_instantiation_declaration_after_definition);
4185      Diag(PrevPointOfInstantiation,
4186           diag::note_explicit_instantiation_definition_here);
4187      assert(PrevPointOfInstantiation.isValid() &&
4188             "Explicit instantiation without point of instantiation?");
4189      HasNoEffect = true;
4190      return false;
4191    }
4192    break;
4193
4194  case TSK_ExplicitInstantiationDefinition:
4195    switch (PrevTSK) {
4196    case TSK_Undeclared:
4197    case TSK_ImplicitInstantiation:
4198      // We're explicitly instantiating something that may have already been
4199      // implicitly instantiated; that's fine.
4200      return false;
4201
4202    case TSK_ExplicitSpecialization:
4203      // C++ DR 259, C++0x [temp.explicit]p4:
4204      //   For a given set of template parameters, if an explicit
4205      //   instantiation of a template appears after a declaration of
4206      //   an explicit specialization for that template, the explicit
4207      //   instantiation has no effect.
4208      //
4209      // In C++98/03 mode, we only give an extension warning here, because it
4210      // is not harmful to try to explicitly instantiate something that
4211      // has been explicitly specialized.
4212      if (!getLangOptions().CPlusPlus0x) {
4213        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4214          << PrevDecl;
4215        Diag(PrevDecl->getLocation(),
4216             diag::note_previous_template_specialization);
4217      }
4218      HasNoEffect = true;
4219      return false;
4220
4221    case TSK_ExplicitInstantiationDeclaration:
4222      // We're explicity instantiating a definition for something for which we
4223      // were previously asked to suppress instantiations. That's fine.
4224      return false;
4225
4226    case TSK_ExplicitInstantiationDefinition:
4227      // C++0x [temp.spec]p5:
4228      //   For a given template and a given set of template-arguments,
4229      //     - an explicit instantiation definition shall appear at most once
4230      //       in a program,
4231      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4232        << PrevDecl;
4233      Diag(PrevPointOfInstantiation,
4234           diag::note_previous_explicit_instantiation);
4235      HasNoEffect = true;
4236      return false;
4237    }
4238    break;
4239  }
4240
4241  assert(false && "Missing specialization/instantiation case?");
4242
4243  return false;
4244}
4245
4246/// \brief Perform semantic analysis for the given dependent function
4247/// template specialization.  The only possible way to get a dependent
4248/// function template specialization is with a friend declaration,
4249/// like so:
4250///
4251///   template <class T> void foo(T);
4252///   template <class T> class A {
4253///     friend void foo<>(T);
4254///   };
4255///
4256/// There really isn't any useful analysis we can do here, so we
4257/// just store the information.
4258bool
4259Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4260                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4261                                                   LookupResult &Previous) {
4262  // Remove anything from Previous that isn't a function template in
4263  // the correct context.
4264  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4265  LookupResult::Filter F = Previous.makeFilter();
4266  while (F.hasNext()) {
4267    NamedDecl *D = F.next()->getUnderlyingDecl();
4268    if (!isa<FunctionTemplateDecl>(D) ||
4269        !FDLookupContext->Equals(D->getDeclContext()->getLookupContext()))
4270      F.erase();
4271  }
4272  F.done();
4273
4274  // Should this be diagnosed here?
4275  if (Previous.empty()) return true;
4276
4277  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4278                                         ExplicitTemplateArgs);
4279  return false;
4280}
4281
4282/// \brief Perform semantic analysis for the given function template
4283/// specialization.
4284///
4285/// This routine performs all of the semantic analysis required for an
4286/// explicit function template specialization. On successful completion,
4287/// the function declaration \p FD will become a function template
4288/// specialization.
4289///
4290/// \param FD the function declaration, which will be updated to become a
4291/// function template specialization.
4292///
4293/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4294/// if any. Note that this may be valid info even when 0 arguments are
4295/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4296/// as it anyway contains info on the angle brackets locations.
4297///
4298/// \param PrevDecl the set of declarations that may be specialized by
4299/// this function specialization.
4300bool
4301Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4302                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4303                                          LookupResult &Previous) {
4304  // The set of function template specializations that could match this
4305  // explicit function template specialization.
4306  UnresolvedSet<8> Candidates;
4307
4308  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4309  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4310         I != E; ++I) {
4311    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4312    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4313      // Only consider templates found within the same semantic lookup scope as
4314      // FD.
4315      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4316        continue;
4317
4318      // C++ [temp.expl.spec]p11:
4319      //   A trailing template-argument can be left unspecified in the
4320      //   template-id naming an explicit function template specialization
4321      //   provided it can be deduced from the function argument type.
4322      // Perform template argument deduction to determine whether we may be
4323      // specializing this template.
4324      // FIXME: It is somewhat wasteful to build
4325      TemplateDeductionInfo Info(Context, FD->getLocation());
4326      FunctionDecl *Specialization = 0;
4327      if (TemplateDeductionResult TDK
4328            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4329                                      FD->getType(),
4330                                      Specialization,
4331                                      Info)) {
4332        // FIXME: Template argument deduction failed; record why it failed, so
4333        // that we can provide nifty diagnostics.
4334        (void)TDK;
4335        continue;
4336      }
4337
4338      // Record this candidate.
4339      Candidates.addDecl(Specialization, I.getAccess());
4340    }
4341  }
4342
4343  // Find the most specialized function template.
4344  UnresolvedSetIterator Result
4345    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4346                         TPOC_Other, FD->getLocation(),
4347                  PDiag(diag::err_function_template_spec_no_match)
4348                    << FD->getDeclName(),
4349                  PDiag(diag::err_function_template_spec_ambiguous)
4350                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4351                  PDiag(diag::note_function_template_spec_matched));
4352  if (Result == Candidates.end())
4353    return true;
4354
4355  // Ignore access information;  it doesn't figure into redeclaration checking.
4356  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4357  Specialization->setLocation(FD->getLocation());
4358
4359  // FIXME: Check if the prior specialization has a point of instantiation.
4360  // If so, we have run afoul of .
4361
4362  // If this is a friend declaration, then we're not really declaring
4363  // an explicit specialization.
4364  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4365
4366  // Check the scope of this explicit specialization.
4367  if (!isFriend &&
4368      CheckTemplateSpecializationScope(*this,
4369                                       Specialization->getPrimaryTemplate(),
4370                                       Specialization, FD->getLocation(),
4371                                       false))
4372    return true;
4373
4374  // C++ [temp.expl.spec]p6:
4375  //   If a template, a member template or the member of a class template is
4376  //   explicitly specialized then that specialization shall be declared
4377  //   before the first use of that specialization that would cause an implicit
4378  //   instantiation to take place, in every translation unit in which such a
4379  //   use occurs; no diagnostic is required.
4380  FunctionTemplateSpecializationInfo *SpecInfo
4381    = Specialization->getTemplateSpecializationInfo();
4382  assert(SpecInfo && "Function template specialization info missing?");
4383
4384  bool HasNoEffect = false;
4385  if (!isFriend &&
4386      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4387                                             TSK_ExplicitSpecialization,
4388                                             Specialization,
4389                                   SpecInfo->getTemplateSpecializationKind(),
4390                                         SpecInfo->getPointOfInstantiation(),
4391                                             HasNoEffect))
4392    return true;
4393
4394  // Mark the prior declaration as an explicit specialization, so that later
4395  // clients know that this is an explicit specialization.
4396  if (!isFriend)
4397    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4398
4399  // Turn the given function declaration into a function template
4400  // specialization, with the template arguments from the previous
4401  // specialization.
4402  // Take copies of (semantic and syntactic) template argument lists.
4403  const TemplateArgumentList* TemplArgs = new (Context)
4404    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4405  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4406    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4407  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4408                                        TemplArgs, /*InsertPos=*/0,
4409                                    SpecInfo->getTemplateSpecializationKind(),
4410                                        TemplArgsAsWritten);
4411
4412  // The "previous declaration" for this function template specialization is
4413  // the prior function template specialization.
4414  Previous.clear();
4415  Previous.addDecl(Specialization);
4416  return false;
4417}
4418
4419/// \brief Perform semantic analysis for the given non-template member
4420/// specialization.
4421///
4422/// This routine performs all of the semantic analysis required for an
4423/// explicit member function specialization. On successful completion,
4424/// the function declaration \p FD will become a member function
4425/// specialization.
4426///
4427/// \param Member the member declaration, which will be updated to become a
4428/// specialization.
4429///
4430/// \param Previous the set of declarations, one of which may be specialized
4431/// by this function specialization;  the set will be modified to contain the
4432/// redeclared member.
4433bool
4434Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4435  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4436
4437  // Try to find the member we are instantiating.
4438  NamedDecl *Instantiation = 0;
4439  NamedDecl *InstantiatedFrom = 0;
4440  MemberSpecializationInfo *MSInfo = 0;
4441
4442  if (Previous.empty()) {
4443    // Nowhere to look anyway.
4444  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4445    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4446           I != E; ++I) {
4447      NamedDecl *D = (*I)->getUnderlyingDecl();
4448      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4449        if (Context.hasSameType(Function->getType(), Method->getType())) {
4450          Instantiation = Method;
4451          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4452          MSInfo = Method->getMemberSpecializationInfo();
4453          break;
4454        }
4455      }
4456    }
4457  } else if (isa<VarDecl>(Member)) {
4458    VarDecl *PrevVar;
4459    if (Previous.isSingleResult() &&
4460        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4461      if (PrevVar->isStaticDataMember()) {
4462        Instantiation = PrevVar;
4463        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4464        MSInfo = PrevVar->getMemberSpecializationInfo();
4465      }
4466  } else if (isa<RecordDecl>(Member)) {
4467    CXXRecordDecl *PrevRecord;
4468    if (Previous.isSingleResult() &&
4469        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4470      Instantiation = PrevRecord;
4471      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4472      MSInfo = PrevRecord->getMemberSpecializationInfo();
4473    }
4474  }
4475
4476  if (!Instantiation) {
4477    // There is no previous declaration that matches. Since member
4478    // specializations are always out-of-line, the caller will complain about
4479    // this mismatch later.
4480    return false;
4481  }
4482
4483  // If this is a friend, just bail out here before we start turning
4484  // things into explicit specializations.
4485  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4486    // Preserve instantiation information.
4487    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4488      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4489                                      cast<CXXMethodDecl>(InstantiatedFrom),
4490        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4491    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4492      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4493                                      cast<CXXRecordDecl>(InstantiatedFrom),
4494        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4495    }
4496
4497    Previous.clear();
4498    Previous.addDecl(Instantiation);
4499    return false;
4500  }
4501
4502  // Make sure that this is a specialization of a member.
4503  if (!InstantiatedFrom) {
4504    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4505      << Member;
4506    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4507    return true;
4508  }
4509
4510  // C++ [temp.expl.spec]p6:
4511  //   If a template, a member template or the member of a class template is
4512  //   explicitly specialized then that spe- cialization shall be declared
4513  //   before the first use of that specialization that would cause an implicit
4514  //   instantiation to take place, in every translation unit in which such a
4515  //   use occurs; no diagnostic is required.
4516  assert(MSInfo && "Member specialization info missing?");
4517
4518  bool HasNoEffect = false;
4519  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4520                                             TSK_ExplicitSpecialization,
4521                                             Instantiation,
4522                                     MSInfo->getTemplateSpecializationKind(),
4523                                           MSInfo->getPointOfInstantiation(),
4524                                             HasNoEffect))
4525    return true;
4526
4527  // Check the scope of this explicit specialization.
4528  if (CheckTemplateSpecializationScope(*this,
4529                                       InstantiatedFrom,
4530                                       Instantiation, Member->getLocation(),
4531                                       false))
4532    return true;
4533
4534  // Note that this is an explicit instantiation of a member.
4535  // the original declaration to note that it is an explicit specialization
4536  // (if it was previously an implicit instantiation). This latter step
4537  // makes bookkeeping easier.
4538  if (isa<FunctionDecl>(Member)) {
4539    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4540    if (InstantiationFunction->getTemplateSpecializationKind() ==
4541          TSK_ImplicitInstantiation) {
4542      InstantiationFunction->setTemplateSpecializationKind(
4543                                                  TSK_ExplicitSpecialization);
4544      InstantiationFunction->setLocation(Member->getLocation());
4545    }
4546
4547    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4548                                        cast<CXXMethodDecl>(InstantiatedFrom),
4549                                                  TSK_ExplicitSpecialization);
4550  } else if (isa<VarDecl>(Member)) {
4551    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4552    if (InstantiationVar->getTemplateSpecializationKind() ==
4553          TSK_ImplicitInstantiation) {
4554      InstantiationVar->setTemplateSpecializationKind(
4555                                                  TSK_ExplicitSpecialization);
4556      InstantiationVar->setLocation(Member->getLocation());
4557    }
4558
4559    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4560                                                cast<VarDecl>(InstantiatedFrom),
4561                                                TSK_ExplicitSpecialization);
4562  } else {
4563    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4564    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4565    if (InstantiationClass->getTemplateSpecializationKind() ==
4566          TSK_ImplicitInstantiation) {
4567      InstantiationClass->setTemplateSpecializationKind(
4568                                                   TSK_ExplicitSpecialization);
4569      InstantiationClass->setLocation(Member->getLocation());
4570    }
4571
4572    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4573                                        cast<CXXRecordDecl>(InstantiatedFrom),
4574                                                   TSK_ExplicitSpecialization);
4575  }
4576
4577  // Save the caller the trouble of having to figure out which declaration
4578  // this specialization matches.
4579  Previous.clear();
4580  Previous.addDecl(Instantiation);
4581  return false;
4582}
4583
4584/// \brief Check the scope of an explicit instantiation.
4585static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4586                                            SourceLocation InstLoc,
4587                                            bool WasQualifiedName) {
4588  DeclContext *ExpectedContext
4589    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4590  DeclContext *CurContext = S.CurContext->getLookupContext();
4591
4592  // C++0x [temp.explicit]p2:
4593  //   An explicit instantiation shall appear in an enclosing namespace of its
4594  //   template.
4595  //
4596  // This is DR275, which we do not retroactively apply to C++98/03.
4597  if (S.getLangOptions().CPlusPlus0x &&
4598      !CurContext->Encloses(ExpectedContext)) {
4599    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4600      S.Diag(InstLoc,
4601             S.getLangOptions().CPlusPlus0x?
4602                 diag::err_explicit_instantiation_out_of_scope
4603               : diag::warn_explicit_instantiation_out_of_scope_0x)
4604        << D << NS;
4605    else
4606      S.Diag(InstLoc,
4607             S.getLangOptions().CPlusPlus0x?
4608                 diag::err_explicit_instantiation_must_be_global
4609               : diag::warn_explicit_instantiation_out_of_scope_0x)
4610        << D;
4611    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4612    return;
4613  }
4614
4615  // C++0x [temp.explicit]p2:
4616  //   If the name declared in the explicit instantiation is an unqualified
4617  //   name, the explicit instantiation shall appear in the namespace where
4618  //   its template is declared or, if that namespace is inline (7.3.1), any
4619  //   namespace from its enclosing namespace set.
4620  if (WasQualifiedName)
4621    return;
4622
4623  if (CurContext->Equals(ExpectedContext))
4624    return;
4625
4626  S.Diag(InstLoc,
4627         S.getLangOptions().CPlusPlus0x?
4628             diag::err_explicit_instantiation_unqualified_wrong_namespace
4629           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4630    << D << ExpectedContext;
4631  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4632}
4633
4634/// \brief Determine whether the given scope specifier has a template-id in it.
4635static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4636  if (!SS.isSet())
4637    return false;
4638
4639  // C++0x [temp.explicit]p2:
4640  //   If the explicit instantiation is for a member function, a member class
4641  //   or a static data member of a class template specialization, the name of
4642  //   the class template specialization in the qualified-id for the member
4643  //   name shall be a simple-template-id.
4644  //
4645  // C++98 has the same restriction, just worded differently.
4646  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4647       NNS; NNS = NNS->getPrefix())
4648    if (Type *T = NNS->getAsType())
4649      if (isa<TemplateSpecializationType>(T))
4650        return true;
4651
4652  return false;
4653}
4654
4655// Explicit instantiation of a class template specialization
4656Sema::DeclResult
4657Sema::ActOnExplicitInstantiation(Scope *S,
4658                                 SourceLocation ExternLoc,
4659                                 SourceLocation TemplateLoc,
4660                                 unsigned TagSpec,
4661                                 SourceLocation KWLoc,
4662                                 const CXXScopeSpec &SS,
4663                                 TemplateTy TemplateD,
4664                                 SourceLocation TemplateNameLoc,
4665                                 SourceLocation LAngleLoc,
4666                                 ASTTemplateArgsPtr TemplateArgsIn,
4667                                 SourceLocation RAngleLoc,
4668                                 AttributeList *Attr) {
4669  // Find the class template we're specializing
4670  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4671  ClassTemplateDecl *ClassTemplate
4672    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4673
4674  // Check that the specialization uses the same tag kind as the
4675  // original template.
4676  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4677  assert(Kind != TTK_Enum &&
4678         "Invalid enum tag in class template explicit instantiation!");
4679  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4680                                    Kind, KWLoc,
4681                                    *ClassTemplate->getIdentifier())) {
4682    Diag(KWLoc, diag::err_use_with_wrong_tag)
4683      << ClassTemplate
4684      << FixItHint::CreateReplacement(KWLoc,
4685                            ClassTemplate->getTemplatedDecl()->getKindName());
4686    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4687         diag::note_previous_use);
4688    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4689  }
4690
4691  // C++0x [temp.explicit]p2:
4692  //   There are two forms of explicit instantiation: an explicit instantiation
4693  //   definition and an explicit instantiation declaration. An explicit
4694  //   instantiation declaration begins with the extern keyword. [...]
4695  TemplateSpecializationKind TSK
4696    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4697                           : TSK_ExplicitInstantiationDeclaration;
4698
4699  // Translate the parser's template argument list in our AST format.
4700  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4701  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4702
4703  // Check that the template argument list is well-formed for this
4704  // template.
4705  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4706                                        TemplateArgs.size());
4707  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4708                                TemplateArgs, false, Converted))
4709    return true;
4710
4711  assert((Converted.structuredSize() ==
4712            ClassTemplate->getTemplateParameters()->size()) &&
4713         "Converted template argument list is too short!");
4714
4715  // Find the class template specialization declaration that
4716  // corresponds to these arguments.
4717  llvm::FoldingSetNodeID ID;
4718  ClassTemplateSpecializationDecl::Profile(ID,
4719                                           Converted.getFlatArguments(),
4720                                           Converted.flatSize(),
4721                                           Context);
4722  void *InsertPos = 0;
4723  ClassTemplateSpecializationDecl *PrevDecl
4724    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4725
4726  TemplateSpecializationKind PrevDecl_TSK
4727    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
4728
4729  // C++0x [temp.explicit]p2:
4730  //   [...] An explicit instantiation shall appear in an enclosing
4731  //   namespace of its template. [...]
4732  //
4733  // This is C++ DR 275.
4734  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4735                                  SS.isSet());
4736
4737  ClassTemplateSpecializationDecl *Specialization = 0;
4738
4739  bool ReusedDecl = false;
4740  bool HasNoEffect = false;
4741  if (PrevDecl) {
4742    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4743                                               PrevDecl, PrevDecl_TSK,
4744                                            PrevDecl->getPointOfInstantiation(),
4745                                               HasNoEffect))
4746      return DeclPtrTy::make(PrevDecl);
4747
4748    // Even though HasNoEffect == true means that this explicit instantiation
4749    // has no effect on semantics, we go on to put its syntax in the AST.
4750
4751    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
4752        PrevDecl_TSK == TSK_Undeclared) {
4753      // Since the only prior class template specialization with these
4754      // arguments was referenced but not declared, reuse that
4755      // declaration node as our own, updating the source location
4756      // for the template name to reflect our new declaration.
4757      // (Other source locations will be updated later.)
4758      Specialization = PrevDecl;
4759      Specialization->setLocation(TemplateNameLoc);
4760      PrevDecl = 0;
4761      ReusedDecl = true;
4762    }
4763  }
4764
4765  if (!Specialization) {
4766    // Create a new class template specialization declaration node for
4767    // this explicit specialization.
4768    Specialization
4769      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4770                                             ClassTemplate->getDeclContext(),
4771                                                TemplateNameLoc,
4772                                                ClassTemplate,
4773                                                Converted, PrevDecl);
4774    SetNestedNameSpecifier(Specialization, SS);
4775
4776    if (!HasNoEffect) {
4777      if (PrevDecl) {
4778        // Remove the previous declaration from the folding set, since we want
4779        // to introduce a new declaration.
4780        ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4781        ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4782      }
4783      // Insert the new specialization.
4784      ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4785    }
4786  }
4787
4788  // Build the fully-sugared type for this explicit instantiation as
4789  // the user wrote in the explicit instantiation itself. This means
4790  // that we'll pretty-print the type retrieved from the
4791  // specialization's declaration the way that the user actually wrote
4792  // the explicit instantiation, rather than formatting the name based
4793  // on the "canonical" representation used to store the template
4794  // arguments in the specialization.
4795  TypeSourceInfo *WrittenTy
4796    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4797                                                TemplateArgs,
4798                                  Context.getTypeDeclType(Specialization));
4799  Specialization->setTypeAsWritten(WrittenTy);
4800  TemplateArgsIn.release();
4801
4802  // Set source locations for keywords.
4803  Specialization->setExternLoc(ExternLoc);
4804  Specialization->setTemplateKeywordLoc(TemplateLoc);
4805
4806  // Add the explicit instantiation into its lexical context. However,
4807  // since explicit instantiations are never found by name lookup, we
4808  // just put it into the declaration context directly.
4809  Specialization->setLexicalDeclContext(CurContext);
4810  CurContext->addDecl(Specialization);
4811
4812  // Syntax is now OK, so return if it has no other effect on semantics.
4813  if (HasNoEffect) {
4814    // Set the template specialization kind.
4815    Specialization->setTemplateSpecializationKind(TSK);
4816    return DeclPtrTy::make(Specialization);
4817  }
4818
4819  // C++ [temp.explicit]p3:
4820  //   A definition of a class template or class member template
4821  //   shall be in scope at the point of the explicit instantiation of
4822  //   the class template or class member template.
4823  //
4824  // This check comes when we actually try to perform the
4825  // instantiation.
4826  ClassTemplateSpecializationDecl *Def
4827    = cast_or_null<ClassTemplateSpecializationDecl>(
4828                                              Specialization->getDefinition());
4829  if (!Def)
4830    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4831  else if (TSK == TSK_ExplicitInstantiationDefinition) {
4832    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4833    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
4834  }
4835
4836  // Instantiate the members of this class template specialization.
4837  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4838                                       Specialization->getDefinition());
4839  if (Def) {
4840    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4841
4842    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4843    // TSK_ExplicitInstantiationDefinition
4844    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4845        TSK == TSK_ExplicitInstantiationDefinition)
4846      Def->setTemplateSpecializationKind(TSK);
4847
4848    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4849  }
4850
4851  // Set the template specialization kind.
4852  Specialization->setTemplateSpecializationKind(TSK);
4853  return DeclPtrTy::make(Specialization);
4854}
4855
4856// Explicit instantiation of a member class of a class template.
4857Sema::DeclResult
4858Sema::ActOnExplicitInstantiation(Scope *S,
4859                                 SourceLocation ExternLoc,
4860                                 SourceLocation TemplateLoc,
4861                                 unsigned TagSpec,
4862                                 SourceLocation KWLoc,
4863                                 CXXScopeSpec &SS,
4864                                 IdentifierInfo *Name,
4865                                 SourceLocation NameLoc,
4866                                 AttributeList *Attr) {
4867
4868  bool Owned = false;
4869  bool IsDependent = false;
4870  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4871                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4872                            MultiTemplateParamsArg(*this, 0, 0),
4873                            Owned, IsDependent);
4874  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4875
4876  if (!TagD)
4877    return true;
4878
4879  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4880  if (Tag->isEnum()) {
4881    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4882      << Context.getTypeDeclType(Tag);
4883    return true;
4884  }
4885
4886  if (Tag->isInvalidDecl())
4887    return true;
4888
4889  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4890  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4891  if (!Pattern) {
4892    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4893      << Context.getTypeDeclType(Record);
4894    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4895    return true;
4896  }
4897
4898  // C++0x [temp.explicit]p2:
4899  //   If the explicit instantiation is for a class or member class, the
4900  //   elaborated-type-specifier in the declaration shall include a
4901  //   simple-template-id.
4902  //
4903  // C++98 has the same restriction, just worded differently.
4904  if (!ScopeSpecifierHasTemplateId(SS))
4905    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4906      << Record << SS.getRange();
4907
4908  // C++0x [temp.explicit]p2:
4909  //   There are two forms of explicit instantiation: an explicit instantiation
4910  //   definition and an explicit instantiation declaration. An explicit
4911  //   instantiation declaration begins with the extern keyword. [...]
4912  TemplateSpecializationKind TSK
4913    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4914                           : TSK_ExplicitInstantiationDeclaration;
4915
4916  // C++0x [temp.explicit]p2:
4917  //   [...] An explicit instantiation shall appear in an enclosing
4918  //   namespace of its template. [...]
4919  //
4920  // This is C++ DR 275.
4921  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4922
4923  // Verify that it is okay to explicitly instantiate here.
4924  CXXRecordDecl *PrevDecl
4925    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4926  if (!PrevDecl && Record->getDefinition())
4927    PrevDecl = Record;
4928  if (PrevDecl) {
4929    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4930    bool HasNoEffect = false;
4931    assert(MSInfo && "No member specialization information?");
4932    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4933                                               PrevDecl,
4934                                        MSInfo->getTemplateSpecializationKind(),
4935                                             MSInfo->getPointOfInstantiation(),
4936                                               HasNoEffect))
4937      return true;
4938    if (HasNoEffect)
4939      return TagD;
4940  }
4941
4942  CXXRecordDecl *RecordDef
4943    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4944  if (!RecordDef) {
4945    // C++ [temp.explicit]p3:
4946    //   A definition of a member class of a class template shall be in scope
4947    //   at the point of an explicit instantiation of the member class.
4948    CXXRecordDecl *Def
4949      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4950    if (!Def) {
4951      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4952        << 0 << Record->getDeclName() << Record->getDeclContext();
4953      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4954        << Pattern;
4955      return true;
4956    } else {
4957      if (InstantiateClass(NameLoc, Record, Def,
4958                           getTemplateInstantiationArgs(Record),
4959                           TSK))
4960        return true;
4961
4962      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4963      if (!RecordDef)
4964        return true;
4965    }
4966  }
4967
4968  // Instantiate all of the members of the class.
4969  InstantiateClassMembers(NameLoc, RecordDef,
4970                          getTemplateInstantiationArgs(Record), TSK);
4971
4972  if (TSK == TSK_ExplicitInstantiationDefinition)
4973    MarkVTableUsed(NameLoc, RecordDef, true);
4974
4975  // FIXME: We don't have any representation for explicit instantiations of
4976  // member classes. Such a representation is not needed for compilation, but it
4977  // should be available for clients that want to see all of the declarations in
4978  // the source code.
4979  return TagD;
4980}
4981
4982Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4983                                                  SourceLocation ExternLoc,
4984                                                  SourceLocation TemplateLoc,
4985                                                  Declarator &D) {
4986  // Explicit instantiations always require a name.
4987  DeclarationName Name = GetNameForDeclarator(D);
4988  if (!Name) {
4989    if (!D.isInvalidType())
4990      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4991           diag::err_explicit_instantiation_requires_name)
4992        << D.getDeclSpec().getSourceRange()
4993        << D.getSourceRange();
4994
4995    return true;
4996  }
4997
4998  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4999  // we find one that is.
5000  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5001         (S->getFlags() & Scope::TemplateParamScope) != 0)
5002    S = S->getParent();
5003
5004  // Determine the type of the declaration.
5005  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5006  QualType R = T->getType();
5007  if (R.isNull())
5008    return true;
5009
5010  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5011    // Cannot explicitly instantiate a typedef.
5012    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5013      << Name;
5014    return true;
5015  }
5016
5017  // C++0x [temp.explicit]p1:
5018  //   [...] An explicit instantiation of a function template shall not use the
5019  //   inline or constexpr specifiers.
5020  // Presumably, this also applies to member functions of class templates as
5021  // well.
5022  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5023    Diag(D.getDeclSpec().getInlineSpecLoc(),
5024         diag::err_explicit_instantiation_inline)
5025      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5026
5027  // FIXME: check for constexpr specifier.
5028
5029  // C++0x [temp.explicit]p2:
5030  //   There are two forms of explicit instantiation: an explicit instantiation
5031  //   definition and an explicit instantiation declaration. An explicit
5032  //   instantiation declaration begins with the extern keyword. [...]
5033  TemplateSpecializationKind TSK
5034    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5035                           : TSK_ExplicitInstantiationDeclaration;
5036
5037  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
5038  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5039
5040  if (!R->isFunctionType()) {
5041    // C++ [temp.explicit]p1:
5042    //   A [...] static data member of a class template can be explicitly
5043    //   instantiated from the member definition associated with its class
5044    //   template.
5045    if (Previous.isAmbiguous())
5046      return true;
5047
5048    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5049    if (!Prev || !Prev->isStaticDataMember()) {
5050      // We expect to see a data data member here.
5051      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5052        << Name;
5053      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5054           P != PEnd; ++P)
5055        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5056      return true;
5057    }
5058
5059    if (!Prev->getInstantiatedFromStaticDataMember()) {
5060      // FIXME: Check for explicit specialization?
5061      Diag(D.getIdentifierLoc(),
5062           diag::err_explicit_instantiation_data_member_not_instantiated)
5063        << Prev;
5064      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5065      // FIXME: Can we provide a note showing where this was declared?
5066      return true;
5067    }
5068
5069    // C++0x [temp.explicit]p2:
5070    //   If the explicit instantiation is for a member function, a member class
5071    //   or a static data member of a class template specialization, the name of
5072    //   the class template specialization in the qualified-id for the member
5073    //   name shall be a simple-template-id.
5074    //
5075    // C++98 has the same restriction, just worded differently.
5076    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5077      Diag(D.getIdentifierLoc(),
5078           diag::err_explicit_instantiation_without_qualified_id)
5079        << Prev << D.getCXXScopeSpec().getRange();
5080
5081    // Check the scope of this explicit instantiation.
5082    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5083
5084    // Verify that it is okay to explicitly instantiate here.
5085    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5086    assert(MSInfo && "Missing static data member specialization info?");
5087    bool HasNoEffect = false;
5088    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5089                                        MSInfo->getTemplateSpecializationKind(),
5090                                              MSInfo->getPointOfInstantiation(),
5091                                               HasNoEffect))
5092      return true;
5093    if (HasNoEffect)
5094      return DeclPtrTy();
5095
5096    // Instantiate static data member.
5097    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5098    if (TSK == TSK_ExplicitInstantiationDefinition)
5099      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
5100                                            /*DefinitionRequired=*/true);
5101
5102    // FIXME: Create an ExplicitInstantiation node?
5103    return DeclPtrTy();
5104  }
5105
5106  // If the declarator is a template-id, translate the parser's template
5107  // argument list into our AST format.
5108  bool HasExplicitTemplateArgs = false;
5109  TemplateArgumentListInfo TemplateArgs;
5110  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5111    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5112    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5113    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5114    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5115                                       TemplateId->getTemplateArgs(),
5116                                       TemplateId->NumArgs);
5117    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5118    HasExplicitTemplateArgs = true;
5119    TemplateArgsPtr.release();
5120  }
5121
5122  // C++ [temp.explicit]p1:
5123  //   A [...] function [...] can be explicitly instantiated from its template.
5124  //   A member function [...] of a class template can be explicitly
5125  //  instantiated from the member definition associated with its class
5126  //  template.
5127  UnresolvedSet<8> Matches;
5128  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5129       P != PEnd; ++P) {
5130    NamedDecl *Prev = *P;
5131    if (!HasExplicitTemplateArgs) {
5132      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5133        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5134          Matches.clear();
5135
5136          Matches.addDecl(Method, P.getAccess());
5137          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5138            break;
5139        }
5140      }
5141    }
5142
5143    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5144    if (!FunTmpl)
5145      continue;
5146
5147    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5148    FunctionDecl *Specialization = 0;
5149    if (TemplateDeductionResult TDK
5150          = DeduceTemplateArguments(FunTmpl,
5151                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5152                                    R, Specialization, Info)) {
5153      // FIXME: Keep track of almost-matches?
5154      (void)TDK;
5155      continue;
5156    }
5157
5158    Matches.addDecl(Specialization, P.getAccess());
5159  }
5160
5161  // Find the most specialized function template specialization.
5162  UnresolvedSetIterator Result
5163    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5164                         D.getIdentifierLoc(),
5165                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5166                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5167                         PDiag(diag::note_explicit_instantiation_candidate));
5168
5169  if (Result == Matches.end())
5170    return true;
5171
5172  // Ignore access control bits, we don't need them for redeclaration checking.
5173  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5174
5175  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5176    Diag(D.getIdentifierLoc(),
5177         diag::err_explicit_instantiation_member_function_not_instantiated)
5178      << Specialization
5179      << (Specialization->getTemplateSpecializationKind() ==
5180          TSK_ExplicitSpecialization);
5181    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5182    return true;
5183  }
5184
5185  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5186  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5187    PrevDecl = Specialization;
5188
5189  if (PrevDecl) {
5190    bool HasNoEffect = false;
5191    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5192                                               PrevDecl,
5193                                     PrevDecl->getTemplateSpecializationKind(),
5194                                          PrevDecl->getPointOfInstantiation(),
5195                                               HasNoEffect))
5196      return true;
5197
5198    // FIXME: We may still want to build some representation of this
5199    // explicit specialization.
5200    if (HasNoEffect)
5201      return DeclPtrTy();
5202  }
5203
5204  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5205
5206  if (TSK == TSK_ExplicitInstantiationDefinition)
5207    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
5208                                  false, /*DefinitionRequired=*/true);
5209
5210  // C++0x [temp.explicit]p2:
5211  //   If the explicit instantiation is for a member function, a member class
5212  //   or a static data member of a class template specialization, the name of
5213  //   the class template specialization in the qualified-id for the member
5214  //   name shall be a simple-template-id.
5215  //
5216  // C++98 has the same restriction, just worded differently.
5217  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5218  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5219      D.getCXXScopeSpec().isSet() &&
5220      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5221    Diag(D.getIdentifierLoc(),
5222         diag::err_explicit_instantiation_without_qualified_id)
5223    << Specialization << D.getCXXScopeSpec().getRange();
5224
5225  CheckExplicitInstantiationScope(*this,
5226                   FunTmpl? (NamedDecl *)FunTmpl
5227                          : Specialization->getInstantiatedFromMemberFunction(),
5228                                  D.getIdentifierLoc(),
5229                                  D.getCXXScopeSpec().isSet());
5230
5231  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5232  return DeclPtrTy();
5233}
5234
5235Sema::TypeResult
5236Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5237                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5238                        SourceLocation TagLoc, SourceLocation NameLoc) {
5239  // This has to hold, because SS is expected to be defined.
5240  assert(Name && "Expected a name in a dependent tag");
5241
5242  NestedNameSpecifier *NNS
5243    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5244  if (!NNS)
5245    return true;
5246
5247  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5248
5249  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5250    Diag(NameLoc, diag::err_dependent_tag_decl)
5251      << (TUK == TUK_Definition) << Kind << SS.getRange();
5252    return true;
5253  }
5254
5255  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5256  return Context.getDependentNameType(Kwd, NNS, Name).getAsOpaquePtr();
5257}
5258
5259Sema::TypeResult
5260Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5261                        const IdentifierInfo &II, SourceLocation IdLoc) {
5262  NestedNameSpecifier *NNS
5263    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5264  if (!NNS)
5265    return true;
5266
5267  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5268                                 TypenameLoc, SS.getRange(), IdLoc);
5269  if (T.isNull())
5270    return true;
5271
5272  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5273  if (isa<DependentNameType>(T)) {
5274    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5275    TL.setKeywordLoc(TypenameLoc);
5276    TL.setQualifierRange(SS.getRange());
5277    TL.setNameLoc(IdLoc);
5278  } else {
5279    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5280    TL.setKeywordLoc(TypenameLoc);
5281    TL.setQualifierRange(SS.getRange());
5282    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5283  }
5284
5285  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5286}
5287
5288Sema::TypeResult
5289Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
5290                        SourceLocation TemplateLoc, TypeTy *Ty) {
5291  TypeSourceInfo *InnerTSI = 0;
5292  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5293  NestedNameSpecifier *NNS
5294    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5295
5296  assert(isa<TemplateSpecializationType>(T) &&
5297         "Expected a template specialization type");
5298
5299  if (computeDeclContext(SS, false)) {
5300    // If we can compute a declaration context, then the "typename"
5301    // keyword was superfluous. Just build an ElaboratedType to keep
5302    // track of the nested-name-specifier.
5303
5304    // Push the inner type, preserving its source locations if possible.
5305    TypeLocBuilder Builder;
5306    if (InnerTSI)
5307      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5308    else
5309      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5310
5311    T = Context.getElaboratedType(ETK_Typename, NNS, T);
5312    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5313    TL.setKeywordLoc(TypenameLoc);
5314    TL.setQualifierRange(SS.getRange());
5315
5316    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5317    return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5318  }
5319
5320  // TODO: it's really silly that we make a template specialization
5321  // type earlier only to drop it again here.
5322  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5323  DependentTemplateName *DTN =
5324    TST->getTemplateName().getAsDependentTemplateName();
5325  assert(DTN && "dependent template has non-dependent name?");
5326  T = Context.getDependentTemplateSpecializationType(ETK_Typename, NNS,
5327                                                     DTN->getIdentifier(),
5328                                                     TST->getNumArgs(),
5329                                                     TST->getArgs());
5330  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5331  DependentTemplateSpecializationTypeLoc TL =
5332    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5333  if (InnerTSI) {
5334    TemplateSpecializationTypeLoc TSTL =
5335      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5336    TL.setLAngleLoc(TSTL.getLAngleLoc());
5337    TL.setRAngleLoc(TSTL.getRAngleLoc());
5338    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5339      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5340  } else {
5341    TL.initializeLocal(SourceLocation());
5342  }
5343  TL.setKeywordLoc(TypenameLoc);
5344  TL.setQualifierRange(SS.getRange());
5345  return CreateLocInfoType(T, TSI).getAsOpaquePtr();
5346}
5347
5348/// \brief Build the type that describes a C++ typename specifier,
5349/// e.g., "typename T::type".
5350QualType
5351Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5352                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5353                        SourceLocation KeywordLoc, SourceRange NNSRange,
5354                        SourceLocation IILoc) {
5355  CXXScopeSpec SS;
5356  SS.setScopeRep(NNS);
5357  SS.setRange(NNSRange);
5358
5359  DeclContext *Ctx = computeDeclContext(SS);
5360  if (!Ctx) {
5361    // If the nested-name-specifier is dependent and couldn't be
5362    // resolved to a type, build a typename type.
5363    assert(NNS->isDependent());
5364    return Context.getDependentNameType(Keyword, NNS, &II);
5365  }
5366
5367  // If the nested-name-specifier refers to the current instantiation,
5368  // the "typename" keyword itself is superfluous. In C++03, the
5369  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5370  // allows such extraneous "typename" keywords, and we retroactively
5371  // apply this DR to C++03 code.  In any case we continue.
5372
5373  if (RequireCompleteDeclContext(SS, Ctx))
5374    return QualType();
5375
5376  DeclarationName Name(&II);
5377  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5378  LookupQualifiedName(Result, Ctx);
5379  unsigned DiagID = 0;
5380  Decl *Referenced = 0;
5381  switch (Result.getResultKind()) {
5382  case LookupResult::NotFound:
5383    DiagID = diag::err_typename_nested_not_found;
5384    break;
5385
5386  case LookupResult::NotFoundInCurrentInstantiation:
5387    // Okay, it's a member of an unknown instantiation.
5388    return Context.getDependentNameType(Keyword, NNS, &II);
5389
5390  case LookupResult::Found:
5391    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5392      // We found a type. Build an ElaboratedType, since the
5393      // typename-specifier was just sugar.
5394      return Context.getElaboratedType(ETK_Typename, NNS,
5395                                       Context.getTypeDeclType(Type));
5396    }
5397
5398    DiagID = diag::err_typename_nested_not_type;
5399    Referenced = Result.getFoundDecl();
5400    break;
5401
5402  case LookupResult::FoundUnresolvedValue:
5403    llvm_unreachable("unresolved using decl in non-dependent context");
5404    return QualType();
5405
5406  case LookupResult::FoundOverloaded:
5407    DiagID = diag::err_typename_nested_not_type;
5408    Referenced = *Result.begin();
5409    break;
5410
5411  case LookupResult::Ambiguous:
5412    return QualType();
5413  }
5414
5415  // If we get here, it's because name lookup did not find a
5416  // type. Emit an appropriate diagnostic and return an error.
5417  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5418                        IILoc);
5419  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5420  if (Referenced)
5421    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5422      << Name;
5423  return QualType();
5424}
5425
5426namespace {
5427  // See Sema::RebuildTypeInCurrentInstantiation
5428  class CurrentInstantiationRebuilder
5429    : public TreeTransform<CurrentInstantiationRebuilder> {
5430    SourceLocation Loc;
5431    DeclarationName Entity;
5432
5433  public:
5434    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5435
5436    CurrentInstantiationRebuilder(Sema &SemaRef,
5437                                  SourceLocation Loc,
5438                                  DeclarationName Entity)
5439    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5440      Loc(Loc), Entity(Entity) { }
5441
5442    /// \brief Determine whether the given type \p T has already been
5443    /// transformed.
5444    ///
5445    /// For the purposes of type reconstruction, a type has already been
5446    /// transformed if it is NULL or if it is not dependent.
5447    bool AlreadyTransformed(QualType T) {
5448      return T.isNull() || !T->isDependentType();
5449    }
5450
5451    /// \brief Returns the location of the entity whose type is being
5452    /// rebuilt.
5453    SourceLocation getBaseLocation() { return Loc; }
5454
5455    /// \brief Returns the name of the entity whose type is being rebuilt.
5456    DeclarationName getBaseEntity() { return Entity; }
5457
5458    /// \brief Sets the "base" location and entity when that
5459    /// information is known based on another transformation.
5460    void setBase(SourceLocation Loc, DeclarationName Entity) {
5461      this->Loc = Loc;
5462      this->Entity = Entity;
5463    }
5464
5465    /// \brief Transforms an expression by returning the expression itself
5466    /// (an identity function).
5467    ///
5468    /// FIXME: This is completely unsafe; we will need to actually clone the
5469    /// expressions.
5470    Sema::OwningExprResult TransformExpr(Expr *E) {
5471      return getSema().Owned(E->Retain());
5472    }
5473  };
5474}
5475
5476/// \brief Rebuilds a type within the context of the current instantiation.
5477///
5478/// The type \p T is part of the type of an out-of-line member definition of
5479/// a class template (or class template partial specialization) that was parsed
5480/// and constructed before we entered the scope of the class template (or
5481/// partial specialization thereof). This routine will rebuild that type now
5482/// that we have entered the declarator's scope, which may produce different
5483/// canonical types, e.g.,
5484///
5485/// \code
5486/// template<typename T>
5487/// struct X {
5488///   typedef T* pointer;
5489///   pointer data();
5490/// };
5491///
5492/// template<typename T>
5493/// typename X<T>::pointer X<T>::data() { ... }
5494/// \endcode
5495///
5496/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5497/// since we do not know that we can look into X<T> when we parsed the type.
5498/// This function will rebuild the type, performing the lookup of "pointer"
5499/// in X<T> and returning an ElaboratedType whose canonical type is the same
5500/// as the canonical type of T*, allowing the return types of the out-of-line
5501/// definition and the declaration to match.
5502TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5503                                                        SourceLocation Loc,
5504                                                        DeclarationName Name) {
5505  if (!T || !T->getType()->isDependentType())
5506    return T;
5507
5508  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5509  return Rebuilder.TransformType(T);
5510}
5511
5512bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5513  if (SS.isInvalid()) return true;
5514
5515  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5516  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5517                                          DeclarationName());
5518  NestedNameSpecifier *Rebuilt =
5519    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5520  if (!Rebuilt) return true;
5521
5522  SS.setScopeRep(Rebuilt);
5523  return false;
5524}
5525
5526/// \brief Produces a formatted string that describes the binding of
5527/// template parameters to template arguments.
5528std::string
5529Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5530                                      const TemplateArgumentList &Args) {
5531  // FIXME: For variadic templates, we'll need to get the structured list.
5532  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5533                                         Args.flat_size());
5534}
5535
5536std::string
5537Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5538                                      const TemplateArgument *Args,
5539                                      unsigned NumArgs) {
5540  std::string Result;
5541
5542  if (!Params || Params->size() == 0 || NumArgs == 0)
5543    return Result;
5544
5545  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5546    if (I >= NumArgs)
5547      break;
5548
5549    if (I == 0)
5550      Result += "[with ";
5551    else
5552      Result += ", ";
5553
5554    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5555      Result += Id->getName();
5556    } else {
5557      Result += '$';
5558      Result += llvm::utostr(I);
5559    }
5560
5561    Result += " = ";
5562
5563    switch (Args[I].getKind()) {
5564      case TemplateArgument::Null:
5565        Result += "<no value>";
5566        break;
5567
5568      case TemplateArgument::Type: {
5569        std::string TypeStr;
5570        Args[I].getAsType().getAsStringInternal(TypeStr,
5571                                                Context.PrintingPolicy);
5572        Result += TypeStr;
5573        break;
5574      }
5575
5576      case TemplateArgument::Declaration: {
5577        bool Unnamed = true;
5578        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5579          if (ND->getDeclName()) {
5580            Unnamed = false;
5581            Result += ND->getNameAsString();
5582          }
5583        }
5584
5585        if (Unnamed) {
5586          Result += "<anonymous>";
5587        }
5588        break;
5589      }
5590
5591      case TemplateArgument::Template: {
5592        std::string Str;
5593        llvm::raw_string_ostream OS(Str);
5594        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5595        Result += OS.str();
5596        break;
5597      }
5598
5599      case TemplateArgument::Integral: {
5600        Result += Args[I].getAsIntegral()->toString(10);
5601        break;
5602      }
5603
5604      case TemplateArgument::Expression: {
5605        // FIXME: This is non-optimal, since we're regurgitating the
5606        // expression we were given.
5607        std::string Str;
5608        {
5609          llvm::raw_string_ostream OS(Str);
5610          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5611                                           Context.PrintingPolicy);
5612        }
5613        Result += Str;
5614        break;
5615      }
5616
5617      case TemplateArgument::Pack:
5618        // FIXME: Format template argument packs
5619        Result += "<template argument pack>";
5620        break;
5621    }
5622  }
5623
5624  Result += ']';
5625  return Result;
5626}
5627