SemaTemplate.cpp revision 58944acac481a17adc174389c1124892cbdfd979
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2
3//
4//                     The LLVM Compiler Infrastructure
5//
6// This file is distributed under the University of Illinois Open Source
7// License. See LICENSE.TXT for details.
8//===----------------------------------------------------------------------===/
9
10//
11//  This file implements semantic analysis for C++ templates.
12//===----------------------------------------------------------------------===/
13
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Basic/LangOptions.h"
21
22using namespace clang;
23
24/// isTemplateName - Determines whether the identifier II is a
25/// template name in the current scope, and returns the template
26/// declaration if II names a template. An optional CXXScope can be
27/// passed to indicate the C++ scope in which the identifier will be
28/// found.
29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
30                                      TemplateTy &TemplateResult,
31                                      const CXXScopeSpec *SS) {
32  NamedDecl *IIDecl = LookupParsedName(S, SS, &II, LookupOrdinaryName);
33
34  TemplateNameKind TNK = TNK_Non_template;
35  TemplateDecl *Template = 0;
36
37  if (IIDecl) {
38    if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
39      if (isa<FunctionTemplateDecl>(IIDecl))
40        TNK = TNK_Function_template;
41      else if (isa<ClassTemplateDecl>(IIDecl) ||
42               isa<TemplateTemplateParmDecl>(IIDecl))
43        TNK = TNK_Type_template;
44      else
45        assert(false && "Unknown template declaration kind");
46    } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
47      // C++ [temp.local]p1:
48      //   Like normal (non-template) classes, class templates have an
49      //   injected-class-name (Clause 9). The injected-class-name
50      //   can be used with or without a template-argument-list. When
51      //   it is used without a template-argument-list, it is
52      //   equivalent to the injected-class-name followed by the
53      //   template-parameters of the class template enclosed in
54      //   <>. When it is used with a template-argument-list, it
55      //   refers to the specified class template specialization,
56      //   which could be the current specialization or another
57      //   specialization.
58      if (Record->isInjectedClassName()) {
59        Record = cast<CXXRecordDecl>(Context.getCanonicalDecl(Record));
60        if ((Template = Record->getDescribedClassTemplate()))
61          TNK = TNK_Type_template;
62        else if (ClassTemplateSpecializationDecl *Spec
63                   = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
64          Template = Spec->getSpecializedTemplate();
65          TNK = TNK_Type_template;
66        }
67      }
68    }
69
70    // FIXME: What follows is a gross hack.
71    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(IIDecl)) {
72      if (FD->getType()->isDependentType()) {
73        TemplateResult = TemplateTy::make(FD);
74        return TNK_Function_template;
75      }
76    } else if (OverloadedFunctionDecl *Ovl
77                 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
78      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
79                                                  FEnd = Ovl->function_end();
80           F != FEnd; ++F) {
81        if ((*F)->getType()->isDependentType()) {
82          TemplateResult = TemplateTy::make(Ovl);
83          return TNK_Function_template;
84        }
85      }
86    }
87
88    if (TNK != TNK_Non_template) {
89      if (SS && SS->isSet() && !SS->isInvalid()) {
90        NestedNameSpecifier *Qualifier
91          = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
92        TemplateResult
93          = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
94                                                              false,
95                                                              Template));
96      } else
97        TemplateResult = TemplateTy::make(TemplateName(Template));
98    }
99  }
100  return TNK;
101}
102
103/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
104/// that the template parameter 'PrevDecl' is being shadowed by a new
105/// declaration at location Loc. Returns true to indicate that this is
106/// an error, and false otherwise.
107bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
108  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
109
110  // Microsoft Visual C++ permits template parameters to be shadowed.
111  if (getLangOptions().Microsoft)
112    return false;
113
114  // C++ [temp.local]p4:
115  //   A template-parameter shall not be redeclared within its
116  //   scope (including nested scopes).
117  Diag(Loc, diag::err_template_param_shadow)
118    << cast<NamedDecl>(PrevDecl)->getDeclName();
119  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
120  return true;
121}
122
123/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
124/// the parameter D to reference the templated declaration and return a pointer
125/// to the template declaration. Otherwise, do nothing to D and return null.
126TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
127  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
128    D = DeclPtrTy::make(Temp->getTemplatedDecl());
129    return Temp;
130  }
131  return 0;
132}
133
134/// ActOnTypeParameter - Called when a C++ template type parameter
135/// (e.g., "typename T") has been parsed. Typename specifies whether
136/// the keyword "typename" was used to declare the type parameter
137/// (otherwise, "class" was used), and KeyLoc is the location of the
138/// "class" or "typename" keyword. ParamName is the name of the
139/// parameter (NULL indicates an unnamed template parameter) and
140/// ParamName is the location of the parameter name (if any).
141/// If the type parameter has a default argument, it will be added
142/// later via ActOnTypeParameterDefault.
143Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename,
144                                         SourceLocation KeyLoc,
145                                         IdentifierInfo *ParamName,
146                                         SourceLocation ParamNameLoc,
147                                         unsigned Depth, unsigned Position) {
148  assert(S->isTemplateParamScope() &&
149	 "Template type parameter not in template parameter scope!");
150  bool Invalid = false;
151
152  if (ParamName) {
153    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
154    if (PrevDecl && PrevDecl->isTemplateParameter())
155      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
156							   PrevDecl);
157  }
158
159  SourceLocation Loc = ParamNameLoc;
160  if (!ParamName)
161    Loc = KeyLoc;
162
163  TemplateTypeParmDecl *Param
164    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
165                                   Depth, Position, ParamName, Typename);
166  if (Invalid)
167    Param->setInvalidDecl();
168
169  if (ParamName) {
170    // Add the template parameter into the current scope.
171    S->AddDecl(DeclPtrTy::make(Param));
172    IdResolver.AddDecl(Param);
173  }
174
175  return DeclPtrTy::make(Param);
176}
177
178/// ActOnTypeParameterDefault - Adds a default argument (the type
179/// Default) to the given template type parameter (TypeParam).
180void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
181                                     SourceLocation EqualLoc,
182                                     SourceLocation DefaultLoc,
183                                     TypeTy *DefaultT) {
184  TemplateTypeParmDecl *Parm
185    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
186  QualType Default = QualType::getFromOpaquePtr(DefaultT);
187
188  // C++ [temp.param]p14:
189  //   A template-parameter shall not be used in its own default argument.
190  // FIXME: Implement this check! Needs a recursive walk over the types.
191
192  // Check the template argument itself.
193  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
194    Parm->setInvalidDecl();
195    return;
196  }
197
198  Parm->setDefaultArgument(Default, DefaultLoc, false);
199}
200
201/// \brief Check that the type of a non-type template parameter is
202/// well-formed.
203///
204/// \returns the (possibly-promoted) parameter type if valid;
205/// otherwise, produces a diagnostic and returns a NULL type.
206QualType
207Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
208  // C++ [temp.param]p4:
209  //
210  // A non-type template-parameter shall have one of the following
211  // (optionally cv-qualified) types:
212  //
213  //       -- integral or enumeration type,
214  if (T->isIntegralType() || T->isEnumeralType() ||
215      //   -- pointer to object or pointer to function,
216      (T->isPointerType() &&
217       (T->getAsPointerType()->getPointeeType()->isObjectType() ||
218        T->getAsPointerType()->getPointeeType()->isFunctionType())) ||
219      //   -- reference to object or reference to function,
220      T->isReferenceType() ||
221      //   -- pointer to member.
222      T->isMemberPointerType() ||
223      // If T is a dependent type, we can't do the check now, so we
224      // assume that it is well-formed.
225      T->isDependentType())
226    return T;
227  // C++ [temp.param]p8:
228  //
229  //   A non-type template-parameter of type "array of T" or
230  //   "function returning T" is adjusted to be of type "pointer to
231  //   T" or "pointer to function returning T", respectively.
232  else if (T->isArrayType())
233    // FIXME: Keep the type prior to promotion?
234    return Context.getArrayDecayedType(T);
235  else if (T->isFunctionType())
236    // FIXME: Keep the type prior to promotion?
237    return Context.getPointerType(T);
238
239  Diag(Loc, diag::err_template_nontype_parm_bad_type)
240    << T;
241
242  return QualType();
243}
244
245/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
246/// template parameter (e.g., "int Size" in "template<int Size>
247/// class Array") has been parsed. S is the current scope and D is
248/// the parsed declarator.
249Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
250                                                    unsigned Depth,
251                                                    unsigned Position) {
252  QualType T = GetTypeForDeclarator(D, S);
253
254  assert(S->isTemplateParamScope() &&
255         "Non-type template parameter not in template parameter scope!");
256  bool Invalid = false;
257
258  IdentifierInfo *ParamName = D.getIdentifier();
259  if (ParamName) {
260    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
261    if (PrevDecl && PrevDecl->isTemplateParameter())
262      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
263                                                           PrevDecl);
264  }
265
266  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
267  if (T.isNull()) {
268    T = Context.IntTy; // Recover with an 'int' type.
269    Invalid = true;
270  }
271
272  NonTypeTemplateParmDecl *Param
273    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
274                                      Depth, Position, ParamName, T);
275  if (Invalid)
276    Param->setInvalidDecl();
277
278  if (D.getIdentifier()) {
279    // Add the template parameter into the current scope.
280    S->AddDecl(DeclPtrTy::make(Param));
281    IdResolver.AddDecl(Param);
282  }
283  return DeclPtrTy::make(Param);
284}
285
286/// \brief Adds a default argument to the given non-type template
287/// parameter.
288void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
289                                                SourceLocation EqualLoc,
290                                                ExprArg DefaultE) {
291  NonTypeTemplateParmDecl *TemplateParm
292    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
293  Expr *Default = static_cast<Expr *>(DefaultE.get());
294
295  // C++ [temp.param]p14:
296  //   A template-parameter shall not be used in its own default argument.
297  // FIXME: Implement this check! Needs a recursive walk over the types.
298
299  // Check the well-formedness of the default template argument.
300  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default)) {
301    TemplateParm->setInvalidDecl();
302    return;
303  }
304
305  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
306}
307
308
309/// ActOnTemplateTemplateParameter - Called when a C++ template template
310/// parameter (e.g. T in template <template <typename> class T> class array)
311/// has been parsed. S is the current scope.
312Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
313                                                     SourceLocation TmpLoc,
314                                                     TemplateParamsTy *Params,
315                                                     IdentifierInfo *Name,
316                                                     SourceLocation NameLoc,
317                                                     unsigned Depth,
318                                                     unsigned Position)
319{
320  assert(S->isTemplateParamScope() &&
321         "Template template parameter not in template parameter scope!");
322
323  // Construct the parameter object.
324  TemplateTemplateParmDecl *Param =
325    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
326                                     Position, Name,
327                                     (TemplateParameterList*)Params);
328
329  // Make sure the parameter is valid.
330  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
331  // do anything yet. However, if the template parameter list or (eventual)
332  // default value is ever invalidated, that will propagate here.
333  bool Invalid = false;
334  if (Invalid) {
335    Param->setInvalidDecl();
336  }
337
338  // If the tt-param has a name, then link the identifier into the scope
339  // and lookup mechanisms.
340  if (Name) {
341    S->AddDecl(DeclPtrTy::make(Param));
342    IdResolver.AddDecl(Param);
343  }
344
345  return DeclPtrTy::make(Param);
346}
347
348/// \brief Adds a default argument to the given template template
349/// parameter.
350void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
351                                                 SourceLocation EqualLoc,
352                                                 ExprArg DefaultE) {
353  TemplateTemplateParmDecl *TemplateParm
354    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
355
356  // Since a template-template parameter's default argument is an
357  // id-expression, it must be a DeclRefExpr.
358  DeclRefExpr *Default
359    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
360
361  // C++ [temp.param]p14:
362  //   A template-parameter shall not be used in its own default argument.
363  // FIXME: Implement this check! Needs a recursive walk over the types.
364
365  // Check the well-formedness of the template argument.
366  if (!isa<TemplateDecl>(Default->getDecl())) {
367    Diag(Default->getSourceRange().getBegin(),
368         diag::err_template_arg_must_be_template)
369      << Default->getSourceRange();
370    TemplateParm->setInvalidDecl();
371    return;
372  }
373  if (CheckTemplateArgument(TemplateParm, Default)) {
374    TemplateParm->setInvalidDecl();
375    return;
376  }
377
378  DefaultE.release();
379  TemplateParm->setDefaultArgument(Default);
380}
381
382/// ActOnTemplateParameterList - Builds a TemplateParameterList that
383/// contains the template parameters in Params/NumParams.
384Sema::TemplateParamsTy *
385Sema::ActOnTemplateParameterList(unsigned Depth,
386                                 SourceLocation ExportLoc,
387                                 SourceLocation TemplateLoc,
388                                 SourceLocation LAngleLoc,
389                                 DeclPtrTy *Params, unsigned NumParams,
390                                 SourceLocation RAngleLoc) {
391  if (ExportLoc.isValid())
392    Diag(ExportLoc, diag::note_template_export_unsupported);
393
394  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
395                                       (Decl**)Params, NumParams, RAngleLoc);
396}
397
398Sema::DeclResult
399Sema::ActOnClassTemplate(Scope *S, unsigned TagSpec, TagKind TK,
400                         SourceLocation KWLoc, const CXXScopeSpec &SS,
401                         IdentifierInfo *Name, SourceLocation NameLoc,
402                         AttributeList *Attr,
403                         MultiTemplateParamsArg TemplateParameterLists,
404                         AccessSpecifier AS) {
405  assert(TemplateParameterLists.size() > 0 && "No template parameter lists?");
406  assert(TK != TK_Reference && "Can only declare or define class templates");
407  bool Invalid = false;
408
409  // Check that we can declare a template here.
410  if (CheckTemplateDeclScope(S, TemplateParameterLists))
411    return true;
412
413  TagDecl::TagKind Kind;
414  switch (TagSpec) {
415  default: assert(0 && "Unknown tag type!");
416  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
417  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
418  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
419  }
420
421  // There is no such thing as an unnamed class template.
422  if (!Name) {
423    Diag(KWLoc, diag::err_template_unnamed_class);
424    return true;
425  }
426
427  // Find any previous declaration with this name.
428  LookupResult Previous = LookupParsedName(S, &SS, Name, LookupOrdinaryName,
429                                           true);
430  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
431  NamedDecl *PrevDecl = 0;
432  if (Previous.begin() != Previous.end())
433    PrevDecl = *Previous.begin();
434
435  DeclContext *SemanticContext = CurContext;
436  if (SS.isNotEmpty() && !SS.isInvalid()) {
437    SemanticContext = computeDeclContext(SS);
438
439    // FIXME: need to match up several levels of template parameter lists here.
440  }
441
442  // FIXME: member templates!
443  TemplateParameterList *TemplateParams
444    = static_cast<TemplateParameterList *>(*TemplateParameterLists.release());
445
446  // If there is a previous declaration with the same name, check
447  // whether this is a valid redeclaration.
448  ClassTemplateDecl *PrevClassTemplate
449    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
450  if (PrevClassTemplate) {
451    // Ensure that the template parameter lists are compatible.
452    if (!TemplateParameterListsAreEqual(TemplateParams,
453                                   PrevClassTemplate->getTemplateParameters(),
454                                        /*Complain=*/true))
455      return true;
456
457    // C++ [temp.class]p4:
458    //   In a redeclaration, partial specialization, explicit
459    //   specialization or explicit instantiation of a class template,
460    //   the class-key shall agree in kind with the original class
461    //   template declaration (7.1.5.3).
462    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
463    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
464      Diag(KWLoc, diag::err_use_with_wrong_tag)
465        << Name
466        << CodeModificationHint::CreateReplacement(KWLoc,
467                            PrevRecordDecl->getKindName());
468      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
469      Kind = PrevRecordDecl->getTagKind();
470    }
471
472    // Check for redefinition of this class template.
473    if (TK == TK_Definition) {
474      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
475        Diag(NameLoc, diag::err_redefinition) << Name;
476        Diag(Def->getLocation(), diag::note_previous_definition);
477        // FIXME: Would it make sense to try to "forget" the previous
478        // definition, as part of error recovery?
479        return true;
480      }
481    }
482  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
483    // Maybe we will complain about the shadowed template parameter.
484    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
485    // Just pretend that we didn't see the previous declaration.
486    PrevDecl = 0;
487  } else if (PrevDecl) {
488    // C++ [temp]p5:
489    //   A class template shall not have the same name as any other
490    //   template, class, function, object, enumeration, enumerator,
491    //   namespace, or type in the same scope (3.3), except as specified
492    //   in (14.5.4).
493    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
494    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
495    return true;
496  }
497
498  // Check the template parameter list of this declaration, possibly
499  // merging in the template parameter list from the previous class
500  // template declaration.
501  if (CheckTemplateParameterList(TemplateParams,
502            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
503    Invalid = true;
504
505  // FIXME: If we had a scope specifier, we better have a previous template
506  // declaration!
507
508  CXXRecordDecl *NewClass =
509    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name,
510                          PrevClassTemplate?
511                            PrevClassTemplate->getTemplatedDecl() : 0,
512                          /*DelayTypeCreation=*/true);
513
514  ClassTemplateDecl *NewTemplate
515    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
516                                DeclarationName(Name), TemplateParams,
517                                NewClass, PrevClassTemplate);
518  NewClass->setDescribedClassTemplate(NewTemplate);
519
520  // Build the type for the class template declaration now.
521  QualType T =
522    Context.getTypeDeclType(NewClass,
523                            PrevClassTemplate?
524                              PrevClassTemplate->getTemplatedDecl() : 0);
525  assert(T->isDependentType() && "Class template type is not dependent?");
526  (void)T;
527
528  // Set the access specifier.
529  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
530
531  // Set the lexical context of these templates
532  NewClass->setLexicalDeclContext(CurContext);
533  NewTemplate->setLexicalDeclContext(CurContext);
534
535  if (TK == TK_Definition)
536    NewClass->startDefinition();
537
538  if (Attr)
539    ProcessDeclAttributeList(NewClass, Attr);
540
541  PushOnScopeChains(NewTemplate, S);
542
543  if (Invalid) {
544    NewTemplate->setInvalidDecl();
545    NewClass->setInvalidDecl();
546  }
547  return DeclPtrTy::make(NewTemplate);
548}
549
550/// \brief Checks the validity of a template parameter list, possibly
551/// considering the template parameter list from a previous
552/// declaration.
553///
554/// If an "old" template parameter list is provided, it must be
555/// equivalent (per TemplateParameterListsAreEqual) to the "new"
556/// template parameter list.
557///
558/// \param NewParams Template parameter list for a new template
559/// declaration. This template parameter list will be updated with any
560/// default arguments that are carried through from the previous
561/// template parameter list.
562///
563/// \param OldParams If provided, template parameter list from a
564/// previous declaration of the same template. Default template
565/// arguments will be merged from the old template parameter list to
566/// the new template parameter list.
567///
568/// \returns true if an error occurred, false otherwise.
569bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
570                                      TemplateParameterList *OldParams) {
571  bool Invalid = false;
572
573  // C++ [temp.param]p10:
574  //   The set of default template-arguments available for use with a
575  //   template declaration or definition is obtained by merging the
576  //   default arguments from the definition (if in scope) and all
577  //   declarations in scope in the same way default function
578  //   arguments are (8.3.6).
579  bool SawDefaultArgument = false;
580  SourceLocation PreviousDefaultArgLoc;
581
582  // Dummy initialization to avoid warnings.
583  TemplateParameterList::iterator OldParam = NewParams->end();
584  if (OldParams)
585    OldParam = OldParams->begin();
586
587  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
588                                    NewParamEnd = NewParams->end();
589       NewParam != NewParamEnd; ++NewParam) {
590    // Variables used to diagnose redundant default arguments
591    bool RedundantDefaultArg = false;
592    SourceLocation OldDefaultLoc;
593    SourceLocation NewDefaultLoc;
594
595    // Variables used to diagnose missing default arguments
596    bool MissingDefaultArg = false;
597
598    // Merge default arguments for template type parameters.
599    if (TemplateTypeParmDecl *NewTypeParm
600          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
601      TemplateTypeParmDecl *OldTypeParm
602          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
603
604      if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
605          NewTypeParm->hasDefaultArgument()) {
606        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
607        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
608        SawDefaultArgument = true;
609        RedundantDefaultArg = true;
610        PreviousDefaultArgLoc = NewDefaultLoc;
611      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
612        // Merge the default argument from the old declaration to the
613        // new declaration.
614        SawDefaultArgument = true;
615        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
616                                        OldTypeParm->getDefaultArgumentLoc(),
617                                        true);
618        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
619      } else if (NewTypeParm->hasDefaultArgument()) {
620        SawDefaultArgument = true;
621        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
622      } else if (SawDefaultArgument)
623        MissingDefaultArg = true;
624    }
625    // Merge default arguments for non-type template parameters
626    else if (NonTypeTemplateParmDecl *NewNonTypeParm
627               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
628      NonTypeTemplateParmDecl *OldNonTypeParm
629        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
630      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
631          NewNonTypeParm->hasDefaultArgument()) {
632        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
633        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
634        SawDefaultArgument = true;
635        RedundantDefaultArg = true;
636        PreviousDefaultArgLoc = NewDefaultLoc;
637      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
638        // Merge the default argument from the old declaration to the
639        // new declaration.
640        SawDefaultArgument = true;
641        // FIXME: We need to create a new kind of "default argument"
642        // expression that points to a previous template template
643        // parameter.
644        NewNonTypeParm->setDefaultArgument(
645                                        OldNonTypeParm->getDefaultArgument());
646        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
647      } else if (NewNonTypeParm->hasDefaultArgument()) {
648        SawDefaultArgument = true;
649        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
650      } else if (SawDefaultArgument)
651        MissingDefaultArg = true;
652    }
653    // Merge default arguments for template template parameters
654    else {
655      TemplateTemplateParmDecl *NewTemplateParm
656        = cast<TemplateTemplateParmDecl>(*NewParam);
657      TemplateTemplateParmDecl *OldTemplateParm
658        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
659      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
660          NewTemplateParm->hasDefaultArgument()) {
661        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
662        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
663        SawDefaultArgument = true;
664        RedundantDefaultArg = true;
665        PreviousDefaultArgLoc = NewDefaultLoc;
666      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
667        // Merge the default argument from the old declaration to the
668        // new declaration.
669        SawDefaultArgument = true;
670        // FIXME: We need to create a new kind of "default argument" expression
671        // that points to a previous template template parameter.
672        NewTemplateParm->setDefaultArgument(
673                                        OldTemplateParm->getDefaultArgument());
674        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
675      } else if (NewTemplateParm->hasDefaultArgument()) {
676        SawDefaultArgument = true;
677        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
678      } else if (SawDefaultArgument)
679        MissingDefaultArg = true;
680    }
681
682    if (RedundantDefaultArg) {
683      // C++ [temp.param]p12:
684      //   A template-parameter shall not be given default arguments
685      //   by two different declarations in the same scope.
686      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
687      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
688      Invalid = true;
689    } else if (MissingDefaultArg) {
690      // C++ [temp.param]p11:
691      //   If a template-parameter has a default template-argument,
692      //   all subsequent template-parameters shall have a default
693      //   template-argument supplied.
694      Diag((*NewParam)->getLocation(),
695           diag::err_template_param_default_arg_missing);
696      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
697      Invalid = true;
698    }
699
700    // If we have an old template parameter list that we're merging
701    // in, move on to the next parameter.
702    if (OldParams)
703      ++OldParam;
704  }
705
706  return Invalid;
707}
708
709/// \brief Translates template arguments as provided by the parser
710/// into template arguments used by semantic analysis.
711static void
712translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
713                           SourceLocation *TemplateArgLocs,
714                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
715  TemplateArgs.reserve(TemplateArgsIn.size());
716
717  void **Args = TemplateArgsIn.getArgs();
718  bool *ArgIsType = TemplateArgsIn.getArgIsType();
719  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
720    TemplateArgs.push_back(
721      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
722                                       QualType::getFromOpaquePtr(Args[Arg]))
723                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
724  }
725}
726
727/// \brief Build a canonical version of a template argument list.
728///
729/// This function builds a canonical version of the given template
730/// argument list, where each of the template arguments has been
731/// converted into its canonical form. This routine is typically used
732/// to canonicalize a template argument list when the template name
733/// itself is dependent. When the template name refers to an actual
734/// template declaration, Sema::CheckTemplateArgumentList should be
735/// used to check and canonicalize the template arguments.
736///
737/// \param TemplateArgs The incoming template arguments.
738///
739/// \param NumTemplateArgs The number of template arguments in \p
740/// TemplateArgs.
741///
742/// \param Canonical A vector to be filled with the canonical versions
743/// of the template arguments.
744///
745/// \param Context The ASTContext in which the template arguments live.
746static void CanonicalizeTemplateArguments(const TemplateArgument *TemplateArgs,
747                                          unsigned NumTemplateArgs,
748                            llvm::SmallVectorImpl<TemplateArgument> &Canonical,
749                                          ASTContext &Context) {
750  Canonical.reserve(NumTemplateArgs);
751  for (unsigned Idx = 0; Idx < NumTemplateArgs; ++Idx) {
752    switch (TemplateArgs[Idx].getKind()) {
753    case TemplateArgument::Expression:
754      // FIXME: Build canonical expression (!)
755      Canonical.push_back(TemplateArgs[Idx]);
756      break;
757
758    case TemplateArgument::Declaration:
759      Canonical.push_back(
760                 TemplateArgument(SourceLocation(),
761                    Context.getCanonicalDecl(TemplateArgs[Idx].getAsDecl())));
762      break;
763
764    case TemplateArgument::Integral:
765      Canonical.push_back(TemplateArgument(SourceLocation(),
766                                           *TemplateArgs[Idx].getAsIntegral(),
767                                        TemplateArgs[Idx].getIntegralType()));
768
769    case TemplateArgument::Type: {
770      QualType CanonType
771        = Context.getCanonicalType(TemplateArgs[Idx].getAsType());
772      Canonical.push_back(TemplateArgument(SourceLocation(), CanonType));
773    }
774    }
775  }
776}
777
778QualType Sema::CheckTemplateIdType(TemplateName Name,
779                                   SourceLocation TemplateLoc,
780                                   SourceLocation LAngleLoc,
781                                   const TemplateArgument *TemplateArgs,
782                                   unsigned NumTemplateArgs,
783                                   SourceLocation RAngleLoc) {
784  TemplateDecl *Template = Name.getAsTemplateDecl();
785  if (!Template) {
786    // The template name does not resolve to a template, so we just
787    // build a dependent template-id type.
788
789    // Canonicalize the template arguments to build the canonical
790    // template-id type.
791    llvm::SmallVector<TemplateArgument, 16> CanonicalTemplateArgs;
792    CanonicalizeTemplateArguments(TemplateArgs, NumTemplateArgs,
793                                  CanonicalTemplateArgs, Context);
794
795    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
796    QualType CanonType
797      = Context.getTemplateSpecializationType(CanonName,
798                                              &CanonicalTemplateArgs[0],
799                                              CanonicalTemplateArgs.size());
800
801    // Build the dependent template-id type.
802    return Context.getTemplateSpecializationType(Name, TemplateArgs,
803                                                 NumTemplateArgs, CanonType);
804  }
805
806  // Check that the template argument list is well-formed for this
807  // template.
808  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
809  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
810                                TemplateArgs, NumTemplateArgs, RAngleLoc,
811                                ConvertedTemplateArgs))
812    return QualType();
813
814  assert((ConvertedTemplateArgs.size() ==
815            Template->getTemplateParameters()->size()) &&
816         "Converted template argument list is too short!");
817
818  QualType CanonType;
819
820  if (TemplateSpecializationType::anyDependentTemplateArguments(
821                                                      TemplateArgs,
822                                                      NumTemplateArgs)) {
823    // This class template specialization is a dependent
824    // type. Therefore, its canonical type is another class template
825    // specialization type that contains all of the converted
826    // arguments in canonical form. This ensures that, e.g., A<T> and
827    // A<T, T> have identical types when A is declared as:
828    //
829    //   template<typename T, typename U = T> struct A;
830    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
831    CanonType = Context.getTemplateSpecializationType(CanonName,
832                                                    &ConvertedTemplateArgs[0],
833                                                ConvertedTemplateArgs.size());
834  } else if (ClassTemplateDecl *ClassTemplate
835               = dyn_cast<ClassTemplateDecl>(Template)) {
836    // Find the class template specialization declaration that
837    // corresponds to these arguments.
838    llvm::FoldingSetNodeID ID;
839    ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
840                                             ConvertedTemplateArgs.size());
841    void *InsertPos = 0;
842    ClassTemplateSpecializationDecl *Decl
843      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
844    if (!Decl) {
845      // This is the first time we have referenced this class template
846      // specialization. Create the canonical declaration and add it to
847      // the set of specializations.
848      Decl = ClassTemplateSpecializationDecl::Create(Context,
849                                           ClassTemplate->getDeclContext(),
850                                                     TemplateLoc,
851                                                     ClassTemplate,
852                                                     &ConvertedTemplateArgs[0],
853                                                  ConvertedTemplateArgs.size(),
854                                                     0);
855      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
856      Decl->setLexicalDeclContext(CurContext);
857    }
858
859    CanonType = Context.getTypeDeclType(Decl);
860  }
861
862  // Build the fully-sugared type for this class template
863  // specialization, which refers back to the class template
864  // specialization we created or found.
865  return Context.getTemplateSpecializationType(Name, TemplateArgs,
866                                               NumTemplateArgs, CanonType);
867}
868
869Action::TypeResult
870Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
871                          SourceLocation LAngleLoc,
872                          ASTTemplateArgsPtr TemplateArgsIn,
873                          SourceLocation *TemplateArgLocs,
874                          SourceLocation RAngleLoc) {
875  TemplateName Template = TemplateD.getAsVal<TemplateName>();
876
877  // Translate the parser's template argument list in our AST format.
878  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
879  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
880
881  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
882                                        TemplateArgs.data(),
883                                        TemplateArgs.size(),
884                                        RAngleLoc);
885  TemplateArgsIn.release();
886
887  if (Result.isNull())
888    return true;
889
890  return Result.getAsOpaquePtr();
891}
892
893/// \brief Form a dependent template name.
894///
895/// This action forms a dependent template name given the template
896/// name and its (presumably dependent) scope specifier. For
897/// example, given "MetaFun::template apply", the scope specifier \p
898/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
899/// of the "template" keyword, and "apply" is the \p Name.
900Sema::TemplateTy
901Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
902                                 const IdentifierInfo &Name,
903                                 SourceLocation NameLoc,
904                                 const CXXScopeSpec &SS) {
905  if (!SS.isSet() || SS.isInvalid())
906    return TemplateTy();
907
908  NestedNameSpecifier *Qualifier
909    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
910
911  // FIXME: member of the current instantiation
912
913  if (!Qualifier->isDependent()) {
914    // C++0x [temp.names]p5:
915    //   If a name prefixed by the keyword template is not the name of
916    //   a template, the program is ill-formed. [Note: the keyword
917    //   template may not be applied to non-template members of class
918    //   templates. -end note ] [ Note: as is the case with the
919    //   typename prefix, the template prefix is allowed in cases
920    //   where it is not strictly necessary; i.e., when the
921    //   nested-name-specifier or the expression on the left of the ->
922    //   or . is not dependent on a template-parameter, or the use
923    //   does not appear in the scope of a template. -end note]
924    //
925    // Note: C++03 was more strict here, because it banned the use of
926    // the "template" keyword prior to a template-name that was not a
927    // dependent name. C++ DR468 relaxed this requirement (the
928    // "template" keyword is now permitted). We follow the C++0x
929    // rules, even in C++03 mode, retroactively applying the DR.
930    TemplateTy Template;
931    TemplateNameKind TNK = isTemplateName(Name, 0, Template, &SS);
932    if (TNK == TNK_Non_template) {
933      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
934        << &Name;
935      return TemplateTy();
936    }
937
938    return Template;
939  }
940
941  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
942}
943
944/// \brief Check that the given template argument list is well-formed
945/// for specializing the given template.
946bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
947                                     SourceLocation TemplateLoc,
948                                     SourceLocation LAngleLoc,
949                                     const TemplateArgument *TemplateArgs,
950                                     unsigned NumTemplateArgs,
951                                     SourceLocation RAngleLoc,
952                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
953  TemplateParameterList *Params = Template->getTemplateParameters();
954  unsigned NumParams = Params->size();
955  unsigned NumArgs = NumTemplateArgs;
956  bool Invalid = false;
957
958  if (NumArgs > NumParams ||
959      NumArgs < Params->getMinRequiredArguments()) {
960    // FIXME: point at either the first arg beyond what we can handle,
961    // or the '>', depending on whether we have too many or too few
962    // arguments.
963    SourceRange Range;
964    if (NumArgs > NumParams)
965      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
966    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
967      << (NumArgs > NumParams)
968      << (isa<ClassTemplateDecl>(Template)? 0 :
969          isa<FunctionTemplateDecl>(Template)? 1 :
970          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
971      << Template << Range;
972    Diag(Template->getLocation(), diag::note_template_decl_here)
973      << Params->getSourceRange();
974    Invalid = true;
975  }
976
977  // C++ [temp.arg]p1:
978  //   [...] The type and form of each template-argument specified in
979  //   a template-id shall match the type and form specified for the
980  //   corresponding parameter declared by the template in its
981  //   template-parameter-list.
982  unsigned ArgIdx = 0;
983  for (TemplateParameterList::iterator Param = Params->begin(),
984                                       ParamEnd = Params->end();
985       Param != ParamEnd; ++Param, ++ArgIdx) {
986    // Decode the template argument
987    TemplateArgument Arg;
988    if (ArgIdx >= NumArgs) {
989      // Retrieve the default template argument from the template
990      // parameter.
991      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
992        if (!TTP->hasDefaultArgument())
993          break;
994
995        QualType ArgType = TTP->getDefaultArgument();
996
997        // If the argument type is dependent, instantiate it now based
998        // on the previously-computed template arguments.
999        if (ArgType->isDependentType()) {
1000          InstantiatingTemplate Inst(*this, TemplateLoc,
1001                                     Template, &Converted[0],
1002                                     Converted.size(),
1003                                     SourceRange(TemplateLoc, RAngleLoc));
1004
1005          TemplateArgumentList TemplateArgs(Context, &Converted[0],
1006                                            Converted.size(),
1007                                            /*CopyArgs=*/false);
1008          ArgType = InstantiateType(ArgType, TemplateArgs,
1009                                    TTP->getDefaultArgumentLoc(),
1010                                    TTP->getDeclName());
1011        }
1012
1013        if (ArgType.isNull())
1014          return true;
1015
1016        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1017      } else if (NonTypeTemplateParmDecl *NTTP
1018                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1019        if (!NTTP->hasDefaultArgument())
1020          break;
1021
1022        // FIXME: Instantiate default argument
1023        Arg = TemplateArgument(NTTP->getDefaultArgument());
1024      } else {
1025        TemplateTemplateParmDecl *TempParm
1026          = cast<TemplateTemplateParmDecl>(*Param);
1027
1028        if (!TempParm->hasDefaultArgument())
1029          break;
1030
1031        // FIXME: Instantiate default argument
1032        Arg = TemplateArgument(TempParm->getDefaultArgument());
1033      }
1034    } else {
1035      // Retrieve the template argument produced by the user.
1036      Arg = TemplateArgs[ArgIdx];
1037    }
1038
1039
1040    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1041      // Check template type parameters.
1042      if (Arg.getKind() == TemplateArgument::Type) {
1043        if (CheckTemplateArgument(TTP, Arg.getAsType(), Arg.getLocation()))
1044          Invalid = true;
1045
1046        // Add the converted template type argument.
1047        Converted.push_back(
1048                 TemplateArgument(Arg.getLocation(),
1049                                  Context.getCanonicalType(Arg.getAsType())));
1050        continue;
1051      }
1052
1053      // C++ [temp.arg.type]p1:
1054      //   A template-argument for a template-parameter which is a
1055      //   type shall be a type-id.
1056
1057      // We have a template type parameter but the template argument
1058      // is not a type.
1059      Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1060      Diag((*Param)->getLocation(), diag::note_template_param_here);
1061      Invalid = true;
1062    } else if (NonTypeTemplateParmDecl *NTTP
1063                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1064      // Check non-type template parameters.
1065
1066      // Instantiate the type of the non-type template parameter with
1067      // the template arguments we've seen thus far.
1068      QualType NTTPType = NTTP->getType();
1069      if (NTTPType->isDependentType()) {
1070        // Instantiate the type of the non-type template parameter.
1071        InstantiatingTemplate Inst(*this, TemplateLoc,
1072                                   Template, &Converted[0],
1073                                   Converted.size(),
1074                                   SourceRange(TemplateLoc, RAngleLoc));
1075
1076        TemplateArgumentList TemplateArgs(Context, &Converted[0],
1077                                          Converted.size(),
1078                                          /*CopyArgs=*/false);
1079        NTTPType = InstantiateType(NTTPType, TemplateArgs,
1080                                   NTTP->getLocation(),
1081                                   NTTP->getDeclName());
1082        // If that worked, check the non-type template parameter type
1083        // for validity.
1084        if (!NTTPType.isNull())
1085          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1086                                                       NTTP->getLocation());
1087
1088        if (NTTPType.isNull()) {
1089          Invalid = true;
1090          break;
1091        }
1092      }
1093
1094      switch (Arg.getKind()) {
1095      case TemplateArgument::Expression: {
1096        Expr *E = Arg.getAsExpr();
1097        if (CheckTemplateArgument(NTTP, NTTPType, E, &Converted))
1098          Invalid = true;
1099        break;
1100      }
1101
1102      case TemplateArgument::Declaration:
1103      case TemplateArgument::Integral:
1104        // We've already checked this template argument, so just copy
1105        // it to the list of converted arguments.
1106        Converted.push_back(Arg);
1107        break;
1108
1109      case TemplateArgument::Type:
1110        // We have a non-type template parameter but the template
1111        // argument is a type.
1112
1113        // C++ [temp.arg]p2:
1114        //   In a template-argument, an ambiguity between a type-id and
1115        //   an expression is resolved to a type-id, regardless of the
1116        //   form of the corresponding template-parameter.
1117        //
1118        // We warn specifically about this case, since it can be rather
1119        // confusing for users.
1120        if (Arg.getAsType()->isFunctionType())
1121          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1122            << Arg.getAsType();
1123        else
1124          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1125        Diag((*Param)->getLocation(), diag::note_template_param_here);
1126        Invalid = true;
1127      }
1128    } else {
1129      // Check template template parameters.
1130      TemplateTemplateParmDecl *TempParm
1131        = cast<TemplateTemplateParmDecl>(*Param);
1132
1133      switch (Arg.getKind()) {
1134      case TemplateArgument::Expression: {
1135        Expr *ArgExpr = Arg.getAsExpr();
1136        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1137            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1138          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1139            Invalid = true;
1140
1141          // Add the converted template argument.
1142          Decl *D
1143            = Context.getCanonicalDecl(cast<DeclRefExpr>(ArgExpr)->getDecl());
1144          Converted.push_back(TemplateArgument(Arg.getLocation(), D));
1145          continue;
1146        }
1147      }
1148        // fall through
1149
1150      case TemplateArgument::Type: {
1151        // We have a template template parameter but the template
1152        // argument does not refer to a template.
1153        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1154        Invalid = true;
1155        break;
1156      }
1157
1158      case TemplateArgument::Declaration:
1159        // We've already checked this template argument, so just copy
1160        // it to the list of converted arguments.
1161        Converted.push_back(Arg);
1162        break;
1163
1164      case TemplateArgument::Integral:
1165        assert(false && "Integral argument with template template parameter");
1166        break;
1167      }
1168    }
1169  }
1170
1171  return Invalid;
1172}
1173
1174/// \brief Check a template argument against its corresponding
1175/// template type parameter.
1176///
1177/// This routine implements the semantics of C++ [temp.arg.type]. It
1178/// returns true if an error occurred, and false otherwise.
1179bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1180                                 QualType Arg, SourceLocation ArgLoc) {
1181  // C++ [temp.arg.type]p2:
1182  //   A local type, a type with no linkage, an unnamed type or a type
1183  //   compounded from any of these types shall not be used as a
1184  //   template-argument for a template type-parameter.
1185  //
1186  // FIXME: Perform the recursive and no-linkage type checks.
1187  const TagType *Tag = 0;
1188  if (const EnumType *EnumT = Arg->getAsEnumType())
1189    Tag = EnumT;
1190  else if (const RecordType *RecordT = Arg->getAsRecordType())
1191    Tag = RecordT;
1192  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1193    return Diag(ArgLoc, diag::err_template_arg_local_type)
1194      << QualType(Tag, 0);
1195  else if (Tag && !Tag->getDecl()->getDeclName() &&
1196           !Tag->getDecl()->getTypedefForAnonDecl()) {
1197    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1198    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1199    return true;
1200  }
1201
1202  return false;
1203}
1204
1205/// \brief Checks whether the given template argument is the address
1206/// of an object or function according to C++ [temp.arg.nontype]p1.
1207bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1208                                                          NamedDecl *&Entity) {
1209  bool Invalid = false;
1210
1211  // See through any implicit casts we added to fix the type.
1212  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1213    Arg = Cast->getSubExpr();
1214
1215  // C++0x allows nullptr, and there's no further checking to be done for that.
1216  if (Arg->getType()->isNullPtrType())
1217    return false;
1218
1219  // C++ [temp.arg.nontype]p1:
1220  //
1221  //   A template-argument for a non-type, non-template
1222  //   template-parameter shall be one of: [...]
1223  //
1224  //     -- the address of an object or function with external
1225  //        linkage, including function templates and function
1226  //        template-ids but excluding non-static class members,
1227  //        expressed as & id-expression where the & is optional if
1228  //        the name refers to a function or array, or if the
1229  //        corresponding template-parameter is a reference; or
1230  DeclRefExpr *DRE = 0;
1231
1232  // Ignore (and complain about) any excess parentheses.
1233  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1234    if (!Invalid) {
1235      Diag(Arg->getSourceRange().getBegin(),
1236           diag::err_template_arg_extra_parens)
1237        << Arg->getSourceRange();
1238      Invalid = true;
1239    }
1240
1241    Arg = Parens->getSubExpr();
1242  }
1243
1244  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1245    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1246      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1247  } else
1248    DRE = dyn_cast<DeclRefExpr>(Arg);
1249
1250  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1251    return Diag(Arg->getSourceRange().getBegin(),
1252                diag::err_template_arg_not_object_or_func_form)
1253      << Arg->getSourceRange();
1254
1255  // Cannot refer to non-static data members
1256  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1257    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1258      << Field << Arg->getSourceRange();
1259
1260  // Cannot refer to non-static member functions
1261  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1262    if (!Method->isStatic())
1263      return Diag(Arg->getSourceRange().getBegin(),
1264                  diag::err_template_arg_method)
1265        << Method << Arg->getSourceRange();
1266
1267  // Functions must have external linkage.
1268  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1269    if (Func->getStorageClass() == FunctionDecl::Static) {
1270      Diag(Arg->getSourceRange().getBegin(),
1271           diag::err_template_arg_function_not_extern)
1272        << Func << Arg->getSourceRange();
1273      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1274        << true;
1275      return true;
1276    }
1277
1278    // Okay: we've named a function with external linkage.
1279    Entity = Func;
1280    return Invalid;
1281  }
1282
1283  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1284    if (!Var->hasGlobalStorage()) {
1285      Diag(Arg->getSourceRange().getBegin(),
1286           diag::err_template_arg_object_not_extern)
1287        << Var << Arg->getSourceRange();
1288      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1289        << true;
1290      return true;
1291    }
1292
1293    // Okay: we've named an object with external linkage
1294    Entity = Var;
1295    return Invalid;
1296  }
1297
1298  // We found something else, but we don't know specifically what it is.
1299  Diag(Arg->getSourceRange().getBegin(),
1300       diag::err_template_arg_not_object_or_func)
1301      << Arg->getSourceRange();
1302  Diag(DRE->getDecl()->getLocation(),
1303       diag::note_template_arg_refers_here);
1304  return true;
1305}
1306
1307/// \brief Checks whether the given template argument is a pointer to
1308/// member constant according to C++ [temp.arg.nontype]p1.
1309bool
1310Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1311  bool Invalid = false;
1312
1313  // See through any implicit casts we added to fix the type.
1314  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1315    Arg = Cast->getSubExpr();
1316
1317  // C++0x allows nullptr, and there's no further checking to be done for that.
1318  if (Arg->getType()->isNullPtrType())
1319    return false;
1320
1321  // C++ [temp.arg.nontype]p1:
1322  //
1323  //   A template-argument for a non-type, non-template
1324  //   template-parameter shall be one of: [...]
1325  //
1326  //     -- a pointer to member expressed as described in 5.3.1.
1327  QualifiedDeclRefExpr *DRE = 0;
1328
1329  // Ignore (and complain about) any excess parentheses.
1330  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1331    if (!Invalid) {
1332      Diag(Arg->getSourceRange().getBegin(),
1333           diag::err_template_arg_extra_parens)
1334        << Arg->getSourceRange();
1335      Invalid = true;
1336    }
1337
1338    Arg = Parens->getSubExpr();
1339  }
1340
1341  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1342    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1343      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1344
1345  if (!DRE)
1346    return Diag(Arg->getSourceRange().getBegin(),
1347                diag::err_template_arg_not_pointer_to_member_form)
1348      << Arg->getSourceRange();
1349
1350  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1351    assert((isa<FieldDecl>(DRE->getDecl()) ||
1352            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1353           "Only non-static member pointers can make it here");
1354
1355    // Okay: this is the address of a non-static member, and therefore
1356    // a member pointer constant.
1357    Member = DRE->getDecl();
1358    return Invalid;
1359  }
1360
1361  // We found something else, but we don't know specifically what it is.
1362  Diag(Arg->getSourceRange().getBegin(),
1363       diag::err_template_arg_not_pointer_to_member_form)
1364      << Arg->getSourceRange();
1365  Diag(DRE->getDecl()->getLocation(),
1366       diag::note_template_arg_refers_here);
1367  return true;
1368}
1369
1370/// \brief Check a template argument against its corresponding
1371/// non-type template parameter.
1372///
1373/// This routine implements the semantics of C++ [temp.arg.nontype].
1374/// It returns true if an error occurred, and false otherwise. \p
1375/// InstantiatedParamType is the type of the non-type template
1376/// parameter after it has been instantiated.
1377///
1378/// If Converted is non-NULL and no errors occur, the value
1379/// of this argument will be added to the end of the Converted vector.
1380bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1381                                 QualType InstantiatedParamType, Expr *&Arg,
1382                         llvm::SmallVectorImpl<TemplateArgument> *Converted) {
1383  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1384
1385  // If either the parameter has a dependent type or the argument is
1386  // type-dependent, there's nothing we can check now.
1387  // FIXME: Add template argument to Converted!
1388  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1389    // FIXME: Produce a cloned, canonical expression?
1390    Converted->push_back(TemplateArgument(Arg));
1391    return false;
1392  }
1393
1394  // C++ [temp.arg.nontype]p5:
1395  //   The following conversions are performed on each expression used
1396  //   as a non-type template-argument. If a non-type
1397  //   template-argument cannot be converted to the type of the
1398  //   corresponding template-parameter then the program is
1399  //   ill-formed.
1400  //
1401  //     -- for a non-type template-parameter of integral or
1402  //        enumeration type, integral promotions (4.5) and integral
1403  //        conversions (4.7) are applied.
1404  QualType ParamType = InstantiatedParamType;
1405  QualType ArgType = Arg->getType();
1406  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1407    // C++ [temp.arg.nontype]p1:
1408    //   A template-argument for a non-type, non-template
1409    //   template-parameter shall be one of:
1410    //
1411    //     -- an integral constant-expression of integral or enumeration
1412    //        type; or
1413    //     -- the name of a non-type template-parameter; or
1414    SourceLocation NonConstantLoc;
1415    llvm::APSInt Value;
1416    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1417      Diag(Arg->getSourceRange().getBegin(),
1418           diag::err_template_arg_not_integral_or_enumeral)
1419        << ArgType << Arg->getSourceRange();
1420      Diag(Param->getLocation(), diag::note_template_param_here);
1421      return true;
1422    } else if (!Arg->isValueDependent() &&
1423               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1424      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1425        << ArgType << Arg->getSourceRange();
1426      return true;
1427    }
1428
1429    // FIXME: We need some way to more easily get the unqualified form
1430    // of the types without going all the way to the
1431    // canonical type.
1432    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1433      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1434    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1435      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1436
1437    // Try to convert the argument to the parameter's type.
1438    if (ParamType == ArgType) {
1439      // Okay: no conversion necessary
1440    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1441               !ParamType->isEnumeralType()) {
1442      // This is an integral promotion or conversion.
1443      ImpCastExprToType(Arg, ParamType);
1444    } else {
1445      // We can't perform this conversion.
1446      Diag(Arg->getSourceRange().getBegin(),
1447           diag::err_template_arg_not_convertible)
1448        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1449      Diag(Param->getLocation(), diag::note_template_param_here);
1450      return true;
1451    }
1452
1453    QualType IntegerType = Context.getCanonicalType(ParamType);
1454    if (const EnumType *Enum = IntegerType->getAsEnumType())
1455      IntegerType = Enum->getDecl()->getIntegerType();
1456
1457    if (!Arg->isValueDependent()) {
1458      // Check that an unsigned parameter does not receive a negative
1459      // value.
1460      if (IntegerType->isUnsignedIntegerType()
1461          && (Value.isSigned() && Value.isNegative())) {
1462        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1463          << Value.toString(10) << Param->getType()
1464          << Arg->getSourceRange();
1465        Diag(Param->getLocation(), diag::note_template_param_here);
1466        return true;
1467      }
1468
1469      // Check that we don't overflow the template parameter type.
1470      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1471      if (Value.getActiveBits() > AllowedBits) {
1472        Diag(Arg->getSourceRange().getBegin(),
1473             diag::err_template_arg_too_large)
1474          << Value.toString(10) << Param->getType()
1475          << Arg->getSourceRange();
1476        Diag(Param->getLocation(), diag::note_template_param_here);
1477        return true;
1478      }
1479
1480      if (Value.getBitWidth() != AllowedBits)
1481        Value.extOrTrunc(AllowedBits);
1482      Value.setIsSigned(IntegerType->isSignedIntegerType());
1483    }
1484
1485    if (Converted) {
1486      // Add the value of this argument to the list of converted
1487      // arguments. We use the bitwidth and signedness of the template
1488      // parameter.
1489      if (Arg->isValueDependent()) {
1490        // The argument is value-dependent. Create a new
1491        // TemplateArgument with the converted expression.
1492        Converted->push_back(TemplateArgument(Arg));
1493        return false;
1494      }
1495
1496      Converted->push_back(TemplateArgument(StartLoc, Value,
1497                      ParamType->isEnumeralType() ? ParamType : IntegerType));
1498    }
1499
1500    return false;
1501  }
1502
1503  // Handle pointer-to-function, reference-to-function, and
1504  // pointer-to-member-function all in (roughly) the same way.
1505  if (// -- For a non-type template-parameter of type pointer to
1506      //    function, only the function-to-pointer conversion (4.3) is
1507      //    applied. If the template-argument represents a set of
1508      //    overloaded functions (or a pointer to such), the matching
1509      //    function is selected from the set (13.4).
1510      // In C++0x, any std::nullptr_t value can be converted.
1511      (ParamType->isPointerType() &&
1512       ParamType->getAsPointerType()->getPointeeType()->isFunctionType()) ||
1513      // -- For a non-type template-parameter of type reference to
1514      //    function, no conversions apply. If the template-argument
1515      //    represents a set of overloaded functions, the matching
1516      //    function is selected from the set (13.4).
1517      (ParamType->isReferenceType() &&
1518       ParamType->getAsReferenceType()->getPointeeType()->isFunctionType()) ||
1519      // -- For a non-type template-parameter of type pointer to
1520      //    member function, no conversions apply. If the
1521      //    template-argument represents a set of overloaded member
1522      //    functions, the matching member function is selected from
1523      //    the set (13.4).
1524      // Again, C++0x allows a std::nullptr_t value.
1525      (ParamType->isMemberPointerType() &&
1526       ParamType->getAsMemberPointerType()->getPointeeType()
1527         ->isFunctionType())) {
1528    if (Context.hasSameUnqualifiedType(ArgType,
1529                                       ParamType.getNonReferenceType())) {
1530      // We don't have to do anything: the types already match.
1531    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1532                 ParamType->isMemberPointerType())) {
1533      ArgType = ParamType;
1534      ImpCastExprToType(Arg, ParamType);
1535    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1536      ArgType = Context.getPointerType(ArgType);
1537      ImpCastExprToType(Arg, ArgType);
1538    } else if (FunctionDecl *Fn
1539                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1540      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1541        return true;
1542
1543      FixOverloadedFunctionReference(Arg, Fn);
1544      ArgType = Arg->getType();
1545      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1546        ArgType = Context.getPointerType(Arg->getType());
1547        ImpCastExprToType(Arg, ArgType);
1548      }
1549    }
1550
1551    if (!Context.hasSameUnqualifiedType(ArgType,
1552                                        ParamType.getNonReferenceType())) {
1553      // We can't perform this conversion.
1554      Diag(Arg->getSourceRange().getBegin(),
1555           diag::err_template_arg_not_convertible)
1556        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1557      Diag(Param->getLocation(), diag::note_template_param_here);
1558      return true;
1559    }
1560
1561    if (ParamType->isMemberPointerType()) {
1562      NamedDecl *Member = 0;
1563      if (CheckTemplateArgumentPointerToMember(Arg, Member))
1564        return true;
1565
1566      if (Converted) {
1567        Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
1568        Converted->push_back(TemplateArgument(StartLoc, Member));
1569      }
1570
1571      return false;
1572    }
1573
1574    NamedDecl *Entity = 0;
1575    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1576      return true;
1577
1578    if (Converted) {
1579      Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
1580      Converted->push_back(TemplateArgument(StartLoc, Entity));
1581    }
1582    return false;
1583  }
1584
1585  if (ParamType->isPointerType()) {
1586    //   -- for a non-type template-parameter of type pointer to
1587    //      object, qualification conversions (4.4) and the
1588    //      array-to-pointer conversion (4.2) are applied.
1589    // C++0x also allows a value of std::nullptr_t.
1590    assert(ParamType->getAsPointerType()->getPointeeType()->isObjectType() &&
1591           "Only object pointers allowed here");
1592
1593    if (ArgType->isNullPtrType()) {
1594      ArgType = ParamType;
1595      ImpCastExprToType(Arg, ParamType);
1596    } else if (ArgType->isArrayType()) {
1597      ArgType = Context.getArrayDecayedType(ArgType);
1598      ImpCastExprToType(Arg, ArgType);
1599    }
1600
1601    if (IsQualificationConversion(ArgType, ParamType)) {
1602      ArgType = ParamType;
1603      ImpCastExprToType(Arg, ParamType);
1604    }
1605
1606    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
1607      // We can't perform this conversion.
1608      Diag(Arg->getSourceRange().getBegin(),
1609           diag::err_template_arg_not_convertible)
1610        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1611      Diag(Param->getLocation(), diag::note_template_param_here);
1612      return true;
1613    }
1614
1615    NamedDecl *Entity = 0;
1616    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1617      return true;
1618
1619    if (Converted) {
1620      Entity = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Entity));
1621      Converted->push_back(TemplateArgument(StartLoc, Entity));
1622    }
1623
1624    return false;
1625  }
1626
1627  if (const ReferenceType *ParamRefType = ParamType->getAsReferenceType()) {
1628    //   -- For a non-type template-parameter of type reference to
1629    //      object, no conversions apply. The type referred to by the
1630    //      reference may be more cv-qualified than the (otherwise
1631    //      identical) type of the template-argument. The
1632    //      template-parameter is bound directly to the
1633    //      template-argument, which must be an lvalue.
1634    assert(ParamRefType->getPointeeType()->isObjectType() &&
1635           "Only object references allowed here");
1636
1637    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
1638      Diag(Arg->getSourceRange().getBegin(),
1639           diag::err_template_arg_no_ref_bind)
1640        << InstantiatedParamType << Arg->getType()
1641        << Arg->getSourceRange();
1642      Diag(Param->getLocation(), diag::note_template_param_here);
1643      return true;
1644    }
1645
1646    unsigned ParamQuals
1647      = Context.getCanonicalType(ParamType).getCVRQualifiers();
1648    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
1649
1650    if ((ParamQuals | ArgQuals) != ParamQuals) {
1651      Diag(Arg->getSourceRange().getBegin(),
1652           diag::err_template_arg_ref_bind_ignores_quals)
1653        << InstantiatedParamType << Arg->getType()
1654        << Arg->getSourceRange();
1655      Diag(Param->getLocation(), diag::note_template_param_here);
1656      return true;
1657    }
1658
1659    NamedDecl *Entity = 0;
1660    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1661      return true;
1662
1663    if (Converted) {
1664      Entity = cast<NamedDecl>(Context.getCanonicalDecl(Entity));
1665      Converted->push_back(TemplateArgument(StartLoc, Entity));
1666    }
1667
1668    return false;
1669  }
1670
1671  //     -- For a non-type template-parameter of type pointer to data
1672  //        member, qualification conversions (4.4) are applied.
1673  // C++0x allows std::nullptr_t values.
1674  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
1675
1676  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
1677    // Types match exactly: nothing more to do here.
1678  } else if (ArgType->isNullPtrType()) {
1679    ImpCastExprToType(Arg, ParamType);
1680  } else if (IsQualificationConversion(ArgType, ParamType)) {
1681    ImpCastExprToType(Arg, ParamType);
1682  } else {
1683    // We can't perform this conversion.
1684    Diag(Arg->getSourceRange().getBegin(),
1685         diag::err_template_arg_not_convertible)
1686      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1687    Diag(Param->getLocation(), diag::note_template_param_here);
1688    return true;
1689  }
1690
1691  NamedDecl *Member = 0;
1692  if (CheckTemplateArgumentPointerToMember(Arg, Member))
1693    return true;
1694
1695  if (Converted) {
1696    Member = cast_or_null<NamedDecl>(Context.getCanonicalDecl(Member));
1697    Converted->push_back(TemplateArgument(StartLoc, Member));
1698  }
1699
1700  return false;
1701}
1702
1703/// \brief Check a template argument against its corresponding
1704/// template template parameter.
1705///
1706/// This routine implements the semantics of C++ [temp.arg.template].
1707/// It returns true if an error occurred, and false otherwise.
1708bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
1709                                 DeclRefExpr *Arg) {
1710  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
1711  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
1712
1713  // C++ [temp.arg.template]p1:
1714  //   A template-argument for a template template-parameter shall be
1715  //   the name of a class template, expressed as id-expression. Only
1716  //   primary class templates are considered when matching the
1717  //   template template argument with the corresponding parameter;
1718  //   partial specializations are not considered even if their
1719  //   parameter lists match that of the template template parameter.
1720  if (!isa<ClassTemplateDecl>(Template)) {
1721    assert(isa<FunctionTemplateDecl>(Template) &&
1722           "Only function templates are possible here");
1723    Diag(Arg->getSourceRange().getBegin(),
1724         diag::note_template_arg_refers_here_func)
1725      << Template;
1726  }
1727
1728  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
1729                                         Param->getTemplateParameters(),
1730                                         true, true,
1731                                         Arg->getSourceRange().getBegin());
1732}
1733
1734/// \brief Determine whether the given template parameter lists are
1735/// equivalent.
1736///
1737/// \param New  The new template parameter list, typically written in the
1738/// source code as part of a new template declaration.
1739///
1740/// \param Old  The old template parameter list, typically found via
1741/// name lookup of the template declared with this template parameter
1742/// list.
1743///
1744/// \param Complain  If true, this routine will produce a diagnostic if
1745/// the template parameter lists are not equivalent.
1746///
1747/// \param IsTemplateTemplateParm  If true, this routine is being
1748/// called to compare the template parameter lists of a template
1749/// template parameter.
1750///
1751/// \param TemplateArgLoc If this source location is valid, then we
1752/// are actually checking the template parameter list of a template
1753/// argument (New) against the template parameter list of its
1754/// corresponding template template parameter (Old). We produce
1755/// slightly different diagnostics in this scenario.
1756///
1757/// \returns True if the template parameter lists are equal, false
1758/// otherwise.
1759bool
1760Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
1761                                     TemplateParameterList *Old,
1762                                     bool Complain,
1763                                     bool IsTemplateTemplateParm,
1764                                     SourceLocation TemplateArgLoc) {
1765  if (Old->size() != New->size()) {
1766    if (Complain) {
1767      unsigned NextDiag = diag::err_template_param_list_different_arity;
1768      if (TemplateArgLoc.isValid()) {
1769        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
1770        NextDiag = diag::note_template_param_list_different_arity;
1771      }
1772      Diag(New->getTemplateLoc(), NextDiag)
1773          << (New->size() > Old->size())
1774          << IsTemplateTemplateParm
1775          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
1776      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
1777        << IsTemplateTemplateParm
1778        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
1779    }
1780
1781    return false;
1782  }
1783
1784  for (TemplateParameterList::iterator OldParm = Old->begin(),
1785         OldParmEnd = Old->end(), NewParm = New->begin();
1786       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
1787    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
1788      unsigned NextDiag = diag::err_template_param_different_kind;
1789      if (TemplateArgLoc.isValid()) {
1790        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
1791        NextDiag = diag::note_template_param_different_kind;
1792      }
1793      Diag((*NewParm)->getLocation(), NextDiag)
1794        << IsTemplateTemplateParm;
1795      Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
1796        << IsTemplateTemplateParm;
1797      return false;
1798    }
1799
1800    if (isa<TemplateTypeParmDecl>(*OldParm)) {
1801      // Okay; all template type parameters are equivalent (since we
1802      // know we're at the same index).
1803#if 0
1804      // FIXME: Enable this code in debug mode *after* we properly go through
1805      // and "instantiate" the template parameter lists of template template
1806      // parameters. It's only after this instantiation that (1) any dependent
1807      // types within the template parameter list of the template template
1808      // parameter can be checked, and (2) the template type parameter depths
1809      // will match up.
1810      QualType OldParmType
1811        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
1812      QualType NewParmType
1813        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
1814      assert(Context.getCanonicalType(OldParmType) ==
1815             Context.getCanonicalType(NewParmType) &&
1816             "type parameter mismatch?");
1817#endif
1818    } else if (NonTypeTemplateParmDecl *OldNTTP
1819                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
1820      // The types of non-type template parameters must agree.
1821      NonTypeTemplateParmDecl *NewNTTP
1822        = cast<NonTypeTemplateParmDecl>(*NewParm);
1823      if (Context.getCanonicalType(OldNTTP->getType()) !=
1824            Context.getCanonicalType(NewNTTP->getType())) {
1825        if (Complain) {
1826          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
1827          if (TemplateArgLoc.isValid()) {
1828            Diag(TemplateArgLoc,
1829                 diag::err_template_arg_template_params_mismatch);
1830            NextDiag = diag::note_template_nontype_parm_different_type;
1831          }
1832          Diag(NewNTTP->getLocation(), NextDiag)
1833            << NewNTTP->getType()
1834            << IsTemplateTemplateParm;
1835          Diag(OldNTTP->getLocation(),
1836               diag::note_template_nontype_parm_prev_declaration)
1837            << OldNTTP->getType();
1838        }
1839        return false;
1840      }
1841    } else {
1842      // The template parameter lists of template template
1843      // parameters must agree.
1844      // FIXME: Could we perform a faster "type" comparison here?
1845      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
1846             "Only template template parameters handled here");
1847      TemplateTemplateParmDecl *OldTTP
1848        = cast<TemplateTemplateParmDecl>(*OldParm);
1849      TemplateTemplateParmDecl *NewTTP
1850        = cast<TemplateTemplateParmDecl>(*NewParm);
1851      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
1852                                          OldTTP->getTemplateParameters(),
1853                                          Complain,
1854                                          /*IsTemplateTemplateParm=*/true,
1855                                          TemplateArgLoc))
1856        return false;
1857    }
1858  }
1859
1860  return true;
1861}
1862
1863/// \brief Check whether a template can be declared within this scope.
1864///
1865/// If the template declaration is valid in this scope, returns
1866/// false. Otherwise, issues a diagnostic and returns true.
1867bool
1868Sema::CheckTemplateDeclScope(Scope *S,
1869                             MultiTemplateParamsArg &TemplateParameterLists) {
1870  assert(TemplateParameterLists.size() > 0 && "Not a template");
1871
1872  // Find the nearest enclosing declaration scope.
1873  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1874         (S->getFlags() & Scope::TemplateParamScope) != 0)
1875    S = S->getParent();
1876
1877  TemplateParameterList *TemplateParams =
1878    static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
1879  SourceLocation TemplateLoc = TemplateParams->getTemplateLoc();
1880  SourceRange TemplateRange
1881    = SourceRange(TemplateLoc, TemplateParams->getRAngleLoc());
1882
1883  // C++ [temp]p2:
1884  //   A template-declaration can appear only as a namespace scope or
1885  //   class scope declaration.
1886  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
1887  while (Ctx && isa<LinkageSpecDecl>(Ctx)) {
1888    if (cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
1889      return Diag(TemplateLoc, diag::err_template_linkage)
1890        << TemplateRange;
1891
1892    Ctx = Ctx->getParent();
1893  }
1894
1895  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
1896    return false;
1897
1898  return Diag(TemplateLoc, diag::err_template_outside_namespace_or_class_scope)
1899    << TemplateRange;
1900}
1901
1902/// \brief Check whether a class template specialization or explicit
1903/// instantiation in the current context is well-formed.
1904///
1905/// This routine determines whether a class template specialization or
1906/// explicit instantiation can be declared in the current context
1907/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
1908/// appropriate diagnostics if there was an error. It returns true if
1909// there was an error that we cannot recover from, and false otherwise.
1910bool
1911Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
1912                                   ClassTemplateSpecializationDecl *PrevDecl,
1913                                            SourceLocation TemplateNameLoc,
1914                                            SourceRange ScopeSpecifierRange,
1915                                            bool ExplicitInstantiation) {
1916  // C++ [temp.expl.spec]p2:
1917  //   An explicit specialization shall be declared in the namespace
1918  //   of which the template is a member, or, for member templates, in
1919  //   the namespace of which the enclosing class or enclosing class
1920  //   template is a member. An explicit specialization of a member
1921  //   function, member class or static data member of a class
1922  //   template shall be declared in the namespace of which the class
1923  //   template is a member. Such a declaration may also be a
1924  //   definition. If the declaration is not a definition, the
1925  //   specialization may be defined later in the name- space in which
1926  //   the explicit specialization was declared, or in a namespace
1927  //   that encloses the one in which the explicit specialization was
1928  //   declared.
1929  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1930    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
1931      << ExplicitInstantiation << ClassTemplate;
1932    return true;
1933  }
1934
1935  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
1936  DeclContext *TemplateContext
1937    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
1938  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
1939      !ExplicitInstantiation) {
1940    // There is no prior declaration of this entity, so this
1941    // specialization must be in the same context as the template
1942    // itself.
1943    if (DC != TemplateContext) {
1944      if (isa<TranslationUnitDecl>(TemplateContext))
1945        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
1946          << ClassTemplate << ScopeSpecifierRange;
1947      else if (isa<NamespaceDecl>(TemplateContext))
1948        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
1949          << ClassTemplate << cast<NamedDecl>(TemplateContext)
1950          << ScopeSpecifierRange;
1951
1952      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
1953    }
1954
1955    return false;
1956  }
1957
1958  // We have a previous declaration of this entity. Make sure that
1959  // this redeclaration (or definition) occurs in an enclosing namespace.
1960  if (!CurContext->Encloses(TemplateContext)) {
1961    // FIXME:  In C++98,  we  would like  to  turn these  errors into  warnings,
1962    // dependent on a -Wc++0x flag.
1963    bool SuppressedDiag = false;
1964    if (isa<TranslationUnitDecl>(TemplateContext)) {
1965      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
1966        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
1967          << ExplicitInstantiation << ClassTemplate << ScopeSpecifierRange;
1968      else
1969        SuppressedDiag = true;
1970    } else if (isa<NamespaceDecl>(TemplateContext)) {
1971      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
1972        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
1973          << ExplicitInstantiation << ClassTemplate
1974          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
1975      else
1976        SuppressedDiag = true;
1977    }
1978
1979    if (!SuppressedDiag)
1980      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
1981  }
1982
1983  return false;
1984}
1985
1986Sema::DeclResult
1987Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagKind TK,
1988                                       SourceLocation KWLoc,
1989                                       const CXXScopeSpec &SS,
1990                                       TemplateTy TemplateD,
1991                                       SourceLocation TemplateNameLoc,
1992                                       SourceLocation LAngleLoc,
1993                                       ASTTemplateArgsPtr TemplateArgsIn,
1994                                       SourceLocation *TemplateArgLocs,
1995                                       SourceLocation RAngleLoc,
1996                                       AttributeList *Attr,
1997                               MultiTemplateParamsArg TemplateParameterLists) {
1998  // Find the class template we're specializing
1999  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2000  ClassTemplateDecl *ClassTemplate
2001    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2002
2003  bool isPartialSpecialization = false;
2004
2005  // Check the validity of the template headers that introduce this
2006  // template.
2007  // FIXME: Once we have member templates, we'll need to check
2008  // C++ [temp.expl.spec]p17-18, where we could have multiple levels of
2009  // template<> headers.
2010  if (TemplateParameterLists.size() == 0)
2011    Diag(KWLoc, diag::err_template_spec_needs_header)
2012      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2013  else {
2014    TemplateParameterList *TemplateParams
2015      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2016    if (TemplateParameterLists.size() > 1) {
2017      Diag(TemplateParams->getTemplateLoc(),
2018           diag::err_template_spec_extra_headers);
2019      return true;
2020    }
2021
2022    // FIXME: We'll need more checks, here!
2023    if (TemplateParams->size() > 0)
2024      isPartialSpecialization = true;
2025  }
2026
2027  // Check that the specialization uses the same tag kind as the
2028  // original template.
2029  TagDecl::TagKind Kind;
2030  switch (TagSpec) {
2031  default: assert(0 && "Unknown tag type!");
2032  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2033  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2034  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2035  }
2036  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2037                                    Kind, KWLoc,
2038                                    *ClassTemplate->getIdentifier())) {
2039    Diag(KWLoc, diag::err_use_with_wrong_tag)
2040      << ClassTemplate
2041      << CodeModificationHint::CreateReplacement(KWLoc,
2042                            ClassTemplate->getTemplatedDecl()->getKindName());
2043    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2044         diag::note_previous_use);
2045    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2046  }
2047
2048  // Translate the parser's template argument list in our AST format.
2049  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2050  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2051
2052  // Check that the template argument list is well-formed for this
2053  // template.
2054  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
2055  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2056                                &TemplateArgs[0], TemplateArgs.size(),
2057                                RAngleLoc, ConvertedTemplateArgs))
2058    return true;
2059
2060  assert((ConvertedTemplateArgs.size() ==
2061            ClassTemplate->getTemplateParameters()->size()) &&
2062         "Converted template argument list is too short!");
2063
2064  // Find the class template (partial) specialization declaration that
2065  // corresponds to these arguments.
2066  llvm::FoldingSetNodeID ID;
2067  if (isPartialSpecialization)
2068    // FIXME: Template parameter list matters, too
2069    ClassTemplatePartialSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
2070                                                    ConvertedTemplateArgs.size());
2071  else
2072    ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
2073                                             ConvertedTemplateArgs.size());
2074  void *InsertPos = 0;
2075  ClassTemplateSpecializationDecl *PrevDecl = 0;
2076
2077  if (isPartialSpecialization)
2078    PrevDecl
2079      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2080                                                                    InsertPos);
2081  else
2082    PrevDecl
2083      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2084
2085  ClassTemplateSpecializationDecl *Specialization = 0;
2086
2087  // Check whether we can declare a class template specialization in
2088  // the current scope.
2089  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2090                                            TemplateNameLoc,
2091                                            SS.getRange(),
2092                                            /*ExplicitInstantiation=*/false))
2093    return true;
2094
2095  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2096    // Since the only prior class template specialization with these
2097    // arguments was referenced but not declared, reuse that
2098    // declaration node as our own, updating its source location to
2099    // reflect our new declaration.
2100    Specialization = PrevDecl;
2101    Specialization->setLocation(TemplateNameLoc);
2102    PrevDecl = 0;
2103  } else if (isPartialSpecialization) {
2104    // FIXME: extra checking for partial specializations
2105
2106    // Create a new class template partial specialization declaration node.
2107    TemplateParameterList *TemplateParams
2108      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2109    ClassTemplatePartialSpecializationDecl *PrevPartial
2110      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2111    ClassTemplatePartialSpecializationDecl *Partial
2112      = ClassTemplatePartialSpecializationDecl::Create(Context,
2113                                             ClassTemplate->getDeclContext(),
2114                                                TemplateNameLoc,
2115                                                TemplateParams,
2116                                                ClassTemplate,
2117                                                &ConvertedTemplateArgs[0],
2118                                                ConvertedTemplateArgs.size(),
2119                                                PrevPartial);
2120
2121    if (PrevPartial) {
2122      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2123      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2124    } else {
2125      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2126    }
2127    Specialization = Partial;
2128  } else {
2129    // Create a new class template specialization declaration node for
2130    // this explicit specialization.
2131    Specialization
2132      = ClassTemplateSpecializationDecl::Create(Context,
2133                                             ClassTemplate->getDeclContext(),
2134                                                TemplateNameLoc,
2135                                                ClassTemplate,
2136                                                &ConvertedTemplateArgs[0],
2137                                                ConvertedTemplateArgs.size(),
2138                                                PrevDecl);
2139
2140    if (PrevDecl) {
2141      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2142      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2143    } else {
2144      ClassTemplate->getSpecializations().InsertNode(Specialization,
2145                                                     InsertPos);
2146    }
2147  }
2148
2149  // Note that this is an explicit specialization.
2150  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2151
2152  // Check that this isn't a redefinition of this specialization.
2153  if (TK == TK_Definition) {
2154    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2155      // FIXME: Should also handle explicit specialization after implicit
2156      // instantiation with a special diagnostic.
2157      SourceRange Range(TemplateNameLoc, RAngleLoc);
2158      Diag(TemplateNameLoc, diag::err_redefinition)
2159        << Context.getTypeDeclType(Specialization) << Range;
2160      Diag(Def->getLocation(), diag::note_previous_definition);
2161      Specialization->setInvalidDecl();
2162      return true;
2163    }
2164  }
2165
2166  // Build the fully-sugared type for this class template
2167  // specialization as the user wrote in the specialization
2168  // itself. This means that we'll pretty-print the type retrieved
2169  // from the specialization's declaration the way that the user
2170  // actually wrote the specialization, rather than formatting the
2171  // name based on the "canonical" representation used to store the
2172  // template arguments in the specialization.
2173  QualType WrittenTy
2174    = Context.getTemplateSpecializationType(Name,
2175                                            &TemplateArgs[0],
2176                                            TemplateArgs.size(),
2177                                  Context.getTypeDeclType(Specialization));
2178  Specialization->setTypeAsWritten(WrittenTy);
2179  TemplateArgsIn.release();
2180
2181  // C++ [temp.expl.spec]p9:
2182  //   A template explicit specialization is in the scope of the
2183  //   namespace in which the template was defined.
2184  //
2185  // We actually implement this paragraph where we set the semantic
2186  // context (in the creation of the ClassTemplateSpecializationDecl),
2187  // but we also maintain the lexical context where the actual
2188  // definition occurs.
2189  Specialization->setLexicalDeclContext(CurContext);
2190
2191  // We may be starting the definition of this specialization.
2192  if (TK == TK_Definition)
2193    Specialization->startDefinition();
2194
2195  // Add the specialization into its lexical context, so that it can
2196  // be seen when iterating through the list of declarations in that
2197  // context. However, specializations are not found by name lookup.
2198  CurContext->addDecl(Context, Specialization);
2199  return DeclPtrTy::make(Specialization);
2200}
2201
2202// Explicit instantiation of a class template specialization
2203Sema::DeclResult
2204Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2205                                 unsigned TagSpec,
2206                                 SourceLocation KWLoc,
2207                                 const CXXScopeSpec &SS,
2208                                 TemplateTy TemplateD,
2209                                 SourceLocation TemplateNameLoc,
2210                                 SourceLocation LAngleLoc,
2211                                 ASTTemplateArgsPtr TemplateArgsIn,
2212                                 SourceLocation *TemplateArgLocs,
2213                                 SourceLocation RAngleLoc,
2214                                 AttributeList *Attr) {
2215  // Find the class template we're specializing
2216  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2217  ClassTemplateDecl *ClassTemplate
2218    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2219
2220  // Check that the specialization uses the same tag kind as the
2221  // original template.
2222  TagDecl::TagKind Kind;
2223  switch (TagSpec) {
2224  default: assert(0 && "Unknown tag type!");
2225  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2226  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2227  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2228  }
2229  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2230                                    Kind, KWLoc,
2231                                    *ClassTemplate->getIdentifier())) {
2232    Diag(KWLoc, diag::err_use_with_wrong_tag)
2233      << ClassTemplate
2234      << CodeModificationHint::CreateReplacement(KWLoc,
2235                            ClassTemplate->getTemplatedDecl()->getKindName());
2236    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2237         diag::note_previous_use);
2238    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2239  }
2240
2241  // C++0x [temp.explicit]p2:
2242  //   [...] An explicit instantiation shall appear in an enclosing
2243  //   namespace of its template. [...]
2244  //
2245  // This is C++ DR 275.
2246  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
2247                                            TemplateNameLoc,
2248                                            SS.getRange(),
2249                                            /*ExplicitInstantiation=*/true))
2250    return true;
2251
2252  // Translate the parser's template argument list in our AST format.
2253  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2254  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2255
2256  // Check that the template argument list is well-formed for this
2257  // template.
2258  llvm::SmallVector<TemplateArgument, 16> ConvertedTemplateArgs;
2259  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2260                                &TemplateArgs[0], TemplateArgs.size(),
2261                                RAngleLoc, ConvertedTemplateArgs))
2262    return true;
2263
2264  assert((ConvertedTemplateArgs.size() ==
2265            ClassTemplate->getTemplateParameters()->size()) &&
2266         "Converted template argument list is too short!");
2267
2268  // Find the class template specialization declaration that
2269  // corresponds to these arguments.
2270  llvm::FoldingSetNodeID ID;
2271  ClassTemplateSpecializationDecl::Profile(ID, &ConvertedTemplateArgs[0],
2272                                           ConvertedTemplateArgs.size());
2273  void *InsertPos = 0;
2274  ClassTemplateSpecializationDecl *PrevDecl
2275    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2276
2277  ClassTemplateSpecializationDecl *Specialization = 0;
2278
2279  bool SpecializationRequiresInstantiation = true;
2280  if (PrevDecl) {
2281    if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
2282      // This particular specialization has already been declared or
2283      // instantiated. We cannot explicitly instantiate it.
2284      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
2285        << Context.getTypeDeclType(PrevDecl);
2286      Diag(PrevDecl->getLocation(),
2287           diag::note_previous_explicit_instantiation);
2288      return DeclPtrTy::make(PrevDecl);
2289    }
2290
2291    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
2292      // C++ DR 259, C++0x [temp.explicit]p4:
2293      //   For a given set of template parameters, if an explicit
2294      //   instantiation of a template appears after a declaration of
2295      //   an explicit specialization for that template, the explicit
2296      //   instantiation has no effect.
2297      if (!getLangOptions().CPlusPlus0x) {
2298        Diag(TemplateNameLoc,
2299             diag::ext_explicit_instantiation_after_specialization)
2300          << Context.getTypeDeclType(PrevDecl);
2301        Diag(PrevDecl->getLocation(),
2302             diag::note_previous_template_specialization);
2303      }
2304
2305      // Create a new class template specialization declaration node
2306      // for this explicit specialization. This node is only used to
2307      // record the existence of this explicit instantiation for
2308      // accurate reproduction of the source code; we don't actually
2309      // use it for anything, since it is semantically irrelevant.
2310      Specialization
2311        = ClassTemplateSpecializationDecl::Create(Context,
2312                                             ClassTemplate->getDeclContext(),
2313                                                  TemplateNameLoc,
2314                                                  ClassTemplate,
2315                                                  &ConvertedTemplateArgs[0],
2316                                                  ConvertedTemplateArgs.size(),
2317                                                  0);
2318      Specialization->setLexicalDeclContext(CurContext);
2319      CurContext->addDecl(Context, Specialization);
2320      return DeclPtrTy::make(Specialization);
2321    }
2322
2323    // If we have already (implicitly) instantiated this
2324    // specialization, there is less work to do.
2325    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
2326      SpecializationRequiresInstantiation = false;
2327
2328    // Since the only prior class template specialization with these
2329    // arguments was referenced but not declared, reuse that
2330    // declaration node as our own, updating its source location to
2331    // reflect our new declaration.
2332    Specialization = PrevDecl;
2333    Specialization->setLocation(TemplateNameLoc);
2334    PrevDecl = 0;
2335  } else {
2336    // Create a new class template specialization declaration node for
2337    // this explicit specialization.
2338    Specialization
2339      = ClassTemplateSpecializationDecl::Create(Context,
2340                                             ClassTemplate->getDeclContext(),
2341                                                TemplateNameLoc,
2342                                                ClassTemplate,
2343                                                &ConvertedTemplateArgs[0],
2344                                                ConvertedTemplateArgs.size(),
2345                                                0);
2346
2347    ClassTemplate->getSpecializations().InsertNode(Specialization,
2348                                                   InsertPos);
2349  }
2350
2351  // Build the fully-sugared type for this explicit instantiation as
2352  // the user wrote in the explicit instantiation itself. This means
2353  // that we'll pretty-print the type retrieved from the
2354  // specialization's declaration the way that the user actually wrote
2355  // the explicit instantiation, rather than formatting the name based
2356  // on the "canonical" representation used to store the template
2357  // arguments in the specialization.
2358  QualType WrittenTy
2359    = Context.getTemplateSpecializationType(Name,
2360                                            &TemplateArgs[0],
2361                                            TemplateArgs.size(),
2362                                  Context.getTypeDeclType(Specialization));
2363  Specialization->setTypeAsWritten(WrittenTy);
2364  TemplateArgsIn.release();
2365
2366  // Add the explicit instantiation into its lexical context. However,
2367  // since explicit instantiations are never found by name lookup, we
2368  // just put it into the declaration context directly.
2369  Specialization->setLexicalDeclContext(CurContext);
2370  CurContext->addDecl(Context, Specialization);
2371
2372  // C++ [temp.explicit]p3:
2373  //   A definition of a class template or class member template
2374  //   shall be in scope at the point of the explicit instantiation of
2375  //   the class template or class member template.
2376  //
2377  // This check comes when we actually try to perform the
2378  // instantiation.
2379  if (SpecializationRequiresInstantiation)
2380    InstantiateClassTemplateSpecialization(Specialization, true);
2381  else // Instantiate the members of this class template specialization.
2382    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization);
2383
2384  return DeclPtrTy::make(Specialization);
2385}
2386
2387// Explicit instantiation of a member class of a class template.
2388Sema::DeclResult
2389Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2390                                 unsigned TagSpec,
2391                                 SourceLocation KWLoc,
2392                                 const CXXScopeSpec &SS,
2393                                 IdentifierInfo *Name,
2394                                 SourceLocation NameLoc,
2395                                 AttributeList *Attr) {
2396
2397  bool Owned = false;
2398  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TK_Reference,
2399                            KWLoc, SS, Name, NameLoc, Attr, AS_none, Owned);
2400  if (!TagD)
2401    return true;
2402
2403  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
2404  if (Tag->isEnum()) {
2405    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
2406      << Context.getTypeDeclType(Tag);
2407    return true;
2408  }
2409
2410  if (Tag->isInvalidDecl())
2411    return true;
2412
2413  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
2414  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
2415  if (!Pattern) {
2416    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
2417      << Context.getTypeDeclType(Record);
2418    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
2419    return true;
2420  }
2421
2422  // C++0x [temp.explicit]p2:
2423  //   [...] An explicit instantiation shall appear in an enclosing
2424  //   namespace of its template. [...]
2425  //
2426  // This is C++ DR 275.
2427  if (getLangOptions().CPlusPlus0x) {
2428    // FIXME: In C++98, we would like to turn these errors into warnings,
2429    // dependent on a -Wc++0x flag.
2430    DeclContext *PatternContext
2431      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
2432    if (!CurContext->Encloses(PatternContext)) {
2433      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
2434        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
2435      Diag(Pattern->getLocation(), diag::note_previous_declaration);
2436    }
2437  }
2438
2439  if (!Record->getDefinition(Context)) {
2440    // If the class has a definition, instantiate it (and all of its
2441    // members, recursively).
2442    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
2443    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
2444                                    getTemplateInstantiationArgs(Record),
2445                                    /*ExplicitInstantiation=*/true))
2446      return true;
2447  } else // Instantiate all of the members of class.
2448    InstantiateClassMembers(TemplateLoc, Record,
2449                            getTemplateInstantiationArgs(Record));
2450
2451  // FIXME: We don't have any representation for explicit instantiations of
2452  // member classes. Such a representation is not needed for compilation, but it
2453  // should be available for clients that want to see all of the declarations in
2454  // the source code.
2455  return TagD;
2456}
2457
2458Sema::TypeResult
2459Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2460                        const IdentifierInfo &II, SourceLocation IdLoc) {
2461  NestedNameSpecifier *NNS
2462    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2463  if (!NNS)
2464    return true;
2465
2466  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
2467  if (T.isNull())
2468    return true;
2469  return T.getAsOpaquePtr();
2470}
2471
2472Sema::TypeResult
2473Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2474                        SourceLocation TemplateLoc, TypeTy *Ty) {
2475  QualType T = QualType::getFromOpaquePtr(Ty);
2476  NestedNameSpecifier *NNS
2477    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2478  const TemplateSpecializationType *TemplateId
2479    = T->getAsTemplateSpecializationType();
2480  assert(TemplateId && "Expected a template specialization type");
2481
2482  if (NNS->isDependent())
2483    return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
2484
2485  return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
2486}
2487
2488/// \brief Build the type that describes a C++ typename specifier,
2489/// e.g., "typename T::type".
2490QualType
2491Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
2492                        SourceRange Range) {
2493  CXXRecordDecl *CurrentInstantiation = 0;
2494  if (NNS->isDependent()) {
2495    CurrentInstantiation = getCurrentInstantiationOf(NNS);
2496
2497    // If the nested-name-specifier does not refer to the current
2498    // instantiation, then build a typename type.
2499    if (!CurrentInstantiation)
2500      return Context.getTypenameType(NNS, &II);
2501  }
2502
2503  DeclContext *Ctx = 0;
2504
2505  if (CurrentInstantiation)
2506    Ctx = CurrentInstantiation;
2507  else {
2508    CXXScopeSpec SS;
2509    SS.setScopeRep(NNS);
2510    SS.setRange(Range);
2511    if (RequireCompleteDeclContext(SS))
2512      return QualType();
2513
2514    Ctx = computeDeclContext(SS);
2515  }
2516  assert(Ctx && "No declaration context?");
2517
2518  DeclarationName Name(&II);
2519  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
2520                                            false);
2521  unsigned DiagID = 0;
2522  Decl *Referenced = 0;
2523  switch (Result.getKind()) {
2524  case LookupResult::NotFound:
2525    if (Ctx->isTranslationUnit())
2526      DiagID = diag::err_typename_nested_not_found_global;
2527    else
2528      DiagID = diag::err_typename_nested_not_found;
2529    break;
2530
2531  case LookupResult::Found:
2532    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
2533      // We found a type. Build a QualifiedNameType, since the
2534      // typename-specifier was just sugar. FIXME: Tell
2535      // QualifiedNameType that it has a "typename" prefix.
2536      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
2537    }
2538
2539    DiagID = diag::err_typename_nested_not_type;
2540    Referenced = Result.getAsDecl();
2541    break;
2542
2543  case LookupResult::FoundOverloaded:
2544    DiagID = diag::err_typename_nested_not_type;
2545    Referenced = *Result.begin();
2546    break;
2547
2548  case LookupResult::AmbiguousBaseSubobjectTypes:
2549  case LookupResult::AmbiguousBaseSubobjects:
2550  case LookupResult::AmbiguousReference:
2551    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
2552    return QualType();
2553  }
2554
2555  // If we get here, it's because name lookup did not find a
2556  // type. Emit an appropriate diagnostic and return an error.
2557  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
2558    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
2559  else
2560    Diag(Range.getEnd(), DiagID) << Range << Name;
2561  if (Referenced)
2562    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
2563      << Name;
2564  return QualType();
2565}
2566
2567// FIXME: Move to SemaTemplateDeduction.cpp
2568bool
2569Sema::DeduceTemplateArguments(QualType Param, QualType Arg,
2570                             llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
2571  // We only want to look at the canonical types, since typedefs and
2572  // sugar are not part of template argument deduction.
2573  Param = Context.getCanonicalType(Param);
2574  Arg = Context.getCanonicalType(Arg);
2575
2576  // If the parameter type is not dependent, just compare the types
2577  // directly.
2578  if (!Param->isDependentType())
2579    return Param == Arg;
2580
2581  // FIXME: Use a visitor or switch to handle all of the kinds of
2582  // types that the parameter may be.
2583  if (const TemplateTypeParmType *TemplateTypeParm
2584        = Param->getAsTemplateTypeParmType()) {
2585    (void)TemplateTypeParm; // FIXME: use this
2586    // The argument type can not be less qualified than the parameter
2587    // type.
2588    if (Param.isMoreQualifiedThan(Arg))
2589      return false;
2590
2591    unsigned Quals = Arg.getCVRQualifiers() & ~Param.getCVRQualifiers();
2592    QualType DeducedType = Arg.getQualifiedType(Quals);
2593    // FIXME: actually save the deduced type, and check that this
2594    // deduction is consistent.
2595    return true;
2596  }
2597
2598  if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
2599    return false;
2600
2601  if (const PointerType *PointerParam = Param->getAsPointerType()) {
2602    const PointerType *PointerArg = Arg->getAsPointerType();
2603    if (!PointerArg)
2604      return false;
2605
2606    return DeduceTemplateArguments(PointerParam->getPointeeType(),
2607                                   PointerArg->getPointeeType(),
2608                                   Deduced);
2609  }
2610
2611  // FIXME: Many more cases to go (to go).
2612  return false;
2613}
2614
2615bool
2616Sema::DeduceTemplateArguments(const TemplateArgument &Param,
2617                              const TemplateArgument &Arg,
2618                             llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
2619  assert(Param.getKind() == Arg.getKind() &&
2620         "Template argument kind mismatch during deduction");
2621  switch (Param.getKind()) {
2622  case TemplateArgument::Type:
2623    return DeduceTemplateArguments(Param.getAsType(), Arg.getAsType(),
2624                                   Deduced);
2625
2626  default:
2627    return false;
2628  }
2629}
2630
2631bool
2632Sema::DeduceTemplateArguments(const TemplateArgumentList &ParamList,
2633                              const TemplateArgumentList &ArgList,
2634                              llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
2635  assert(ParamList.size() == ArgList.size());
2636  for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
2637    if (!DeduceTemplateArguments(ParamList[I], ArgList[I], Deduced))
2638      return false;
2639  }
2640  return true;
2641}
2642
2643
2644bool
2645Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
2646                              const TemplateArgumentList &TemplateArgs) {
2647  llvm::SmallVector<TemplateArgument, 4> Deduced;
2648  Deduced.resize(Partial->getTemplateParameters()->size());
2649  return DeduceTemplateArguments(Partial->getTemplateArgs(), TemplateArgs,
2650                                 Deduced);
2651}
2652