SemaTemplate.cpp revision 6b4052d120c3ef414a822b3cff063432a1df3186
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is followed by a template-argument-list, the reference refers to the
96      //   class template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      //
99      // FIXME: Will we eventually have to do the same for alias templates?
100      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
101        if (!ClassTemplates.insert(ClassTmpl)) {
102          filter.erase();
103          continue;
104        }
105
106      // FIXME: we promote access to public here as a workaround to
107      // the fact that LookupResult doesn't let us remember that we
108      // found this template through a particular injected class name,
109      // which means we end up doing nasty things to the invariants.
110      // Pretending that access is public is *much* safer.
111      filter.replace(Repl, AS_public);
112    }
113  }
114  filter.done();
115}
116
117TemplateNameKind Sema::isTemplateName(Scope *S,
118                                      CXXScopeSpec &SS,
119                                      bool hasTemplateKeyword,
120                                      UnqualifiedId &Name,
121                                      ParsedType ObjectTypePtr,
122                                      bool EnteringContext,
123                                      TemplateTy &TemplateResult,
124                                      bool &MemberOfUnknownSpecialization) {
125  assert(getLangOptions().CPlusPlus && "No template names in C!");
126
127  DeclarationName TName;
128  MemberOfUnknownSpecialization = false;
129
130  switch (Name.getKind()) {
131  case UnqualifiedId::IK_Identifier:
132    TName = DeclarationName(Name.Identifier);
133    break;
134
135  case UnqualifiedId::IK_OperatorFunctionId:
136    TName = Context.DeclarationNames.getCXXOperatorName(
137                                              Name.OperatorFunctionId.Operator);
138    break;
139
140  case UnqualifiedId::IK_LiteralOperatorId:
141    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
142    break;
143
144  default:
145    return TNK_Non_template;
146  }
147
148  QualType ObjectType = ObjectTypePtr.get();
149
150  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
151                 LookupOrdinaryName);
152  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
153                     MemberOfUnknownSpecialization);
154  if (R.empty()) return TNK_Non_template;
155  if (R.isAmbiguous()) {
156    // Suppress diagnostics;  we'll redo this lookup later.
157    R.suppressDiagnostics();
158
159    // FIXME: we might have ambiguous templates, in which case we
160    // should at least parse them properly!
161    return TNK_Non_template;
162  }
163
164  TemplateName Template;
165  TemplateNameKind TemplateKind;
166
167  unsigned ResultCount = R.end() - R.begin();
168  if (ResultCount > 1) {
169    // We assume that we'll preserve the qualifier from a function
170    // template name in other ways.
171    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
172    TemplateKind = TNK_Function_template;
173
174    // We'll do this lookup again later.
175    R.suppressDiagnostics();
176  } else {
177    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
178
179    if (SS.isSet() && !SS.isInvalid()) {
180      NestedNameSpecifier *Qualifier
181        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
182      Template = Context.getQualifiedTemplateName(Qualifier,
183                                                  hasTemplateKeyword, TD);
184    } else {
185      Template = TemplateName(TD);
186    }
187
188    if (isa<FunctionTemplateDecl>(TD)) {
189      TemplateKind = TNK_Function_template;
190
191      // We'll do this lookup again later.
192      R.suppressDiagnostics();
193    } else {
194      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
195      TemplateKind = TNK_Type_template;
196    }
197  }
198
199  TemplateResult = TemplateTy::make(Template);
200  return TemplateKind;
201}
202
203bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
204                                       SourceLocation IILoc,
205                                       Scope *S,
206                                       const CXXScopeSpec *SS,
207                                       TemplateTy &SuggestedTemplate,
208                                       TemplateNameKind &SuggestedKind) {
209  // We can't recover unless there's a dependent scope specifier preceding the
210  // template name.
211  // FIXME: Typo correction?
212  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
213      computeDeclContext(*SS))
214    return false;
215
216  // The code is missing a 'template' keyword prior to the dependent template
217  // name.
218  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
219  Diag(IILoc, diag::err_template_kw_missing)
220    << Qualifier << II.getName()
221    << FixItHint::CreateInsertion(IILoc, "template ");
222  SuggestedTemplate
223    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
224  SuggestedKind = TNK_Dependent_template_name;
225  return true;
226}
227
228void Sema::LookupTemplateName(LookupResult &Found,
229                              Scope *S, CXXScopeSpec &SS,
230                              QualType ObjectType,
231                              bool EnteringContext,
232                              bool &MemberOfUnknownSpecialization) {
233  // Determine where to perform name lookup
234  MemberOfUnknownSpecialization = false;
235  DeclContext *LookupCtx = 0;
236  bool isDependent = false;
237  if (!ObjectType.isNull()) {
238    // This nested-name-specifier occurs in a member access expression, e.g.,
239    // x->B::f, and we are looking into the type of the object.
240    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
241    LookupCtx = computeDeclContext(ObjectType);
242    isDependent = ObjectType->isDependentType();
243    assert((isDependent || !ObjectType->isIncompleteType()) &&
244           "Caller should have completed object type");
245  } else if (SS.isSet()) {
246    // This nested-name-specifier occurs after another nested-name-specifier,
247    // so long into the context associated with the prior nested-name-specifier.
248    LookupCtx = computeDeclContext(SS, EnteringContext);
249    isDependent = isDependentScopeSpecifier(SS);
250
251    // The declaration context must be complete.
252    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
253      return;
254  }
255
256  bool ObjectTypeSearchedInScope = false;
257  if (LookupCtx) {
258    // Perform "qualified" name lookup into the declaration context we
259    // computed, which is either the type of the base of a member access
260    // expression or the declaration context associated with a prior
261    // nested-name-specifier.
262    LookupQualifiedName(Found, LookupCtx);
263
264    if (!ObjectType.isNull() && Found.empty()) {
265      // C++ [basic.lookup.classref]p1:
266      //   In a class member access expression (5.2.5), if the . or -> token is
267      //   immediately followed by an identifier followed by a <, the
268      //   identifier must be looked up to determine whether the < is the
269      //   beginning of a template argument list (14.2) or a less-than operator.
270      //   The identifier is first looked up in the class of the object
271      //   expression. If the identifier is not found, it is then looked up in
272      //   the context of the entire postfix-expression and shall name a class
273      //   or function template.
274      if (S) LookupName(Found, S);
275      ObjectTypeSearchedInScope = true;
276    }
277  } else if (isDependent && (!S || ObjectType.isNull())) {
278    // We cannot look into a dependent object type or nested nme
279    // specifier.
280    MemberOfUnknownSpecialization = true;
281    return;
282  } else {
283    // Perform unqualified name lookup in the current scope.
284    LookupName(Found, S);
285  }
286
287  if (Found.empty() && !isDependent) {
288    // If we did not find any names, attempt to correct any typos.
289    DeclarationName Name = Found.getLookupName();
290    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
291                                                false, CTC_CXXCasts)) {
292      FilterAcceptableTemplateNames(Context, Found);
293      if (!Found.empty()) {
294        if (LookupCtx)
295          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
296            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
297            << FixItHint::CreateReplacement(Found.getNameLoc(),
298                                          Found.getLookupName().getAsString());
299        else
300          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
301            << Name << Found.getLookupName()
302            << FixItHint::CreateReplacement(Found.getNameLoc(),
303                                          Found.getLookupName().getAsString());
304        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
305          Diag(Template->getLocation(), diag::note_previous_decl)
306            << Template->getDeclName();
307      }
308    } else {
309      Found.clear();
310      Found.setLookupName(Name);
311    }
312  }
313
314  FilterAcceptableTemplateNames(Context, Found);
315  if (Found.empty()) {
316    if (isDependent)
317      MemberOfUnknownSpecialization = true;
318    return;
319  }
320
321  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
322    // C++ [basic.lookup.classref]p1:
323    //   [...] If the lookup in the class of the object expression finds a
324    //   template, the name is also looked up in the context of the entire
325    //   postfix-expression and [...]
326    //
327    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
328                            LookupOrdinaryName);
329    LookupName(FoundOuter, S);
330    FilterAcceptableTemplateNames(Context, FoundOuter);
331
332    if (FoundOuter.empty()) {
333      //   - if the name is not found, the name found in the class of the
334      //     object expression is used, otherwise
335    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
336      //   - if the name is found in the context of the entire
337      //     postfix-expression and does not name a class template, the name
338      //     found in the class of the object expression is used, otherwise
339    } else if (!Found.isSuppressingDiagnostics()) {
340      //   - if the name found is a class template, it must refer to the same
341      //     entity as the one found in the class of the object expression,
342      //     otherwise the program is ill-formed.
343      if (!Found.isSingleResult() ||
344          Found.getFoundDecl()->getCanonicalDecl()
345            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
346        Diag(Found.getNameLoc(),
347             diag::ext_nested_name_member_ref_lookup_ambiguous)
348          << Found.getLookupName()
349          << ObjectType;
350        Diag(Found.getRepresentativeDecl()->getLocation(),
351             diag::note_ambig_member_ref_object_type)
352          << ObjectType;
353        Diag(FoundOuter.getFoundDecl()->getLocation(),
354             diag::note_ambig_member_ref_scope);
355
356        // Recover by taking the template that we found in the object
357        // expression's type.
358      }
359    }
360  }
361}
362
363/// ActOnDependentIdExpression - Handle a dependent id-expression that
364/// was just parsed.  This is only possible with an explicit scope
365/// specifier naming a dependent type.
366ExprResult
367Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
368                                 const DeclarationNameInfo &NameInfo,
369                                 bool isAddressOfOperand,
370                           const TemplateArgumentListInfo *TemplateArgs) {
371  NestedNameSpecifier *Qualifier
372    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
373
374  DeclContext *DC = getFunctionLevelDeclContext();
375
376  if (!isAddressOfOperand &&
377      isa<CXXMethodDecl>(DC) &&
378      cast<CXXMethodDecl>(DC)->isInstance()) {
379    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
380
381    // Since the 'this' expression is synthesized, we don't need to
382    // perform the double-lookup check.
383    NamedDecl *FirstQualifierInScope = 0;
384
385    return Owned(CXXDependentScopeMemberExpr::Create(Context,
386                                                     /*This*/ 0, ThisType,
387                                                     /*IsArrow*/ true,
388                                                     /*Op*/ SourceLocation(),
389                                                     Qualifier, SS.getRange(),
390                                                     FirstQualifierInScope,
391                                                     NameInfo,
392                                                     TemplateArgs));
393  }
394
395  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
396}
397
398ExprResult
399Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
400                                const DeclarationNameInfo &NameInfo,
401                                const TemplateArgumentListInfo *TemplateArgs) {
402  return Owned(DependentScopeDeclRefExpr::Create(Context,
403               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
404                                                 SS.getRange(),
405                                                 NameInfo,
406                                                 TemplateArgs));
407}
408
409/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
410/// that the template parameter 'PrevDecl' is being shadowed by a new
411/// declaration at location Loc. Returns true to indicate that this is
412/// an error, and false otherwise.
413bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
414  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
415
416  // Microsoft Visual C++ permits template parameters to be shadowed.
417  if (getLangOptions().Microsoft)
418    return false;
419
420  // C++ [temp.local]p4:
421  //   A template-parameter shall not be redeclared within its
422  //   scope (including nested scopes).
423  Diag(Loc, diag::err_template_param_shadow)
424    << cast<NamedDecl>(PrevDecl)->getDeclName();
425  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
426  return true;
427}
428
429/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
430/// the parameter D to reference the templated declaration and return a pointer
431/// to the template declaration. Otherwise, do nothing to D and return null.
432TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
433  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
434    D = Temp->getTemplatedDecl();
435    return Temp;
436  }
437  return 0;
438}
439
440static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
441                                            const ParsedTemplateArgument &Arg) {
442
443  switch (Arg.getKind()) {
444  case ParsedTemplateArgument::Type: {
445    TypeSourceInfo *DI;
446    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
447    if (!DI)
448      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
449    return TemplateArgumentLoc(TemplateArgument(T), DI);
450  }
451
452  case ParsedTemplateArgument::NonType: {
453    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
454    return TemplateArgumentLoc(TemplateArgument(E), E);
455  }
456
457  case ParsedTemplateArgument::Template: {
458    TemplateName Template = Arg.getAsTemplate().get();
459    return TemplateArgumentLoc(TemplateArgument(Template),
460                               Arg.getScopeSpec().getRange(),
461                               Arg.getLocation());
462  }
463  }
464
465  llvm_unreachable("Unhandled parsed template argument");
466  return TemplateArgumentLoc();
467}
468
469/// \brief Translates template arguments as provided by the parser
470/// into template arguments used by semantic analysis.
471void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
472                                      TemplateArgumentListInfo &TemplateArgs) {
473 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
474   TemplateArgs.addArgument(translateTemplateArgument(*this,
475                                                      TemplateArgsIn[I]));
476}
477
478/// ActOnTypeParameter - Called when a C++ template type parameter
479/// (e.g., "typename T") has been parsed. Typename specifies whether
480/// the keyword "typename" was used to declare the type parameter
481/// (otherwise, "class" was used), and KeyLoc is the location of the
482/// "class" or "typename" keyword. ParamName is the name of the
483/// parameter (NULL indicates an unnamed template parameter) and
484/// ParamName is the location of the parameter name (if any).
485/// If the type parameter has a default argument, it will be added
486/// later via ActOnTypeParameterDefault.
487Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
488                               SourceLocation EllipsisLoc,
489                               SourceLocation KeyLoc,
490                               IdentifierInfo *ParamName,
491                               SourceLocation ParamNameLoc,
492                               unsigned Depth, unsigned Position,
493                               SourceLocation EqualLoc,
494                               ParsedType DefaultArg) {
495  assert(S->isTemplateParamScope() &&
496         "Template type parameter not in template parameter scope!");
497  bool Invalid = false;
498
499  if (ParamName) {
500    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
501                                           LookupOrdinaryName,
502                                           ForRedeclaration);
503    if (PrevDecl && PrevDecl->isTemplateParameter())
504      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
505                                                           PrevDecl);
506  }
507
508  SourceLocation Loc = ParamNameLoc;
509  if (!ParamName)
510    Loc = KeyLoc;
511
512  TemplateTypeParmDecl *Param
513    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
514                                   Loc, Depth, Position, ParamName, Typename,
515                                   Ellipsis);
516  if (Invalid)
517    Param->setInvalidDecl();
518
519  if (ParamName) {
520    // Add the template parameter into the current scope.
521    S->AddDecl(Param);
522    IdResolver.AddDecl(Param);
523  }
524
525  // Handle the default argument, if provided.
526  if (DefaultArg) {
527    TypeSourceInfo *DefaultTInfo;
528    GetTypeFromParser(DefaultArg, &DefaultTInfo);
529
530    assert(DefaultTInfo && "expected source information for type");
531
532    // C++0x [temp.param]p9:
533    // A default template-argument may be specified for any kind of
534    // template-parameter that is not a template parameter pack.
535    if (Ellipsis) {
536      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
537      return Param;
538    }
539
540    // Check the template argument itself.
541    if (CheckTemplateArgument(Param, DefaultTInfo)) {
542      Param->setInvalidDecl();
543      return Param;
544    }
545
546    Param->setDefaultArgument(DefaultTInfo, false);
547  }
548
549  return Param;
550}
551
552/// \brief Check that the type of a non-type template parameter is
553/// well-formed.
554///
555/// \returns the (possibly-promoted) parameter type if valid;
556/// otherwise, produces a diagnostic and returns a NULL type.
557QualType
558Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
559  // We don't allow variably-modified types as the type of non-type template
560  // parameters.
561  if (T->isVariablyModifiedType()) {
562    Diag(Loc, diag::err_variably_modified_nontype_template_param)
563      << T;
564    return QualType();
565  }
566
567  // C++ [temp.param]p4:
568  //
569  // A non-type template-parameter shall have one of the following
570  // (optionally cv-qualified) types:
571  //
572  //       -- integral or enumeration type,
573  if (T->isIntegralOrEnumerationType() ||
574      //   -- pointer to object or pointer to function,
575      T->isPointerType() ||
576      //   -- reference to object or reference to function,
577      T->isReferenceType() ||
578      //   -- pointer to member.
579      T->isMemberPointerType() ||
580      // If T is a dependent type, we can't do the check now, so we
581      // assume that it is well-formed.
582      T->isDependentType())
583    return T;
584  // C++ [temp.param]p8:
585  //
586  //   A non-type template-parameter of type "array of T" or
587  //   "function returning T" is adjusted to be of type "pointer to
588  //   T" or "pointer to function returning T", respectively.
589  else if (T->isArrayType())
590    // FIXME: Keep the type prior to promotion?
591    return Context.getArrayDecayedType(T);
592  else if (T->isFunctionType())
593    // FIXME: Keep the type prior to promotion?
594    return Context.getPointerType(T);
595
596  Diag(Loc, diag::err_template_nontype_parm_bad_type)
597    << T;
598
599  return QualType();
600}
601
602Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
603                                          unsigned Depth,
604                                          unsigned Position,
605                                          SourceLocation EqualLoc,
606                                          Expr *Default) {
607  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
608  QualType T = TInfo->getType();
609
610  assert(S->isTemplateParamScope() &&
611         "Non-type template parameter not in template parameter scope!");
612  bool Invalid = false;
613
614  IdentifierInfo *ParamName = D.getIdentifier();
615  if (ParamName) {
616    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
617                                           LookupOrdinaryName,
618                                           ForRedeclaration);
619    if (PrevDecl && PrevDecl->isTemplateParameter())
620      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
621                                                           PrevDecl);
622  }
623
624  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
625  if (T.isNull()) {
626    T = Context.IntTy; // Recover with an 'int' type.
627    Invalid = true;
628  }
629
630  NonTypeTemplateParmDecl *Param
631    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
632                                      D.getIdentifierLoc(),
633                                      Depth, Position, ParamName, T, TInfo);
634  if (Invalid)
635    Param->setInvalidDecl();
636
637  if (D.getIdentifier()) {
638    // Add the template parameter into the current scope.
639    S->AddDecl(Param);
640    IdResolver.AddDecl(Param);
641  }
642
643  // Check the well-formedness of the default template argument, if provided.
644  if (Default) {
645    TemplateArgument Converted;
646    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
647      Param->setInvalidDecl();
648      return Param;
649    }
650
651    Param->setDefaultArgument(Default, false);
652  }
653
654  return Param;
655}
656
657/// ActOnTemplateTemplateParameter - Called when a C++ template template
658/// parameter (e.g. T in template <template <typename> class T> class array)
659/// has been parsed. S is the current scope.
660Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
661                                           SourceLocation TmpLoc,
662                                           TemplateParamsTy *Params,
663                                           IdentifierInfo *Name,
664                                           SourceLocation NameLoc,
665                                           unsigned Depth,
666                                           unsigned Position,
667                                           SourceLocation EqualLoc,
668                                       const ParsedTemplateArgument &Default) {
669  assert(S->isTemplateParamScope() &&
670         "Template template parameter not in template parameter scope!");
671
672  // Construct the parameter object.
673  TemplateTemplateParmDecl *Param =
674    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
675                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
676                                     Depth, Position, Name,
677                                     Params);
678
679  // If the template template parameter has a name, then link the identifier
680  // into the scope and lookup mechanisms.
681  if (Name) {
682    S->AddDecl(Param);
683    IdResolver.AddDecl(Param);
684  }
685
686  if (!Default.isInvalid()) {
687    // Check only that we have a template template argument. We don't want to
688    // try to check well-formedness now, because our template template parameter
689    // might have dependent types in its template parameters, which we wouldn't
690    // be able to match now.
691    //
692    // If none of the template template parameter's template arguments mention
693    // other template parameters, we could actually perform more checking here.
694    // However, it isn't worth doing.
695    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
696    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
697      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
698        << DefaultArg.getSourceRange();
699      return Param;
700    }
701
702    Param->setDefaultArgument(DefaultArg, false);
703  }
704
705  if (Params->size() == 0) {
706    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
707      << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
708    Param->setInvalidDecl();
709  }
710  return Param;
711}
712
713/// ActOnTemplateParameterList - Builds a TemplateParameterList that
714/// contains the template parameters in Params/NumParams.
715Sema::TemplateParamsTy *
716Sema::ActOnTemplateParameterList(unsigned Depth,
717                                 SourceLocation ExportLoc,
718                                 SourceLocation TemplateLoc,
719                                 SourceLocation LAngleLoc,
720                                 Decl **Params, unsigned NumParams,
721                                 SourceLocation RAngleLoc) {
722  if (ExportLoc.isValid())
723    Diag(ExportLoc, diag::warn_template_export_unsupported);
724
725  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
726                                       (NamedDecl**)Params, NumParams,
727                                       RAngleLoc);
728}
729
730static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
731  if (SS.isSet())
732    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
733                        SS.getRange());
734}
735
736DeclResult
737Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
738                         SourceLocation KWLoc, CXXScopeSpec &SS,
739                         IdentifierInfo *Name, SourceLocation NameLoc,
740                         AttributeList *Attr,
741                         TemplateParameterList *TemplateParams,
742                         AccessSpecifier AS) {
743  assert(TemplateParams && TemplateParams->size() > 0 &&
744         "No template parameters");
745  assert(TUK != TUK_Reference && "Can only declare or define class templates");
746  bool Invalid = false;
747
748  // Check that we can declare a template here.
749  if (CheckTemplateDeclScope(S, TemplateParams))
750    return true;
751
752  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
753  assert(Kind != TTK_Enum && "can't build template of enumerated type");
754
755  // There is no such thing as an unnamed class template.
756  if (!Name) {
757    Diag(KWLoc, diag::err_template_unnamed_class);
758    return true;
759  }
760
761  // Find any previous declaration with this name.
762  DeclContext *SemanticContext;
763  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
764                        ForRedeclaration);
765  if (SS.isNotEmpty() && !SS.isInvalid()) {
766    SemanticContext = computeDeclContext(SS, true);
767    if (!SemanticContext) {
768      // FIXME: Produce a reasonable diagnostic here
769      return true;
770    }
771
772    if (RequireCompleteDeclContext(SS, SemanticContext))
773      return true;
774
775    LookupQualifiedName(Previous, SemanticContext);
776  } else {
777    SemanticContext = CurContext;
778    LookupName(Previous, S);
779  }
780
781  if (Previous.isAmbiguous())
782    return true;
783
784  NamedDecl *PrevDecl = 0;
785  if (Previous.begin() != Previous.end())
786    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
787
788  // If there is a previous declaration with the same name, check
789  // whether this is a valid redeclaration.
790  ClassTemplateDecl *PrevClassTemplate
791    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
792
793  // We may have found the injected-class-name of a class template,
794  // class template partial specialization, or class template specialization.
795  // In these cases, grab the template that is being defined or specialized.
796  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
797      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
798    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
799    PrevClassTemplate
800      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
801    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
802      PrevClassTemplate
803        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
804            ->getSpecializedTemplate();
805    }
806  }
807
808  if (TUK == TUK_Friend) {
809    // C++ [namespace.memdef]p3:
810    //   [...] When looking for a prior declaration of a class or a function
811    //   declared as a friend, and when the name of the friend class or
812    //   function is neither a qualified name nor a template-id, scopes outside
813    //   the innermost enclosing namespace scope are not considered.
814    if (!SS.isSet()) {
815      DeclContext *OutermostContext = CurContext;
816      while (!OutermostContext->isFileContext())
817        OutermostContext = OutermostContext->getLookupParent();
818
819      if (PrevDecl &&
820          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
821           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
822        SemanticContext = PrevDecl->getDeclContext();
823      } else {
824        // Declarations in outer scopes don't matter. However, the outermost
825        // context we computed is the semantic context for our new
826        // declaration.
827        PrevDecl = PrevClassTemplate = 0;
828        SemanticContext = OutermostContext;
829      }
830    }
831
832    if (CurContext->isDependentContext()) {
833      // If this is a dependent context, we don't want to link the friend
834      // class template to the template in scope, because that would perform
835      // checking of the template parameter lists that can't be performed
836      // until the outer context is instantiated.
837      PrevDecl = PrevClassTemplate = 0;
838    }
839  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
840    PrevDecl = PrevClassTemplate = 0;
841
842  if (PrevClassTemplate) {
843    // Ensure that the template parameter lists are compatible.
844    if (!TemplateParameterListsAreEqual(TemplateParams,
845                                   PrevClassTemplate->getTemplateParameters(),
846                                        /*Complain=*/true,
847                                        TPL_TemplateMatch))
848      return true;
849
850    // C++ [temp.class]p4:
851    //   In a redeclaration, partial specialization, explicit
852    //   specialization or explicit instantiation of a class template,
853    //   the class-key shall agree in kind with the original class
854    //   template declaration (7.1.5.3).
855    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
856    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
857      Diag(KWLoc, diag::err_use_with_wrong_tag)
858        << Name
859        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
860      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
861      Kind = PrevRecordDecl->getTagKind();
862    }
863
864    // Check for redefinition of this class template.
865    if (TUK == TUK_Definition) {
866      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
867        Diag(NameLoc, diag::err_redefinition) << Name;
868        Diag(Def->getLocation(), diag::note_previous_definition);
869        // FIXME: Would it make sense to try to "forget" the previous
870        // definition, as part of error recovery?
871        return true;
872      }
873    }
874  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
875    // Maybe we will complain about the shadowed template parameter.
876    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
877    // Just pretend that we didn't see the previous declaration.
878    PrevDecl = 0;
879  } else if (PrevDecl) {
880    // C++ [temp]p5:
881    //   A class template shall not have the same name as any other
882    //   template, class, function, object, enumeration, enumerator,
883    //   namespace, or type in the same scope (3.3), except as specified
884    //   in (14.5.4).
885    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
886    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
887    return true;
888  }
889
890  // Check the template parameter list of this declaration, possibly
891  // merging in the template parameter list from the previous class
892  // template declaration.
893  if (CheckTemplateParameterList(TemplateParams,
894            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
895                                 TPC_ClassTemplate))
896    Invalid = true;
897
898  if (SS.isSet()) {
899    // If the name of the template was qualified, we must be defining the
900    // template out-of-line.
901    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
902        !(TUK == TUK_Friend && CurContext->isDependentContext()))
903      Diag(NameLoc, diag::err_member_def_does_not_match)
904        << Name << SemanticContext << SS.getRange();
905  }
906
907  CXXRecordDecl *NewClass =
908    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
909                          PrevClassTemplate?
910                            PrevClassTemplate->getTemplatedDecl() : 0,
911                          /*DelayTypeCreation=*/true);
912  SetNestedNameSpecifier(NewClass, SS);
913
914  ClassTemplateDecl *NewTemplate
915    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
916                                DeclarationName(Name), TemplateParams,
917                                NewClass, PrevClassTemplate);
918  NewClass->setDescribedClassTemplate(NewTemplate);
919
920  // Build the type for the class template declaration now.
921  QualType T = NewTemplate->getInjectedClassNameSpecialization();
922  T = Context.getInjectedClassNameType(NewClass, T);
923  assert(T->isDependentType() && "Class template type is not dependent?");
924  (void)T;
925
926  // If we are providing an explicit specialization of a member that is a
927  // class template, make a note of that.
928  if (PrevClassTemplate &&
929      PrevClassTemplate->getInstantiatedFromMemberTemplate())
930    PrevClassTemplate->setMemberSpecialization();
931
932  // Set the access specifier.
933  if (!Invalid && TUK != TUK_Friend)
934    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
935
936  // Set the lexical context of these templates
937  NewClass->setLexicalDeclContext(CurContext);
938  NewTemplate->setLexicalDeclContext(CurContext);
939
940  if (TUK == TUK_Definition)
941    NewClass->startDefinition();
942
943  if (Attr)
944    ProcessDeclAttributeList(S, NewClass, Attr);
945
946  if (TUK != TUK_Friend)
947    PushOnScopeChains(NewTemplate, S);
948  else {
949    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
950      NewTemplate->setAccess(PrevClassTemplate->getAccess());
951      NewClass->setAccess(PrevClassTemplate->getAccess());
952    }
953
954    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
955                                       PrevClassTemplate != NULL);
956
957    // Friend templates are visible in fairly strange ways.
958    if (!CurContext->isDependentContext()) {
959      DeclContext *DC = SemanticContext->getRedeclContext();
960      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
961      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
962        PushOnScopeChains(NewTemplate, EnclosingScope,
963                          /* AddToContext = */ false);
964    }
965
966    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
967                                            NewClass->getLocation(),
968                                            NewTemplate,
969                                    /*FIXME:*/NewClass->getLocation());
970    Friend->setAccess(AS_public);
971    CurContext->addDecl(Friend);
972  }
973
974  if (Invalid) {
975    NewTemplate->setInvalidDecl();
976    NewClass->setInvalidDecl();
977  }
978  return NewTemplate;
979}
980
981/// \brief Diagnose the presence of a default template argument on a
982/// template parameter, which is ill-formed in certain contexts.
983///
984/// \returns true if the default template argument should be dropped.
985static bool DiagnoseDefaultTemplateArgument(Sema &S,
986                                            Sema::TemplateParamListContext TPC,
987                                            SourceLocation ParamLoc,
988                                            SourceRange DefArgRange) {
989  switch (TPC) {
990  case Sema::TPC_ClassTemplate:
991    return false;
992
993  case Sema::TPC_FunctionTemplate:
994    // C++ [temp.param]p9:
995    //   A default template-argument shall not be specified in a
996    //   function template declaration or a function template
997    //   definition [...]
998    // (This sentence is not in C++0x, per DR226).
999    if (!S.getLangOptions().CPlusPlus0x)
1000      S.Diag(ParamLoc,
1001             diag::err_template_parameter_default_in_function_template)
1002        << DefArgRange;
1003    return false;
1004
1005  case Sema::TPC_ClassTemplateMember:
1006    // C++0x [temp.param]p9:
1007    //   A default template-argument shall not be specified in the
1008    //   template-parameter-lists of the definition of a member of a
1009    //   class template that appears outside of the member's class.
1010    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1011      << DefArgRange;
1012    return true;
1013
1014  case Sema::TPC_FriendFunctionTemplate:
1015    // C++ [temp.param]p9:
1016    //   A default template-argument shall not be specified in a
1017    //   friend template declaration.
1018    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1019      << DefArgRange;
1020    return true;
1021
1022    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1023    // for friend function templates if there is only a single
1024    // declaration (and it is a definition). Strange!
1025  }
1026
1027  return false;
1028}
1029
1030/// \brief Checks the validity of a template parameter list, possibly
1031/// considering the template parameter list from a previous
1032/// declaration.
1033///
1034/// If an "old" template parameter list is provided, it must be
1035/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1036/// template parameter list.
1037///
1038/// \param NewParams Template parameter list for a new template
1039/// declaration. This template parameter list will be updated with any
1040/// default arguments that are carried through from the previous
1041/// template parameter list.
1042///
1043/// \param OldParams If provided, template parameter list from a
1044/// previous declaration of the same template. Default template
1045/// arguments will be merged from the old template parameter list to
1046/// the new template parameter list.
1047///
1048/// \param TPC Describes the context in which we are checking the given
1049/// template parameter list.
1050///
1051/// \returns true if an error occurred, false otherwise.
1052bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1053                                      TemplateParameterList *OldParams,
1054                                      TemplateParamListContext TPC) {
1055  bool Invalid = false;
1056
1057  // C++ [temp.param]p10:
1058  //   The set of default template-arguments available for use with a
1059  //   template declaration or definition is obtained by merging the
1060  //   default arguments from the definition (if in scope) and all
1061  //   declarations in scope in the same way default function
1062  //   arguments are (8.3.6).
1063  bool SawDefaultArgument = false;
1064  SourceLocation PreviousDefaultArgLoc;
1065
1066  bool SawParameterPack = false;
1067  SourceLocation ParameterPackLoc;
1068
1069  // Dummy initialization to avoid warnings.
1070  TemplateParameterList::iterator OldParam = NewParams->end();
1071  if (OldParams)
1072    OldParam = OldParams->begin();
1073
1074  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1075                                    NewParamEnd = NewParams->end();
1076       NewParam != NewParamEnd; ++NewParam) {
1077    // Variables used to diagnose redundant default arguments
1078    bool RedundantDefaultArg = false;
1079    SourceLocation OldDefaultLoc;
1080    SourceLocation NewDefaultLoc;
1081
1082    // Variables used to diagnose missing default arguments
1083    bool MissingDefaultArg = false;
1084
1085    // C++0x [temp.param]p11:
1086    // If a template parameter of a class template is a template parameter pack,
1087    // it must be the last template parameter.
1088    if (SawParameterPack) {
1089      Diag(ParameterPackLoc,
1090           diag::err_template_param_pack_must_be_last_template_parameter);
1091      Invalid = true;
1092    }
1093
1094    if (TemplateTypeParmDecl *NewTypeParm
1095          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1096      // Check the presence of a default argument here.
1097      if (NewTypeParm->hasDefaultArgument() &&
1098          DiagnoseDefaultTemplateArgument(*this, TPC,
1099                                          NewTypeParm->getLocation(),
1100               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1101                                                       .getSourceRange()))
1102        NewTypeParm->removeDefaultArgument();
1103
1104      // Merge default arguments for template type parameters.
1105      TemplateTypeParmDecl *OldTypeParm
1106          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1107
1108      if (NewTypeParm->isParameterPack()) {
1109        assert(!NewTypeParm->hasDefaultArgument() &&
1110               "Parameter packs can't have a default argument!");
1111        SawParameterPack = true;
1112        ParameterPackLoc = NewTypeParm->getLocation();
1113      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1114                 NewTypeParm->hasDefaultArgument()) {
1115        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1116        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1117        SawDefaultArgument = true;
1118        RedundantDefaultArg = true;
1119        PreviousDefaultArgLoc = NewDefaultLoc;
1120      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1121        // Merge the default argument from the old declaration to the
1122        // new declaration.
1123        SawDefaultArgument = true;
1124        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1125                                        true);
1126        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1127      } else if (NewTypeParm->hasDefaultArgument()) {
1128        SawDefaultArgument = true;
1129        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1130      } else if (SawDefaultArgument)
1131        MissingDefaultArg = true;
1132    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1133               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1134      // Check the presence of a default argument here.
1135      if (NewNonTypeParm->hasDefaultArgument() &&
1136          DiagnoseDefaultTemplateArgument(*this, TPC,
1137                                          NewNonTypeParm->getLocation(),
1138                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1139        NewNonTypeParm->removeDefaultArgument();
1140      }
1141
1142      // Merge default arguments for non-type template parameters
1143      NonTypeTemplateParmDecl *OldNonTypeParm
1144        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1145      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1146          NewNonTypeParm->hasDefaultArgument()) {
1147        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1148        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1149        SawDefaultArgument = true;
1150        RedundantDefaultArg = true;
1151        PreviousDefaultArgLoc = NewDefaultLoc;
1152      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1153        // Merge the default argument from the old declaration to the
1154        // new declaration.
1155        SawDefaultArgument = true;
1156        // FIXME: We need to create a new kind of "default argument"
1157        // expression that points to a previous template template
1158        // parameter.
1159        NewNonTypeParm->setDefaultArgument(
1160                                         OldNonTypeParm->getDefaultArgument(),
1161                                         /*Inherited=*/ true);
1162        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1163      } else if (NewNonTypeParm->hasDefaultArgument()) {
1164        SawDefaultArgument = true;
1165        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1166      } else if (SawDefaultArgument)
1167        MissingDefaultArg = true;
1168    } else {
1169      // Check the presence of a default argument here.
1170      TemplateTemplateParmDecl *NewTemplateParm
1171        = cast<TemplateTemplateParmDecl>(*NewParam);
1172      if (NewTemplateParm->hasDefaultArgument() &&
1173          DiagnoseDefaultTemplateArgument(*this, TPC,
1174                                          NewTemplateParm->getLocation(),
1175                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1176        NewTemplateParm->removeDefaultArgument();
1177
1178      // Merge default arguments for template template parameters
1179      TemplateTemplateParmDecl *OldTemplateParm
1180        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1181      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1182          NewTemplateParm->hasDefaultArgument()) {
1183        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1184        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1185        SawDefaultArgument = true;
1186        RedundantDefaultArg = true;
1187        PreviousDefaultArgLoc = NewDefaultLoc;
1188      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1189        // Merge the default argument from the old declaration to the
1190        // new declaration.
1191        SawDefaultArgument = true;
1192        // FIXME: We need to create a new kind of "default argument" expression
1193        // that points to a previous template template parameter.
1194        NewTemplateParm->setDefaultArgument(
1195                                          OldTemplateParm->getDefaultArgument(),
1196                                          /*Inherited=*/ true);
1197        PreviousDefaultArgLoc
1198          = OldTemplateParm->getDefaultArgument().getLocation();
1199      } else if (NewTemplateParm->hasDefaultArgument()) {
1200        SawDefaultArgument = true;
1201        PreviousDefaultArgLoc
1202          = NewTemplateParm->getDefaultArgument().getLocation();
1203      } else if (SawDefaultArgument)
1204        MissingDefaultArg = true;
1205    }
1206
1207    if (RedundantDefaultArg) {
1208      // C++ [temp.param]p12:
1209      //   A template-parameter shall not be given default arguments
1210      //   by two different declarations in the same scope.
1211      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1212      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1213      Invalid = true;
1214    } else if (MissingDefaultArg) {
1215      // C++ [temp.param]p11:
1216      //   If a template-parameter has a default template-argument,
1217      //   all subsequent template-parameters shall have a default
1218      //   template-argument supplied.
1219      Diag((*NewParam)->getLocation(),
1220           diag::err_template_param_default_arg_missing);
1221      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1222      Invalid = true;
1223    }
1224
1225    // If we have an old template parameter list that we're merging
1226    // in, move on to the next parameter.
1227    if (OldParams)
1228      ++OldParam;
1229  }
1230
1231  return Invalid;
1232}
1233
1234namespace {
1235
1236/// A class which looks for a use of a certain level of template
1237/// parameter.
1238struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1239  typedef RecursiveASTVisitor<DependencyChecker> super;
1240
1241  unsigned Depth;
1242  bool Match;
1243
1244  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1245    NamedDecl *ND = Params->getParam(0);
1246    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1247      Depth = PD->getDepth();
1248    } else if (NonTypeTemplateParmDecl *PD =
1249                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1250      Depth = PD->getDepth();
1251    } else {
1252      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1253    }
1254  }
1255
1256  bool Matches(unsigned ParmDepth) {
1257    if (ParmDepth >= Depth) {
1258      Match = true;
1259      return true;
1260    }
1261    return false;
1262  }
1263
1264  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1265    return !Matches(T->getDepth());
1266  }
1267
1268  bool TraverseTemplateName(TemplateName N) {
1269    if (TemplateTemplateParmDecl *PD =
1270          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1271      if (Matches(PD->getDepth())) return false;
1272    return super::TraverseTemplateName(N);
1273  }
1274
1275  bool VisitDeclRefExpr(DeclRefExpr *E) {
1276    if (NonTypeTemplateParmDecl *PD =
1277          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1278      if (PD->getDepth() == Depth) {
1279        Match = true;
1280        return false;
1281      }
1282    }
1283    return super::VisitDeclRefExpr(E);
1284  }
1285};
1286}
1287
1288/// Determines whether a template-id depends on the given parameter
1289/// list.
1290static bool
1291DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1292                            TemplateParameterList *Params) {
1293  DependencyChecker Checker(Params);
1294  Checker.TraverseType(QualType(TemplateId, 0));
1295  return Checker.Match;
1296}
1297
1298/// \brief Match the given template parameter lists to the given scope
1299/// specifier, returning the template parameter list that applies to the
1300/// name.
1301///
1302/// \param DeclStartLoc the start of the declaration that has a scope
1303/// specifier or a template parameter list.
1304///
1305/// \param SS the scope specifier that will be matched to the given template
1306/// parameter lists. This scope specifier precedes a qualified name that is
1307/// being declared.
1308///
1309/// \param ParamLists the template parameter lists, from the outermost to the
1310/// innermost template parameter lists.
1311///
1312/// \param NumParamLists the number of template parameter lists in ParamLists.
1313///
1314/// \param IsFriend Whether to apply the slightly different rules for
1315/// matching template parameters to scope specifiers in friend
1316/// declarations.
1317///
1318/// \param IsExplicitSpecialization will be set true if the entity being
1319/// declared is an explicit specialization, false otherwise.
1320///
1321/// \returns the template parameter list, if any, that corresponds to the
1322/// name that is preceded by the scope specifier @p SS. This template
1323/// parameter list may be have template parameters (if we're declaring a
1324/// template) or may have no template parameters (if we're declaring a
1325/// template specialization), or may be NULL (if we were's declaring isn't
1326/// itself a template).
1327TemplateParameterList *
1328Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1329                                              const CXXScopeSpec &SS,
1330                                          TemplateParameterList **ParamLists,
1331                                              unsigned NumParamLists,
1332                                              bool IsFriend,
1333                                              bool &IsExplicitSpecialization,
1334                                              bool &Invalid) {
1335  IsExplicitSpecialization = false;
1336
1337  // Find the template-ids that occur within the nested-name-specifier. These
1338  // template-ids will match up with the template parameter lists.
1339  llvm::SmallVector<const TemplateSpecializationType *, 4>
1340    TemplateIdsInSpecifier;
1341  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1342    ExplicitSpecializationsInSpecifier;
1343  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1344       NNS; NNS = NNS->getPrefix()) {
1345    const Type *T = NNS->getAsType();
1346    if (!T) break;
1347
1348    // C++0x [temp.expl.spec]p17:
1349    //   A member or a member template may be nested within many
1350    //   enclosing class templates. In an explicit specialization for
1351    //   such a member, the member declaration shall be preceded by a
1352    //   template<> for each enclosing class template that is
1353    //   explicitly specialized.
1354    //
1355    // Following the existing practice of GNU and EDG, we allow a typedef of a
1356    // template specialization type.
1357    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1358      T = TT->LookThroughTypedefs().getTypePtr();
1359
1360    if (const TemplateSpecializationType *SpecType
1361                                  = dyn_cast<TemplateSpecializationType>(T)) {
1362      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1363      if (!Template)
1364        continue; // FIXME: should this be an error? probably...
1365
1366      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1367        ClassTemplateSpecializationDecl *SpecDecl
1368          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1369        // If the nested name specifier refers to an explicit specialization,
1370        // we don't need a template<> header.
1371        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1372          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1373          continue;
1374        }
1375      }
1376
1377      TemplateIdsInSpecifier.push_back(SpecType);
1378    }
1379  }
1380
1381  // Reverse the list of template-ids in the scope specifier, so that we can
1382  // more easily match up the template-ids and the template parameter lists.
1383  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1384
1385  SourceLocation FirstTemplateLoc = DeclStartLoc;
1386  if (NumParamLists)
1387    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1388
1389  // Match the template-ids found in the specifier to the template parameter
1390  // lists.
1391  unsigned ParamIdx = 0, TemplateIdx = 0;
1392  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1393       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1394    const TemplateSpecializationType *TemplateId
1395      = TemplateIdsInSpecifier[TemplateIdx];
1396    bool DependentTemplateId = TemplateId->isDependentType();
1397
1398    // In friend declarations we can have template-ids which don't
1399    // depend on the corresponding template parameter lists.  But
1400    // assume that empty parameter lists are supposed to match this
1401    // template-id.
1402    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1403      if (!DependentTemplateId ||
1404          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1405        continue;
1406    }
1407
1408    if (ParamIdx >= NumParamLists) {
1409      // We have a template-id without a corresponding template parameter
1410      // list.
1411
1412      // ...which is fine if this is a friend declaration.
1413      if (IsFriend) {
1414        IsExplicitSpecialization = true;
1415        break;
1416      }
1417
1418      if (DependentTemplateId) {
1419        // FIXME: the location information here isn't great.
1420        Diag(SS.getRange().getBegin(),
1421             diag::err_template_spec_needs_template_parameters)
1422          << QualType(TemplateId, 0)
1423          << SS.getRange();
1424        Invalid = true;
1425      } else {
1426        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1427          << SS.getRange()
1428          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1429        IsExplicitSpecialization = true;
1430      }
1431      return 0;
1432    }
1433
1434    // Check the template parameter list against its corresponding template-id.
1435    if (DependentTemplateId) {
1436      TemplateParameterList *ExpectedTemplateParams = 0;
1437
1438      // Are there cases in (e.g.) friends where this won't match?
1439      if (const InjectedClassNameType *Injected
1440            = TemplateId->getAs<InjectedClassNameType>()) {
1441        CXXRecordDecl *Record = Injected->getDecl();
1442        if (ClassTemplatePartialSpecializationDecl *Partial =
1443              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1444          ExpectedTemplateParams = Partial->getTemplateParameters();
1445        else
1446          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1447            ->getTemplateParameters();
1448      }
1449
1450      if (ExpectedTemplateParams)
1451        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1452                                       ExpectedTemplateParams,
1453                                       true, TPL_TemplateMatch);
1454
1455      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1456                                 TPC_ClassTemplateMember);
1457    } else if (ParamLists[ParamIdx]->size() > 0)
1458      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1459           diag::err_template_param_list_matches_nontemplate)
1460        << TemplateId
1461        << ParamLists[ParamIdx]->getSourceRange();
1462    else
1463      IsExplicitSpecialization = true;
1464
1465    ++ParamIdx;
1466  }
1467
1468  // If there were at least as many template-ids as there were template
1469  // parameter lists, then there are no template parameter lists remaining for
1470  // the declaration itself.
1471  if (ParamIdx >= NumParamLists)
1472    return 0;
1473
1474  // If there were too many template parameter lists, complain about that now.
1475  if (ParamIdx != NumParamLists - 1) {
1476    while (ParamIdx < NumParamLists - 1) {
1477      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1478      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1479           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1480                               : diag::err_template_spec_extra_headers)
1481        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1482                       ParamLists[ParamIdx]->getRAngleLoc());
1483
1484      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1485        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1486             diag::note_explicit_template_spec_does_not_need_header)
1487          << ExplicitSpecializationsInSpecifier.back();
1488        ExplicitSpecializationsInSpecifier.pop_back();
1489      }
1490
1491      // We have a template parameter list with no corresponding scope, which
1492      // means that the resulting template declaration can't be instantiated
1493      // properly (we'll end up with dependent nodes when we shouldn't).
1494      if (!isExplicitSpecHeader)
1495        Invalid = true;
1496
1497      ++ParamIdx;
1498    }
1499  }
1500
1501  // Return the last template parameter list, which corresponds to the
1502  // entity being declared.
1503  return ParamLists[NumParamLists - 1];
1504}
1505
1506QualType Sema::CheckTemplateIdType(TemplateName Name,
1507                                   SourceLocation TemplateLoc,
1508                              const TemplateArgumentListInfo &TemplateArgs) {
1509  TemplateDecl *Template = Name.getAsTemplateDecl();
1510  if (!Template) {
1511    // The template name does not resolve to a template, so we just
1512    // build a dependent template-id type.
1513    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1514  }
1515
1516  // Check that the template argument list is well-formed for this
1517  // template.
1518  llvm::SmallVector<TemplateArgument, 4> Converted;
1519  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1520                                false, Converted))
1521    return QualType();
1522
1523  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1524         "Converted template argument list is too short!");
1525
1526  QualType CanonType;
1527
1528  if (Name.isDependent() ||
1529      TemplateSpecializationType::anyDependentTemplateArguments(
1530                                                      TemplateArgs)) {
1531    // This class template specialization is a dependent
1532    // type. Therefore, its canonical type is another class template
1533    // specialization type that contains all of the converted
1534    // arguments in canonical form. This ensures that, e.g., A<T> and
1535    // A<T, T> have identical types when A is declared as:
1536    //
1537    //   template<typename T, typename U = T> struct A;
1538    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1539    CanonType = Context.getTemplateSpecializationType(CanonName,
1540                                                      Converted.data(),
1541                                                      Converted.size());
1542
1543    // FIXME: CanonType is not actually the canonical type, and unfortunately
1544    // it is a TemplateSpecializationType that we will never use again.
1545    // In the future, we need to teach getTemplateSpecializationType to only
1546    // build the canonical type and return that to us.
1547    CanonType = Context.getCanonicalType(CanonType);
1548
1549    // This might work out to be a current instantiation, in which
1550    // case the canonical type needs to be the InjectedClassNameType.
1551    //
1552    // TODO: in theory this could be a simple hashtable lookup; most
1553    // changes to CurContext don't change the set of current
1554    // instantiations.
1555    if (isa<ClassTemplateDecl>(Template)) {
1556      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1557        // If we get out to a namespace, we're done.
1558        if (Ctx->isFileContext()) break;
1559
1560        // If this isn't a record, keep looking.
1561        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1562        if (!Record) continue;
1563
1564        // Look for one of the two cases with InjectedClassNameTypes
1565        // and check whether it's the same template.
1566        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1567            !Record->getDescribedClassTemplate())
1568          continue;
1569
1570        // Fetch the injected class name type and check whether its
1571        // injected type is equal to the type we just built.
1572        QualType ICNT = Context.getTypeDeclType(Record);
1573        QualType Injected = cast<InjectedClassNameType>(ICNT)
1574          ->getInjectedSpecializationType();
1575
1576        if (CanonType != Injected->getCanonicalTypeInternal())
1577          continue;
1578
1579        // If so, the canonical type of this TST is the injected
1580        // class name type of the record we just found.
1581        assert(ICNT.isCanonical());
1582        CanonType = ICNT;
1583        break;
1584      }
1585    }
1586  } else if (ClassTemplateDecl *ClassTemplate
1587               = dyn_cast<ClassTemplateDecl>(Template)) {
1588    // Find the class template specialization declaration that
1589    // corresponds to these arguments.
1590    void *InsertPos = 0;
1591    ClassTemplateSpecializationDecl *Decl
1592      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
1593                                          InsertPos);
1594    if (!Decl) {
1595      // This is the first time we have referenced this class template
1596      // specialization. Create the canonical declaration and add it to
1597      // the set of specializations.
1598      Decl = ClassTemplateSpecializationDecl::Create(Context,
1599                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1600                                                ClassTemplate->getDeclContext(),
1601                                                ClassTemplate->getLocation(),
1602                                                     ClassTemplate,
1603                                                     Converted.data(),
1604                                                     Converted.size(), 0);
1605      ClassTemplate->AddSpecialization(Decl, InsertPos);
1606      Decl->setLexicalDeclContext(CurContext);
1607    }
1608
1609    CanonType = Context.getTypeDeclType(Decl);
1610    assert(isa<RecordType>(CanonType) &&
1611           "type of non-dependent specialization is not a RecordType");
1612  }
1613
1614  // Build the fully-sugared type for this class template
1615  // specialization, which refers back to the class template
1616  // specialization we created or found.
1617  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1618}
1619
1620TypeResult
1621Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1622                          SourceLocation LAngleLoc,
1623                          ASTTemplateArgsPtr TemplateArgsIn,
1624                          SourceLocation RAngleLoc) {
1625  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1626
1627  // Translate the parser's template argument list in our AST format.
1628  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1629  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1630
1631  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1632  TemplateArgsIn.release();
1633
1634  if (Result.isNull())
1635    return true;
1636
1637  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1638  TemplateSpecializationTypeLoc TL
1639    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1640  TL.setTemplateNameLoc(TemplateLoc);
1641  TL.setLAngleLoc(LAngleLoc);
1642  TL.setRAngleLoc(RAngleLoc);
1643  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1644    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1645
1646  return CreateParsedType(Result, DI);
1647}
1648
1649TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1650                                        TagUseKind TUK,
1651                                        TypeSpecifierType TagSpec,
1652                                        SourceLocation TagLoc) {
1653  if (TypeResult.isInvalid())
1654    return ::TypeResult();
1655
1656  // FIXME: preserve source info, ideally without copying the DI.
1657  TypeSourceInfo *DI;
1658  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1659
1660  // Verify the tag specifier.
1661  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1662
1663  if (const RecordType *RT = Type->getAs<RecordType>()) {
1664    RecordDecl *D = RT->getDecl();
1665
1666    IdentifierInfo *Id = D->getIdentifier();
1667    assert(Id && "templated class must have an identifier");
1668
1669    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1670      Diag(TagLoc, diag::err_use_with_wrong_tag)
1671        << Type
1672        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1673      Diag(D->getLocation(), diag::note_previous_use);
1674    }
1675  }
1676
1677  ElaboratedTypeKeyword Keyword
1678    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1679  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1680
1681  return ParsedType::make(ElabType);
1682}
1683
1684ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1685                                                 LookupResult &R,
1686                                                 bool RequiresADL,
1687                                 const TemplateArgumentListInfo &TemplateArgs) {
1688  // FIXME: Can we do any checking at this point? I guess we could check the
1689  // template arguments that we have against the template name, if the template
1690  // name refers to a single template. That's not a terribly common case,
1691  // though.
1692
1693  // These should be filtered out by our callers.
1694  assert(!R.empty() && "empty lookup results when building templateid");
1695  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1696
1697  NestedNameSpecifier *Qualifier = 0;
1698  SourceRange QualifierRange;
1699  if (SS.isSet()) {
1700    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1701    QualifierRange = SS.getRange();
1702  }
1703
1704  // We don't want lookup warnings at this point.
1705  R.suppressDiagnostics();
1706
1707  bool Dependent
1708    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1709                                              &TemplateArgs);
1710  UnresolvedLookupExpr *ULE
1711    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1712                                   Qualifier, QualifierRange,
1713                                   R.getLookupNameInfo(),
1714                                   RequiresADL, TemplateArgs,
1715                                   R.begin(), R.end());
1716
1717  return Owned(ULE);
1718}
1719
1720// We actually only call this from template instantiation.
1721ExprResult
1722Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1723                                   const DeclarationNameInfo &NameInfo,
1724                             const TemplateArgumentListInfo &TemplateArgs) {
1725  DeclContext *DC;
1726  if (!(DC = computeDeclContext(SS, false)) ||
1727      DC->isDependentContext() ||
1728      RequireCompleteDeclContext(SS, DC))
1729    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1730
1731  bool MemberOfUnknownSpecialization;
1732  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1733  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1734                     MemberOfUnknownSpecialization);
1735
1736  if (R.isAmbiguous())
1737    return ExprError();
1738
1739  if (R.empty()) {
1740    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1741      << NameInfo.getName() << SS.getRange();
1742    return ExprError();
1743  }
1744
1745  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1746    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1747      << (NestedNameSpecifier*) SS.getScopeRep()
1748      << NameInfo.getName() << SS.getRange();
1749    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1750    return ExprError();
1751  }
1752
1753  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1754}
1755
1756/// \brief Form a dependent template name.
1757///
1758/// This action forms a dependent template name given the template
1759/// name and its (presumably dependent) scope specifier. For
1760/// example, given "MetaFun::template apply", the scope specifier \p
1761/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1762/// of the "template" keyword, and "apply" is the \p Name.
1763TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1764                                                  SourceLocation TemplateKWLoc,
1765                                                  CXXScopeSpec &SS,
1766                                                  UnqualifiedId &Name,
1767                                                  ParsedType ObjectType,
1768                                                  bool EnteringContext,
1769                                                  TemplateTy &Result) {
1770  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1771      !getLangOptions().CPlusPlus0x)
1772    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1773      << FixItHint::CreateRemoval(TemplateKWLoc);
1774
1775  DeclContext *LookupCtx = 0;
1776  if (SS.isSet())
1777    LookupCtx = computeDeclContext(SS, EnteringContext);
1778  if (!LookupCtx && ObjectType)
1779    LookupCtx = computeDeclContext(ObjectType.get());
1780  if (LookupCtx) {
1781    // C++0x [temp.names]p5:
1782    //   If a name prefixed by the keyword template is not the name of
1783    //   a template, the program is ill-formed. [Note: the keyword
1784    //   template may not be applied to non-template members of class
1785    //   templates. -end note ] [ Note: as is the case with the
1786    //   typename prefix, the template prefix is allowed in cases
1787    //   where it is not strictly necessary; i.e., when the
1788    //   nested-name-specifier or the expression on the left of the ->
1789    //   or . is not dependent on a template-parameter, or the use
1790    //   does not appear in the scope of a template. -end note]
1791    //
1792    // Note: C++03 was more strict here, because it banned the use of
1793    // the "template" keyword prior to a template-name that was not a
1794    // dependent name. C++ DR468 relaxed this requirement (the
1795    // "template" keyword is now permitted). We follow the C++0x
1796    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1797    bool MemberOfUnknownSpecialization;
1798    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1799                                          ObjectType, EnteringContext, Result,
1800                                          MemberOfUnknownSpecialization);
1801    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1802        isa<CXXRecordDecl>(LookupCtx) &&
1803        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1804      // This is a dependent template. Handle it below.
1805    } else if (TNK == TNK_Non_template) {
1806      Diag(Name.getSourceRange().getBegin(),
1807           diag::err_template_kw_refers_to_non_template)
1808        << GetNameFromUnqualifiedId(Name).getName()
1809        << Name.getSourceRange()
1810        << TemplateKWLoc;
1811      return TNK_Non_template;
1812    } else {
1813      // We found something; return it.
1814      return TNK;
1815    }
1816  }
1817
1818  NestedNameSpecifier *Qualifier
1819    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1820
1821  switch (Name.getKind()) {
1822  case UnqualifiedId::IK_Identifier:
1823    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1824                                                              Name.Identifier));
1825    return TNK_Dependent_template_name;
1826
1827  case UnqualifiedId::IK_OperatorFunctionId:
1828    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1829                                             Name.OperatorFunctionId.Operator));
1830    return TNK_Dependent_template_name;
1831
1832  case UnqualifiedId::IK_LiteralOperatorId:
1833    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1834
1835  default:
1836    break;
1837  }
1838
1839  Diag(Name.getSourceRange().getBegin(),
1840       diag::err_template_kw_refers_to_non_template)
1841    << GetNameFromUnqualifiedId(Name).getName()
1842    << Name.getSourceRange()
1843    << TemplateKWLoc;
1844  return TNK_Non_template;
1845}
1846
1847bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1848                                     const TemplateArgumentLoc &AL,
1849                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1850  const TemplateArgument &Arg = AL.getArgument();
1851
1852  // Check template type parameter.
1853  switch(Arg.getKind()) {
1854  case TemplateArgument::Type:
1855    // C++ [temp.arg.type]p1:
1856    //   A template-argument for a template-parameter which is a
1857    //   type shall be a type-id.
1858    break;
1859  case TemplateArgument::Template: {
1860    // We have a template type parameter but the template argument
1861    // is a template without any arguments.
1862    SourceRange SR = AL.getSourceRange();
1863    TemplateName Name = Arg.getAsTemplate();
1864    Diag(SR.getBegin(), diag::err_template_missing_args)
1865      << Name << SR;
1866    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1867      Diag(Decl->getLocation(), diag::note_template_decl_here);
1868
1869    return true;
1870  }
1871  default: {
1872    // We have a template type parameter but the template argument
1873    // is not a type.
1874    SourceRange SR = AL.getSourceRange();
1875    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1876    Diag(Param->getLocation(), diag::note_template_param_here);
1877
1878    return true;
1879  }
1880  }
1881
1882  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1883    return true;
1884
1885  // Add the converted template type argument.
1886  Converted.push_back(
1887                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1888  return false;
1889}
1890
1891/// \brief Substitute template arguments into the default template argument for
1892/// the given template type parameter.
1893///
1894/// \param SemaRef the semantic analysis object for which we are performing
1895/// the substitution.
1896///
1897/// \param Template the template that we are synthesizing template arguments
1898/// for.
1899///
1900/// \param TemplateLoc the location of the template name that started the
1901/// template-id we are checking.
1902///
1903/// \param RAngleLoc the location of the right angle bracket ('>') that
1904/// terminates the template-id.
1905///
1906/// \param Param the template template parameter whose default we are
1907/// substituting into.
1908///
1909/// \param Converted the list of template arguments provided for template
1910/// parameters that precede \p Param in the template parameter list.
1911///
1912/// \returns the substituted template argument, or NULL if an error occurred.
1913static TypeSourceInfo *
1914SubstDefaultTemplateArgument(Sema &SemaRef,
1915                             TemplateDecl *Template,
1916                             SourceLocation TemplateLoc,
1917                             SourceLocation RAngleLoc,
1918                             TemplateTypeParmDecl *Param,
1919                         llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1920  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1921
1922  // If the argument type is dependent, instantiate it now based
1923  // on the previously-computed template arguments.
1924  if (ArgType->getType()->isDependentType()) {
1925    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1926                                      Converted.data(), Converted.size());
1927
1928    MultiLevelTemplateArgumentList AllTemplateArgs
1929      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1930
1931    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1932                                     Template, Converted.data(),
1933                                     Converted.size(),
1934                                     SourceRange(TemplateLoc, RAngleLoc));
1935
1936    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1937                                Param->getDefaultArgumentLoc(),
1938                                Param->getDeclName());
1939  }
1940
1941  return ArgType;
1942}
1943
1944/// \brief Substitute template arguments into the default template argument for
1945/// the given non-type template parameter.
1946///
1947/// \param SemaRef the semantic analysis object for which we are performing
1948/// the substitution.
1949///
1950/// \param Template the template that we are synthesizing template arguments
1951/// for.
1952///
1953/// \param TemplateLoc the location of the template name that started the
1954/// template-id we are checking.
1955///
1956/// \param RAngleLoc the location of the right angle bracket ('>') that
1957/// terminates the template-id.
1958///
1959/// \param Param the non-type template parameter whose default we are
1960/// substituting into.
1961///
1962/// \param Converted the list of template arguments provided for template
1963/// parameters that precede \p Param in the template parameter list.
1964///
1965/// \returns the substituted template argument, or NULL if an error occurred.
1966static ExprResult
1967SubstDefaultTemplateArgument(Sema &SemaRef,
1968                             TemplateDecl *Template,
1969                             SourceLocation TemplateLoc,
1970                             SourceLocation RAngleLoc,
1971                             NonTypeTemplateParmDecl *Param,
1972                        llvm::SmallVectorImpl<TemplateArgument> &Converted) {
1973  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1974                                    Converted.data(), Converted.size());
1975
1976  MultiLevelTemplateArgumentList AllTemplateArgs
1977    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1978
1979  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1980                                   Template, Converted.data(),
1981                                   Converted.size(),
1982                                   SourceRange(TemplateLoc, RAngleLoc));
1983
1984  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1985}
1986
1987/// \brief Substitute template arguments into the default template argument for
1988/// the given template template parameter.
1989///
1990/// \param SemaRef the semantic analysis object for which we are performing
1991/// the substitution.
1992///
1993/// \param Template the template that we are synthesizing template arguments
1994/// for.
1995///
1996/// \param TemplateLoc the location of the template name that started the
1997/// template-id we are checking.
1998///
1999/// \param RAngleLoc the location of the right angle bracket ('>') that
2000/// terminates the template-id.
2001///
2002/// \param Param the template template parameter whose default we are
2003/// substituting into.
2004///
2005/// \param Converted the list of template arguments provided for template
2006/// parameters that precede \p Param in the template parameter list.
2007///
2008/// \returns the substituted template argument, or NULL if an error occurred.
2009static TemplateName
2010SubstDefaultTemplateArgument(Sema &SemaRef,
2011                             TemplateDecl *Template,
2012                             SourceLocation TemplateLoc,
2013                             SourceLocation RAngleLoc,
2014                             TemplateTemplateParmDecl *Param,
2015                       llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2016  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2017                                    Converted.data(), Converted.size());
2018
2019  MultiLevelTemplateArgumentList AllTemplateArgs
2020    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2021
2022  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2023                                   Template, Converted.data(),
2024                                   Converted.size(),
2025                                   SourceRange(TemplateLoc, RAngleLoc));
2026
2027  return SemaRef.SubstTemplateName(
2028                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2029                              Param->getDefaultArgument().getTemplateNameLoc(),
2030                                   AllTemplateArgs);
2031}
2032
2033/// \brief If the given template parameter has a default template
2034/// argument, substitute into that default template argument and
2035/// return the corresponding template argument.
2036TemplateArgumentLoc
2037Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2038                                              SourceLocation TemplateLoc,
2039                                              SourceLocation RAngleLoc,
2040                                              Decl *Param,
2041                      llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2042   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2043    if (!TypeParm->hasDefaultArgument())
2044      return TemplateArgumentLoc();
2045
2046    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2047                                                      TemplateLoc,
2048                                                      RAngleLoc,
2049                                                      TypeParm,
2050                                                      Converted);
2051    if (DI)
2052      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2053
2054    return TemplateArgumentLoc();
2055  }
2056
2057  if (NonTypeTemplateParmDecl *NonTypeParm
2058        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2059    if (!NonTypeParm->hasDefaultArgument())
2060      return TemplateArgumentLoc();
2061
2062    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2063                                                        TemplateLoc,
2064                                                        RAngleLoc,
2065                                                        NonTypeParm,
2066                                                        Converted);
2067    if (Arg.isInvalid())
2068      return TemplateArgumentLoc();
2069
2070    Expr *ArgE = Arg.takeAs<Expr>();
2071    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2072  }
2073
2074  TemplateTemplateParmDecl *TempTempParm
2075    = cast<TemplateTemplateParmDecl>(Param);
2076  if (!TempTempParm->hasDefaultArgument())
2077    return TemplateArgumentLoc();
2078
2079  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2080                                                    TemplateLoc,
2081                                                    RAngleLoc,
2082                                                    TempTempParm,
2083                                                    Converted);
2084  if (TName.isNull())
2085    return TemplateArgumentLoc();
2086
2087  return TemplateArgumentLoc(TemplateArgument(TName),
2088                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2089                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2090}
2091
2092/// \brief Check that the given template argument corresponds to the given
2093/// template parameter.
2094bool Sema::CheckTemplateArgument(NamedDecl *Param,
2095                                 const TemplateArgumentLoc &Arg,
2096                                 TemplateDecl *Template,
2097                                 SourceLocation TemplateLoc,
2098                                 SourceLocation RAngleLoc,
2099                            llvm::SmallVectorImpl<TemplateArgument> &Converted,
2100                                 CheckTemplateArgumentKind CTAK) {
2101  // Check template type parameters.
2102  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2103    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2104
2105  // Check non-type template parameters.
2106  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2107    // Do substitution on the type of the non-type template parameter
2108    // with the template arguments we've seen thus far.
2109    QualType NTTPType = NTTP->getType();
2110    if (NTTPType->isDependentType()) {
2111      // Do substitution on the type of the non-type template parameter.
2112      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2113                                 NTTP, Converted.data(), Converted.size(),
2114                                 SourceRange(TemplateLoc, RAngleLoc));
2115
2116      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2117                                        Converted.data(), Converted.size());
2118      NTTPType = SubstType(NTTPType,
2119                           MultiLevelTemplateArgumentList(TemplateArgs),
2120                           NTTP->getLocation(),
2121                           NTTP->getDeclName());
2122      // If that worked, check the non-type template parameter type
2123      // for validity.
2124      if (!NTTPType.isNull())
2125        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2126                                                     NTTP->getLocation());
2127      if (NTTPType.isNull())
2128        return true;
2129    }
2130
2131    switch (Arg.getArgument().getKind()) {
2132    case TemplateArgument::Null:
2133      assert(false && "Should never see a NULL template argument here");
2134      return true;
2135
2136    case TemplateArgument::Expression: {
2137      Expr *E = Arg.getArgument().getAsExpr();
2138      TemplateArgument Result;
2139      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2140        return true;
2141
2142      Converted.push_back(Result);
2143      break;
2144    }
2145
2146    case TemplateArgument::Declaration:
2147    case TemplateArgument::Integral:
2148      // We've already checked this template argument, so just copy
2149      // it to the list of converted arguments.
2150      Converted.push_back(Arg.getArgument());
2151      break;
2152
2153    case TemplateArgument::Template:
2154      // We were given a template template argument. It may not be ill-formed;
2155      // see below.
2156      if (DependentTemplateName *DTN
2157            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2158        // We have a template argument such as \c T::template X, which we
2159        // parsed as a template template argument. However, since we now
2160        // know that we need a non-type template argument, convert this
2161        // template name into an expression.
2162
2163        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2164                                     Arg.getTemplateNameLoc());
2165
2166        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2167                                                    DTN->getQualifier(),
2168                                               Arg.getTemplateQualifierRange(),
2169                                                    NameInfo);
2170
2171        TemplateArgument Result;
2172        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2173          return true;
2174
2175        Converted.push_back(Result);
2176        break;
2177      }
2178
2179      // We have a template argument that actually does refer to a class
2180      // template, template alias, or template template parameter, and
2181      // therefore cannot be a non-type template argument.
2182      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2183        << Arg.getSourceRange();
2184
2185      Diag(Param->getLocation(), diag::note_template_param_here);
2186      return true;
2187
2188    case TemplateArgument::Type: {
2189      // We have a non-type template parameter but the template
2190      // argument is a type.
2191
2192      // C++ [temp.arg]p2:
2193      //   In a template-argument, an ambiguity between a type-id and
2194      //   an expression is resolved to a type-id, regardless of the
2195      //   form of the corresponding template-parameter.
2196      //
2197      // We warn specifically about this case, since it can be rather
2198      // confusing for users.
2199      QualType T = Arg.getArgument().getAsType();
2200      SourceRange SR = Arg.getSourceRange();
2201      if (T->isFunctionType())
2202        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2203      else
2204        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2205      Diag(Param->getLocation(), diag::note_template_param_here);
2206      return true;
2207    }
2208
2209    case TemplateArgument::Pack:
2210      llvm_unreachable("Caller must expand template argument packs");
2211      break;
2212    }
2213
2214    return false;
2215  }
2216
2217
2218  // Check template template parameters.
2219  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2220
2221  // Substitute into the template parameter list of the template
2222  // template parameter, since previously-supplied template arguments
2223  // may appear within the template template parameter.
2224  {
2225    // Set up a template instantiation context.
2226    LocalInstantiationScope Scope(*this);
2227    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2228                               TempParm, Converted.data(), Converted.size(),
2229                               SourceRange(TemplateLoc, RAngleLoc));
2230
2231    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2232                                      Converted.data(), Converted.size());
2233    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2234                      SubstDecl(TempParm, CurContext,
2235                                MultiLevelTemplateArgumentList(TemplateArgs)));
2236    if (!TempParm)
2237      return true;
2238
2239    // FIXME: TempParam is leaked.
2240  }
2241
2242  switch (Arg.getArgument().getKind()) {
2243  case TemplateArgument::Null:
2244    assert(false && "Should never see a NULL template argument here");
2245    return true;
2246
2247  case TemplateArgument::Template:
2248    if (CheckTemplateArgument(TempParm, Arg))
2249      return true;
2250
2251    Converted.push_back(Arg.getArgument());
2252    break;
2253
2254  case TemplateArgument::Expression:
2255  case TemplateArgument::Type:
2256    // We have a template template parameter but the template
2257    // argument does not refer to a template.
2258    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2259    return true;
2260
2261  case TemplateArgument::Declaration:
2262    llvm_unreachable(
2263                       "Declaration argument with template template parameter");
2264    break;
2265  case TemplateArgument::Integral:
2266    llvm_unreachable(
2267                          "Integral argument with template template parameter");
2268    break;
2269
2270  case TemplateArgument::Pack:
2271    llvm_unreachable("Caller must expand template argument packs");
2272    break;
2273  }
2274
2275  return false;
2276}
2277
2278/// \brief Check that the given template argument list is well-formed
2279/// for specializing the given template.
2280bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2281                                     SourceLocation TemplateLoc,
2282                                const TemplateArgumentListInfo &TemplateArgs,
2283                                     bool PartialTemplateArgs,
2284                          llvm::SmallVectorImpl<TemplateArgument> &Converted) {
2285  TemplateParameterList *Params = Template->getTemplateParameters();
2286  unsigned NumParams = Params->size();
2287  unsigned NumArgs = TemplateArgs.size();
2288  bool Invalid = false;
2289
2290  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2291
2292  bool HasParameterPack =
2293    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2294
2295  if ((NumArgs > NumParams && !HasParameterPack) ||
2296      (NumArgs < Params->getMinRequiredArguments() &&
2297       !PartialTemplateArgs)) {
2298    // FIXME: point at either the first arg beyond what we can handle,
2299    // or the '>', depending on whether we have too many or too few
2300    // arguments.
2301    SourceRange Range;
2302    if (NumArgs > NumParams)
2303      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2304    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2305      << (NumArgs > NumParams)
2306      << (isa<ClassTemplateDecl>(Template)? 0 :
2307          isa<FunctionTemplateDecl>(Template)? 1 :
2308          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2309      << Template << Range;
2310    Diag(Template->getLocation(), diag::note_template_decl_here)
2311      << Params->getSourceRange();
2312    Invalid = true;
2313  }
2314
2315  // C++ [temp.arg]p1:
2316  //   [...] The type and form of each template-argument specified in
2317  //   a template-id shall match the type and form specified for the
2318  //   corresponding parameter declared by the template in its
2319  //   template-parameter-list.
2320  unsigned ArgIdx = 0;
2321  for (TemplateParameterList::iterator Param = Params->begin(),
2322                                       ParamEnd = Params->end();
2323       Param != ParamEnd; ++Param, ++ArgIdx) {
2324    if (ArgIdx > NumArgs && PartialTemplateArgs)
2325      break;
2326
2327    // If we have a template parameter pack, check every remaining template
2328    // argument against that template parameter pack.
2329    if ((*Param)->isTemplateParameterPack()) {
2330      Diag(TemplateLoc, diag::err_variadic_templates_unsupported);
2331      return true;
2332    }
2333
2334    if (ArgIdx < NumArgs) {
2335      // Check the template argument we were given.
2336      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2337                                TemplateLoc, RAngleLoc, Converted))
2338        return true;
2339
2340      continue;
2341    }
2342
2343    // We have a default template argument that we will use.
2344    TemplateArgumentLoc Arg;
2345
2346    // Retrieve the default template argument from the template
2347    // parameter. For each kind of template parameter, we substitute the
2348    // template arguments provided thus far and any "outer" template arguments
2349    // (when the template parameter was part of a nested template) into
2350    // the default argument.
2351    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2352      if (!TTP->hasDefaultArgument()) {
2353        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2354        break;
2355      }
2356
2357      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2358                                                             Template,
2359                                                             TemplateLoc,
2360                                                             RAngleLoc,
2361                                                             TTP,
2362                                                             Converted);
2363      if (!ArgType)
2364        return true;
2365
2366      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2367                                ArgType);
2368    } else if (NonTypeTemplateParmDecl *NTTP
2369                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2370      if (!NTTP->hasDefaultArgument()) {
2371        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2372        break;
2373      }
2374
2375      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2376                                                              TemplateLoc,
2377                                                              RAngleLoc,
2378                                                              NTTP,
2379                                                              Converted);
2380      if (E.isInvalid())
2381        return true;
2382
2383      Expr *Ex = E.takeAs<Expr>();
2384      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2385    } else {
2386      TemplateTemplateParmDecl *TempParm
2387        = cast<TemplateTemplateParmDecl>(*Param);
2388
2389      if (!TempParm->hasDefaultArgument()) {
2390        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2391        break;
2392      }
2393
2394      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2395                                                       TemplateLoc,
2396                                                       RAngleLoc,
2397                                                       TempParm,
2398                                                       Converted);
2399      if (Name.isNull())
2400        return true;
2401
2402      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2403                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2404                  TempParm->getDefaultArgument().getTemplateNameLoc());
2405    }
2406
2407    // Introduce an instantiation record that describes where we are using
2408    // the default template argument.
2409    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2410                                        Converted.data(), Converted.size(),
2411                                        SourceRange(TemplateLoc, RAngleLoc));
2412
2413    // Check the default template argument.
2414    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2415                              RAngleLoc, Converted))
2416      return true;
2417  }
2418
2419  return Invalid;
2420}
2421
2422namespace {
2423  class UnnamedLocalNoLinkageFinder
2424    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2425  {
2426    Sema &S;
2427    SourceRange SR;
2428
2429    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2430
2431  public:
2432    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2433
2434    bool Visit(QualType T) {
2435      return inherited::Visit(T.getTypePtr());
2436    }
2437
2438#define TYPE(Class, Parent) \
2439    bool Visit##Class##Type(const Class##Type *);
2440#define ABSTRACT_TYPE(Class, Parent) \
2441    bool Visit##Class##Type(const Class##Type *) { return false; }
2442#define NON_CANONICAL_TYPE(Class, Parent) \
2443    bool Visit##Class##Type(const Class##Type *) { return false; }
2444#include "clang/AST/TypeNodes.def"
2445
2446    bool VisitTagDecl(const TagDecl *Tag);
2447    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2448  };
2449}
2450
2451bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2452  return false;
2453}
2454
2455bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2456  return Visit(T->getElementType());
2457}
2458
2459bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2460  return Visit(T->getPointeeType());
2461}
2462
2463bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2464                                                    const BlockPointerType* T) {
2465  return Visit(T->getPointeeType());
2466}
2467
2468bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2469                                                const LValueReferenceType* T) {
2470  return Visit(T->getPointeeType());
2471}
2472
2473bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2474                                                const RValueReferenceType* T) {
2475  return Visit(T->getPointeeType());
2476}
2477
2478bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2479                                                  const MemberPointerType* T) {
2480  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2481}
2482
2483bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2484                                                  const ConstantArrayType* T) {
2485  return Visit(T->getElementType());
2486}
2487
2488bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2489                                                 const IncompleteArrayType* T) {
2490  return Visit(T->getElementType());
2491}
2492
2493bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2494                                                   const VariableArrayType* T) {
2495  return Visit(T->getElementType());
2496}
2497
2498bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2499                                            const DependentSizedArrayType* T) {
2500  return Visit(T->getElementType());
2501}
2502
2503bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2504                                         const DependentSizedExtVectorType* T) {
2505  return Visit(T->getElementType());
2506}
2507
2508bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2509  return Visit(T->getElementType());
2510}
2511
2512bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2513  return Visit(T->getElementType());
2514}
2515
2516bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2517                                                  const FunctionProtoType* T) {
2518  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2519                                         AEnd = T->arg_type_end();
2520       A != AEnd; ++A) {
2521    if (Visit(*A))
2522      return true;
2523  }
2524
2525  return Visit(T->getResultType());
2526}
2527
2528bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2529                                               const FunctionNoProtoType* T) {
2530  return Visit(T->getResultType());
2531}
2532
2533bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2534                                                  const UnresolvedUsingType*) {
2535  return false;
2536}
2537
2538bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2539  return false;
2540}
2541
2542bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2543  return Visit(T->getUnderlyingType());
2544}
2545
2546bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2547  return false;
2548}
2549
2550bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2551  return VisitTagDecl(T->getDecl());
2552}
2553
2554bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2555  return VisitTagDecl(T->getDecl());
2556}
2557
2558bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2559                                                 const TemplateTypeParmType*) {
2560  return false;
2561}
2562
2563bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2564                                            const TemplateSpecializationType*) {
2565  return false;
2566}
2567
2568bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2569                                              const InjectedClassNameType* T) {
2570  return VisitTagDecl(T->getDecl());
2571}
2572
2573bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2574                                                   const DependentNameType* T) {
2575  return VisitNestedNameSpecifier(T->getQualifier());
2576}
2577
2578bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2579                                 const DependentTemplateSpecializationType* T) {
2580  return VisitNestedNameSpecifier(T->getQualifier());
2581}
2582
2583bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2584  return false;
2585}
2586
2587bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2588                                                   const ObjCInterfaceType *) {
2589  return false;
2590}
2591
2592bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2593                                                const ObjCObjectPointerType *) {
2594  return false;
2595}
2596
2597bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2598  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2599    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2600      << S.Context.getTypeDeclType(Tag) << SR;
2601    return true;
2602  }
2603
2604  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2605    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2606    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2607    return true;
2608  }
2609
2610  return false;
2611}
2612
2613bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2614                                                    NestedNameSpecifier *NNS) {
2615  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2616    return true;
2617
2618  switch (NNS->getKind()) {
2619  case NestedNameSpecifier::Identifier:
2620  case NestedNameSpecifier::Namespace:
2621  case NestedNameSpecifier::Global:
2622    return false;
2623
2624  case NestedNameSpecifier::TypeSpec:
2625  case NestedNameSpecifier::TypeSpecWithTemplate:
2626    return Visit(QualType(NNS->getAsType(), 0));
2627  }
2628  return false;
2629}
2630
2631
2632/// \brief Check a template argument against its corresponding
2633/// template type parameter.
2634///
2635/// This routine implements the semantics of C++ [temp.arg.type]. It
2636/// returns true if an error occurred, and false otherwise.
2637bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2638                                 TypeSourceInfo *ArgInfo) {
2639  assert(ArgInfo && "invalid TypeSourceInfo");
2640  QualType Arg = ArgInfo->getType();
2641  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2642
2643  if (Arg->isVariablyModifiedType()) {
2644    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2645  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2646    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2647  }
2648
2649  // C++03 [temp.arg.type]p2:
2650  //   A local type, a type with no linkage, an unnamed type or a type
2651  //   compounded from any of these types shall not be used as a
2652  //   template-argument for a template type-parameter.
2653  //
2654  // C++0x allows these, and even in C++03 we allow them as an extension with
2655  // a warning.
2656  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2657    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2658    (void)Finder.Visit(Context.getCanonicalType(Arg));
2659  }
2660
2661  return false;
2662}
2663
2664/// \brief Checks whether the given template argument is the address
2665/// of an object or function according to C++ [temp.arg.nontype]p1.
2666static bool
2667CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2668                                               NonTypeTemplateParmDecl *Param,
2669                                               QualType ParamType,
2670                                               Expr *ArgIn,
2671                                               TemplateArgument &Converted) {
2672  bool Invalid = false;
2673  Expr *Arg = ArgIn;
2674  QualType ArgType = Arg->getType();
2675
2676  // See through any implicit casts we added to fix the type.
2677  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2678    Arg = Cast->getSubExpr();
2679
2680  // C++ [temp.arg.nontype]p1:
2681  //
2682  //   A template-argument for a non-type, non-template
2683  //   template-parameter shall be one of: [...]
2684  //
2685  //     -- the address of an object or function with external
2686  //        linkage, including function templates and function
2687  //        template-ids but excluding non-static class members,
2688  //        expressed as & id-expression where the & is optional if
2689  //        the name refers to a function or array, or if the
2690  //        corresponding template-parameter is a reference; or
2691  DeclRefExpr *DRE = 0;
2692
2693  // In C++98/03 mode, give an extension warning on any extra parentheses.
2694  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2695  bool ExtraParens = false;
2696  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2697    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2698      S.Diag(Arg->getSourceRange().getBegin(),
2699             diag::ext_template_arg_extra_parens)
2700        << Arg->getSourceRange();
2701      ExtraParens = true;
2702    }
2703
2704    Arg = Parens->getSubExpr();
2705  }
2706
2707  bool AddressTaken = false;
2708  SourceLocation AddrOpLoc;
2709  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2710    if (UnOp->getOpcode() == UO_AddrOf) {
2711      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2712      AddressTaken = true;
2713      AddrOpLoc = UnOp->getOperatorLoc();
2714    }
2715  } else
2716    DRE = dyn_cast<DeclRefExpr>(Arg);
2717
2718  if (!DRE) {
2719    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2720      << Arg->getSourceRange();
2721    S.Diag(Param->getLocation(), diag::note_template_param_here);
2722    return true;
2723  }
2724
2725  // Stop checking the precise nature of the argument if it is value dependent,
2726  // it should be checked when instantiated.
2727  if (Arg->isValueDependent()) {
2728    Converted = TemplateArgument(ArgIn);
2729    return false;
2730  }
2731
2732  if (!isa<ValueDecl>(DRE->getDecl())) {
2733    S.Diag(Arg->getSourceRange().getBegin(),
2734           diag::err_template_arg_not_object_or_func_form)
2735      << Arg->getSourceRange();
2736    S.Diag(Param->getLocation(), diag::note_template_param_here);
2737    return true;
2738  }
2739
2740  NamedDecl *Entity = 0;
2741
2742  // Cannot refer to non-static data members
2743  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2744    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2745      << Field << Arg->getSourceRange();
2746    S.Diag(Param->getLocation(), diag::note_template_param_here);
2747    return true;
2748  }
2749
2750  // Cannot refer to non-static member functions
2751  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2752    if (!Method->isStatic()) {
2753      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2754        << Method << Arg->getSourceRange();
2755      S.Diag(Param->getLocation(), diag::note_template_param_here);
2756      return true;
2757    }
2758
2759  // Functions must have external linkage.
2760  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2761    if (!isExternalLinkage(Func->getLinkage())) {
2762      S.Diag(Arg->getSourceRange().getBegin(),
2763             diag::err_template_arg_function_not_extern)
2764        << Func << Arg->getSourceRange();
2765      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2766        << true;
2767      return true;
2768    }
2769
2770    // Okay: we've named a function with external linkage.
2771    Entity = Func;
2772
2773    // If the template parameter has pointer type, the function decays.
2774    if (ParamType->isPointerType() && !AddressTaken)
2775      ArgType = S.Context.getPointerType(Func->getType());
2776    else if (AddressTaken && ParamType->isReferenceType()) {
2777      // If we originally had an address-of operator, but the
2778      // parameter has reference type, complain and (if things look
2779      // like they will work) drop the address-of operator.
2780      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2781                                            ParamType.getNonReferenceType())) {
2782        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2783          << ParamType;
2784        S.Diag(Param->getLocation(), diag::note_template_param_here);
2785        return true;
2786      }
2787
2788      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2789        << ParamType
2790        << FixItHint::CreateRemoval(AddrOpLoc);
2791      S.Diag(Param->getLocation(), diag::note_template_param_here);
2792
2793      ArgType = Func->getType();
2794    }
2795  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2796    if (!isExternalLinkage(Var->getLinkage())) {
2797      S.Diag(Arg->getSourceRange().getBegin(),
2798             diag::err_template_arg_object_not_extern)
2799        << Var << Arg->getSourceRange();
2800      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2801        << true;
2802      return true;
2803    }
2804
2805    // A value of reference type is not an object.
2806    if (Var->getType()->isReferenceType()) {
2807      S.Diag(Arg->getSourceRange().getBegin(),
2808             diag::err_template_arg_reference_var)
2809        << Var->getType() << Arg->getSourceRange();
2810      S.Diag(Param->getLocation(), diag::note_template_param_here);
2811      return true;
2812    }
2813
2814    // Okay: we've named an object with external linkage
2815    Entity = Var;
2816
2817    // If the template parameter has pointer type, we must have taken
2818    // the address of this object.
2819    if (ParamType->isReferenceType()) {
2820      if (AddressTaken) {
2821        // If we originally had an address-of operator, but the
2822        // parameter has reference type, complain and (if things look
2823        // like they will work) drop the address-of operator.
2824        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2825                                            ParamType.getNonReferenceType())) {
2826          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2827            << ParamType;
2828          S.Diag(Param->getLocation(), diag::note_template_param_here);
2829          return true;
2830        }
2831
2832        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2833          << ParamType
2834          << FixItHint::CreateRemoval(AddrOpLoc);
2835        S.Diag(Param->getLocation(), diag::note_template_param_here);
2836
2837        ArgType = Var->getType();
2838      }
2839    } else if (!AddressTaken && ParamType->isPointerType()) {
2840      if (Var->getType()->isArrayType()) {
2841        // Array-to-pointer decay.
2842        ArgType = S.Context.getArrayDecayedType(Var->getType());
2843      } else {
2844        // If the template parameter has pointer type but the address of
2845        // this object was not taken, complain and (possibly) recover by
2846        // taking the address of the entity.
2847        ArgType = S.Context.getPointerType(Var->getType());
2848        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2849          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2850            << ParamType;
2851          S.Diag(Param->getLocation(), diag::note_template_param_here);
2852          return true;
2853        }
2854
2855        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2856          << ParamType
2857          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2858
2859        S.Diag(Param->getLocation(), diag::note_template_param_here);
2860      }
2861    }
2862  } else {
2863    // We found something else, but we don't know specifically what it is.
2864    S.Diag(Arg->getSourceRange().getBegin(),
2865           diag::err_template_arg_not_object_or_func)
2866      << Arg->getSourceRange();
2867    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2868    return true;
2869  }
2870
2871  if (ParamType->isPointerType() &&
2872      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2873      S.IsQualificationConversion(ArgType, ParamType)) {
2874    // For pointer-to-object types, qualification conversions are
2875    // permitted.
2876  } else {
2877    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2878      if (!ParamRef->getPointeeType()->isFunctionType()) {
2879        // C++ [temp.arg.nontype]p5b3:
2880        //   For a non-type template-parameter of type reference to
2881        //   object, no conversions apply. The type referred to by the
2882        //   reference may be more cv-qualified than the (otherwise
2883        //   identical) type of the template- argument. The
2884        //   template-parameter is bound directly to the
2885        //   template-argument, which shall be an lvalue.
2886
2887        // FIXME: Other qualifiers?
2888        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2889        unsigned ArgQuals = ArgType.getCVRQualifiers();
2890
2891        if ((ParamQuals | ArgQuals) != ParamQuals) {
2892          S.Diag(Arg->getSourceRange().getBegin(),
2893                 diag::err_template_arg_ref_bind_ignores_quals)
2894            << ParamType << Arg->getType()
2895            << Arg->getSourceRange();
2896          S.Diag(Param->getLocation(), diag::note_template_param_here);
2897          return true;
2898        }
2899      }
2900    }
2901
2902    // At this point, the template argument refers to an object or
2903    // function with external linkage. We now need to check whether the
2904    // argument and parameter types are compatible.
2905    if (!S.Context.hasSameUnqualifiedType(ArgType,
2906                                          ParamType.getNonReferenceType())) {
2907      // We can't perform this conversion or binding.
2908      if (ParamType->isReferenceType())
2909        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2910          << ParamType << Arg->getType() << Arg->getSourceRange();
2911      else
2912        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2913          << Arg->getType() << ParamType << Arg->getSourceRange();
2914      S.Diag(Param->getLocation(), diag::note_template_param_here);
2915      return true;
2916    }
2917  }
2918
2919  // Create the template argument.
2920  Converted = TemplateArgument(Entity->getCanonicalDecl());
2921  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2922  return false;
2923}
2924
2925/// \brief Checks whether the given template argument is a pointer to
2926/// member constant according to C++ [temp.arg.nontype]p1.
2927bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2928                                                TemplateArgument &Converted) {
2929  bool Invalid = false;
2930
2931  // See through any implicit casts we added to fix the type.
2932  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2933    Arg = Cast->getSubExpr();
2934
2935  // C++ [temp.arg.nontype]p1:
2936  //
2937  //   A template-argument for a non-type, non-template
2938  //   template-parameter shall be one of: [...]
2939  //
2940  //     -- a pointer to member expressed as described in 5.3.1.
2941  DeclRefExpr *DRE = 0;
2942
2943  // In C++98/03 mode, give an extension warning on any extra parentheses.
2944  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2945  bool ExtraParens = false;
2946  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2947    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
2948      Diag(Arg->getSourceRange().getBegin(),
2949           diag::ext_template_arg_extra_parens)
2950        << Arg->getSourceRange();
2951      ExtraParens = true;
2952    }
2953
2954    Arg = Parens->getSubExpr();
2955  }
2956
2957  // A pointer-to-member constant written &Class::member.
2958  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2959    if (UnOp->getOpcode() == UO_AddrOf) {
2960      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2961      if (DRE && !DRE->getQualifier())
2962        DRE = 0;
2963    }
2964  }
2965  // A constant of pointer-to-member type.
2966  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2967    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2968      if (VD->getType()->isMemberPointerType()) {
2969        if (isa<NonTypeTemplateParmDecl>(VD) ||
2970            (isa<VarDecl>(VD) &&
2971             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2972          if (Arg->isTypeDependent() || Arg->isValueDependent())
2973            Converted = TemplateArgument(Arg);
2974          else
2975            Converted = TemplateArgument(VD->getCanonicalDecl());
2976          return Invalid;
2977        }
2978      }
2979    }
2980
2981    DRE = 0;
2982  }
2983
2984  if (!DRE)
2985    return Diag(Arg->getSourceRange().getBegin(),
2986                diag::err_template_arg_not_pointer_to_member_form)
2987      << Arg->getSourceRange();
2988
2989  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2990    assert((isa<FieldDecl>(DRE->getDecl()) ||
2991            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2992           "Only non-static member pointers can make it here");
2993
2994    // Okay: this is the address of a non-static member, and therefore
2995    // a member pointer constant.
2996    if (Arg->isTypeDependent() || Arg->isValueDependent())
2997      Converted = TemplateArgument(Arg);
2998    else
2999      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3000    return Invalid;
3001  }
3002
3003  // We found something else, but we don't know specifically what it is.
3004  Diag(Arg->getSourceRange().getBegin(),
3005       diag::err_template_arg_not_pointer_to_member_form)
3006      << Arg->getSourceRange();
3007  Diag(DRE->getDecl()->getLocation(),
3008       diag::note_template_arg_refers_here);
3009  return true;
3010}
3011
3012/// \brief Check a template argument against its corresponding
3013/// non-type template parameter.
3014///
3015/// This routine implements the semantics of C++ [temp.arg.nontype].
3016/// It returns true if an error occurred, and false otherwise. \p
3017/// InstantiatedParamType is the type of the non-type template
3018/// parameter after it has been instantiated.
3019///
3020/// If no error was detected, Converted receives the converted template argument.
3021bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3022                                 QualType InstantiatedParamType, Expr *&Arg,
3023                                 TemplateArgument &Converted,
3024                                 CheckTemplateArgumentKind CTAK) {
3025  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3026
3027  // If either the parameter has a dependent type or the argument is
3028  // type-dependent, there's nothing we can check now.
3029  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3030    // FIXME: Produce a cloned, canonical expression?
3031    Converted = TemplateArgument(Arg);
3032    return false;
3033  }
3034
3035  // C++ [temp.arg.nontype]p5:
3036  //   The following conversions are performed on each expression used
3037  //   as a non-type template-argument. If a non-type
3038  //   template-argument cannot be converted to the type of the
3039  //   corresponding template-parameter then the program is
3040  //   ill-formed.
3041  //
3042  //     -- for a non-type template-parameter of integral or
3043  //        enumeration type, integral promotions (4.5) and integral
3044  //        conversions (4.7) are applied.
3045  QualType ParamType = InstantiatedParamType;
3046  QualType ArgType = Arg->getType();
3047  if (ParamType->isIntegralOrEnumerationType()) {
3048    // C++ [temp.arg.nontype]p1:
3049    //   A template-argument for a non-type, non-template
3050    //   template-parameter shall be one of:
3051    //
3052    //     -- an integral constant-expression of integral or enumeration
3053    //        type; or
3054    //     -- the name of a non-type template-parameter; or
3055    SourceLocation NonConstantLoc;
3056    llvm::APSInt Value;
3057    if (!ArgType->isIntegralOrEnumerationType()) {
3058      Diag(Arg->getSourceRange().getBegin(),
3059           diag::err_template_arg_not_integral_or_enumeral)
3060        << ArgType << Arg->getSourceRange();
3061      Diag(Param->getLocation(), diag::note_template_param_here);
3062      return true;
3063    } else if (!Arg->isValueDependent() &&
3064               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3065      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3066        << ArgType << Arg->getSourceRange();
3067      return true;
3068    }
3069
3070    // From here on out, all we care about are the unqualified forms
3071    // of the parameter and argument types.
3072    ParamType = ParamType.getUnqualifiedType();
3073    ArgType = ArgType.getUnqualifiedType();
3074
3075    // Try to convert the argument to the parameter's type.
3076    if (Context.hasSameType(ParamType, ArgType)) {
3077      // Okay: no conversion necessary
3078    } else if (CTAK == CTAK_Deduced) {
3079      // C++ [temp.deduct.type]p17:
3080      //   If, in the declaration of a function template with a non-type
3081      //   template-parameter, the non-type template- parameter is used
3082      //   in an expression in the function parameter-list and, if the
3083      //   corresponding template-argument is deduced, the
3084      //   template-argument type shall match the type of the
3085      //   template-parameter exactly, except that a template-argument
3086      //   deduced from an array bound may be of any integral type.
3087      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3088        << ArgType << ParamType;
3089      Diag(Param->getLocation(), diag::note_template_param_here);
3090      return true;
3091    } else if (ParamType->isBooleanType()) {
3092      // This is an integral-to-boolean conversion.
3093      ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean);
3094    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3095               !ParamType->isEnumeralType()) {
3096      // This is an integral promotion or conversion.
3097      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3098    } else {
3099      // We can't perform this conversion.
3100      Diag(Arg->getSourceRange().getBegin(),
3101           diag::err_template_arg_not_convertible)
3102        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3103      Diag(Param->getLocation(), diag::note_template_param_here);
3104      return true;
3105    }
3106
3107    QualType IntegerType = Context.getCanonicalType(ParamType);
3108    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3109      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3110
3111    if (!Arg->isValueDependent()) {
3112      llvm::APSInt OldValue = Value;
3113
3114      // Coerce the template argument's value to the value it will have
3115      // based on the template parameter's type.
3116      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3117      if (Value.getBitWidth() != AllowedBits)
3118        Value.extOrTrunc(AllowedBits);
3119      Value.setIsSigned(IntegerType->isSignedIntegerType());
3120
3121      // Complain if an unsigned parameter received a negative value.
3122      if (IntegerType->isUnsignedIntegerType()
3123          && (OldValue.isSigned() && OldValue.isNegative())) {
3124        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3125          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3126          << Arg->getSourceRange();
3127        Diag(Param->getLocation(), diag::note_template_param_here);
3128      }
3129
3130      // Complain if we overflowed the template parameter's type.
3131      unsigned RequiredBits;
3132      if (IntegerType->isUnsignedIntegerType())
3133        RequiredBits = OldValue.getActiveBits();
3134      else if (OldValue.isUnsigned())
3135        RequiredBits = OldValue.getActiveBits() + 1;
3136      else
3137        RequiredBits = OldValue.getMinSignedBits();
3138      if (RequiredBits > AllowedBits) {
3139        Diag(Arg->getSourceRange().getBegin(),
3140             diag::warn_template_arg_too_large)
3141          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3142          << Arg->getSourceRange();
3143        Diag(Param->getLocation(), diag::note_template_param_here);
3144      }
3145    }
3146
3147    // Add the value of this argument to the list of converted
3148    // arguments. We use the bitwidth and signedness of the template
3149    // parameter.
3150    if (Arg->isValueDependent()) {
3151      // The argument is value-dependent. Create a new
3152      // TemplateArgument with the converted expression.
3153      Converted = TemplateArgument(Arg);
3154      return false;
3155    }
3156
3157    Converted = TemplateArgument(Value,
3158                                 ParamType->isEnumeralType() ? ParamType
3159                                                             : IntegerType);
3160    return false;
3161  }
3162
3163  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3164
3165  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3166  // from a template argument of type std::nullptr_t to a non-type
3167  // template parameter of type pointer to object, pointer to
3168  // function, or pointer-to-member, respectively.
3169  if (ArgType->isNullPtrType() &&
3170      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3171    Converted = TemplateArgument((NamedDecl *)0);
3172    return false;
3173  }
3174
3175  // Handle pointer-to-function, reference-to-function, and
3176  // pointer-to-member-function all in (roughly) the same way.
3177  if (// -- For a non-type template-parameter of type pointer to
3178      //    function, only the function-to-pointer conversion (4.3) is
3179      //    applied. If the template-argument represents a set of
3180      //    overloaded functions (or a pointer to such), the matching
3181      //    function is selected from the set (13.4).
3182      (ParamType->isPointerType() &&
3183       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3184      // -- For a non-type template-parameter of type reference to
3185      //    function, no conversions apply. If the template-argument
3186      //    represents a set of overloaded functions, the matching
3187      //    function is selected from the set (13.4).
3188      (ParamType->isReferenceType() &&
3189       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3190      // -- For a non-type template-parameter of type pointer to
3191      //    member function, no conversions apply. If the
3192      //    template-argument represents a set of overloaded member
3193      //    functions, the matching member function is selected from
3194      //    the set (13.4).
3195      (ParamType->isMemberPointerType() &&
3196       ParamType->getAs<MemberPointerType>()->getPointeeType()
3197         ->isFunctionType())) {
3198
3199    if (Arg->getType() == Context.OverloadTy) {
3200      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3201                                                                true,
3202                                                                FoundResult)) {
3203        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3204          return true;
3205
3206        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3207        ArgType = Arg->getType();
3208      } else
3209        return true;
3210    }
3211
3212    if (!ParamType->isMemberPointerType())
3213      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3214                                                            ParamType,
3215                                                            Arg, Converted);
3216
3217    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3218      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3219    } else if (!Context.hasSameUnqualifiedType(ArgType,
3220                                           ParamType.getNonReferenceType())) {
3221      // We can't perform this conversion.
3222      Diag(Arg->getSourceRange().getBegin(),
3223           diag::err_template_arg_not_convertible)
3224        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3225      Diag(Param->getLocation(), diag::note_template_param_here);
3226      return true;
3227    }
3228
3229    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3230  }
3231
3232  if (ParamType->isPointerType()) {
3233    //   -- for a non-type template-parameter of type pointer to
3234    //      object, qualification conversions (4.4) and the
3235    //      array-to-pointer conversion (4.2) are applied.
3236    // C++0x also allows a value of std::nullptr_t.
3237    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3238           "Only object pointers allowed here");
3239
3240    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3241                                                          ParamType,
3242                                                          Arg, Converted);
3243  }
3244
3245  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3246    //   -- For a non-type template-parameter of type reference to
3247    //      object, no conversions apply. The type referred to by the
3248    //      reference may be more cv-qualified than the (otherwise
3249    //      identical) type of the template-argument. The
3250    //      template-parameter is bound directly to the
3251    //      template-argument, which must be an lvalue.
3252    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3253           "Only object references allowed here");
3254
3255    if (Arg->getType() == Context.OverloadTy) {
3256      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3257                                                 ParamRefType->getPointeeType(),
3258                                                                true,
3259                                                                FoundResult)) {
3260        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3261          return true;
3262
3263        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3264        ArgType = Arg->getType();
3265      } else
3266        return true;
3267    }
3268
3269    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3270                                                          ParamType,
3271                                                          Arg, Converted);
3272  }
3273
3274  //     -- For a non-type template-parameter of type pointer to data
3275  //        member, qualification conversions (4.4) are applied.
3276  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3277
3278  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3279    // Types match exactly: nothing more to do here.
3280  } else if (IsQualificationConversion(ArgType, ParamType)) {
3281    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3282  } else {
3283    // We can't perform this conversion.
3284    Diag(Arg->getSourceRange().getBegin(),
3285         diag::err_template_arg_not_convertible)
3286      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3287    Diag(Param->getLocation(), diag::note_template_param_here);
3288    return true;
3289  }
3290
3291  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3292}
3293
3294/// \brief Check a template argument against its corresponding
3295/// template template parameter.
3296///
3297/// This routine implements the semantics of C++ [temp.arg.template].
3298/// It returns true if an error occurred, and false otherwise.
3299bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3300                                 const TemplateArgumentLoc &Arg) {
3301  TemplateName Name = Arg.getArgument().getAsTemplate();
3302  TemplateDecl *Template = Name.getAsTemplateDecl();
3303  if (!Template) {
3304    // Any dependent template name is fine.
3305    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3306    return false;
3307  }
3308
3309  // C++ [temp.arg.template]p1:
3310  //   A template-argument for a template template-parameter shall be
3311  //   the name of a class template, expressed as id-expression. Only
3312  //   primary class templates are considered when matching the
3313  //   template template argument with the corresponding parameter;
3314  //   partial specializations are not considered even if their
3315  //   parameter lists match that of the template template parameter.
3316  //
3317  // Note that we also allow template template parameters here, which
3318  // will happen when we are dealing with, e.g., class template
3319  // partial specializations.
3320  if (!isa<ClassTemplateDecl>(Template) &&
3321      !isa<TemplateTemplateParmDecl>(Template)) {
3322    assert(isa<FunctionTemplateDecl>(Template) &&
3323           "Only function templates are possible here");
3324    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3325    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3326      << Template;
3327  }
3328
3329  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3330                                         Param->getTemplateParameters(),
3331                                         true,
3332                                         TPL_TemplateTemplateArgumentMatch,
3333                                         Arg.getLocation());
3334}
3335
3336/// \brief Given a non-type template argument that refers to a
3337/// declaration and the type of its corresponding non-type template
3338/// parameter, produce an expression that properly refers to that
3339/// declaration.
3340ExprResult
3341Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3342                                              QualType ParamType,
3343                                              SourceLocation Loc) {
3344  assert(Arg.getKind() == TemplateArgument::Declaration &&
3345         "Only declaration template arguments permitted here");
3346  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3347
3348  if (VD->getDeclContext()->isRecord() &&
3349      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3350    // If the value is a class member, we might have a pointer-to-member.
3351    // Determine whether the non-type template template parameter is of
3352    // pointer-to-member type. If so, we need to build an appropriate
3353    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3354    // would refer to the member itself.
3355    if (ParamType->isMemberPointerType()) {
3356      QualType ClassType
3357        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3358      NestedNameSpecifier *Qualifier
3359        = NestedNameSpecifier::Create(Context, 0, false,
3360                                      ClassType.getTypePtr());
3361      CXXScopeSpec SS;
3362      SS.setScopeRep(Qualifier);
3363      ExprResult RefExpr = BuildDeclRefExpr(VD,
3364                                           VD->getType().getNonReferenceType(),
3365                                                  Loc,
3366                                                  &SS);
3367      if (RefExpr.isInvalid())
3368        return ExprError();
3369
3370      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3371
3372      // We might need to perform a trailing qualification conversion, since
3373      // the element type on the parameter could be more qualified than the
3374      // element type in the expression we constructed.
3375      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3376                                    ParamType.getUnqualifiedType())) {
3377        Expr *RefE = RefExpr.takeAs<Expr>();
3378        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3379        RefExpr = Owned(RefE);
3380      }
3381
3382      assert(!RefExpr.isInvalid() &&
3383             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3384                                 ParamType.getUnqualifiedType()));
3385      return move(RefExpr);
3386    }
3387  }
3388
3389  QualType T = VD->getType().getNonReferenceType();
3390  if (ParamType->isPointerType()) {
3391    // When the non-type template parameter is a pointer, take the
3392    // address of the declaration.
3393    ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3394    if (RefExpr.isInvalid())
3395      return ExprError();
3396
3397    if (T->isFunctionType() || T->isArrayType()) {
3398      // Decay functions and arrays.
3399      Expr *RefE = (Expr *)RefExpr.get();
3400      DefaultFunctionArrayConversion(RefE);
3401      if (RefE != RefExpr.get()) {
3402        RefExpr.release();
3403        RefExpr = Owned(RefE);
3404      }
3405
3406      return move(RefExpr);
3407    }
3408
3409    // Take the address of everything else
3410    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3411  }
3412
3413  // If the non-type template parameter has reference type, qualify the
3414  // resulting declaration reference with the extra qualifiers on the
3415  // type that the reference refers to.
3416  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3417    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3418
3419  return BuildDeclRefExpr(VD, T, Loc);
3420}
3421
3422/// \brief Construct a new expression that refers to the given
3423/// integral template argument with the given source-location
3424/// information.
3425///
3426/// This routine takes care of the mapping from an integral template
3427/// argument (which may have any integral type) to the appropriate
3428/// literal value.
3429ExprResult
3430Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3431                                                  SourceLocation Loc) {
3432  assert(Arg.getKind() == TemplateArgument::Integral &&
3433         "Operation is only value for integral template arguments");
3434  QualType T = Arg.getIntegralType();
3435  if (T->isCharType() || T->isWideCharType())
3436    return Owned(new (Context) CharacterLiteral(
3437                                             Arg.getAsIntegral()->getZExtValue(),
3438                                             T->isWideCharType(),
3439                                             T,
3440                                             Loc));
3441  if (T->isBooleanType())
3442    return Owned(new (Context) CXXBoolLiteralExpr(
3443                                            Arg.getAsIntegral()->getBoolValue(),
3444                                            T,
3445                                            Loc));
3446
3447  return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc));
3448}
3449
3450
3451/// \brief Determine whether the given template parameter lists are
3452/// equivalent.
3453///
3454/// \param New  The new template parameter list, typically written in the
3455/// source code as part of a new template declaration.
3456///
3457/// \param Old  The old template parameter list, typically found via
3458/// name lookup of the template declared with this template parameter
3459/// list.
3460///
3461/// \param Complain  If true, this routine will produce a diagnostic if
3462/// the template parameter lists are not equivalent.
3463///
3464/// \param Kind describes how we are to match the template parameter lists.
3465///
3466/// \param TemplateArgLoc If this source location is valid, then we
3467/// are actually checking the template parameter list of a template
3468/// argument (New) against the template parameter list of its
3469/// corresponding template template parameter (Old). We produce
3470/// slightly different diagnostics in this scenario.
3471///
3472/// \returns True if the template parameter lists are equal, false
3473/// otherwise.
3474bool
3475Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3476                                     TemplateParameterList *Old,
3477                                     bool Complain,
3478                                     TemplateParameterListEqualKind Kind,
3479                                     SourceLocation TemplateArgLoc) {
3480  if (Old->size() != New->size()) {
3481    if (Complain) {
3482      unsigned NextDiag = diag::err_template_param_list_different_arity;
3483      if (TemplateArgLoc.isValid()) {
3484        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3485        NextDiag = diag::note_template_param_list_different_arity;
3486      }
3487      Diag(New->getTemplateLoc(), NextDiag)
3488          << (New->size() > Old->size())
3489          << (Kind != TPL_TemplateMatch)
3490          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3491      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3492        << (Kind != TPL_TemplateMatch)
3493        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3494    }
3495
3496    return false;
3497  }
3498
3499  for (TemplateParameterList::iterator OldParm = Old->begin(),
3500         OldParmEnd = Old->end(), NewParm = New->begin();
3501       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3502    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3503      if (Complain) {
3504        unsigned NextDiag = diag::err_template_param_different_kind;
3505        if (TemplateArgLoc.isValid()) {
3506          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3507          NextDiag = diag::note_template_param_different_kind;
3508        }
3509        Diag((*NewParm)->getLocation(), NextDiag)
3510          << (Kind != TPL_TemplateMatch);
3511        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3512          << (Kind != TPL_TemplateMatch);
3513      }
3514      return false;
3515    }
3516
3517    if (TemplateTypeParmDecl *OldTTP
3518                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3519      // Template type parameters are equivalent if either both are template
3520      // type parameter packs or neither are (since we know we're at the same
3521      // index).
3522      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3523      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3524        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3525        // allow one to match a template parameter pack in the template
3526        // parameter list of a template template parameter to one or more
3527        // template parameters in the template parameter list of the
3528        // corresponding template template argument.
3529        if (Complain) {
3530          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3531          if (TemplateArgLoc.isValid()) {
3532            Diag(TemplateArgLoc,
3533                 diag::err_template_arg_template_params_mismatch);
3534            NextDiag = diag::note_template_parameter_pack_non_pack;
3535          }
3536          Diag(NewTTP->getLocation(), NextDiag)
3537            << 0 << NewTTP->isParameterPack();
3538          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3539            << 0 << OldTTP->isParameterPack();
3540        }
3541        return false;
3542      }
3543    } else if (NonTypeTemplateParmDecl *OldNTTP
3544                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3545      // The types of non-type template parameters must agree.
3546      NonTypeTemplateParmDecl *NewNTTP
3547        = cast<NonTypeTemplateParmDecl>(*NewParm);
3548
3549      // If we are matching a template template argument to a template
3550      // template parameter and one of the non-type template parameter types
3551      // is dependent, then we must wait until template instantiation time
3552      // to actually compare the arguments.
3553      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3554          (OldNTTP->getType()->isDependentType() ||
3555           NewNTTP->getType()->isDependentType()))
3556        continue;
3557
3558      if (Context.getCanonicalType(OldNTTP->getType()) !=
3559            Context.getCanonicalType(NewNTTP->getType())) {
3560        if (Complain) {
3561          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3562          if (TemplateArgLoc.isValid()) {
3563            Diag(TemplateArgLoc,
3564                 diag::err_template_arg_template_params_mismatch);
3565            NextDiag = diag::note_template_nontype_parm_different_type;
3566          }
3567          Diag(NewNTTP->getLocation(), NextDiag)
3568            << NewNTTP->getType()
3569            << (Kind != TPL_TemplateMatch);
3570          Diag(OldNTTP->getLocation(),
3571               diag::note_template_nontype_parm_prev_declaration)
3572            << OldNTTP->getType();
3573        }
3574        return false;
3575      }
3576    } else {
3577      // The template parameter lists of template template
3578      // parameters must agree.
3579      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3580             "Only template template parameters handled here");
3581      TemplateTemplateParmDecl *OldTTP
3582        = cast<TemplateTemplateParmDecl>(*OldParm);
3583      TemplateTemplateParmDecl *NewTTP
3584        = cast<TemplateTemplateParmDecl>(*NewParm);
3585      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3586                                          OldTTP->getTemplateParameters(),
3587                                          Complain,
3588              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3589                                          TemplateArgLoc))
3590        return false;
3591    }
3592  }
3593
3594  return true;
3595}
3596
3597/// \brief Check whether a template can be declared within this scope.
3598///
3599/// If the template declaration is valid in this scope, returns
3600/// false. Otherwise, issues a diagnostic and returns true.
3601bool
3602Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3603  // Find the nearest enclosing declaration scope.
3604  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3605         (S->getFlags() & Scope::TemplateParamScope) != 0)
3606    S = S->getParent();
3607
3608  // C++ [temp]p2:
3609  //   A template-declaration can appear only as a namespace scope or
3610  //   class scope declaration.
3611  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3612  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3613      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3614    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3615             << TemplateParams->getSourceRange();
3616
3617  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3618    Ctx = Ctx->getParent();
3619
3620  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3621    return false;
3622
3623  return Diag(TemplateParams->getTemplateLoc(),
3624              diag::err_template_outside_namespace_or_class_scope)
3625    << TemplateParams->getSourceRange();
3626}
3627
3628/// \brief Determine what kind of template specialization the given declaration
3629/// is.
3630static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3631  if (!D)
3632    return TSK_Undeclared;
3633
3634  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3635    return Record->getTemplateSpecializationKind();
3636  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3637    return Function->getTemplateSpecializationKind();
3638  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3639    return Var->getTemplateSpecializationKind();
3640
3641  return TSK_Undeclared;
3642}
3643
3644/// \brief Check whether a specialization is well-formed in the current
3645/// context.
3646///
3647/// This routine determines whether a template specialization can be declared
3648/// in the current context (C++ [temp.expl.spec]p2).
3649///
3650/// \param S the semantic analysis object for which this check is being
3651/// performed.
3652///
3653/// \param Specialized the entity being specialized or instantiated, which
3654/// may be a kind of template (class template, function template, etc.) or
3655/// a member of a class template (member function, static data member,
3656/// member class).
3657///
3658/// \param PrevDecl the previous declaration of this entity, if any.
3659///
3660/// \param Loc the location of the explicit specialization or instantiation of
3661/// this entity.
3662///
3663/// \param IsPartialSpecialization whether this is a partial specialization of
3664/// a class template.
3665///
3666/// \returns true if there was an error that we cannot recover from, false
3667/// otherwise.
3668static bool CheckTemplateSpecializationScope(Sema &S,
3669                                             NamedDecl *Specialized,
3670                                             NamedDecl *PrevDecl,
3671                                             SourceLocation Loc,
3672                                             bool IsPartialSpecialization) {
3673  // Keep these "kind" numbers in sync with the %select statements in the
3674  // various diagnostics emitted by this routine.
3675  int EntityKind = 0;
3676  bool isTemplateSpecialization = false;
3677  if (isa<ClassTemplateDecl>(Specialized)) {
3678    EntityKind = IsPartialSpecialization? 1 : 0;
3679    isTemplateSpecialization = true;
3680  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3681    EntityKind = 2;
3682    isTemplateSpecialization = true;
3683  } else if (isa<CXXMethodDecl>(Specialized))
3684    EntityKind = 3;
3685  else if (isa<VarDecl>(Specialized))
3686    EntityKind = 4;
3687  else if (isa<RecordDecl>(Specialized))
3688    EntityKind = 5;
3689  else {
3690    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3691    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3692    return true;
3693  }
3694
3695  // C++ [temp.expl.spec]p2:
3696  //   An explicit specialization shall be declared in the namespace
3697  //   of which the template is a member, or, for member templates, in
3698  //   the namespace of which the enclosing class or enclosing class
3699  //   template is a member. An explicit specialization of a member
3700  //   function, member class or static data member of a class
3701  //   template shall be declared in the namespace of which the class
3702  //   template is a member. Such a declaration may also be a
3703  //   definition. If the declaration is not a definition, the
3704  //   specialization may be defined later in the name- space in which
3705  //   the explicit specialization was declared, or in a namespace
3706  //   that encloses the one in which the explicit specialization was
3707  //   declared.
3708  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3709    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3710      << Specialized;
3711    return true;
3712  }
3713
3714  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3715    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3716      << Specialized;
3717    return true;
3718  }
3719
3720  // C++ [temp.class.spec]p6:
3721  //   A class template partial specialization may be declared or redeclared
3722  //   in any namespace scope in which its definition may be defined (14.5.1
3723  //   and 14.5.2).
3724  bool ComplainedAboutScope = false;
3725  DeclContext *SpecializedContext
3726    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3727  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3728  if ((!PrevDecl ||
3729       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3730       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3731    // C++ [temp.exp.spec]p2:
3732    //   An explicit specialization shall be declared in the namespace of which
3733    //   the template is a member, or, for member templates, in the namespace
3734    //   of which the enclosing class or enclosing class template is a member.
3735    //   An explicit specialization of a member function, member class or
3736    //   static data member of a class template shall be declared in the
3737    //   namespace of which the class template is a member.
3738    //
3739    // C++0x [temp.expl.spec]p2:
3740    //   An explicit specialization shall be declared in a namespace enclosing
3741    //   the specialized template.
3742    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3743        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3744      bool IsCPlusPlus0xExtension
3745        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3746      if (isa<TranslationUnitDecl>(SpecializedContext))
3747        S.Diag(Loc, IsCPlusPlus0xExtension
3748                      ? diag::ext_template_spec_decl_out_of_scope_global
3749                      : diag::err_template_spec_decl_out_of_scope_global)
3750          << EntityKind << Specialized;
3751      else if (isa<NamespaceDecl>(SpecializedContext))
3752        S.Diag(Loc, IsCPlusPlus0xExtension
3753                      ? diag::ext_template_spec_decl_out_of_scope
3754                      : diag::err_template_spec_decl_out_of_scope)
3755          << EntityKind << Specialized
3756          << cast<NamedDecl>(SpecializedContext);
3757
3758      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3759      ComplainedAboutScope = true;
3760    }
3761  }
3762
3763  // Make sure that this redeclaration (or definition) occurs in an enclosing
3764  // namespace.
3765  // Note that HandleDeclarator() performs this check for explicit
3766  // specializations of function templates, static data members, and member
3767  // functions, so we skip the check here for those kinds of entities.
3768  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3769  // Should we refactor that check, so that it occurs later?
3770  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3771      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3772        isa<FunctionDecl>(Specialized))) {
3773    if (isa<TranslationUnitDecl>(SpecializedContext))
3774      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3775        << EntityKind << Specialized;
3776    else if (isa<NamespaceDecl>(SpecializedContext))
3777      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3778        << EntityKind << Specialized
3779        << cast<NamedDecl>(SpecializedContext);
3780
3781    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3782  }
3783
3784  // FIXME: check for specialization-after-instantiation errors and such.
3785
3786  return false;
3787}
3788
3789/// \brief Check the non-type template arguments of a class template
3790/// partial specialization according to C++ [temp.class.spec]p9.
3791///
3792/// \param TemplateParams the template parameters of the primary class
3793/// template.
3794///
3795/// \param TemplateArg the template arguments of the class template
3796/// partial specialization.
3797///
3798/// \param MirrorsPrimaryTemplate will be set true if the class
3799/// template partial specialization arguments are identical to the
3800/// implicit template arguments of the primary template. This is not
3801/// necessarily an error (C++0x), and it is left to the caller to diagnose
3802/// this condition when it is an error.
3803///
3804/// \returns true if there was an error, false otherwise.
3805bool Sema::CheckClassTemplatePartialSpecializationArgs(
3806                                        TemplateParameterList *TemplateParams,
3807                         llvm::SmallVectorImpl<TemplateArgument> &TemplateArgs,
3808                                        bool &MirrorsPrimaryTemplate) {
3809  // FIXME: the interface to this function will have to change to
3810  // accommodate variadic templates.
3811  MirrorsPrimaryTemplate = true;
3812
3813  const TemplateArgument *ArgList = TemplateArgs.data();
3814
3815  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3816    // Determine whether the template argument list of the partial
3817    // specialization is identical to the implicit argument list of
3818    // the primary template. The caller may need to diagnostic this as
3819    // an error per C++ [temp.class.spec]p9b3.
3820    if (MirrorsPrimaryTemplate) {
3821      if (TemplateTypeParmDecl *TTP
3822            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3823        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3824              Context.getCanonicalType(ArgList[I].getAsType()))
3825          MirrorsPrimaryTemplate = false;
3826      } else if (TemplateTemplateParmDecl *TTP
3827                   = dyn_cast<TemplateTemplateParmDecl>(
3828                                                 TemplateParams->getParam(I))) {
3829        TemplateName Name = ArgList[I].getAsTemplate();
3830        TemplateTemplateParmDecl *ArgDecl
3831          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3832        if (!ArgDecl ||
3833            ArgDecl->getIndex() != TTP->getIndex() ||
3834            ArgDecl->getDepth() != TTP->getDepth())
3835          MirrorsPrimaryTemplate = false;
3836      }
3837    }
3838
3839    NonTypeTemplateParmDecl *Param
3840      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3841    if (!Param) {
3842      continue;
3843    }
3844
3845    Expr *ArgExpr = ArgList[I].getAsExpr();
3846    if (!ArgExpr) {
3847      MirrorsPrimaryTemplate = false;
3848      continue;
3849    }
3850
3851    // C++ [temp.class.spec]p8:
3852    //   A non-type argument is non-specialized if it is the name of a
3853    //   non-type parameter. All other non-type arguments are
3854    //   specialized.
3855    //
3856    // Below, we check the two conditions that only apply to
3857    // specialized non-type arguments, so skip any non-specialized
3858    // arguments.
3859    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3860      if (NonTypeTemplateParmDecl *NTTP
3861            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3862        if (MirrorsPrimaryTemplate &&
3863            (Param->getIndex() != NTTP->getIndex() ||
3864             Param->getDepth() != NTTP->getDepth()))
3865          MirrorsPrimaryTemplate = false;
3866
3867        continue;
3868      }
3869
3870    // C++ [temp.class.spec]p9:
3871    //   Within the argument list of a class template partial
3872    //   specialization, the following restrictions apply:
3873    //     -- A partially specialized non-type argument expression
3874    //        shall not involve a template parameter of the partial
3875    //        specialization except when the argument expression is a
3876    //        simple identifier.
3877    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3878      Diag(ArgExpr->getLocStart(),
3879           diag::err_dependent_non_type_arg_in_partial_spec)
3880        << ArgExpr->getSourceRange();
3881      return true;
3882    }
3883
3884    //     -- The type of a template parameter corresponding to a
3885    //        specialized non-type argument shall not be dependent on a
3886    //        parameter of the specialization.
3887    if (Param->getType()->isDependentType()) {
3888      Diag(ArgExpr->getLocStart(),
3889           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3890        << Param->getType()
3891        << ArgExpr->getSourceRange();
3892      Diag(Param->getLocation(), diag::note_template_param_here);
3893      return true;
3894    }
3895
3896    MirrorsPrimaryTemplate = false;
3897  }
3898
3899  return false;
3900}
3901
3902/// \brief Retrieve the previous declaration of the given declaration.
3903static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3904  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3905    return VD->getPreviousDeclaration();
3906  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3907    return FD->getPreviousDeclaration();
3908  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3909    return TD->getPreviousDeclaration();
3910  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3911    return TD->getPreviousDeclaration();
3912  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3913    return FTD->getPreviousDeclaration();
3914  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3915    return CTD->getPreviousDeclaration();
3916  return 0;
3917}
3918
3919DeclResult
3920Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3921                                       TagUseKind TUK,
3922                                       SourceLocation KWLoc,
3923                                       CXXScopeSpec &SS,
3924                                       TemplateTy TemplateD,
3925                                       SourceLocation TemplateNameLoc,
3926                                       SourceLocation LAngleLoc,
3927                                       ASTTemplateArgsPtr TemplateArgsIn,
3928                                       SourceLocation RAngleLoc,
3929                                       AttributeList *Attr,
3930                               MultiTemplateParamsArg TemplateParameterLists) {
3931  assert(TUK != TUK_Reference && "References are not specializations");
3932
3933  // Find the class template we're specializing
3934  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3935  ClassTemplateDecl *ClassTemplate
3936    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3937
3938  if (!ClassTemplate) {
3939    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3940      << (Name.getAsTemplateDecl() &&
3941          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3942    return true;
3943  }
3944
3945  bool isExplicitSpecialization = false;
3946  bool isPartialSpecialization = false;
3947
3948  // Check the validity of the template headers that introduce this
3949  // template.
3950  // FIXME: We probably shouldn't complain about these headers for
3951  // friend declarations.
3952  bool Invalid = false;
3953  TemplateParameterList *TemplateParams
3954    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3955                        (TemplateParameterList**)TemplateParameterLists.get(),
3956                                              TemplateParameterLists.size(),
3957                                              TUK == TUK_Friend,
3958                                              isExplicitSpecialization,
3959                                              Invalid);
3960  if (Invalid)
3961    return true;
3962
3963  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3964  if (TemplateParams)
3965    --NumMatchedTemplateParamLists;
3966
3967  if (TemplateParams && TemplateParams->size() > 0) {
3968    isPartialSpecialization = true;
3969
3970    // C++ [temp.class.spec]p10:
3971    //   The template parameter list of a specialization shall not
3972    //   contain default template argument values.
3973    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3974      Decl *Param = TemplateParams->getParam(I);
3975      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3976        if (TTP->hasDefaultArgument()) {
3977          Diag(TTP->getDefaultArgumentLoc(),
3978               diag::err_default_arg_in_partial_spec);
3979          TTP->removeDefaultArgument();
3980        }
3981      } else if (NonTypeTemplateParmDecl *NTTP
3982                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3983        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3984          Diag(NTTP->getDefaultArgumentLoc(),
3985               diag::err_default_arg_in_partial_spec)
3986            << DefArg->getSourceRange();
3987          NTTP->removeDefaultArgument();
3988        }
3989      } else {
3990        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3991        if (TTP->hasDefaultArgument()) {
3992          Diag(TTP->getDefaultArgument().getLocation(),
3993               diag::err_default_arg_in_partial_spec)
3994            << TTP->getDefaultArgument().getSourceRange();
3995          TTP->removeDefaultArgument();
3996        }
3997      }
3998    }
3999  } else if (TemplateParams) {
4000    if (TUK == TUK_Friend)
4001      Diag(KWLoc, diag::err_template_spec_friend)
4002        << FixItHint::CreateRemoval(
4003                                SourceRange(TemplateParams->getTemplateLoc(),
4004                                            TemplateParams->getRAngleLoc()))
4005        << SourceRange(LAngleLoc, RAngleLoc);
4006    else
4007      isExplicitSpecialization = true;
4008  } else if (TUK != TUK_Friend) {
4009    Diag(KWLoc, diag::err_template_spec_needs_header)
4010      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4011    isExplicitSpecialization = true;
4012  }
4013
4014  // Check that the specialization uses the same tag kind as the
4015  // original template.
4016  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4017  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4018  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4019                                    Kind, KWLoc,
4020                                    *ClassTemplate->getIdentifier())) {
4021    Diag(KWLoc, diag::err_use_with_wrong_tag)
4022      << ClassTemplate
4023      << FixItHint::CreateReplacement(KWLoc,
4024                            ClassTemplate->getTemplatedDecl()->getKindName());
4025    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4026         diag::note_previous_use);
4027    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4028  }
4029
4030  // Translate the parser's template argument list in our AST format.
4031  TemplateArgumentListInfo TemplateArgs;
4032  TemplateArgs.setLAngleLoc(LAngleLoc);
4033  TemplateArgs.setRAngleLoc(RAngleLoc);
4034  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4035
4036  // Check that the template argument list is well-formed for this
4037  // template.
4038  llvm::SmallVector<TemplateArgument, 4> Converted;
4039  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4040                                TemplateArgs, false, Converted))
4041    return true;
4042
4043  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4044         "Converted template argument list is too short!");
4045
4046  // Find the class template (partial) specialization declaration that
4047  // corresponds to these arguments.
4048  if (isPartialSpecialization) {
4049    bool MirrorsPrimaryTemplate;
4050    if (CheckClassTemplatePartialSpecializationArgs(
4051                                         ClassTemplate->getTemplateParameters(),
4052                                         Converted, MirrorsPrimaryTemplate))
4053      return true;
4054
4055    if (MirrorsPrimaryTemplate) {
4056      // C++ [temp.class.spec]p9b3:
4057      //
4058      //   -- The argument list of the specialization shall not be identical
4059      //      to the implicit argument list of the primary template.
4060      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4061        << (TUK == TUK_Definition)
4062        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4063      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4064                                ClassTemplate->getIdentifier(),
4065                                TemplateNameLoc,
4066                                Attr,
4067                                TemplateParams,
4068                                AS_none);
4069    }
4070
4071    // FIXME: Diagnose friend partial specializations
4072
4073    if (!Name.isDependent() &&
4074        !TemplateSpecializationType::anyDependentTemplateArguments(
4075                                             TemplateArgs.getArgumentArray(),
4076                                                         TemplateArgs.size())) {
4077      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4078        << ClassTemplate->getDeclName();
4079      isPartialSpecialization = false;
4080    }
4081  }
4082
4083  void *InsertPos = 0;
4084  ClassTemplateSpecializationDecl *PrevDecl = 0;
4085
4086  if (isPartialSpecialization)
4087    // FIXME: Template parameter list matters, too
4088    PrevDecl
4089      = ClassTemplate->findPartialSpecialization(Converted.data(),
4090                                                 Converted.size(),
4091                                                 InsertPos);
4092  else
4093    PrevDecl
4094      = ClassTemplate->findSpecialization(Converted.data(),
4095                                          Converted.size(), InsertPos);
4096
4097  ClassTemplateSpecializationDecl *Specialization = 0;
4098
4099  // Check whether we can declare a class template specialization in
4100  // the current scope.
4101  if (TUK != TUK_Friend &&
4102      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4103                                       TemplateNameLoc,
4104                                       isPartialSpecialization))
4105    return true;
4106
4107  // The canonical type
4108  QualType CanonType;
4109  if (PrevDecl &&
4110      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4111               TUK == TUK_Friend)) {
4112    // Since the only prior class template specialization with these
4113    // arguments was referenced but not declared, or we're only
4114    // referencing this specialization as a friend, reuse that
4115    // declaration node as our own, updating its source location to
4116    // reflect our new declaration.
4117    Specialization = PrevDecl;
4118    Specialization->setLocation(TemplateNameLoc);
4119    PrevDecl = 0;
4120    CanonType = Context.getTypeDeclType(Specialization);
4121  } else if (isPartialSpecialization) {
4122    // Build the canonical type that describes the converted template
4123    // arguments of the class template partial specialization.
4124    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4125    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4126                                                  Converted.data(),
4127                                                  Converted.size());
4128
4129    // Create a new class template partial specialization declaration node.
4130    ClassTemplatePartialSpecializationDecl *PrevPartial
4131      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4132    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4133                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4134    ClassTemplatePartialSpecializationDecl *Partial
4135      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4136                                             ClassTemplate->getDeclContext(),
4137                                                       TemplateNameLoc,
4138                                                       TemplateParams,
4139                                                       ClassTemplate,
4140                                                       Converted.data(),
4141                                                       Converted.size(),
4142                                                       TemplateArgs,
4143                                                       CanonType,
4144                                                       PrevPartial,
4145                                                       SequenceNumber);
4146    SetNestedNameSpecifier(Partial, SS);
4147    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4148      Partial->setTemplateParameterListsInfo(Context,
4149                                             NumMatchedTemplateParamLists,
4150                    (TemplateParameterList**) TemplateParameterLists.release());
4151    }
4152
4153    if (!PrevPartial)
4154      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4155    Specialization = Partial;
4156
4157    // If we are providing an explicit specialization of a member class
4158    // template specialization, make a note of that.
4159    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4160      PrevPartial->setMemberSpecialization();
4161
4162    // Check that all of the template parameters of the class template
4163    // partial specialization are deducible from the template
4164    // arguments. If not, this class template partial specialization
4165    // will never be used.
4166    llvm::SmallVector<bool, 8> DeducibleParams;
4167    DeducibleParams.resize(TemplateParams->size());
4168    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4169                               TemplateParams->getDepth(),
4170                               DeducibleParams);
4171    unsigned NumNonDeducible = 0;
4172    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4173      if (!DeducibleParams[I])
4174        ++NumNonDeducible;
4175
4176    if (NumNonDeducible) {
4177      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4178        << (NumNonDeducible > 1)
4179        << SourceRange(TemplateNameLoc, RAngleLoc);
4180      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4181        if (!DeducibleParams[I]) {
4182          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4183          if (Param->getDeclName())
4184            Diag(Param->getLocation(),
4185                 diag::note_partial_spec_unused_parameter)
4186              << Param->getDeclName();
4187          else
4188            Diag(Param->getLocation(),
4189                 diag::note_partial_spec_unused_parameter)
4190              << "<anonymous>";
4191        }
4192      }
4193    }
4194  } else {
4195    // Create a new class template specialization declaration node for
4196    // this explicit specialization or friend declaration.
4197    Specialization
4198      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4199                                             ClassTemplate->getDeclContext(),
4200                                                TemplateNameLoc,
4201                                                ClassTemplate,
4202                                                Converted.data(),
4203                                                Converted.size(),
4204                                                PrevDecl);
4205    SetNestedNameSpecifier(Specialization, SS);
4206    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4207      Specialization->setTemplateParameterListsInfo(Context,
4208                                                  NumMatchedTemplateParamLists,
4209                    (TemplateParameterList**) TemplateParameterLists.release());
4210    }
4211
4212    if (!PrevDecl)
4213      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4214
4215    CanonType = Context.getTypeDeclType(Specialization);
4216  }
4217
4218  // C++ [temp.expl.spec]p6:
4219  //   If a template, a member template or the member of a class template is
4220  //   explicitly specialized then that specialization shall be declared
4221  //   before the first use of that specialization that would cause an implicit
4222  //   instantiation to take place, in every translation unit in which such a
4223  //   use occurs; no diagnostic is required.
4224  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4225    bool Okay = false;
4226    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4227      // Is there any previous explicit specialization declaration?
4228      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4229        Okay = true;
4230        break;
4231      }
4232    }
4233
4234    if (!Okay) {
4235      SourceRange Range(TemplateNameLoc, RAngleLoc);
4236      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4237        << Context.getTypeDeclType(Specialization) << Range;
4238
4239      Diag(PrevDecl->getPointOfInstantiation(),
4240           diag::note_instantiation_required_here)
4241        << (PrevDecl->getTemplateSpecializationKind()
4242                                                != TSK_ImplicitInstantiation);
4243      return true;
4244    }
4245  }
4246
4247  // If this is not a friend, note that this is an explicit specialization.
4248  if (TUK != TUK_Friend)
4249    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4250
4251  // Check that this isn't a redefinition of this specialization.
4252  if (TUK == TUK_Definition) {
4253    if (RecordDecl *Def = Specialization->getDefinition()) {
4254      SourceRange Range(TemplateNameLoc, RAngleLoc);
4255      Diag(TemplateNameLoc, diag::err_redefinition)
4256        << Context.getTypeDeclType(Specialization) << Range;
4257      Diag(Def->getLocation(), diag::note_previous_definition);
4258      Specialization->setInvalidDecl();
4259      return true;
4260    }
4261  }
4262
4263  // Build the fully-sugared type for this class template
4264  // specialization as the user wrote in the specialization
4265  // itself. This means that we'll pretty-print the type retrieved
4266  // from the specialization's declaration the way that the user
4267  // actually wrote the specialization, rather than formatting the
4268  // name based on the "canonical" representation used to store the
4269  // template arguments in the specialization.
4270  TypeSourceInfo *WrittenTy
4271    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4272                                                TemplateArgs, CanonType);
4273  if (TUK != TUK_Friend) {
4274    Specialization->setTypeAsWritten(WrittenTy);
4275    if (TemplateParams)
4276      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4277  }
4278  TemplateArgsIn.release();
4279
4280  // C++ [temp.expl.spec]p9:
4281  //   A template explicit specialization is in the scope of the
4282  //   namespace in which the template was defined.
4283  //
4284  // We actually implement this paragraph where we set the semantic
4285  // context (in the creation of the ClassTemplateSpecializationDecl),
4286  // but we also maintain the lexical context where the actual
4287  // definition occurs.
4288  Specialization->setLexicalDeclContext(CurContext);
4289
4290  // We may be starting the definition of this specialization.
4291  if (TUK == TUK_Definition)
4292    Specialization->startDefinition();
4293
4294  if (TUK == TUK_Friend) {
4295    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4296                                            TemplateNameLoc,
4297                                            WrittenTy,
4298                                            /*FIXME:*/KWLoc);
4299    Friend->setAccess(AS_public);
4300    CurContext->addDecl(Friend);
4301  } else {
4302    // Add the specialization into its lexical context, so that it can
4303    // be seen when iterating through the list of declarations in that
4304    // context. However, specializations are not found by name lookup.
4305    CurContext->addDecl(Specialization);
4306  }
4307  return Specialization;
4308}
4309
4310Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4311                              MultiTemplateParamsArg TemplateParameterLists,
4312                                    Declarator &D) {
4313  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4314}
4315
4316Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4317                               MultiTemplateParamsArg TemplateParameterLists,
4318                                            Declarator &D) {
4319  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4320  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4321         "Not a function declarator!");
4322  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4323
4324  if (FTI.hasPrototype) {
4325    // FIXME: Diagnose arguments without names in C.
4326  }
4327
4328  Scope *ParentScope = FnBodyScope->getParent();
4329
4330  Decl *DP = HandleDeclarator(ParentScope, D,
4331                              move(TemplateParameterLists),
4332                              /*IsFunctionDefinition=*/true);
4333  if (FunctionTemplateDecl *FunctionTemplate
4334        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4335    return ActOnStartOfFunctionDef(FnBodyScope,
4336                                   FunctionTemplate->getTemplatedDecl());
4337  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4338    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4339  return 0;
4340}
4341
4342/// \brief Strips various properties off an implicit instantiation
4343/// that has just been explicitly specialized.
4344static void StripImplicitInstantiation(NamedDecl *D) {
4345  D->dropAttrs();
4346
4347  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4348    FD->setInlineSpecified(false);
4349  }
4350}
4351
4352/// \brief Diagnose cases where we have an explicit template specialization
4353/// before/after an explicit template instantiation, producing diagnostics
4354/// for those cases where they are required and determining whether the
4355/// new specialization/instantiation will have any effect.
4356///
4357/// \param NewLoc the location of the new explicit specialization or
4358/// instantiation.
4359///
4360/// \param NewTSK the kind of the new explicit specialization or instantiation.
4361///
4362/// \param PrevDecl the previous declaration of the entity.
4363///
4364/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4365///
4366/// \param PrevPointOfInstantiation if valid, indicates where the previus
4367/// declaration was instantiated (either implicitly or explicitly).
4368///
4369/// \param HasNoEffect will be set to true to indicate that the new
4370/// specialization or instantiation has no effect and should be ignored.
4371///
4372/// \returns true if there was an error that should prevent the introduction of
4373/// the new declaration into the AST, false otherwise.
4374bool
4375Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4376                                             TemplateSpecializationKind NewTSK,
4377                                             NamedDecl *PrevDecl,
4378                                             TemplateSpecializationKind PrevTSK,
4379                                        SourceLocation PrevPointOfInstantiation,
4380                                             bool &HasNoEffect) {
4381  HasNoEffect = false;
4382
4383  switch (NewTSK) {
4384  case TSK_Undeclared:
4385  case TSK_ImplicitInstantiation:
4386    assert(false && "Don't check implicit instantiations here");
4387    return false;
4388
4389  case TSK_ExplicitSpecialization:
4390    switch (PrevTSK) {
4391    case TSK_Undeclared:
4392    case TSK_ExplicitSpecialization:
4393      // Okay, we're just specializing something that is either already
4394      // explicitly specialized or has merely been mentioned without any
4395      // instantiation.
4396      return false;
4397
4398    case TSK_ImplicitInstantiation:
4399      if (PrevPointOfInstantiation.isInvalid()) {
4400        // The declaration itself has not actually been instantiated, so it is
4401        // still okay to specialize it.
4402        StripImplicitInstantiation(PrevDecl);
4403        return false;
4404      }
4405      // Fall through
4406
4407    case TSK_ExplicitInstantiationDeclaration:
4408    case TSK_ExplicitInstantiationDefinition:
4409      assert((PrevTSK == TSK_ImplicitInstantiation ||
4410              PrevPointOfInstantiation.isValid()) &&
4411             "Explicit instantiation without point of instantiation?");
4412
4413      // C++ [temp.expl.spec]p6:
4414      //   If a template, a member template or the member of a class template
4415      //   is explicitly specialized then that specialization shall be declared
4416      //   before the first use of that specialization that would cause an
4417      //   implicit instantiation to take place, in every translation unit in
4418      //   which such a use occurs; no diagnostic is required.
4419      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4420        // Is there any previous explicit specialization declaration?
4421        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4422          return false;
4423      }
4424
4425      Diag(NewLoc, diag::err_specialization_after_instantiation)
4426        << PrevDecl;
4427      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4428        << (PrevTSK != TSK_ImplicitInstantiation);
4429
4430      return true;
4431    }
4432    break;
4433
4434  case TSK_ExplicitInstantiationDeclaration:
4435    switch (PrevTSK) {
4436    case TSK_ExplicitInstantiationDeclaration:
4437      // This explicit instantiation declaration is redundant (that's okay).
4438      HasNoEffect = true;
4439      return false;
4440
4441    case TSK_Undeclared:
4442    case TSK_ImplicitInstantiation:
4443      // We're explicitly instantiating something that may have already been
4444      // implicitly instantiated; that's fine.
4445      return false;
4446
4447    case TSK_ExplicitSpecialization:
4448      // C++0x [temp.explicit]p4:
4449      //   For a given set of template parameters, if an explicit instantiation
4450      //   of a template appears after a declaration of an explicit
4451      //   specialization for that template, the explicit instantiation has no
4452      //   effect.
4453      HasNoEffect = true;
4454      return false;
4455
4456    case TSK_ExplicitInstantiationDefinition:
4457      // C++0x [temp.explicit]p10:
4458      //   If an entity is the subject of both an explicit instantiation
4459      //   declaration and an explicit instantiation definition in the same
4460      //   translation unit, the definition shall follow the declaration.
4461      Diag(NewLoc,
4462           diag::err_explicit_instantiation_declaration_after_definition);
4463      Diag(PrevPointOfInstantiation,
4464           diag::note_explicit_instantiation_definition_here);
4465      assert(PrevPointOfInstantiation.isValid() &&
4466             "Explicit instantiation without point of instantiation?");
4467      HasNoEffect = true;
4468      return false;
4469    }
4470    break;
4471
4472  case TSK_ExplicitInstantiationDefinition:
4473    switch (PrevTSK) {
4474    case TSK_Undeclared:
4475    case TSK_ImplicitInstantiation:
4476      // We're explicitly instantiating something that may have already been
4477      // implicitly instantiated; that's fine.
4478      return false;
4479
4480    case TSK_ExplicitSpecialization:
4481      // C++ DR 259, C++0x [temp.explicit]p4:
4482      //   For a given set of template parameters, if an explicit
4483      //   instantiation of a template appears after a declaration of
4484      //   an explicit specialization for that template, the explicit
4485      //   instantiation has no effect.
4486      //
4487      // In C++98/03 mode, we only give an extension warning here, because it
4488      // is not harmful to try to explicitly instantiate something that
4489      // has been explicitly specialized.
4490      if (!getLangOptions().CPlusPlus0x) {
4491        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4492          << PrevDecl;
4493        Diag(PrevDecl->getLocation(),
4494             diag::note_previous_template_specialization);
4495      }
4496      HasNoEffect = true;
4497      return false;
4498
4499    case TSK_ExplicitInstantiationDeclaration:
4500      // We're explicity instantiating a definition for something for which we
4501      // were previously asked to suppress instantiations. That's fine.
4502      return false;
4503
4504    case TSK_ExplicitInstantiationDefinition:
4505      // C++0x [temp.spec]p5:
4506      //   For a given template and a given set of template-arguments,
4507      //     - an explicit instantiation definition shall appear at most once
4508      //       in a program,
4509      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4510        << PrevDecl;
4511      Diag(PrevPointOfInstantiation,
4512           diag::note_previous_explicit_instantiation);
4513      HasNoEffect = true;
4514      return false;
4515    }
4516    break;
4517  }
4518
4519  assert(false && "Missing specialization/instantiation case?");
4520
4521  return false;
4522}
4523
4524/// \brief Perform semantic analysis for the given dependent function
4525/// template specialization.  The only possible way to get a dependent
4526/// function template specialization is with a friend declaration,
4527/// like so:
4528///
4529///   template <class T> void foo(T);
4530///   template <class T> class A {
4531///     friend void foo<>(T);
4532///   };
4533///
4534/// There really isn't any useful analysis we can do here, so we
4535/// just store the information.
4536bool
4537Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4538                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4539                                                   LookupResult &Previous) {
4540  // Remove anything from Previous that isn't a function template in
4541  // the correct context.
4542  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4543  LookupResult::Filter F = Previous.makeFilter();
4544  while (F.hasNext()) {
4545    NamedDecl *D = F.next()->getUnderlyingDecl();
4546    if (!isa<FunctionTemplateDecl>(D) ||
4547        !FDLookupContext->InEnclosingNamespaceSetOf(
4548                              D->getDeclContext()->getRedeclContext()))
4549      F.erase();
4550  }
4551  F.done();
4552
4553  // Should this be diagnosed here?
4554  if (Previous.empty()) return true;
4555
4556  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4557                                         ExplicitTemplateArgs);
4558  return false;
4559}
4560
4561/// \brief Perform semantic analysis for the given function template
4562/// specialization.
4563///
4564/// This routine performs all of the semantic analysis required for an
4565/// explicit function template specialization. On successful completion,
4566/// the function declaration \p FD will become a function template
4567/// specialization.
4568///
4569/// \param FD the function declaration, which will be updated to become a
4570/// function template specialization.
4571///
4572/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4573/// if any. Note that this may be valid info even when 0 arguments are
4574/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4575/// as it anyway contains info on the angle brackets locations.
4576///
4577/// \param PrevDecl the set of declarations that may be specialized by
4578/// this function specialization.
4579bool
4580Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4581                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4582                                          LookupResult &Previous) {
4583  // The set of function template specializations that could match this
4584  // explicit function template specialization.
4585  UnresolvedSet<8> Candidates;
4586
4587  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4588  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4589         I != E; ++I) {
4590    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4591    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4592      // Only consider templates found within the same semantic lookup scope as
4593      // FD.
4594      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4595                                Ovl->getDeclContext()->getRedeclContext()))
4596        continue;
4597
4598      // C++ [temp.expl.spec]p11:
4599      //   A trailing template-argument can be left unspecified in the
4600      //   template-id naming an explicit function template specialization
4601      //   provided it can be deduced from the function argument type.
4602      // Perform template argument deduction to determine whether we may be
4603      // specializing this template.
4604      // FIXME: It is somewhat wasteful to build
4605      TemplateDeductionInfo Info(Context, FD->getLocation());
4606      FunctionDecl *Specialization = 0;
4607      if (TemplateDeductionResult TDK
4608            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4609                                      FD->getType(),
4610                                      Specialization,
4611                                      Info)) {
4612        // FIXME: Template argument deduction failed; record why it failed, so
4613        // that we can provide nifty diagnostics.
4614        (void)TDK;
4615        continue;
4616      }
4617
4618      // Record this candidate.
4619      Candidates.addDecl(Specialization, I.getAccess());
4620    }
4621  }
4622
4623  // Find the most specialized function template.
4624  UnresolvedSetIterator Result
4625    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4626                         TPOC_Other, FD->getLocation(),
4627                  PDiag(diag::err_function_template_spec_no_match)
4628                    << FD->getDeclName(),
4629                  PDiag(diag::err_function_template_spec_ambiguous)
4630                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4631                  PDiag(diag::note_function_template_spec_matched));
4632  if (Result == Candidates.end())
4633    return true;
4634
4635  // Ignore access information;  it doesn't figure into redeclaration checking.
4636  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4637  Specialization->setLocation(FD->getLocation());
4638
4639  // FIXME: Check if the prior specialization has a point of instantiation.
4640  // If so, we have run afoul of .
4641
4642  // If this is a friend declaration, then we're not really declaring
4643  // an explicit specialization.
4644  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4645
4646  // Check the scope of this explicit specialization.
4647  if (!isFriend &&
4648      CheckTemplateSpecializationScope(*this,
4649                                       Specialization->getPrimaryTemplate(),
4650                                       Specialization, FD->getLocation(),
4651                                       false))
4652    return true;
4653
4654  // C++ [temp.expl.spec]p6:
4655  //   If a template, a member template or the member of a class template is
4656  //   explicitly specialized then that specialization shall be declared
4657  //   before the first use of that specialization that would cause an implicit
4658  //   instantiation to take place, in every translation unit in which such a
4659  //   use occurs; no diagnostic is required.
4660  FunctionTemplateSpecializationInfo *SpecInfo
4661    = Specialization->getTemplateSpecializationInfo();
4662  assert(SpecInfo && "Function template specialization info missing?");
4663
4664  bool HasNoEffect = false;
4665  if (!isFriend &&
4666      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4667                                             TSK_ExplicitSpecialization,
4668                                             Specialization,
4669                                   SpecInfo->getTemplateSpecializationKind(),
4670                                         SpecInfo->getPointOfInstantiation(),
4671                                             HasNoEffect))
4672    return true;
4673
4674  // Mark the prior declaration as an explicit specialization, so that later
4675  // clients know that this is an explicit specialization.
4676  if (!isFriend) {
4677    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4678    MarkUnusedFileScopedDecl(Specialization);
4679  }
4680
4681  // Turn the given function declaration into a function template
4682  // specialization, with the template arguments from the previous
4683  // specialization.
4684  // Take copies of (semantic and syntactic) template argument lists.
4685  const TemplateArgumentList* TemplArgs = new (Context)
4686    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4687  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4688    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4689  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4690                                        TemplArgs, /*InsertPos=*/0,
4691                                    SpecInfo->getTemplateSpecializationKind(),
4692                                        TemplArgsAsWritten);
4693
4694  // The "previous declaration" for this function template specialization is
4695  // the prior function template specialization.
4696  Previous.clear();
4697  Previous.addDecl(Specialization);
4698  return false;
4699}
4700
4701/// \brief Perform semantic analysis for the given non-template member
4702/// specialization.
4703///
4704/// This routine performs all of the semantic analysis required for an
4705/// explicit member function specialization. On successful completion,
4706/// the function declaration \p FD will become a member function
4707/// specialization.
4708///
4709/// \param Member the member declaration, which will be updated to become a
4710/// specialization.
4711///
4712/// \param Previous the set of declarations, one of which may be specialized
4713/// by this function specialization;  the set will be modified to contain the
4714/// redeclared member.
4715bool
4716Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4717  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4718
4719  // Try to find the member we are instantiating.
4720  NamedDecl *Instantiation = 0;
4721  NamedDecl *InstantiatedFrom = 0;
4722  MemberSpecializationInfo *MSInfo = 0;
4723
4724  if (Previous.empty()) {
4725    // Nowhere to look anyway.
4726  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4727    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4728           I != E; ++I) {
4729      NamedDecl *D = (*I)->getUnderlyingDecl();
4730      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4731        if (Context.hasSameType(Function->getType(), Method->getType())) {
4732          Instantiation = Method;
4733          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4734          MSInfo = Method->getMemberSpecializationInfo();
4735          break;
4736        }
4737      }
4738    }
4739  } else if (isa<VarDecl>(Member)) {
4740    VarDecl *PrevVar;
4741    if (Previous.isSingleResult() &&
4742        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4743      if (PrevVar->isStaticDataMember()) {
4744        Instantiation = PrevVar;
4745        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4746        MSInfo = PrevVar->getMemberSpecializationInfo();
4747      }
4748  } else if (isa<RecordDecl>(Member)) {
4749    CXXRecordDecl *PrevRecord;
4750    if (Previous.isSingleResult() &&
4751        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4752      Instantiation = PrevRecord;
4753      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4754      MSInfo = PrevRecord->getMemberSpecializationInfo();
4755    }
4756  }
4757
4758  if (!Instantiation) {
4759    // There is no previous declaration that matches. Since member
4760    // specializations are always out-of-line, the caller will complain about
4761    // this mismatch later.
4762    return false;
4763  }
4764
4765  // If this is a friend, just bail out here before we start turning
4766  // things into explicit specializations.
4767  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4768    // Preserve instantiation information.
4769    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4770      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4771                                      cast<CXXMethodDecl>(InstantiatedFrom),
4772        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4773    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4774      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4775                                      cast<CXXRecordDecl>(InstantiatedFrom),
4776        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4777    }
4778
4779    Previous.clear();
4780    Previous.addDecl(Instantiation);
4781    return false;
4782  }
4783
4784  // Make sure that this is a specialization of a member.
4785  if (!InstantiatedFrom) {
4786    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4787      << Member;
4788    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4789    return true;
4790  }
4791
4792  // C++ [temp.expl.spec]p6:
4793  //   If a template, a member template or the member of a class template is
4794  //   explicitly specialized then that spe- cialization shall be declared
4795  //   before the first use of that specialization that would cause an implicit
4796  //   instantiation to take place, in every translation unit in which such a
4797  //   use occurs; no diagnostic is required.
4798  assert(MSInfo && "Member specialization info missing?");
4799
4800  bool HasNoEffect = false;
4801  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4802                                             TSK_ExplicitSpecialization,
4803                                             Instantiation,
4804                                     MSInfo->getTemplateSpecializationKind(),
4805                                           MSInfo->getPointOfInstantiation(),
4806                                             HasNoEffect))
4807    return true;
4808
4809  // Check the scope of this explicit specialization.
4810  if (CheckTemplateSpecializationScope(*this,
4811                                       InstantiatedFrom,
4812                                       Instantiation, Member->getLocation(),
4813                                       false))
4814    return true;
4815
4816  // Note that this is an explicit instantiation of a member.
4817  // the original declaration to note that it is an explicit specialization
4818  // (if it was previously an implicit instantiation). This latter step
4819  // makes bookkeeping easier.
4820  if (isa<FunctionDecl>(Member)) {
4821    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4822    if (InstantiationFunction->getTemplateSpecializationKind() ==
4823          TSK_ImplicitInstantiation) {
4824      InstantiationFunction->setTemplateSpecializationKind(
4825                                                  TSK_ExplicitSpecialization);
4826      InstantiationFunction->setLocation(Member->getLocation());
4827    }
4828
4829    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4830                                        cast<CXXMethodDecl>(InstantiatedFrom),
4831                                                  TSK_ExplicitSpecialization);
4832    MarkUnusedFileScopedDecl(InstantiationFunction);
4833  } else if (isa<VarDecl>(Member)) {
4834    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4835    if (InstantiationVar->getTemplateSpecializationKind() ==
4836          TSK_ImplicitInstantiation) {
4837      InstantiationVar->setTemplateSpecializationKind(
4838                                                  TSK_ExplicitSpecialization);
4839      InstantiationVar->setLocation(Member->getLocation());
4840    }
4841
4842    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4843                                                cast<VarDecl>(InstantiatedFrom),
4844                                                TSK_ExplicitSpecialization);
4845    MarkUnusedFileScopedDecl(InstantiationVar);
4846  } else {
4847    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4848    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4849    if (InstantiationClass->getTemplateSpecializationKind() ==
4850          TSK_ImplicitInstantiation) {
4851      InstantiationClass->setTemplateSpecializationKind(
4852                                                   TSK_ExplicitSpecialization);
4853      InstantiationClass->setLocation(Member->getLocation());
4854    }
4855
4856    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4857                                        cast<CXXRecordDecl>(InstantiatedFrom),
4858                                                   TSK_ExplicitSpecialization);
4859  }
4860
4861  // Save the caller the trouble of having to figure out which declaration
4862  // this specialization matches.
4863  Previous.clear();
4864  Previous.addDecl(Instantiation);
4865  return false;
4866}
4867
4868/// \brief Check the scope of an explicit instantiation.
4869///
4870/// \returns true if a serious error occurs, false otherwise.
4871static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4872                                            SourceLocation InstLoc,
4873                                            bool WasQualifiedName) {
4874  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4875  DeclContext *CurContext = S.CurContext->getRedeclContext();
4876
4877  if (CurContext->isRecord()) {
4878    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4879      << D;
4880    return true;
4881  }
4882
4883  // C++0x [temp.explicit]p2:
4884  //   An explicit instantiation shall appear in an enclosing namespace of its
4885  //   template.
4886  //
4887  // This is DR275, which we do not retroactively apply to C++98/03.
4888  if (S.getLangOptions().CPlusPlus0x &&
4889      !CurContext->Encloses(OrigContext)) {
4890    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
4891      S.Diag(InstLoc,
4892             S.getLangOptions().CPlusPlus0x?
4893                 diag::err_explicit_instantiation_out_of_scope
4894               : diag::warn_explicit_instantiation_out_of_scope_0x)
4895        << D << NS;
4896    else
4897      S.Diag(InstLoc,
4898             S.getLangOptions().CPlusPlus0x?
4899                 diag::err_explicit_instantiation_must_be_global
4900               : diag::warn_explicit_instantiation_out_of_scope_0x)
4901        << D;
4902    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4903    return false;
4904  }
4905
4906  // C++0x [temp.explicit]p2:
4907  //   If the name declared in the explicit instantiation is an unqualified
4908  //   name, the explicit instantiation shall appear in the namespace where
4909  //   its template is declared or, if that namespace is inline (7.3.1), any
4910  //   namespace from its enclosing namespace set.
4911  if (WasQualifiedName)
4912    return false;
4913
4914  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
4915    return false;
4916
4917  S.Diag(InstLoc,
4918         S.getLangOptions().CPlusPlus0x?
4919             diag::err_explicit_instantiation_unqualified_wrong_namespace
4920           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4921    << D << OrigContext;
4922  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4923  return false;
4924}
4925
4926/// \brief Determine whether the given scope specifier has a template-id in it.
4927static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4928  if (!SS.isSet())
4929    return false;
4930
4931  // C++0x [temp.explicit]p2:
4932  //   If the explicit instantiation is for a member function, a member class
4933  //   or a static data member of a class template specialization, the name of
4934  //   the class template specialization in the qualified-id for the member
4935  //   name shall be a simple-template-id.
4936  //
4937  // C++98 has the same restriction, just worded differently.
4938  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4939       NNS; NNS = NNS->getPrefix())
4940    if (Type *T = NNS->getAsType())
4941      if (isa<TemplateSpecializationType>(T))
4942        return true;
4943
4944  return false;
4945}
4946
4947// Explicit instantiation of a class template specialization
4948DeclResult
4949Sema::ActOnExplicitInstantiation(Scope *S,
4950                                 SourceLocation ExternLoc,
4951                                 SourceLocation TemplateLoc,
4952                                 unsigned TagSpec,
4953                                 SourceLocation KWLoc,
4954                                 const CXXScopeSpec &SS,
4955                                 TemplateTy TemplateD,
4956                                 SourceLocation TemplateNameLoc,
4957                                 SourceLocation LAngleLoc,
4958                                 ASTTemplateArgsPtr TemplateArgsIn,
4959                                 SourceLocation RAngleLoc,
4960                                 AttributeList *Attr) {
4961  // Find the class template we're specializing
4962  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4963  ClassTemplateDecl *ClassTemplate
4964    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4965
4966  // Check that the specialization uses the same tag kind as the
4967  // original template.
4968  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4969  assert(Kind != TTK_Enum &&
4970         "Invalid enum tag in class template explicit instantiation!");
4971  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4972                                    Kind, KWLoc,
4973                                    *ClassTemplate->getIdentifier())) {
4974    Diag(KWLoc, diag::err_use_with_wrong_tag)
4975      << ClassTemplate
4976      << FixItHint::CreateReplacement(KWLoc,
4977                            ClassTemplate->getTemplatedDecl()->getKindName());
4978    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4979         diag::note_previous_use);
4980    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4981  }
4982
4983  // C++0x [temp.explicit]p2:
4984  //   There are two forms of explicit instantiation: an explicit instantiation
4985  //   definition and an explicit instantiation declaration. An explicit
4986  //   instantiation declaration begins with the extern keyword. [...]
4987  TemplateSpecializationKind TSK
4988    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4989                           : TSK_ExplicitInstantiationDeclaration;
4990
4991  // Translate the parser's template argument list in our AST format.
4992  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4993  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4994
4995  // Check that the template argument list is well-formed for this
4996  // template.
4997  llvm::SmallVector<TemplateArgument, 4> Converted;
4998  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4999                                TemplateArgs, false, Converted))
5000    return true;
5001
5002  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5003         "Converted template argument list is too short!");
5004
5005  // Find the class template specialization declaration that
5006  // corresponds to these arguments.
5007  void *InsertPos = 0;
5008  ClassTemplateSpecializationDecl *PrevDecl
5009    = ClassTemplate->findSpecialization(Converted.data(),
5010                                        Converted.size(), InsertPos);
5011
5012  TemplateSpecializationKind PrevDecl_TSK
5013    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5014
5015  // C++0x [temp.explicit]p2:
5016  //   [...] An explicit instantiation shall appear in an enclosing
5017  //   namespace of its template. [...]
5018  //
5019  // This is C++ DR 275.
5020  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5021                                      SS.isSet()))
5022    return true;
5023
5024  ClassTemplateSpecializationDecl *Specialization = 0;
5025
5026  bool ReusedDecl = false;
5027  bool HasNoEffect = false;
5028  if (PrevDecl) {
5029    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5030                                               PrevDecl, PrevDecl_TSK,
5031                                            PrevDecl->getPointOfInstantiation(),
5032                                               HasNoEffect))
5033      return PrevDecl;
5034
5035    // Even though HasNoEffect == true means that this explicit instantiation
5036    // has no effect on semantics, we go on to put its syntax in the AST.
5037
5038    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5039        PrevDecl_TSK == TSK_Undeclared) {
5040      // Since the only prior class template specialization with these
5041      // arguments was referenced but not declared, reuse that
5042      // declaration node as our own, updating the source location
5043      // for the template name to reflect our new declaration.
5044      // (Other source locations will be updated later.)
5045      Specialization = PrevDecl;
5046      Specialization->setLocation(TemplateNameLoc);
5047      PrevDecl = 0;
5048      ReusedDecl = true;
5049    }
5050  }
5051
5052  if (!Specialization) {
5053    // Create a new class template specialization declaration node for
5054    // this explicit specialization.
5055    Specialization
5056      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5057                                             ClassTemplate->getDeclContext(),
5058                                                TemplateNameLoc,
5059                                                ClassTemplate,
5060                                                Converted.data(),
5061                                                Converted.size(),
5062                                                PrevDecl);
5063    SetNestedNameSpecifier(Specialization, SS);
5064
5065    if (!HasNoEffect && !PrevDecl) {
5066      // Insert the new specialization.
5067      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5068    }
5069  }
5070
5071  // Build the fully-sugared type for this explicit instantiation as
5072  // the user wrote in the explicit instantiation itself. This means
5073  // that we'll pretty-print the type retrieved from the
5074  // specialization's declaration the way that the user actually wrote
5075  // the explicit instantiation, rather than formatting the name based
5076  // on the "canonical" representation used to store the template
5077  // arguments in the specialization.
5078  TypeSourceInfo *WrittenTy
5079    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5080                                                TemplateArgs,
5081                                  Context.getTypeDeclType(Specialization));
5082  Specialization->setTypeAsWritten(WrittenTy);
5083  TemplateArgsIn.release();
5084
5085  // Set source locations for keywords.
5086  Specialization->setExternLoc(ExternLoc);
5087  Specialization->setTemplateKeywordLoc(TemplateLoc);
5088
5089  // Add the explicit instantiation into its lexical context. However,
5090  // since explicit instantiations are never found by name lookup, we
5091  // just put it into the declaration context directly.
5092  Specialization->setLexicalDeclContext(CurContext);
5093  CurContext->addDecl(Specialization);
5094
5095  // Syntax is now OK, so return if it has no other effect on semantics.
5096  if (HasNoEffect) {
5097    // Set the template specialization kind.
5098    Specialization->setTemplateSpecializationKind(TSK);
5099    return Specialization;
5100  }
5101
5102  // C++ [temp.explicit]p3:
5103  //   A definition of a class template or class member template
5104  //   shall be in scope at the point of the explicit instantiation of
5105  //   the class template or class member template.
5106  //
5107  // This check comes when we actually try to perform the
5108  // instantiation.
5109  ClassTemplateSpecializationDecl *Def
5110    = cast_or_null<ClassTemplateSpecializationDecl>(
5111                                              Specialization->getDefinition());
5112  if (!Def)
5113    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5114  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5115    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5116    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5117  }
5118
5119  // Instantiate the members of this class template specialization.
5120  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5121                                       Specialization->getDefinition());
5122  if (Def) {
5123    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5124
5125    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5126    // TSK_ExplicitInstantiationDefinition
5127    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5128        TSK == TSK_ExplicitInstantiationDefinition)
5129      Def->setTemplateSpecializationKind(TSK);
5130
5131    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5132  }
5133
5134  // Set the template specialization kind.
5135  Specialization->setTemplateSpecializationKind(TSK);
5136  return Specialization;
5137}
5138
5139// Explicit instantiation of a member class of a class template.
5140DeclResult
5141Sema::ActOnExplicitInstantiation(Scope *S,
5142                                 SourceLocation ExternLoc,
5143                                 SourceLocation TemplateLoc,
5144                                 unsigned TagSpec,
5145                                 SourceLocation KWLoc,
5146                                 CXXScopeSpec &SS,
5147                                 IdentifierInfo *Name,
5148                                 SourceLocation NameLoc,
5149                                 AttributeList *Attr) {
5150
5151  bool Owned = false;
5152  bool IsDependent = false;
5153  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5154                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5155                        MultiTemplateParamsArg(*this, 0, 0),
5156                        Owned, IsDependent, false,
5157                        TypeResult());
5158  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5159
5160  if (!TagD)
5161    return true;
5162
5163  TagDecl *Tag = cast<TagDecl>(TagD);
5164  if (Tag->isEnum()) {
5165    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5166      << Context.getTypeDeclType(Tag);
5167    return true;
5168  }
5169
5170  if (Tag->isInvalidDecl())
5171    return true;
5172
5173  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5174  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5175  if (!Pattern) {
5176    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5177      << Context.getTypeDeclType(Record);
5178    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5179    return true;
5180  }
5181
5182  // C++0x [temp.explicit]p2:
5183  //   If the explicit instantiation is for a class or member class, the
5184  //   elaborated-type-specifier in the declaration shall include a
5185  //   simple-template-id.
5186  //
5187  // C++98 has the same restriction, just worded differently.
5188  if (!ScopeSpecifierHasTemplateId(SS))
5189    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5190      << Record << SS.getRange();
5191
5192  // C++0x [temp.explicit]p2:
5193  //   There are two forms of explicit instantiation: an explicit instantiation
5194  //   definition and an explicit instantiation declaration. An explicit
5195  //   instantiation declaration begins with the extern keyword. [...]
5196  TemplateSpecializationKind TSK
5197    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5198                           : TSK_ExplicitInstantiationDeclaration;
5199
5200  // C++0x [temp.explicit]p2:
5201  //   [...] An explicit instantiation shall appear in an enclosing
5202  //   namespace of its template. [...]
5203  //
5204  // This is C++ DR 275.
5205  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5206
5207  // Verify that it is okay to explicitly instantiate here.
5208  CXXRecordDecl *PrevDecl
5209    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5210  if (!PrevDecl && Record->getDefinition())
5211    PrevDecl = Record;
5212  if (PrevDecl) {
5213    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5214    bool HasNoEffect = false;
5215    assert(MSInfo && "No member specialization information?");
5216    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5217                                               PrevDecl,
5218                                        MSInfo->getTemplateSpecializationKind(),
5219                                             MSInfo->getPointOfInstantiation(),
5220                                               HasNoEffect))
5221      return true;
5222    if (HasNoEffect)
5223      return TagD;
5224  }
5225
5226  CXXRecordDecl *RecordDef
5227    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5228  if (!RecordDef) {
5229    // C++ [temp.explicit]p3:
5230    //   A definition of a member class of a class template shall be in scope
5231    //   at the point of an explicit instantiation of the member class.
5232    CXXRecordDecl *Def
5233      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5234    if (!Def) {
5235      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5236        << 0 << Record->getDeclName() << Record->getDeclContext();
5237      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5238        << Pattern;
5239      return true;
5240    } else {
5241      if (InstantiateClass(NameLoc, Record, Def,
5242                           getTemplateInstantiationArgs(Record),
5243                           TSK))
5244        return true;
5245
5246      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5247      if (!RecordDef)
5248        return true;
5249    }
5250  }
5251
5252  // Instantiate all of the members of the class.
5253  InstantiateClassMembers(NameLoc, RecordDef,
5254                          getTemplateInstantiationArgs(Record), TSK);
5255
5256  if (TSK == TSK_ExplicitInstantiationDefinition)
5257    MarkVTableUsed(NameLoc, RecordDef, true);
5258
5259  // FIXME: We don't have any representation for explicit instantiations of
5260  // member classes. Such a representation is not needed for compilation, but it
5261  // should be available for clients that want to see all of the declarations in
5262  // the source code.
5263  return TagD;
5264}
5265
5266DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5267                                            SourceLocation ExternLoc,
5268                                            SourceLocation TemplateLoc,
5269                                            Declarator &D) {
5270  // Explicit instantiations always require a name.
5271  // TODO: check if/when DNInfo should replace Name.
5272  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5273  DeclarationName Name = NameInfo.getName();
5274  if (!Name) {
5275    if (!D.isInvalidType())
5276      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5277           diag::err_explicit_instantiation_requires_name)
5278        << D.getDeclSpec().getSourceRange()
5279        << D.getSourceRange();
5280
5281    return true;
5282  }
5283
5284  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5285  // we find one that is.
5286  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5287         (S->getFlags() & Scope::TemplateParamScope) != 0)
5288    S = S->getParent();
5289
5290  // Determine the type of the declaration.
5291  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5292  QualType R = T->getType();
5293  if (R.isNull())
5294    return true;
5295
5296  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5297    // Cannot explicitly instantiate a typedef.
5298    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5299      << Name;
5300    return true;
5301  }
5302
5303  // C++0x [temp.explicit]p1:
5304  //   [...] An explicit instantiation of a function template shall not use the
5305  //   inline or constexpr specifiers.
5306  // Presumably, this also applies to member functions of class templates as
5307  // well.
5308  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5309    Diag(D.getDeclSpec().getInlineSpecLoc(),
5310         diag::err_explicit_instantiation_inline)
5311      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5312
5313  // FIXME: check for constexpr specifier.
5314
5315  // C++0x [temp.explicit]p2:
5316  //   There are two forms of explicit instantiation: an explicit instantiation
5317  //   definition and an explicit instantiation declaration. An explicit
5318  //   instantiation declaration begins with the extern keyword. [...]
5319  TemplateSpecializationKind TSK
5320    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5321                           : TSK_ExplicitInstantiationDeclaration;
5322
5323  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5324  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5325
5326  if (!R->isFunctionType()) {
5327    // C++ [temp.explicit]p1:
5328    //   A [...] static data member of a class template can be explicitly
5329    //   instantiated from the member definition associated with its class
5330    //   template.
5331    if (Previous.isAmbiguous())
5332      return true;
5333
5334    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5335    if (!Prev || !Prev->isStaticDataMember()) {
5336      // We expect to see a data data member here.
5337      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5338        << Name;
5339      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5340           P != PEnd; ++P)
5341        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5342      return true;
5343    }
5344
5345    if (!Prev->getInstantiatedFromStaticDataMember()) {
5346      // FIXME: Check for explicit specialization?
5347      Diag(D.getIdentifierLoc(),
5348           diag::err_explicit_instantiation_data_member_not_instantiated)
5349        << Prev;
5350      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5351      // FIXME: Can we provide a note showing where this was declared?
5352      return true;
5353    }
5354
5355    // C++0x [temp.explicit]p2:
5356    //   If the explicit instantiation is for a member function, a member class
5357    //   or a static data member of a class template specialization, the name of
5358    //   the class template specialization in the qualified-id for the member
5359    //   name shall be a simple-template-id.
5360    //
5361    // C++98 has the same restriction, just worded differently.
5362    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5363      Diag(D.getIdentifierLoc(),
5364           diag::ext_explicit_instantiation_without_qualified_id)
5365        << Prev << D.getCXXScopeSpec().getRange();
5366
5367    // Check the scope of this explicit instantiation.
5368    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5369
5370    // Verify that it is okay to explicitly instantiate here.
5371    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5372    assert(MSInfo && "Missing static data member specialization info?");
5373    bool HasNoEffect = false;
5374    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5375                                        MSInfo->getTemplateSpecializationKind(),
5376                                              MSInfo->getPointOfInstantiation(),
5377                                               HasNoEffect))
5378      return true;
5379    if (HasNoEffect)
5380      return (Decl*) 0;
5381
5382    // Instantiate static data member.
5383    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5384    if (TSK == TSK_ExplicitInstantiationDefinition)
5385      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5386
5387    // FIXME: Create an ExplicitInstantiation node?
5388    return (Decl*) 0;
5389  }
5390
5391  // If the declarator is a template-id, translate the parser's template
5392  // argument list into our AST format.
5393  bool HasExplicitTemplateArgs = false;
5394  TemplateArgumentListInfo TemplateArgs;
5395  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5396    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5397    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5398    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5399    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5400                                       TemplateId->getTemplateArgs(),
5401                                       TemplateId->NumArgs);
5402    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5403    HasExplicitTemplateArgs = true;
5404    TemplateArgsPtr.release();
5405  }
5406
5407  // C++ [temp.explicit]p1:
5408  //   A [...] function [...] can be explicitly instantiated from its template.
5409  //   A member function [...] of a class template can be explicitly
5410  //  instantiated from the member definition associated with its class
5411  //  template.
5412  UnresolvedSet<8> Matches;
5413  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5414       P != PEnd; ++P) {
5415    NamedDecl *Prev = *P;
5416    if (!HasExplicitTemplateArgs) {
5417      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5418        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5419          Matches.clear();
5420
5421          Matches.addDecl(Method, P.getAccess());
5422          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5423            break;
5424        }
5425      }
5426    }
5427
5428    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5429    if (!FunTmpl)
5430      continue;
5431
5432    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5433    FunctionDecl *Specialization = 0;
5434    if (TemplateDeductionResult TDK
5435          = DeduceTemplateArguments(FunTmpl,
5436                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5437                                    R, Specialization, Info)) {
5438      // FIXME: Keep track of almost-matches?
5439      (void)TDK;
5440      continue;
5441    }
5442
5443    Matches.addDecl(Specialization, P.getAccess());
5444  }
5445
5446  // Find the most specialized function template specialization.
5447  UnresolvedSetIterator Result
5448    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5449                         D.getIdentifierLoc(),
5450                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5451                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5452                         PDiag(diag::note_explicit_instantiation_candidate));
5453
5454  if (Result == Matches.end())
5455    return true;
5456
5457  // Ignore access control bits, we don't need them for redeclaration checking.
5458  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5459
5460  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5461    Diag(D.getIdentifierLoc(),
5462         diag::err_explicit_instantiation_member_function_not_instantiated)
5463      << Specialization
5464      << (Specialization->getTemplateSpecializationKind() ==
5465          TSK_ExplicitSpecialization);
5466    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5467    return true;
5468  }
5469
5470  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5471  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5472    PrevDecl = Specialization;
5473
5474  if (PrevDecl) {
5475    bool HasNoEffect = false;
5476    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5477                                               PrevDecl,
5478                                     PrevDecl->getTemplateSpecializationKind(),
5479                                          PrevDecl->getPointOfInstantiation(),
5480                                               HasNoEffect))
5481      return true;
5482
5483    // FIXME: We may still want to build some representation of this
5484    // explicit specialization.
5485    if (HasNoEffect)
5486      return (Decl*) 0;
5487  }
5488
5489  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5490
5491  if (TSK == TSK_ExplicitInstantiationDefinition)
5492    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5493
5494  // C++0x [temp.explicit]p2:
5495  //   If the explicit instantiation is for a member function, a member class
5496  //   or a static data member of a class template specialization, the name of
5497  //   the class template specialization in the qualified-id for the member
5498  //   name shall be a simple-template-id.
5499  //
5500  // C++98 has the same restriction, just worded differently.
5501  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5502  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5503      D.getCXXScopeSpec().isSet() &&
5504      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5505    Diag(D.getIdentifierLoc(),
5506         diag::ext_explicit_instantiation_without_qualified_id)
5507    << Specialization << D.getCXXScopeSpec().getRange();
5508
5509  CheckExplicitInstantiationScope(*this,
5510                   FunTmpl? (NamedDecl *)FunTmpl
5511                          : Specialization->getInstantiatedFromMemberFunction(),
5512                                  D.getIdentifierLoc(),
5513                                  D.getCXXScopeSpec().isSet());
5514
5515  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5516  return (Decl*) 0;
5517}
5518
5519TypeResult
5520Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5521                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5522                        SourceLocation TagLoc, SourceLocation NameLoc) {
5523  // This has to hold, because SS is expected to be defined.
5524  assert(Name && "Expected a name in a dependent tag");
5525
5526  NestedNameSpecifier *NNS
5527    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5528  if (!NNS)
5529    return true;
5530
5531  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5532
5533  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5534    Diag(NameLoc, diag::err_dependent_tag_decl)
5535      << (TUK == TUK_Definition) << Kind << SS.getRange();
5536    return true;
5537  }
5538
5539  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5540  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5541}
5542
5543TypeResult
5544Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5545                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5546                        SourceLocation IdLoc) {
5547  NestedNameSpecifier *NNS
5548    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5549  if (!NNS)
5550    return true;
5551
5552  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5553      !getLangOptions().CPlusPlus0x)
5554    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5555      << FixItHint::CreateRemoval(TypenameLoc);
5556
5557  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5558                                 TypenameLoc, SS.getRange(), IdLoc);
5559  if (T.isNull())
5560    return true;
5561
5562  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5563  if (isa<DependentNameType>(T)) {
5564    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5565    TL.setKeywordLoc(TypenameLoc);
5566    TL.setQualifierRange(SS.getRange());
5567    TL.setNameLoc(IdLoc);
5568  } else {
5569    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5570    TL.setKeywordLoc(TypenameLoc);
5571    TL.setQualifierRange(SS.getRange());
5572    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5573  }
5574
5575  return CreateParsedType(T, TSI);
5576}
5577
5578TypeResult
5579Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5580                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5581                        ParsedType Ty) {
5582  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5583      !getLangOptions().CPlusPlus0x)
5584    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5585      << FixItHint::CreateRemoval(TypenameLoc);
5586
5587  TypeSourceInfo *InnerTSI = 0;
5588  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5589
5590  assert(isa<TemplateSpecializationType>(T) &&
5591         "Expected a template specialization type");
5592
5593  if (computeDeclContext(SS, false)) {
5594    // If we can compute a declaration context, then the "typename"
5595    // keyword was superfluous. Just build an ElaboratedType to keep
5596    // track of the nested-name-specifier.
5597
5598    // Push the inner type, preserving its source locations if possible.
5599    TypeLocBuilder Builder;
5600    if (InnerTSI)
5601      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5602    else
5603      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5604
5605    /* Note: NNS already embedded in template specialization type T. */
5606    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5607    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5608    TL.setKeywordLoc(TypenameLoc);
5609    TL.setQualifierRange(SS.getRange());
5610
5611    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5612    return CreateParsedType(T, TSI);
5613  }
5614
5615  // TODO: it's really silly that we make a template specialization
5616  // type earlier only to drop it again here.
5617  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5618  DependentTemplateName *DTN =
5619    TST->getTemplateName().getAsDependentTemplateName();
5620  assert(DTN && "dependent template has non-dependent name?");
5621  assert(DTN->getQualifier()
5622         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5623  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5624                                                     DTN->getQualifier(),
5625                                                     DTN->getIdentifier(),
5626                                                     TST->getNumArgs(),
5627                                                     TST->getArgs());
5628  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5629  DependentTemplateSpecializationTypeLoc TL =
5630    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5631  if (InnerTSI) {
5632    TemplateSpecializationTypeLoc TSTL =
5633      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5634    TL.setLAngleLoc(TSTL.getLAngleLoc());
5635    TL.setRAngleLoc(TSTL.getRAngleLoc());
5636    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5637      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5638  } else {
5639    TL.initializeLocal(SourceLocation());
5640  }
5641  TL.setKeywordLoc(TypenameLoc);
5642  TL.setQualifierRange(SS.getRange());
5643  return CreateParsedType(T, TSI);
5644}
5645
5646/// \brief Build the type that describes a C++ typename specifier,
5647/// e.g., "typename T::type".
5648QualType
5649Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5650                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5651                        SourceLocation KeywordLoc, SourceRange NNSRange,
5652                        SourceLocation IILoc) {
5653  CXXScopeSpec SS;
5654  SS.setScopeRep(NNS);
5655  SS.setRange(NNSRange);
5656
5657  DeclContext *Ctx = computeDeclContext(SS);
5658  if (!Ctx) {
5659    // If the nested-name-specifier is dependent and couldn't be
5660    // resolved to a type, build a typename type.
5661    assert(NNS->isDependent());
5662    return Context.getDependentNameType(Keyword, NNS, &II);
5663  }
5664
5665  // If the nested-name-specifier refers to the current instantiation,
5666  // the "typename" keyword itself is superfluous. In C++03, the
5667  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5668  // allows such extraneous "typename" keywords, and we retroactively
5669  // apply this DR to C++03 code with only a warning. In any case we continue.
5670
5671  if (RequireCompleteDeclContext(SS, Ctx))
5672    return QualType();
5673
5674  DeclarationName Name(&II);
5675  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5676  LookupQualifiedName(Result, Ctx);
5677  unsigned DiagID = 0;
5678  Decl *Referenced = 0;
5679  switch (Result.getResultKind()) {
5680  case LookupResult::NotFound:
5681    DiagID = diag::err_typename_nested_not_found;
5682    break;
5683
5684  case LookupResult::NotFoundInCurrentInstantiation:
5685    // Okay, it's a member of an unknown instantiation.
5686    return Context.getDependentNameType(Keyword, NNS, &II);
5687
5688  case LookupResult::Found:
5689    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5690      // We found a type. Build an ElaboratedType, since the
5691      // typename-specifier was just sugar.
5692      return Context.getElaboratedType(ETK_Typename, NNS,
5693                                       Context.getTypeDeclType(Type));
5694    }
5695
5696    DiagID = diag::err_typename_nested_not_type;
5697    Referenced = Result.getFoundDecl();
5698    break;
5699
5700  case LookupResult::FoundUnresolvedValue:
5701    llvm_unreachable("unresolved using decl in non-dependent context");
5702    return QualType();
5703
5704  case LookupResult::FoundOverloaded:
5705    DiagID = diag::err_typename_nested_not_type;
5706    Referenced = *Result.begin();
5707    break;
5708
5709  case LookupResult::Ambiguous:
5710    return QualType();
5711  }
5712
5713  // If we get here, it's because name lookup did not find a
5714  // type. Emit an appropriate diagnostic and return an error.
5715  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5716                        IILoc);
5717  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5718  if (Referenced)
5719    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5720      << Name;
5721  return QualType();
5722}
5723
5724namespace {
5725  // See Sema::RebuildTypeInCurrentInstantiation
5726  class CurrentInstantiationRebuilder
5727    : public TreeTransform<CurrentInstantiationRebuilder> {
5728    SourceLocation Loc;
5729    DeclarationName Entity;
5730
5731  public:
5732    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5733
5734    CurrentInstantiationRebuilder(Sema &SemaRef,
5735                                  SourceLocation Loc,
5736                                  DeclarationName Entity)
5737    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5738      Loc(Loc), Entity(Entity) { }
5739
5740    /// \brief Determine whether the given type \p T has already been
5741    /// transformed.
5742    ///
5743    /// For the purposes of type reconstruction, a type has already been
5744    /// transformed if it is NULL or if it is not dependent.
5745    bool AlreadyTransformed(QualType T) {
5746      return T.isNull() || !T->isDependentType();
5747    }
5748
5749    /// \brief Returns the location of the entity whose type is being
5750    /// rebuilt.
5751    SourceLocation getBaseLocation() { return Loc; }
5752
5753    /// \brief Returns the name of the entity whose type is being rebuilt.
5754    DeclarationName getBaseEntity() { return Entity; }
5755
5756    /// \brief Sets the "base" location and entity when that
5757    /// information is known based on another transformation.
5758    void setBase(SourceLocation Loc, DeclarationName Entity) {
5759      this->Loc = Loc;
5760      this->Entity = Entity;
5761    }
5762  };
5763}
5764
5765/// \brief Rebuilds a type within the context of the current instantiation.
5766///
5767/// The type \p T is part of the type of an out-of-line member definition of
5768/// a class template (or class template partial specialization) that was parsed
5769/// and constructed before we entered the scope of the class template (or
5770/// partial specialization thereof). This routine will rebuild that type now
5771/// that we have entered the declarator's scope, which may produce different
5772/// canonical types, e.g.,
5773///
5774/// \code
5775/// template<typename T>
5776/// struct X {
5777///   typedef T* pointer;
5778///   pointer data();
5779/// };
5780///
5781/// template<typename T>
5782/// typename X<T>::pointer X<T>::data() { ... }
5783/// \endcode
5784///
5785/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5786/// since we do not know that we can look into X<T> when we parsed the type.
5787/// This function will rebuild the type, performing the lookup of "pointer"
5788/// in X<T> and returning an ElaboratedType whose canonical type is the same
5789/// as the canonical type of T*, allowing the return types of the out-of-line
5790/// definition and the declaration to match.
5791TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5792                                                        SourceLocation Loc,
5793                                                        DeclarationName Name) {
5794  if (!T || !T->getType()->isDependentType())
5795    return T;
5796
5797  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5798  return Rebuilder.TransformType(T);
5799}
5800
5801ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5802  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5803                                          DeclarationName());
5804  return Rebuilder.TransformExpr(E);
5805}
5806
5807bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5808  if (SS.isInvalid()) return true;
5809
5810  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5811  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5812                                          DeclarationName());
5813  NestedNameSpecifier *Rebuilt =
5814    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5815  if (!Rebuilt) return true;
5816
5817  SS.setScopeRep(Rebuilt);
5818  return false;
5819}
5820
5821/// \brief Produces a formatted string that describes the binding of
5822/// template parameters to template arguments.
5823std::string
5824Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5825                                      const TemplateArgumentList &Args) {
5826  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
5827}
5828
5829std::string
5830Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5831                                      const TemplateArgument *Args,
5832                                      unsigned NumArgs) {
5833  std::string Result;
5834
5835  if (!Params || Params->size() == 0 || NumArgs == 0)
5836    return Result;
5837
5838  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5839    if (I >= NumArgs)
5840      break;
5841
5842    if (I == 0)
5843      Result += "[with ";
5844    else
5845      Result += ", ";
5846
5847    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5848      Result += Id->getName();
5849    } else {
5850      Result += '$';
5851      Result += llvm::utostr(I);
5852    }
5853
5854    Result += " = ";
5855
5856    switch (Args[I].getKind()) {
5857      case TemplateArgument::Null:
5858        Result += "<no value>";
5859        break;
5860
5861      case TemplateArgument::Type: {
5862        std::string TypeStr;
5863        Args[I].getAsType().getAsStringInternal(TypeStr,
5864                                                Context.PrintingPolicy);
5865        Result += TypeStr;
5866        break;
5867      }
5868
5869      case TemplateArgument::Declaration: {
5870        bool Unnamed = true;
5871        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5872          if (ND->getDeclName()) {
5873            Unnamed = false;
5874            Result += ND->getNameAsString();
5875          }
5876        }
5877
5878        if (Unnamed) {
5879          Result += "<anonymous>";
5880        }
5881        break;
5882      }
5883
5884      case TemplateArgument::Template: {
5885        std::string Str;
5886        llvm::raw_string_ostream OS(Str);
5887        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5888        Result += OS.str();
5889        break;
5890      }
5891
5892      case TemplateArgument::Integral: {
5893        Result += Args[I].getAsIntegral()->toString(10);
5894        break;
5895      }
5896
5897      case TemplateArgument::Expression: {
5898        // FIXME: This is non-optimal, since we're regurgitating the
5899        // expression we were given.
5900        std::string Str;
5901        {
5902          llvm::raw_string_ostream OS(Str);
5903          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5904                                           Context.PrintingPolicy);
5905        }
5906        Result += Str;
5907        break;
5908      }
5909
5910      case TemplateArgument::Pack:
5911        // FIXME: Format template argument packs
5912        Result += "<template argument pack>";
5913        break;
5914    }
5915  }
5916
5917  Result += ']';
5918  return Result;
5919}
5920