SemaTemplate.cpp revision 8dbd038b11a5d8e761be57f57ee2f0338a48ae5e
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "TreeTransform.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Expr.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Basic/LangOptions.h"
20#include "llvm/Support/Compiler.h"
21
22using namespace clang;
23
24/// isTemplateName - Determines whether the identifier II is a
25/// template name in the current scope, and returns the template
26/// declaration if II names a template. An optional CXXScope can be
27/// passed to indicate the C++ scope in which the identifier will be
28/// found.
29TemplateNameKind Sema::isTemplateName(const IdentifierInfo &II, Scope *S,
30                                      const CXXScopeSpec *SS,
31                                      bool EnteringContext,
32                                      TemplateTy &TemplateResult) {
33  LookupResult Found = LookupParsedName(S, SS, &II, LookupOrdinaryName,
34                                        false, false, SourceLocation(),
35                                        EnteringContext);
36
37  // FIXME: Cope with ambiguous name-lookup results.
38  assert(!Found.isAmbiguous() &&
39         "Cannot handle template name-lookup ambiguities");
40
41  NamedDecl *IIDecl = Found;
42
43  TemplateNameKind TNK = TNK_Non_template;
44  TemplateDecl *Template = 0;
45
46  if (IIDecl) {
47    if ((Template = dyn_cast<TemplateDecl>(IIDecl))) {
48      if (isa<FunctionTemplateDecl>(IIDecl))
49        TNK = TNK_Function_template;
50      else if (isa<ClassTemplateDecl>(IIDecl) ||
51               isa<TemplateTemplateParmDecl>(IIDecl))
52        TNK = TNK_Type_template;
53      else
54        assert(false && "Unknown template declaration kind");
55    } else if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(IIDecl)) {
56      // C++ [temp.local]p1:
57      //   Like normal (non-template) classes, class templates have an
58      //   injected-class-name (Clause 9). The injected-class-name
59      //   can be used with or without a template-argument-list. When
60      //   it is used without a template-argument-list, it is
61      //   equivalent to the injected-class-name followed by the
62      //   template-parameters of the class template enclosed in
63      //   <>. When it is used with a template-argument-list, it
64      //   refers to the specified class template specialization,
65      //   which could be the current specialization or another
66      //   specialization.
67      if (Record->isInjectedClassName()) {
68        Record = cast<CXXRecordDecl>(Record->getCanonicalDecl());
69        if ((Template = Record->getDescribedClassTemplate()))
70          TNK = TNK_Type_template;
71        else if (ClassTemplateSpecializationDecl *Spec
72                   = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
73          Template = Spec->getSpecializedTemplate();
74          TNK = TNK_Type_template;
75        }
76      }
77    } else if (OverloadedFunctionDecl *Ovl
78                 = dyn_cast<OverloadedFunctionDecl>(IIDecl)) {
79      for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
80                                                  FEnd = Ovl->function_end();
81           F != FEnd; ++F) {
82        if (FunctionTemplateDecl *FuncTmpl
83              = dyn_cast<FunctionTemplateDecl>(*F)) {
84          // We've found a function template. Determine whether there are
85          // any other function templates we need to bundle together in an
86          // OverloadedFunctionDecl
87          for (++F; F != FEnd; ++F) {
88            if (isa<FunctionTemplateDecl>(*F))
89              break;
90          }
91
92          if (F != FEnd) {
93            // Build an overloaded function decl containing only the
94            // function templates in Ovl.
95            OverloadedFunctionDecl *OvlTemplate
96              = OverloadedFunctionDecl::Create(Context,
97                                               Ovl->getDeclContext(),
98                                               Ovl->getDeclName());
99            OvlTemplate->addOverload(FuncTmpl);
100            OvlTemplate->addOverload(*F);
101            for (++F; F != FEnd; ++F) {
102              if (isa<FunctionTemplateDecl>(*F))
103                OvlTemplate->addOverload(*F);
104            }
105
106            // Form the resulting TemplateName
107            if (SS && SS->isSet() && !SS->isInvalid()) {
108              NestedNameSpecifier *Qualifier
109                = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
110              TemplateResult
111                = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
112                                                                    false,
113                                                                  OvlTemplate));
114            } else {
115              TemplateResult = TemplateTy::make(TemplateName(OvlTemplate));
116            }
117            return TNK_Function_template;
118          }
119
120          TNK = TNK_Function_template;
121          Template = FuncTmpl;
122          break;
123        }
124      }
125    }
126
127    if (TNK != TNK_Non_template) {
128      if (SS && SS->isSet() && !SS->isInvalid()) {
129        NestedNameSpecifier *Qualifier
130          = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
131        TemplateResult
132          = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier,
133                                                              false,
134                                                              Template));
135      } else
136        TemplateResult = TemplateTy::make(TemplateName(Template));
137    }
138  }
139  return TNK;
140}
141
142/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
143/// that the template parameter 'PrevDecl' is being shadowed by a new
144/// declaration at location Loc. Returns true to indicate that this is
145/// an error, and false otherwise.
146bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
147  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
148
149  // Microsoft Visual C++ permits template parameters to be shadowed.
150  if (getLangOptions().Microsoft)
151    return false;
152
153  // C++ [temp.local]p4:
154  //   A template-parameter shall not be redeclared within its
155  //   scope (including nested scopes).
156  Diag(Loc, diag::err_template_param_shadow)
157    << cast<NamedDecl>(PrevDecl)->getDeclName();
158  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
159  return true;
160}
161
162/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
163/// the parameter D to reference the templated declaration and return a pointer
164/// to the template declaration. Otherwise, do nothing to D and return null.
165TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
166  if (TemplateDecl *Temp = dyn_cast<TemplateDecl>(D.getAs<Decl>())) {
167    D = DeclPtrTy::make(Temp->getTemplatedDecl());
168    return Temp;
169  }
170  return 0;
171}
172
173/// ActOnTypeParameter - Called when a C++ template type parameter
174/// (e.g., "typename T") has been parsed. Typename specifies whether
175/// the keyword "typename" was used to declare the type parameter
176/// (otherwise, "class" was used), and KeyLoc is the location of the
177/// "class" or "typename" keyword. ParamName is the name of the
178/// parameter (NULL indicates an unnamed template parameter) and
179/// ParamName is the location of the parameter name (if any).
180/// If the type parameter has a default argument, it will be added
181/// later via ActOnTypeParameterDefault.
182Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
183                                         SourceLocation EllipsisLoc,
184                                         SourceLocation KeyLoc,
185                                         IdentifierInfo *ParamName,
186                                         SourceLocation ParamNameLoc,
187                                         unsigned Depth, unsigned Position) {
188  assert(S->isTemplateParamScope() &&
189	 "Template type parameter not in template parameter scope!");
190  bool Invalid = false;
191
192  if (ParamName) {
193    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
194    if (PrevDecl && PrevDecl->isTemplateParameter())
195      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
196							   PrevDecl);
197  }
198
199  SourceLocation Loc = ParamNameLoc;
200  if (!ParamName)
201    Loc = KeyLoc;
202
203  TemplateTypeParmDecl *Param
204    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
205                                   Depth, Position, ParamName, Typename,
206                                   Ellipsis);
207  if (Invalid)
208    Param->setInvalidDecl();
209
210  if (ParamName) {
211    // Add the template parameter into the current scope.
212    S->AddDecl(DeclPtrTy::make(Param));
213    IdResolver.AddDecl(Param);
214  }
215
216  return DeclPtrTy::make(Param);
217}
218
219/// ActOnTypeParameterDefault - Adds a default argument (the type
220/// Default) to the given template type parameter (TypeParam).
221void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
222                                     SourceLocation EqualLoc,
223                                     SourceLocation DefaultLoc,
224                                     TypeTy *DefaultT) {
225  TemplateTypeParmDecl *Parm
226    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
227  // FIXME: Preserve type source info.
228  QualType Default = GetTypeFromParser(DefaultT);
229
230  // C++0x [temp.param]p9:
231  // A default template-argument may be specified for any kind of
232  // template-parameter that is not a template parameter pack.
233  if (Parm->isParameterPack()) {
234    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
235    return;
236  }
237
238  // C++ [temp.param]p14:
239  //   A template-parameter shall not be used in its own default argument.
240  // FIXME: Implement this check! Needs a recursive walk over the types.
241
242  // Check the template argument itself.
243  if (CheckTemplateArgument(Parm, Default, DefaultLoc)) {
244    Parm->setInvalidDecl();
245    return;
246  }
247
248  Parm->setDefaultArgument(Default, DefaultLoc, false);
249}
250
251/// \brief Check that the type of a non-type template parameter is
252/// well-formed.
253///
254/// \returns the (possibly-promoted) parameter type if valid;
255/// otherwise, produces a diagnostic and returns a NULL type.
256QualType
257Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
258  // C++ [temp.param]p4:
259  //
260  // A non-type template-parameter shall have one of the following
261  // (optionally cv-qualified) types:
262  //
263  //       -- integral or enumeration type,
264  if (T->isIntegralType() || T->isEnumeralType() ||
265      //   -- pointer to object or pointer to function,
266      (T->isPointerType() &&
267       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
268        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
269      //   -- reference to object or reference to function,
270      T->isReferenceType() ||
271      //   -- pointer to member.
272      T->isMemberPointerType() ||
273      // If T is a dependent type, we can't do the check now, so we
274      // assume that it is well-formed.
275      T->isDependentType())
276    return T;
277  // C++ [temp.param]p8:
278  //
279  //   A non-type template-parameter of type "array of T" or
280  //   "function returning T" is adjusted to be of type "pointer to
281  //   T" or "pointer to function returning T", respectively.
282  else if (T->isArrayType())
283    // FIXME: Keep the type prior to promotion?
284    return Context.getArrayDecayedType(T);
285  else if (T->isFunctionType())
286    // FIXME: Keep the type prior to promotion?
287    return Context.getPointerType(T);
288
289  Diag(Loc, diag::err_template_nontype_parm_bad_type)
290    << T;
291
292  return QualType();
293}
294
295/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
296/// template parameter (e.g., "int Size" in "template<int Size>
297/// class Array") has been parsed. S is the current scope and D is
298/// the parsed declarator.
299Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
300                                                    unsigned Depth,
301                                                    unsigned Position) {
302  DeclaratorInfo *DInfo = 0;
303  QualType T = GetTypeForDeclarator(D, S, &DInfo);
304
305  assert(S->isTemplateParamScope() &&
306         "Non-type template parameter not in template parameter scope!");
307  bool Invalid = false;
308
309  IdentifierInfo *ParamName = D.getIdentifier();
310  if (ParamName) {
311    NamedDecl *PrevDecl = LookupName(S, ParamName, LookupTagName);
312    if (PrevDecl && PrevDecl->isTemplateParameter())
313      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
314                                                           PrevDecl);
315  }
316
317  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
318  if (T.isNull()) {
319    T = Context.IntTy; // Recover with an 'int' type.
320    Invalid = true;
321  }
322
323  NonTypeTemplateParmDecl *Param
324    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
325                                      Depth, Position, ParamName, T, DInfo);
326  if (Invalid)
327    Param->setInvalidDecl();
328
329  if (D.getIdentifier()) {
330    // Add the template parameter into the current scope.
331    S->AddDecl(DeclPtrTy::make(Param));
332    IdResolver.AddDecl(Param);
333  }
334  return DeclPtrTy::make(Param);
335}
336
337/// \brief Adds a default argument to the given non-type template
338/// parameter.
339void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
340                                                SourceLocation EqualLoc,
341                                                ExprArg DefaultE) {
342  NonTypeTemplateParmDecl *TemplateParm
343    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
344  Expr *Default = static_cast<Expr *>(DefaultE.get());
345
346  // C++ [temp.param]p14:
347  //   A template-parameter shall not be used in its own default argument.
348  // FIXME: Implement this check! Needs a recursive walk over the types.
349
350  // Check the well-formedness of the default template argument.
351  TemplateArgument Converted;
352  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
353                            Converted)) {
354    TemplateParm->setInvalidDecl();
355    return;
356  }
357
358  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
359}
360
361
362/// ActOnTemplateTemplateParameter - Called when a C++ template template
363/// parameter (e.g. T in template <template <typename> class T> class array)
364/// has been parsed. S is the current scope.
365Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
366                                                     SourceLocation TmpLoc,
367                                                     TemplateParamsTy *Params,
368                                                     IdentifierInfo *Name,
369                                                     SourceLocation NameLoc,
370                                                     unsigned Depth,
371                                                     unsigned Position)
372{
373  assert(S->isTemplateParamScope() &&
374         "Template template parameter not in template parameter scope!");
375
376  // Construct the parameter object.
377  TemplateTemplateParmDecl *Param =
378    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
379                                     Position, Name,
380                                     (TemplateParameterList*)Params);
381
382  // Make sure the parameter is valid.
383  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
384  // do anything yet. However, if the template parameter list or (eventual)
385  // default value is ever invalidated, that will propagate here.
386  bool Invalid = false;
387  if (Invalid) {
388    Param->setInvalidDecl();
389  }
390
391  // If the tt-param has a name, then link the identifier into the scope
392  // and lookup mechanisms.
393  if (Name) {
394    S->AddDecl(DeclPtrTy::make(Param));
395    IdResolver.AddDecl(Param);
396  }
397
398  return DeclPtrTy::make(Param);
399}
400
401/// \brief Adds a default argument to the given template template
402/// parameter.
403void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
404                                                 SourceLocation EqualLoc,
405                                                 ExprArg DefaultE) {
406  TemplateTemplateParmDecl *TemplateParm
407    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
408
409  // Since a template-template parameter's default argument is an
410  // id-expression, it must be a DeclRefExpr.
411  DeclRefExpr *Default
412    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
413
414  // C++ [temp.param]p14:
415  //   A template-parameter shall not be used in its own default argument.
416  // FIXME: Implement this check! Needs a recursive walk over the types.
417
418  // Check the well-formedness of the template argument.
419  if (!isa<TemplateDecl>(Default->getDecl())) {
420    Diag(Default->getSourceRange().getBegin(),
421         diag::err_template_arg_must_be_template)
422      << Default->getSourceRange();
423    TemplateParm->setInvalidDecl();
424    return;
425  }
426  if (CheckTemplateArgument(TemplateParm, Default)) {
427    TemplateParm->setInvalidDecl();
428    return;
429  }
430
431  DefaultE.release();
432  TemplateParm->setDefaultArgument(Default);
433}
434
435/// ActOnTemplateParameterList - Builds a TemplateParameterList that
436/// contains the template parameters in Params/NumParams.
437Sema::TemplateParamsTy *
438Sema::ActOnTemplateParameterList(unsigned Depth,
439                                 SourceLocation ExportLoc,
440                                 SourceLocation TemplateLoc,
441                                 SourceLocation LAngleLoc,
442                                 DeclPtrTy *Params, unsigned NumParams,
443                                 SourceLocation RAngleLoc) {
444  if (ExportLoc.isValid())
445    Diag(ExportLoc, diag::note_template_export_unsupported);
446
447  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
448                                       (Decl**)Params, NumParams, RAngleLoc);
449}
450
451Sema::DeclResult
452Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
453                         SourceLocation KWLoc, const CXXScopeSpec &SS,
454                         IdentifierInfo *Name, SourceLocation NameLoc,
455                         AttributeList *Attr,
456                         TemplateParameterList *TemplateParams,
457                         AccessSpecifier AS) {
458  assert(TemplateParams && TemplateParams->size() > 0 &&
459         "No template parameters");
460  assert(TUK != TUK_Reference && "Can only declare or define class templates");
461  bool Invalid = false;
462
463  // Check that we can declare a template here.
464  if (CheckTemplateDeclScope(S, TemplateParams))
465    return true;
466
467  TagDecl::TagKind Kind;
468  switch (TagSpec) {
469  default: assert(0 && "Unknown tag type!");
470  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
471  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
472  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
473  }
474
475  // There is no such thing as an unnamed class template.
476  if (!Name) {
477    Diag(KWLoc, diag::err_template_unnamed_class);
478    return true;
479  }
480
481  // Find any previous declaration with this name.
482  DeclContext *SemanticContext;
483  LookupResult Previous;
484  if (SS.isNotEmpty() && !SS.isInvalid()) {
485    SemanticContext = computeDeclContext(SS, true);
486    if (!SemanticContext) {
487      // FIXME: Produce a reasonable diagnostic here
488      return true;
489    }
490
491    Previous = LookupQualifiedName(SemanticContext, Name, LookupOrdinaryName,
492                                   true);
493  } else {
494    SemanticContext = CurContext;
495    Previous = LookupName(S, Name, LookupOrdinaryName, true);
496  }
497
498  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
499  NamedDecl *PrevDecl = 0;
500  if (Previous.begin() != Previous.end())
501    PrevDecl = *Previous.begin();
502
503  if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
504    PrevDecl = 0;
505
506  // If there is a previous declaration with the same name, check
507  // whether this is a valid redeclaration.
508  ClassTemplateDecl *PrevClassTemplate
509    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
510  if (PrevClassTemplate) {
511    // Ensure that the template parameter lists are compatible.
512    if (!TemplateParameterListsAreEqual(TemplateParams,
513                                   PrevClassTemplate->getTemplateParameters(),
514                                        /*Complain=*/true))
515      return true;
516
517    // C++ [temp.class]p4:
518    //   In a redeclaration, partial specialization, explicit
519    //   specialization or explicit instantiation of a class template,
520    //   the class-key shall agree in kind with the original class
521    //   template declaration (7.1.5.3).
522    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
523    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
524      Diag(KWLoc, diag::err_use_with_wrong_tag)
525        << Name
526        << CodeModificationHint::CreateReplacement(KWLoc,
527                            PrevRecordDecl->getKindName());
528      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
529      Kind = PrevRecordDecl->getTagKind();
530    }
531
532    // Check for redefinition of this class template.
533    if (TUK == TUK_Definition) {
534      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
535        Diag(NameLoc, diag::err_redefinition) << Name;
536        Diag(Def->getLocation(), diag::note_previous_definition);
537        // FIXME: Would it make sense to try to "forget" the previous
538        // definition, as part of error recovery?
539        return true;
540      }
541    }
542  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
543    // Maybe we will complain about the shadowed template parameter.
544    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
545    // Just pretend that we didn't see the previous declaration.
546    PrevDecl = 0;
547  } else if (PrevDecl) {
548    // C++ [temp]p5:
549    //   A class template shall not have the same name as any other
550    //   template, class, function, object, enumeration, enumerator,
551    //   namespace, or type in the same scope (3.3), except as specified
552    //   in (14.5.4).
553    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
554    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
555    return true;
556  }
557
558  // Check the template parameter list of this declaration, possibly
559  // merging in the template parameter list from the previous class
560  // template declaration.
561  if (CheckTemplateParameterList(TemplateParams,
562            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
563    Invalid = true;
564
565  // FIXME: If we had a scope specifier, we better have a previous template
566  // declaration!
567
568  CXXRecordDecl *NewClass =
569    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
570                          PrevClassTemplate?
571                            PrevClassTemplate->getTemplatedDecl() : 0,
572                          /*DelayTypeCreation=*/true);
573
574  ClassTemplateDecl *NewTemplate
575    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
576                                DeclarationName(Name), TemplateParams,
577                                NewClass, PrevClassTemplate);
578  NewClass->setDescribedClassTemplate(NewTemplate);
579
580  // Build the type for the class template declaration now.
581  QualType T =
582    Context.getTypeDeclType(NewClass,
583                            PrevClassTemplate?
584                              PrevClassTemplate->getTemplatedDecl() : 0);
585  assert(T->isDependentType() && "Class template type is not dependent?");
586  (void)T;
587
588  // Set the access specifier.
589  SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
590
591  // Set the lexical context of these templates
592  NewClass->setLexicalDeclContext(CurContext);
593  NewTemplate->setLexicalDeclContext(CurContext);
594
595  if (TUK == TUK_Definition)
596    NewClass->startDefinition();
597
598  if (Attr)
599    ProcessDeclAttributeList(S, NewClass, Attr);
600
601  PushOnScopeChains(NewTemplate, S);
602
603  if (Invalid) {
604    NewTemplate->setInvalidDecl();
605    NewClass->setInvalidDecl();
606  }
607  return DeclPtrTy::make(NewTemplate);
608}
609
610/// \brief Checks the validity of a template parameter list, possibly
611/// considering the template parameter list from a previous
612/// declaration.
613///
614/// If an "old" template parameter list is provided, it must be
615/// equivalent (per TemplateParameterListsAreEqual) to the "new"
616/// template parameter list.
617///
618/// \param NewParams Template parameter list for a new template
619/// declaration. This template parameter list will be updated with any
620/// default arguments that are carried through from the previous
621/// template parameter list.
622///
623/// \param OldParams If provided, template parameter list from a
624/// previous declaration of the same template. Default template
625/// arguments will be merged from the old template parameter list to
626/// the new template parameter list.
627///
628/// \returns true if an error occurred, false otherwise.
629bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
630                                      TemplateParameterList *OldParams) {
631  bool Invalid = false;
632
633  // C++ [temp.param]p10:
634  //   The set of default template-arguments available for use with a
635  //   template declaration or definition is obtained by merging the
636  //   default arguments from the definition (if in scope) and all
637  //   declarations in scope in the same way default function
638  //   arguments are (8.3.6).
639  bool SawDefaultArgument = false;
640  SourceLocation PreviousDefaultArgLoc;
641
642  bool SawParameterPack = false;
643  SourceLocation ParameterPackLoc;
644
645  // Dummy initialization to avoid warnings.
646  TemplateParameterList::iterator OldParam = NewParams->end();
647  if (OldParams)
648    OldParam = OldParams->begin();
649
650  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
651                                    NewParamEnd = NewParams->end();
652       NewParam != NewParamEnd; ++NewParam) {
653    // Variables used to diagnose redundant default arguments
654    bool RedundantDefaultArg = false;
655    SourceLocation OldDefaultLoc;
656    SourceLocation NewDefaultLoc;
657
658    // Variables used to diagnose missing default arguments
659    bool MissingDefaultArg = false;
660
661    // C++0x [temp.param]p11:
662    // If a template parameter of a class template is a template parameter pack,
663    // it must be the last template parameter.
664    if (SawParameterPack) {
665      Diag(ParameterPackLoc,
666           diag::err_template_param_pack_must_be_last_template_parameter);
667      Invalid = true;
668    }
669
670    // Merge default arguments for template type parameters.
671    if (TemplateTypeParmDecl *NewTypeParm
672          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
673      TemplateTypeParmDecl *OldTypeParm
674          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
675
676      if (NewTypeParm->isParameterPack()) {
677        assert(!NewTypeParm->hasDefaultArgument() &&
678               "Parameter packs can't have a default argument!");
679        SawParameterPack = true;
680        ParameterPackLoc = NewTypeParm->getLocation();
681      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
682          NewTypeParm->hasDefaultArgument()) {
683        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
684        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
685        SawDefaultArgument = true;
686        RedundantDefaultArg = true;
687        PreviousDefaultArgLoc = NewDefaultLoc;
688      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
689        // Merge the default argument from the old declaration to the
690        // new declaration.
691        SawDefaultArgument = true;
692        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgument(),
693                                        OldTypeParm->getDefaultArgumentLoc(),
694                                        true);
695        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
696      } else if (NewTypeParm->hasDefaultArgument()) {
697        SawDefaultArgument = true;
698        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
699      } else if (SawDefaultArgument)
700        MissingDefaultArg = true;
701    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
702               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
703      // Merge default arguments for non-type template parameters
704      NonTypeTemplateParmDecl *OldNonTypeParm
705        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
706      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
707          NewNonTypeParm->hasDefaultArgument()) {
708        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
709        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
710        SawDefaultArgument = true;
711        RedundantDefaultArg = true;
712        PreviousDefaultArgLoc = NewDefaultLoc;
713      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
714        // Merge the default argument from the old declaration to the
715        // new declaration.
716        SawDefaultArgument = true;
717        // FIXME: We need to create a new kind of "default argument"
718        // expression that points to a previous template template
719        // parameter.
720        NewNonTypeParm->setDefaultArgument(
721                                        OldNonTypeParm->getDefaultArgument());
722        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
723      } else if (NewNonTypeParm->hasDefaultArgument()) {
724        SawDefaultArgument = true;
725        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
726      } else if (SawDefaultArgument)
727        MissingDefaultArg = true;
728    } else {
729    // Merge default arguments for template template parameters
730      TemplateTemplateParmDecl *NewTemplateParm
731        = cast<TemplateTemplateParmDecl>(*NewParam);
732      TemplateTemplateParmDecl *OldTemplateParm
733        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
734      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
735          NewTemplateParm->hasDefaultArgument()) {
736        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
737        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
738        SawDefaultArgument = true;
739        RedundantDefaultArg = true;
740        PreviousDefaultArgLoc = NewDefaultLoc;
741      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
742        // Merge the default argument from the old declaration to the
743        // new declaration.
744        SawDefaultArgument = true;
745        // FIXME: We need to create a new kind of "default argument" expression
746        // that points to a previous template template parameter.
747        NewTemplateParm->setDefaultArgument(
748                                        OldTemplateParm->getDefaultArgument());
749        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
750      } else if (NewTemplateParm->hasDefaultArgument()) {
751        SawDefaultArgument = true;
752        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
753      } else if (SawDefaultArgument)
754        MissingDefaultArg = true;
755    }
756
757    if (RedundantDefaultArg) {
758      // C++ [temp.param]p12:
759      //   A template-parameter shall not be given default arguments
760      //   by two different declarations in the same scope.
761      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
762      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
763      Invalid = true;
764    } else if (MissingDefaultArg) {
765      // C++ [temp.param]p11:
766      //   If a template-parameter has a default template-argument,
767      //   all subsequent template-parameters shall have a default
768      //   template-argument supplied.
769      Diag((*NewParam)->getLocation(),
770           diag::err_template_param_default_arg_missing);
771      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
772      Invalid = true;
773    }
774
775    // If we have an old template parameter list that we're merging
776    // in, move on to the next parameter.
777    if (OldParams)
778      ++OldParam;
779  }
780
781  return Invalid;
782}
783
784/// \brief Match the given template parameter lists to the given scope
785/// specifier, returning the template parameter list that applies to the
786/// name.
787///
788/// \param DeclStartLoc the start of the declaration that has a scope
789/// specifier or a template parameter list.
790///
791/// \param SS the scope specifier that will be matched to the given template
792/// parameter lists. This scope specifier precedes a qualified name that is
793/// being declared.
794///
795/// \param ParamLists the template parameter lists, from the outermost to the
796/// innermost template parameter lists.
797///
798/// \param NumParamLists the number of template parameter lists in ParamLists.
799///
800/// \returns the template parameter list, if any, that corresponds to the
801/// name that is preceded by the scope specifier @p SS. This template
802/// parameter list may be have template parameters (if we're declaring a
803/// template) or may have no template parameters (if we're declaring a
804/// template specialization), or may be NULL (if we were's declaring isn't
805/// itself a template).
806TemplateParameterList *
807Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
808                                              const CXXScopeSpec &SS,
809                                          TemplateParameterList **ParamLists,
810                                              unsigned NumParamLists) {
811  // FIXME: This routine will need a lot more testing once we have support for
812  // member templates.
813
814  // Find the template-ids that occur within the nested-name-specifier. These
815  // template-ids will match up with the template parameter lists.
816  llvm::SmallVector<const TemplateSpecializationType *, 4>
817    TemplateIdsInSpecifier;
818  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
819       NNS; NNS = NNS->getPrefix()) {
820    if (const TemplateSpecializationType *SpecType
821          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
822      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
823      if (!Template)
824        continue; // FIXME: should this be an error? probably...
825
826      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
827        ClassTemplateSpecializationDecl *SpecDecl
828          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
829        // If the nested name specifier refers to an explicit specialization,
830        // we don't need a template<> header.
831        // FIXME: revisit this approach once we cope with specialization
832        // properly.
833        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
834          continue;
835      }
836
837      TemplateIdsInSpecifier.push_back(SpecType);
838    }
839  }
840
841  // Reverse the list of template-ids in the scope specifier, so that we can
842  // more easily match up the template-ids and the template parameter lists.
843  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
844
845  SourceLocation FirstTemplateLoc = DeclStartLoc;
846  if (NumParamLists)
847    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
848
849  // Match the template-ids found in the specifier to the template parameter
850  // lists.
851  unsigned Idx = 0;
852  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
853       Idx != NumTemplateIds; ++Idx) {
854    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
855    bool DependentTemplateId = TemplateId->isDependentType();
856    if (Idx >= NumParamLists) {
857      // We have a template-id without a corresponding template parameter
858      // list.
859      if (DependentTemplateId) {
860        // FIXME: the location information here isn't great.
861        Diag(SS.getRange().getBegin(),
862             diag::err_template_spec_needs_template_parameters)
863          << TemplateId
864          << SS.getRange();
865      } else {
866        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
867          << SS.getRange()
868          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
869                                                   "template<> ");
870      }
871      return 0;
872    }
873
874    // Check the template parameter list against its corresponding template-id.
875    if (DependentTemplateId) {
876      TemplateDecl *Template
877        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
878
879      if (ClassTemplateDecl *ClassTemplate
880            = dyn_cast<ClassTemplateDecl>(Template)) {
881        TemplateParameterList *ExpectedTemplateParams = 0;
882        // Is this template-id naming the primary template?
883        if (Context.hasSameType(TemplateId,
884                             ClassTemplate->getInjectedClassNameType(Context)))
885          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
886        // ... or a partial specialization?
887        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
888                   = ClassTemplate->findPartialSpecialization(TemplateId))
889          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
890
891        if (ExpectedTemplateParams)
892          TemplateParameterListsAreEqual(ParamLists[Idx],
893                                         ExpectedTemplateParams,
894                                         true);
895      }
896    } else if (ParamLists[Idx]->size() > 0)
897      Diag(ParamLists[Idx]->getTemplateLoc(),
898           diag::err_template_param_list_matches_nontemplate)
899        << TemplateId
900        << ParamLists[Idx]->getSourceRange();
901  }
902
903  // If there were at least as many template-ids as there were template
904  // parameter lists, then there are no template parameter lists remaining for
905  // the declaration itself.
906  if (Idx >= NumParamLists)
907    return 0;
908
909  // If there were too many template parameter lists, complain about that now.
910  if (Idx != NumParamLists - 1) {
911    while (Idx < NumParamLists - 1) {
912      Diag(ParamLists[Idx]->getTemplateLoc(),
913           diag::err_template_spec_extra_headers)
914        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
915                       ParamLists[Idx]->getRAngleLoc());
916      ++Idx;
917    }
918  }
919
920  // Return the last template parameter list, which corresponds to the
921  // entity being declared.
922  return ParamLists[NumParamLists - 1];
923}
924
925/// \brief Translates template arguments as provided by the parser
926/// into template arguments used by semantic analysis.
927static void
928translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
929                           SourceLocation *TemplateArgLocs,
930                     llvm::SmallVector<TemplateArgument, 16> &TemplateArgs) {
931  TemplateArgs.reserve(TemplateArgsIn.size());
932
933  void **Args = TemplateArgsIn.getArgs();
934  bool *ArgIsType = TemplateArgsIn.getArgIsType();
935  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
936    TemplateArgs.push_back(
937      ArgIsType[Arg]? TemplateArgument(TemplateArgLocs[Arg],
938                                       //FIXME: Preserve type source info.
939                                       Sema::GetTypeFromParser(Args[Arg]))
940                    : TemplateArgument(reinterpret_cast<Expr *>(Args[Arg])));
941  }
942}
943
944QualType Sema::CheckTemplateIdType(TemplateName Name,
945                                   SourceLocation TemplateLoc,
946                                   SourceLocation LAngleLoc,
947                                   const TemplateArgument *TemplateArgs,
948                                   unsigned NumTemplateArgs,
949                                   SourceLocation RAngleLoc) {
950  TemplateDecl *Template = Name.getAsTemplateDecl();
951  if (!Template) {
952    // The template name does not resolve to a template, so we just
953    // build a dependent template-id type.
954    return Context.getTemplateSpecializationType(Name, TemplateArgs,
955                                                 NumTemplateArgs);
956  }
957
958  // Check that the template argument list is well-formed for this
959  // template.
960  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
961                                        NumTemplateArgs);
962  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
963                                TemplateArgs, NumTemplateArgs, RAngleLoc,
964                                false, Converted))
965    return QualType();
966
967  assert((Converted.structuredSize() ==
968            Template->getTemplateParameters()->size()) &&
969         "Converted template argument list is too short!");
970
971  QualType CanonType;
972
973  if (TemplateSpecializationType::anyDependentTemplateArguments(
974                                                      TemplateArgs,
975                                                      NumTemplateArgs)) {
976    // This class template specialization is a dependent
977    // type. Therefore, its canonical type is another class template
978    // specialization type that contains all of the converted
979    // arguments in canonical form. This ensures that, e.g., A<T> and
980    // A<T, T> have identical types when A is declared as:
981    //
982    //   template<typename T, typename U = T> struct A;
983    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
984    CanonType = Context.getTemplateSpecializationType(CanonName,
985                                                   Converted.getFlatArguments(),
986                                                   Converted.flatSize());
987
988    // FIXME: CanonType is not actually the canonical type, and unfortunately
989    // it is a TemplateTypeSpecializationType that we will never use again.
990    // In the future, we need to teach getTemplateSpecializationType to only
991    // build the canonical type and return that to us.
992    CanonType = Context.getCanonicalType(CanonType);
993  } else if (ClassTemplateDecl *ClassTemplate
994               = dyn_cast<ClassTemplateDecl>(Template)) {
995    // Find the class template specialization declaration that
996    // corresponds to these arguments.
997    llvm::FoldingSetNodeID ID;
998    ClassTemplateSpecializationDecl::Profile(ID,
999                                             Converted.getFlatArguments(),
1000                                             Converted.flatSize(),
1001                                             Context);
1002    void *InsertPos = 0;
1003    ClassTemplateSpecializationDecl *Decl
1004      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1005    if (!Decl) {
1006      // This is the first time we have referenced this class template
1007      // specialization. Create the canonical declaration and add it to
1008      // the set of specializations.
1009      Decl = ClassTemplateSpecializationDecl::Create(Context,
1010                                    ClassTemplate->getDeclContext(),
1011                                    TemplateLoc,
1012                                    ClassTemplate,
1013                                    Converted, 0);
1014      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1015      Decl->setLexicalDeclContext(CurContext);
1016    }
1017
1018    CanonType = Context.getTypeDeclType(Decl);
1019  }
1020
1021  // Build the fully-sugared type for this class template
1022  // specialization, which refers back to the class template
1023  // specialization we created or found.
1024  //FIXME: Preserve type source info.
1025  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1026                                               NumTemplateArgs, CanonType);
1027}
1028
1029Action::TypeResult
1030Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1031                          SourceLocation LAngleLoc,
1032                          ASTTemplateArgsPtr TemplateArgsIn,
1033                          SourceLocation *TemplateArgLocs,
1034                          SourceLocation RAngleLoc) {
1035  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1036
1037  // Translate the parser's template argument list in our AST format.
1038  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1039  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1040
1041  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1042                                        TemplateArgs.data(),
1043                                        TemplateArgs.size(),
1044                                        RAngleLoc);
1045  TemplateArgsIn.release();
1046
1047  if (Result.isNull())
1048    return true;
1049
1050  return Result.getAsOpaquePtr();
1051}
1052
1053Sema::OwningExprResult Sema::BuildTemplateIdExpr(TemplateName Template,
1054                                                 SourceLocation TemplateNameLoc,
1055                                                 SourceLocation LAngleLoc,
1056                                           const TemplateArgument *TemplateArgs,
1057                                                 unsigned NumTemplateArgs,
1058                                                 SourceLocation RAngleLoc) {
1059  // FIXME: Can we do any checking at this point? I guess we could check the
1060  // template arguments that we have against the template name, if the template
1061  // name refers to a single template. That's not a terribly common case,
1062  // though.
1063  return Owned(TemplateIdRefExpr::Create(Context,
1064                                         /*FIXME: New type?*/Context.OverloadTy,
1065                                         /*FIXME: Necessary?*/0,
1066                                         /*FIXME: Necessary?*/SourceRange(),
1067                                         Template, TemplateNameLoc, LAngleLoc,
1068                                         TemplateArgs,
1069                                         NumTemplateArgs, RAngleLoc));
1070}
1071
1072Sema::OwningExprResult Sema::ActOnTemplateIdExpr(TemplateTy TemplateD,
1073                                                 SourceLocation TemplateNameLoc,
1074                                                 SourceLocation LAngleLoc,
1075                                              ASTTemplateArgsPtr TemplateArgsIn,
1076                                                SourceLocation *TemplateArgLocs,
1077                                                 SourceLocation RAngleLoc) {
1078  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1079
1080  // Translate the parser's template argument list in our AST format.
1081  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
1082  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
1083  TemplateArgsIn.release();
1084
1085  return BuildTemplateIdExpr(Template, TemplateNameLoc, LAngleLoc,
1086                             TemplateArgs.data(), TemplateArgs.size(),
1087                             RAngleLoc);
1088}
1089
1090/// \brief Form a dependent template name.
1091///
1092/// This action forms a dependent template name given the template
1093/// name and its (presumably dependent) scope specifier. For
1094/// example, given "MetaFun::template apply", the scope specifier \p
1095/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1096/// of the "template" keyword, and "apply" is the \p Name.
1097Sema::TemplateTy
1098Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1099                                 const IdentifierInfo &Name,
1100                                 SourceLocation NameLoc,
1101                                 const CXXScopeSpec &SS) {
1102  if (!SS.isSet() || SS.isInvalid())
1103    return TemplateTy();
1104
1105  NestedNameSpecifier *Qualifier
1106    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1107
1108  // FIXME: member of the current instantiation
1109
1110  if (!Qualifier->isDependent()) {
1111    // C++0x [temp.names]p5:
1112    //   If a name prefixed by the keyword template is not the name of
1113    //   a template, the program is ill-formed. [Note: the keyword
1114    //   template may not be applied to non-template members of class
1115    //   templates. -end note ] [ Note: as is the case with the
1116    //   typename prefix, the template prefix is allowed in cases
1117    //   where it is not strictly necessary; i.e., when the
1118    //   nested-name-specifier or the expression on the left of the ->
1119    //   or . is not dependent on a template-parameter, or the use
1120    //   does not appear in the scope of a template. -end note]
1121    //
1122    // Note: C++03 was more strict here, because it banned the use of
1123    // the "template" keyword prior to a template-name that was not a
1124    // dependent name. C++ DR468 relaxed this requirement (the
1125    // "template" keyword is now permitted). We follow the C++0x
1126    // rules, even in C++03 mode, retroactively applying the DR.
1127    TemplateTy Template;
1128    TemplateNameKind TNK = isTemplateName(Name, 0, &SS, false, Template);
1129    if (TNK == TNK_Non_template) {
1130      Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1131        << &Name;
1132      return TemplateTy();
1133    }
1134
1135    return Template;
1136  }
1137
1138  return TemplateTy::make(Context.getDependentTemplateName(Qualifier, &Name));
1139}
1140
1141bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1142                                     const TemplateArgument &Arg,
1143                                     TemplateArgumentListBuilder &Converted) {
1144  // Check template type parameter.
1145  if (Arg.getKind() != TemplateArgument::Type) {
1146    // C++ [temp.arg.type]p1:
1147    //   A template-argument for a template-parameter which is a
1148    //   type shall be a type-id.
1149
1150    // We have a template type parameter but the template argument
1151    // is not a type.
1152    Diag(Arg.getLocation(), diag::err_template_arg_must_be_type);
1153    Diag(Param->getLocation(), diag::note_template_param_here);
1154
1155    return true;
1156  }
1157
1158  if (CheckTemplateArgument(Param, Arg.getAsType(), Arg.getLocation()))
1159    return true;
1160
1161  // Add the converted template type argument.
1162  Converted.Append(
1163                 TemplateArgument(Arg.getLocation(),
1164                                  Context.getCanonicalType(Arg.getAsType())));
1165  return false;
1166}
1167
1168/// \brief Check that the given template argument list is well-formed
1169/// for specializing the given template.
1170bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1171                                     SourceLocation TemplateLoc,
1172                                     SourceLocation LAngleLoc,
1173                                     const TemplateArgument *TemplateArgs,
1174                                     unsigned NumTemplateArgs,
1175                                     SourceLocation RAngleLoc,
1176                                     bool PartialTemplateArgs,
1177                                     TemplateArgumentListBuilder &Converted) {
1178  TemplateParameterList *Params = Template->getTemplateParameters();
1179  unsigned NumParams = Params->size();
1180  unsigned NumArgs = NumTemplateArgs;
1181  bool Invalid = false;
1182
1183  bool HasParameterPack =
1184    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1185
1186  if ((NumArgs > NumParams && !HasParameterPack) ||
1187      (NumArgs < Params->getMinRequiredArguments() &&
1188       !PartialTemplateArgs)) {
1189    // FIXME: point at either the first arg beyond what we can handle,
1190    // or the '>', depending on whether we have too many or too few
1191    // arguments.
1192    SourceRange Range;
1193    if (NumArgs > NumParams)
1194      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1195    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1196      << (NumArgs > NumParams)
1197      << (isa<ClassTemplateDecl>(Template)? 0 :
1198          isa<FunctionTemplateDecl>(Template)? 1 :
1199          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1200      << Template << Range;
1201    Diag(Template->getLocation(), diag::note_template_decl_here)
1202      << Params->getSourceRange();
1203    Invalid = true;
1204  }
1205
1206  // C++ [temp.arg]p1:
1207  //   [...] The type and form of each template-argument specified in
1208  //   a template-id shall match the type and form specified for the
1209  //   corresponding parameter declared by the template in its
1210  //   template-parameter-list.
1211  unsigned ArgIdx = 0;
1212  for (TemplateParameterList::iterator Param = Params->begin(),
1213                                       ParamEnd = Params->end();
1214       Param != ParamEnd; ++Param, ++ArgIdx) {
1215    if (ArgIdx > NumArgs && PartialTemplateArgs)
1216      break;
1217
1218    // Decode the template argument
1219    TemplateArgument Arg;
1220    if (ArgIdx >= NumArgs) {
1221      // Retrieve the default template argument from the template
1222      // parameter.
1223      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1224        if (TTP->isParameterPack()) {
1225          // We have an empty argument pack.
1226          Converted.BeginPack();
1227          Converted.EndPack();
1228          break;
1229        }
1230
1231        if (!TTP->hasDefaultArgument())
1232          break;
1233
1234        QualType ArgType = TTP->getDefaultArgument();
1235
1236        // If the argument type is dependent, instantiate it now based
1237        // on the previously-computed template arguments.
1238        if (ArgType->isDependentType()) {
1239          InstantiatingTemplate Inst(*this, TemplateLoc,
1240                                     Template, Converted.getFlatArguments(),
1241                                     Converted.flatSize(),
1242                                     SourceRange(TemplateLoc, RAngleLoc));
1243
1244          TemplateArgumentList TemplateArgs(Context, Converted,
1245                                            /*TakeArgs=*/false);
1246          ArgType = SubstType(ArgType,
1247                              MultiLevelTemplateArgumentList(TemplateArgs),
1248                              TTP->getDefaultArgumentLoc(),
1249                              TTP->getDeclName());
1250        }
1251
1252        if (ArgType.isNull())
1253          return true;
1254
1255        Arg = TemplateArgument(TTP->getLocation(), ArgType);
1256      } else if (NonTypeTemplateParmDecl *NTTP
1257                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1258        if (!NTTP->hasDefaultArgument())
1259          break;
1260
1261        InstantiatingTemplate Inst(*this, TemplateLoc,
1262                                   Template, Converted.getFlatArguments(),
1263                                   Converted.flatSize(),
1264                                   SourceRange(TemplateLoc, RAngleLoc));
1265
1266        TemplateArgumentList TemplateArgs(Context, Converted,
1267                                          /*TakeArgs=*/false);
1268
1269        Sema::OwningExprResult E
1270          = SubstExpr(NTTP->getDefaultArgument(),
1271                      MultiLevelTemplateArgumentList(TemplateArgs));
1272        if (E.isInvalid())
1273          return true;
1274
1275        Arg = TemplateArgument(E.takeAs<Expr>());
1276      } else {
1277        TemplateTemplateParmDecl *TempParm
1278          = cast<TemplateTemplateParmDecl>(*Param);
1279
1280        if (!TempParm->hasDefaultArgument())
1281          break;
1282
1283        // FIXME: Subst default argument
1284        Arg = TemplateArgument(TempParm->getDefaultArgument());
1285      }
1286    } else {
1287      // Retrieve the template argument produced by the user.
1288      Arg = TemplateArgs[ArgIdx];
1289    }
1290
1291
1292    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1293      if (TTP->isParameterPack()) {
1294        Converted.BeginPack();
1295        // Check all the remaining arguments (if any).
1296        for (; ArgIdx < NumArgs; ++ArgIdx) {
1297          if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
1298            Invalid = true;
1299        }
1300
1301        Converted.EndPack();
1302      } else {
1303        if (CheckTemplateTypeArgument(TTP, Arg, Converted))
1304          Invalid = true;
1305      }
1306    } else if (NonTypeTemplateParmDecl *NTTP
1307                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1308      // Check non-type template parameters.
1309
1310      // Do substitution on the type of the non-type template parameter
1311      // with the template arguments we've seen thus far.
1312      QualType NTTPType = NTTP->getType();
1313      if (NTTPType->isDependentType()) {
1314        // Do substitution on the type of the non-type template parameter.
1315        InstantiatingTemplate Inst(*this, TemplateLoc,
1316                                   Template, Converted.getFlatArguments(),
1317                                   Converted.flatSize(),
1318                                   SourceRange(TemplateLoc, RAngleLoc));
1319
1320        TemplateArgumentList TemplateArgs(Context, Converted,
1321                                          /*TakeArgs=*/false);
1322        NTTPType = SubstType(NTTPType, TemplateArgs,
1323                             NTTP->getLocation(),
1324                             NTTP->getDeclName());
1325        // If that worked, check the non-type template parameter type
1326        // for validity.
1327        if (!NTTPType.isNull())
1328          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1329                                                       NTTP->getLocation());
1330        if (NTTPType.isNull()) {
1331          Invalid = true;
1332          break;
1333        }
1334      }
1335
1336      switch (Arg.getKind()) {
1337      case TemplateArgument::Null:
1338        assert(false && "Should never see a NULL template argument here");
1339        break;
1340
1341      case TemplateArgument::Expression: {
1342        Expr *E = Arg.getAsExpr();
1343        TemplateArgument Result;
1344        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1345          Invalid = true;
1346        else
1347          Converted.Append(Result);
1348        break;
1349      }
1350
1351      case TemplateArgument::Declaration:
1352      case TemplateArgument::Integral:
1353        // We've already checked this template argument, so just copy
1354        // it to the list of converted arguments.
1355        Converted.Append(Arg);
1356        break;
1357
1358      case TemplateArgument::Type:
1359        // We have a non-type template parameter but the template
1360        // argument is a type.
1361
1362        // C++ [temp.arg]p2:
1363        //   In a template-argument, an ambiguity between a type-id and
1364        //   an expression is resolved to a type-id, regardless of the
1365        //   form of the corresponding template-parameter.
1366        //
1367        // We warn specifically about this case, since it can be rather
1368        // confusing for users.
1369        if (Arg.getAsType()->isFunctionType())
1370          Diag(Arg.getLocation(), diag::err_template_arg_nontype_ambig)
1371            << Arg.getAsType();
1372        else
1373          Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr);
1374        Diag((*Param)->getLocation(), diag::note_template_param_here);
1375        Invalid = true;
1376        break;
1377
1378      case TemplateArgument::Pack:
1379        assert(0 && "FIXME: Implement!");
1380        break;
1381      }
1382    } else {
1383      // Check template template parameters.
1384      TemplateTemplateParmDecl *TempParm
1385        = cast<TemplateTemplateParmDecl>(*Param);
1386
1387      switch (Arg.getKind()) {
1388      case TemplateArgument::Null:
1389        assert(false && "Should never see a NULL template argument here");
1390        break;
1391
1392      case TemplateArgument::Expression: {
1393        Expr *ArgExpr = Arg.getAsExpr();
1394        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1395            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1396          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1397            Invalid = true;
1398
1399          // Add the converted template argument.
1400          Decl *D
1401            = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl();
1402          Converted.Append(TemplateArgument(Arg.getLocation(), D));
1403          continue;
1404        }
1405      }
1406        // fall through
1407
1408      case TemplateArgument::Type: {
1409        // We have a template template parameter but the template
1410        // argument does not refer to a template.
1411        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1412        Invalid = true;
1413        break;
1414      }
1415
1416      case TemplateArgument::Declaration:
1417        // We've already checked this template argument, so just copy
1418        // it to the list of converted arguments.
1419        Converted.Append(Arg);
1420        break;
1421
1422      case TemplateArgument::Integral:
1423        assert(false && "Integral argument with template template parameter");
1424        break;
1425
1426      case TemplateArgument::Pack:
1427        assert(0 && "FIXME: Implement!");
1428        break;
1429      }
1430    }
1431  }
1432
1433  return Invalid;
1434}
1435
1436/// \brief Check a template argument against its corresponding
1437/// template type parameter.
1438///
1439/// This routine implements the semantics of C++ [temp.arg.type]. It
1440/// returns true if an error occurred, and false otherwise.
1441bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1442                                 QualType Arg, SourceLocation ArgLoc) {
1443  // C++ [temp.arg.type]p2:
1444  //   A local type, a type with no linkage, an unnamed type or a type
1445  //   compounded from any of these types shall not be used as a
1446  //   template-argument for a template type-parameter.
1447  //
1448  // FIXME: Perform the recursive and no-linkage type checks.
1449  const TagType *Tag = 0;
1450  if (const EnumType *EnumT = Arg->getAsEnumType())
1451    Tag = EnumT;
1452  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1453    Tag = RecordT;
1454  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod())
1455    return Diag(ArgLoc, diag::err_template_arg_local_type)
1456      << QualType(Tag, 0);
1457  else if (Tag && !Tag->getDecl()->getDeclName() &&
1458           !Tag->getDecl()->getTypedefForAnonDecl()) {
1459    Diag(ArgLoc, diag::err_template_arg_unnamed_type);
1460    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1461    return true;
1462  }
1463
1464  return false;
1465}
1466
1467/// \brief Checks whether the given template argument is the address
1468/// of an object or function according to C++ [temp.arg.nontype]p1.
1469bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1470                                                          NamedDecl *&Entity) {
1471  bool Invalid = false;
1472
1473  // See through any implicit casts we added to fix the type.
1474  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1475    Arg = Cast->getSubExpr();
1476
1477  // C++0x allows nullptr, and there's no further checking to be done for that.
1478  if (Arg->getType()->isNullPtrType())
1479    return false;
1480
1481  // C++ [temp.arg.nontype]p1:
1482  //
1483  //   A template-argument for a non-type, non-template
1484  //   template-parameter shall be one of: [...]
1485  //
1486  //     -- the address of an object or function with external
1487  //        linkage, including function templates and function
1488  //        template-ids but excluding non-static class members,
1489  //        expressed as & id-expression where the & is optional if
1490  //        the name refers to a function or array, or if the
1491  //        corresponding template-parameter is a reference; or
1492  DeclRefExpr *DRE = 0;
1493
1494  // Ignore (and complain about) any excess parentheses.
1495  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1496    if (!Invalid) {
1497      Diag(Arg->getSourceRange().getBegin(),
1498           diag::err_template_arg_extra_parens)
1499        << Arg->getSourceRange();
1500      Invalid = true;
1501    }
1502
1503    Arg = Parens->getSubExpr();
1504  }
1505
1506  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1507    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1508      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1509  } else
1510    DRE = dyn_cast<DeclRefExpr>(Arg);
1511
1512  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1513    return Diag(Arg->getSourceRange().getBegin(),
1514                diag::err_template_arg_not_object_or_func_form)
1515      << Arg->getSourceRange();
1516
1517  // Cannot refer to non-static data members
1518  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1519    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1520      << Field << Arg->getSourceRange();
1521
1522  // Cannot refer to non-static member functions
1523  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1524    if (!Method->isStatic())
1525      return Diag(Arg->getSourceRange().getBegin(),
1526                  diag::err_template_arg_method)
1527        << Method << Arg->getSourceRange();
1528
1529  // Functions must have external linkage.
1530  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1531    if (Func->getStorageClass() == FunctionDecl::Static) {
1532      Diag(Arg->getSourceRange().getBegin(),
1533           diag::err_template_arg_function_not_extern)
1534        << Func << Arg->getSourceRange();
1535      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1536        << true;
1537      return true;
1538    }
1539
1540    // Okay: we've named a function with external linkage.
1541    Entity = Func;
1542    return Invalid;
1543  }
1544
1545  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1546    if (!Var->hasGlobalStorage()) {
1547      Diag(Arg->getSourceRange().getBegin(),
1548           diag::err_template_arg_object_not_extern)
1549        << Var << Arg->getSourceRange();
1550      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1551        << true;
1552      return true;
1553    }
1554
1555    // Okay: we've named an object with external linkage
1556    Entity = Var;
1557    return Invalid;
1558  }
1559
1560  // We found something else, but we don't know specifically what it is.
1561  Diag(Arg->getSourceRange().getBegin(),
1562       diag::err_template_arg_not_object_or_func)
1563      << Arg->getSourceRange();
1564  Diag(DRE->getDecl()->getLocation(),
1565       diag::note_template_arg_refers_here);
1566  return true;
1567}
1568
1569/// \brief Checks whether the given template argument is a pointer to
1570/// member constant according to C++ [temp.arg.nontype]p1.
1571bool
1572Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1573  bool Invalid = false;
1574
1575  // See through any implicit casts we added to fix the type.
1576  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1577    Arg = Cast->getSubExpr();
1578
1579  // C++0x allows nullptr, and there's no further checking to be done for that.
1580  if (Arg->getType()->isNullPtrType())
1581    return false;
1582
1583  // C++ [temp.arg.nontype]p1:
1584  //
1585  //   A template-argument for a non-type, non-template
1586  //   template-parameter shall be one of: [...]
1587  //
1588  //     -- a pointer to member expressed as described in 5.3.1.
1589  QualifiedDeclRefExpr *DRE = 0;
1590
1591  // Ignore (and complain about) any excess parentheses.
1592  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1593    if (!Invalid) {
1594      Diag(Arg->getSourceRange().getBegin(),
1595           diag::err_template_arg_extra_parens)
1596        << Arg->getSourceRange();
1597      Invalid = true;
1598    }
1599
1600    Arg = Parens->getSubExpr();
1601  }
1602
1603  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1604    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1605      DRE = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr());
1606
1607  if (!DRE)
1608    return Diag(Arg->getSourceRange().getBegin(),
1609                diag::err_template_arg_not_pointer_to_member_form)
1610      << Arg->getSourceRange();
1611
1612  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1613    assert((isa<FieldDecl>(DRE->getDecl()) ||
1614            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1615           "Only non-static member pointers can make it here");
1616
1617    // Okay: this is the address of a non-static member, and therefore
1618    // a member pointer constant.
1619    Member = DRE->getDecl();
1620    return Invalid;
1621  }
1622
1623  // We found something else, but we don't know specifically what it is.
1624  Diag(Arg->getSourceRange().getBegin(),
1625       diag::err_template_arg_not_pointer_to_member_form)
1626      << Arg->getSourceRange();
1627  Diag(DRE->getDecl()->getLocation(),
1628       diag::note_template_arg_refers_here);
1629  return true;
1630}
1631
1632/// \brief Check a template argument against its corresponding
1633/// non-type template parameter.
1634///
1635/// This routine implements the semantics of C++ [temp.arg.nontype].
1636/// It returns true if an error occurred, and false otherwise. \p
1637/// InstantiatedParamType is the type of the non-type template
1638/// parameter after it has been instantiated.
1639///
1640/// If no error was detected, Converted receives the converted template argument.
1641bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1642                                 QualType InstantiatedParamType, Expr *&Arg,
1643                                 TemplateArgument &Converted) {
1644  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1645
1646  // If either the parameter has a dependent type or the argument is
1647  // type-dependent, there's nothing we can check now.
1648  // FIXME: Add template argument to Converted!
1649  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1650    // FIXME: Produce a cloned, canonical expression?
1651    Converted = TemplateArgument(Arg);
1652    return false;
1653  }
1654
1655  // C++ [temp.arg.nontype]p5:
1656  //   The following conversions are performed on each expression used
1657  //   as a non-type template-argument. If a non-type
1658  //   template-argument cannot be converted to the type of the
1659  //   corresponding template-parameter then the program is
1660  //   ill-formed.
1661  //
1662  //     -- for a non-type template-parameter of integral or
1663  //        enumeration type, integral promotions (4.5) and integral
1664  //        conversions (4.7) are applied.
1665  QualType ParamType = InstantiatedParamType;
1666  QualType ArgType = Arg->getType();
1667  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1668    // C++ [temp.arg.nontype]p1:
1669    //   A template-argument for a non-type, non-template
1670    //   template-parameter shall be one of:
1671    //
1672    //     -- an integral constant-expression of integral or enumeration
1673    //        type; or
1674    //     -- the name of a non-type template-parameter; or
1675    SourceLocation NonConstantLoc;
1676    llvm::APSInt Value;
1677    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1678      Diag(Arg->getSourceRange().getBegin(),
1679           diag::err_template_arg_not_integral_or_enumeral)
1680        << ArgType << Arg->getSourceRange();
1681      Diag(Param->getLocation(), diag::note_template_param_here);
1682      return true;
1683    } else if (!Arg->isValueDependent() &&
1684               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1685      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1686        << ArgType << Arg->getSourceRange();
1687      return true;
1688    }
1689
1690    // FIXME: We need some way to more easily get the unqualified form
1691    // of the types without going all the way to the
1692    // canonical type.
1693    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1694      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1695    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1696      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1697
1698    // Try to convert the argument to the parameter's type.
1699    if (ParamType == ArgType) {
1700      // Okay: no conversion necessary
1701    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
1702               !ParamType->isEnumeralType()) {
1703      // This is an integral promotion or conversion.
1704      ImpCastExprToType(Arg, ParamType);
1705    } else {
1706      // We can't perform this conversion.
1707      Diag(Arg->getSourceRange().getBegin(),
1708           diag::err_template_arg_not_convertible)
1709        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1710      Diag(Param->getLocation(), diag::note_template_param_here);
1711      return true;
1712    }
1713
1714    QualType IntegerType = Context.getCanonicalType(ParamType);
1715    if (const EnumType *Enum = IntegerType->getAsEnumType())
1716      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
1717
1718    if (!Arg->isValueDependent()) {
1719      // Check that an unsigned parameter does not receive a negative
1720      // value.
1721      if (IntegerType->isUnsignedIntegerType()
1722          && (Value.isSigned() && Value.isNegative())) {
1723        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
1724          << Value.toString(10) << Param->getType()
1725          << Arg->getSourceRange();
1726        Diag(Param->getLocation(), diag::note_template_param_here);
1727        return true;
1728      }
1729
1730      // Check that we don't overflow the template parameter type.
1731      unsigned AllowedBits = Context.getTypeSize(IntegerType);
1732      if (Value.getActiveBits() > AllowedBits) {
1733        Diag(Arg->getSourceRange().getBegin(),
1734             diag::err_template_arg_too_large)
1735          << Value.toString(10) << Param->getType()
1736          << Arg->getSourceRange();
1737        Diag(Param->getLocation(), diag::note_template_param_here);
1738        return true;
1739      }
1740
1741      if (Value.getBitWidth() != AllowedBits)
1742        Value.extOrTrunc(AllowedBits);
1743      Value.setIsSigned(IntegerType->isSignedIntegerType());
1744    }
1745
1746    // Add the value of this argument to the list of converted
1747    // arguments. We use the bitwidth and signedness of the template
1748    // parameter.
1749    if (Arg->isValueDependent()) {
1750      // The argument is value-dependent. Create a new
1751      // TemplateArgument with the converted expression.
1752      Converted = TemplateArgument(Arg);
1753      return false;
1754    }
1755
1756    Converted = TemplateArgument(StartLoc, Value,
1757                                 ParamType->isEnumeralType() ? ParamType
1758                                                             : IntegerType);
1759    return false;
1760  }
1761
1762  // Handle pointer-to-function, reference-to-function, and
1763  // pointer-to-member-function all in (roughly) the same way.
1764  if (// -- For a non-type template-parameter of type pointer to
1765      //    function, only the function-to-pointer conversion (4.3) is
1766      //    applied. If the template-argument represents a set of
1767      //    overloaded functions (or a pointer to such), the matching
1768      //    function is selected from the set (13.4).
1769      // In C++0x, any std::nullptr_t value can be converted.
1770      (ParamType->isPointerType() &&
1771       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
1772      // -- For a non-type template-parameter of type reference to
1773      //    function, no conversions apply. If the template-argument
1774      //    represents a set of overloaded functions, the matching
1775      //    function is selected from the set (13.4).
1776      (ParamType->isReferenceType() &&
1777       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
1778      // -- For a non-type template-parameter of type pointer to
1779      //    member function, no conversions apply. If the
1780      //    template-argument represents a set of overloaded member
1781      //    functions, the matching member function is selected from
1782      //    the set (13.4).
1783      // Again, C++0x allows a std::nullptr_t value.
1784      (ParamType->isMemberPointerType() &&
1785       ParamType->getAs<MemberPointerType>()->getPointeeType()
1786         ->isFunctionType())) {
1787    if (Context.hasSameUnqualifiedType(ArgType,
1788                                       ParamType.getNonReferenceType())) {
1789      // We don't have to do anything: the types already match.
1790    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
1791                 ParamType->isMemberPointerType())) {
1792      ArgType = ParamType;
1793      ImpCastExprToType(Arg, ParamType);
1794    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1795      ArgType = Context.getPointerType(ArgType);
1796      ImpCastExprToType(Arg, ArgType);
1797    } else if (FunctionDecl *Fn
1798                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
1799      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
1800        return true;
1801
1802      FixOverloadedFunctionReference(Arg, Fn);
1803      ArgType = Arg->getType();
1804      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
1805        ArgType = Context.getPointerType(Arg->getType());
1806        ImpCastExprToType(Arg, ArgType);
1807      }
1808    }
1809
1810    if (!Context.hasSameUnqualifiedType(ArgType,
1811                                        ParamType.getNonReferenceType())) {
1812      // We can't perform this conversion.
1813      Diag(Arg->getSourceRange().getBegin(),
1814           diag::err_template_arg_not_convertible)
1815        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1816      Diag(Param->getLocation(), diag::note_template_param_here);
1817      return true;
1818    }
1819
1820    if (ParamType->isMemberPointerType()) {
1821      NamedDecl *Member = 0;
1822      if (CheckTemplateArgumentPointerToMember(Arg, Member))
1823        return true;
1824
1825      if (Member)
1826        Member = cast<NamedDecl>(Member->getCanonicalDecl());
1827      Converted = TemplateArgument(StartLoc, Member);
1828      return false;
1829    }
1830
1831    NamedDecl *Entity = 0;
1832    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1833      return true;
1834
1835    if (Entity)
1836      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1837    Converted = TemplateArgument(StartLoc, Entity);
1838    return false;
1839  }
1840
1841  if (ParamType->isPointerType()) {
1842    //   -- for a non-type template-parameter of type pointer to
1843    //      object, qualification conversions (4.4) and the
1844    //      array-to-pointer conversion (4.2) are applied.
1845    // C++0x also allows a value of std::nullptr_t.
1846    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
1847           "Only object pointers allowed here");
1848
1849    if (ArgType->isNullPtrType()) {
1850      ArgType = ParamType;
1851      ImpCastExprToType(Arg, ParamType);
1852    } else if (ArgType->isArrayType()) {
1853      ArgType = Context.getArrayDecayedType(ArgType);
1854      ImpCastExprToType(Arg, ArgType);
1855    }
1856
1857    if (IsQualificationConversion(ArgType, ParamType)) {
1858      ArgType = ParamType;
1859      ImpCastExprToType(Arg, ParamType);
1860    }
1861
1862    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
1863      // We can't perform this conversion.
1864      Diag(Arg->getSourceRange().getBegin(),
1865           diag::err_template_arg_not_convertible)
1866        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1867      Diag(Param->getLocation(), diag::note_template_param_here);
1868      return true;
1869    }
1870
1871    NamedDecl *Entity = 0;
1872    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1873      return true;
1874
1875    if (Entity)
1876      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1877    Converted = TemplateArgument(StartLoc, Entity);
1878    return false;
1879  }
1880
1881  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
1882    //   -- For a non-type template-parameter of type reference to
1883    //      object, no conversions apply. The type referred to by the
1884    //      reference may be more cv-qualified than the (otherwise
1885    //      identical) type of the template-argument. The
1886    //      template-parameter is bound directly to the
1887    //      template-argument, which must be an lvalue.
1888    assert(ParamRefType->getPointeeType()->isObjectType() &&
1889           "Only object references allowed here");
1890
1891    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
1892      Diag(Arg->getSourceRange().getBegin(),
1893           diag::err_template_arg_no_ref_bind)
1894        << InstantiatedParamType << Arg->getType()
1895        << Arg->getSourceRange();
1896      Diag(Param->getLocation(), diag::note_template_param_here);
1897      return true;
1898    }
1899
1900    unsigned ParamQuals
1901      = Context.getCanonicalType(ParamType).getCVRQualifiers();
1902    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
1903
1904    if ((ParamQuals | ArgQuals) != ParamQuals) {
1905      Diag(Arg->getSourceRange().getBegin(),
1906           diag::err_template_arg_ref_bind_ignores_quals)
1907        << InstantiatedParamType << Arg->getType()
1908        << Arg->getSourceRange();
1909      Diag(Param->getLocation(), diag::note_template_param_here);
1910      return true;
1911    }
1912
1913    NamedDecl *Entity = 0;
1914    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
1915      return true;
1916
1917    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
1918    Converted = TemplateArgument(StartLoc, Entity);
1919    return false;
1920  }
1921
1922  //     -- For a non-type template-parameter of type pointer to data
1923  //        member, qualification conversions (4.4) are applied.
1924  // C++0x allows std::nullptr_t values.
1925  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
1926
1927  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
1928    // Types match exactly: nothing more to do here.
1929  } else if (ArgType->isNullPtrType()) {
1930    ImpCastExprToType(Arg, ParamType);
1931  } else if (IsQualificationConversion(ArgType, ParamType)) {
1932    ImpCastExprToType(Arg, ParamType);
1933  } else {
1934    // We can't perform this conversion.
1935    Diag(Arg->getSourceRange().getBegin(),
1936         diag::err_template_arg_not_convertible)
1937      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
1938    Diag(Param->getLocation(), diag::note_template_param_here);
1939    return true;
1940  }
1941
1942  NamedDecl *Member = 0;
1943  if (CheckTemplateArgumentPointerToMember(Arg, Member))
1944    return true;
1945
1946  if (Member)
1947    Member = cast<NamedDecl>(Member->getCanonicalDecl());
1948  Converted = TemplateArgument(StartLoc, Member);
1949  return false;
1950}
1951
1952/// \brief Check a template argument against its corresponding
1953/// template template parameter.
1954///
1955/// This routine implements the semantics of C++ [temp.arg.template].
1956/// It returns true if an error occurred, and false otherwise.
1957bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
1958                                 DeclRefExpr *Arg) {
1959  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
1960  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
1961
1962  // C++ [temp.arg.template]p1:
1963  //   A template-argument for a template template-parameter shall be
1964  //   the name of a class template, expressed as id-expression. Only
1965  //   primary class templates are considered when matching the
1966  //   template template argument with the corresponding parameter;
1967  //   partial specializations are not considered even if their
1968  //   parameter lists match that of the template template parameter.
1969  //
1970  // Note that we also allow template template parameters here, which
1971  // will happen when we are dealing with, e.g., class template
1972  // partial specializations.
1973  if (!isa<ClassTemplateDecl>(Template) &&
1974      !isa<TemplateTemplateParmDecl>(Template)) {
1975    assert(isa<FunctionTemplateDecl>(Template) &&
1976           "Only function templates are possible here");
1977    Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template);
1978    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
1979      << Template;
1980  }
1981
1982  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
1983                                         Param->getTemplateParameters(),
1984                                         true, true,
1985                                         Arg->getSourceRange().getBegin());
1986}
1987
1988/// \brief Determine whether the given template parameter lists are
1989/// equivalent.
1990///
1991/// \param New  The new template parameter list, typically written in the
1992/// source code as part of a new template declaration.
1993///
1994/// \param Old  The old template parameter list, typically found via
1995/// name lookup of the template declared with this template parameter
1996/// list.
1997///
1998/// \param Complain  If true, this routine will produce a diagnostic if
1999/// the template parameter lists are not equivalent.
2000///
2001/// \param IsTemplateTemplateParm  If true, this routine is being
2002/// called to compare the template parameter lists of a template
2003/// template parameter.
2004///
2005/// \param TemplateArgLoc If this source location is valid, then we
2006/// are actually checking the template parameter list of a template
2007/// argument (New) against the template parameter list of its
2008/// corresponding template template parameter (Old). We produce
2009/// slightly different diagnostics in this scenario.
2010///
2011/// \returns True if the template parameter lists are equal, false
2012/// otherwise.
2013bool
2014Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2015                                     TemplateParameterList *Old,
2016                                     bool Complain,
2017                                     bool IsTemplateTemplateParm,
2018                                     SourceLocation TemplateArgLoc) {
2019  if (Old->size() != New->size()) {
2020    if (Complain) {
2021      unsigned NextDiag = diag::err_template_param_list_different_arity;
2022      if (TemplateArgLoc.isValid()) {
2023        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2024        NextDiag = diag::note_template_param_list_different_arity;
2025      }
2026      Diag(New->getTemplateLoc(), NextDiag)
2027          << (New->size() > Old->size())
2028          << IsTemplateTemplateParm
2029          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2030      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2031        << IsTemplateTemplateParm
2032        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2033    }
2034
2035    return false;
2036  }
2037
2038  for (TemplateParameterList::iterator OldParm = Old->begin(),
2039         OldParmEnd = Old->end(), NewParm = New->begin();
2040       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2041    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2042      if (Complain) {
2043        unsigned NextDiag = diag::err_template_param_different_kind;
2044        if (TemplateArgLoc.isValid()) {
2045          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2046          NextDiag = diag::note_template_param_different_kind;
2047        }
2048        Diag((*NewParm)->getLocation(), NextDiag)
2049        << IsTemplateTemplateParm;
2050        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2051        << IsTemplateTemplateParm;
2052      }
2053      return false;
2054    }
2055
2056    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2057      // Okay; all template type parameters are equivalent (since we
2058      // know we're at the same index).
2059#if 0
2060      // FIXME: Enable this code in debug mode *after* we properly go through
2061      // and "instantiate" the template parameter lists of template template
2062      // parameters. It's only after this instantiation that (1) any dependent
2063      // types within the template parameter list of the template template
2064      // parameter can be checked, and (2) the template type parameter depths
2065      // will match up.
2066      QualType OldParmType
2067        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
2068      QualType NewParmType
2069        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
2070      assert(Context.getCanonicalType(OldParmType) ==
2071             Context.getCanonicalType(NewParmType) &&
2072             "type parameter mismatch?");
2073#endif
2074    } else if (NonTypeTemplateParmDecl *OldNTTP
2075                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2076      // The types of non-type template parameters must agree.
2077      NonTypeTemplateParmDecl *NewNTTP
2078        = cast<NonTypeTemplateParmDecl>(*NewParm);
2079      if (Context.getCanonicalType(OldNTTP->getType()) !=
2080            Context.getCanonicalType(NewNTTP->getType())) {
2081        if (Complain) {
2082          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2083          if (TemplateArgLoc.isValid()) {
2084            Diag(TemplateArgLoc,
2085                 diag::err_template_arg_template_params_mismatch);
2086            NextDiag = diag::note_template_nontype_parm_different_type;
2087          }
2088          Diag(NewNTTP->getLocation(), NextDiag)
2089            << NewNTTP->getType()
2090            << IsTemplateTemplateParm;
2091          Diag(OldNTTP->getLocation(),
2092               diag::note_template_nontype_parm_prev_declaration)
2093            << OldNTTP->getType();
2094        }
2095        return false;
2096      }
2097    } else {
2098      // The template parameter lists of template template
2099      // parameters must agree.
2100      // FIXME: Could we perform a faster "type" comparison here?
2101      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2102             "Only template template parameters handled here");
2103      TemplateTemplateParmDecl *OldTTP
2104        = cast<TemplateTemplateParmDecl>(*OldParm);
2105      TemplateTemplateParmDecl *NewTTP
2106        = cast<TemplateTemplateParmDecl>(*NewParm);
2107      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2108                                          OldTTP->getTemplateParameters(),
2109                                          Complain,
2110                                          /*IsTemplateTemplateParm=*/true,
2111                                          TemplateArgLoc))
2112        return false;
2113    }
2114  }
2115
2116  return true;
2117}
2118
2119/// \brief Check whether a template can be declared within this scope.
2120///
2121/// If the template declaration is valid in this scope, returns
2122/// false. Otherwise, issues a diagnostic and returns true.
2123bool
2124Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2125  // Find the nearest enclosing declaration scope.
2126  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2127         (S->getFlags() & Scope::TemplateParamScope) != 0)
2128    S = S->getParent();
2129
2130  // C++ [temp]p2:
2131  //   A template-declaration can appear only as a namespace scope or
2132  //   class scope declaration.
2133  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2134  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2135      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2136    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2137             << TemplateParams->getSourceRange();
2138
2139  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2140    Ctx = Ctx->getParent();
2141
2142  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2143    return false;
2144
2145  return Diag(TemplateParams->getTemplateLoc(),
2146              diag::err_template_outside_namespace_or_class_scope)
2147    << TemplateParams->getSourceRange();
2148}
2149
2150/// \brief Check whether a class template specialization or explicit
2151/// instantiation in the current context is well-formed.
2152///
2153/// This routine determines whether a class template specialization or
2154/// explicit instantiation can be declared in the current context
2155/// (C++ [temp.expl.spec]p2, C++0x [temp.explicit]p2) and emits
2156/// appropriate diagnostics if there was an error. It returns true if
2157// there was an error that we cannot recover from, and false otherwise.
2158bool
2159Sema::CheckClassTemplateSpecializationScope(ClassTemplateDecl *ClassTemplate,
2160                                   ClassTemplateSpecializationDecl *PrevDecl,
2161                                            SourceLocation TemplateNameLoc,
2162                                            SourceRange ScopeSpecifierRange,
2163                                            bool PartialSpecialization,
2164                                            bool ExplicitInstantiation) {
2165  // C++ [temp.expl.spec]p2:
2166  //   An explicit specialization shall be declared in the namespace
2167  //   of which the template is a member, or, for member templates, in
2168  //   the namespace of which the enclosing class or enclosing class
2169  //   template is a member. An explicit specialization of a member
2170  //   function, member class or static data member of a class
2171  //   template shall be declared in the namespace of which the class
2172  //   template is a member. Such a declaration may also be a
2173  //   definition. If the declaration is not a definition, the
2174  //   specialization may be defined later in the name- space in which
2175  //   the explicit specialization was declared, or in a namespace
2176  //   that encloses the one in which the explicit specialization was
2177  //   declared.
2178  if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2179    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2180    Diag(TemplateNameLoc, diag::err_template_spec_decl_function_scope)
2181      << Kind << ClassTemplate;
2182    return true;
2183  }
2184
2185  DeclContext *DC = CurContext->getEnclosingNamespaceContext();
2186  DeclContext *TemplateContext
2187    = ClassTemplate->getDeclContext()->getEnclosingNamespaceContext();
2188  if ((!PrevDecl || PrevDecl->getSpecializationKind() == TSK_Undeclared) &&
2189      !ExplicitInstantiation) {
2190    // There is no prior declaration of this entity, so this
2191    // specialization must be in the same context as the template
2192    // itself.
2193    if (DC != TemplateContext) {
2194      if (isa<TranslationUnitDecl>(TemplateContext))
2195        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope_global)
2196          << PartialSpecialization
2197          << ClassTemplate << ScopeSpecifierRange;
2198      else if (isa<NamespaceDecl>(TemplateContext))
2199        Diag(TemplateNameLoc, diag::err_template_spec_decl_out_of_scope)
2200          << PartialSpecialization << ClassTemplate
2201          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2202
2203      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2204    }
2205
2206    return false;
2207  }
2208
2209  // We have a previous declaration of this entity. Make sure that
2210  // this redeclaration (or definition) occurs in an enclosing namespace.
2211  if (!CurContext->Encloses(TemplateContext)) {
2212    // FIXME:  In C++98,  we  would like  to  turn these  errors into  warnings,
2213    // dependent on a -Wc++0x flag.
2214    bool SuppressedDiag = false;
2215    int Kind = ExplicitInstantiation? 2 : PartialSpecialization? 1 : 0;
2216    if (isa<TranslationUnitDecl>(TemplateContext)) {
2217      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2218        Diag(TemplateNameLoc, diag::err_template_spec_redecl_global_scope)
2219          << Kind << ClassTemplate << ScopeSpecifierRange;
2220      else
2221        SuppressedDiag = true;
2222    } else if (isa<NamespaceDecl>(TemplateContext)) {
2223      if (!ExplicitInstantiation || getLangOptions().CPlusPlus0x)
2224        Diag(TemplateNameLoc, diag::err_template_spec_redecl_out_of_scope)
2225          << Kind << ClassTemplate
2226          << cast<NamedDecl>(TemplateContext) << ScopeSpecifierRange;
2227      else
2228        SuppressedDiag = true;
2229    }
2230
2231    if (!SuppressedDiag)
2232      Diag(ClassTemplate->getLocation(), diag::note_template_decl_here);
2233  }
2234
2235  return false;
2236}
2237
2238/// \brief Check the non-type template arguments of a class template
2239/// partial specialization according to C++ [temp.class.spec]p9.
2240///
2241/// \param TemplateParams the template parameters of the primary class
2242/// template.
2243///
2244/// \param TemplateArg the template arguments of the class template
2245/// partial specialization.
2246///
2247/// \param MirrorsPrimaryTemplate will be set true if the class
2248/// template partial specialization arguments are identical to the
2249/// implicit template arguments of the primary template. This is not
2250/// necessarily an error (C++0x), and it is left to the caller to diagnose
2251/// this condition when it is an error.
2252///
2253/// \returns true if there was an error, false otherwise.
2254bool Sema::CheckClassTemplatePartialSpecializationArgs(
2255                                        TemplateParameterList *TemplateParams,
2256                             const TemplateArgumentListBuilder &TemplateArgs,
2257                                        bool &MirrorsPrimaryTemplate) {
2258  // FIXME: the interface to this function will have to change to
2259  // accommodate variadic templates.
2260  MirrorsPrimaryTemplate = true;
2261
2262  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2263
2264  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2265    // Determine whether the template argument list of the partial
2266    // specialization is identical to the implicit argument list of
2267    // the primary template. The caller may need to diagnostic this as
2268    // an error per C++ [temp.class.spec]p9b3.
2269    if (MirrorsPrimaryTemplate) {
2270      if (TemplateTypeParmDecl *TTP
2271            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2272        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2273              Context.getCanonicalType(ArgList[I].getAsType()))
2274          MirrorsPrimaryTemplate = false;
2275      } else if (TemplateTemplateParmDecl *TTP
2276                   = dyn_cast<TemplateTemplateParmDecl>(
2277                                                 TemplateParams->getParam(I))) {
2278        // FIXME: We should settle on either Declaration storage or
2279        // Expression storage for template template parameters.
2280        TemplateTemplateParmDecl *ArgDecl
2281          = dyn_cast_or_null<TemplateTemplateParmDecl>(
2282                                                  ArgList[I].getAsDecl());
2283        if (!ArgDecl)
2284          if (DeclRefExpr *DRE
2285                = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr()))
2286            ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl());
2287
2288        if (!ArgDecl ||
2289            ArgDecl->getIndex() != TTP->getIndex() ||
2290            ArgDecl->getDepth() != TTP->getDepth())
2291          MirrorsPrimaryTemplate = false;
2292      }
2293    }
2294
2295    NonTypeTemplateParmDecl *Param
2296      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2297    if (!Param) {
2298      continue;
2299    }
2300
2301    Expr *ArgExpr = ArgList[I].getAsExpr();
2302    if (!ArgExpr) {
2303      MirrorsPrimaryTemplate = false;
2304      continue;
2305    }
2306
2307    // C++ [temp.class.spec]p8:
2308    //   A non-type argument is non-specialized if it is the name of a
2309    //   non-type parameter. All other non-type arguments are
2310    //   specialized.
2311    //
2312    // Below, we check the two conditions that only apply to
2313    // specialized non-type arguments, so skip any non-specialized
2314    // arguments.
2315    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2316      if (NonTypeTemplateParmDecl *NTTP
2317            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2318        if (MirrorsPrimaryTemplate &&
2319            (Param->getIndex() != NTTP->getIndex() ||
2320             Param->getDepth() != NTTP->getDepth()))
2321          MirrorsPrimaryTemplate = false;
2322
2323        continue;
2324      }
2325
2326    // C++ [temp.class.spec]p9:
2327    //   Within the argument list of a class template partial
2328    //   specialization, the following restrictions apply:
2329    //     -- A partially specialized non-type argument expression
2330    //        shall not involve a template parameter of the partial
2331    //        specialization except when the argument expression is a
2332    //        simple identifier.
2333    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2334      Diag(ArgExpr->getLocStart(),
2335           diag::err_dependent_non_type_arg_in_partial_spec)
2336        << ArgExpr->getSourceRange();
2337      return true;
2338    }
2339
2340    //     -- The type of a template parameter corresponding to a
2341    //        specialized non-type argument shall not be dependent on a
2342    //        parameter of the specialization.
2343    if (Param->getType()->isDependentType()) {
2344      Diag(ArgExpr->getLocStart(),
2345           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2346        << Param->getType()
2347        << ArgExpr->getSourceRange();
2348      Diag(Param->getLocation(), diag::note_template_param_here);
2349      return true;
2350    }
2351
2352    MirrorsPrimaryTemplate = false;
2353  }
2354
2355  return false;
2356}
2357
2358Sema::DeclResult
2359Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2360                                       TagUseKind TUK,
2361                                       SourceLocation KWLoc,
2362                                       const CXXScopeSpec &SS,
2363                                       TemplateTy TemplateD,
2364                                       SourceLocation TemplateNameLoc,
2365                                       SourceLocation LAngleLoc,
2366                                       ASTTemplateArgsPtr TemplateArgsIn,
2367                                       SourceLocation *TemplateArgLocs,
2368                                       SourceLocation RAngleLoc,
2369                                       AttributeList *Attr,
2370                               MultiTemplateParamsArg TemplateParameterLists) {
2371  // Find the class template we're specializing
2372  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2373  ClassTemplateDecl *ClassTemplate
2374    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2375
2376  bool isPartialSpecialization = false;
2377
2378  // Check the validity of the template headers that introduce this
2379  // template.
2380  TemplateParameterList *TemplateParams
2381    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
2382                        (TemplateParameterList**)TemplateParameterLists.get(),
2383                                              TemplateParameterLists.size());
2384  if (TemplateParams && TemplateParams->size() > 0) {
2385    isPartialSpecialization = true;
2386
2387    // C++ [temp.class.spec]p10:
2388    //   The template parameter list of a specialization shall not
2389    //   contain default template argument values.
2390    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2391      Decl *Param = TemplateParams->getParam(I);
2392      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2393        if (TTP->hasDefaultArgument()) {
2394          Diag(TTP->getDefaultArgumentLoc(),
2395               diag::err_default_arg_in_partial_spec);
2396          TTP->setDefaultArgument(QualType(), SourceLocation(), false);
2397        }
2398      } else if (NonTypeTemplateParmDecl *NTTP
2399                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2400        if (Expr *DefArg = NTTP->getDefaultArgument()) {
2401          Diag(NTTP->getDefaultArgumentLoc(),
2402               diag::err_default_arg_in_partial_spec)
2403            << DefArg->getSourceRange();
2404          NTTP->setDefaultArgument(0);
2405          DefArg->Destroy(Context);
2406        }
2407      } else {
2408        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2409        if (Expr *DefArg = TTP->getDefaultArgument()) {
2410          Diag(TTP->getDefaultArgumentLoc(),
2411               diag::err_default_arg_in_partial_spec)
2412            << DefArg->getSourceRange();
2413          TTP->setDefaultArgument(0);
2414          DefArg->Destroy(Context);
2415        }
2416      }
2417    }
2418  } else if (!TemplateParams)
2419    Diag(KWLoc, diag::err_template_spec_needs_header)
2420      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2421
2422  // Check that the specialization uses the same tag kind as the
2423  // original template.
2424  TagDecl::TagKind Kind;
2425  switch (TagSpec) {
2426  default: assert(0 && "Unknown tag type!");
2427  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2428  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2429  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2430  }
2431  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2432                                    Kind, KWLoc,
2433                                    *ClassTemplate->getIdentifier())) {
2434    Diag(KWLoc, diag::err_use_with_wrong_tag)
2435      << ClassTemplate
2436      << CodeModificationHint::CreateReplacement(KWLoc,
2437                            ClassTemplate->getTemplatedDecl()->getKindName());
2438    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2439         diag::note_previous_use);
2440    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2441  }
2442
2443  // Translate the parser's template argument list in our AST format.
2444  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2445  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2446
2447  // Check that the template argument list is well-formed for this
2448  // template.
2449  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2450                                        TemplateArgs.size());
2451  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2452                                TemplateArgs.data(), TemplateArgs.size(),
2453                                RAngleLoc, false, Converted))
2454    return true;
2455
2456  assert((Converted.structuredSize() ==
2457            ClassTemplate->getTemplateParameters()->size()) &&
2458         "Converted template argument list is too short!");
2459
2460  // Find the class template (partial) specialization declaration that
2461  // corresponds to these arguments.
2462  llvm::FoldingSetNodeID ID;
2463  if (isPartialSpecialization) {
2464    bool MirrorsPrimaryTemplate;
2465    if (CheckClassTemplatePartialSpecializationArgs(
2466                                         ClassTemplate->getTemplateParameters(),
2467                                         Converted, MirrorsPrimaryTemplate))
2468      return true;
2469
2470    if (MirrorsPrimaryTemplate) {
2471      // C++ [temp.class.spec]p9b3:
2472      //
2473      //   -- The argument list of the specialization shall not be identical
2474      //      to the implicit argument list of the primary template.
2475      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2476        << (TUK == TUK_Definition)
2477        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
2478                                                           RAngleLoc));
2479      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
2480                                ClassTemplate->getIdentifier(),
2481                                TemplateNameLoc,
2482                                Attr,
2483                                TemplateParams,
2484                                AS_none);
2485    }
2486
2487    // FIXME: Template parameter list matters, too
2488    ClassTemplatePartialSpecializationDecl::Profile(ID,
2489                                                   Converted.getFlatArguments(),
2490                                                   Converted.flatSize(),
2491                                                    Context);
2492  } else
2493    ClassTemplateSpecializationDecl::Profile(ID,
2494                                             Converted.getFlatArguments(),
2495                                             Converted.flatSize(),
2496                                             Context);
2497  void *InsertPos = 0;
2498  ClassTemplateSpecializationDecl *PrevDecl = 0;
2499
2500  if (isPartialSpecialization)
2501    PrevDecl
2502      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2503                                                                    InsertPos);
2504  else
2505    PrevDecl
2506      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2507
2508  ClassTemplateSpecializationDecl *Specialization = 0;
2509
2510  // Check whether we can declare a class template specialization in
2511  // the current scope.
2512  if (CheckClassTemplateSpecializationScope(ClassTemplate, PrevDecl,
2513                                            TemplateNameLoc,
2514                                            SS.getRange(),
2515                                            isPartialSpecialization,
2516                                            /*ExplicitInstantiation=*/false))
2517    return true;
2518
2519  // The canonical type
2520  QualType CanonType;
2521  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2522    // Since the only prior class template specialization with these
2523    // arguments was referenced but not declared, reuse that
2524    // declaration node as our own, updating its source location to
2525    // reflect our new declaration.
2526    Specialization = PrevDecl;
2527    Specialization->setLocation(TemplateNameLoc);
2528    PrevDecl = 0;
2529    CanonType = Context.getTypeDeclType(Specialization);
2530  } else if (isPartialSpecialization) {
2531    // Build the canonical type that describes the converted template
2532    // arguments of the class template partial specialization.
2533    CanonType = Context.getTemplateSpecializationType(
2534                                                  TemplateName(ClassTemplate),
2535                                                  Converted.getFlatArguments(),
2536                                                  Converted.flatSize());
2537
2538    // Create a new class template partial specialization declaration node.
2539    TemplateParameterList *TemplateParams
2540      = static_cast<TemplateParameterList*>(*TemplateParameterLists.get());
2541    ClassTemplatePartialSpecializationDecl *PrevPartial
2542      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2543    ClassTemplatePartialSpecializationDecl *Partial
2544      = ClassTemplatePartialSpecializationDecl::Create(Context,
2545                                             ClassTemplate->getDeclContext(),
2546                                                       TemplateNameLoc,
2547                                                       TemplateParams,
2548                                                       ClassTemplate,
2549                                                       Converted,
2550                                                       PrevPartial);
2551
2552    if (PrevPartial) {
2553      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2554      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2555    } else {
2556      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2557    }
2558    Specialization = Partial;
2559
2560    // Check that all of the template parameters of the class template
2561    // partial specialization are deducible from the template
2562    // arguments. If not, this class template partial specialization
2563    // will never be used.
2564    llvm::SmallVector<bool, 8> DeducibleParams;
2565    DeducibleParams.resize(TemplateParams->size());
2566    MarkDeducedTemplateParameters(Partial->getTemplateArgs(), DeducibleParams);
2567    unsigned NumNonDeducible = 0;
2568    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
2569      if (!DeducibleParams[I])
2570        ++NumNonDeducible;
2571
2572    if (NumNonDeducible) {
2573      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2574        << (NumNonDeducible > 1)
2575        << SourceRange(TemplateNameLoc, RAngleLoc);
2576      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2577        if (!DeducibleParams[I]) {
2578          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2579          if (Param->getDeclName())
2580            Diag(Param->getLocation(),
2581                 diag::note_partial_spec_unused_parameter)
2582              << Param->getDeclName();
2583          else
2584            Diag(Param->getLocation(),
2585                 diag::note_partial_spec_unused_parameter)
2586              << std::string("<anonymous>");
2587        }
2588      }
2589    }
2590  } else {
2591    // Create a new class template specialization declaration node for
2592    // this explicit specialization.
2593    Specialization
2594      = ClassTemplateSpecializationDecl::Create(Context,
2595                                             ClassTemplate->getDeclContext(),
2596                                                TemplateNameLoc,
2597                                                ClassTemplate,
2598                                                Converted,
2599                                                PrevDecl);
2600
2601    if (PrevDecl) {
2602      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2603      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2604    } else {
2605      ClassTemplate->getSpecializations().InsertNode(Specialization,
2606                                                     InsertPos);
2607    }
2608
2609    CanonType = Context.getTypeDeclType(Specialization);
2610  }
2611
2612  // Note that this is an explicit specialization.
2613  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2614
2615  // Check that this isn't a redefinition of this specialization.
2616  if (TUK == TUK_Definition) {
2617    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
2618      // FIXME: Should also handle explicit specialization after implicit
2619      // instantiation with a special diagnostic.
2620      SourceRange Range(TemplateNameLoc, RAngleLoc);
2621      Diag(TemplateNameLoc, diag::err_redefinition)
2622        << Context.getTypeDeclType(Specialization) << Range;
2623      Diag(Def->getLocation(), diag::note_previous_definition);
2624      Specialization->setInvalidDecl();
2625      return true;
2626    }
2627  }
2628
2629  // Build the fully-sugared type for this class template
2630  // specialization as the user wrote in the specialization
2631  // itself. This means that we'll pretty-print the type retrieved
2632  // from the specialization's declaration the way that the user
2633  // actually wrote the specialization, rather than formatting the
2634  // name based on the "canonical" representation used to store the
2635  // template arguments in the specialization.
2636  QualType WrittenTy
2637    = Context.getTemplateSpecializationType(Name,
2638                                            TemplateArgs.data(),
2639                                            TemplateArgs.size(),
2640                                            CanonType);
2641  Specialization->setTypeAsWritten(WrittenTy);
2642  TemplateArgsIn.release();
2643
2644  // C++ [temp.expl.spec]p9:
2645  //   A template explicit specialization is in the scope of the
2646  //   namespace in which the template was defined.
2647  //
2648  // We actually implement this paragraph where we set the semantic
2649  // context (in the creation of the ClassTemplateSpecializationDecl),
2650  // but we also maintain the lexical context where the actual
2651  // definition occurs.
2652  Specialization->setLexicalDeclContext(CurContext);
2653
2654  // We may be starting the definition of this specialization.
2655  if (TUK == TUK_Definition)
2656    Specialization->startDefinition();
2657
2658  // Add the specialization into its lexical context, so that it can
2659  // be seen when iterating through the list of declarations in that
2660  // context. However, specializations are not found by name lookup.
2661  CurContext->addDecl(Specialization);
2662  return DeclPtrTy::make(Specialization);
2663}
2664
2665Sema::DeclPtrTy
2666Sema::ActOnTemplateDeclarator(Scope *S,
2667                              MultiTemplateParamsArg TemplateParameterLists,
2668                              Declarator &D) {
2669  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
2670}
2671
2672Sema::DeclPtrTy
2673Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
2674                               MultiTemplateParamsArg TemplateParameterLists,
2675                                      Declarator &D) {
2676  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2677  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2678         "Not a function declarator!");
2679  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2680
2681  if (FTI.hasPrototype) {
2682    // FIXME: Diagnose arguments without names in C.
2683  }
2684
2685  Scope *ParentScope = FnBodyScope->getParent();
2686
2687  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
2688                                  move(TemplateParameterLists),
2689                                  /*IsFunctionDefinition=*/true);
2690  if (FunctionTemplateDecl *FunctionTemplate
2691        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
2692    return ActOnStartOfFunctionDef(FnBodyScope,
2693                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
2694  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
2695    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
2696  return DeclPtrTy();
2697}
2698
2699// Explicit instantiation of a class template specialization
2700Sema::DeclResult
2701Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2702                                 unsigned TagSpec,
2703                                 SourceLocation KWLoc,
2704                                 const CXXScopeSpec &SS,
2705                                 TemplateTy TemplateD,
2706                                 SourceLocation TemplateNameLoc,
2707                                 SourceLocation LAngleLoc,
2708                                 ASTTemplateArgsPtr TemplateArgsIn,
2709                                 SourceLocation *TemplateArgLocs,
2710                                 SourceLocation RAngleLoc,
2711                                 AttributeList *Attr) {
2712  // Find the class template we're specializing
2713  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2714  ClassTemplateDecl *ClassTemplate
2715    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2716
2717  // Check that the specialization uses the same tag kind as the
2718  // original template.
2719  TagDecl::TagKind Kind;
2720  switch (TagSpec) {
2721  default: assert(0 && "Unknown tag type!");
2722  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2723  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2724  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2725  }
2726  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2727                                    Kind, KWLoc,
2728                                    *ClassTemplate->getIdentifier())) {
2729    Diag(KWLoc, diag::err_use_with_wrong_tag)
2730      << ClassTemplate
2731      << CodeModificationHint::CreateReplacement(KWLoc,
2732                            ClassTemplate->getTemplatedDecl()->getKindName());
2733    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2734         diag::note_previous_use);
2735    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2736  }
2737
2738  // C++0x [temp.explicit]p2:
2739  //   [...] An explicit instantiation shall appear in an enclosing
2740  //   namespace of its template. [...]
2741  //
2742  // This is C++ DR 275.
2743  if (CheckClassTemplateSpecializationScope(ClassTemplate, 0,
2744                                            TemplateNameLoc,
2745                                            SS.getRange(),
2746                                            /*PartialSpecialization=*/false,
2747                                            /*ExplicitInstantiation=*/true))
2748    return true;
2749
2750  // Translate the parser's template argument list in our AST format.
2751  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2752  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2753
2754  // Check that the template argument list is well-formed for this
2755  // template.
2756  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2757                                        TemplateArgs.size());
2758  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2759                                TemplateArgs.data(), TemplateArgs.size(),
2760                                RAngleLoc, false, Converted))
2761    return true;
2762
2763  assert((Converted.structuredSize() ==
2764            ClassTemplate->getTemplateParameters()->size()) &&
2765         "Converted template argument list is too short!");
2766
2767  // Find the class template specialization declaration that
2768  // corresponds to these arguments.
2769  llvm::FoldingSetNodeID ID;
2770  ClassTemplateSpecializationDecl::Profile(ID,
2771                                           Converted.getFlatArguments(),
2772                                           Converted.flatSize(),
2773                                           Context);
2774  void *InsertPos = 0;
2775  ClassTemplateSpecializationDecl *PrevDecl
2776    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2777
2778  ClassTemplateSpecializationDecl *Specialization = 0;
2779
2780  bool SpecializationRequiresInstantiation = true;
2781  if (PrevDecl) {
2782    if (PrevDecl->getSpecializationKind() == TSK_ExplicitInstantiation) {
2783      // This particular specialization has already been declared or
2784      // instantiated. We cannot explicitly instantiate it.
2785      Diag(TemplateNameLoc, diag::err_explicit_instantiation_duplicate)
2786        << Context.getTypeDeclType(PrevDecl);
2787      Diag(PrevDecl->getLocation(),
2788           diag::note_previous_explicit_instantiation);
2789      return DeclPtrTy::make(PrevDecl);
2790    }
2791
2792    if (PrevDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
2793      // C++ DR 259, C++0x [temp.explicit]p4:
2794      //   For a given set of template parameters, if an explicit
2795      //   instantiation of a template appears after a declaration of
2796      //   an explicit specialization for that template, the explicit
2797      //   instantiation has no effect.
2798      if (!getLangOptions().CPlusPlus0x) {
2799        Diag(TemplateNameLoc,
2800             diag::ext_explicit_instantiation_after_specialization)
2801          << Context.getTypeDeclType(PrevDecl);
2802        Diag(PrevDecl->getLocation(),
2803             diag::note_previous_template_specialization);
2804      }
2805
2806      // Create a new class template specialization declaration node
2807      // for this explicit specialization. This node is only used to
2808      // record the existence of this explicit instantiation for
2809      // accurate reproduction of the source code; we don't actually
2810      // use it for anything, since it is semantically irrelevant.
2811      Specialization
2812        = ClassTemplateSpecializationDecl::Create(Context,
2813                                             ClassTemplate->getDeclContext(),
2814                                                  TemplateNameLoc,
2815                                                  ClassTemplate,
2816                                                  Converted, 0);
2817      Specialization->setLexicalDeclContext(CurContext);
2818      CurContext->addDecl(Specialization);
2819      return DeclPtrTy::make(Specialization);
2820    }
2821
2822    // If we have already (implicitly) instantiated this
2823    // specialization, there is less work to do.
2824    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation)
2825      SpecializationRequiresInstantiation = false;
2826
2827    // Since the only prior class template specialization with these
2828    // arguments was referenced but not declared, reuse that
2829    // declaration node as our own, updating its source location to
2830    // reflect our new declaration.
2831    Specialization = PrevDecl;
2832    Specialization->setLocation(TemplateNameLoc);
2833    PrevDecl = 0;
2834  } else {
2835    // Create a new class template specialization declaration node for
2836    // this explicit specialization.
2837    Specialization
2838      = ClassTemplateSpecializationDecl::Create(Context,
2839                                             ClassTemplate->getDeclContext(),
2840                                                TemplateNameLoc,
2841                                                ClassTemplate,
2842                                                Converted, 0);
2843
2844    ClassTemplate->getSpecializations().InsertNode(Specialization,
2845                                                   InsertPos);
2846  }
2847
2848  // Build the fully-sugared type for this explicit instantiation as
2849  // the user wrote in the explicit instantiation itself. This means
2850  // that we'll pretty-print the type retrieved from the
2851  // specialization's declaration the way that the user actually wrote
2852  // the explicit instantiation, rather than formatting the name based
2853  // on the "canonical" representation used to store the template
2854  // arguments in the specialization.
2855  QualType WrittenTy
2856    = Context.getTemplateSpecializationType(Name,
2857                                            TemplateArgs.data(),
2858                                            TemplateArgs.size(),
2859                                  Context.getTypeDeclType(Specialization));
2860  Specialization->setTypeAsWritten(WrittenTy);
2861  TemplateArgsIn.release();
2862
2863  // Add the explicit instantiation into its lexical context. However,
2864  // since explicit instantiations are never found by name lookup, we
2865  // just put it into the declaration context directly.
2866  Specialization->setLexicalDeclContext(CurContext);
2867  CurContext->addDecl(Specialization);
2868
2869  // C++ [temp.explicit]p3:
2870  //   A definition of a class template or class member template
2871  //   shall be in scope at the point of the explicit instantiation of
2872  //   the class template or class member template.
2873  //
2874  // This check comes when we actually try to perform the
2875  // instantiation.
2876  if (SpecializationRequiresInstantiation)
2877    InstantiateClassTemplateSpecialization(Specialization, true);
2878  else // Instantiate the members of this class template specialization.
2879    InstantiateClassTemplateSpecializationMembers(TemplateLoc, Specialization);
2880
2881  return DeclPtrTy::make(Specialization);
2882}
2883
2884// Explicit instantiation of a member class of a class template.
2885Sema::DeclResult
2886Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation TemplateLoc,
2887                                 unsigned TagSpec,
2888                                 SourceLocation KWLoc,
2889                                 const CXXScopeSpec &SS,
2890                                 IdentifierInfo *Name,
2891                                 SourceLocation NameLoc,
2892                                 AttributeList *Attr) {
2893
2894  bool Owned = false;
2895  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
2896                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
2897                            MultiTemplateParamsArg(*this, 0, 0), Owned);
2898  if (!TagD)
2899    return true;
2900
2901  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
2902  if (Tag->isEnum()) {
2903    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
2904      << Context.getTypeDeclType(Tag);
2905    return true;
2906  }
2907
2908  if (Tag->isInvalidDecl())
2909    return true;
2910
2911  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
2912  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
2913  if (!Pattern) {
2914    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
2915      << Context.getTypeDeclType(Record);
2916    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
2917    return true;
2918  }
2919
2920  // C++0x [temp.explicit]p2:
2921  //   [...] An explicit instantiation shall appear in an enclosing
2922  //   namespace of its template. [...]
2923  //
2924  // This is C++ DR 275.
2925  if (getLangOptions().CPlusPlus0x) {
2926    // FIXME: In C++98, we would like to turn these errors into warnings,
2927    // dependent on a -Wc++0x flag.
2928    DeclContext *PatternContext
2929      = Pattern->getDeclContext()->getEnclosingNamespaceContext();
2930    if (!CurContext->Encloses(PatternContext)) {
2931      Diag(TemplateLoc, diag::err_explicit_instantiation_out_of_scope)
2932        << Record << cast<NamedDecl>(PatternContext) << SS.getRange();
2933      Diag(Pattern->getLocation(), diag::note_previous_declaration);
2934    }
2935  }
2936
2937  if (!Record->getDefinition(Context)) {
2938    // If the class has a definition, instantiate it (and all of its
2939    // members, recursively).
2940    Pattern = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
2941    if (Pattern && InstantiateClass(TemplateLoc, Record, Pattern,
2942                                    getTemplateInstantiationArgs(Record),
2943                                    /*ExplicitInstantiation=*/true))
2944      return true;
2945  } else // Instantiate all of the members of the class.
2946    InstantiateClassMembers(TemplateLoc, Record,
2947                            getTemplateInstantiationArgs(Record));
2948
2949  // FIXME: We don't have any representation for explicit instantiations of
2950  // member classes. Such a representation is not needed for compilation, but it
2951  // should be available for clients that want to see all of the declarations in
2952  // the source code.
2953  return TagD;
2954}
2955
2956Sema::TypeResult
2957Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2958                        const IdentifierInfo &II, SourceLocation IdLoc) {
2959  NestedNameSpecifier *NNS
2960    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2961  if (!NNS)
2962    return true;
2963
2964  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
2965  if (T.isNull())
2966    return true;
2967  return T.getAsOpaquePtr();
2968}
2969
2970Sema::TypeResult
2971Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
2972                        SourceLocation TemplateLoc, TypeTy *Ty) {
2973  QualType T = GetTypeFromParser(Ty);
2974  NestedNameSpecifier *NNS
2975    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2976  const TemplateSpecializationType *TemplateId
2977    = T->getAsTemplateSpecializationType();
2978  assert(TemplateId && "Expected a template specialization type");
2979
2980  if (NNS->isDependent())
2981    return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
2982
2983  return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
2984}
2985
2986/// \brief Build the type that describes a C++ typename specifier,
2987/// e.g., "typename T::type".
2988QualType
2989Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
2990                        SourceRange Range) {
2991  CXXRecordDecl *CurrentInstantiation = 0;
2992  if (NNS->isDependent()) {
2993    CurrentInstantiation = getCurrentInstantiationOf(NNS);
2994
2995    // If the nested-name-specifier does not refer to the current
2996    // instantiation, then build a typename type.
2997    if (!CurrentInstantiation)
2998      return Context.getTypenameType(NNS, &II);
2999  }
3000
3001  DeclContext *Ctx = 0;
3002
3003  if (CurrentInstantiation)
3004    Ctx = CurrentInstantiation;
3005  else {
3006    CXXScopeSpec SS;
3007    SS.setScopeRep(NNS);
3008    SS.setRange(Range);
3009    if (RequireCompleteDeclContext(SS))
3010      return QualType();
3011
3012    Ctx = computeDeclContext(SS);
3013  }
3014  assert(Ctx && "No declaration context?");
3015
3016  DeclarationName Name(&II);
3017  LookupResult Result = LookupQualifiedName(Ctx, Name, LookupOrdinaryName,
3018                                            false);
3019  unsigned DiagID = 0;
3020  Decl *Referenced = 0;
3021  switch (Result.getKind()) {
3022  case LookupResult::NotFound:
3023    if (Ctx->isTranslationUnit())
3024      DiagID = diag::err_typename_nested_not_found_global;
3025    else
3026      DiagID = diag::err_typename_nested_not_found;
3027    break;
3028
3029  case LookupResult::Found:
3030    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getAsDecl())) {
3031      // We found a type. Build a QualifiedNameType, since the
3032      // typename-specifier was just sugar. FIXME: Tell
3033      // QualifiedNameType that it has a "typename" prefix.
3034      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
3035    }
3036
3037    DiagID = diag::err_typename_nested_not_type;
3038    Referenced = Result.getAsDecl();
3039    break;
3040
3041  case LookupResult::FoundOverloaded:
3042    DiagID = diag::err_typename_nested_not_type;
3043    Referenced = *Result.begin();
3044    break;
3045
3046  case LookupResult::AmbiguousBaseSubobjectTypes:
3047  case LookupResult::AmbiguousBaseSubobjects:
3048  case LookupResult::AmbiguousReference:
3049    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
3050    return QualType();
3051  }
3052
3053  // If we get here, it's because name lookup did not find a
3054  // type. Emit an appropriate diagnostic and return an error.
3055  if (NamedDecl *NamedCtx = dyn_cast<NamedDecl>(Ctx))
3056    Diag(Range.getEnd(), DiagID) << Range << Name << NamedCtx;
3057  else
3058    Diag(Range.getEnd(), DiagID) << Range << Name;
3059  if (Referenced)
3060    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
3061      << Name;
3062  return QualType();
3063}
3064
3065namespace {
3066  // See Sema::RebuildTypeInCurrentInstantiation
3067  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
3068    : public TreeTransform<CurrentInstantiationRebuilder>
3069  {
3070    SourceLocation Loc;
3071    DeclarationName Entity;
3072
3073  public:
3074    CurrentInstantiationRebuilder(Sema &SemaRef,
3075                                  SourceLocation Loc,
3076                                  DeclarationName Entity)
3077    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
3078      Loc(Loc), Entity(Entity) { }
3079
3080    /// \brief Determine whether the given type \p T has already been
3081    /// transformed.
3082    ///
3083    /// For the purposes of type reconstruction, a type has already been
3084    /// transformed if it is NULL or if it is not dependent.
3085    bool AlreadyTransformed(QualType T) {
3086      return T.isNull() || !T->isDependentType();
3087    }
3088
3089    /// \brief Returns the location of the entity whose type is being
3090    /// rebuilt.
3091    SourceLocation getBaseLocation() { return Loc; }
3092
3093    /// \brief Returns the name of the entity whose type is being rebuilt.
3094    DeclarationName getBaseEntity() { return Entity; }
3095
3096    /// \brief Transforms an expression by returning the expression itself
3097    /// (an identity function).
3098    ///
3099    /// FIXME: This is completely unsafe; we will need to actually clone the
3100    /// expressions.
3101    Sema::OwningExprResult TransformExpr(Expr *E) {
3102      return getSema().Owned(E);
3103    }
3104
3105    /// \brief Transforms a typename type by determining whether the type now
3106    /// refers to a member of the current instantiation, and then
3107    /// type-checking and building a QualifiedNameType (when possible).
3108    QualType TransformTypenameType(const TypenameType *T);
3109  };
3110}
3111
3112QualType
3113CurrentInstantiationRebuilder::TransformTypenameType(const TypenameType *T) {
3114  NestedNameSpecifier *NNS
3115    = TransformNestedNameSpecifier(T->getQualifier(),
3116                              /*FIXME:*/SourceRange(getBaseLocation()));
3117  if (!NNS)
3118    return QualType();
3119
3120  // If the nested-name-specifier did not change, and we cannot compute the
3121  // context corresponding to the nested-name-specifier, then this
3122  // typename type will not change; exit early.
3123  CXXScopeSpec SS;
3124  SS.setRange(SourceRange(getBaseLocation()));
3125  SS.setScopeRep(NNS);
3126  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
3127    return QualType(T, 0);
3128
3129  // Rebuild the typename type, which will probably turn into a
3130  // QualifiedNameType.
3131  if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
3132    QualType NewTemplateId
3133      = TransformType(QualType(TemplateId, 0));
3134    if (NewTemplateId.isNull())
3135      return QualType();
3136
3137    if (NNS == T->getQualifier() &&
3138        NewTemplateId == QualType(TemplateId, 0))
3139      return QualType(T, 0);
3140
3141    return getDerived().RebuildTypenameType(NNS, NewTemplateId);
3142  }
3143
3144  return getDerived().RebuildTypenameType(NNS, T->getIdentifier());
3145}
3146
3147/// \brief Rebuilds a type within the context of the current instantiation.
3148///
3149/// The type \p T is part of the type of an out-of-line member definition of
3150/// a class template (or class template partial specialization) that was parsed
3151/// and constructed before we entered the scope of the class template (or
3152/// partial specialization thereof). This routine will rebuild that type now
3153/// that we have entered the declarator's scope, which may produce different
3154/// canonical types, e.g.,
3155///
3156/// \code
3157/// template<typename T>
3158/// struct X {
3159///   typedef T* pointer;
3160///   pointer data();
3161/// };
3162///
3163/// template<typename T>
3164/// typename X<T>::pointer X<T>::data() { ... }
3165/// \endcode
3166///
3167/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
3168/// since we do not know that we can look into X<T> when we parsed the type.
3169/// This function will rebuild the type, performing the lookup of "pointer"
3170/// in X<T> and returning a QualifiedNameType whose canonical type is the same
3171/// as the canonical type of T*, allowing the return types of the out-of-line
3172/// definition and the declaration to match.
3173QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
3174                                                 DeclarationName Name) {
3175  if (T.isNull() || !T->isDependentType())
3176    return T;
3177
3178  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
3179  return Rebuilder.TransformType(T);
3180}
3181