SemaTemplate.cpp revision 89f31cf5d2248186424147302dc1bfeadcd3528c
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "TreeTransform.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Expr.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Basic/LangOptions.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/ADT/StringExtras.h"
23using namespace clang;
24
25/// \brief Determine whether the declaration found is acceptable as the name
26/// of a template and, if so, return that template declaration. Otherwise,
27/// returns NULL.
28static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
29  if (!D)
30    return 0;
31
32  if (isa<TemplateDecl>(D))
33    return D;
34
35  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
36    // C++ [temp.local]p1:
37    //   Like normal (non-template) classes, class templates have an
38    //   injected-class-name (Clause 9). The injected-class-name
39    //   can be used with or without a template-argument-list. When
40    //   it is used without a template-argument-list, it is
41    //   equivalent to the injected-class-name followed by the
42    //   template-parameters of the class template enclosed in
43    //   <>. When it is used with a template-argument-list, it
44    //   refers to the specified class template specialization,
45    //   which could be the current specialization or another
46    //   specialization.
47    if (Record->isInjectedClassName()) {
48      Record = cast<CXXRecordDecl>(Record->getCanonicalDecl());
49      if (Record->getDescribedClassTemplate())
50        return Record->getDescribedClassTemplate();
51
52      if (ClassTemplateSpecializationDecl *Spec
53            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
54        return Spec->getSpecializedTemplate();
55    }
56
57    return 0;
58  }
59
60  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
61  if (!Ovl)
62    return 0;
63
64  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
65                                              FEnd = Ovl->function_end();
66       F != FEnd; ++F) {
67    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
68      // We've found a function template. Determine whether there are
69      // any other function templates we need to bundle together in an
70      // OverloadedFunctionDecl
71      for (++F; F != FEnd; ++F) {
72        if (isa<FunctionTemplateDecl>(*F))
73          break;
74      }
75
76      if (F != FEnd) {
77        // Build an overloaded function decl containing only the
78        // function templates in Ovl.
79        OverloadedFunctionDecl *OvlTemplate
80          = OverloadedFunctionDecl::Create(Context,
81                                           Ovl->getDeclContext(),
82                                           Ovl->getDeclName());
83        OvlTemplate->addOverload(FuncTmpl);
84        OvlTemplate->addOverload(*F);
85        for (++F; F != FEnd; ++F) {
86          if (isa<FunctionTemplateDecl>(*F))
87            OvlTemplate->addOverload(*F);
88        }
89
90        return OvlTemplate;
91      }
92
93      return FuncTmpl;
94    }
95  }
96
97  return 0;
98}
99
100TemplateNameKind Sema::isTemplateName(Scope *S,
101                                      const IdentifierInfo &II,
102                                      SourceLocation IdLoc,
103                                      const CXXScopeSpec *SS,
104                                      TypeTy *ObjectTypePtr,
105                                      bool EnteringContext,
106                                      TemplateTy &TemplateResult) {
107  // Determine where to perform name lookup
108  DeclContext *LookupCtx = 0;
109  bool isDependent = false;
110  if (ObjectTypePtr) {
111    // This nested-name-specifier occurs in a member access expression, e.g.,
112    // x->B::f, and we are looking into the type of the object.
113    assert((!SS || !SS->isSet()) &&
114           "ObjectType and scope specifier cannot coexist");
115    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
116    LookupCtx = computeDeclContext(ObjectType);
117    isDependent = ObjectType->isDependentType();
118  } else if (SS && SS->isSet()) {
119    // This nested-name-specifier occurs after another nested-name-specifier,
120    // so long into the context associated with the prior nested-name-specifier.
121
122    LookupCtx = computeDeclContext(*SS, EnteringContext);
123    isDependent = isDependentScopeSpecifier(*SS);
124  }
125
126  LookupResult Found;
127  bool ObjectTypeSearchedInScope = false;
128  if (LookupCtx) {
129    // Perform "qualified" name lookup into the declaration context we
130    // computed, which is either the type of the base of a member access
131    // expression or the declaration context associated with a prior
132    // nested-name-specifier.
133
134    // The declaration context must be complete.
135    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
136      return TNK_Non_template;
137
138    Found = LookupQualifiedName(LookupCtx, &II, LookupOrdinaryName);
139
140    if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) {
141      // C++ [basic.lookup.classref]p1:
142      //   In a class member access expression (5.2.5), if the . or -> token is
143      //   immediately followed by an identifier followed by a <, the
144      //   identifier must be looked up to determine whether the < is the
145      //   beginning of a template argument list (14.2) or a less-than operator.
146      //   The identifier is first looked up in the class of the object
147      //   expression. If the identifier is not found, it is then looked up in
148      //   the context of the entire postfix-expression and shall name a class
149      //   or function template.
150      //
151      // FIXME: When we're instantiating a template, do we actually have to
152      // look in the scope of the template? Seems fishy...
153      Found = LookupName(S, &II, LookupOrdinaryName);
154      ObjectTypeSearchedInScope = true;
155    }
156  } else if (isDependent) {
157    // We cannot look into a dependent object type or
158    return TNK_Non_template;
159  } else {
160    // Perform unqualified name lookup in the current scope.
161    Found = LookupName(S, &II, LookupOrdinaryName);
162  }
163
164  // FIXME: Cope with ambiguous name-lookup results.
165  assert(!Found.isAmbiguous() &&
166         "Cannot handle template name-lookup ambiguities");
167
168  NamedDecl *Template = isAcceptableTemplateName(Context, Found);
169  if (!Template)
170    return TNK_Non_template;
171
172  if (ObjectTypePtr && !ObjectTypeSearchedInScope) {
173    // C++ [basic.lookup.classref]p1:
174    //   [...] If the lookup in the class of the object expression finds a
175    //   template, the name is also looked up in the context of the entire
176    //   postfix-expression and [...]
177    //
178    LookupResult FoundOuter = LookupName(S, &II, LookupOrdinaryName);
179    // FIXME: Handle ambiguities in this lookup better
180    NamedDecl *OuterTemplate = isAcceptableTemplateName(Context, FoundOuter);
181
182    if (!OuterTemplate) {
183      //   - if the name is not found, the name found in the class of the
184      //     object expression is used, otherwise
185    } else if (!isa<ClassTemplateDecl>(OuterTemplate)) {
186      //   - if the name is found in the context of the entire
187      //     postfix-expression and does not name a class template, the name
188      //     found in the class of the object expression is used, otherwise
189    } else {
190      //   - if the name found is a class template, it must refer to the same
191      //     entity as the one found in the class of the object expression,
192      //     otherwise the program is ill-formed.
193      if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) {
194        Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
195          << &II;
196        Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type)
197          << QualType::getFromOpaquePtr(ObjectTypePtr);
198        Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope);
199
200        // Recover by taking the template that we found in the object
201        // expression's type.
202      }
203    }
204  }
205
206  if (SS && SS->isSet() && !SS->isInvalid()) {
207    NestedNameSpecifier *Qualifier
208      = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
209    if (OverloadedFunctionDecl *Ovl
210          = dyn_cast<OverloadedFunctionDecl>(Template))
211      TemplateResult
212        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
213                                                            Ovl));
214    else
215      TemplateResult
216        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
217                                                 cast<TemplateDecl>(Template)));
218  } else if (OverloadedFunctionDecl *Ovl
219               = dyn_cast<OverloadedFunctionDecl>(Template)) {
220    TemplateResult = TemplateTy::make(TemplateName(Ovl));
221  } else {
222    TemplateResult = TemplateTy::make(
223                                  TemplateName(cast<TemplateDecl>(Template)));
224  }
225
226  if (isa<ClassTemplateDecl>(Template) ||
227      isa<TemplateTemplateParmDecl>(Template))
228    return TNK_Type_template;
229
230  assert((isa<FunctionTemplateDecl>(Template) ||
231          isa<OverloadedFunctionDecl>(Template)) &&
232         "Unhandled template kind in Sema::isTemplateName");
233  return TNK_Function_template;
234}
235
236/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
237/// that the template parameter 'PrevDecl' is being shadowed by a new
238/// declaration at location Loc. Returns true to indicate that this is
239/// an error, and false otherwise.
240bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
241  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
242
243  // Microsoft Visual C++ permits template parameters to be shadowed.
244  if (getLangOptions().Microsoft)
245    return false;
246
247  // C++ [temp.local]p4:
248  //   A template-parameter shall not be redeclared within its
249  //   scope (including nested scopes).
250  Diag(Loc, diag::err_template_param_shadow)
251    << cast<NamedDecl>(PrevDecl)->getDeclName();
252  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
253  return true;
254}
255
256/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
257/// the parameter D to reference the templated declaration and return a pointer
258/// to the template declaration. Otherwise, do nothing to D and return null.
259TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
260  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
261    D = DeclPtrTy::make(Temp->getTemplatedDecl());
262    return Temp;
263  }
264  return 0;
265}
266
267/// ActOnTypeParameter - Called when a C++ template type parameter
268/// (e.g., "typename T") has been parsed. Typename specifies whether
269/// the keyword "typename" was used to declare the type parameter
270/// (otherwise, "class" was used), and KeyLoc is the location of the
271/// "class" or "typename" keyword. ParamName is the name of the
272/// parameter (NULL indicates an unnamed template parameter) and
273/// ParamName is the location of the parameter name (if any).
274/// If the type parameter has a default argument, it will be added
275/// later via ActOnTypeParameterDefault.
276Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
277                                         SourceLocation EllipsisLoc,
278                                         SourceLocation KeyLoc,
279                                         IdentifierInfo *ParamName,
280                                         SourceLocation ParamNameLoc,
281                                         unsigned Depth, unsigned Position) {
282  assert(S->isTemplateParamScope() &&
283         "Template type parameter not in template parameter scope!");
284  bool Invalid = false;
285
286  if (ParamName) {
287    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
288    if (PrevDecl && PrevDecl->isTemplateParameter())
289      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
290                                                           PrevDecl);
291  }
292
293  SourceLocation Loc = ParamNameLoc;
294  if (!ParamName)
295    Loc = KeyLoc;
296
297  TemplateTypeParmDecl *Param
298    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
299                                   Depth, Position, ParamName, Typename,
300                                   Ellipsis);
301  if (Invalid)
302    Param->setInvalidDecl();
303
304  if (ParamName) {
305    // Add the template parameter into the current scope.
306    S->AddDecl(DeclPtrTy::make(Param));
307    IdResolver.AddDecl(Param);
308  }
309
310  return DeclPtrTy::make(Param);
311}
312
313/// ActOnTypeParameterDefault - Adds a default argument (the type
314/// Default) to the given template type parameter (TypeParam).
315void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
316                                     SourceLocation EqualLoc,
317                                     SourceLocation DefaultLoc,
318                                     TypeTy *DefaultT) {
319  TemplateTypeParmDecl *Parm
320    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
321  // FIXME: Preserve type source info.
322  QualType Default = GetTypeFromParser(DefaultT);
323
324  // C++0x [temp.param]p9:
325  // A default template-argument may be specified for any kind of
326  // template-parameter that is not a template parameter pack.
327  if (Parm->isParameterPack()) {
328    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
329    return;
330  }
331
332  // C++ [temp.param]p14:
333  //   A template-parameter shall not be used in its own default argument.
334  // FIXME: Implement this check! Needs a recursive walk over the types.
335
336  // Check the template argument itself.
337  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
338    Parm->setInvalidDecl();
339    return;
340  }
341
342  Parm->setDefaultArgument(Default, DefaultLoc, false);
343}
344
345/// \brief Check that the type of a non-type template parameter is
346/// well-formed.
347///
348/// \returns the (possibly-promoted) parameter type if valid;
349/// otherwise, produces a diagnostic and returns a NULL type.
350QualType
351Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
352  // C++ [temp.param]p4:
353  //
354  // A non-type template-parameter shall have one of the following
355  // (optionally cv-qualified) types:
356  //
357  //       -- integral or enumeration type,
358  if (T->isIntegralType() || T->isEnumeralType() ||
359      //   -- pointer to object or pointer to function,
360      (T->isPointerType() &&
361       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
362        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
363      //   -- reference to object or reference to function,
364      T->isReferenceType() ||
365      //   -- pointer to member.
366      T->isMemberPointerType() ||
367      // If T is a dependent type, we can't do the check now, so we
368      // assume that it is well-formed.
369      T->isDependentType())
370    return T;
371  // C++ [temp.param]p8:
372  //
373  //   A non-type template-parameter of type "array of T" or
374  //   "function returning T" is adjusted to be of type "pointer to
375  //   T" or "pointer to function returning T", respectively.
376  else if (T->isArrayType())
377    // FIXME: Keep the type prior to promotion?
378    return Context.getArrayDecayedType(T);
379  else if (T->isFunctionType())
380    // FIXME: Keep the type prior to promotion?
381    return Context.getPointerType(T);
382
383  Diag(Loc, diag::err_template_nontype_parm_bad_type)
384    << T;
385
386  return QualType();
387}
388
389/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
390/// template parameter (e.g., "int Size" in "template<int Size>
391/// class Array") has been parsed. S is the current scope and D is
392/// the parsed declarator.
393Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
394                                                    unsigned Depth,
395                                                    unsigned Position) {
396  DeclaratorInfo *DInfo = 0;
397  QualType T = GetTypeForDeclarator(D, S, &DInfo);
398
399  assert(S->isTemplateParamScope() &&
400         "Non-type template parameter not in template parameter scope!");
401  bool Invalid = false;
402
403  IdentifierInfo *ParamName = D.getIdentifier();
404  if (ParamName) {
405    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
406    if (PrevDecl && PrevDecl->isTemplateParameter())
407      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
408                                                           PrevDecl);
409  }
410
411  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
412  if (T.isNull()) {
413    T = Context.IntTy; // Recover with an 'int' type.
414    Invalid = true;
415  }
416
417  NonTypeTemplateParmDecl *Param
418    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
419                                      Depth, Position, ParamName, T, DInfo);
420  if (Invalid)
421    Param->setInvalidDecl();
422
423  if (D.getIdentifier()) {
424    // Add the template parameter into the current scope.
425    S->AddDecl(DeclPtrTy::make(Param));
426    IdResolver.AddDecl(Param);
427  }
428  return DeclPtrTy::make(Param);
429}
430
431/// \brief Adds a default argument to the given non-type template
432/// parameter.
433void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
434                                                SourceLocation EqualLoc,
435                                                ExprArg DefaultE) {
436  NonTypeTemplateParmDecl *TemplateParm
437    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
438  Expr *Default = static_cast<Expr *>(DefaultE.get());
439
440  // C++ [temp.param]p14:
441  //   A template-parameter shall not be used in its own default argument.
442  // FIXME: Implement this check! Needs a recursive walk over the types.
443
444  // Check the well-formedness of the default template argument.
445  TemplateArgument Converted;
446  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
447                            Converted)) {
448    TemplateParm->setInvalidDecl();
449    return;
450  }
451
452  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
453}
454
455
456/// ActOnTemplateTemplateParameter - Called when a C++ template template
457/// parameter (e.g. T in template <template <typename> class T> class array)
458/// has been parsed. S is the current scope.
459Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
460                                                     SourceLocation TmpLoc,
461                                                     TemplateParamsTy *Params,
462                                                     IdentifierInfo *Name,
463                                                     SourceLocation NameLoc,
464                                                     unsigned Depth,
465                                                     unsigned Position) {
466  assert(S->isTemplateParamScope() &&
467         "Template template parameter not in template parameter scope!");
468
469  // Construct the parameter object.
470  TemplateTemplateParmDecl *Param =
471    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
472                                     Position, Name,
473                                     (TemplateParameterList*)Params);
474
475  // Make sure the parameter is valid.
476  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
477  // do anything yet. However, if the template parameter list or (eventual)
478  // default value is ever invalidated, that will propagate here.
479  bool Invalid = false;
480  if (Invalid) {
481    Param->setInvalidDecl();
482  }
483
484  // If the tt-param has a name, then link the identifier into the scope
485  // and lookup mechanisms.
486  if (Name) {
487    S->AddDecl(DeclPtrTy::make(Param));
488    IdResolver.AddDecl(Param);
489  }
490
491  return DeclPtrTy::make(Param);
492}
493
494/// \brief Adds a default argument to the given template template
495/// parameter.
496void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
497                                                 SourceLocation EqualLoc,
498                                                 ExprArg DefaultE) {
499  TemplateTemplateParmDecl *TemplateParm
500    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
501
502  // Since a template-template parameter's default argument is an
503  // id-expression, it must be a DeclRefExpr.
504  DeclRefExpr *Default
505    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
506
507  // C++ [temp.param]p14:
508  //   A template-parameter shall not be used in its own default argument.
509  // FIXME: Implement this check! Needs a recursive walk over the types.
510
511  // Check the well-formedness of the template argument.
512  if (!isa<TemplateDecl>(Default->getDecl())) {
513    Diag(Default->getSourceRange().getBegin(),
514         diag::err_template_arg_must_be_template)
515      << Default->getSourceRange();
516    TemplateParm->setInvalidDecl();
517    return;
518  }
519  if (CheckTemplateArgument(TemplateParm, Default)) {
520    TemplateParm->setInvalidDecl();
521    return;
522  }
523
524  DefaultE.release();
525  TemplateParm->setDefaultArgument(Default);
526}
527
528/// ActOnTemplateParameterList - Builds a TemplateParameterList that
529/// contains the template parameters in Params/NumParams.
530Sema::TemplateParamsTy *
531Sema::ActOnTemplateParameterList(unsigned Depth,
532                                 SourceLocation ExportLoc,
533                                 SourceLocation TemplateLoc,
534                                 SourceLocation LAngleLoc,
535                                 DeclPtrTy *Params, unsigned NumParams,
536                                 SourceLocation RAngleLoc) {
537  if (ExportLoc.isValid())
538    Diag(ExportLoc, diag::note_template_export_unsupported);
539
540  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
541                                       (NamedDecl**)Params, NumParams,
542                                       RAngleLoc);
543}
544
545Sema::DeclResult
546Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
547                         SourceLocation KWLoc, const CXXScopeSpec &SS,
548                         IdentifierInfo *Name, SourceLocation NameLoc,
549                         AttributeList *Attr,
550                         TemplateParameterList *TemplateParams,
551                         AccessSpecifier AS) {
552  assert(TemplateParams && TemplateParams->size() > 0 &&
553         "No template parameters");
554  assert(TUK != TUK_Reference && "Can only declare or define class templates");
555  bool Invalid = false;
556
557  // Check that we can declare a template here.
558  if (CheckTemplateDeclScope(S, TemplateParams))
559    return true;
560
561  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
562  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
563
564  // There is no such thing as an unnamed class template.
565  if (!Name) {
566    Diag(KWLoc, diag::err_template_unnamed_class);
567    return true;
568  }
569
570  // Find any previous declaration with this name.
571  DeclContext *SemanticContext;
572  LookupResult Previous;
573  if (SS.isNotEmpty() && !SS.isInvalid()) {
574    SemanticContext = computeDeclContext(SS, true);
575    if (!SemanticContext) {
576      // FIXME: Produce a reasonable diagnostic here
577      return true;
578    }
579
580    Previous = LookupQualifiedName(SemanticContext, Name, LookupOrdinaryName,
581                                   true);
582  } else {
583    SemanticContext = CurContext;
584    Previous = LookupName(S, Name, LookupOrdinaryName, true);
585  }
586
587  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
588  NamedDecl *PrevDecl = 0;
589  if (Previous.begin() != Previous.end())
590    PrevDecl = *Previous.begin();
591
592  if (PrevDecl && TUK == TUK_Friend) {
593    // C++ [namespace.memdef]p3:
594    //   [...] When looking for a prior declaration of a class or a function
595    //   declared as a friend, and when the name of the friend class or
596    //   function is neither a qualified name nor a template-id, scopes outside
597    //   the innermost enclosing namespace scope are not considered.
598    DeclContext *OutermostContext = CurContext;
599    while (!OutermostContext->isFileContext())
600      OutermostContext = OutermostContext->getLookupParent();
601
602    if (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
603        OutermostContext->Encloses(PrevDecl->getDeclContext())) {
604      SemanticContext = PrevDecl->getDeclContext();
605    } else {
606      // Declarations in outer scopes don't matter. However, the outermost
607      // context we computed is the semntic context for our new
608      // declaration.
609      PrevDecl = 0;
610      SemanticContext = OutermostContext;
611    }
612  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
613    PrevDecl = 0;
614
615  // If there is a previous declaration with the same name, check
616  // whether this is a valid redeclaration.
617  ClassTemplateDecl *PrevClassTemplate
618    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
619  if (PrevClassTemplate) {
620    // Ensure that the template parameter lists are compatible.
621    if (!TemplateParameterListsAreEqual(TemplateParams,
622                                   PrevClassTemplate->getTemplateParameters(),
623                                        /*Complain=*/true))
624      return true;
625
626    // C++ [temp.class]p4:
627    //   In a redeclaration, partial specialization, explicit
628    //   specialization or explicit instantiation of a class template,
629    //   the class-key shall agree in kind with the original class
630    //   template declaration (7.1.5.3).
631    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
632    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
633      Diag(KWLoc, diag::err_use_with_wrong_tag)
634        << Name
635        << CodeModificationHint::CreateReplacement(KWLoc,
636                            PrevRecordDecl->getKindName());
637      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
638      Kind = PrevRecordDecl->getTagKind();
639    }
640
641    // Check for redefinition of this class template.
642    if (TUK == TUK_Definition) {
643      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
644        Diag(NameLoc, diag::err_redefinition) << Name;
645        Diag(Def->getLocation(), diag::note_previous_definition);
646        // FIXME: Would it make sense to try to "forget" the previous
647        // definition, as part of error recovery?
648        return true;
649      }
650    }
651  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
652    // Maybe we will complain about the shadowed template parameter.
653    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
654    // Just pretend that we didn't see the previous declaration.
655    PrevDecl = 0;
656  } else if (PrevDecl) {
657    // C++ [temp]p5:
658    //   A class template shall not have the same name as any other
659    //   template, class, function, object, enumeration, enumerator,
660    //   namespace, or type in the same scope (3.3), except as specified
661    //   in (14.5.4).
662    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
663    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
664    return true;
665  }
666
667  // Check the template parameter list of this declaration, possibly
668  // merging in the template parameter list from the previous class
669  // template declaration.
670  if (CheckTemplateParameterList(TemplateParams,
671            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
672    Invalid = true;
673
674  // FIXME: If we had a scope specifier, we better have a previous template
675  // declaration!
676
677  CXXRecordDecl *NewClass =
678    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
679                          PrevClassTemplate?
680                            PrevClassTemplate->getTemplatedDecl() : 0,
681                          /*DelayTypeCreation=*/true);
682
683  ClassTemplateDecl *NewTemplate
684    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
685                                DeclarationName(Name), TemplateParams,
686                                NewClass, PrevClassTemplate);
687  NewClass->setDescribedClassTemplate(NewTemplate);
688
689  // Build the type for the class template declaration now.
690  QualType T =
691    Context.getTypeDeclType(NewClass,
692                            PrevClassTemplate?
693                              PrevClassTemplate->getTemplatedDecl() : 0);
694  assert(T->isDependentType() && "Class template type is not dependent?");
695  (void)T;
696
697  // Set the access specifier.
698  if (!Invalid && TUK != TUK_Friend)
699    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
700
701  // Set the lexical context of these templates
702  NewClass->setLexicalDeclContext(CurContext);
703  NewTemplate->setLexicalDeclContext(CurContext);
704
705  if (TUK == TUK_Definition)
706    NewClass->startDefinition();
707
708  if (Attr)
709    ProcessDeclAttributeList(S, NewClass, Attr);
710
711  if (TUK != TUK_Friend)
712    PushOnScopeChains(NewTemplate, S);
713  else {
714    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
715      NewTemplate->setAccess(PrevClassTemplate->getAccess());
716      NewClass->setAccess(PrevClassTemplate->getAccess());
717    }
718
719    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
720                                       PrevClassTemplate != NULL);
721
722    // Friend templates are visible in fairly strange ways.
723    if (!CurContext->isDependentContext()) {
724      DeclContext *DC = SemanticContext->getLookupContext();
725      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
726      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
727        PushOnScopeChains(NewTemplate, EnclosingScope,
728                          /* AddToContext = */ false);
729    }
730
731    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
732                                            NewClass->getLocation(),
733                                            NewTemplate,
734                                    /*FIXME:*/NewClass->getLocation());
735    Friend->setAccess(AS_public);
736    CurContext->addDecl(Friend);
737  }
738
739  if (Invalid) {
740    NewTemplate->setInvalidDecl();
741    NewClass->setInvalidDecl();
742  }
743  return DeclPtrTy::make(NewTemplate);
744}
745
746/// \brief Checks the validity of a template parameter list, possibly
747/// considering the template parameter list from a previous
748/// declaration.
749///
750/// If an "old" template parameter list is provided, it must be
751/// equivalent (per TemplateParameterListsAreEqual) to the "new"
752/// template parameter list.
753///
754/// \param NewParams Template parameter list for a new template
755/// declaration. This template parameter list will be updated with any
756/// default arguments that are carried through from the previous
757/// template parameter list.
758///
759/// \param OldParams If provided, template parameter list from a
760/// previous declaration of the same template. Default template
761/// arguments will be merged from the old template parameter list to
762/// the new template parameter list.
763///
764/// \returns true if an error occurred, false otherwise.
765bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
766                                      TemplateParameterList *OldParams) {
767  bool Invalid = false;
768
769  // C++ [temp.param]p10:
770  //   The set of default template-arguments available for use with a
771  //   template declaration or definition is obtained by merging the
772  //   default arguments from the definition (if in scope) and all
773  //   declarations in scope in the same way default function
774  //   arguments are (8.3.6).
775  bool SawDefaultArgument = false;
776  SourceLocation PreviousDefaultArgLoc;
777
778  bool SawParameterPack = false;
779  SourceLocation ParameterPackLoc;
780
781  // Dummy initialization to avoid warnings.
782  TemplateParameterList::iterator OldParam = NewParams->end();
783  if (OldParams)
784    OldParam = OldParams->begin();
785
786  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
787                                    NewParamEnd = NewParams->end();
788       NewParam != NewParamEnd; ++NewParam) {
789    // Variables used to diagnose redundant default arguments
790    bool RedundantDefaultArg = false;
791    SourceLocation OldDefaultLoc;
792    SourceLocation NewDefaultLoc;
793
794    // Variables used to diagnose missing default arguments
795    bool MissingDefaultArg = false;
796
797    // C++0x [temp.param]p11:
798    // If a template parameter of a class template is a template parameter pack,
799    // it must be the last template parameter.
800    if (SawParameterPack) {
801      Diag(ParameterPackLoc,
802           diag::err_template_param_pack_must_be_last_template_parameter);
803      Invalid = true;
804    }
805
806    // Merge default arguments for template type parameters.
807    if (TemplateTypeParmDecl *NewTypeParm
808          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
809      TemplateTypeParmDecl *OldTypeParm
810          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
811
812      if (NewTypeParm->isParameterPack()) {
813        assert(!NewTypeParm->hasDefaultArgument() &&
814               "Parameter packs can't have a default argument!");
815        SawParameterPack = true;
816        ParameterPackLoc = NewTypeParm->getLocation();
817      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
818          NewTypeParm->hasDefaultArgument()) {
819        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
820        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
821        SawDefaultArgument = true;
822        RedundantDefaultArg = true;
823        PreviousDefaultArgLoc = NewDefaultLoc;
824      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
825        // Merge the default argument from the old declaration to the
826        // new declaration.
827        SawDefaultArgument = true;
828        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
829                                        OldTypeParm->getDefaultArgumentLoc(),
830                                        true);
831        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
832      } else if (NewTypeParm->hasDefaultArgument()) {
833        SawDefaultArgument = true;
834        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
835      } else if (SawDefaultArgument)
836        MissingDefaultArg = true;
837    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
838               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
839      // Merge default arguments for non-type template parameters
840      NonTypeTemplateParmDecl *OldNonTypeParm
841        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
842      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
843          NewNonTypeParm->hasDefaultArgument()) {
844        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
845        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
846        SawDefaultArgument = true;
847        RedundantDefaultArg = true;
848        PreviousDefaultArgLoc = NewDefaultLoc;
849      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
850        // Merge the default argument from the old declaration to the
851        // new declaration.
852        SawDefaultArgument = true;
853        // FIXME: We need to create a new kind of "default argument"
854        // expression that points to a previous template template
855        // parameter.
856        NewNonTypeParm->setDefaultArgument(
857                                        OldNonTypeParm->getDefaultArgument());
858        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
859      } else if (NewNonTypeParm->hasDefaultArgument()) {
860        SawDefaultArgument = true;
861        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
862      } else if (SawDefaultArgument)
863        MissingDefaultArg = true;
864    } else {
865    // Merge default arguments for template template parameters
866      TemplateTemplateParmDecl *NewTemplateParm
867        = cast<TemplateTemplateParmDecl>(*NewParam);
868      TemplateTemplateParmDecl *OldTemplateParm
869        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
870      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
871          NewTemplateParm->hasDefaultArgument()) {
872        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
873        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
874        SawDefaultArgument = true;
875        RedundantDefaultArg = true;
876        PreviousDefaultArgLoc = NewDefaultLoc;
877      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
878        // Merge the default argument from the old declaration to the
879        // new declaration.
880        SawDefaultArgument = true;
881        // FIXME: We need to create a new kind of "default argument" expression
882        // that points to a previous template template parameter.
883        NewTemplateParm->setDefaultArgument(
884                                        OldTemplateParm->getDefaultArgument());
885        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
886      } else if (NewTemplateParm->hasDefaultArgument()) {
887        SawDefaultArgument = true;
888        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
889      } else if (SawDefaultArgument)
890        MissingDefaultArg = true;
891    }
892
893    if (RedundantDefaultArg) {
894      // C++ [temp.param]p12:
895      //   A template-parameter shall not be given default arguments
896      //   by two different declarations in the same scope.
897      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
898      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
899      Invalid = true;
900    } else if (MissingDefaultArg) {
901      // C++ [temp.param]p11:
902      //   If a template-parameter has a default template-argument,
903      //   all subsequent template-parameters shall have a default
904      //   template-argument supplied.
905      Diag((*NewParam)->getLocation(),
906           diag::err_template_param_default_arg_missing);
907      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
908      Invalid = true;
909    }
910
911    // If we have an old template parameter list that we're merging
912    // in, move on to the next parameter.
913    if (OldParams)
914      ++OldParam;
915  }
916
917  return Invalid;
918}
919
920/// \brief Match the given template parameter lists to the given scope
921/// specifier, returning the template parameter list that applies to the
922/// name.
923///
924/// \param DeclStartLoc the start of the declaration that has a scope
925/// specifier or a template parameter list.
926///
927/// \param SS the scope specifier that will be matched to the given template
928/// parameter lists. This scope specifier precedes a qualified name that is
929/// being declared.
930///
931/// \param ParamLists the template parameter lists, from the outermost to the
932/// innermost template parameter lists.
933///
934/// \param NumParamLists the number of template parameter lists in ParamLists.
935///
936/// \param IsExplicitSpecialization will be set true if the entity being
937/// declared is an explicit specialization, false otherwise.
938///
939/// \returns the template parameter list, if any, that corresponds to the
940/// name that is preceded by the scope specifier @p SS. This template
941/// parameter list may be have template parameters (if we're declaring a
942/// template) or may have no template parameters (if we're declaring a
943/// template specialization), or may be NULL (if we were's declaring isn't
944/// itself a template).
945TemplateParameterList *
946Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
947                                              const CXXScopeSpec &SS,
948                                          TemplateParameterList **ParamLists,
949                                              unsigned NumParamLists,
950                                              bool &IsExplicitSpecialization) {
951  IsExplicitSpecialization = false;
952
953  // Find the template-ids that occur within the nested-name-specifier. These
954  // template-ids will match up with the template parameter lists.
955  llvm::SmallVector<const TemplateSpecializationType *, 4>
956    TemplateIdsInSpecifier;
957  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
958       NNS; NNS = NNS->getPrefix()) {
959    if (const TemplateSpecializationType *SpecType
960          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
961      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
962      if (!Template)
963        continue; // FIXME: should this be an error? probably...
964
965      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
966        ClassTemplateSpecializationDecl *SpecDecl
967          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
968        // If the nested name specifier refers to an explicit specialization,
969        // we don't need a template<> header.
970        // FIXME: revisit this approach once we cope with specializations
971        // properly.
972        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
973          continue;
974      }
975
976      TemplateIdsInSpecifier.push_back(SpecType);
977    }
978  }
979
980  // Reverse the list of template-ids in the scope specifier, so that we can
981  // more easily match up the template-ids and the template parameter lists.
982  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
983
984  SourceLocation FirstTemplateLoc = DeclStartLoc;
985  if (NumParamLists)
986    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
987
988  // Match the template-ids found in the specifier to the template parameter
989  // lists.
990  unsigned Idx = 0;
991  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
992       Idx != NumTemplateIds; ++Idx) {
993    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
994    bool DependentTemplateId = TemplateId->isDependentType();
995    if (Idx >= NumParamLists) {
996      // We have a template-id without a corresponding template parameter
997      // list.
998      if (DependentTemplateId) {
999        // FIXME: the location information here isn't great.
1000        Diag(SS.getRange().getBegin(),
1001             diag::err_template_spec_needs_template_parameters)
1002          << TemplateId
1003          << SS.getRange();
1004      } else {
1005        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1006          << SS.getRange()
1007          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1008                                                   "template<> ");
1009        IsExplicitSpecialization = true;
1010      }
1011      return 0;
1012    }
1013
1014    // Check the template parameter list against its corresponding template-id.
1015    if (DependentTemplateId) {
1016      TemplateDecl *Template
1017        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1018
1019      if (ClassTemplateDecl *ClassTemplate
1020            = dyn_cast<ClassTemplateDecl>(Template)) {
1021        TemplateParameterList *ExpectedTemplateParams = 0;
1022        // Is this template-id naming the primary template?
1023        if (Context.hasSameType(TemplateId,
1024                             ClassTemplate->getInjectedClassNameType(Context)))
1025          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1026        // ... or a partial specialization?
1027        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1028                   = ClassTemplate->findPartialSpecialization(TemplateId))
1029          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1030
1031        if (ExpectedTemplateParams)
1032          TemplateParameterListsAreEqual(ParamLists[Idx],
1033                                         ExpectedTemplateParams,
1034                                         true);
1035      }
1036    } else if (ParamLists[Idx]->size() > 0)
1037      Diag(ParamLists[Idx]->getTemplateLoc(),
1038           diag::err_template_param_list_matches_nontemplate)
1039        << TemplateId
1040        << ParamLists[Idx]->getSourceRange();
1041    else
1042      IsExplicitSpecialization = true;
1043  }
1044
1045  // If there were at least as many template-ids as there were template
1046  // parameter lists, then there are no template parameter lists remaining for
1047  // the declaration itself.
1048  if (Idx >= NumParamLists)
1049    return 0;
1050
1051  // If there were too many template parameter lists, complain about that now.
1052  if (Idx != NumParamLists - 1) {
1053    while (Idx < NumParamLists - 1) {
1054      Diag(ParamLists[Idx]->getTemplateLoc(),
1055           diag::err_template_spec_extra_headers)
1056        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1057                       ParamLists[Idx]->getRAngleLoc());
1058      ++Idx;
1059    }
1060  }
1061
1062  // Return the last template parameter list, which corresponds to the
1063  // entity being declared.
1064  return ParamLists[NumParamLists - 1];
1065}
1066
1067/// \brief Translates template arguments as provided by the parser
1068/// into template arguments used by semantic analysis.
1069void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
1070                                      SourceLocation *TemplateArgLocs,
1071                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
1072  TemplateArgs.reserve(TemplateArgsIn.size());
1073
1074  void **Args = TemplateArgsIn.getArgs();
1075  bool *ArgIsType = TemplateArgsIn.getArgIsType();
1076  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
1077    TemplateArgs.push_back(
1078      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
1079                                       //FIXME: Preserve type source info.
1080                                       Sema::GetTypeFromParser(Args[Arg]))
1081                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
1082  }
1083}
1084
1085QualType Sema::CheckTemplateIdType(TemplateName Name,
1086                                   SourceLocation TemplateLoc,
1087                                   SourceLocation LAngleLoc,
1088                                   const TemplateArgument *TemplateArgs,
1089                                   unsigned NumTemplateArgs,
1090                                   SourceLocation RAngleLoc) {
1091  TemplateDecl *Template = Name.getAsTemplateDecl();
1092  if (!Template) {
1093    // The template name does not resolve to a template, so we just
1094    // build a dependent template-id type.
1095    return Context.getTemplateSpecializationType(Name, TemplateArgs,
1096                                                 NumTemplateArgs);
1097  }
1098
1099  // Check that the template argument list is well-formed for this
1100  // template.
1101  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1102                                        NumTemplateArgs);
1103  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
1104                                TemplateArgs, NumTemplateArgs, RAngleLoc,
1105                                false, Converted))
1106    return QualType();
1107
1108  assert((Converted.structuredSize() ==
1109            Template->getTemplateParameters()->size()) &&
1110         "Converted template argument list is too short!");
1111
1112  QualType CanonType;
1113
1114  if (TemplateSpecializationType::anyDependentTemplateArguments(
1115                                                      TemplateArgs,
1116                                                      NumTemplateArgs)) {
1117    // This class template specialization is a dependent
1118    // type. Therefore, its canonical type is another class template
1119    // specialization type that contains all of the converted
1120    // arguments in canonical form. This ensures that, e.g., A<T> and
1121    // A<T, T> have identical types when A is declared as:
1122    //
1123    //   template<typename T, typename U = T> struct A;
1124    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1125    CanonType = Context.getTemplateSpecializationType(CanonName,
1126                                                   Converted.getFlatArguments(),
1127                                                   Converted.flatSize());
1128
1129    // FIXME: CanonType is not actually the canonical type, and unfortunately
1130    // it is a TemplateTypeSpecializationType that we will never use again.
1131    // In the future, we need to teach getTemplateSpecializationType to only
1132    // build the canonical type and return that to us.
1133    CanonType = Context.getCanonicalType(CanonType);
1134  } else if (ClassTemplateDecl *ClassTemplate
1135               = dyn_cast<ClassTemplateDecl>(Template)) {
1136    // Find the class template specialization declaration that
1137    // corresponds to these arguments.
1138    llvm::FoldingSetNodeID ID;
1139    ClassTemplateSpecializationDecl::Profile(ID,
1140                                             Converted.getFlatArguments(),
1141                                             Converted.flatSize(),
1142                                             Context);
1143    void *InsertPos = 0;
1144    ClassTemplateSpecializationDecl *Decl
1145      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1146    if (!Decl) {
1147      // This is the first time we have referenced this class template
1148      // specialization. Create the canonical declaration and add it to
1149      // the set of specializations.
1150      Decl = ClassTemplateSpecializationDecl::Create(Context,
1151                                    ClassTemplate->getDeclContext(),
1152                                    ClassTemplate->getLocation(),
1153                                    ClassTemplate,
1154                                    Converted, 0);
1155      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1156      Decl->setLexicalDeclContext(CurContext);
1157    }
1158
1159    CanonType = Context.getTypeDeclType(Decl);
1160  }
1161
1162  // Build the fully-sugared type for this class template
1163  // specialization, which refers back to the class template
1164  // specialization we created or found.
1165  //FIXME: Preserve type source info.
1166  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1167                                               NumTemplateArgs, CanonType);
1168}
1169
1170Action::TypeResult
1171Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1172                          SourceLocation LAngleLoc,
1173                          ASTTemplateArgsPtr TemplateArgsIn,
1174                          SourceLocation *TemplateArgLocs,
1175                          SourceLocation RAngleLoc) {
1176  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1177
1178  // Translate the parser's template argument list in our AST format.
1179  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1180  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1181
1182  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1183                                        TemplateArgs.data(),
1184                                        TemplateArgs.size(),
1185                                        RAngleLoc);
1186  TemplateArgsIn.release();
1187
1188  if (Result.isNull())
1189    return true;
1190
1191  return Result.getAsOpaquePtr();
1192}
1193
1194Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1195                                              TagUseKind TUK,
1196                                              DeclSpec::TST TagSpec,
1197                                              SourceLocation TagLoc) {
1198  if (TypeResult.isInvalid())
1199    return Sema::TypeResult();
1200
1201  QualType Type = QualType::getFromOpaquePtr(TypeResult.get());
1202
1203  // Verify the tag specifier.
1204  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1205
1206  if (const RecordType *RT = Type->getAs<RecordType>()) {
1207    RecordDecl *D = RT->getDecl();
1208
1209    IdentifierInfo *Id = D->getIdentifier();
1210    assert(Id && "templated class must have an identifier");
1211
1212    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1213      Diag(TagLoc, diag::err_use_with_wrong_tag)
1214        << Type
1215        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1216                                                   D->getKindName());
1217      Diag(D->getLocation(), diag::note_previous_use);
1218    }
1219  }
1220
1221  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1222
1223  return ElabType.getAsOpaquePtr();
1224}
1225
1226Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template,
1227                                                 SourceLocation TemplateNameLoc,
1228                                                 SourceLocation LAngleLoc,
1229                                           const TemplateArgument *TemplateArgs,
1230                                                 unsigned NumTemplateArgs,
1231                                                 SourceLocation RAngleLoc) {
1232  // FIXME: Can we do any checking at this point? I guess we could check the
1233  // template arguments that we have against the template name, if the template
1234  // name refers to a single template. That's not a terribly common case,
1235  // though.
1236  return Owned(TemplateIdRefExpr::Create(Context,
1237                                         /*FIXME: New type?*/Context.OverloadTy,
1238                                         /*FIXME: Necessary?*/0,
1239                                         /*FIXME: Necessary?*/SourceRange(),
1240                                         Template, TemplateNameLoc, LAngleLoc,
1241                                         TemplateArgs,
1242                                         NumTemplateArgs, RAngleLoc));
1243}
1244
1245Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD,
1246                                                 SourceLocation TemplateNameLoc,
1247                                                 SourceLocation LAngleLoc,
1248                                              ASTTemplateArgsPtr TemplateArgsIn,
1249                                                SourceLocation *TemplateArgLocs,
1250                                                 SourceLocation RAngleLoc) {
1251  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1252
1253  // Translate the parser's template argument list in our AST format.
1254  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1255  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1256  TemplateArgsIn.release();
1257
1258  return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc,
1259                             TemplateArgs.data(), TemplateArgs.size(),
1260                             RAngleLoc);
1261}
1262
1263Sema::OwningExprResult
1264Sema::ActOnMemberTemplateIdReferenceExpr(Scope *S, ExprArg Base,
1265                                         SourceLocation OpLoc,
1266                                         tok::TokenKind OpKind,
1267                                         const CXXScopeSpec &SS,
1268                                         TemplateTy TemplateD,
1269                                         SourceLocation TemplateNameLoc,
1270                                         SourceLocation LAngleLoc,
1271                                         ASTTemplateArgsPtr TemplateArgsIn,
1272                                         SourceLocation *TemplateArgLocs,
1273                                         SourceLocation RAngleLoc) {
1274  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1275
1276  // FIXME: We're going to end up looking up the template based on its name,
1277  // twice!
1278  DeclarationName Name;
1279  if (TemplateDecl *ActualTemplate = Template.getAsTemplateDecl())
1280    Name = ActualTemplate->getDeclName();
1281  else if (OverloadedFunctionDecl *Ovl = Template.getAsOverloadedFunctionDecl())
1282    Name = Ovl->getDeclName();
1283  else
1284    Name = Template.getAsDependentTemplateName()->getName();
1285
1286  // Translate the parser's template argument list in our AST format.
1287  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1288  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1289  TemplateArgsIn.release();
1290
1291  // Do we have the save the actual template name? We might need it...
1292  return BuildMemberReferenceExpr(S, move(Base), OpLoc, OpKind, TemplateNameLoc,
1293                                  Name, true, LAngleLoc,
1294                                  TemplateArgs.data(), TemplateArgs.size(),
1295                                  RAngleLoc, DeclPtrTy(), &SS);
1296}
1297
1298/// \brief Form a dependent template name.
1299///
1300/// This action forms a dependent template name given the template
1301/// name and its (presumably dependent) scope specifier. For
1302/// example, given "MetaFun::template apply", the scope specifier \p
1303/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1304/// of the "template" keyword, and "apply" is the \p Name.
1305Sema::TemplateTy
1306Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1307                                 const IdentifierInfo &Name,
1308                                 SourceLocation NameLoc,
1309                                 const CXXScopeSpec &SS,
1310                                 TypeTy *ObjectType) {
1311  if ((ObjectType &&
1312       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1313      (SS.isSet() && computeDeclContext(SS, false))) {
1314    // C++0x [temp.names]p5:
1315    //   If a name prefixed by the keyword template is not the name of
1316    //   a template, the program is ill-formed. [Note: the keyword
1317    //   template may not be applied to non-template members of class
1318    //   templates. -end note ] [ Note: as is the case with the
1319    //   typename prefix, the template prefix is allowed in cases
1320    //   where it is not strictly necessary; i.e., when the
1321    //   nested-name-specifier or the expression on the left of the ->
1322    //   or . is not dependent on a template-parameter, or the use
1323    //   does not appear in the scope of a template. -end note]
1324    //
1325    // Note: C++03 was more strict here, because it banned the use of
1326    // the "template" keyword prior to a template-name that was not a
1327    // dependent name. C++ DR468 relaxed this requirement (the
1328    // "template" keyword is now permitted). We follow the C++0x
1329    // rules, even in C++03 mode, retroactively applying the DR.
1330    TemplateTy Template;
1331    TemplateNameKind TNK = isTemplateName(0, Name, NameLoc, &SS, ObjectType,
1332                                          false, Template);
1333    if (TNK == TNK_Non_template) {
1334      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1335        << &Name;
1336      return TemplateTy();
1337    }
1338
1339    return Template;
1340  }
1341
1342  NestedNameSpecifier *Qualifier
1343    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1344  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
1345}
1346
1347bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1348                                     const TemplateArgument &Arg,
1349                                     TemplateArgumentListBuilder &Converted) {
1350  // Check template type parameter.
1351  if (Arg.getKind() != TemplateArgument::Type) {
1352    // C++ [temp.arg.type]p1:
1353    //   A template-argument for a template-parameter which is a
1354    //   type shall be a type-id.
1355
1356    // We have a template type parameter but the template argument
1357    // is not a type.
1358    Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1359    Diag(Param->getLocation(), diag::note_template_param_here);
1360
1361    return true;
1362  }
1363
1364  if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation()))
1365    return true;
1366
1367  // Add the converted template type argument.
1368  Converted.Append(
1369                 TemplateArgument(Arg.getLocation(),
1370                                  Context.getCanonicalType(Arg.getAsType())));
1371  return false;
1372}
1373
1374/// \brief Check that the given template argument list is well-formed
1375/// for specializing the given template.
1376bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1377                                     SourceLocation TemplateLoc,
1378                                     SourceLocation LAngleLoc,
1379                                     const TemplateArgument *TemplateArgs,
1380                                     unsigned NumTemplateArgs,
1381                                     SourceLocation RAngleLoc,
1382                                     bool PartialTemplateArgs,
1383                                     TemplateArgumentListBuilder &Converted) {
1384  TemplateParameterList *Params = Template->getTemplateParameters();
1385  unsigned NumParams = Params->size();
1386  unsigned NumArgs = NumTemplateArgs;
1387  bool Invalid = false;
1388
1389  bool HasParameterPack =
1390    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1391
1392  if ((NumArgs > NumParams && !HasParameterPack) ||
1393      (NumArgs < Params->getMinRequiredArguments() &&
1394       !PartialTemplateArgs)) {
1395    // FIXME: point at either the first arg beyond what we can handle,
1396    // or the '>', depending on whether we have too many or too few
1397    // arguments.
1398    SourceRange Range;
1399    if (NumArgs > NumParams)
1400      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1401    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1402      << (NumArgs > NumParams)
1403      << (isa<ClassTemplateDecl>(Template)? 0 :
1404          isa<FunctionTemplateDecl>(Template)? 1 :
1405          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1406      << Template << Range;
1407    Diag(Template->getLocation(), diag::note_template_decl_here)
1408      << Params->getSourceRange();
1409    Invalid = true;
1410  }
1411
1412  // C++ [temp.arg]p1:
1413  //   [...] The type and form of each template-argument specified in
1414  //   a template-id shall match the type and form specified for the
1415  //   corresponding parameter declared by the template in its
1416  //   template-parameter-list.
1417  unsigned ArgIdx = 0;
1418  for (TemplateParameterList::iterator Param = Params->begin(),
1419                                       ParamEnd = Params->end();
1420       Param != ParamEnd; ++Param, ++ArgIdx) {
1421    if (ArgIdx > NumArgs && PartialTemplateArgs)
1422      break;
1423
1424    // Decode the template argument
1425    TemplateArgument Arg;
1426    if (ArgIdx >= NumArgs) {
1427      // Retrieve the default template argument from the template
1428      // parameter.
1429      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1430        if (TTP->isParameterPack()) {
1431          // We have an empty argument pack.
1432          Converted.BeginPack();
1433          Converted.EndPack();
1434          break;
1435        }
1436
1437        if (!TTP->hasDefaultArgument())
1438          break;
1439
1440        QualType ArgType = TTP->getDefaultArgument();
1441
1442        // If the argument type is dependent, instantiate it now based
1443        // on the previously-computed template arguments.
1444        if (ArgType->isDependentType()) {
1445          InstantiatingTemplate Inst(*this, TemplateLoc,
1446                                     Template, Converted.getFlatArguments(),
1447                                     Converted.flatSize(),
1448                                     SourceRange(TemplateLoc, RAngleLoc));
1449
1450          TemplateArgumentList TemplateArgs(Context, Converted,
1451                                            /*TakeArgs=*/false);
1452          ArgType = SubstType(ArgType,
1453                              MultiLevelTemplateArgumentList(TemplateArgs),
1454                              TTP->getDefaultArgumentLoc(),
1455                              TTP->getDeclName());
1456        }
1457
1458        if (ArgType.isNull())
1459          return true;
1460
1461        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1462      } else if (NonTypeTemplateParmDecl *NTTP
1463                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1464        if (!NTTP->hasDefaultArgument())
1465          break;
1466
1467        InstantiatingTemplate Inst(*this, TemplateLoc,
1468                                   Template, Converted.getFlatArguments(),
1469                                   Converted.flatSize(),
1470                                   SourceRange(TemplateLoc, RAngleLoc));
1471
1472        TemplateArgumentList TemplateArgs(Context, Converted,
1473                                          /*TakeArgs=*/false);
1474
1475        Sema::OwningExprResult E
1476          = SubstExpr(NTTP->getDefaultArgument(),
1477                      MultiLevelTemplateArgumentList(TemplateArgs));
1478        if (E.isInvalid())
1479          return true;
1480
1481        Arg = TemplateArgument(E.takeAs<Expr>());
1482      } else {
1483        TemplateTemplateParmDecl *TempParm
1484          = cast<TemplateTemplateParmDecl>(*Param);
1485
1486        if (!TempParm->hasDefaultArgument())
1487          break;
1488
1489        // FIXME: Subst default argument
1490        Arg = TemplateArgument(TempParm->getDefaultArgument());
1491      }
1492    } else {
1493      // Retrieve the template argument produced by the user.
1494      Arg = TemplateArgs[ArgIdx];
1495    }
1496
1497
1498    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1499      if (TTP->isParameterPack()) {
1500        Converted.BeginPack();
1501        // Check all the remaining arguments (if any).
1502        for (; ArgIdx < NumArgs; ++ArgIdx) {
1503          if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
1504            Invalid = true;
1505        }
1506
1507        Converted.EndPack();
1508      } else {
1509        if (CheckTemplateTypeArgument(TTP, Arg, Converted))
1510          Invalid = true;
1511      }
1512    } else if (NonTypeTemplateParmDecl *NTTP
1513                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1514      // Check non-type template parameters.
1515
1516      // Do substitution on the type of the non-type template parameter
1517      // with the template arguments we've seen thus far.
1518      QualType NTTPType = NTTP->getType();
1519      if (NTTPType->isDependentType()) {
1520        // Do substitution on the type of the non-type template parameter.
1521        InstantiatingTemplate Inst(*this, TemplateLoc,
1522                                   Template, Converted.getFlatArguments(),
1523                                   Converted.flatSize(),
1524                                   SourceRange(TemplateLoc, RAngleLoc));
1525
1526        TemplateArgumentList TemplateArgs(Context, Converted,
1527                                          /*TakeArgs=*/false);
1528        NTTPType = SubstType(NTTPType,
1529                             MultiLevelTemplateArgumentList(TemplateArgs),
1530                             NTTP->getLocation(),
1531                             NTTP->getDeclName());
1532        // If that worked, check the non-type template parameter type
1533        // for validity.
1534        if (!NTTPType.isNull())
1535          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1536                                                       NTTP->getLocation());
1537        if (NTTPType.isNull()) {
1538          Invalid = true;
1539          break;
1540        }
1541      }
1542
1543      switch (Arg.getKind()) {
1544      case TemplateArgument::Null:
1545        assert(false && "Should never see a NULL template argument here");
1546        break;
1547
1548      case TemplateArgument::Expression: {
1549        Expr *E = Arg.getAsExpr();
1550        TemplateArgument Result;
1551        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1552          Invalid = true;
1553        else
1554          Converted.Append(Result);
1555        break;
1556      }
1557
1558      case TemplateArgument::Declaration:
1559      case TemplateArgument::Integral:
1560        // We've already checked this template argument, so just copy
1561        // it to the list of converted arguments.
1562        Converted.Append(Arg);
1563        break;
1564
1565      case TemplateArgument::Type:
1566        // We have a non-type template parameter but the template
1567        // argument is a type.
1568
1569        // C++ [temp.arg]p2:
1570        //   In a template-argument, an ambiguity between a type-id and
1571        //   an expression is resolved to a type-id, regardless of the
1572        //   form of the corresponding template-parameter.
1573        //
1574        // We warn specifically about this case, since it can be rather
1575        // confusing for users.
1576        if (Arg.getAsType()->isFunctionType())
1577          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1578            << Arg.getAsType();
1579        else
1580          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1581        Diag((*Param)->getLocation(), diag::note_template_param_here);
1582        Invalid = true;
1583        break;
1584
1585      case TemplateArgument::Pack:
1586        assert(0 && "FIXME: Implement!");
1587        break;
1588      }
1589    } else {
1590      // Check template template parameters.
1591      TemplateTemplateParmDecl *TempParm
1592        = cast<TemplateTemplateParmDecl>(*Param);
1593
1594      switch (Arg.getKind()) {
1595      case TemplateArgument::Null:
1596        assert(false && "Should never see a NULL template argument here");
1597        break;
1598
1599      case TemplateArgument::Expression: {
1600        Expr *ArgExpr = Arg.getAsExpr();
1601        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1602            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1603          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1604            Invalid = true;
1605
1606          // Add the converted template argument.
1607          Decl *D
1608            = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl();
1609          Converted.Append(TemplateArgument(Arg.getLocation(), D));
1610          continue;
1611        }
1612      }
1613        // fall through
1614
1615      case TemplateArgument::Type: {
1616        // We have a template template parameter but the template
1617        // argument does not refer to a template.
1618        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1619        Invalid = true;
1620        break;
1621      }
1622
1623      case TemplateArgument::Declaration:
1624        // We've already checked this template argument, so just copy
1625        // it to the list of converted arguments.
1626        Converted.Append(Arg);
1627        break;
1628
1629      case TemplateArgument::Integral:
1630        assert(false && "Integral argument with template template parameter");
1631        break;
1632
1633      case TemplateArgument::Pack:
1634        assert(0 && "FIXME: Implement!");
1635        break;
1636      }
1637    }
1638  }
1639
1640  return Invalid;
1641}
1642
1643/// \brief Check a template argument against its corresponding
1644/// template type parameter.
1645///
1646/// This routine implements the semantics of C++ [temp.arg.type]. It
1647/// returns true if an error occurred, and false otherwise.
1648bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1649                                 QualType Arg, SourceLocation ArgLoc) {
1650  // C++ [temp.arg.type]p2:
1651  //   A local type, a type with no linkage, an unnamed type or a type
1652  //   compounded from any of these types shall not be used as a
1653  //   template-argument for a template type-parameter.
1654  //
1655  // FIXME: Perform the recursive and no-linkage type checks.
1656  const TagType *Tag = 0;
1657  if (const EnumType *EnumT = Arg->getAs<EnumType>())
1658    Tag = EnumT;
1659  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1660    Tag = RecordT;
1661  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1662    return Diag(ArgLoc, diag::err_template_arg_local_type)
1663      << QualType(Tag, 0);
1664  else if (Tag && !Tag->getDecl()->getDeclName() &&
1665           !Tag->getDecl()->getTypedefForAnonDecl()) {
1666    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1667    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1668    return true;
1669  }
1670
1671  return false;
1672}
1673
1674/// \brief Checks whether the given template argument is the address
1675/// of an object or function according to C++ [temp.arg.nontype]p1.
1676bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1677                                                          NamedDecl *&Entity) {
1678  bool Invalid = false;
1679
1680  // See through any implicit casts we added to fix the type.
1681  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1682    Arg = Cast->getSubExpr();
1683
1684  // C++0x allows nullptr, and there's no further checking to be done for that.
1685  if (Arg->getType()->isNullPtrType())
1686    return false;
1687
1688  // C++ [temp.arg.nontype]p1:
1689  //
1690  //   A template-argument for a non-type, non-template
1691  //   template-parameter shall be one of: [...]
1692  //
1693  //     -- the address of an object or function with external
1694  //        linkage, including function templates and function
1695  //        template-ids but excluding non-static class members,
1696  //        expressed as & id-expression where the & is optional if
1697  //        the name refers to a function or array, or if the
1698  //        corresponding template-parameter is a reference; or
1699  DeclRefExpr *DRE = 0;
1700
1701  // Ignore (and complain about) any excess parentheses.
1702  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1703    if (!Invalid) {
1704      Diag(Arg->getSourceRange().getBegin(),
1705           diag::err_template_arg_extra_parens)
1706        << Arg->getSourceRange();
1707      Invalid = true;
1708    }
1709
1710    Arg = Parens->getSubExpr();
1711  }
1712
1713  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1714    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1715      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1716  } else
1717    DRE = dyn_cast<DeclRefExpr>(Arg);
1718
1719  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1720    return Diag(Arg->getSourceRange().getBegin(),
1721                diag::err_template_arg_not_object_or_func_form)
1722      << Arg->getSourceRange();
1723
1724  // Cannot refer to non-static data members
1725  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1726    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1727      << Field << Arg->getSourceRange();
1728
1729  // Cannot refer to non-static member functions
1730  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1731    if (!Method->isStatic())
1732      return Diag(Arg->getSourceRange().getBegin(),
1733                  diag::err_template_arg_method)
1734        << Method << Arg->getSourceRange();
1735
1736  // Functions must have external linkage.
1737  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1738    if (Func->getStorageClass() == FunctionDecl::Static) {
1739      Diag(Arg->getSourceRange().getBegin(),
1740           diag::err_template_arg_function_not_extern)
1741        << Func << Arg->getSourceRange();
1742      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1743        << true;
1744      return true;
1745    }
1746
1747    // Okay: we've named a function with external linkage.
1748    Entity = Func;
1749    return Invalid;
1750  }
1751
1752  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1753    if (!Var->hasGlobalStorage()) {
1754      Diag(Arg->getSourceRange().getBegin(),
1755           diag::err_template_arg_object_not_extern)
1756        << Var << Arg->getSourceRange();
1757      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1758        << true;
1759      return true;
1760    }
1761
1762    // Okay: we've named an object with external linkage
1763    Entity = Var;
1764    return Invalid;
1765  }
1766
1767  // We found something else, but we don't know specifically what it is.
1768  Diag(Arg->getSourceRange().getBegin(),
1769       diag::err_template_arg_not_object_or_func)
1770      << Arg->getSourceRange();
1771  Diag(DRE->getDecl()->getLocation(),
1772       diag::note_template_arg_refers_here);
1773  return true;
1774}
1775
1776/// \brief Checks whether the given template argument is a pointer to
1777/// member constant according to C++ [temp.arg.nontype]p1.
1778bool
1779Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1780  bool Invalid = false;
1781
1782  // See through any implicit casts we added to fix the type.
1783  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1784    Arg = Cast->getSubExpr();
1785
1786  // C++0x allows nullptr, and there's no further checking to be done for that.
1787  if (Arg->getType()->isNullPtrType())
1788    return false;
1789
1790  // C++ [temp.arg.nontype]p1:
1791  //
1792  //   A template-argument for a non-type, non-template
1793  //   template-parameter shall be one of: [...]
1794  //
1795  //     -- a pointer to member expressed as described in 5.3.1.
1796  QualifiedDeclRefExpr *DRE = 0;
1797
1798  // Ignore (and complain about) any excess parentheses.
1799  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1800    if (!Invalid) {
1801      Diag(Arg->getSourceRange().getBegin(),
1802           diag::err_template_arg_extra_parens)
1803        << Arg->getSourceRange();
1804      Invalid = true;
1805    }
1806
1807    Arg = Parens->getSubExpr();
1808  }
1809
1810  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1811    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1812      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1813
1814  if (!DRE)
1815    return Diag(Arg->getSourceRange().getBegin(),
1816                diag::err_template_arg_not_pointer_to_member_form)
1817      << Arg->getSourceRange();
1818
1819  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1820    assert((isa<FieldDecl>(DRE->getDecl()) ||
1821            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1822           "Only non-static member pointers can make it here");
1823
1824    // Okay: this is the address of a non-static member, and therefore
1825    // a member pointer constant.
1826    Member = DRE->getDecl();
1827    return Invalid;
1828  }
1829
1830  // We found something else, but we don't know specifically what it is.
1831  Diag(Arg->getSourceRange().getBegin(),
1832       diag::err_template_arg_not_pointer_to_member_form)
1833      << Arg->getSourceRange();
1834  Diag(DRE->getDecl()->getLocation(),
1835       diag::note_template_arg_refers_here);
1836  return true;
1837}
1838
1839/// \brief Check a template argument against its corresponding
1840/// non-type template parameter.
1841///
1842/// This routine implements the semantics of C++ [temp.arg.nontype].
1843/// It returns true if an error occurred, and false otherwise. \p
1844/// InstantiatedParamType is the type of the non-type template
1845/// parameter after it has been instantiated.
1846///
1847/// If no error was detected, Converted receives the converted template argument.
1848bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1849                                 QualType InstantiatedParamType, Expr *&Arg,
1850                                 TemplateArgument &Converted) {
1851  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1852
1853  // If either the parameter has a dependent type or the argument is
1854  // type-dependent, there's nothing we can check now.
1855  // FIXME: Add template argument to Converted!
1856  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1857    // FIXME: Produce a cloned, canonical expression?
1858    Converted = TemplateArgument(Arg);
1859    return false;
1860  }
1861
1862  // C++ [temp.arg.nontype]p5:
1863  //   The following conversions are performed on each expression used
1864  //   as a non-type template-argument. If a non-type
1865  //   template-argument cannot be converted to the type of the
1866  //   corresponding template-parameter then the program is
1867  //   ill-formed.
1868  //
1869  //     -- for a non-type template-parameter of integral or
1870  //        enumeration type, integral promotions (4.5) and integral
1871  //        conversions (4.7) are applied.
1872  QualType ParamType = InstantiatedParamType;
1873  QualType ArgType = Arg->getType();
1874  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1875    // C++ [temp.arg.nontype]p1:
1876    //   A template-argument for a non-type, non-template
1877    //   template-parameter shall be one of:
1878    //
1879    //     -- an integral constant-expression of integral or enumeration
1880    //        type; or
1881    //     -- the name of a non-type template-parameter; or
1882    SourceLocation NonConstantLoc;
1883    llvm::APSInt Value;
1884    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1885      Diag(Arg->getSourceRange().getBegin(),
1886           diag::err_template_arg_not_integral_or_enumeral)
1887        << ArgType << Arg->getSourceRange();
1888      Diag(Param->getLocation(), diag::note_template_param_here);
1889      return true;
1890    } else if (!Arg->isValueDependent() &&
1891               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1892      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1893        << ArgType << Arg->getSourceRange();
1894      return true;
1895    }
1896
1897    // FIXME: We need some way to more easily get the unqualified form
1898    // of the types without going all the way to the
1899    // canonical type.
1900    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1901      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1902    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1903      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1904
1905    // Try to convert the argument to the parameter's type.
1906    if (ParamType == ArgType) {
1907      // Okay: no conversion necessary
1908    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1909               !ParamType->isEnumeralType()) {
1910      // This is an integral promotion or conversion.
1911      ImpCastExprToType(Arg, ParamType);
1912    } else {
1913      // We can't perform this conversion.
1914      Diag(Arg->getSourceRange().getBegin(),
1915           diag::err_template_arg_not_convertible)
1916        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1917      Diag(Param->getLocation(), diag::note_template_param_here);
1918      return true;
1919    }
1920
1921    QualType IntegerType = Context.getCanonicalType(ParamType);
1922    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
1923      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
1924
1925    if (!Arg->isValueDependent()) {
1926      // Check that an unsigned parameter does not receive a negative
1927      // value.
1928      if (IntegerType->isUnsignedIntegerType()
1929          && (Value.isSigned() && Value.isNegative())) {
1930        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1931          << Value.toString(10) << Param->getType()
1932          << Arg->getSourceRange();
1933        Diag(Param->getLocation(), diag::note_template_param_here);
1934        return true;
1935      }
1936
1937      // Check that we don't overflow the template parameter type.
1938      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1939      if (Value.getActiveBits() > AllowedBits) {
1940        Diag(Arg->getSourceRange().getBegin(),
1941             diag::err_template_arg_too_large)
1942          << Value.toString(10) << Param->getType()
1943          << Arg->getSourceRange();
1944        Diag(Param->getLocation(), diag::note_template_param_here);
1945        return true;
1946      }
1947
1948      if (Value.getBitWidth() != AllowedBits)
1949        Value.extOrTrunc(AllowedBits);
1950      Value.setIsSigned(IntegerType->isSignedIntegerType());
1951    }
1952
1953    // Add the value of this argument to the list of converted
1954    // arguments. We use the bitwidth and signedness of the template
1955    // parameter.
1956    if (Arg->isValueDependent()) {
1957      // The argument is value-dependent. Create a new
1958      // TemplateArgument with the converted expression.
1959      Converted = TemplateArgument(Arg);
1960      return false;
1961    }
1962
1963    Converted = TemplateArgument(StartLoc, Value,
1964                                 ParamType->isEnumeralType() ? ParamType
1965                                                             : IntegerType);
1966    return false;
1967  }
1968
1969  // Handle pointer-to-function, reference-to-function, and
1970  // pointer-to-member-function all in (roughly) the same way.
1971  if (// -- For a non-type template-parameter of type pointer to
1972      //    function, only the function-to-pointer conversion (4.3) is
1973      //    applied. If the template-argument represents a set of
1974      //    overloaded functions (or a pointer to such), the matching
1975      //    function is selected from the set (13.4).
1976      // In C++0x, any std::nullptr_t value can be converted.
1977      (ParamType->isPointerType() &&
1978       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
1979      // -- For a non-type template-parameter of type reference to
1980      //    function, no conversions apply. If the template-argument
1981      //    represents a set of overloaded functions, the matching
1982      //    function is selected from the set (13.4).
1983      (ParamType->isReferenceType() &&
1984       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
1985      // -- For a non-type template-parameter of type pointer to
1986      //    member function, no conversions apply. If the
1987      //    template-argument represents a set of overloaded member
1988      //    functions, the matching member function is selected from
1989      //    the set (13.4).
1990      // Again, C++0x allows a std::nullptr_t value.
1991      (ParamType->isMemberPointerType() &&
1992       ParamType->getAs<MemberPointerType>()->getPointeeType()
1993         ->isFunctionType())) {
1994    if (Context.hasSameUnqualifiedType(ArgType,
1995                                       ParamType.getNonReferenceType())) {
1996      // We don't have to do anything: the types already match.
1997    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1998                 ParamType->isMemberPointerType())) {
1999      ArgType = ParamType;
2000      ImpCastExprToType(Arg, ParamType);
2001    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2002      ArgType = Context.getPointerType(ArgType);
2003      ImpCastExprToType(Arg, ArgType);
2004    } else if (FunctionDecl *Fn
2005                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2006      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2007        return true;
2008
2009      FixOverloadedFunctionReference(Arg, Fn);
2010      ArgType = Arg->getType();
2011      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2012        ArgType = Context.getPointerType(Arg->getType());
2013        ImpCastExprToType(Arg, ArgType);
2014      }
2015    }
2016
2017    if (!Context.hasSameUnqualifiedType(ArgType,
2018                                        ParamType.getNonReferenceType())) {
2019      // We can't perform this conversion.
2020      Diag(Arg->getSourceRange().getBegin(),
2021           diag::err_template_arg_not_convertible)
2022        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2023      Diag(Param->getLocation(), diag::note_template_param_here);
2024      return true;
2025    }
2026
2027    if (ParamType->isMemberPointerType()) {
2028      NamedDecl *Member = 0;
2029      if (CheckTemplateArgumentPointerToMember(Arg, Member))
2030        return true;
2031
2032      if (Member)
2033        Member = cast<NamedDecl>(Member->getCanonicalDecl());
2034      Converted = TemplateArgument(StartLoc, Member);
2035      return false;
2036    }
2037
2038    NamedDecl *Entity = 0;
2039    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2040      return true;
2041
2042    if (Entity)
2043      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2044    Converted = TemplateArgument(StartLoc, Entity);
2045    return false;
2046  }
2047
2048  if (ParamType->isPointerType()) {
2049    //   -- for a non-type template-parameter of type pointer to
2050    //      object, qualification conversions (4.4) and the
2051    //      array-to-pointer conversion (4.2) are applied.
2052    // C++0x also allows a value of std::nullptr_t.
2053    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2054           "Only object pointers allowed here");
2055
2056    if (ArgType->isNullPtrType()) {
2057      ArgType = ParamType;
2058      ImpCastExprToType(Arg, ParamType);
2059    } else if (ArgType->isArrayType()) {
2060      ArgType = Context.getArrayDecayedType(ArgType);
2061      ImpCastExprToType(Arg, ArgType);
2062    }
2063
2064    if (IsQualificationConversion(ArgType, ParamType)) {
2065      ArgType = ParamType;
2066      ImpCastExprToType(Arg, ParamType);
2067    }
2068
2069    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2070      // We can't perform this conversion.
2071      Diag(Arg->getSourceRange().getBegin(),
2072           diag::err_template_arg_not_convertible)
2073        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2074      Diag(Param->getLocation(), diag::note_template_param_here);
2075      return true;
2076    }
2077
2078    NamedDecl *Entity = 0;
2079    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2080      return true;
2081
2082    if (Entity)
2083      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2084    Converted = TemplateArgument(StartLoc, Entity);
2085    return false;
2086  }
2087
2088  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2089    //   -- For a non-type template-parameter of type reference to
2090    //      object, no conversions apply. The type referred to by the
2091    //      reference may be more cv-qualified than the (otherwise
2092    //      identical) type of the template-argument. The
2093    //      template-parameter is bound directly to the
2094    //      template-argument, which must be an lvalue.
2095    assert(ParamRefType->getPointeeType()->isObjectType() &&
2096           "Only object references allowed here");
2097
2098    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2099      Diag(Arg->getSourceRange().getBegin(),
2100           diag::err_template_arg_no_ref_bind)
2101        << InstantiatedParamType << Arg->getType()
2102        << Arg->getSourceRange();
2103      Diag(Param->getLocation(), diag::note_template_param_here);
2104      return true;
2105    }
2106
2107    unsigned ParamQuals
2108      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2109    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2110
2111    if ((ParamQuals | ArgQuals) != ParamQuals) {
2112      Diag(Arg->getSourceRange().getBegin(),
2113           diag::err_template_arg_ref_bind_ignores_quals)
2114        << InstantiatedParamType << Arg->getType()
2115        << Arg->getSourceRange();
2116      Diag(Param->getLocation(), diag::note_template_param_here);
2117      return true;
2118    }
2119
2120    NamedDecl *Entity = 0;
2121    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2122      return true;
2123
2124    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2125    Converted = TemplateArgument(StartLoc, Entity);
2126    return false;
2127  }
2128
2129  //     -- For a non-type template-parameter of type pointer to data
2130  //        member, qualification conversions (4.4) are applied.
2131  // C++0x allows std::nullptr_t values.
2132  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2133
2134  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2135    // Types match exactly: nothing more to do here.
2136  } else if (ArgType->isNullPtrType()) {
2137    ImpCastExprToType(Arg, ParamType);
2138  } else if (IsQualificationConversion(ArgType, ParamType)) {
2139    ImpCastExprToType(Arg, ParamType);
2140  } else {
2141    // We can't perform this conversion.
2142    Diag(Arg->getSourceRange().getBegin(),
2143         diag::err_template_arg_not_convertible)
2144      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2145    Diag(Param->getLocation(), diag::note_template_param_here);
2146    return true;
2147  }
2148
2149  NamedDecl *Member = 0;
2150  if (CheckTemplateArgumentPointerToMember(Arg, Member))
2151    return true;
2152
2153  if (Member)
2154    Member = cast<NamedDecl>(Member->getCanonicalDecl());
2155  Converted = TemplateArgument(StartLoc, Member);
2156  return false;
2157}
2158
2159/// \brief Check a template argument against its corresponding
2160/// template template parameter.
2161///
2162/// This routine implements the semantics of C++ [temp.arg.template].
2163/// It returns true if an error occurred, and false otherwise.
2164bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2165                                 DeclRefExpr *Arg) {
2166  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
2167  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
2168
2169  // C++ [temp.arg.template]p1:
2170  //   A template-argument for a template template-parameter shall be
2171  //   the name of a class template, expressed as id-expression. Only
2172  //   primary class templates are considered when matching the
2173  //   template template argument with the corresponding parameter;
2174  //   partial specializations are not considered even if their
2175  //   parameter lists match that of the template template parameter.
2176  //
2177  // Note that we also allow template template parameters here, which
2178  // will happen when we are dealing with, e.g., class template
2179  // partial specializations.
2180  if (!isa<ClassTemplateDecl>(Template) &&
2181      !isa<TemplateTemplateParmDecl>(Template)) {
2182    assert(isa<FunctionTemplateDecl>(Template) &&
2183           "Only function templates are possible here");
2184    Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template);
2185    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2186      << Template;
2187  }
2188
2189  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2190                                         Param->getTemplateParameters(),
2191                                         true, true,
2192                                         Arg->getSourceRange().getBegin());
2193}
2194
2195/// \brief Determine whether the given template parameter lists are
2196/// equivalent.
2197///
2198/// \param New  The new template parameter list, typically written in the
2199/// source code as part of a new template declaration.
2200///
2201/// \param Old  The old template parameter list, typically found via
2202/// name lookup of the template declared with this template parameter
2203/// list.
2204///
2205/// \param Complain  If true, this routine will produce a diagnostic if
2206/// the template parameter lists are not equivalent.
2207///
2208/// \param IsTemplateTemplateParm  If true, this routine is being
2209/// called to compare the template parameter lists of a template
2210/// template parameter.
2211///
2212/// \param TemplateArgLoc If this source location is valid, then we
2213/// are actually checking the template parameter list of a template
2214/// argument (New) against the template parameter list of its
2215/// corresponding template template parameter (Old). We produce
2216/// slightly different diagnostics in this scenario.
2217///
2218/// \returns True if the template parameter lists are equal, false
2219/// otherwise.
2220bool
2221Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2222                                     TemplateParameterList *Old,
2223                                     bool Complain,
2224                                     bool IsTemplateTemplateParm,
2225                                     SourceLocation TemplateArgLoc) {
2226  if (Old->size() != New->size()) {
2227    if (Complain) {
2228      unsigned NextDiag = diag::err_template_param_list_different_arity;
2229      if (TemplateArgLoc.isValid()) {
2230        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2231        NextDiag = diag::note_template_param_list_different_arity;
2232      }
2233      Diag(New->getTemplateLoc(), NextDiag)
2234          << (New->size() > Old->size())
2235          << IsTemplateTemplateParm
2236          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2237      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2238        << IsTemplateTemplateParm
2239        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2240    }
2241
2242    return false;
2243  }
2244
2245  for (TemplateParameterList::iterator OldParm = Old->begin(),
2246         OldParmEnd = Old->end(), NewParm = New->begin();
2247       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2248    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2249      if (Complain) {
2250        unsigned NextDiag = diag::err_template_param_different_kind;
2251        if (TemplateArgLoc.isValid()) {
2252          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2253          NextDiag = diag::note_template_param_different_kind;
2254        }
2255        Diag((*NewParm)->getLocation(), NextDiag)
2256        << IsTemplateTemplateParm;
2257        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2258        << IsTemplateTemplateParm;
2259      }
2260      return false;
2261    }
2262
2263    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2264      // Okay; all template type parameters are equivalent (since we
2265      // know we're at the same index).
2266#if 0
2267      // FIXME: Enable this code in debug mode *after* we properly go through
2268      // and "instantiate" the template parameter lists of template template
2269      // parameters. It's only after this instantiation that (1) any dependent
2270      // types within the template parameter list of the template template
2271      // parameter can be checked, and (2) the template type parameter depths
2272      // will match up.
2273      QualType OldParmType
2274        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
2275      QualType NewParmType
2276        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
2277      assert(Context.getCanonicalType(OldParmType) ==
2278             Context.getCanonicalType(NewParmType) &&
2279             "type parameter mismatch?");
2280#endif
2281    } else if (NonTypeTemplateParmDecl *OldNTTP
2282                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2283      // The types of non-type template parameters must agree.
2284      NonTypeTemplateParmDecl *NewNTTP
2285        = cast<NonTypeTemplateParmDecl>(*NewParm);
2286      if (Context.getCanonicalType(OldNTTP->getType()) !=
2287            Context.getCanonicalType(NewNTTP->getType())) {
2288        if (Complain) {
2289          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2290          if (TemplateArgLoc.isValid()) {
2291            Diag(TemplateArgLoc,
2292                 diag::err_template_arg_template_params_mismatch);
2293            NextDiag = diag::note_template_nontype_parm_different_type;
2294          }
2295          Diag(NewNTTP->getLocation(), NextDiag)
2296            << NewNTTP->getType()
2297            << IsTemplateTemplateParm;
2298          Diag(OldNTTP->getLocation(),
2299               diag::note_template_nontype_parm_prev_declaration)
2300            << OldNTTP->getType();
2301        }
2302        return false;
2303      }
2304    } else {
2305      // The template parameter lists of template template
2306      // parameters must agree.
2307      // FIXME: Could we perform a faster "type" comparison here?
2308      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2309             "Only template template parameters handled here");
2310      TemplateTemplateParmDecl *OldTTP
2311        = cast<TemplateTemplateParmDecl>(*OldParm);
2312      TemplateTemplateParmDecl *NewTTP
2313        = cast<TemplateTemplateParmDecl>(*NewParm);
2314      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2315                                          OldTTP->getTemplateParameters(),
2316                                          Complain,
2317                                          /*IsTemplateTemplateParm=*/true,
2318                                          TemplateArgLoc))
2319        return false;
2320    }
2321  }
2322
2323  return true;
2324}
2325
2326/// \brief Check whether a template can be declared within this scope.
2327///
2328/// If the template declaration is valid in this scope, returns
2329/// false. Otherwise, issues a diagnostic and returns true.
2330bool
2331Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2332  // Find the nearest enclosing declaration scope.
2333  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2334         (S->getFlags() & Scope::TemplateParamScope) != 0)
2335    S = S->getParent();
2336
2337  // C++ [temp]p2:
2338  //   A template-declaration can appear only as a namespace scope or
2339  //   class scope declaration.
2340  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2341  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2342      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2343    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2344             << TemplateParams->getSourceRange();
2345
2346  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2347    Ctx = Ctx->getParent();
2348
2349  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2350    return false;
2351
2352  return Diag(TemplateParams->getTemplateLoc(),
2353              diag::err_template_outside_namespace_or_class_scope)
2354    << TemplateParams->getSourceRange();
2355}
2356
2357/// \brief Determine what kind of template specialization the given declaration
2358/// is.
2359static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2360  if (!D)
2361    return TSK_Undeclared;
2362
2363  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2364    return Record->getTemplateSpecializationKind();
2365  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2366    return Function->getTemplateSpecializationKind();
2367  if (VarDecl *Var = dyn_cast<VarDecl>(D))
2368    return Var->getTemplateSpecializationKind();
2369
2370  return TSK_Undeclared;
2371}
2372
2373/// \brief Check whether a specialization or explicit instantiation is
2374/// well-formed in the current context.
2375///
2376/// This routine determines whether a template specialization or
2377/// explicit instantiation can be declared in the current context
2378/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2).
2379///
2380/// \param S the semantic analysis object for which this check is being
2381/// performed.
2382///
2383/// \param Specialized the entity being specialized or instantiated, which
2384/// may be a kind of template (class template, function template, etc.) or
2385/// a member of a class template (member function, static data member,
2386/// member class).
2387///
2388/// \param PrevDecl the previous declaration of this entity, if any.
2389///
2390/// \param Loc the location of the explicit specialization or instantiation of
2391/// this entity.
2392///
2393/// \param IsPartialSpecialization whether this is a partial specialization of
2394/// a class template.
2395///
2396/// \param TSK the kind of specialization or implicit instantiation being
2397/// performed.
2398///
2399/// \returns true if there was an error that we cannot recover from, false
2400/// otherwise.
2401static bool CheckTemplateSpecializationScope(Sema &S,
2402                                             NamedDecl *Specialized,
2403                                             NamedDecl *PrevDecl,
2404                                             SourceLocation Loc,
2405                                             bool IsPartialSpecialization,
2406                                             TemplateSpecializationKind TSK) {
2407  // Keep these "kind" numbers in sync with the %select statements in the
2408  // various diagnostics emitted by this routine.
2409  int EntityKind = 0;
2410  bool isTemplateSpecialization = false;
2411  if (isa<ClassTemplateDecl>(Specialized)) {
2412    EntityKind = IsPartialSpecialization? 1 : 0;
2413    isTemplateSpecialization = true;
2414  } else if (isa<FunctionTemplateDecl>(Specialized)) {
2415    EntityKind = 2;
2416    isTemplateSpecialization = true;
2417  } else if (isa<CXXMethodDecl>(Specialized))
2418    EntityKind = 3;
2419  else if (isa<VarDecl>(Specialized))
2420    EntityKind = 4;
2421  else if (isa<RecordDecl>(Specialized))
2422    EntityKind = 5;
2423  else {
2424    S.Diag(Loc, diag::err_template_spec_unknown_kind) << TSK;
2425    S.Diag(Specialized->getLocation(), diag::note_specialized_entity) << TSK;
2426    return true;
2427  }
2428
2429  // C++ [temp.expl.spec]p2:
2430  //   An explicit specialization shall be declared in the namespace
2431  //   of which the template is a member, or, for member templates, in
2432  //   the namespace of which the enclosing class or enclosing class
2433  //   template is a member. An explicit specialization of a member
2434  //   function, member class or static data member of a class
2435  //   template shall be declared in the namespace of which the class
2436  //   template is a member. Such a declaration may also be a
2437  //   definition. If the declaration is not a definition, the
2438  //   specialization may be defined later in the name- space in which
2439  //   the explicit specialization was declared, or in a namespace
2440  //   that encloses the one in which the explicit specialization was
2441  //   declared.
2442  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
2443    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
2444      << TSK << Specialized;
2445    return true;
2446  }
2447
2448  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
2449    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
2450      << TSK << Specialized;
2451    return true;
2452  }
2453
2454  // C++ [temp.class.spec]p6:
2455  //   A class template partial specialization may be declared or redeclared
2456  //   in any namespace scope in which its definition may be defined (14.5.1
2457  //   and 14.5.2).
2458  bool ComplainedAboutScope = false;
2459  DeclContext *SpecializedContext
2460    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
2461  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
2462  if (TSK == TSK_ExplicitSpecialization) {
2463    if ((!PrevDecl ||
2464         getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
2465         getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
2466      // There is no prior declaration of this entity, so this
2467      // specialization must be in the same context as the template
2468      // itself.
2469      if (!DC->Equals(SpecializedContext)) {
2470        if (isa<TranslationUnitDecl>(SpecializedContext))
2471          S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
2472          << EntityKind << Specialized;
2473        else if (isa<NamespaceDecl>(SpecializedContext))
2474          S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
2475          << EntityKind << Specialized
2476          << cast<NamedDecl>(SpecializedContext);
2477
2478        S.Diag(Specialized->getLocation(), diag::note_specialized_entity)
2479          << TSK;
2480        ComplainedAboutScope = true;
2481      }
2482    }
2483  }
2484
2485  // Make sure that this redeclaration (or definition) occurs in an enclosing
2486  // namespace. We perform this check for explicit specializations and, in
2487  // C++0x, for explicit instantiations as well (per DR275).
2488  // FIXME: -Wc++0x should make these warnings.
2489  // Note that HandleDeclarator() performs this check for explicit
2490  // specializations of function templates, static data members, and member
2491  // functions, so we skip the check here for those kinds of entities.
2492  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
2493  // Should we refactor that check, so that it occurs later?
2494  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
2495      ((TSK == TSK_ExplicitSpecialization &&
2496        !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
2497          isa<FunctionDecl>(Specialized))) ||
2498        S.getLangOptions().CPlusPlus0x)) {
2499    if (isa<TranslationUnitDecl>(SpecializedContext))
2500      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
2501        << EntityKind << Specialized;
2502    else if (isa<NamespaceDecl>(SpecializedContext))
2503      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
2504        << EntityKind << Specialized
2505        << cast<NamedDecl>(SpecializedContext);
2506
2507    S.Diag(Specialized->getLocation(), diag::note_specialized_entity) << TSK;
2508  }
2509
2510  // FIXME: check for specialization-after-instantiation errors and such.
2511
2512  return false;
2513}
2514
2515/// \brief Check the non-type template arguments of a class template
2516/// partial specialization according to C++ [temp.class.spec]p9.
2517///
2518/// \param TemplateParams the template parameters of the primary class
2519/// template.
2520///
2521/// \param TemplateArg the template arguments of the class template
2522/// partial specialization.
2523///
2524/// \param MirrorsPrimaryTemplate will be set true if the class
2525/// template partial specialization arguments are identical to the
2526/// implicit template arguments of the primary template. This is not
2527/// necessarily an error (C++0x), and it is left to the caller to diagnose
2528/// this condition when it is an error.
2529///
2530/// \returns true if there was an error, false otherwise.
2531bool Sema::CheckClassTemplatePartialSpecializationArgs(
2532                                        TemplateParameterList *TemplateParams,
2533                             const TemplateArgumentListBuilder &TemplateArgs,
2534                                        bool &MirrorsPrimaryTemplate) {
2535  // FIXME: the interface to this function will have to change to
2536  // accommodate variadic templates.
2537  MirrorsPrimaryTemplate = true;
2538
2539  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2540
2541  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2542    // Determine whether the template argument list of the partial
2543    // specialization is identical to the implicit argument list of
2544    // the primary template. The caller may need to diagnostic this as
2545    // an error per C++ [temp.class.spec]p9b3.
2546    if (MirrorsPrimaryTemplate) {
2547      if (TemplateTypeParmDecl *TTP
2548            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2549        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2550              Context.getCanonicalType(ArgList[I].getAsType()))
2551          MirrorsPrimaryTemplate = false;
2552      } else if (TemplateTemplateParmDecl *TTP
2553                   = dyn_cast<TemplateTemplateParmDecl>(
2554                                                 TemplateParams->getParam(I))) {
2555        // FIXME: We should settle on either Declaration storage or
2556        // Expression storage for template template parameters.
2557        TemplateTemplateParmDecl *ArgDecl
2558          = dyn_cast_or_null<TemplateTemplateParmDecl>(
2559                                                  ArgList[I].getAsDecl());
2560        if (!ArgDecl)
2561          if (DeclRefExpr *DRE
2562                = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr()))
2563            ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl());
2564
2565        if (!ArgDecl ||
2566            ArgDecl->getIndex() != TTP->getIndex() ||
2567            ArgDecl->getDepth() != TTP->getDepth())
2568          MirrorsPrimaryTemplate = false;
2569      }
2570    }
2571
2572    NonTypeTemplateParmDecl *Param
2573      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2574    if (!Param) {
2575      continue;
2576    }
2577
2578    Expr *ArgExpr = ArgList[I].getAsExpr();
2579    if (!ArgExpr) {
2580      MirrorsPrimaryTemplate = false;
2581      continue;
2582    }
2583
2584    // C++ [temp.class.spec]p8:
2585    //   A non-type argument is non-specialized if it is the name of a
2586    //   non-type parameter. All other non-type arguments are
2587    //   specialized.
2588    //
2589    // Below, we check the two conditions that only apply to
2590    // specialized non-type arguments, so skip any non-specialized
2591    // arguments.
2592    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2593      if (NonTypeTemplateParmDecl *NTTP
2594            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2595        if (MirrorsPrimaryTemplate &&
2596            (Param->getIndex() != NTTP->getIndex() ||
2597             Param->getDepth() != NTTP->getDepth()))
2598          MirrorsPrimaryTemplate = false;
2599
2600        continue;
2601      }
2602
2603    // C++ [temp.class.spec]p9:
2604    //   Within the argument list of a class template partial
2605    //   specialization, the following restrictions apply:
2606    //     -- A partially specialized non-type argument expression
2607    //        shall not involve a template parameter of the partial
2608    //        specialization except when the argument expression is a
2609    //        simple identifier.
2610    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2611      Diag(ArgExpr->getLocStart(),
2612           diag::err_dependent_non_type_arg_in_partial_spec)
2613        << ArgExpr->getSourceRange();
2614      return true;
2615    }
2616
2617    //     -- The type of a template parameter corresponding to a
2618    //        specialized non-type argument shall not be dependent on a
2619    //        parameter of the specialization.
2620    if (Param->getType()->isDependentType()) {
2621      Diag(ArgExpr->getLocStart(),
2622           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2623        << Param->getType()
2624        << ArgExpr->getSourceRange();
2625      Diag(Param->getLocation(), diag::note_template_param_here);
2626      return true;
2627    }
2628
2629    MirrorsPrimaryTemplate = false;
2630  }
2631
2632  return false;
2633}
2634
2635Sema::DeclResult
2636Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2637                                       TagUseKind TUK,
2638                                       SourceLocation KWLoc,
2639                                       const CXXScopeSpec &SS,
2640                                       TemplateTy TemplateD,
2641                                       SourceLocation TemplateNameLoc,
2642                                       SourceLocation LAngleLoc,
2643                                       ASTTemplateArgsPtr TemplateArgsIn,
2644                                       SourceLocation *TemplateArgLocs,
2645                                       SourceLocation RAngleLoc,
2646                                       AttributeList *Attr,
2647                               MultiTemplateParamsArg TemplateParameterLists) {
2648  assert(TUK != TUK_Reference && "References are not specializations");
2649
2650  // Find the class template we're specializing
2651  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2652  ClassTemplateDecl *ClassTemplate
2653    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2654
2655  bool isExplicitSpecialization = false;
2656  bool isPartialSpecialization = false;
2657
2658  // Check the validity of the template headers that introduce this
2659  // template.
2660  // FIXME: We probably shouldn't complain about these headers for
2661  // friend declarations.
2662  TemplateParameterList *TemplateParams
2663    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
2664                        (TemplateParameterList**)TemplateParameterLists.get(),
2665                                              TemplateParameterLists.size(),
2666                                              isExplicitSpecialization);
2667  if (TemplateParams && TemplateParams->size() > 0) {
2668    isPartialSpecialization = true;
2669
2670    // C++ [temp.class.spec]p10:
2671    //   The template parameter list of a specialization shall not
2672    //   contain default template argument values.
2673    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2674      Decl *Param = TemplateParams->getParam(I);
2675      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2676        if (TTP->hasDefaultArgument()) {
2677          Diag(TTP->getDefaultArgumentLoc(),
2678               diag::err_default_arg_in_partial_spec);
2679          TTP->setDefaultArgument(QualType(), SourceLocation(), false);
2680        }
2681      } else if (NonTypeTemplateParmDecl *NTTP
2682                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2683        if (Expr *DefArg = NTTP->getDefaultArgument()) {
2684          Diag(NTTP->getDefaultArgumentLoc(),
2685               diag::err_default_arg_in_partial_spec)
2686            << DefArg->getSourceRange();
2687          NTTP->setDefaultArgument(0);
2688          DefArg->Destroy(Context);
2689        }
2690      } else {
2691        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2692        if (Expr *DefArg = TTP->getDefaultArgument()) {
2693          Diag(TTP->getDefaultArgumentLoc(),
2694               diag::err_default_arg_in_partial_spec)
2695            << DefArg->getSourceRange();
2696          TTP->setDefaultArgument(0);
2697          DefArg->Destroy(Context);
2698        }
2699      }
2700    }
2701  } else if (!TemplateParams && TUK != TUK_Friend) {
2702    Diag(KWLoc, diag::err_template_spec_needs_header)
2703      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2704    isExplicitSpecialization = true;
2705  }
2706
2707  // Check that the specialization uses the same tag kind as the
2708  // original template.
2709  TagDecl::TagKind Kind;
2710  switch (TagSpec) {
2711  default: assert(0 && "Unknown tag type!");
2712  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2713  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2714  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2715  }
2716  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2717                                    Kind, KWLoc,
2718                                    *ClassTemplate->getIdentifier())) {
2719    Diag(KWLoc, diag::err_use_with_wrong_tag)
2720      << ClassTemplate
2721      << CodeModificationHint::CreateReplacement(KWLoc,
2722                            ClassTemplate->getTemplatedDecl()->getKindName());
2723    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2724         diag::note_previous_use);
2725    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2726  }
2727
2728  // Translate the parser's template argument list in our AST format.
2729  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2730  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2731
2732  // Check that the template argument list is well-formed for this
2733  // template.
2734  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2735                                        TemplateArgs.size());
2736  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2737                                TemplateArgs.data(), TemplateArgs.size(),
2738                                RAngleLoc, false, Converted))
2739    return true;
2740
2741  assert((Converted.structuredSize() ==
2742            ClassTemplate->getTemplateParameters()->size()) &&
2743         "Converted template argument list is too short!");
2744
2745  // Find the class template (partial) specialization declaration that
2746  // corresponds to these arguments.
2747  llvm::FoldingSetNodeID ID;
2748  if (isPartialSpecialization) {
2749    bool MirrorsPrimaryTemplate;
2750    if (CheckClassTemplatePartialSpecializationArgs(
2751                                         ClassTemplate->getTemplateParameters(),
2752                                         Converted, MirrorsPrimaryTemplate))
2753      return true;
2754
2755    if (MirrorsPrimaryTemplate) {
2756      // C++ [temp.class.spec]p9b3:
2757      //
2758      //   -- The argument list of the specialization shall not be identical
2759      //      to the implicit argument list of the primary template.
2760      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2761        << (TUK == TUK_Definition)
2762        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
2763                                                           RAngleLoc));
2764      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
2765                                ClassTemplate->getIdentifier(),
2766                                TemplateNameLoc,
2767                                Attr,
2768                                TemplateParams,
2769                                AS_none);
2770    }
2771
2772    // FIXME: Diagnose friend partial specializations
2773
2774    // FIXME: Template parameter list matters, too
2775    ClassTemplatePartialSpecializationDecl::Profile(ID,
2776                                                   Converted.getFlatArguments(),
2777                                                   Converted.flatSize(),
2778                                                    Context);
2779  } else
2780    ClassTemplateSpecializationDecl::Profile(ID,
2781                                             Converted.getFlatArguments(),
2782                                             Converted.flatSize(),
2783                                             Context);
2784  void *InsertPos = 0;
2785  ClassTemplateSpecializationDecl *PrevDecl = 0;
2786
2787  if (isPartialSpecialization)
2788    PrevDecl
2789      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2790                                                                    InsertPos);
2791  else
2792    PrevDecl
2793      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2794
2795  ClassTemplateSpecializationDecl *Specialization = 0;
2796
2797  // Check whether we can declare a class template specialization in
2798  // the current scope.
2799  if (TUK != TUK_Friend &&
2800      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
2801                                       TemplateNameLoc, isPartialSpecialization,
2802                                       TSK_ExplicitSpecialization))
2803    return true;
2804
2805  // The canonical type
2806  QualType CanonType;
2807  if (PrevDecl &&
2808      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
2809       TUK == TUK_Friend)) {
2810    // Since the only prior class template specialization with these
2811    // arguments was referenced but not declared, or we're only
2812    // referencing this specialization as a friend, reuse that
2813    // declaration node as our own, updating its source location to
2814    // reflect our new declaration.
2815    Specialization = PrevDecl;
2816    Specialization->setLocation(TemplateNameLoc);
2817    PrevDecl = 0;
2818    CanonType = Context.getTypeDeclType(Specialization);
2819  } else if (isPartialSpecialization) {
2820    // Build the canonical type that describes the converted template
2821    // arguments of the class template partial specialization.
2822    CanonType = Context.getTemplateSpecializationType(
2823                                                  TemplateName(ClassTemplate),
2824                                                  Converted.getFlatArguments(),
2825                                                  Converted.flatSize());
2826
2827    // Create a new class template partial specialization declaration node.
2828    TemplateParameterList *TemplateParams
2829      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2830    ClassTemplatePartialSpecializationDecl *PrevPartial
2831      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2832    ClassTemplatePartialSpecializationDecl *Partial
2833      = ClassTemplatePartialSpecializationDecl::Create(Context,
2834                                             ClassTemplate->getDeclContext(),
2835                                                       TemplateNameLoc,
2836                                                       TemplateParams,
2837                                                       ClassTemplate,
2838                                                       Converted,
2839                                                       PrevPartial);
2840
2841    if (PrevPartial) {
2842      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2843      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2844    } else {
2845      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2846    }
2847    Specialization = Partial;
2848
2849    // Check that all of the template parameters of the class template
2850    // partial specialization are deducible from the template
2851    // arguments. If not, this class template partial specialization
2852    // will never be used.
2853    llvm::SmallVector<bool, 8> DeducibleParams;
2854    DeducibleParams.resize(TemplateParams->size());
2855    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2856                               DeducibleParams);
2857    unsigned NumNonDeducible = 0;
2858    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
2859      if (!DeducibleParams[I])
2860        ++NumNonDeducible;
2861
2862    if (NumNonDeducible) {
2863      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2864        << (NumNonDeducible > 1)
2865        << SourceRange(TemplateNameLoc, RAngleLoc);
2866      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2867        if (!DeducibleParams[I]) {
2868          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2869          if (Param->getDeclName())
2870            Diag(Param->getLocation(),
2871                 diag::note_partial_spec_unused_parameter)
2872              << Param->getDeclName();
2873          else
2874            Diag(Param->getLocation(),
2875                 diag::note_partial_spec_unused_parameter)
2876              << std::string("<anonymous>");
2877        }
2878      }
2879    }
2880  } else {
2881    // Create a new class template specialization declaration node for
2882    // this explicit specialization or friend declaration.
2883    Specialization
2884      = ClassTemplateSpecializationDecl::Create(Context,
2885                                             ClassTemplate->getDeclContext(),
2886                                                TemplateNameLoc,
2887                                                ClassTemplate,
2888                                                Converted,
2889                                                PrevDecl);
2890
2891    if (PrevDecl) {
2892      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2893      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2894    } else {
2895      ClassTemplate->getSpecializations().InsertNode(Specialization,
2896                                                     InsertPos);
2897    }
2898
2899    CanonType = Context.getTypeDeclType(Specialization);
2900  }
2901
2902  // If this is not a friend, note that this is an explicit specialization.
2903  if (TUK != TUK_Friend)
2904    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2905
2906  // Check that this isn't a redefinition of this specialization.
2907  if (TUK == TUK_Definition) {
2908    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2909      // FIXME: Should also handle explicit specialization after implicit
2910      // instantiation with a special diagnostic.
2911      SourceRange Range(TemplateNameLoc, RAngleLoc);
2912      Diag(TemplateNameLoc, diag::err_redefinition)
2913        << Context.getTypeDeclType(Specialization) << Range;
2914      Diag(Def->getLocation(), diag::note_previous_definition);
2915      Specialization->setInvalidDecl();
2916      return true;
2917    }
2918  }
2919
2920  // Build the fully-sugared type for this class template
2921  // specialization as the user wrote in the specialization
2922  // itself. This means that we'll pretty-print the type retrieved
2923  // from the specialization's declaration the way that the user
2924  // actually wrote the specialization, rather than formatting the
2925  // name based on the "canonical" representation used to store the
2926  // template arguments in the specialization.
2927  QualType WrittenTy
2928    = Context.getTemplateSpecializationType(Name,
2929                                            TemplateArgs.data(),
2930                                            TemplateArgs.size(),
2931                                            CanonType);
2932  if (TUK != TUK_Friend)
2933    Specialization->setTypeAsWritten(WrittenTy);
2934  TemplateArgsIn.release();
2935
2936  // C++ [temp.expl.spec]p9:
2937  //   A template explicit specialization is in the scope of the
2938  //   namespace in which the template was defined.
2939  //
2940  // We actually implement this paragraph where we set the semantic
2941  // context (in the creation of the ClassTemplateSpecializationDecl),
2942  // but we also maintain the lexical context where the actual
2943  // definition occurs.
2944  Specialization->setLexicalDeclContext(CurContext);
2945
2946  // We may be starting the definition of this specialization.
2947  if (TUK == TUK_Definition)
2948    Specialization->startDefinition();
2949
2950  if (TUK == TUK_Friend) {
2951    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
2952                                            TemplateNameLoc,
2953                                            WrittenTy.getTypePtr(),
2954                                            /*FIXME:*/KWLoc);
2955    Friend->setAccess(AS_public);
2956    CurContext->addDecl(Friend);
2957  } else {
2958    // Add the specialization into its lexical context, so that it can
2959    // be seen when iterating through the list of declarations in that
2960    // context. However, specializations are not found by name lookup.
2961    CurContext->addDecl(Specialization);
2962  }
2963  return DeclPtrTy::make(Specialization);
2964}
2965
2966Sema::DeclPtrTy
2967Sema::ActOnTemplateDeclarator(Scope *S,
2968                              MultiTemplateParamsArg TemplateParameterLists,
2969                              Declarator &D) {
2970  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
2971}
2972
2973Sema::DeclPtrTy
2974Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
2975                               MultiTemplateParamsArg TemplateParameterLists,
2976                                      Declarator &D) {
2977  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2978  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2979         "Not a function declarator!");
2980  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2981
2982  if (FTI.hasPrototype) {
2983    // FIXME: Diagnose arguments without names in C.
2984  }
2985
2986  Scope *ParentScope = FnBodyScope->getParent();
2987
2988  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
2989                                  move(TemplateParameterLists),
2990                                  /*IsFunctionDefinition=*/true);
2991  if (FunctionTemplateDecl *FunctionTemplate
2992        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
2993    return ActOnStartOfFunctionDef(FnBodyScope,
2994                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
2995  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
2996    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
2997  return DeclPtrTy();
2998}
2999
3000/// \brief Perform semantic analysis for the given function template
3001/// specialization.
3002///
3003/// This routine performs all of the semantic analysis required for an
3004/// explicit function template specialization. On successful completion,
3005/// the function declaration \p FD will become a function template
3006/// specialization.
3007///
3008/// \param FD the function declaration, which will be updated to become a
3009/// function template specialization.
3010///
3011/// \param HasExplicitTemplateArgs whether any template arguments were
3012/// explicitly provided.
3013///
3014/// \param LAngleLoc the location of the left angle bracket ('<'), if
3015/// template arguments were explicitly provided.
3016///
3017/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3018/// if any.
3019///
3020/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3021/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3022/// true as in, e.g., \c void sort<>(char*, char*);
3023///
3024/// \param RAngleLoc the location of the right angle bracket ('>'), if
3025/// template arguments were explicitly provided.
3026///
3027/// \param PrevDecl the set of declarations that
3028bool
3029Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3030                                          bool HasExplicitTemplateArgs,
3031                                          SourceLocation LAngleLoc,
3032                              const TemplateArgument *ExplicitTemplateArgs,
3033                                          unsigned NumExplicitTemplateArgs,
3034                                          SourceLocation RAngleLoc,
3035                                          NamedDecl *&PrevDecl) {
3036  // The set of function template specializations that could match this
3037  // explicit function template specialization.
3038  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
3039  CandidateSet Candidates;
3040
3041  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3042  for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) {
3043    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Ovl)) {
3044      // Only consider templates found within the same semantic lookup scope as
3045      // FD.
3046      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3047        continue;
3048
3049      // C++ [temp.expl.spec]p11:
3050      //   A trailing template-argument can be left unspecified in the
3051      //   template-id naming an explicit function template specialization
3052      //   provided it can be deduced from the function argument type.
3053      // Perform template argument deduction to determine whether we may be
3054      // specializing this template.
3055      // FIXME: It is somewhat wasteful to build
3056      TemplateDeductionInfo Info(Context);
3057      FunctionDecl *Specialization = 0;
3058      if (TemplateDeductionResult TDK
3059            = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
3060                                      ExplicitTemplateArgs,
3061                                      NumExplicitTemplateArgs,
3062                                      FD->getType(),
3063                                      Specialization,
3064                                      Info)) {
3065        // FIXME: Template argument deduction failed; record why it failed, so
3066        // that we can provide nifty diagnostics.
3067        (void)TDK;
3068        continue;
3069      }
3070
3071      // Record this candidate.
3072      Candidates.push_back(Specialization);
3073    }
3074  }
3075
3076  // Find the most specialized function template.
3077  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
3078                                                    Candidates.size(),
3079                                                    TPOC_Other,
3080                                                    FD->getLocation(),
3081                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3082                    << FD->getDeclName(),
3083                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3084                    << FD->getDeclName() << HasExplicitTemplateArgs,
3085                  PartialDiagnostic(diag::note_function_template_spec_matched));
3086  if (!Specialization)
3087    return true;
3088
3089  // FIXME: Check if the prior specialization has a point of instantiation.
3090  // If so, we have run afoul of C++ [temp.expl.spec]p6.
3091
3092  // Check the scope of this explicit specialization.
3093  if (CheckTemplateSpecializationScope(*this,
3094                                       Specialization->getPrimaryTemplate(),
3095                                       Specialization, FD->getLocation(),
3096                                       false, TSK_ExplicitSpecialization))
3097    return true;
3098
3099  // Mark the prior declaration as an explicit specialization, so that later
3100  // clients know that this is an explicit specialization.
3101  // FIXME: Check for prior explicit instantiations?
3102  Specialization->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3103
3104  // Turn the given function declaration into a function template
3105  // specialization, with the template arguments from the previous
3106  // specialization.
3107  FD->setFunctionTemplateSpecialization(Context,
3108                                        Specialization->getPrimaryTemplate(),
3109                         new (Context) TemplateArgumentList(
3110                             *Specialization->getTemplateSpecializationArgs()),
3111                                        /*InsertPos=*/0,
3112                                        TSK_ExplicitSpecialization);
3113
3114  // The "previous declaration" for this function template specialization is
3115  // the prior function template specialization.
3116  PrevDecl = Specialization;
3117  return false;
3118}
3119
3120/// \brief Perform semantic analysis for the given non-template member
3121/// specialization.
3122///
3123/// This routine performs all of the semantic analysis required for an
3124/// explicit member function specialization. On successful completion,
3125/// the function declaration \p FD will become a member function
3126/// specialization.
3127///
3128/// \param Member the member declaration, which will be updated to become a
3129/// specialization.
3130///
3131/// \param PrevDecl the set of declarations, one of which may be specialized
3132/// by this function specialization.
3133bool
3134Sema::CheckMemberSpecialization(NamedDecl *Member, NamedDecl *&PrevDecl) {
3135  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3136
3137  // Try to find the member we are instantiating.
3138  NamedDecl *Instantiation = 0;
3139  NamedDecl *InstantiatedFrom = 0;
3140  if (!PrevDecl) {
3141    // Nowhere to look anyway.
3142  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3143    for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) {
3144      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Ovl)) {
3145        if (Context.hasSameType(Function->getType(), Method->getType())) {
3146          Instantiation = Method;
3147          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3148          break;
3149        }
3150      }
3151    }
3152  } else if (isa<VarDecl>(Member)) {
3153    if (VarDecl *PrevVar = dyn_cast<VarDecl>(PrevDecl))
3154      if (PrevVar->isStaticDataMember()) {
3155        Instantiation = PrevDecl;
3156        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
3157      }
3158  } else if (isa<RecordDecl>(Member)) {
3159    if (CXXRecordDecl *PrevRecord = dyn_cast<CXXRecordDecl>(PrevDecl)) {
3160      Instantiation = PrevDecl;
3161      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
3162    }
3163  }
3164
3165  if (!Instantiation) {
3166    // There is no previous declaration that matches. Since member
3167    // specializations are always out-of-line, the caller will complain about
3168    // this mismatch later.
3169    return false;
3170  }
3171
3172  // FIXME: Check if the prior declaration has a point of instantiation.
3173  // If so, we have run afoul of C++ [temp.expl.spec]p6.
3174
3175  // Make sure that this is a specialization of a member.
3176  if (!InstantiatedFrom) {
3177    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
3178      << Member;
3179    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
3180    return true;
3181  }
3182
3183  // Check the scope of this explicit specialization.
3184  if (CheckTemplateSpecializationScope(*this,
3185                                       InstantiatedFrom,
3186                                       Instantiation, Member->getLocation(),
3187                                       false, TSK_ExplicitSpecialization))
3188    return true;
3189
3190  // FIXME: Check for specialization-after-instantiation errors and such.
3191
3192  // Note that this is an explicit instantiation of a member.
3193  // the original declaration to note that it is an explicit specialization
3194  // (if it was previously an implicit instantiation). This latter step
3195  // makes bookkeeping easier.
3196  if (isa<FunctionDecl>(Member)) {
3197    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
3198    if (InstantiationFunction->getTemplateSpecializationKind() ==
3199          TSK_ImplicitInstantiation) {
3200      InstantiationFunction->setTemplateSpecializationKind(
3201                                                  TSK_ExplicitSpecialization);
3202      InstantiationFunction->setLocation(Member->getLocation());
3203    }
3204
3205    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
3206                                        cast<CXXMethodDecl>(InstantiatedFrom),
3207                                                  TSK_ExplicitSpecialization);
3208  } else if (isa<VarDecl>(Member)) {
3209    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
3210    if (InstantiationVar->getTemplateSpecializationKind() ==
3211          TSK_ImplicitInstantiation) {
3212      InstantiationVar->setTemplateSpecializationKind(
3213                                                  TSK_ExplicitSpecialization);
3214      InstantiationVar->setLocation(Member->getLocation());
3215    }
3216
3217    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
3218                                                cast<VarDecl>(InstantiatedFrom),
3219                                                TSK_ExplicitSpecialization);
3220  } else {
3221    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
3222    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
3223    if (InstantiationClass->getTemplateSpecializationKind() ==
3224          TSK_ImplicitInstantiation) {
3225      InstantiationClass->setTemplateSpecializationKind(
3226                                                   TSK_ExplicitSpecialization);
3227      InstantiationClass->setLocation(Member->getLocation());
3228    }
3229
3230    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
3231                                        cast<CXXRecordDecl>(InstantiatedFrom),
3232                                                   TSK_ExplicitSpecialization);
3233  }
3234
3235  // Save the caller the trouble of having to figure out which declaration
3236  // this specialization matches.
3237  PrevDecl = Instantiation;
3238  return false;
3239}
3240
3241// Explicit instantiation of a class template specialization
3242// FIXME: Implement extern template semantics
3243Sema::DeclResult
3244Sema::ActOnExplicitInstantiation(Scope *S,
3245                                 SourceLocation ExternLoc,
3246                                 SourceLocation TemplateLoc,
3247                                 unsigned TagSpec,
3248                                 SourceLocation KWLoc,
3249                                 const CXXScopeSpec &SS,
3250                                 TemplateTy TemplateD,
3251                                 SourceLocation TemplateNameLoc,
3252                                 SourceLocation LAngleLoc,
3253                                 ASTTemplateArgsPtr TemplateArgsIn,
3254                                 SourceLocation *TemplateArgLocs,
3255                                 SourceLocation RAngleLoc,
3256                                 AttributeList *Attr) {
3257  // Find the class template we're specializing
3258  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3259  ClassTemplateDecl *ClassTemplate
3260    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
3261
3262  // Check that the specialization uses the same tag kind as the
3263  // original template.
3264  TagDecl::TagKind Kind;
3265  switch (TagSpec) {
3266  default: assert(0 && "Unknown tag type!");
3267  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3268  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3269  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3270  }
3271  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3272                                    Kind, KWLoc,
3273                                    *ClassTemplate->getIdentifier())) {
3274    Diag(KWLoc, diag::err_use_with_wrong_tag)
3275      << ClassTemplate
3276      << CodeModificationHint::CreateReplacement(KWLoc,
3277                            ClassTemplate->getTemplatedDecl()->getKindName());
3278    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3279         diag::note_previous_use);
3280    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3281  }
3282
3283  TemplateSpecializationKind TSK
3284    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3285                           : TSK_ExplicitInstantiationDeclaration;
3286
3287  // Translate the parser's template argument list in our AST format.
3288  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
3289  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
3290
3291  // Check that the template argument list is well-formed for this
3292  // template.
3293  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3294                                        TemplateArgs.size());
3295  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
3296                                TemplateArgs.data(), TemplateArgs.size(),
3297                                RAngleLoc, false, Converted))
3298    return true;
3299
3300  assert((Converted.structuredSize() ==
3301            ClassTemplate->getTemplateParameters()->size()) &&
3302         "Converted template argument list is too short!");
3303
3304  // Find the class template specialization declaration that
3305  // corresponds to these arguments.
3306  llvm::FoldingSetNodeID ID;
3307  ClassTemplateSpecializationDecl::Profile(ID,
3308                                           Converted.getFlatArguments(),
3309                                           Converted.flatSize(),
3310                                           Context);
3311  void *InsertPos = 0;
3312  ClassTemplateSpecializationDecl *PrevDecl
3313    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3314
3315  // C++0x [temp.explicit]p2:
3316  //   [...] An explicit instantiation shall appear in an enclosing
3317  //   namespace of its template. [...]
3318  //
3319  // This is C++ DR 275.
3320  if (CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3321                                       TemplateNameLoc, false,
3322                                       TSK))
3323    return true;
3324
3325  ClassTemplateSpecializationDecl *Specialization = 0;
3326
3327  bool SpecializationRequiresInstantiation = true;
3328  if (PrevDecl) {
3329    if (PrevDecl->getSpecializationKind()
3330          == TSK_ExplicitInstantiationDefinition) {
3331      // This particular specialization has already been declared or
3332      // instantiated. We cannot explicitly instantiate it.
3333      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
3334        << Context.getTypeDeclType(PrevDecl);
3335      Diag(PrevDecl->getLocation(),
3336           diag::note_previous_explicit_instantiation);
3337      return DeclPtrTy::make(PrevDecl);
3338    }
3339
3340    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
3341      // C++ DR 259, C++0x [temp.explicit]p4:
3342      //   For a given set of template parameters, if an explicit
3343      //   instantiation of a template appears after a declaration of
3344      //   an explicit specialization for that template, the explicit
3345      //   instantiation has no effect.
3346      if (!getLangOptions().CPlusPlus0x) {
3347        Diag(TemplateNameLoc,
3348             diag::ext_explicit_instantiation_after_specialization)
3349          << Context.getTypeDeclType(PrevDecl);
3350        Diag(PrevDecl->getLocation(),
3351             diag::note_previous_template_specialization);
3352      }
3353
3354      // Create a new class template specialization declaration node
3355      // for this explicit specialization. This node is only used to
3356      // record the existence of this explicit instantiation for
3357      // accurate reproduction of the source code; we don't actually
3358      // use it for anything, since it is semantically irrelevant.
3359      Specialization
3360        = ClassTemplateSpecializationDecl::Create(Context,
3361                                             ClassTemplate->getDeclContext(),
3362                                                  TemplateNameLoc,
3363                                                  ClassTemplate,
3364                                                  Converted, 0);
3365      Specialization->setLexicalDeclContext(CurContext);
3366      CurContext->addDecl(Specialization);
3367      return DeclPtrTy::make(PrevDecl);
3368    }
3369
3370    // If we have already (implicitly) instantiated this
3371    // specialization, there is less work to do.
3372    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
3373      SpecializationRequiresInstantiation = false;
3374
3375    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
3376        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3377      // Since the only prior class template specialization with these
3378      // arguments was referenced but not declared, reuse that
3379      // declaration node as our own, updating its source location to
3380      // reflect our new declaration.
3381      Specialization = PrevDecl;
3382      Specialization->setLocation(TemplateNameLoc);
3383      PrevDecl = 0;
3384    }
3385  }
3386
3387  if (!Specialization) {
3388    // Create a new class template specialization declaration node for
3389    // this explicit specialization.
3390    Specialization
3391      = ClassTemplateSpecializationDecl::Create(Context,
3392                                             ClassTemplate->getDeclContext(),
3393                                                TemplateNameLoc,
3394                                                ClassTemplate,
3395                                                Converted, PrevDecl);
3396
3397    if (PrevDecl) {
3398      // Remove the previous declaration from the folding set, since we want
3399      // to introduce a new declaration.
3400      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3401      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3402    }
3403
3404    // Insert the new specialization.
3405    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
3406  }
3407
3408  // Build the fully-sugared type for this explicit instantiation as
3409  // the user wrote in the explicit instantiation itself. This means
3410  // that we'll pretty-print the type retrieved from the
3411  // specialization's declaration the way that the user actually wrote
3412  // the explicit instantiation, rather than formatting the name based
3413  // on the "canonical" representation used to store the template
3414  // arguments in the specialization.
3415  QualType WrittenTy
3416    = Context.getTemplateSpecializationType(Name,
3417                                            TemplateArgs.data(),
3418                                            TemplateArgs.size(),
3419                                  Context.getTypeDeclType(Specialization));
3420  Specialization->setTypeAsWritten(WrittenTy);
3421  TemplateArgsIn.release();
3422
3423  // Add the explicit instantiation into its lexical context. However,
3424  // since explicit instantiations are never found by name lookup, we
3425  // just put it into the declaration context directly.
3426  Specialization->setLexicalDeclContext(CurContext);
3427  CurContext->addDecl(Specialization);
3428
3429  Specialization->setPointOfInstantiation(TemplateNameLoc);
3430
3431  // C++ [temp.explicit]p3:
3432  //   A definition of a class template or class member template
3433  //   shall be in scope at the point of the explicit instantiation of
3434  //   the class template or class member template.
3435  //
3436  // This check comes when we actually try to perform the
3437  // instantiation.
3438  if (SpecializationRequiresInstantiation)
3439    InstantiateClassTemplateSpecialization(Specialization, TSK);
3440  else // Instantiate the members of this class template specialization.
3441    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization,
3442                                                  TSK);
3443
3444  return DeclPtrTy::make(Specialization);
3445}
3446
3447// Explicit instantiation of a member class of a class template.
3448Sema::DeclResult
3449Sema::ActOnExplicitInstantiation(Scope *S,
3450                                 SourceLocation ExternLoc,
3451                                 SourceLocation TemplateLoc,
3452                                 unsigned TagSpec,
3453                                 SourceLocation KWLoc,
3454                                 const CXXScopeSpec &SS,
3455                                 IdentifierInfo *Name,
3456                                 SourceLocation NameLoc,
3457                                 AttributeList *Attr) {
3458
3459  bool Owned = false;
3460  bool IsDependent = false;
3461  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
3462                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
3463                            MultiTemplateParamsArg(*this, 0, 0),
3464                            Owned, IsDependent);
3465  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
3466
3467  if (!TagD)
3468    return true;
3469
3470  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3471  if (Tag->isEnum()) {
3472    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
3473      << Context.getTypeDeclType(Tag);
3474    return true;
3475  }
3476
3477  if (Tag->isInvalidDecl())
3478    return true;
3479
3480  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
3481  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
3482  if (!Pattern) {
3483    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
3484      << Context.getTypeDeclType(Record);
3485    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
3486    return true;
3487  }
3488
3489  // C++0x [temp.explicit]p2:
3490  //   [...] An explicit instantiation shall appear in an enclosing
3491  //   namespace of its template. [...]
3492  //
3493  // This is C++ DR 275.
3494  if (getLangOptions().CPlusPlus0x) {
3495    // FIXME: In C++98, we would like to turn these errors into warnings,
3496    // dependent on a -Wc++0x flag.
3497    DeclContext *PatternContext
3498      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
3499    if (!CurContext->Encloses(PatternContext)) {
3500      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
3501        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
3502      Diag(Pattern->getLocation(), diag::note_previous_declaration);
3503    }
3504  }
3505
3506  TemplateSpecializationKind TSK
3507    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3508                           : TSK_ExplicitInstantiationDeclaration;
3509
3510  if (!Record->getDefinition(Context)) {
3511    // If the class has a definition, instantiate it (and all of its
3512    // members, recursively).
3513    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
3514    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
3515                                    getTemplateInstantiationArgs(Record),
3516                                    TSK))
3517      return true;
3518  } else // Instantiate all of the members of the class.
3519    InstantiateClassMembers(TemplateLoc, Record,
3520                            getTemplateInstantiationArgs(Record), TSK);
3521
3522  // FIXME: We don't have any representation for explicit instantiations of
3523  // member classes. Such a representation is not needed for compilation, but it
3524  // should be available for clients that want to see all of the declarations in
3525  // the source code.
3526  return TagD;
3527}
3528
3529Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
3530                                                  SourceLocation ExternLoc,
3531                                                  SourceLocation TemplateLoc,
3532                                                  Declarator &D) {
3533  // Explicit instantiations always require a name.
3534  DeclarationName Name = GetNameForDeclarator(D);
3535  if (!Name) {
3536    if (!D.isInvalidType())
3537      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3538           diag::err_explicit_instantiation_requires_name)
3539        << D.getDeclSpec().getSourceRange()
3540        << D.getSourceRange();
3541
3542    return true;
3543  }
3544
3545  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3546  // we find one that is.
3547  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3548         (S->getFlags() & Scope::TemplateParamScope) != 0)
3549    S = S->getParent();
3550
3551  // Determine the type of the declaration.
3552  QualType R = GetTypeForDeclarator(D, S, 0);
3553  if (R.isNull())
3554    return true;
3555
3556  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3557    // Cannot explicitly instantiate a typedef.
3558    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
3559      << Name;
3560    return true;
3561  }
3562
3563  // Determine what kind of explicit instantiation we have.
3564  TemplateSpecializationKind TSK
3565    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3566                           : TSK_ExplicitInstantiationDeclaration;
3567
3568  LookupResult Previous = LookupParsedName(S, &D.getCXXScopeSpec(),
3569                                           Name, LookupOrdinaryName);
3570
3571  if (!R->isFunctionType()) {
3572    // C++ [temp.explicit]p1:
3573    //   A [...] static data member of a class template can be explicitly
3574    //   instantiated from the member definition associated with its class
3575    //   template.
3576    if (Previous.isAmbiguous()) {
3577      return DiagnoseAmbiguousLookup(Previous, Name, D.getIdentifierLoc(),
3578                                     D.getSourceRange());
3579    }
3580
3581    VarDecl *Prev = dyn_cast_or_null<VarDecl>(Previous.getAsDecl());
3582    if (!Prev || !Prev->isStaticDataMember()) {
3583      // We expect to see a data data member here.
3584      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
3585        << Name;
3586      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
3587           P != PEnd; ++P)
3588        Diag(P->getLocation(), diag::note_explicit_instantiation_here);
3589      return true;
3590    }
3591
3592    if (!Prev->getInstantiatedFromStaticDataMember()) {
3593      // FIXME: Check for explicit specialization?
3594      Diag(D.getIdentifierLoc(),
3595           diag::err_explicit_instantiation_data_member_not_instantiated)
3596        << Prev;
3597      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
3598      // FIXME: Can we provide a note showing where this was declared?
3599      return true;
3600    }
3601
3602    // Instantiate static data member.
3603    // FIXME: Check for prior specializations and such.
3604    Prev->setTemplateSpecializationKind(TSK);
3605    if (TSK == TSK_ExplicitInstantiationDefinition)
3606      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false);
3607
3608    // FIXME: Create an ExplicitInstantiation node?
3609    return DeclPtrTy();
3610  }
3611
3612  // If the declarator is a template-id, translate the parser's template
3613  // argument list into our AST format.
3614  bool HasExplicitTemplateArgs = false;
3615  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
3616  if (D.getKind() == Declarator::DK_TemplateId) {
3617    TemplateIdAnnotation *TemplateId = D.getTemplateId();
3618    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3619                                       TemplateId->getTemplateArgs(),
3620                                       TemplateId->getTemplateArgIsType(),
3621                                       TemplateId->NumArgs);
3622    translateTemplateArguments(TemplateArgsPtr,
3623                               TemplateId->getTemplateArgLocations(),
3624                               TemplateArgs);
3625    HasExplicitTemplateArgs = true;
3626    TemplateArgsPtr.release();
3627  }
3628
3629  // C++ [temp.explicit]p1:
3630  //   A [...] function [...] can be explicitly instantiated from its template.
3631  //   A member function [...] of a class template can be explicitly
3632  //  instantiated from the member definition associated with its class
3633  //  template.
3634  llvm::SmallVector<FunctionDecl *, 8> Matches;
3635  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
3636       P != PEnd; ++P) {
3637    NamedDecl *Prev = *P;
3638    if (!HasExplicitTemplateArgs) {
3639      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
3640        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
3641          Matches.clear();
3642          Matches.push_back(Method);
3643          break;
3644        }
3645      }
3646    }
3647
3648    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
3649    if (!FunTmpl)
3650      continue;
3651
3652    TemplateDeductionInfo Info(Context);
3653    FunctionDecl *Specialization = 0;
3654    if (TemplateDeductionResult TDK
3655          = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
3656                                    TemplateArgs.data(), TemplateArgs.size(),
3657                                    R, Specialization, Info)) {
3658      // FIXME: Keep track of almost-matches?
3659      (void)TDK;
3660      continue;
3661    }
3662
3663    Matches.push_back(Specialization);
3664  }
3665
3666  // Find the most specialized function template specialization.
3667  FunctionDecl *Specialization
3668    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other,
3669                         D.getIdentifierLoc(),
3670          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
3671          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
3672                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
3673
3674  if (!Specialization)
3675    return true;
3676
3677  switch (Specialization->getTemplateSpecializationKind()) {
3678  case TSK_Undeclared:
3679    Diag(D.getIdentifierLoc(),
3680         diag::err_explicit_instantiation_member_function_not_instantiated)
3681      << Specialization
3682      << (Specialization->getTemplateSpecializationKind() ==
3683          TSK_ExplicitSpecialization);
3684    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
3685    return true;
3686
3687  case TSK_ExplicitSpecialization:
3688    // C++ [temp.explicit]p4:
3689    //   For a given set of template parameters, if an explicit instantiation
3690    //   of a template appears after a declaration of an explicit
3691    //   specialization for that template, the explicit instantiation has no
3692    //   effect.
3693    break;
3694
3695  case TSK_ExplicitInstantiationDefinition:
3696    // FIXME: Check that we aren't trying to perform an explicit instantiation
3697    // declaration now.
3698    // Fall through
3699
3700  case TSK_ImplicitInstantiation:
3701  case TSK_ExplicitInstantiationDeclaration:
3702    // Instantiate the function, if this is an explicit instantiation
3703    // definition.
3704    if (TSK == TSK_ExplicitInstantiationDefinition)
3705      InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
3706                                    false);
3707
3708    Specialization->setTemplateSpecializationKind(TSK);
3709    break;
3710  }
3711
3712  // FIXME: Create some kind of ExplicitInstantiationDecl here.
3713  return DeclPtrTy();
3714}
3715
3716Sema::TypeResult
3717Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3718                        const CXXScopeSpec &SS, IdentifierInfo *Name,
3719                        SourceLocation TagLoc, SourceLocation NameLoc) {
3720  // This has to hold, because SS is expected to be defined.
3721  assert(Name && "Expected a name in a dependent tag");
3722
3723  NestedNameSpecifier *NNS
3724    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3725  if (!NNS)
3726    return true;
3727
3728  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
3729  if (T.isNull())
3730    return true;
3731
3732  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
3733  QualType ElabType = Context.getElaboratedType(T, TagKind);
3734
3735  return ElabType.getAsOpaquePtr();
3736}
3737
3738Sema::TypeResult
3739Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
3740                        const IdentifierInfo &II, SourceLocation IdLoc) {
3741  NestedNameSpecifier *NNS
3742    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3743  if (!NNS)
3744    return true;
3745
3746  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
3747  if (T.isNull())
3748    return true;
3749  return T.getAsOpaquePtr();
3750}
3751
3752Sema::TypeResult
3753Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
3754                        SourceLocation TemplateLoc, TypeTy *Ty) {
3755  QualType T = GetTypeFromParser(Ty);
3756  NestedNameSpecifier *NNS
3757    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3758  const TemplateSpecializationType *TemplateId
3759    = T->getAs<TemplateSpecializationType>();
3760  assert(TemplateId && "Expected a template specialization type");
3761
3762  if (computeDeclContext(SS, false)) {
3763    // If we can compute a declaration context, then the "typename"
3764    // keyword was superfluous. Just build a QualifiedNameType to keep
3765    // track of the nested-name-specifier.
3766
3767    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
3768    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
3769  }
3770
3771  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
3772}
3773
3774/// \brief Build the type that describes a C++ typename specifier,
3775/// e.g., "typename T::type".
3776QualType
3777Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
3778                        SourceRange Range) {
3779  CXXRecordDecl *CurrentInstantiation = 0;
3780  if (NNS->isDependent()) {
3781    CurrentInstantiation = getCurrentInstantiationOf(NNS);
3782
3783    // If the nested-name-specifier does not refer to the current
3784    // instantiation, then build a typename type.
3785    if (!CurrentInstantiation)
3786      return Context.getTypenameType(NNS, &II);
3787
3788    // The nested-name-specifier refers to the current instantiation, so the
3789    // "typename" keyword itself is superfluous. In C++03, the program is
3790    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
3791    // extraneous "typename" keywords, and we retroactively apply this DR to
3792    // C++03 code.
3793  }
3794
3795  DeclContext *Ctx = 0;
3796
3797  if (CurrentInstantiation)
3798    Ctx = CurrentInstantiation;
3799  else {
3800    CXXScopeSpec SS;
3801    SS.setScopeRep(NNS);
3802    SS.setRange(Range);
3803    if (RequireCompleteDeclContext(SS))
3804      return QualType();
3805
3806    Ctx = computeDeclContext(SS);
3807  }
3808  assert(Ctx && "No declaration context?");
3809
3810  DeclarationName Name(&II);
3811  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
3812                                            false);
3813  unsigned DiagID = 0;
3814  Decl *Referenced = 0;
3815  switch (Result.getKind()) {
3816  case LookupResult::NotFound:
3817    if (Ctx->isTranslationUnit())
3818      DiagID = diag::err_typename_nested_not_found_global;
3819    else
3820      DiagID = diag::err_typename_nested_not_found;
3821    break;
3822
3823  case LookupResult::Found:
3824    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
3825      // We found a type. Build a QualifiedNameType, since the
3826      // typename-specifier was just sugar. FIXME: Tell
3827      // QualifiedNameType that it has a "typename" prefix.
3828      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
3829    }
3830
3831    DiagID = diag::err_typename_nested_not_type;
3832    Referenced = Result.getAsDecl();
3833    break;
3834
3835  case LookupResult::FoundOverloaded:
3836    DiagID = diag::err_typename_nested_not_type;
3837    Referenced = *Result.begin();
3838    break;
3839
3840  case LookupResult::AmbiguousBaseSubobjectTypes:
3841  case LookupResult::AmbiguousBaseSubobjects:
3842  case LookupResult::AmbiguousReference:
3843    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
3844    return QualType();
3845  }
3846
3847  // If we get here, it's because name lookup did not find a
3848  // type. Emit an appropriate diagnostic and return an error.
3849  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
3850    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
3851  else
3852    Diag(Range.getEnd(), DiagID) << Range << Name;
3853  if (Referenced)
3854    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
3855      << Name;
3856  return QualType();
3857}
3858
3859namespace {
3860  // See Sema::RebuildTypeInCurrentInstantiation
3861  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
3862    : public TreeTransform<CurrentInstantiationRebuilder> {
3863    SourceLocation Loc;
3864    DeclarationName Entity;
3865
3866  public:
3867    CurrentInstantiationRebuilder(Sema &SemaRef,
3868                                  SourceLocation Loc,
3869                                  DeclarationName Entity)
3870    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
3871      Loc(Loc), Entity(Entity) { }
3872
3873    /// \brief Determine whether the given type \p T has already been
3874    /// transformed.
3875    ///
3876    /// For the purposes of type reconstruction, a type has already been
3877    /// transformed if it is NULL or if it is not dependent.
3878    bool AlreadyTransformed(QualType T) {
3879      return T.isNull() || !T->isDependentType();
3880    }
3881
3882    /// \brief Returns the location of the entity whose type is being
3883    /// rebuilt.
3884    SourceLocation getBaseLocation() { return Loc; }
3885
3886    /// \brief Returns the name of the entity whose type is being rebuilt.
3887    DeclarationName getBaseEntity() { return Entity; }
3888
3889    /// \brief Transforms an expression by returning the expression itself
3890    /// (an identity function).
3891    ///
3892    /// FIXME: This is completely unsafe; we will need to actually clone the
3893    /// expressions.
3894    Sema::OwningExprResult TransformExpr(Expr *E) {
3895      return getSema().Owned(E);
3896    }
3897
3898    /// \brief Transforms a typename type by determining whether the type now
3899    /// refers to a member of the current instantiation, and then
3900    /// type-checking and building a QualifiedNameType (when possible).
3901    QualType TransformTypenameType(const TypenameType *T);
3902  };
3903}
3904
3905QualType
3906CurrentInstantiationRebuilder::TransformTypenameType(const TypenameType *T) {
3907  NestedNameSpecifier *NNS
3908    = TransformNestedNameSpecifier(T->getQualifier(),
3909                              /*FIXME:*/SourceRange(getBaseLocation()));
3910  if (!NNS)
3911    return QualType();
3912
3913  // If the nested-name-specifier did not change, and we cannot compute the
3914  // context corresponding to the nested-name-specifier, then this
3915  // typename type will not change; exit early.
3916  CXXScopeSpec SS;
3917  SS.setRange(SourceRange(getBaseLocation()));
3918  SS.setScopeRep(NNS);
3919  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
3920    return QualType(T, 0);
3921
3922  // Rebuild the typename type, which will probably turn into a
3923  // QualifiedNameType.
3924  if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
3925    QualType NewTemplateId
3926      = TransformType(QualType(TemplateId, 0));
3927    if (NewTemplateId.isNull())
3928      return QualType();
3929
3930    if (NNS == T->getQualifier() &&
3931        NewTemplateId == QualType(TemplateId, 0))
3932      return QualType(T, 0);
3933
3934    return getDerived().RebuildTypenameType(NNS, NewTemplateId);
3935  }
3936
3937  return getDerived().RebuildTypenameType(NNS, T->getIdentifier());
3938}
3939
3940/// \brief Rebuilds a type within the context of the current instantiation.
3941///
3942/// The type \p T is part of the type of an out-of-line member definition of
3943/// a class template (or class template partial specialization) that was parsed
3944/// and constructed before we entered the scope of the class template (or
3945/// partial specialization thereof). This routine will rebuild that type now
3946/// that we have entered the declarator's scope, which may produce different
3947/// canonical types, e.g.,
3948///
3949/// \code
3950/// template<typename T>
3951/// struct X {
3952///   typedef T* pointer;
3953///   pointer data();
3954/// };
3955///
3956/// template<typename T>
3957/// typename X<T>::pointer X<T>::data() { ... }
3958/// \endcode
3959///
3960/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
3961/// since we do not know that we can look into X<T> when we parsed the type.
3962/// This function will rebuild the type, performing the lookup of "pointer"
3963/// in X<T> and returning a QualifiedNameType whose canonical type is the same
3964/// as the canonical type of T*, allowing the return types of the out-of-line
3965/// definition and the declaration to match.
3966QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
3967                                                 DeclarationName Name) {
3968  if (T.isNull() || !T->isDependentType())
3969    return T;
3970
3971  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
3972  return Rebuilder.TransformType(T);
3973}
3974
3975/// \brief Produces a formatted string that describes the binding of
3976/// template parameters to template arguments.
3977std::string
3978Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
3979                                      const TemplateArgumentList &Args) {
3980  std::string Result;
3981
3982  if (!Params || Params->size() == 0)
3983    return Result;
3984
3985  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
3986    if (I == 0)
3987      Result += "[with ";
3988    else
3989      Result += ", ";
3990
3991    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
3992      Result += Id->getName();
3993    } else {
3994      Result += '$';
3995      Result += llvm::utostr(I);
3996    }
3997
3998    Result += " = ";
3999
4000    switch (Args[I].getKind()) {
4001      case TemplateArgument::Null:
4002        Result += "<no value>";
4003        break;
4004
4005      case TemplateArgument::Type: {
4006        std::string TypeStr;
4007        Args[I].getAsType().getAsStringInternal(TypeStr,
4008                                                Context.PrintingPolicy);
4009        Result += TypeStr;
4010        break;
4011      }
4012
4013      case TemplateArgument::Declaration: {
4014        bool Unnamed = true;
4015        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
4016          if (ND->getDeclName()) {
4017            Unnamed = false;
4018            Result += ND->getNameAsString();
4019          }
4020        }
4021
4022        if (Unnamed) {
4023          Result += "<anonymous>";
4024        }
4025        break;
4026      }
4027
4028      case TemplateArgument::Integral: {
4029        Result += Args[I].getAsIntegral()->toString(10);
4030        break;
4031      }
4032
4033      case TemplateArgument::Expression: {
4034        assert(false && "No expressions in deduced template arguments!");
4035        Result += "<expression>";
4036        break;
4037      }
4038
4039      case TemplateArgument::Pack:
4040        // FIXME: Format template argument packs
4041        Result += "<template argument pack>";
4042        break;
4043    }
4044  }
4045
4046  Result += ']';
4047  return Result;
4048}
4049