SemaTemplate.cpp revision 8fde52b41225a2ac3e187a5aa15999ebcc6ad6d3
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33/// \brief Determine whether the declaration found is acceptable as the name
34/// of a template and, if so, return that template declaration. Otherwise,
35/// returns NULL.
36static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
37                                           NamedDecl *Orig) {
38  NamedDecl *D = Orig->getUnderlyingDecl();
39
40  if (isa<TemplateDecl>(D))
41    return Orig;
42
43  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
44    // C++ [temp.local]p1:
45    //   Like normal (non-template) classes, class templates have an
46    //   injected-class-name (Clause 9). The injected-class-name
47    //   can be used with or without a template-argument-list. When
48    //   it is used without a template-argument-list, it is
49    //   equivalent to the injected-class-name followed by the
50    //   template-parameters of the class template enclosed in
51    //   <>. When it is used with a template-argument-list, it
52    //   refers to the specified class template specialization,
53    //   which could be the current specialization or another
54    //   specialization.
55    if (Record->isInjectedClassName()) {
56      Record = cast<CXXRecordDecl>(Record->getDeclContext());
57      if (Record->getDescribedClassTemplate())
58        return Record->getDescribedClassTemplate();
59
60      if (ClassTemplateSpecializationDecl *Spec
61            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
62        return Spec->getSpecializedTemplate();
63    }
64
65    return 0;
66  }
67
68  return 0;
69}
70
71static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
72  // The set of class templates we've already seen.
73  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
74  LookupResult::Filter filter = R.makeFilter();
75  while (filter.hasNext()) {
76    NamedDecl *Orig = filter.next();
77    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
78    if (!Repl)
79      filter.erase();
80    else if (Repl != Orig) {
81
82      // C++ [temp.local]p3:
83      //   A lookup that finds an injected-class-name (10.2) can result in an
84      //   ambiguity in certain cases (for example, if it is found in more than
85      //   one base class). If all of the injected-class-names that are found
86      //   refer to specializations of the same class template, and if the name
87      //   is followed by a template-argument-list, the reference refers to the
88      //   class template itself and not a specialization thereof, and is not
89      //   ambiguous.
90      //
91      // FIXME: Will we eventually have to do the same for alias templates?
92      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
93        if (!ClassTemplates.insert(ClassTmpl)) {
94          filter.erase();
95          continue;
96        }
97
98      // FIXME: we promote access to public here as a workaround to
99      // the fact that LookupResult doesn't let us remember that we
100      // found this template through a particular injected class name,
101      // which means we end up doing nasty things to the invariants.
102      // Pretending that access is public is *much* safer.
103      filter.replace(Repl, AS_public);
104    }
105  }
106  filter.done();
107}
108
109TemplateNameKind Sema::isTemplateName(Scope *S,
110                                      CXXScopeSpec &SS,
111                                      bool hasTemplateKeyword,
112                                      UnqualifiedId &Name,
113                                      ParsedType ObjectTypePtr,
114                                      bool EnteringContext,
115                                      TemplateTy &TemplateResult,
116                                      bool &MemberOfUnknownSpecialization) {
117  assert(getLangOptions().CPlusPlus && "No template names in C!");
118
119  DeclarationName TName;
120  MemberOfUnknownSpecialization = false;
121
122  switch (Name.getKind()) {
123  case UnqualifiedId::IK_Identifier:
124    TName = DeclarationName(Name.Identifier);
125    break;
126
127  case UnqualifiedId::IK_OperatorFunctionId:
128    TName = Context.DeclarationNames.getCXXOperatorName(
129                                              Name.OperatorFunctionId.Operator);
130    break;
131
132  case UnqualifiedId::IK_LiteralOperatorId:
133    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
134    break;
135
136  default:
137    return TNK_Non_template;
138  }
139
140  QualType ObjectType = ObjectTypePtr.get();
141
142  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
143                 LookupOrdinaryName);
144  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
145                     MemberOfUnknownSpecialization);
146  if (R.empty()) return TNK_Non_template;
147  if (R.isAmbiguous()) {
148    // Suppress diagnostics;  we'll redo this lookup later.
149    R.suppressDiagnostics();
150
151    // FIXME: we might have ambiguous templates, in which case we
152    // should at least parse them properly!
153    return TNK_Non_template;
154  }
155
156  TemplateName Template;
157  TemplateNameKind TemplateKind;
158
159  unsigned ResultCount = R.end() - R.begin();
160  if (ResultCount > 1) {
161    // We assume that we'll preserve the qualifier from a function
162    // template name in other ways.
163    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
164    TemplateKind = TNK_Function_template;
165
166    // We'll do this lookup again later.
167    R.suppressDiagnostics();
168  } else {
169    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
170
171    if (SS.isSet() && !SS.isInvalid()) {
172      NestedNameSpecifier *Qualifier
173        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
174      Template = Context.getQualifiedTemplateName(Qualifier,
175                                                  hasTemplateKeyword, TD);
176    } else {
177      Template = TemplateName(TD);
178    }
179
180    if (isa<FunctionTemplateDecl>(TD)) {
181      TemplateKind = TNK_Function_template;
182
183      // We'll do this lookup again later.
184      R.suppressDiagnostics();
185    } else {
186      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
187      TemplateKind = TNK_Type_template;
188    }
189  }
190
191  TemplateResult = TemplateTy::make(Template);
192  return TemplateKind;
193}
194
195bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
196                                       SourceLocation IILoc,
197                                       Scope *S,
198                                       const CXXScopeSpec *SS,
199                                       TemplateTy &SuggestedTemplate,
200                                       TemplateNameKind &SuggestedKind) {
201  // We can't recover unless there's a dependent scope specifier preceding the
202  // template name.
203  // FIXME: Typo correction?
204  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
205      computeDeclContext(*SS))
206    return false;
207
208  // The code is missing a 'template' keyword prior to the dependent template
209  // name.
210  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
211  Diag(IILoc, diag::err_template_kw_missing)
212    << Qualifier << II.getName()
213    << FixItHint::CreateInsertion(IILoc, "template ");
214  SuggestedTemplate
215    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
216  SuggestedKind = TNK_Dependent_template_name;
217  return true;
218}
219
220void Sema::LookupTemplateName(LookupResult &Found,
221                              Scope *S, CXXScopeSpec &SS,
222                              QualType ObjectType,
223                              bool EnteringContext,
224                              bool &MemberOfUnknownSpecialization) {
225  // Determine where to perform name lookup
226  MemberOfUnknownSpecialization = false;
227  DeclContext *LookupCtx = 0;
228  bool isDependent = false;
229  if (!ObjectType.isNull()) {
230    // This nested-name-specifier occurs in a member access expression, e.g.,
231    // x->B::f, and we are looking into the type of the object.
232    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
233    LookupCtx = computeDeclContext(ObjectType);
234    isDependent = ObjectType->isDependentType();
235    assert((isDependent || !ObjectType->isIncompleteType()) &&
236           "Caller should have completed object type");
237  } else if (SS.isSet()) {
238    // This nested-name-specifier occurs after another nested-name-specifier,
239    // so long into the context associated with the prior nested-name-specifier.
240    LookupCtx = computeDeclContext(SS, EnteringContext);
241    isDependent = isDependentScopeSpecifier(SS);
242
243    // The declaration context must be complete.
244    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
245      return;
246  }
247
248  bool ObjectTypeSearchedInScope = false;
249  if (LookupCtx) {
250    // Perform "qualified" name lookup into the declaration context we
251    // computed, which is either the type of the base of a member access
252    // expression or the declaration context associated with a prior
253    // nested-name-specifier.
254    LookupQualifiedName(Found, LookupCtx);
255
256    if (!ObjectType.isNull() && Found.empty()) {
257      // C++ [basic.lookup.classref]p1:
258      //   In a class member access expression (5.2.5), if the . or -> token is
259      //   immediately followed by an identifier followed by a <, the
260      //   identifier must be looked up to determine whether the < is the
261      //   beginning of a template argument list (14.2) or a less-than operator.
262      //   The identifier is first looked up in the class of the object
263      //   expression. If the identifier is not found, it is then looked up in
264      //   the context of the entire postfix-expression and shall name a class
265      //   or function template.
266      if (S) LookupName(Found, S);
267      ObjectTypeSearchedInScope = true;
268    }
269  } else if (isDependent && (!S || ObjectType.isNull())) {
270    // We cannot look into a dependent object type or nested nme
271    // specifier.
272    MemberOfUnknownSpecialization = true;
273    return;
274  } else {
275    // Perform unqualified name lookup in the current scope.
276    LookupName(Found, S);
277  }
278
279  if (Found.empty() && !isDependent) {
280    // If we did not find any names, attempt to correct any typos.
281    DeclarationName Name = Found.getLookupName();
282    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
283                                                false, CTC_CXXCasts)) {
284      FilterAcceptableTemplateNames(Context, Found);
285      if (!Found.empty()) {
286        if (LookupCtx)
287          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
288            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
289            << FixItHint::CreateReplacement(Found.getNameLoc(),
290                                          Found.getLookupName().getAsString());
291        else
292          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
293            << Name << Found.getLookupName()
294            << FixItHint::CreateReplacement(Found.getNameLoc(),
295                                          Found.getLookupName().getAsString());
296        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
297          Diag(Template->getLocation(), diag::note_previous_decl)
298            << Template->getDeclName();
299      }
300    } else {
301      Found.clear();
302      Found.setLookupName(Name);
303    }
304  }
305
306  FilterAcceptableTemplateNames(Context, Found);
307  if (Found.empty()) {
308    if (isDependent)
309      MemberOfUnknownSpecialization = true;
310    return;
311  }
312
313  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
314    // C++ [basic.lookup.classref]p1:
315    //   [...] If the lookup in the class of the object expression finds a
316    //   template, the name is also looked up in the context of the entire
317    //   postfix-expression and [...]
318    //
319    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
320                            LookupOrdinaryName);
321    LookupName(FoundOuter, S);
322    FilterAcceptableTemplateNames(Context, FoundOuter);
323
324    if (FoundOuter.empty()) {
325      //   - if the name is not found, the name found in the class of the
326      //     object expression is used, otherwise
327    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
328      //   - if the name is found in the context of the entire
329      //     postfix-expression and does not name a class template, the name
330      //     found in the class of the object expression is used, otherwise
331    } else if (!Found.isSuppressingDiagnostics()) {
332      //   - if the name found is a class template, it must refer to the same
333      //     entity as the one found in the class of the object expression,
334      //     otherwise the program is ill-formed.
335      if (!Found.isSingleResult() ||
336          Found.getFoundDecl()->getCanonicalDecl()
337            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
338        Diag(Found.getNameLoc(),
339             diag::ext_nested_name_member_ref_lookup_ambiguous)
340          << Found.getLookupName()
341          << ObjectType;
342        Diag(Found.getRepresentativeDecl()->getLocation(),
343             diag::note_ambig_member_ref_object_type)
344          << ObjectType;
345        Diag(FoundOuter.getFoundDecl()->getLocation(),
346             diag::note_ambig_member_ref_scope);
347
348        // Recover by taking the template that we found in the object
349        // expression's type.
350      }
351    }
352  }
353}
354
355/// ActOnDependentIdExpression - Handle a dependent id-expression that
356/// was just parsed.  This is only possible with an explicit scope
357/// specifier naming a dependent type.
358ExprResult
359Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
360                                 const DeclarationNameInfo &NameInfo,
361                                 bool isAddressOfOperand,
362                           const TemplateArgumentListInfo *TemplateArgs) {
363  NestedNameSpecifier *Qualifier
364    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
365
366  DeclContext *DC = getFunctionLevelDeclContext();
367
368  if (!isAddressOfOperand &&
369      isa<CXXMethodDecl>(DC) &&
370      cast<CXXMethodDecl>(DC)->isInstance()) {
371    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
372
373    // Since the 'this' expression is synthesized, we don't need to
374    // perform the double-lookup check.
375    NamedDecl *FirstQualifierInScope = 0;
376
377    return Owned(CXXDependentScopeMemberExpr::Create(Context,
378                                                     /*This*/ 0, ThisType,
379                                                     /*IsArrow*/ true,
380                                                     /*Op*/ SourceLocation(),
381                                                     Qualifier, SS.getRange(),
382                                                     FirstQualifierInScope,
383                                                     NameInfo,
384                                                     TemplateArgs));
385  }
386
387  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
388}
389
390ExprResult
391Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
392                                const DeclarationNameInfo &NameInfo,
393                                const TemplateArgumentListInfo *TemplateArgs) {
394  return Owned(DependentScopeDeclRefExpr::Create(Context,
395               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
396                                                 SS.getRange(),
397                                                 NameInfo,
398                                                 TemplateArgs));
399}
400
401/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
402/// that the template parameter 'PrevDecl' is being shadowed by a new
403/// declaration at location Loc. Returns true to indicate that this is
404/// an error, and false otherwise.
405bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
406  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
407
408  // Microsoft Visual C++ permits template parameters to be shadowed.
409  if (getLangOptions().Microsoft)
410    return false;
411
412  // C++ [temp.local]p4:
413  //   A template-parameter shall not be redeclared within its
414  //   scope (including nested scopes).
415  Diag(Loc, diag::err_template_param_shadow)
416    << cast<NamedDecl>(PrevDecl)->getDeclName();
417  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
418  return true;
419}
420
421/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
422/// the parameter D to reference the templated declaration and return a pointer
423/// to the template declaration. Otherwise, do nothing to D and return null.
424TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
425  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
426    D = Temp->getTemplatedDecl();
427    return Temp;
428  }
429  return 0;
430}
431
432static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
433                                            const ParsedTemplateArgument &Arg) {
434
435  switch (Arg.getKind()) {
436  case ParsedTemplateArgument::Type: {
437    TypeSourceInfo *DI;
438    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
439    if (!DI)
440      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
441    return TemplateArgumentLoc(TemplateArgument(T), DI);
442  }
443
444  case ParsedTemplateArgument::NonType: {
445    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
446    return TemplateArgumentLoc(TemplateArgument(E), E);
447  }
448
449  case ParsedTemplateArgument::Template: {
450    TemplateName Template = Arg.getAsTemplate().get();
451    return TemplateArgumentLoc(TemplateArgument(Template),
452                               Arg.getScopeSpec().getRange(),
453                               Arg.getLocation());
454  }
455  }
456
457  llvm_unreachable("Unhandled parsed template argument");
458  return TemplateArgumentLoc();
459}
460
461/// \brief Translates template arguments as provided by the parser
462/// into template arguments used by semantic analysis.
463void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
464                                      TemplateArgumentListInfo &TemplateArgs) {
465 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
466   TemplateArgs.addArgument(translateTemplateArgument(*this,
467                                                      TemplateArgsIn[I]));
468}
469
470/// ActOnTypeParameter - Called when a C++ template type parameter
471/// (e.g., "typename T") has been parsed. Typename specifies whether
472/// the keyword "typename" was used to declare the type parameter
473/// (otherwise, "class" was used), and KeyLoc is the location of the
474/// "class" or "typename" keyword. ParamName is the name of the
475/// parameter (NULL indicates an unnamed template parameter) and
476/// ParamName is the location of the parameter name (if any).
477/// If the type parameter has a default argument, it will be added
478/// later via ActOnTypeParameterDefault.
479Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
480                               SourceLocation EllipsisLoc,
481                               SourceLocation KeyLoc,
482                               IdentifierInfo *ParamName,
483                               SourceLocation ParamNameLoc,
484                               unsigned Depth, unsigned Position,
485                               SourceLocation EqualLoc,
486                               ParsedType DefaultArg) {
487  assert(S->isTemplateParamScope() &&
488         "Template type parameter not in template parameter scope!");
489  bool Invalid = false;
490
491  if (ParamName) {
492    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
493                                           LookupOrdinaryName,
494                                           ForRedeclaration);
495    if (PrevDecl && PrevDecl->isTemplateParameter())
496      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
497                                                           PrevDecl);
498  }
499
500  SourceLocation Loc = ParamNameLoc;
501  if (!ParamName)
502    Loc = KeyLoc;
503
504  TemplateTypeParmDecl *Param
505    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
506                                   Loc, Depth, Position, ParamName, Typename,
507                                   Ellipsis);
508  if (Invalid)
509    Param->setInvalidDecl();
510
511  if (ParamName) {
512    // Add the template parameter into the current scope.
513    S->AddDecl(Param);
514    IdResolver.AddDecl(Param);
515  }
516
517  // Handle the default argument, if provided.
518  if (DefaultArg) {
519    TypeSourceInfo *DefaultTInfo;
520    GetTypeFromParser(DefaultArg, &DefaultTInfo);
521
522    assert(DefaultTInfo && "expected source information for type");
523
524    // C++0x [temp.param]p9:
525    // A default template-argument may be specified for any kind of
526    // template-parameter that is not a template parameter pack.
527    if (Ellipsis) {
528      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
529      return Param;
530    }
531
532    // Check the template argument itself.
533    if (CheckTemplateArgument(Param, DefaultTInfo)) {
534      Param->setInvalidDecl();
535      return Param;
536    }
537
538    Param->setDefaultArgument(DefaultTInfo, false);
539  }
540
541  return Param;
542}
543
544/// \brief Check that the type of a non-type template parameter is
545/// well-formed.
546///
547/// \returns the (possibly-promoted) parameter type if valid;
548/// otherwise, produces a diagnostic and returns a NULL type.
549QualType
550Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
551  // We don't allow variably-modified types as the type of non-type template
552  // parameters.
553  if (T->isVariablyModifiedType()) {
554    Diag(Loc, diag::err_variably_modified_nontype_template_param)
555      << T;
556    return QualType();
557  }
558
559  // C++ [temp.param]p4:
560  //
561  // A non-type template-parameter shall have one of the following
562  // (optionally cv-qualified) types:
563  //
564  //       -- integral or enumeration type,
565  if (T->isIntegralOrEnumerationType() ||
566      //   -- pointer to object or pointer to function,
567      T->isPointerType() ||
568      //   -- reference to object or reference to function,
569      T->isReferenceType() ||
570      //   -- pointer to member.
571      T->isMemberPointerType() ||
572      // If T is a dependent type, we can't do the check now, so we
573      // assume that it is well-formed.
574      T->isDependentType())
575    return T;
576  // C++ [temp.param]p8:
577  //
578  //   A non-type template-parameter of type "array of T" or
579  //   "function returning T" is adjusted to be of type "pointer to
580  //   T" or "pointer to function returning T", respectively.
581  else if (T->isArrayType())
582    // FIXME: Keep the type prior to promotion?
583    return Context.getArrayDecayedType(T);
584  else if (T->isFunctionType())
585    // FIXME: Keep the type prior to promotion?
586    return Context.getPointerType(T);
587
588  Diag(Loc, diag::err_template_nontype_parm_bad_type)
589    << T;
590
591  return QualType();
592}
593
594Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
595                                          unsigned Depth,
596                                          unsigned Position,
597                                          SourceLocation EqualLoc,
598                                          Expr *Default) {
599  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
600  QualType T = TInfo->getType();
601
602  assert(S->isTemplateParamScope() &&
603         "Non-type template parameter not in template parameter scope!");
604  bool Invalid = false;
605
606  IdentifierInfo *ParamName = D.getIdentifier();
607  if (ParamName) {
608    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
609                                           LookupOrdinaryName,
610                                           ForRedeclaration);
611    if (PrevDecl && PrevDecl->isTemplateParameter())
612      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
613                                                           PrevDecl);
614  }
615
616  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
617  if (T.isNull()) {
618    T = Context.IntTy; // Recover with an 'int' type.
619    Invalid = true;
620  }
621
622  NonTypeTemplateParmDecl *Param
623    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
624                                      D.getIdentifierLoc(),
625                                      Depth, Position, ParamName, T, TInfo);
626  if (Invalid)
627    Param->setInvalidDecl();
628
629  if (D.getIdentifier()) {
630    // Add the template parameter into the current scope.
631    S->AddDecl(Param);
632    IdResolver.AddDecl(Param);
633  }
634
635  // Check the well-formedness of the default template argument, if provided.
636  if (Default) {
637    TemplateArgument Converted;
638    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
639      Param->setInvalidDecl();
640      return Param;
641    }
642
643    Param->setDefaultArgument(Default, false);
644  }
645
646  return Param;
647}
648
649/// ActOnTemplateTemplateParameter - Called when a C++ template template
650/// parameter (e.g. T in template <template <typename> class T> class array)
651/// has been parsed. S is the current scope.
652Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
653                                           SourceLocation TmpLoc,
654                                           TemplateParamsTy *Params,
655                                           IdentifierInfo *Name,
656                                           SourceLocation NameLoc,
657                                           unsigned Depth,
658                                           unsigned Position,
659                                           SourceLocation EqualLoc,
660                                       const ParsedTemplateArgument &Default) {
661  assert(S->isTemplateParamScope() &&
662         "Template template parameter not in template parameter scope!");
663
664  // Construct the parameter object.
665  TemplateTemplateParmDecl *Param =
666    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
667                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
668                                     Depth, Position, Name,
669                                     (TemplateParameterList*)Params);
670
671  // If the template template parameter has a name, then link the identifier
672  // into the scope and lookup mechanisms.
673  if (Name) {
674    S->AddDecl(Param);
675    IdResolver.AddDecl(Param);
676  }
677
678  if (!Default.isInvalid()) {
679    // Check only that we have a template template argument. We don't want to
680    // try to check well-formedness now, because our template template parameter
681    // might have dependent types in its template parameters, which we wouldn't
682    // be able to match now.
683    //
684    // If none of the template template parameter's template arguments mention
685    // other template parameters, we could actually perform more checking here.
686    // However, it isn't worth doing.
687    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
688    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
689      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
690        << DefaultArg.getSourceRange();
691      return Param;
692    }
693
694    Param->setDefaultArgument(DefaultArg, false);
695  }
696
697  return Param;
698}
699
700/// ActOnTemplateParameterList - Builds a TemplateParameterList that
701/// contains the template parameters in Params/NumParams.
702Sema::TemplateParamsTy *
703Sema::ActOnTemplateParameterList(unsigned Depth,
704                                 SourceLocation ExportLoc,
705                                 SourceLocation TemplateLoc,
706                                 SourceLocation LAngleLoc,
707                                 Decl **Params, unsigned NumParams,
708                                 SourceLocation RAngleLoc) {
709  if (ExportLoc.isValid())
710    Diag(ExportLoc, diag::warn_template_export_unsupported);
711
712  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
713                                       (NamedDecl**)Params, NumParams,
714                                       RAngleLoc);
715}
716
717static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
718  if (SS.isSet())
719    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
720                        SS.getRange());
721}
722
723DeclResult
724Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
725                         SourceLocation KWLoc, CXXScopeSpec &SS,
726                         IdentifierInfo *Name, SourceLocation NameLoc,
727                         AttributeList *Attr,
728                         TemplateParameterList *TemplateParams,
729                         AccessSpecifier AS) {
730  assert(TemplateParams && TemplateParams->size() > 0 &&
731         "No template parameters");
732  assert(TUK != TUK_Reference && "Can only declare or define class templates");
733  bool Invalid = false;
734
735  // Check that we can declare a template here.
736  if (CheckTemplateDeclScope(S, TemplateParams))
737    return true;
738
739  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
740  assert(Kind != TTK_Enum && "can't build template of enumerated type");
741
742  // There is no such thing as an unnamed class template.
743  if (!Name) {
744    Diag(KWLoc, diag::err_template_unnamed_class);
745    return true;
746  }
747
748  // Find any previous declaration with this name.
749  DeclContext *SemanticContext;
750  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
751                        ForRedeclaration);
752  if (SS.isNotEmpty() && !SS.isInvalid()) {
753    SemanticContext = computeDeclContext(SS, true);
754    if (!SemanticContext) {
755      // FIXME: Produce a reasonable diagnostic here
756      return true;
757    }
758
759    if (RequireCompleteDeclContext(SS, SemanticContext))
760      return true;
761
762    LookupQualifiedName(Previous, SemanticContext);
763  } else {
764    SemanticContext = CurContext;
765    LookupName(Previous, S);
766  }
767
768  if (Previous.isAmbiguous())
769    return true;
770
771  NamedDecl *PrevDecl = 0;
772  if (Previous.begin() != Previous.end())
773    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
774
775  // If there is a previous declaration with the same name, check
776  // whether this is a valid redeclaration.
777  ClassTemplateDecl *PrevClassTemplate
778    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
779
780  // We may have found the injected-class-name of a class template,
781  // class template partial specialization, or class template specialization.
782  // In these cases, grab the template that is being defined or specialized.
783  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
784      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
785    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
786    PrevClassTemplate
787      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
788    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
789      PrevClassTemplate
790        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
791            ->getSpecializedTemplate();
792    }
793  }
794
795  if (TUK == TUK_Friend) {
796    // C++ [namespace.memdef]p3:
797    //   [...] When looking for a prior declaration of a class or a function
798    //   declared as a friend, and when the name of the friend class or
799    //   function is neither a qualified name nor a template-id, scopes outside
800    //   the innermost enclosing namespace scope are not considered.
801    if (!SS.isSet()) {
802      DeclContext *OutermostContext = CurContext;
803      while (!OutermostContext->isFileContext())
804        OutermostContext = OutermostContext->getLookupParent();
805
806      if (PrevDecl &&
807          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
808           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
809        SemanticContext = PrevDecl->getDeclContext();
810      } else {
811        // Declarations in outer scopes don't matter. However, the outermost
812        // context we computed is the semantic context for our new
813        // declaration.
814        PrevDecl = PrevClassTemplate = 0;
815        SemanticContext = OutermostContext;
816      }
817    }
818
819    if (CurContext->isDependentContext()) {
820      // If this is a dependent context, we don't want to link the friend
821      // class template to the template in scope, because that would perform
822      // checking of the template parameter lists that can't be performed
823      // until the outer context is instantiated.
824      PrevDecl = PrevClassTemplate = 0;
825    }
826  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
827    PrevDecl = PrevClassTemplate = 0;
828
829  if (PrevClassTemplate) {
830    // Ensure that the template parameter lists are compatible.
831    if (!TemplateParameterListsAreEqual(TemplateParams,
832                                   PrevClassTemplate->getTemplateParameters(),
833                                        /*Complain=*/true,
834                                        TPL_TemplateMatch))
835      return true;
836
837    // C++ [temp.class]p4:
838    //   In a redeclaration, partial specialization, explicit
839    //   specialization or explicit instantiation of a class template,
840    //   the class-key shall agree in kind with the original class
841    //   template declaration (7.1.5.3).
842    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
843    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
844      Diag(KWLoc, diag::err_use_with_wrong_tag)
845        << Name
846        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
847      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
848      Kind = PrevRecordDecl->getTagKind();
849    }
850
851    // Check for redefinition of this class template.
852    if (TUK == TUK_Definition) {
853      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
854        Diag(NameLoc, diag::err_redefinition) << Name;
855        Diag(Def->getLocation(), diag::note_previous_definition);
856        // FIXME: Would it make sense to try to "forget" the previous
857        // definition, as part of error recovery?
858        return true;
859      }
860    }
861  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
862    // Maybe we will complain about the shadowed template parameter.
863    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
864    // Just pretend that we didn't see the previous declaration.
865    PrevDecl = 0;
866  } else if (PrevDecl) {
867    // C++ [temp]p5:
868    //   A class template shall not have the same name as any other
869    //   template, class, function, object, enumeration, enumerator,
870    //   namespace, or type in the same scope (3.3), except as specified
871    //   in (14.5.4).
872    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
873    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
874    return true;
875  }
876
877  // Check the template parameter list of this declaration, possibly
878  // merging in the template parameter list from the previous class
879  // template declaration.
880  if (CheckTemplateParameterList(TemplateParams,
881            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
882                                 TPC_ClassTemplate))
883    Invalid = true;
884
885  if (SS.isSet()) {
886    // If the name of the template was qualified, we must be defining the
887    // template out-of-line.
888    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
889        !(TUK == TUK_Friend && CurContext->isDependentContext()))
890      Diag(NameLoc, diag::err_member_def_does_not_match)
891        << Name << SemanticContext << SS.getRange();
892  }
893
894  CXXRecordDecl *NewClass =
895    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
896                          PrevClassTemplate?
897                            PrevClassTemplate->getTemplatedDecl() : 0,
898                          /*DelayTypeCreation=*/true);
899  SetNestedNameSpecifier(NewClass, SS);
900
901  ClassTemplateDecl *NewTemplate
902    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
903                                DeclarationName(Name), TemplateParams,
904                                NewClass, PrevClassTemplate);
905  NewClass->setDescribedClassTemplate(NewTemplate);
906
907  // Build the type for the class template declaration now.
908  QualType T = NewTemplate->getInjectedClassNameSpecialization();
909  T = Context.getInjectedClassNameType(NewClass, T);
910  assert(T->isDependentType() && "Class template type is not dependent?");
911  (void)T;
912
913  // If we are providing an explicit specialization of a member that is a
914  // class template, make a note of that.
915  if (PrevClassTemplate &&
916      PrevClassTemplate->getInstantiatedFromMemberTemplate())
917    PrevClassTemplate->setMemberSpecialization();
918
919  // Set the access specifier.
920  if (!Invalid && TUK != TUK_Friend)
921    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
922
923  // Set the lexical context of these templates
924  NewClass->setLexicalDeclContext(CurContext);
925  NewTemplate->setLexicalDeclContext(CurContext);
926
927  if (TUK == TUK_Definition)
928    NewClass->startDefinition();
929
930  if (Attr)
931    ProcessDeclAttributeList(S, NewClass, Attr);
932
933  if (TUK != TUK_Friend)
934    PushOnScopeChains(NewTemplate, S);
935  else {
936    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
937      NewTemplate->setAccess(PrevClassTemplate->getAccess());
938      NewClass->setAccess(PrevClassTemplate->getAccess());
939    }
940
941    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
942                                       PrevClassTemplate != NULL);
943
944    // Friend templates are visible in fairly strange ways.
945    if (!CurContext->isDependentContext()) {
946      DeclContext *DC = SemanticContext->getRedeclContext();
947      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
948      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
949        PushOnScopeChains(NewTemplate, EnclosingScope,
950                          /* AddToContext = */ false);
951    }
952
953    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
954                                            NewClass->getLocation(),
955                                            NewTemplate,
956                                    /*FIXME:*/NewClass->getLocation());
957    Friend->setAccess(AS_public);
958    CurContext->addDecl(Friend);
959  }
960
961  if (Invalid) {
962    NewTemplate->setInvalidDecl();
963    NewClass->setInvalidDecl();
964  }
965  return NewTemplate;
966}
967
968/// \brief Diagnose the presence of a default template argument on a
969/// template parameter, which is ill-formed in certain contexts.
970///
971/// \returns true if the default template argument should be dropped.
972static bool DiagnoseDefaultTemplateArgument(Sema &S,
973                                            Sema::TemplateParamListContext TPC,
974                                            SourceLocation ParamLoc,
975                                            SourceRange DefArgRange) {
976  switch (TPC) {
977  case Sema::TPC_ClassTemplate:
978    return false;
979
980  case Sema::TPC_FunctionTemplate:
981    // C++ [temp.param]p9:
982    //   A default template-argument shall not be specified in a
983    //   function template declaration or a function template
984    //   definition [...]
985    // (This sentence is not in C++0x, per DR226).
986    if (!S.getLangOptions().CPlusPlus0x)
987      S.Diag(ParamLoc,
988             diag::err_template_parameter_default_in_function_template)
989        << DefArgRange;
990    return false;
991
992  case Sema::TPC_ClassTemplateMember:
993    // C++0x [temp.param]p9:
994    //   A default template-argument shall not be specified in the
995    //   template-parameter-lists of the definition of a member of a
996    //   class template that appears outside of the member's class.
997    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
998      << DefArgRange;
999    return true;
1000
1001  case Sema::TPC_FriendFunctionTemplate:
1002    // C++ [temp.param]p9:
1003    //   A default template-argument shall not be specified in a
1004    //   friend template declaration.
1005    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1006      << DefArgRange;
1007    return true;
1008
1009    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1010    // for friend function templates if there is only a single
1011    // declaration (and it is a definition). Strange!
1012  }
1013
1014  return false;
1015}
1016
1017/// \brief Checks the validity of a template parameter list, possibly
1018/// considering the template parameter list from a previous
1019/// declaration.
1020///
1021/// If an "old" template parameter list is provided, it must be
1022/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1023/// template parameter list.
1024///
1025/// \param NewParams Template parameter list for a new template
1026/// declaration. This template parameter list will be updated with any
1027/// default arguments that are carried through from the previous
1028/// template parameter list.
1029///
1030/// \param OldParams If provided, template parameter list from a
1031/// previous declaration of the same template. Default template
1032/// arguments will be merged from the old template parameter list to
1033/// the new template parameter list.
1034///
1035/// \param TPC Describes the context in which we are checking the given
1036/// template parameter list.
1037///
1038/// \returns true if an error occurred, false otherwise.
1039bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1040                                      TemplateParameterList *OldParams,
1041                                      TemplateParamListContext TPC) {
1042  bool Invalid = false;
1043
1044  // C++ [temp.param]p10:
1045  //   The set of default template-arguments available for use with a
1046  //   template declaration or definition is obtained by merging the
1047  //   default arguments from the definition (if in scope) and all
1048  //   declarations in scope in the same way default function
1049  //   arguments are (8.3.6).
1050  bool SawDefaultArgument = false;
1051  SourceLocation PreviousDefaultArgLoc;
1052
1053  bool SawParameterPack = false;
1054  SourceLocation ParameterPackLoc;
1055
1056  // Dummy initialization to avoid warnings.
1057  TemplateParameterList::iterator OldParam = NewParams->end();
1058  if (OldParams)
1059    OldParam = OldParams->begin();
1060
1061  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1062                                    NewParamEnd = NewParams->end();
1063       NewParam != NewParamEnd; ++NewParam) {
1064    // Variables used to diagnose redundant default arguments
1065    bool RedundantDefaultArg = false;
1066    SourceLocation OldDefaultLoc;
1067    SourceLocation NewDefaultLoc;
1068
1069    // Variables used to diagnose missing default arguments
1070    bool MissingDefaultArg = false;
1071
1072    // C++0x [temp.param]p11:
1073    // If a template parameter of a class template is a template parameter pack,
1074    // it must be the last template parameter.
1075    if (SawParameterPack) {
1076      Diag(ParameterPackLoc,
1077           diag::err_template_param_pack_must_be_last_template_parameter);
1078      Invalid = true;
1079    }
1080
1081    if (TemplateTypeParmDecl *NewTypeParm
1082          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1083      // Check the presence of a default argument here.
1084      if (NewTypeParm->hasDefaultArgument() &&
1085          DiagnoseDefaultTemplateArgument(*this, TPC,
1086                                          NewTypeParm->getLocation(),
1087               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1088                                                       .getSourceRange()))
1089        NewTypeParm->removeDefaultArgument();
1090
1091      // Merge default arguments for template type parameters.
1092      TemplateTypeParmDecl *OldTypeParm
1093          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1094
1095      if (NewTypeParm->isParameterPack()) {
1096        assert(!NewTypeParm->hasDefaultArgument() &&
1097               "Parameter packs can't have a default argument!");
1098        SawParameterPack = true;
1099        ParameterPackLoc = NewTypeParm->getLocation();
1100      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1101                 NewTypeParm->hasDefaultArgument()) {
1102        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1103        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1104        SawDefaultArgument = true;
1105        RedundantDefaultArg = true;
1106        PreviousDefaultArgLoc = NewDefaultLoc;
1107      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1108        // Merge the default argument from the old declaration to the
1109        // new declaration.
1110        SawDefaultArgument = true;
1111        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1112                                        true);
1113        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1114      } else if (NewTypeParm->hasDefaultArgument()) {
1115        SawDefaultArgument = true;
1116        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1117      } else if (SawDefaultArgument)
1118        MissingDefaultArg = true;
1119    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1120               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1121      // Check the presence of a default argument here.
1122      if (NewNonTypeParm->hasDefaultArgument() &&
1123          DiagnoseDefaultTemplateArgument(*this, TPC,
1124                                          NewNonTypeParm->getLocation(),
1125                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1126        NewNonTypeParm->removeDefaultArgument();
1127      }
1128
1129      // Merge default arguments for non-type template parameters
1130      NonTypeTemplateParmDecl *OldNonTypeParm
1131        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1132      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1133          NewNonTypeParm->hasDefaultArgument()) {
1134        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1135        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1136        SawDefaultArgument = true;
1137        RedundantDefaultArg = true;
1138        PreviousDefaultArgLoc = NewDefaultLoc;
1139      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1140        // Merge the default argument from the old declaration to the
1141        // new declaration.
1142        SawDefaultArgument = true;
1143        // FIXME: We need to create a new kind of "default argument"
1144        // expression that points to a previous template template
1145        // parameter.
1146        NewNonTypeParm->setDefaultArgument(
1147                                         OldNonTypeParm->getDefaultArgument(),
1148                                         /*Inherited=*/ true);
1149        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1150      } else if (NewNonTypeParm->hasDefaultArgument()) {
1151        SawDefaultArgument = true;
1152        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1153      } else if (SawDefaultArgument)
1154        MissingDefaultArg = true;
1155    } else {
1156      // Check the presence of a default argument here.
1157      TemplateTemplateParmDecl *NewTemplateParm
1158        = cast<TemplateTemplateParmDecl>(*NewParam);
1159      if (NewTemplateParm->hasDefaultArgument() &&
1160          DiagnoseDefaultTemplateArgument(*this, TPC,
1161                                          NewTemplateParm->getLocation(),
1162                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1163        NewTemplateParm->removeDefaultArgument();
1164
1165      // Merge default arguments for template template parameters
1166      TemplateTemplateParmDecl *OldTemplateParm
1167        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1168      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1169          NewTemplateParm->hasDefaultArgument()) {
1170        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1171        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1172        SawDefaultArgument = true;
1173        RedundantDefaultArg = true;
1174        PreviousDefaultArgLoc = NewDefaultLoc;
1175      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1176        // Merge the default argument from the old declaration to the
1177        // new declaration.
1178        SawDefaultArgument = true;
1179        // FIXME: We need to create a new kind of "default argument" expression
1180        // that points to a previous template template parameter.
1181        NewTemplateParm->setDefaultArgument(
1182                                          OldTemplateParm->getDefaultArgument(),
1183                                          /*Inherited=*/ true);
1184        PreviousDefaultArgLoc
1185          = OldTemplateParm->getDefaultArgument().getLocation();
1186      } else if (NewTemplateParm->hasDefaultArgument()) {
1187        SawDefaultArgument = true;
1188        PreviousDefaultArgLoc
1189          = NewTemplateParm->getDefaultArgument().getLocation();
1190      } else if (SawDefaultArgument)
1191        MissingDefaultArg = true;
1192    }
1193
1194    if (RedundantDefaultArg) {
1195      // C++ [temp.param]p12:
1196      //   A template-parameter shall not be given default arguments
1197      //   by two different declarations in the same scope.
1198      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1199      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1200      Invalid = true;
1201    } else if (MissingDefaultArg) {
1202      // C++ [temp.param]p11:
1203      //   If a template-parameter has a default template-argument,
1204      //   all subsequent template-parameters shall have a default
1205      //   template-argument supplied.
1206      Diag((*NewParam)->getLocation(),
1207           diag::err_template_param_default_arg_missing);
1208      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1209      Invalid = true;
1210    }
1211
1212    // If we have an old template parameter list that we're merging
1213    // in, move on to the next parameter.
1214    if (OldParams)
1215      ++OldParam;
1216  }
1217
1218  return Invalid;
1219}
1220
1221namespace {
1222
1223/// A class which looks for a use of a certain level of template
1224/// parameter.
1225struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1226  typedef RecursiveASTVisitor<DependencyChecker> super;
1227
1228  unsigned Depth;
1229  bool Match;
1230
1231  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1232    NamedDecl *ND = Params->getParam(0);
1233    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1234      Depth = PD->getDepth();
1235    } else if (NonTypeTemplateParmDecl *PD =
1236                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1237      Depth = PD->getDepth();
1238    } else {
1239      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1240    }
1241  }
1242
1243  bool Matches(unsigned ParmDepth) {
1244    if (ParmDepth >= Depth) {
1245      Match = true;
1246      return true;
1247    }
1248    return false;
1249  }
1250
1251  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1252    return !Matches(T->getDepth());
1253  }
1254
1255  bool TraverseTemplateName(TemplateName N) {
1256    if (TemplateTemplateParmDecl *PD =
1257          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1258      if (Matches(PD->getDepth())) return false;
1259    return super::TraverseTemplateName(N);
1260  }
1261
1262  bool VisitDeclRefExpr(DeclRefExpr *E) {
1263    if (NonTypeTemplateParmDecl *PD =
1264          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1265      if (PD->getDepth() == Depth) {
1266        Match = true;
1267        return false;
1268      }
1269    }
1270    return super::VisitDeclRefExpr(E);
1271  }
1272};
1273}
1274
1275/// Determines whether a template-id depends on the given parameter
1276/// list.
1277static bool
1278DependsOnTemplateParameters(const TemplateSpecializationType *TemplateId,
1279                            TemplateParameterList *Params) {
1280  DependencyChecker Checker(Params);
1281  Checker.TraverseType(QualType(TemplateId, 0));
1282  return Checker.Match;
1283}
1284
1285/// \brief Match the given template parameter lists to the given scope
1286/// specifier, returning the template parameter list that applies to the
1287/// name.
1288///
1289/// \param DeclStartLoc the start of the declaration that has a scope
1290/// specifier or a template parameter list.
1291///
1292/// \param SS the scope specifier that will be matched to the given template
1293/// parameter lists. This scope specifier precedes a qualified name that is
1294/// being declared.
1295///
1296/// \param ParamLists the template parameter lists, from the outermost to the
1297/// innermost template parameter lists.
1298///
1299/// \param NumParamLists the number of template parameter lists in ParamLists.
1300///
1301/// \param IsFriend Whether to apply the slightly different rules for
1302/// matching template parameters to scope specifiers in friend
1303/// declarations.
1304///
1305/// \param IsExplicitSpecialization will be set true if the entity being
1306/// declared is an explicit specialization, false otherwise.
1307///
1308/// \returns the template parameter list, if any, that corresponds to the
1309/// name that is preceded by the scope specifier @p SS. This template
1310/// parameter list may be have template parameters (if we're declaring a
1311/// template) or may have no template parameters (if we're declaring a
1312/// template specialization), or may be NULL (if we were's declaring isn't
1313/// itself a template).
1314TemplateParameterList *
1315Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1316                                              const CXXScopeSpec &SS,
1317                                          TemplateParameterList **ParamLists,
1318                                              unsigned NumParamLists,
1319                                              bool IsFriend,
1320                                              bool &IsExplicitSpecialization,
1321                                              bool &Invalid) {
1322  IsExplicitSpecialization = false;
1323
1324  // Find the template-ids that occur within the nested-name-specifier. These
1325  // template-ids will match up with the template parameter lists.
1326  llvm::SmallVector<const TemplateSpecializationType *, 4>
1327    TemplateIdsInSpecifier;
1328  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1329    ExplicitSpecializationsInSpecifier;
1330  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1331       NNS; NNS = NNS->getPrefix()) {
1332    const Type *T = NNS->getAsType();
1333    if (!T) break;
1334
1335    // C++0x [temp.expl.spec]p17:
1336    //   A member or a member template may be nested within many
1337    //   enclosing class templates. In an explicit specialization for
1338    //   such a member, the member declaration shall be preceded by a
1339    //   template<> for each enclosing class template that is
1340    //   explicitly specialized.
1341    //
1342    // Following the existing practice of GNU and EDG, we allow a typedef of a
1343    // template specialization type.
1344    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1345      T = TT->LookThroughTypedefs().getTypePtr();
1346
1347    if (const TemplateSpecializationType *SpecType
1348                                  = dyn_cast<TemplateSpecializationType>(T)) {
1349      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1350      if (!Template)
1351        continue; // FIXME: should this be an error? probably...
1352
1353      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1354        ClassTemplateSpecializationDecl *SpecDecl
1355          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1356        // If the nested name specifier refers to an explicit specialization,
1357        // we don't need a template<> header.
1358        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1359          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1360          continue;
1361        }
1362      }
1363
1364      TemplateIdsInSpecifier.push_back(SpecType);
1365    }
1366  }
1367
1368  // Reverse the list of template-ids in the scope specifier, so that we can
1369  // more easily match up the template-ids and the template parameter lists.
1370  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1371
1372  SourceLocation FirstTemplateLoc = DeclStartLoc;
1373  if (NumParamLists)
1374    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1375
1376  // Match the template-ids found in the specifier to the template parameter
1377  // lists.
1378  unsigned ParamIdx = 0, TemplateIdx = 0;
1379  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1380       TemplateIdx != NumTemplateIds; ++TemplateIdx) {
1381    const TemplateSpecializationType *TemplateId
1382      = TemplateIdsInSpecifier[TemplateIdx];
1383    bool DependentTemplateId = TemplateId->isDependentType();
1384
1385    // In friend declarations we can have template-ids which don't
1386    // depend on the corresponding template parameter lists.  But
1387    // assume that empty parameter lists are supposed to match this
1388    // template-id.
1389    if (IsFriend && ParamIdx < NumParamLists && ParamLists[ParamIdx]->size()) {
1390      if (!DependentTemplateId ||
1391          !DependsOnTemplateParameters(TemplateId, ParamLists[ParamIdx]))
1392        continue;
1393    }
1394
1395    if (ParamIdx >= NumParamLists) {
1396      // We have a template-id without a corresponding template parameter
1397      // list.
1398
1399      // ...which is fine if this is a friend declaration.
1400      if (IsFriend) {
1401        IsExplicitSpecialization = true;
1402        break;
1403      }
1404
1405      if (DependentTemplateId) {
1406        // FIXME: the location information here isn't great.
1407        Diag(SS.getRange().getBegin(),
1408             diag::err_template_spec_needs_template_parameters)
1409          << QualType(TemplateId, 0)
1410          << SS.getRange();
1411        Invalid = true;
1412      } else {
1413        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1414          << SS.getRange()
1415          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1416        IsExplicitSpecialization = true;
1417      }
1418      return 0;
1419    }
1420
1421    // Check the template parameter list against its corresponding template-id.
1422    if (DependentTemplateId) {
1423      TemplateParameterList *ExpectedTemplateParams = 0;
1424
1425      // Are there cases in (e.g.) friends where this won't match?
1426      if (const InjectedClassNameType *Injected
1427            = TemplateId->getAs<InjectedClassNameType>()) {
1428        CXXRecordDecl *Record = Injected->getDecl();
1429        if (ClassTemplatePartialSpecializationDecl *Partial =
1430              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1431          ExpectedTemplateParams = Partial->getTemplateParameters();
1432        else
1433          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1434            ->getTemplateParameters();
1435      }
1436
1437      if (ExpectedTemplateParams)
1438        TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1439                                       ExpectedTemplateParams,
1440                                       true, TPL_TemplateMatch);
1441
1442      CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1443                                 TPC_ClassTemplateMember);
1444    } else if (ParamLists[ParamIdx]->size() > 0)
1445      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1446           diag::err_template_param_list_matches_nontemplate)
1447        << TemplateId
1448        << ParamLists[ParamIdx]->getSourceRange();
1449    else
1450      IsExplicitSpecialization = true;
1451
1452    ++ParamIdx;
1453  }
1454
1455  // If there were at least as many template-ids as there were template
1456  // parameter lists, then there are no template parameter lists remaining for
1457  // the declaration itself.
1458  if (ParamIdx >= NumParamLists)
1459    return 0;
1460
1461  // If there were too many template parameter lists, complain about that now.
1462  if (ParamIdx != NumParamLists - 1) {
1463    while (ParamIdx < NumParamLists - 1) {
1464      bool isExplicitSpecHeader = ParamLists[ParamIdx]->size() == 0;
1465      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1466           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1467                               : diag::err_template_spec_extra_headers)
1468        << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1469                       ParamLists[ParamIdx]->getRAngleLoc());
1470
1471      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1472        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1473             diag::note_explicit_template_spec_does_not_need_header)
1474          << ExplicitSpecializationsInSpecifier.back();
1475        ExplicitSpecializationsInSpecifier.pop_back();
1476      }
1477
1478      // We have a template parameter list with no corresponding scope, which
1479      // means that the resulting template declaration can't be instantiated
1480      // properly (we'll end up with dependent nodes when we shouldn't).
1481      if (!isExplicitSpecHeader)
1482        Invalid = true;
1483
1484      ++ParamIdx;
1485    }
1486  }
1487
1488  // Return the last template parameter list, which corresponds to the
1489  // entity being declared.
1490  return ParamLists[NumParamLists - 1];
1491}
1492
1493QualType Sema::CheckTemplateIdType(TemplateName Name,
1494                                   SourceLocation TemplateLoc,
1495                              const TemplateArgumentListInfo &TemplateArgs) {
1496  TemplateDecl *Template = Name.getAsTemplateDecl();
1497  if (!Template) {
1498    // The template name does not resolve to a template, so we just
1499    // build a dependent template-id type.
1500    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1501  }
1502
1503  // Check that the template argument list is well-formed for this
1504  // template.
1505  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1506                                        TemplateArgs.size());
1507  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1508                                false, Converted))
1509    return QualType();
1510
1511  assert((Converted.structuredSize() ==
1512            Template->getTemplateParameters()->size()) &&
1513         "Converted template argument list is too short!");
1514
1515  QualType CanonType;
1516
1517  if (Name.isDependent() ||
1518      TemplateSpecializationType::anyDependentTemplateArguments(
1519                                                      TemplateArgs)) {
1520    // This class template specialization is a dependent
1521    // type. Therefore, its canonical type is another class template
1522    // specialization type that contains all of the converted
1523    // arguments in canonical form. This ensures that, e.g., A<T> and
1524    // A<T, T> have identical types when A is declared as:
1525    //
1526    //   template<typename T, typename U = T> struct A;
1527    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1528    CanonType = Context.getTemplateSpecializationType(CanonName,
1529                                                   Converted.getFlatArguments(),
1530                                                   Converted.flatSize());
1531
1532    // FIXME: CanonType is not actually the canonical type, and unfortunately
1533    // it is a TemplateSpecializationType that we will never use again.
1534    // In the future, we need to teach getTemplateSpecializationType to only
1535    // build the canonical type and return that to us.
1536    CanonType = Context.getCanonicalType(CanonType);
1537
1538    // This might work out to be a current instantiation, in which
1539    // case the canonical type needs to be the InjectedClassNameType.
1540    //
1541    // TODO: in theory this could be a simple hashtable lookup; most
1542    // changes to CurContext don't change the set of current
1543    // instantiations.
1544    if (isa<ClassTemplateDecl>(Template)) {
1545      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1546        // If we get out to a namespace, we're done.
1547        if (Ctx->isFileContext()) break;
1548
1549        // If this isn't a record, keep looking.
1550        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1551        if (!Record) continue;
1552
1553        // Look for one of the two cases with InjectedClassNameTypes
1554        // and check whether it's the same template.
1555        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1556            !Record->getDescribedClassTemplate())
1557          continue;
1558
1559        // Fetch the injected class name type and check whether its
1560        // injected type is equal to the type we just built.
1561        QualType ICNT = Context.getTypeDeclType(Record);
1562        QualType Injected = cast<InjectedClassNameType>(ICNT)
1563          ->getInjectedSpecializationType();
1564
1565        if (CanonType != Injected->getCanonicalTypeInternal())
1566          continue;
1567
1568        // If so, the canonical type of this TST is the injected
1569        // class name type of the record we just found.
1570        assert(ICNT.isCanonical());
1571        CanonType = ICNT;
1572        break;
1573      }
1574    }
1575  } else if (ClassTemplateDecl *ClassTemplate
1576               = dyn_cast<ClassTemplateDecl>(Template)) {
1577    // Find the class template specialization declaration that
1578    // corresponds to these arguments.
1579    void *InsertPos = 0;
1580    ClassTemplateSpecializationDecl *Decl
1581      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
1582                                          Converted.flatSize(), InsertPos);
1583    if (!Decl) {
1584      // This is the first time we have referenced this class template
1585      // specialization. Create the canonical declaration and add it to
1586      // the set of specializations.
1587      Decl = ClassTemplateSpecializationDecl::Create(Context,
1588                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1589                                                ClassTemplate->getDeclContext(),
1590                                                ClassTemplate->getLocation(),
1591                                                ClassTemplate,
1592                                                Converted, 0);
1593      ClassTemplate->AddSpecialization(Decl, InsertPos);
1594      Decl->setLexicalDeclContext(CurContext);
1595    }
1596
1597    CanonType = Context.getTypeDeclType(Decl);
1598    assert(isa<RecordType>(CanonType) &&
1599           "type of non-dependent specialization is not a RecordType");
1600  }
1601
1602  // Build the fully-sugared type for this class template
1603  // specialization, which refers back to the class template
1604  // specialization we created or found.
1605  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1606}
1607
1608TypeResult
1609Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1610                          SourceLocation LAngleLoc,
1611                          ASTTemplateArgsPtr TemplateArgsIn,
1612                          SourceLocation RAngleLoc) {
1613  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1614
1615  // Translate the parser's template argument list in our AST format.
1616  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1617  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1618
1619  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1620  TemplateArgsIn.release();
1621
1622  if (Result.isNull())
1623    return true;
1624
1625  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1626  TemplateSpecializationTypeLoc TL
1627    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1628  TL.setTemplateNameLoc(TemplateLoc);
1629  TL.setLAngleLoc(LAngleLoc);
1630  TL.setRAngleLoc(RAngleLoc);
1631  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1632    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1633
1634  return CreateParsedType(Result, DI);
1635}
1636
1637TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1638                                        TagUseKind TUK,
1639                                        TypeSpecifierType TagSpec,
1640                                        SourceLocation TagLoc) {
1641  if (TypeResult.isInvalid())
1642    return ::TypeResult();
1643
1644  // FIXME: preserve source info, ideally without copying the DI.
1645  TypeSourceInfo *DI;
1646  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1647
1648  // Verify the tag specifier.
1649  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1650
1651  if (const RecordType *RT = Type->getAs<RecordType>()) {
1652    RecordDecl *D = RT->getDecl();
1653
1654    IdentifierInfo *Id = D->getIdentifier();
1655    assert(Id && "templated class must have an identifier");
1656
1657    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1658      Diag(TagLoc, diag::err_use_with_wrong_tag)
1659        << Type
1660        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1661      Diag(D->getLocation(), diag::note_previous_use);
1662    }
1663  }
1664
1665  ElaboratedTypeKeyword Keyword
1666    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1667  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1668
1669  return ParsedType::make(ElabType);
1670}
1671
1672ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1673                                                 LookupResult &R,
1674                                                 bool RequiresADL,
1675                                 const TemplateArgumentListInfo &TemplateArgs) {
1676  // FIXME: Can we do any checking at this point? I guess we could check the
1677  // template arguments that we have against the template name, if the template
1678  // name refers to a single template. That's not a terribly common case,
1679  // though.
1680
1681  // These should be filtered out by our callers.
1682  assert(!R.empty() && "empty lookup results when building templateid");
1683  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1684
1685  NestedNameSpecifier *Qualifier = 0;
1686  SourceRange QualifierRange;
1687  if (SS.isSet()) {
1688    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1689    QualifierRange = SS.getRange();
1690  }
1691
1692  // We don't want lookup warnings at this point.
1693  R.suppressDiagnostics();
1694
1695  bool Dependent
1696    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1697                                              &TemplateArgs);
1698  UnresolvedLookupExpr *ULE
1699    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1700                                   Qualifier, QualifierRange,
1701                                   R.getLookupNameInfo(),
1702                                   RequiresADL, TemplateArgs,
1703                                   R.begin(), R.end());
1704
1705  return Owned(ULE);
1706}
1707
1708// We actually only call this from template instantiation.
1709ExprResult
1710Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1711                                   const DeclarationNameInfo &NameInfo,
1712                             const TemplateArgumentListInfo &TemplateArgs) {
1713  DeclContext *DC;
1714  if (!(DC = computeDeclContext(SS, false)) ||
1715      DC->isDependentContext() ||
1716      RequireCompleteDeclContext(SS, DC))
1717    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1718
1719  bool MemberOfUnknownSpecialization;
1720  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1721  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1722                     MemberOfUnknownSpecialization);
1723
1724  if (R.isAmbiguous())
1725    return ExprError();
1726
1727  if (R.empty()) {
1728    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1729      << NameInfo.getName() << SS.getRange();
1730    return ExprError();
1731  }
1732
1733  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1734    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1735      << (NestedNameSpecifier*) SS.getScopeRep()
1736      << NameInfo.getName() << SS.getRange();
1737    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1738    return ExprError();
1739  }
1740
1741  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1742}
1743
1744/// \brief Form a dependent template name.
1745///
1746/// This action forms a dependent template name given the template
1747/// name and its (presumably dependent) scope specifier. For
1748/// example, given "MetaFun::template apply", the scope specifier \p
1749/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1750/// of the "template" keyword, and "apply" is the \p Name.
1751TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1752                                                  SourceLocation TemplateKWLoc,
1753                                                  CXXScopeSpec &SS,
1754                                                  UnqualifiedId &Name,
1755                                                  ParsedType ObjectType,
1756                                                  bool EnteringContext,
1757                                                  TemplateTy &Result) {
1758  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1759      !getLangOptions().CPlusPlus0x)
1760    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1761      << FixItHint::CreateRemoval(TemplateKWLoc);
1762
1763  DeclContext *LookupCtx = 0;
1764  if (SS.isSet())
1765    LookupCtx = computeDeclContext(SS, EnteringContext);
1766  if (!LookupCtx && ObjectType)
1767    LookupCtx = computeDeclContext(ObjectType.get());
1768  if (LookupCtx) {
1769    // C++0x [temp.names]p5:
1770    //   If a name prefixed by the keyword template is not the name of
1771    //   a template, the program is ill-formed. [Note: the keyword
1772    //   template may not be applied to non-template members of class
1773    //   templates. -end note ] [ Note: as is the case with the
1774    //   typename prefix, the template prefix is allowed in cases
1775    //   where it is not strictly necessary; i.e., when the
1776    //   nested-name-specifier or the expression on the left of the ->
1777    //   or . is not dependent on a template-parameter, or the use
1778    //   does not appear in the scope of a template. -end note]
1779    //
1780    // Note: C++03 was more strict here, because it banned the use of
1781    // the "template" keyword prior to a template-name that was not a
1782    // dependent name. C++ DR468 relaxed this requirement (the
1783    // "template" keyword is now permitted). We follow the C++0x
1784    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1785    bool MemberOfUnknownSpecialization;
1786    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1787                                          ObjectType, EnteringContext, Result,
1788                                          MemberOfUnknownSpecialization);
1789    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1790        isa<CXXRecordDecl>(LookupCtx) &&
1791        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1792      // This is a dependent template. Handle it below.
1793    } else if (TNK == TNK_Non_template) {
1794      Diag(Name.getSourceRange().getBegin(),
1795           diag::err_template_kw_refers_to_non_template)
1796        << GetNameFromUnqualifiedId(Name).getName()
1797        << Name.getSourceRange()
1798        << TemplateKWLoc;
1799      return TNK_Non_template;
1800    } else {
1801      // We found something; return it.
1802      return TNK;
1803    }
1804  }
1805
1806  NestedNameSpecifier *Qualifier
1807    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1808
1809  switch (Name.getKind()) {
1810  case UnqualifiedId::IK_Identifier:
1811    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1812                                                              Name.Identifier));
1813    return TNK_Dependent_template_name;
1814
1815  case UnqualifiedId::IK_OperatorFunctionId:
1816    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1817                                             Name.OperatorFunctionId.Operator));
1818    return TNK_Dependent_template_name;
1819
1820  case UnqualifiedId::IK_LiteralOperatorId:
1821    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1822
1823  default:
1824    break;
1825  }
1826
1827  Diag(Name.getSourceRange().getBegin(),
1828       diag::err_template_kw_refers_to_non_template)
1829    << GetNameFromUnqualifiedId(Name).getName()
1830    << Name.getSourceRange()
1831    << TemplateKWLoc;
1832  return TNK_Non_template;
1833}
1834
1835bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1836                                     const TemplateArgumentLoc &AL,
1837                                     TemplateArgumentListBuilder &Converted) {
1838  const TemplateArgument &Arg = AL.getArgument();
1839
1840  // Check template type parameter.
1841  switch(Arg.getKind()) {
1842  case TemplateArgument::Type:
1843    // C++ [temp.arg.type]p1:
1844    //   A template-argument for a template-parameter which is a
1845    //   type shall be a type-id.
1846    break;
1847  case TemplateArgument::Template: {
1848    // We have a template type parameter but the template argument
1849    // is a template without any arguments.
1850    SourceRange SR = AL.getSourceRange();
1851    TemplateName Name = Arg.getAsTemplate();
1852    Diag(SR.getBegin(), diag::err_template_missing_args)
1853      << Name << SR;
1854    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1855      Diag(Decl->getLocation(), diag::note_template_decl_here);
1856
1857    return true;
1858  }
1859  default: {
1860    // We have a template type parameter but the template argument
1861    // is not a type.
1862    SourceRange SR = AL.getSourceRange();
1863    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1864    Diag(Param->getLocation(), diag::note_template_param_here);
1865
1866    return true;
1867  }
1868  }
1869
1870  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1871    return true;
1872
1873  // Add the converted template type argument.
1874  Converted.Append(
1875                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1876  return false;
1877}
1878
1879/// \brief Substitute template arguments into the default template argument for
1880/// the given template type parameter.
1881///
1882/// \param SemaRef the semantic analysis object for which we are performing
1883/// the substitution.
1884///
1885/// \param Template the template that we are synthesizing template arguments
1886/// for.
1887///
1888/// \param TemplateLoc the location of the template name that started the
1889/// template-id we are checking.
1890///
1891/// \param RAngleLoc the location of the right angle bracket ('>') that
1892/// terminates the template-id.
1893///
1894/// \param Param the template template parameter whose default we are
1895/// substituting into.
1896///
1897/// \param Converted the list of template arguments provided for template
1898/// parameters that precede \p Param in the template parameter list.
1899///
1900/// \returns the substituted template argument, or NULL if an error occurred.
1901static TypeSourceInfo *
1902SubstDefaultTemplateArgument(Sema &SemaRef,
1903                             TemplateDecl *Template,
1904                             SourceLocation TemplateLoc,
1905                             SourceLocation RAngleLoc,
1906                             TemplateTypeParmDecl *Param,
1907                             TemplateArgumentListBuilder &Converted) {
1908  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1909
1910  // If the argument type is dependent, instantiate it now based
1911  // on the previously-computed template arguments.
1912  if (ArgType->getType()->isDependentType()) {
1913    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1914                                      /*TakeArgs=*/false);
1915
1916    MultiLevelTemplateArgumentList AllTemplateArgs
1917      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1918
1919    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1920                                     Template, Converted.getFlatArguments(),
1921                                     Converted.flatSize(),
1922                                     SourceRange(TemplateLoc, RAngleLoc));
1923
1924    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1925                                Param->getDefaultArgumentLoc(),
1926                                Param->getDeclName());
1927  }
1928
1929  return ArgType;
1930}
1931
1932/// \brief Substitute template arguments into the default template argument for
1933/// the given non-type template parameter.
1934///
1935/// \param SemaRef the semantic analysis object for which we are performing
1936/// the substitution.
1937///
1938/// \param Template the template that we are synthesizing template arguments
1939/// for.
1940///
1941/// \param TemplateLoc the location of the template name that started the
1942/// template-id we are checking.
1943///
1944/// \param RAngleLoc the location of the right angle bracket ('>') that
1945/// terminates the template-id.
1946///
1947/// \param Param the non-type template parameter whose default we are
1948/// substituting into.
1949///
1950/// \param Converted the list of template arguments provided for template
1951/// parameters that precede \p Param in the template parameter list.
1952///
1953/// \returns the substituted template argument, or NULL if an error occurred.
1954static ExprResult
1955SubstDefaultTemplateArgument(Sema &SemaRef,
1956                             TemplateDecl *Template,
1957                             SourceLocation TemplateLoc,
1958                             SourceLocation RAngleLoc,
1959                             NonTypeTemplateParmDecl *Param,
1960                             TemplateArgumentListBuilder &Converted) {
1961  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1962                                    /*TakeArgs=*/false);
1963
1964  MultiLevelTemplateArgumentList AllTemplateArgs
1965    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1966
1967  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1968                                   Template, Converted.getFlatArguments(),
1969                                   Converted.flatSize(),
1970                                   SourceRange(TemplateLoc, RAngleLoc));
1971
1972  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1973}
1974
1975/// \brief Substitute template arguments into the default template argument for
1976/// the given template template parameter.
1977///
1978/// \param SemaRef the semantic analysis object for which we are performing
1979/// the substitution.
1980///
1981/// \param Template the template that we are synthesizing template arguments
1982/// for.
1983///
1984/// \param TemplateLoc the location of the template name that started the
1985/// template-id we are checking.
1986///
1987/// \param RAngleLoc the location of the right angle bracket ('>') that
1988/// terminates the template-id.
1989///
1990/// \param Param the template template parameter whose default we are
1991/// substituting into.
1992///
1993/// \param Converted the list of template arguments provided for template
1994/// parameters that precede \p Param in the template parameter list.
1995///
1996/// \returns the substituted template argument, or NULL if an error occurred.
1997static TemplateName
1998SubstDefaultTemplateArgument(Sema &SemaRef,
1999                             TemplateDecl *Template,
2000                             SourceLocation TemplateLoc,
2001                             SourceLocation RAngleLoc,
2002                             TemplateTemplateParmDecl *Param,
2003                             TemplateArgumentListBuilder &Converted) {
2004  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
2005                                    /*TakeArgs=*/false);
2006
2007  MultiLevelTemplateArgumentList AllTemplateArgs
2008    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2009
2010  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2011                                   Template, Converted.getFlatArguments(),
2012                                   Converted.flatSize(),
2013                                   SourceRange(TemplateLoc, RAngleLoc));
2014
2015  return SemaRef.SubstTemplateName(
2016                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2017                              Param->getDefaultArgument().getTemplateNameLoc(),
2018                                   AllTemplateArgs);
2019}
2020
2021/// \brief If the given template parameter has a default template
2022/// argument, substitute into that default template argument and
2023/// return the corresponding template argument.
2024TemplateArgumentLoc
2025Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2026                                              SourceLocation TemplateLoc,
2027                                              SourceLocation RAngleLoc,
2028                                              Decl *Param,
2029                                     TemplateArgumentListBuilder &Converted) {
2030  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2031    if (!TypeParm->hasDefaultArgument())
2032      return TemplateArgumentLoc();
2033
2034    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2035                                                      TemplateLoc,
2036                                                      RAngleLoc,
2037                                                      TypeParm,
2038                                                      Converted);
2039    if (DI)
2040      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2041
2042    return TemplateArgumentLoc();
2043  }
2044
2045  if (NonTypeTemplateParmDecl *NonTypeParm
2046        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2047    if (!NonTypeParm->hasDefaultArgument())
2048      return TemplateArgumentLoc();
2049
2050    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2051                                                        TemplateLoc,
2052                                                        RAngleLoc,
2053                                                        NonTypeParm,
2054                                                        Converted);
2055    if (Arg.isInvalid())
2056      return TemplateArgumentLoc();
2057
2058    Expr *ArgE = Arg.takeAs<Expr>();
2059    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2060  }
2061
2062  TemplateTemplateParmDecl *TempTempParm
2063    = cast<TemplateTemplateParmDecl>(Param);
2064  if (!TempTempParm->hasDefaultArgument())
2065    return TemplateArgumentLoc();
2066
2067  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2068                                                    TemplateLoc,
2069                                                    RAngleLoc,
2070                                                    TempTempParm,
2071                                                    Converted);
2072  if (TName.isNull())
2073    return TemplateArgumentLoc();
2074
2075  return TemplateArgumentLoc(TemplateArgument(TName),
2076                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
2077                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2078}
2079
2080/// \brief Check that the given template argument corresponds to the given
2081/// template parameter.
2082bool Sema::CheckTemplateArgument(NamedDecl *Param,
2083                                 const TemplateArgumentLoc &Arg,
2084                                 TemplateDecl *Template,
2085                                 SourceLocation TemplateLoc,
2086                                 SourceLocation RAngleLoc,
2087                                 TemplateArgumentListBuilder &Converted,
2088                                 CheckTemplateArgumentKind CTAK) {
2089  // Check template type parameters.
2090  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2091    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2092
2093  // Check non-type template parameters.
2094  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2095    // Do substitution on the type of the non-type template parameter
2096    // with the template arguments we've seen thus far.
2097    QualType NTTPType = NTTP->getType();
2098    if (NTTPType->isDependentType()) {
2099      // Do substitution on the type of the non-type template parameter.
2100      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2101                                 NTTP, Converted.getFlatArguments(),
2102                                 Converted.flatSize(),
2103                                 SourceRange(TemplateLoc, RAngleLoc));
2104
2105      TemplateArgumentList TemplateArgs(Context, Converted,
2106                                        /*TakeArgs=*/false);
2107      NTTPType = SubstType(NTTPType,
2108                           MultiLevelTemplateArgumentList(TemplateArgs),
2109                           NTTP->getLocation(),
2110                           NTTP->getDeclName());
2111      // If that worked, check the non-type template parameter type
2112      // for validity.
2113      if (!NTTPType.isNull())
2114        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2115                                                     NTTP->getLocation());
2116      if (NTTPType.isNull())
2117        return true;
2118    }
2119
2120    switch (Arg.getArgument().getKind()) {
2121    case TemplateArgument::Null:
2122      assert(false && "Should never see a NULL template argument here");
2123      return true;
2124
2125    case TemplateArgument::Expression: {
2126      Expr *E = Arg.getArgument().getAsExpr();
2127      TemplateArgument Result;
2128      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2129        return true;
2130
2131      Converted.Append(Result);
2132      break;
2133    }
2134
2135    case TemplateArgument::Declaration:
2136    case TemplateArgument::Integral:
2137      // We've already checked this template argument, so just copy
2138      // it to the list of converted arguments.
2139      Converted.Append(Arg.getArgument());
2140      break;
2141
2142    case TemplateArgument::Template:
2143      // We were given a template template argument. It may not be ill-formed;
2144      // see below.
2145      if (DependentTemplateName *DTN
2146            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2147        // We have a template argument such as \c T::template X, which we
2148        // parsed as a template template argument. However, since we now
2149        // know that we need a non-type template argument, convert this
2150        // template name into an expression.
2151
2152        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2153                                     Arg.getTemplateNameLoc());
2154
2155        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2156                                                    DTN->getQualifier(),
2157                                               Arg.getTemplateQualifierRange(),
2158                                                    NameInfo);
2159
2160        TemplateArgument Result;
2161        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2162          return true;
2163
2164        Converted.Append(Result);
2165        break;
2166      }
2167
2168      // We have a template argument that actually does refer to a class
2169      // template, template alias, or template template parameter, and
2170      // therefore cannot be a non-type template argument.
2171      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2172        << Arg.getSourceRange();
2173
2174      Diag(Param->getLocation(), diag::note_template_param_here);
2175      return true;
2176
2177    case TemplateArgument::Type: {
2178      // We have a non-type template parameter but the template
2179      // argument is a type.
2180
2181      // C++ [temp.arg]p2:
2182      //   In a template-argument, an ambiguity between a type-id and
2183      //   an expression is resolved to a type-id, regardless of the
2184      //   form of the corresponding template-parameter.
2185      //
2186      // We warn specifically about this case, since it can be rather
2187      // confusing for users.
2188      QualType T = Arg.getArgument().getAsType();
2189      SourceRange SR = Arg.getSourceRange();
2190      if (T->isFunctionType())
2191        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2192      else
2193        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2194      Diag(Param->getLocation(), diag::note_template_param_here);
2195      return true;
2196    }
2197
2198    case TemplateArgument::Pack:
2199      llvm_unreachable("Caller must expand template argument packs");
2200      break;
2201    }
2202
2203    return false;
2204  }
2205
2206
2207  // Check template template parameters.
2208  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2209
2210  // Substitute into the template parameter list of the template
2211  // template parameter, since previously-supplied template arguments
2212  // may appear within the template template parameter.
2213  {
2214    // Set up a template instantiation context.
2215    LocalInstantiationScope Scope(*this);
2216    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2217                               TempParm, Converted.getFlatArguments(),
2218                               Converted.flatSize(),
2219                               SourceRange(TemplateLoc, RAngleLoc));
2220
2221    TemplateArgumentList TemplateArgs(Context, Converted,
2222                                      /*TakeArgs=*/false);
2223    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2224                      SubstDecl(TempParm, CurContext,
2225                                MultiLevelTemplateArgumentList(TemplateArgs)));
2226    if (!TempParm)
2227      return true;
2228
2229    // FIXME: TempParam is leaked.
2230  }
2231
2232  switch (Arg.getArgument().getKind()) {
2233  case TemplateArgument::Null:
2234    assert(false && "Should never see a NULL template argument here");
2235    return true;
2236
2237  case TemplateArgument::Template:
2238    if (CheckTemplateArgument(TempParm, Arg))
2239      return true;
2240
2241    Converted.Append(Arg.getArgument());
2242    break;
2243
2244  case TemplateArgument::Expression:
2245  case TemplateArgument::Type:
2246    // We have a template template parameter but the template
2247    // argument does not refer to a template.
2248    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2249    return true;
2250
2251  case TemplateArgument::Declaration:
2252    llvm_unreachable(
2253                       "Declaration argument with template template parameter");
2254    break;
2255  case TemplateArgument::Integral:
2256    llvm_unreachable(
2257                          "Integral argument with template template parameter");
2258    break;
2259
2260  case TemplateArgument::Pack:
2261    llvm_unreachable("Caller must expand template argument packs");
2262    break;
2263  }
2264
2265  return false;
2266}
2267
2268/// \brief Check that the given template argument list is well-formed
2269/// for specializing the given template.
2270bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2271                                     SourceLocation TemplateLoc,
2272                                const TemplateArgumentListInfo &TemplateArgs,
2273                                     bool PartialTemplateArgs,
2274                                     TemplateArgumentListBuilder &Converted) {
2275  TemplateParameterList *Params = Template->getTemplateParameters();
2276  unsigned NumParams = Params->size();
2277  unsigned NumArgs = TemplateArgs.size();
2278  bool Invalid = false;
2279
2280  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2281
2282  bool HasParameterPack =
2283    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2284
2285  if ((NumArgs > NumParams && !HasParameterPack) ||
2286      (NumArgs < Params->getMinRequiredArguments() &&
2287       !PartialTemplateArgs)) {
2288    // FIXME: point at either the first arg beyond what we can handle,
2289    // or the '>', depending on whether we have too many or too few
2290    // arguments.
2291    SourceRange Range;
2292    if (NumArgs > NumParams)
2293      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2294    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2295      << (NumArgs > NumParams)
2296      << (isa<ClassTemplateDecl>(Template)? 0 :
2297          isa<FunctionTemplateDecl>(Template)? 1 :
2298          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2299      << Template << Range;
2300    Diag(Template->getLocation(), diag::note_template_decl_here)
2301      << Params->getSourceRange();
2302    Invalid = true;
2303  }
2304
2305  // C++ [temp.arg]p1:
2306  //   [...] The type and form of each template-argument specified in
2307  //   a template-id shall match the type and form specified for the
2308  //   corresponding parameter declared by the template in its
2309  //   template-parameter-list.
2310  unsigned ArgIdx = 0;
2311  for (TemplateParameterList::iterator Param = Params->begin(),
2312                                       ParamEnd = Params->end();
2313       Param != ParamEnd; ++Param, ++ArgIdx) {
2314    if (ArgIdx > NumArgs && PartialTemplateArgs)
2315      break;
2316
2317    // If we have a template parameter pack, check every remaining template
2318    // argument against that template parameter pack.
2319    if ((*Param)->isTemplateParameterPack()) {
2320      Converted.BeginPack();
2321      for (; ArgIdx < NumArgs; ++ArgIdx) {
2322        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2323                                  TemplateLoc, RAngleLoc, Converted)) {
2324          Invalid = true;
2325          break;
2326        }
2327      }
2328      Converted.EndPack();
2329      continue;
2330    }
2331
2332    if (ArgIdx < NumArgs) {
2333      // Check the template argument we were given.
2334      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2335                                TemplateLoc, RAngleLoc, Converted))
2336        return true;
2337
2338      continue;
2339    }
2340
2341    // We have a default template argument that we will use.
2342    TemplateArgumentLoc Arg;
2343
2344    // Retrieve the default template argument from the template
2345    // parameter. For each kind of template parameter, we substitute the
2346    // template arguments provided thus far and any "outer" template arguments
2347    // (when the template parameter was part of a nested template) into
2348    // the default argument.
2349    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2350      if (!TTP->hasDefaultArgument()) {
2351        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2352        break;
2353      }
2354
2355      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2356                                                             Template,
2357                                                             TemplateLoc,
2358                                                             RAngleLoc,
2359                                                             TTP,
2360                                                             Converted);
2361      if (!ArgType)
2362        return true;
2363
2364      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2365                                ArgType);
2366    } else if (NonTypeTemplateParmDecl *NTTP
2367                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2368      if (!NTTP->hasDefaultArgument()) {
2369        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2370        break;
2371      }
2372
2373      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2374                                                              TemplateLoc,
2375                                                              RAngleLoc,
2376                                                              NTTP,
2377                                                              Converted);
2378      if (E.isInvalid())
2379        return true;
2380
2381      Expr *Ex = E.takeAs<Expr>();
2382      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2383    } else {
2384      TemplateTemplateParmDecl *TempParm
2385        = cast<TemplateTemplateParmDecl>(*Param);
2386
2387      if (!TempParm->hasDefaultArgument()) {
2388        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2389        break;
2390      }
2391
2392      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2393                                                       TemplateLoc,
2394                                                       RAngleLoc,
2395                                                       TempParm,
2396                                                       Converted);
2397      if (Name.isNull())
2398        return true;
2399
2400      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2401                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2402                  TempParm->getDefaultArgument().getTemplateNameLoc());
2403    }
2404
2405    // Introduce an instantiation record that describes where we are using
2406    // the default template argument.
2407    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2408                                        Converted.getFlatArguments(),
2409                                        Converted.flatSize(),
2410                                        SourceRange(TemplateLoc, RAngleLoc));
2411
2412    // Check the default template argument.
2413    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2414                              RAngleLoc, Converted))
2415      return true;
2416  }
2417
2418  return Invalid;
2419}
2420
2421namespace {
2422  class UnnamedLocalNoLinkageFinder
2423    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
2424  {
2425    Sema &S;
2426    SourceRange SR;
2427
2428    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
2429
2430  public:
2431    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
2432
2433    bool Visit(QualType T) {
2434      return inherited::Visit(T.getTypePtr());
2435    }
2436
2437#define TYPE(Class, Parent) \
2438    bool Visit##Class##Type(const Class##Type *);
2439#define ABSTRACT_TYPE(Class, Parent) \
2440    bool Visit##Class##Type(const Class##Type *) { return false; }
2441#define NON_CANONICAL_TYPE(Class, Parent) \
2442    bool Visit##Class##Type(const Class##Type *) { return false; }
2443#include "clang/AST/TypeNodes.def"
2444
2445    bool VisitTagDecl(const TagDecl *Tag);
2446    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
2447  };
2448}
2449
2450bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
2451  return false;
2452}
2453
2454bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
2455  return Visit(T->getElementType());
2456}
2457
2458bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
2459  return Visit(T->getPointeeType());
2460}
2461
2462bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
2463                                                    const BlockPointerType* T) {
2464  return Visit(T->getPointeeType());
2465}
2466
2467bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
2468                                                const LValueReferenceType* T) {
2469  return Visit(T->getPointeeType());
2470}
2471
2472bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
2473                                                const RValueReferenceType* T) {
2474  return Visit(T->getPointeeType());
2475}
2476
2477bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
2478                                                  const MemberPointerType* T) {
2479  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
2480}
2481
2482bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
2483                                                  const ConstantArrayType* T) {
2484  return Visit(T->getElementType());
2485}
2486
2487bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
2488                                                 const IncompleteArrayType* T) {
2489  return Visit(T->getElementType());
2490}
2491
2492bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
2493                                                   const VariableArrayType* T) {
2494  return Visit(T->getElementType());
2495}
2496
2497bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
2498                                            const DependentSizedArrayType* T) {
2499  return Visit(T->getElementType());
2500}
2501
2502bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
2503                                         const DependentSizedExtVectorType* T) {
2504  return Visit(T->getElementType());
2505}
2506
2507bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
2508  return Visit(T->getElementType());
2509}
2510
2511bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
2512  return Visit(T->getElementType());
2513}
2514
2515bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
2516                                                  const FunctionProtoType* T) {
2517  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
2518                                         AEnd = T->arg_type_end();
2519       A != AEnd; ++A) {
2520    if (Visit(*A))
2521      return true;
2522  }
2523
2524  return Visit(T->getResultType());
2525}
2526
2527bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
2528                                               const FunctionNoProtoType* T) {
2529  return Visit(T->getResultType());
2530}
2531
2532bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
2533                                                  const UnresolvedUsingType*) {
2534  return false;
2535}
2536
2537bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
2538  return false;
2539}
2540
2541bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
2542  return Visit(T->getUnderlyingType());
2543}
2544
2545bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
2546  return false;
2547}
2548
2549bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
2550  return VisitTagDecl(T->getDecl());
2551}
2552
2553bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
2554  return VisitTagDecl(T->getDecl());
2555}
2556
2557bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
2558                                                 const TemplateTypeParmType*) {
2559  return false;
2560}
2561
2562bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
2563                                            const TemplateSpecializationType*) {
2564  return false;
2565}
2566
2567bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
2568                                              const InjectedClassNameType* T) {
2569  return VisitTagDecl(T->getDecl());
2570}
2571
2572bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
2573                                                   const DependentNameType* T) {
2574  return VisitNestedNameSpecifier(T->getQualifier());
2575}
2576
2577bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
2578                                 const DependentTemplateSpecializationType* T) {
2579  return VisitNestedNameSpecifier(T->getQualifier());
2580}
2581
2582bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
2583  return false;
2584}
2585
2586bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
2587                                                   const ObjCInterfaceType *) {
2588  return false;
2589}
2590
2591bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
2592                                                const ObjCObjectPointerType *) {
2593  return false;
2594}
2595
2596bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
2597  if (Tag->getDeclContext()->isFunctionOrMethod()) {
2598    S.Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2599      << S.Context.getTypeDeclType(Tag) << SR;
2600    return true;
2601  }
2602
2603  if (!Tag->getDeclName() && !Tag->getTypedefForAnonDecl()) {
2604    S.Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2605    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
2606    return true;
2607  }
2608
2609  return false;
2610}
2611
2612bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
2613                                                    NestedNameSpecifier *NNS) {
2614  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
2615    return true;
2616
2617  switch (NNS->getKind()) {
2618  case NestedNameSpecifier::Identifier:
2619  case NestedNameSpecifier::Namespace:
2620  case NestedNameSpecifier::Global:
2621    return false;
2622
2623  case NestedNameSpecifier::TypeSpec:
2624  case NestedNameSpecifier::TypeSpecWithTemplate:
2625    return Visit(QualType(NNS->getAsType(), 0));
2626  }
2627  return false;
2628}
2629
2630
2631/// \brief Check a template argument against its corresponding
2632/// template type parameter.
2633///
2634/// This routine implements the semantics of C++ [temp.arg.type]. It
2635/// returns true if an error occurred, and false otherwise.
2636bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2637                                 TypeSourceInfo *ArgInfo) {
2638  assert(ArgInfo && "invalid TypeSourceInfo");
2639  QualType Arg = ArgInfo->getType();
2640  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2641
2642  if (Arg->isVariablyModifiedType()) {
2643    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2644  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2645    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2646  }
2647
2648  // C++03 [temp.arg.type]p2:
2649  //   A local type, a type with no linkage, an unnamed type or a type
2650  //   compounded from any of these types shall not be used as a
2651  //   template-argument for a template type-parameter.
2652  //
2653  // C++0x allows these, and even in C++03 we allow them as an extension with
2654  // a warning.
2655  if (!LangOpts.CPlusPlus0x && Arg->hasUnnamedOrLocalType()) {
2656    UnnamedLocalNoLinkageFinder Finder(*this, SR);
2657    (void)Finder.Visit(Context.getCanonicalType(Arg));
2658  }
2659
2660  return false;
2661}
2662
2663/// \brief Checks whether the given template argument is the address
2664/// of an object or function according to C++ [temp.arg.nontype]p1.
2665static bool
2666CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2667                                               NonTypeTemplateParmDecl *Param,
2668                                               QualType ParamType,
2669                                               Expr *ArgIn,
2670                                               TemplateArgument &Converted) {
2671  bool Invalid = false;
2672  Expr *Arg = ArgIn;
2673  QualType ArgType = Arg->getType();
2674
2675  // See through any implicit casts we added to fix the type.
2676  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2677    Arg = Cast->getSubExpr();
2678
2679  // C++ [temp.arg.nontype]p1:
2680  //
2681  //   A template-argument for a non-type, non-template
2682  //   template-parameter shall be one of: [...]
2683  //
2684  //     -- the address of an object or function with external
2685  //        linkage, including function templates and function
2686  //        template-ids but excluding non-static class members,
2687  //        expressed as & id-expression where the & is optional if
2688  //        the name refers to a function or array, or if the
2689  //        corresponding template-parameter is a reference; or
2690  DeclRefExpr *DRE = 0;
2691
2692  // In C++98/03 mode, give an extension warning on any extra parentheses.
2693  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2694  bool ExtraParens = false;
2695  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2696    if (!Invalid && !ExtraParens && !S.getLangOptions().CPlusPlus0x) {
2697      S.Diag(Arg->getSourceRange().getBegin(),
2698             diag::ext_template_arg_extra_parens)
2699        << Arg->getSourceRange();
2700      ExtraParens = true;
2701    }
2702
2703    Arg = Parens->getSubExpr();
2704  }
2705
2706  bool AddressTaken = false;
2707  SourceLocation AddrOpLoc;
2708  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2709    if (UnOp->getOpcode() == UO_AddrOf) {
2710      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2711      AddressTaken = true;
2712      AddrOpLoc = UnOp->getOperatorLoc();
2713    }
2714  } else
2715    DRE = dyn_cast<DeclRefExpr>(Arg);
2716
2717  if (!DRE) {
2718    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2719      << Arg->getSourceRange();
2720    S.Diag(Param->getLocation(), diag::note_template_param_here);
2721    return true;
2722  }
2723
2724  // Stop checking the precise nature of the argument if it is value dependent,
2725  // it should be checked when instantiated.
2726  if (Arg->isValueDependent()) {
2727    Converted = TemplateArgument(ArgIn->Retain());
2728    return false;
2729  }
2730
2731  if (!isa<ValueDecl>(DRE->getDecl())) {
2732    S.Diag(Arg->getSourceRange().getBegin(),
2733           diag::err_template_arg_not_object_or_func_form)
2734      << Arg->getSourceRange();
2735    S.Diag(Param->getLocation(), diag::note_template_param_here);
2736    return true;
2737  }
2738
2739  NamedDecl *Entity = 0;
2740
2741  // Cannot refer to non-static data members
2742  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2743    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2744      << Field << Arg->getSourceRange();
2745    S.Diag(Param->getLocation(), diag::note_template_param_here);
2746    return true;
2747  }
2748
2749  // Cannot refer to non-static member functions
2750  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2751    if (!Method->isStatic()) {
2752      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2753        << Method << Arg->getSourceRange();
2754      S.Diag(Param->getLocation(), diag::note_template_param_here);
2755      return true;
2756    }
2757
2758  // Functions must have external linkage.
2759  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2760    if (!isExternalLinkage(Func->getLinkage())) {
2761      S.Diag(Arg->getSourceRange().getBegin(),
2762             diag::err_template_arg_function_not_extern)
2763        << Func << Arg->getSourceRange();
2764      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2765        << true;
2766      return true;
2767    }
2768
2769    // Okay: we've named a function with external linkage.
2770    Entity = Func;
2771
2772    // If the template parameter has pointer type, the function decays.
2773    if (ParamType->isPointerType() && !AddressTaken)
2774      ArgType = S.Context.getPointerType(Func->getType());
2775    else if (AddressTaken && ParamType->isReferenceType()) {
2776      // If we originally had an address-of operator, but the
2777      // parameter has reference type, complain and (if things look
2778      // like they will work) drop the address-of operator.
2779      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2780                                            ParamType.getNonReferenceType())) {
2781        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2782          << ParamType;
2783        S.Diag(Param->getLocation(), diag::note_template_param_here);
2784        return true;
2785      }
2786
2787      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2788        << ParamType
2789        << FixItHint::CreateRemoval(AddrOpLoc);
2790      S.Diag(Param->getLocation(), diag::note_template_param_here);
2791
2792      ArgType = Func->getType();
2793    }
2794  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2795    if (!isExternalLinkage(Var->getLinkage())) {
2796      S.Diag(Arg->getSourceRange().getBegin(),
2797             diag::err_template_arg_object_not_extern)
2798        << Var << Arg->getSourceRange();
2799      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2800        << true;
2801      return true;
2802    }
2803
2804    // A value of reference type is not an object.
2805    if (Var->getType()->isReferenceType()) {
2806      S.Diag(Arg->getSourceRange().getBegin(),
2807             diag::err_template_arg_reference_var)
2808        << Var->getType() << Arg->getSourceRange();
2809      S.Diag(Param->getLocation(), diag::note_template_param_here);
2810      return true;
2811    }
2812
2813    // Okay: we've named an object with external linkage
2814    Entity = Var;
2815
2816    // If the template parameter has pointer type, we must have taken
2817    // the address of this object.
2818    if (ParamType->isReferenceType()) {
2819      if (AddressTaken) {
2820        // If we originally had an address-of operator, but the
2821        // parameter has reference type, complain and (if things look
2822        // like they will work) drop the address-of operator.
2823        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2824                                            ParamType.getNonReferenceType())) {
2825          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2826            << ParamType;
2827          S.Diag(Param->getLocation(), diag::note_template_param_here);
2828          return true;
2829        }
2830
2831        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2832          << ParamType
2833          << FixItHint::CreateRemoval(AddrOpLoc);
2834        S.Diag(Param->getLocation(), diag::note_template_param_here);
2835
2836        ArgType = Var->getType();
2837      }
2838    } else if (!AddressTaken && ParamType->isPointerType()) {
2839      if (Var->getType()->isArrayType()) {
2840        // Array-to-pointer decay.
2841        ArgType = S.Context.getArrayDecayedType(Var->getType());
2842      } else {
2843        // If the template parameter has pointer type but the address of
2844        // this object was not taken, complain and (possibly) recover by
2845        // taking the address of the entity.
2846        ArgType = S.Context.getPointerType(Var->getType());
2847        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2848          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2849            << ParamType;
2850          S.Diag(Param->getLocation(), diag::note_template_param_here);
2851          return true;
2852        }
2853
2854        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2855          << ParamType
2856          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2857
2858        S.Diag(Param->getLocation(), diag::note_template_param_here);
2859      }
2860    }
2861  } else {
2862    // We found something else, but we don't know specifically what it is.
2863    S.Diag(Arg->getSourceRange().getBegin(),
2864           diag::err_template_arg_not_object_or_func)
2865      << Arg->getSourceRange();
2866    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2867    return true;
2868  }
2869
2870  if (ParamType->isPointerType() &&
2871      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2872      S.IsQualificationConversion(ArgType, ParamType)) {
2873    // For pointer-to-object types, qualification conversions are
2874    // permitted.
2875  } else {
2876    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2877      if (!ParamRef->getPointeeType()->isFunctionType()) {
2878        // C++ [temp.arg.nontype]p5b3:
2879        //   For a non-type template-parameter of type reference to
2880        //   object, no conversions apply. The type referred to by the
2881        //   reference may be more cv-qualified than the (otherwise
2882        //   identical) type of the template- argument. The
2883        //   template-parameter is bound directly to the
2884        //   template-argument, which shall be an lvalue.
2885
2886        // FIXME: Other qualifiers?
2887        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2888        unsigned ArgQuals = ArgType.getCVRQualifiers();
2889
2890        if ((ParamQuals | ArgQuals) != ParamQuals) {
2891          S.Diag(Arg->getSourceRange().getBegin(),
2892                 diag::err_template_arg_ref_bind_ignores_quals)
2893            << ParamType << Arg->getType()
2894            << Arg->getSourceRange();
2895          S.Diag(Param->getLocation(), diag::note_template_param_here);
2896          return true;
2897        }
2898      }
2899    }
2900
2901    // At this point, the template argument refers to an object or
2902    // function with external linkage. We now need to check whether the
2903    // argument and parameter types are compatible.
2904    if (!S.Context.hasSameUnqualifiedType(ArgType,
2905                                          ParamType.getNonReferenceType())) {
2906      // We can't perform this conversion or binding.
2907      if (ParamType->isReferenceType())
2908        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2909          << ParamType << Arg->getType() << Arg->getSourceRange();
2910      else
2911        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2912          << Arg->getType() << ParamType << Arg->getSourceRange();
2913      S.Diag(Param->getLocation(), diag::note_template_param_here);
2914      return true;
2915    }
2916  }
2917
2918  // Create the template argument.
2919  Converted = TemplateArgument(Entity->getCanonicalDecl());
2920  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2921  return false;
2922}
2923
2924/// \brief Checks whether the given template argument is a pointer to
2925/// member constant according to C++ [temp.arg.nontype]p1.
2926bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2927                                                TemplateArgument &Converted) {
2928  bool Invalid = false;
2929
2930  // See through any implicit casts we added to fix the type.
2931  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2932    Arg = Cast->getSubExpr();
2933
2934  // C++ [temp.arg.nontype]p1:
2935  //
2936  //   A template-argument for a non-type, non-template
2937  //   template-parameter shall be one of: [...]
2938  //
2939  //     -- a pointer to member expressed as described in 5.3.1.
2940  DeclRefExpr *DRE = 0;
2941
2942  // In C++98/03 mode, give an extension warning on any extra parentheses.
2943  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
2944  bool ExtraParens = false;
2945  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2946    if (!Invalid && !ExtraParens && !getLangOptions().CPlusPlus0x) {
2947      Diag(Arg->getSourceRange().getBegin(),
2948           diag::ext_template_arg_extra_parens)
2949        << Arg->getSourceRange();
2950      ExtraParens = true;
2951    }
2952
2953    Arg = Parens->getSubExpr();
2954  }
2955
2956  // A pointer-to-member constant written &Class::member.
2957  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2958    if (UnOp->getOpcode() == UO_AddrOf) {
2959      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2960      if (DRE && !DRE->getQualifier())
2961        DRE = 0;
2962    }
2963  }
2964  // A constant of pointer-to-member type.
2965  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2966    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2967      if (VD->getType()->isMemberPointerType()) {
2968        if (isa<NonTypeTemplateParmDecl>(VD) ||
2969            (isa<VarDecl>(VD) &&
2970             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2971          if (Arg->isTypeDependent() || Arg->isValueDependent())
2972            Converted = TemplateArgument(Arg->Retain());
2973          else
2974            Converted = TemplateArgument(VD->getCanonicalDecl());
2975          return Invalid;
2976        }
2977      }
2978    }
2979
2980    DRE = 0;
2981  }
2982
2983  if (!DRE)
2984    return Diag(Arg->getSourceRange().getBegin(),
2985                diag::err_template_arg_not_pointer_to_member_form)
2986      << Arg->getSourceRange();
2987
2988  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2989    assert((isa<FieldDecl>(DRE->getDecl()) ||
2990            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2991           "Only non-static member pointers can make it here");
2992
2993    // Okay: this is the address of a non-static member, and therefore
2994    // a member pointer constant.
2995    if (Arg->isTypeDependent() || Arg->isValueDependent())
2996      Converted = TemplateArgument(Arg->Retain());
2997    else
2998      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2999    return Invalid;
3000  }
3001
3002  // We found something else, but we don't know specifically what it is.
3003  Diag(Arg->getSourceRange().getBegin(),
3004       diag::err_template_arg_not_pointer_to_member_form)
3005      << Arg->getSourceRange();
3006  Diag(DRE->getDecl()->getLocation(),
3007       diag::note_template_arg_refers_here);
3008  return true;
3009}
3010
3011/// \brief Check a template argument against its corresponding
3012/// non-type template parameter.
3013///
3014/// This routine implements the semantics of C++ [temp.arg.nontype].
3015/// It returns true if an error occurred, and false otherwise. \p
3016/// InstantiatedParamType is the type of the non-type template
3017/// parameter after it has been instantiated.
3018///
3019/// If no error was detected, Converted receives the converted template argument.
3020bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3021                                 QualType InstantiatedParamType, Expr *&Arg,
3022                                 TemplateArgument &Converted,
3023                                 CheckTemplateArgumentKind CTAK) {
3024  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3025
3026  // If either the parameter has a dependent type or the argument is
3027  // type-dependent, there's nothing we can check now.
3028  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3029    // FIXME: Produce a cloned, canonical expression?
3030    Converted = TemplateArgument(Arg);
3031    return false;
3032  }
3033
3034  // C++ [temp.arg.nontype]p5:
3035  //   The following conversions are performed on each expression used
3036  //   as a non-type template-argument. If a non-type
3037  //   template-argument cannot be converted to the type of the
3038  //   corresponding template-parameter then the program is
3039  //   ill-formed.
3040  //
3041  //     -- for a non-type template-parameter of integral or
3042  //        enumeration type, integral promotions (4.5) and integral
3043  //        conversions (4.7) are applied.
3044  QualType ParamType = InstantiatedParamType;
3045  QualType ArgType = Arg->getType();
3046  if (ParamType->isIntegralOrEnumerationType()) {
3047    // C++ [temp.arg.nontype]p1:
3048    //   A template-argument for a non-type, non-template
3049    //   template-parameter shall be one of:
3050    //
3051    //     -- an integral constant-expression of integral or enumeration
3052    //        type; or
3053    //     -- the name of a non-type template-parameter; or
3054    SourceLocation NonConstantLoc;
3055    llvm::APSInt Value;
3056    if (!ArgType->isIntegralOrEnumerationType()) {
3057      Diag(Arg->getSourceRange().getBegin(),
3058           diag::err_template_arg_not_integral_or_enumeral)
3059        << ArgType << Arg->getSourceRange();
3060      Diag(Param->getLocation(), diag::note_template_param_here);
3061      return true;
3062    } else if (!Arg->isValueDependent() &&
3063               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3064      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3065        << ArgType << Arg->getSourceRange();
3066      return true;
3067    }
3068
3069    // From here on out, all we care about are the unqualified forms
3070    // of the parameter and argument types.
3071    ParamType = ParamType.getUnqualifiedType();
3072    ArgType = ArgType.getUnqualifiedType();
3073
3074    // Try to convert the argument to the parameter's type.
3075    if (Context.hasSameType(ParamType, ArgType)) {
3076      // Okay: no conversion necessary
3077    } else if (CTAK == CTAK_Deduced) {
3078      // C++ [temp.deduct.type]p17:
3079      //   If, in the declaration of a function template with a non-type
3080      //   template-parameter, the non-type template- parameter is used
3081      //   in an expression in the function parameter-list and, if the
3082      //   corresponding template-argument is deduced, the
3083      //   template-argument type shall match the type of the
3084      //   template-parameter exactly, except that a template-argument
3085      //   deduced from an array bound may be of any integral type.
3086      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3087        << ArgType << ParamType;
3088      Diag(Param->getLocation(), diag::note_template_param_here);
3089      return true;
3090    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3091               !ParamType->isEnumeralType()) {
3092      // This is an integral promotion or conversion.
3093      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
3094    } else {
3095      // We can't perform this conversion.
3096      Diag(Arg->getSourceRange().getBegin(),
3097           diag::err_template_arg_not_convertible)
3098        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3099      Diag(Param->getLocation(), diag::note_template_param_here);
3100      return true;
3101    }
3102
3103    QualType IntegerType = Context.getCanonicalType(ParamType);
3104    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3105      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3106
3107    if (!Arg->isValueDependent()) {
3108      llvm::APSInt OldValue = Value;
3109
3110      // Coerce the template argument's value to the value it will have
3111      // based on the template parameter's type.
3112      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3113      if (Value.getBitWidth() != AllowedBits)
3114        Value.extOrTrunc(AllowedBits);
3115      Value.setIsSigned(IntegerType->isSignedIntegerType());
3116
3117      // Complain if an unsigned parameter received a negative value.
3118      if (IntegerType->isUnsignedIntegerType()
3119          && (OldValue.isSigned() && OldValue.isNegative())) {
3120        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3121          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3122          << Arg->getSourceRange();
3123        Diag(Param->getLocation(), diag::note_template_param_here);
3124      }
3125
3126      // Complain if we overflowed the template parameter's type.
3127      unsigned RequiredBits;
3128      if (IntegerType->isUnsignedIntegerType())
3129        RequiredBits = OldValue.getActiveBits();
3130      else if (OldValue.isUnsigned())
3131        RequiredBits = OldValue.getActiveBits() + 1;
3132      else
3133        RequiredBits = OldValue.getMinSignedBits();
3134      if (RequiredBits > AllowedBits) {
3135        Diag(Arg->getSourceRange().getBegin(),
3136             diag::warn_template_arg_too_large)
3137          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3138          << Arg->getSourceRange();
3139        Diag(Param->getLocation(), diag::note_template_param_here);
3140      }
3141    }
3142
3143    // Add the value of this argument to the list of converted
3144    // arguments. We use the bitwidth and signedness of the template
3145    // parameter.
3146    if (Arg->isValueDependent()) {
3147      // The argument is value-dependent. Create a new
3148      // TemplateArgument with the converted expression.
3149      Converted = TemplateArgument(Arg);
3150      return false;
3151    }
3152
3153    Converted = TemplateArgument(Value,
3154                                 ParamType->isEnumeralType() ? ParamType
3155                                                             : IntegerType);
3156    return false;
3157  }
3158
3159  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3160
3161  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3162  // from a template argument of type std::nullptr_t to a non-type
3163  // template parameter of type pointer to object, pointer to
3164  // function, or pointer-to-member, respectively.
3165  if (ArgType->isNullPtrType() &&
3166      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
3167    Converted = TemplateArgument((NamedDecl *)0);
3168    return false;
3169  }
3170
3171  // Handle pointer-to-function, reference-to-function, and
3172  // pointer-to-member-function all in (roughly) the same way.
3173  if (// -- For a non-type template-parameter of type pointer to
3174      //    function, only the function-to-pointer conversion (4.3) is
3175      //    applied. If the template-argument represents a set of
3176      //    overloaded functions (or a pointer to such), the matching
3177      //    function is selected from the set (13.4).
3178      (ParamType->isPointerType() &&
3179       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3180      // -- For a non-type template-parameter of type reference to
3181      //    function, no conversions apply. If the template-argument
3182      //    represents a set of overloaded functions, the matching
3183      //    function is selected from the set (13.4).
3184      (ParamType->isReferenceType() &&
3185       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3186      // -- For a non-type template-parameter of type pointer to
3187      //    member function, no conversions apply. If the
3188      //    template-argument represents a set of overloaded member
3189      //    functions, the matching member function is selected from
3190      //    the set (13.4).
3191      (ParamType->isMemberPointerType() &&
3192       ParamType->getAs<MemberPointerType>()->getPointeeType()
3193         ->isFunctionType())) {
3194
3195    if (Arg->getType() == Context.OverloadTy) {
3196      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3197                                                                true,
3198                                                                FoundResult)) {
3199        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3200          return true;
3201
3202        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3203        ArgType = Arg->getType();
3204      } else
3205        return true;
3206    }
3207
3208    if (!ParamType->isMemberPointerType())
3209      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3210                                                            ParamType,
3211                                                            Arg, Converted);
3212
3213    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
3214      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3215    } else if (!Context.hasSameUnqualifiedType(ArgType,
3216                                           ParamType.getNonReferenceType())) {
3217      // We can't perform this conversion.
3218      Diag(Arg->getSourceRange().getBegin(),
3219           diag::err_template_arg_not_convertible)
3220        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3221      Diag(Param->getLocation(), diag::note_template_param_here);
3222      return true;
3223    }
3224
3225    return CheckTemplateArgumentPointerToMember(Arg, Converted);
3226  }
3227
3228  if (ParamType->isPointerType()) {
3229    //   -- for a non-type template-parameter of type pointer to
3230    //      object, qualification conversions (4.4) and the
3231    //      array-to-pointer conversion (4.2) are applied.
3232    // C++0x also allows a value of std::nullptr_t.
3233    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3234           "Only object pointers allowed here");
3235
3236    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3237                                                          ParamType,
3238                                                          Arg, Converted);
3239  }
3240
3241  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3242    //   -- For a non-type template-parameter of type reference to
3243    //      object, no conversions apply. The type referred to by the
3244    //      reference may be more cv-qualified than the (otherwise
3245    //      identical) type of the template-argument. The
3246    //      template-parameter is bound directly to the
3247    //      template-argument, which must be an lvalue.
3248    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3249           "Only object references allowed here");
3250
3251    if (Arg->getType() == Context.OverloadTy) {
3252      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3253                                                 ParamRefType->getPointeeType(),
3254                                                                true,
3255                                                                FoundResult)) {
3256        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3257          return true;
3258
3259        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3260        ArgType = Arg->getType();
3261      } else
3262        return true;
3263    }
3264
3265    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3266                                                          ParamType,
3267                                                          Arg, Converted);
3268  }
3269
3270  //     -- For a non-type template-parameter of type pointer to data
3271  //        member, qualification conversions (4.4) are applied.
3272  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
3273
3274  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
3275    // Types match exactly: nothing more to do here.
3276  } else if (IsQualificationConversion(ArgType, ParamType)) {
3277    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
3278  } else {
3279    // We can't perform this conversion.
3280    Diag(Arg->getSourceRange().getBegin(),
3281         diag::err_template_arg_not_convertible)
3282      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3283    Diag(Param->getLocation(), diag::note_template_param_here);
3284    return true;
3285  }
3286
3287  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3288}
3289
3290/// \brief Check a template argument against its corresponding
3291/// template template parameter.
3292///
3293/// This routine implements the semantics of C++ [temp.arg.template].
3294/// It returns true if an error occurred, and false otherwise.
3295bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3296                                 const TemplateArgumentLoc &Arg) {
3297  TemplateName Name = Arg.getArgument().getAsTemplate();
3298  TemplateDecl *Template = Name.getAsTemplateDecl();
3299  if (!Template) {
3300    // Any dependent template name is fine.
3301    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3302    return false;
3303  }
3304
3305  // C++ [temp.arg.template]p1:
3306  //   A template-argument for a template template-parameter shall be
3307  //   the name of a class template, expressed as id-expression. Only
3308  //   primary class templates are considered when matching the
3309  //   template template argument with the corresponding parameter;
3310  //   partial specializations are not considered even if their
3311  //   parameter lists match that of the template template parameter.
3312  //
3313  // Note that we also allow template template parameters here, which
3314  // will happen when we are dealing with, e.g., class template
3315  // partial specializations.
3316  if (!isa<ClassTemplateDecl>(Template) &&
3317      !isa<TemplateTemplateParmDecl>(Template)) {
3318    assert(isa<FunctionTemplateDecl>(Template) &&
3319           "Only function templates are possible here");
3320    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3321    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3322      << Template;
3323  }
3324
3325  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3326                                         Param->getTemplateParameters(),
3327                                         true,
3328                                         TPL_TemplateTemplateArgumentMatch,
3329                                         Arg.getLocation());
3330}
3331
3332/// \brief Given a non-type template argument that refers to a
3333/// declaration and the type of its corresponding non-type template
3334/// parameter, produce an expression that properly refers to that
3335/// declaration.
3336ExprResult
3337Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3338                                              QualType ParamType,
3339                                              SourceLocation Loc) {
3340  assert(Arg.getKind() == TemplateArgument::Declaration &&
3341         "Only declaration template arguments permitted here");
3342  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3343
3344  if (VD->getDeclContext()->isRecord() &&
3345      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3346    // If the value is a class member, we might have a pointer-to-member.
3347    // Determine whether the non-type template template parameter is of
3348    // pointer-to-member type. If so, we need to build an appropriate
3349    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3350    // would refer to the member itself.
3351    if (ParamType->isMemberPointerType()) {
3352      QualType ClassType
3353        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3354      NestedNameSpecifier *Qualifier
3355        = NestedNameSpecifier::Create(Context, 0, false,
3356                                      ClassType.getTypePtr());
3357      CXXScopeSpec SS;
3358      SS.setScopeRep(Qualifier);
3359      ExprResult RefExpr = BuildDeclRefExpr(VD,
3360                                           VD->getType().getNonReferenceType(),
3361                                                  Loc,
3362                                                  &SS);
3363      if (RefExpr.isInvalid())
3364        return ExprError();
3365
3366      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3367
3368      // We might need to perform a trailing qualification conversion, since
3369      // the element type on the parameter could be more qualified than the
3370      // element type in the expression we constructed.
3371      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3372                                    ParamType.getUnqualifiedType())) {
3373        Expr *RefE = RefExpr.takeAs<Expr>();
3374        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3375        RefExpr = Owned(RefE);
3376      }
3377
3378      assert(!RefExpr.isInvalid() &&
3379             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3380                                 ParamType.getUnqualifiedType()));
3381      return move(RefExpr);
3382    }
3383  }
3384
3385  QualType T = VD->getType().getNonReferenceType();
3386  if (ParamType->isPointerType()) {
3387    // When the non-type template parameter is a pointer, take the
3388    // address of the declaration.
3389    ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3390    if (RefExpr.isInvalid())
3391      return ExprError();
3392
3393    if (T->isFunctionType() || T->isArrayType()) {
3394      // Decay functions and arrays.
3395      Expr *RefE = (Expr *)RefExpr.get();
3396      DefaultFunctionArrayConversion(RefE);
3397      if (RefE != RefExpr.get()) {
3398        RefExpr.release();
3399        RefExpr = Owned(RefE);
3400      }
3401
3402      return move(RefExpr);
3403    }
3404
3405    // Take the address of everything else
3406    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3407  }
3408
3409  // If the non-type template parameter has reference type, qualify the
3410  // resulting declaration reference with the extra qualifiers on the
3411  // type that the reference refers to.
3412  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3413    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3414
3415  return BuildDeclRefExpr(VD, T, Loc);
3416}
3417
3418/// \brief Construct a new expression that refers to the given
3419/// integral template argument with the given source-location
3420/// information.
3421///
3422/// This routine takes care of the mapping from an integral template
3423/// argument (which may have any integral type) to the appropriate
3424/// literal value.
3425ExprResult
3426Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3427                                                  SourceLocation Loc) {
3428  assert(Arg.getKind() == TemplateArgument::Integral &&
3429         "Operation is only value for integral template arguments");
3430  QualType T = Arg.getIntegralType();
3431  if (T->isCharType() || T->isWideCharType())
3432    return Owned(new (Context) CharacterLiteral(
3433                                             Arg.getAsIntegral()->getZExtValue(),
3434                                             T->isWideCharType(),
3435                                             T,
3436                                             Loc));
3437  if (T->isBooleanType())
3438    return Owned(new (Context) CXXBoolLiteralExpr(
3439                                            Arg.getAsIntegral()->getBoolValue(),
3440                                            T,
3441                                            Loc));
3442
3443  return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc));
3444}
3445
3446
3447/// \brief Determine whether the given template parameter lists are
3448/// equivalent.
3449///
3450/// \param New  The new template parameter list, typically written in the
3451/// source code as part of a new template declaration.
3452///
3453/// \param Old  The old template parameter list, typically found via
3454/// name lookup of the template declared with this template parameter
3455/// list.
3456///
3457/// \param Complain  If true, this routine will produce a diagnostic if
3458/// the template parameter lists are not equivalent.
3459///
3460/// \param Kind describes how we are to match the template parameter lists.
3461///
3462/// \param TemplateArgLoc If this source location is valid, then we
3463/// are actually checking the template parameter list of a template
3464/// argument (New) against the template parameter list of its
3465/// corresponding template template parameter (Old). We produce
3466/// slightly different diagnostics in this scenario.
3467///
3468/// \returns True if the template parameter lists are equal, false
3469/// otherwise.
3470bool
3471Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3472                                     TemplateParameterList *Old,
3473                                     bool Complain,
3474                                     TemplateParameterListEqualKind Kind,
3475                                     SourceLocation TemplateArgLoc) {
3476  if (Old->size() != New->size()) {
3477    if (Complain) {
3478      unsigned NextDiag = diag::err_template_param_list_different_arity;
3479      if (TemplateArgLoc.isValid()) {
3480        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3481        NextDiag = diag::note_template_param_list_different_arity;
3482      }
3483      Diag(New->getTemplateLoc(), NextDiag)
3484          << (New->size() > Old->size())
3485          << (Kind != TPL_TemplateMatch)
3486          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3487      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3488        << (Kind != TPL_TemplateMatch)
3489        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3490    }
3491
3492    return false;
3493  }
3494
3495  for (TemplateParameterList::iterator OldParm = Old->begin(),
3496         OldParmEnd = Old->end(), NewParm = New->begin();
3497       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3498    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3499      if (Complain) {
3500        unsigned NextDiag = diag::err_template_param_different_kind;
3501        if (TemplateArgLoc.isValid()) {
3502          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3503          NextDiag = diag::note_template_param_different_kind;
3504        }
3505        Diag((*NewParm)->getLocation(), NextDiag)
3506          << (Kind != TPL_TemplateMatch);
3507        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3508          << (Kind != TPL_TemplateMatch);
3509      }
3510      return false;
3511    }
3512
3513    if (TemplateTypeParmDecl *OldTTP
3514                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3515      // Template type parameters are equivalent if either both are template
3516      // type parameter packs or neither are (since we know we're at the same
3517      // index).
3518      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3519      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3520        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3521        // allow one to match a template parameter pack in the template
3522        // parameter list of a template template parameter to one or more
3523        // template parameters in the template parameter list of the
3524        // corresponding template template argument.
3525        if (Complain) {
3526          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3527          if (TemplateArgLoc.isValid()) {
3528            Diag(TemplateArgLoc,
3529                 diag::err_template_arg_template_params_mismatch);
3530            NextDiag = diag::note_template_parameter_pack_non_pack;
3531          }
3532          Diag(NewTTP->getLocation(), NextDiag)
3533            << 0 << NewTTP->isParameterPack();
3534          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3535            << 0 << OldTTP->isParameterPack();
3536        }
3537        return false;
3538      }
3539    } else if (NonTypeTemplateParmDecl *OldNTTP
3540                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3541      // The types of non-type template parameters must agree.
3542      NonTypeTemplateParmDecl *NewNTTP
3543        = cast<NonTypeTemplateParmDecl>(*NewParm);
3544
3545      // If we are matching a template template argument to a template
3546      // template parameter and one of the non-type template parameter types
3547      // is dependent, then we must wait until template instantiation time
3548      // to actually compare the arguments.
3549      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3550          (OldNTTP->getType()->isDependentType() ||
3551           NewNTTP->getType()->isDependentType()))
3552        continue;
3553
3554      if (Context.getCanonicalType(OldNTTP->getType()) !=
3555            Context.getCanonicalType(NewNTTP->getType())) {
3556        if (Complain) {
3557          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3558          if (TemplateArgLoc.isValid()) {
3559            Diag(TemplateArgLoc,
3560                 diag::err_template_arg_template_params_mismatch);
3561            NextDiag = diag::note_template_nontype_parm_different_type;
3562          }
3563          Diag(NewNTTP->getLocation(), NextDiag)
3564            << NewNTTP->getType()
3565            << (Kind != TPL_TemplateMatch);
3566          Diag(OldNTTP->getLocation(),
3567               diag::note_template_nontype_parm_prev_declaration)
3568            << OldNTTP->getType();
3569        }
3570        return false;
3571      }
3572    } else {
3573      // The template parameter lists of template template
3574      // parameters must agree.
3575      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3576             "Only template template parameters handled here");
3577      TemplateTemplateParmDecl *OldTTP
3578        = cast<TemplateTemplateParmDecl>(*OldParm);
3579      TemplateTemplateParmDecl *NewTTP
3580        = cast<TemplateTemplateParmDecl>(*NewParm);
3581      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3582                                          OldTTP->getTemplateParameters(),
3583                                          Complain,
3584              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3585                                          TemplateArgLoc))
3586        return false;
3587    }
3588  }
3589
3590  return true;
3591}
3592
3593/// \brief Check whether a template can be declared within this scope.
3594///
3595/// If the template declaration is valid in this scope, returns
3596/// false. Otherwise, issues a diagnostic and returns true.
3597bool
3598Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3599  // Find the nearest enclosing declaration scope.
3600  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3601         (S->getFlags() & Scope::TemplateParamScope) != 0)
3602    S = S->getParent();
3603
3604  // C++ [temp]p2:
3605  //   A template-declaration can appear only as a namespace scope or
3606  //   class scope declaration.
3607  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3608  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3609      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3610    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3611             << TemplateParams->getSourceRange();
3612
3613  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3614    Ctx = Ctx->getParent();
3615
3616  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3617    return false;
3618
3619  return Diag(TemplateParams->getTemplateLoc(),
3620              diag::err_template_outside_namespace_or_class_scope)
3621    << TemplateParams->getSourceRange();
3622}
3623
3624/// \brief Determine what kind of template specialization the given declaration
3625/// is.
3626static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3627  if (!D)
3628    return TSK_Undeclared;
3629
3630  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3631    return Record->getTemplateSpecializationKind();
3632  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3633    return Function->getTemplateSpecializationKind();
3634  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3635    return Var->getTemplateSpecializationKind();
3636
3637  return TSK_Undeclared;
3638}
3639
3640/// \brief Check whether a specialization is well-formed in the current
3641/// context.
3642///
3643/// This routine determines whether a template specialization can be declared
3644/// in the current context (C++ [temp.expl.spec]p2).
3645///
3646/// \param S the semantic analysis object for which this check is being
3647/// performed.
3648///
3649/// \param Specialized the entity being specialized or instantiated, which
3650/// may be a kind of template (class template, function template, etc.) or
3651/// a member of a class template (member function, static data member,
3652/// member class).
3653///
3654/// \param PrevDecl the previous declaration of this entity, if any.
3655///
3656/// \param Loc the location of the explicit specialization or instantiation of
3657/// this entity.
3658///
3659/// \param IsPartialSpecialization whether this is a partial specialization of
3660/// a class template.
3661///
3662/// \returns true if there was an error that we cannot recover from, false
3663/// otherwise.
3664static bool CheckTemplateSpecializationScope(Sema &S,
3665                                             NamedDecl *Specialized,
3666                                             NamedDecl *PrevDecl,
3667                                             SourceLocation Loc,
3668                                             bool IsPartialSpecialization) {
3669  // Keep these "kind" numbers in sync with the %select statements in the
3670  // various diagnostics emitted by this routine.
3671  int EntityKind = 0;
3672  bool isTemplateSpecialization = false;
3673  if (isa<ClassTemplateDecl>(Specialized)) {
3674    EntityKind = IsPartialSpecialization? 1 : 0;
3675    isTemplateSpecialization = true;
3676  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3677    EntityKind = 2;
3678    isTemplateSpecialization = true;
3679  } else if (isa<CXXMethodDecl>(Specialized))
3680    EntityKind = 3;
3681  else if (isa<VarDecl>(Specialized))
3682    EntityKind = 4;
3683  else if (isa<RecordDecl>(Specialized))
3684    EntityKind = 5;
3685  else {
3686    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3687    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3688    return true;
3689  }
3690
3691  // C++ [temp.expl.spec]p2:
3692  //   An explicit specialization shall be declared in the namespace
3693  //   of which the template is a member, or, for member templates, in
3694  //   the namespace of which the enclosing class or enclosing class
3695  //   template is a member. An explicit specialization of a member
3696  //   function, member class or static data member of a class
3697  //   template shall be declared in the namespace of which the class
3698  //   template is a member. Such a declaration may also be a
3699  //   definition. If the declaration is not a definition, the
3700  //   specialization may be defined later in the name- space in which
3701  //   the explicit specialization was declared, or in a namespace
3702  //   that encloses the one in which the explicit specialization was
3703  //   declared.
3704  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3705    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3706      << Specialized;
3707    return true;
3708  }
3709
3710  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3711    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3712      << Specialized;
3713    return true;
3714  }
3715
3716  // C++ [temp.class.spec]p6:
3717  //   A class template partial specialization may be declared or redeclared
3718  //   in any namespace scope in which its definition may be defined (14.5.1
3719  //   and 14.5.2).
3720  bool ComplainedAboutScope = false;
3721  DeclContext *SpecializedContext
3722    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3723  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3724  if ((!PrevDecl ||
3725       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3726       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3727    // C++ [temp.exp.spec]p2:
3728    //   An explicit specialization shall be declared in the namespace of which
3729    //   the template is a member, or, for member templates, in the namespace
3730    //   of which the enclosing class or enclosing class template is a member.
3731    //   An explicit specialization of a member function, member class or
3732    //   static data member of a class template shall be declared in the
3733    //   namespace of which the class template is a member.
3734    //
3735    // C++0x [temp.expl.spec]p2:
3736    //   An explicit specialization shall be declared in a namespace enclosing
3737    //   the specialized template.
3738    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3739        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3740      bool IsCPlusPlus0xExtension
3741        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3742      if (isa<TranslationUnitDecl>(SpecializedContext))
3743        S.Diag(Loc, IsCPlusPlus0xExtension
3744                      ? diag::ext_template_spec_decl_out_of_scope_global
3745                      : diag::err_template_spec_decl_out_of_scope_global)
3746          << EntityKind << Specialized;
3747      else if (isa<NamespaceDecl>(SpecializedContext))
3748        S.Diag(Loc, IsCPlusPlus0xExtension
3749                      ? diag::ext_template_spec_decl_out_of_scope
3750                      : diag::err_template_spec_decl_out_of_scope)
3751          << EntityKind << Specialized
3752          << cast<NamedDecl>(SpecializedContext);
3753
3754      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3755      ComplainedAboutScope = true;
3756    }
3757  }
3758
3759  // Make sure that this redeclaration (or definition) occurs in an enclosing
3760  // namespace.
3761  // Note that HandleDeclarator() performs this check for explicit
3762  // specializations of function templates, static data members, and member
3763  // functions, so we skip the check here for those kinds of entities.
3764  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3765  // Should we refactor that check, so that it occurs later?
3766  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3767      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3768        isa<FunctionDecl>(Specialized))) {
3769    if (isa<TranslationUnitDecl>(SpecializedContext))
3770      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3771        << EntityKind << Specialized;
3772    else if (isa<NamespaceDecl>(SpecializedContext))
3773      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3774        << EntityKind << Specialized
3775        << cast<NamedDecl>(SpecializedContext);
3776
3777    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3778  }
3779
3780  // FIXME: check for specialization-after-instantiation errors and such.
3781
3782  return false;
3783}
3784
3785/// \brief Check the non-type template arguments of a class template
3786/// partial specialization according to C++ [temp.class.spec]p9.
3787///
3788/// \param TemplateParams the template parameters of the primary class
3789/// template.
3790///
3791/// \param TemplateArg the template arguments of the class template
3792/// partial specialization.
3793///
3794/// \param MirrorsPrimaryTemplate will be set true if the class
3795/// template partial specialization arguments are identical to the
3796/// implicit template arguments of the primary template. This is not
3797/// necessarily an error (C++0x), and it is left to the caller to diagnose
3798/// this condition when it is an error.
3799///
3800/// \returns true if there was an error, false otherwise.
3801bool Sema::CheckClassTemplatePartialSpecializationArgs(
3802                                        TemplateParameterList *TemplateParams,
3803                             const TemplateArgumentListBuilder &TemplateArgs,
3804                                        bool &MirrorsPrimaryTemplate) {
3805  // FIXME: the interface to this function will have to change to
3806  // accommodate variadic templates.
3807  MirrorsPrimaryTemplate = true;
3808
3809  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3810
3811  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3812    // Determine whether the template argument list of the partial
3813    // specialization is identical to the implicit argument list of
3814    // the primary template. The caller may need to diagnostic this as
3815    // an error per C++ [temp.class.spec]p9b3.
3816    if (MirrorsPrimaryTemplate) {
3817      if (TemplateTypeParmDecl *TTP
3818            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3819        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3820              Context.getCanonicalType(ArgList[I].getAsType()))
3821          MirrorsPrimaryTemplate = false;
3822      } else if (TemplateTemplateParmDecl *TTP
3823                   = dyn_cast<TemplateTemplateParmDecl>(
3824                                                 TemplateParams->getParam(I))) {
3825        TemplateName Name = ArgList[I].getAsTemplate();
3826        TemplateTemplateParmDecl *ArgDecl
3827          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3828        if (!ArgDecl ||
3829            ArgDecl->getIndex() != TTP->getIndex() ||
3830            ArgDecl->getDepth() != TTP->getDepth())
3831          MirrorsPrimaryTemplate = false;
3832      }
3833    }
3834
3835    NonTypeTemplateParmDecl *Param
3836      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3837    if (!Param) {
3838      continue;
3839    }
3840
3841    Expr *ArgExpr = ArgList[I].getAsExpr();
3842    if (!ArgExpr) {
3843      MirrorsPrimaryTemplate = false;
3844      continue;
3845    }
3846
3847    // C++ [temp.class.spec]p8:
3848    //   A non-type argument is non-specialized if it is the name of a
3849    //   non-type parameter. All other non-type arguments are
3850    //   specialized.
3851    //
3852    // Below, we check the two conditions that only apply to
3853    // specialized non-type arguments, so skip any non-specialized
3854    // arguments.
3855    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3856      if (NonTypeTemplateParmDecl *NTTP
3857            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3858        if (MirrorsPrimaryTemplate &&
3859            (Param->getIndex() != NTTP->getIndex() ||
3860             Param->getDepth() != NTTP->getDepth()))
3861          MirrorsPrimaryTemplate = false;
3862
3863        continue;
3864      }
3865
3866    // C++ [temp.class.spec]p9:
3867    //   Within the argument list of a class template partial
3868    //   specialization, the following restrictions apply:
3869    //     -- A partially specialized non-type argument expression
3870    //        shall not involve a template parameter of the partial
3871    //        specialization except when the argument expression is a
3872    //        simple identifier.
3873    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3874      Diag(ArgExpr->getLocStart(),
3875           diag::err_dependent_non_type_arg_in_partial_spec)
3876        << ArgExpr->getSourceRange();
3877      return true;
3878    }
3879
3880    //     -- The type of a template parameter corresponding to a
3881    //        specialized non-type argument shall not be dependent on a
3882    //        parameter of the specialization.
3883    if (Param->getType()->isDependentType()) {
3884      Diag(ArgExpr->getLocStart(),
3885           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3886        << Param->getType()
3887        << ArgExpr->getSourceRange();
3888      Diag(Param->getLocation(), diag::note_template_param_here);
3889      return true;
3890    }
3891
3892    MirrorsPrimaryTemplate = false;
3893  }
3894
3895  return false;
3896}
3897
3898/// \brief Retrieve the previous declaration of the given declaration.
3899static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3900  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3901    return VD->getPreviousDeclaration();
3902  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3903    return FD->getPreviousDeclaration();
3904  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3905    return TD->getPreviousDeclaration();
3906  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3907    return TD->getPreviousDeclaration();
3908  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3909    return FTD->getPreviousDeclaration();
3910  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3911    return CTD->getPreviousDeclaration();
3912  return 0;
3913}
3914
3915DeclResult
3916Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3917                                       TagUseKind TUK,
3918                                       SourceLocation KWLoc,
3919                                       CXXScopeSpec &SS,
3920                                       TemplateTy TemplateD,
3921                                       SourceLocation TemplateNameLoc,
3922                                       SourceLocation LAngleLoc,
3923                                       ASTTemplateArgsPtr TemplateArgsIn,
3924                                       SourceLocation RAngleLoc,
3925                                       AttributeList *Attr,
3926                               MultiTemplateParamsArg TemplateParameterLists) {
3927  assert(TUK != TUK_Reference && "References are not specializations");
3928
3929  // Find the class template we're specializing
3930  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3931  ClassTemplateDecl *ClassTemplate
3932    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3933
3934  if (!ClassTemplate) {
3935    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3936      << (Name.getAsTemplateDecl() &&
3937          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3938    return true;
3939  }
3940
3941  bool isExplicitSpecialization = false;
3942  bool isPartialSpecialization = false;
3943
3944  // Check the validity of the template headers that introduce this
3945  // template.
3946  // FIXME: We probably shouldn't complain about these headers for
3947  // friend declarations.
3948  bool Invalid = false;
3949  TemplateParameterList *TemplateParams
3950    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3951                        (TemplateParameterList**)TemplateParameterLists.get(),
3952                                              TemplateParameterLists.size(),
3953                                              TUK == TUK_Friend,
3954                                              isExplicitSpecialization,
3955                                              Invalid);
3956  if (Invalid)
3957    return true;
3958
3959  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3960  if (TemplateParams)
3961    --NumMatchedTemplateParamLists;
3962
3963  if (TemplateParams && TemplateParams->size() > 0) {
3964    isPartialSpecialization = true;
3965
3966    // C++ [temp.class.spec]p10:
3967    //   The template parameter list of a specialization shall not
3968    //   contain default template argument values.
3969    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3970      Decl *Param = TemplateParams->getParam(I);
3971      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3972        if (TTP->hasDefaultArgument()) {
3973          Diag(TTP->getDefaultArgumentLoc(),
3974               diag::err_default_arg_in_partial_spec);
3975          TTP->removeDefaultArgument();
3976        }
3977      } else if (NonTypeTemplateParmDecl *NTTP
3978                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3979        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3980          Diag(NTTP->getDefaultArgumentLoc(),
3981               diag::err_default_arg_in_partial_spec)
3982            << DefArg->getSourceRange();
3983          NTTP->removeDefaultArgument();
3984        }
3985      } else {
3986        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3987        if (TTP->hasDefaultArgument()) {
3988          Diag(TTP->getDefaultArgument().getLocation(),
3989               diag::err_default_arg_in_partial_spec)
3990            << TTP->getDefaultArgument().getSourceRange();
3991          TTP->removeDefaultArgument();
3992        }
3993      }
3994    }
3995  } else if (TemplateParams) {
3996    if (TUK == TUK_Friend)
3997      Diag(KWLoc, diag::err_template_spec_friend)
3998        << FixItHint::CreateRemoval(
3999                                SourceRange(TemplateParams->getTemplateLoc(),
4000                                            TemplateParams->getRAngleLoc()))
4001        << SourceRange(LAngleLoc, RAngleLoc);
4002    else
4003      isExplicitSpecialization = true;
4004  } else if (TUK != TUK_Friend) {
4005    Diag(KWLoc, diag::err_template_spec_needs_header)
4006      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4007    isExplicitSpecialization = true;
4008  }
4009
4010  // Check that the specialization uses the same tag kind as the
4011  // original template.
4012  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4013  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4014  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4015                                    Kind, KWLoc,
4016                                    *ClassTemplate->getIdentifier())) {
4017    Diag(KWLoc, diag::err_use_with_wrong_tag)
4018      << ClassTemplate
4019      << FixItHint::CreateReplacement(KWLoc,
4020                            ClassTemplate->getTemplatedDecl()->getKindName());
4021    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4022         diag::note_previous_use);
4023    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4024  }
4025
4026  // Translate the parser's template argument list in our AST format.
4027  TemplateArgumentListInfo TemplateArgs;
4028  TemplateArgs.setLAngleLoc(LAngleLoc);
4029  TemplateArgs.setRAngleLoc(RAngleLoc);
4030  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4031
4032  // Check that the template argument list is well-formed for this
4033  // template.
4034  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4035                                        TemplateArgs.size());
4036  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4037                                TemplateArgs, false, Converted))
4038    return true;
4039
4040  assert((Converted.structuredSize() ==
4041            ClassTemplate->getTemplateParameters()->size()) &&
4042         "Converted template argument list is too short!");
4043
4044  // Find the class template (partial) specialization declaration that
4045  // corresponds to these arguments.
4046  if (isPartialSpecialization) {
4047    bool MirrorsPrimaryTemplate;
4048    if (CheckClassTemplatePartialSpecializationArgs(
4049                                         ClassTemplate->getTemplateParameters(),
4050                                         Converted, MirrorsPrimaryTemplate))
4051      return true;
4052
4053    if (MirrorsPrimaryTemplate) {
4054      // C++ [temp.class.spec]p9b3:
4055      //
4056      //   -- The argument list of the specialization shall not be identical
4057      //      to the implicit argument list of the primary template.
4058      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4059        << (TUK == TUK_Definition)
4060        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4061      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4062                                ClassTemplate->getIdentifier(),
4063                                TemplateNameLoc,
4064                                Attr,
4065                                TemplateParams,
4066                                AS_none);
4067    }
4068
4069    // FIXME: Diagnose friend partial specializations
4070
4071    if (!Name.isDependent() &&
4072        !TemplateSpecializationType::anyDependentTemplateArguments(
4073                                             TemplateArgs.getArgumentArray(),
4074                                                         TemplateArgs.size())) {
4075      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4076        << ClassTemplate->getDeclName();
4077      isPartialSpecialization = false;
4078    }
4079  }
4080
4081  void *InsertPos = 0;
4082  ClassTemplateSpecializationDecl *PrevDecl = 0;
4083
4084  if (isPartialSpecialization)
4085    // FIXME: Template parameter list matters, too
4086    PrevDecl
4087      = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(),
4088                                                 Converted.flatSize(),
4089                                                 InsertPos);
4090  else
4091    PrevDecl
4092      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
4093                                          Converted.flatSize(), InsertPos);
4094
4095  ClassTemplateSpecializationDecl *Specialization = 0;
4096
4097  // Check whether we can declare a class template specialization in
4098  // the current scope.
4099  if (TUK != TUK_Friend &&
4100      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4101                                       TemplateNameLoc,
4102                                       isPartialSpecialization))
4103    return true;
4104
4105  // The canonical type
4106  QualType CanonType;
4107  if (PrevDecl &&
4108      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4109               TUK == TUK_Friend)) {
4110    // Since the only prior class template specialization with these
4111    // arguments was referenced but not declared, or we're only
4112    // referencing this specialization as a friend, reuse that
4113    // declaration node as our own, updating its source location to
4114    // reflect our new declaration.
4115    Specialization = PrevDecl;
4116    Specialization->setLocation(TemplateNameLoc);
4117    PrevDecl = 0;
4118    CanonType = Context.getTypeDeclType(Specialization);
4119  } else if (isPartialSpecialization) {
4120    // Build the canonical type that describes the converted template
4121    // arguments of the class template partial specialization.
4122    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4123    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4124                                                  Converted.getFlatArguments(),
4125                                                  Converted.flatSize());
4126
4127    // Create a new class template partial specialization declaration node.
4128    ClassTemplatePartialSpecializationDecl *PrevPartial
4129      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
4130    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
4131                            : ClassTemplate->getNextPartialSpecSequenceNumber();
4132    ClassTemplatePartialSpecializationDecl *Partial
4133      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
4134                                             ClassTemplate->getDeclContext(),
4135                                                       TemplateNameLoc,
4136                                                       TemplateParams,
4137                                                       ClassTemplate,
4138                                                       Converted,
4139                                                       TemplateArgs,
4140                                                       CanonType,
4141                                                       PrevPartial,
4142                                                       SequenceNumber);
4143    SetNestedNameSpecifier(Partial, SS);
4144    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4145      Partial->setTemplateParameterListsInfo(Context,
4146                                             NumMatchedTemplateParamLists,
4147                    (TemplateParameterList**) TemplateParameterLists.release());
4148    }
4149
4150    if (!PrevPartial)
4151      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
4152    Specialization = Partial;
4153
4154    // If we are providing an explicit specialization of a member class
4155    // template specialization, make a note of that.
4156    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4157      PrevPartial->setMemberSpecialization();
4158
4159    // Check that all of the template parameters of the class template
4160    // partial specialization are deducible from the template
4161    // arguments. If not, this class template partial specialization
4162    // will never be used.
4163    llvm::SmallVector<bool, 8> DeducibleParams;
4164    DeducibleParams.resize(TemplateParams->size());
4165    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4166                               TemplateParams->getDepth(),
4167                               DeducibleParams);
4168    unsigned NumNonDeducible = 0;
4169    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
4170      if (!DeducibleParams[I])
4171        ++NumNonDeducible;
4172
4173    if (NumNonDeducible) {
4174      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
4175        << (NumNonDeducible > 1)
4176        << SourceRange(TemplateNameLoc, RAngleLoc);
4177      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4178        if (!DeducibleParams[I]) {
4179          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
4180          if (Param->getDeclName())
4181            Diag(Param->getLocation(),
4182                 diag::note_partial_spec_unused_parameter)
4183              << Param->getDeclName();
4184          else
4185            Diag(Param->getLocation(),
4186                 diag::note_partial_spec_unused_parameter)
4187              << "<anonymous>";
4188        }
4189      }
4190    }
4191  } else {
4192    // Create a new class template specialization declaration node for
4193    // this explicit specialization or friend declaration.
4194    Specialization
4195      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4196                                             ClassTemplate->getDeclContext(),
4197                                                TemplateNameLoc,
4198                                                ClassTemplate,
4199                                                Converted,
4200                                                PrevDecl);
4201    SetNestedNameSpecifier(Specialization, SS);
4202    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
4203      Specialization->setTemplateParameterListsInfo(Context,
4204                                                  NumMatchedTemplateParamLists,
4205                    (TemplateParameterList**) TemplateParameterLists.release());
4206    }
4207
4208    if (!PrevDecl)
4209      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4210
4211    CanonType = Context.getTypeDeclType(Specialization);
4212  }
4213
4214  // C++ [temp.expl.spec]p6:
4215  //   If a template, a member template or the member of a class template is
4216  //   explicitly specialized then that specialization shall be declared
4217  //   before the first use of that specialization that would cause an implicit
4218  //   instantiation to take place, in every translation unit in which such a
4219  //   use occurs; no diagnostic is required.
4220  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4221    bool Okay = false;
4222    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4223      // Is there any previous explicit specialization declaration?
4224      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4225        Okay = true;
4226        break;
4227      }
4228    }
4229
4230    if (!Okay) {
4231      SourceRange Range(TemplateNameLoc, RAngleLoc);
4232      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4233        << Context.getTypeDeclType(Specialization) << Range;
4234
4235      Diag(PrevDecl->getPointOfInstantiation(),
4236           diag::note_instantiation_required_here)
4237        << (PrevDecl->getTemplateSpecializationKind()
4238                                                != TSK_ImplicitInstantiation);
4239      return true;
4240    }
4241  }
4242
4243  // If this is not a friend, note that this is an explicit specialization.
4244  if (TUK != TUK_Friend)
4245    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4246
4247  // Check that this isn't a redefinition of this specialization.
4248  if (TUK == TUK_Definition) {
4249    if (RecordDecl *Def = Specialization->getDefinition()) {
4250      SourceRange Range(TemplateNameLoc, RAngleLoc);
4251      Diag(TemplateNameLoc, diag::err_redefinition)
4252        << Context.getTypeDeclType(Specialization) << Range;
4253      Diag(Def->getLocation(), diag::note_previous_definition);
4254      Specialization->setInvalidDecl();
4255      return true;
4256    }
4257  }
4258
4259  // Build the fully-sugared type for this class template
4260  // specialization as the user wrote in the specialization
4261  // itself. This means that we'll pretty-print the type retrieved
4262  // from the specialization's declaration the way that the user
4263  // actually wrote the specialization, rather than formatting the
4264  // name based on the "canonical" representation used to store the
4265  // template arguments in the specialization.
4266  TypeSourceInfo *WrittenTy
4267    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4268                                                TemplateArgs, CanonType);
4269  if (TUK != TUK_Friend) {
4270    Specialization->setTypeAsWritten(WrittenTy);
4271    if (TemplateParams)
4272      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
4273  }
4274  TemplateArgsIn.release();
4275
4276  // C++ [temp.expl.spec]p9:
4277  //   A template explicit specialization is in the scope of the
4278  //   namespace in which the template was defined.
4279  //
4280  // We actually implement this paragraph where we set the semantic
4281  // context (in the creation of the ClassTemplateSpecializationDecl),
4282  // but we also maintain the lexical context where the actual
4283  // definition occurs.
4284  Specialization->setLexicalDeclContext(CurContext);
4285
4286  // We may be starting the definition of this specialization.
4287  if (TUK == TUK_Definition)
4288    Specialization->startDefinition();
4289
4290  if (TUK == TUK_Friend) {
4291    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4292                                            TemplateNameLoc,
4293                                            WrittenTy,
4294                                            /*FIXME:*/KWLoc);
4295    Friend->setAccess(AS_public);
4296    CurContext->addDecl(Friend);
4297  } else {
4298    // Add the specialization into its lexical context, so that it can
4299    // be seen when iterating through the list of declarations in that
4300    // context. However, specializations are not found by name lookup.
4301    CurContext->addDecl(Specialization);
4302  }
4303  return Specialization;
4304}
4305
4306Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4307                              MultiTemplateParamsArg TemplateParameterLists,
4308                                    Declarator &D) {
4309  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4310}
4311
4312Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4313                               MultiTemplateParamsArg TemplateParameterLists,
4314                                            Declarator &D) {
4315  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4316  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4317         "Not a function declarator!");
4318  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4319
4320  if (FTI.hasPrototype) {
4321    // FIXME: Diagnose arguments without names in C.
4322  }
4323
4324  Scope *ParentScope = FnBodyScope->getParent();
4325
4326  Decl *DP = HandleDeclarator(ParentScope, D,
4327                              move(TemplateParameterLists),
4328                              /*IsFunctionDefinition=*/true);
4329  if (FunctionTemplateDecl *FunctionTemplate
4330        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4331    return ActOnStartOfFunctionDef(FnBodyScope,
4332                                   FunctionTemplate->getTemplatedDecl());
4333  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4334    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4335  return 0;
4336}
4337
4338/// \brief Strips various properties off an implicit instantiation
4339/// that has just been explicitly specialized.
4340static void StripImplicitInstantiation(NamedDecl *D) {
4341  D->dropAttrs();
4342
4343  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4344    FD->setInlineSpecified(false);
4345  }
4346}
4347
4348/// \brief Diagnose cases where we have an explicit template specialization
4349/// before/after an explicit template instantiation, producing diagnostics
4350/// for those cases where they are required and determining whether the
4351/// new specialization/instantiation will have any effect.
4352///
4353/// \param NewLoc the location of the new explicit specialization or
4354/// instantiation.
4355///
4356/// \param NewTSK the kind of the new explicit specialization or instantiation.
4357///
4358/// \param PrevDecl the previous declaration of the entity.
4359///
4360/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4361///
4362/// \param PrevPointOfInstantiation if valid, indicates where the previus
4363/// declaration was instantiated (either implicitly or explicitly).
4364///
4365/// \param HasNoEffect will be set to true to indicate that the new
4366/// specialization or instantiation has no effect and should be ignored.
4367///
4368/// \returns true if there was an error that should prevent the introduction of
4369/// the new declaration into the AST, false otherwise.
4370bool
4371Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4372                                             TemplateSpecializationKind NewTSK,
4373                                             NamedDecl *PrevDecl,
4374                                             TemplateSpecializationKind PrevTSK,
4375                                        SourceLocation PrevPointOfInstantiation,
4376                                             bool &HasNoEffect) {
4377  HasNoEffect = false;
4378
4379  switch (NewTSK) {
4380  case TSK_Undeclared:
4381  case TSK_ImplicitInstantiation:
4382    assert(false && "Don't check implicit instantiations here");
4383    return false;
4384
4385  case TSK_ExplicitSpecialization:
4386    switch (PrevTSK) {
4387    case TSK_Undeclared:
4388    case TSK_ExplicitSpecialization:
4389      // Okay, we're just specializing something that is either already
4390      // explicitly specialized or has merely been mentioned without any
4391      // instantiation.
4392      return false;
4393
4394    case TSK_ImplicitInstantiation:
4395      if (PrevPointOfInstantiation.isInvalid()) {
4396        // The declaration itself has not actually been instantiated, so it is
4397        // still okay to specialize it.
4398        StripImplicitInstantiation(PrevDecl);
4399        return false;
4400      }
4401      // Fall through
4402
4403    case TSK_ExplicitInstantiationDeclaration:
4404    case TSK_ExplicitInstantiationDefinition:
4405      assert((PrevTSK == TSK_ImplicitInstantiation ||
4406              PrevPointOfInstantiation.isValid()) &&
4407             "Explicit instantiation without point of instantiation?");
4408
4409      // C++ [temp.expl.spec]p6:
4410      //   If a template, a member template or the member of a class template
4411      //   is explicitly specialized then that specialization shall be declared
4412      //   before the first use of that specialization that would cause an
4413      //   implicit instantiation to take place, in every translation unit in
4414      //   which such a use occurs; no diagnostic is required.
4415      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4416        // Is there any previous explicit specialization declaration?
4417        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4418          return false;
4419      }
4420
4421      Diag(NewLoc, diag::err_specialization_after_instantiation)
4422        << PrevDecl;
4423      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4424        << (PrevTSK != TSK_ImplicitInstantiation);
4425
4426      return true;
4427    }
4428    break;
4429
4430  case TSK_ExplicitInstantiationDeclaration:
4431    switch (PrevTSK) {
4432    case TSK_ExplicitInstantiationDeclaration:
4433      // This explicit instantiation declaration is redundant (that's okay).
4434      HasNoEffect = true;
4435      return false;
4436
4437    case TSK_Undeclared:
4438    case TSK_ImplicitInstantiation:
4439      // We're explicitly instantiating something that may have already been
4440      // implicitly instantiated; that's fine.
4441      return false;
4442
4443    case TSK_ExplicitSpecialization:
4444      // C++0x [temp.explicit]p4:
4445      //   For a given set of template parameters, if an explicit instantiation
4446      //   of a template appears after a declaration of an explicit
4447      //   specialization for that template, the explicit instantiation has no
4448      //   effect.
4449      HasNoEffect = true;
4450      return false;
4451
4452    case TSK_ExplicitInstantiationDefinition:
4453      // C++0x [temp.explicit]p10:
4454      //   If an entity is the subject of both an explicit instantiation
4455      //   declaration and an explicit instantiation definition in the same
4456      //   translation unit, the definition shall follow the declaration.
4457      Diag(NewLoc,
4458           diag::err_explicit_instantiation_declaration_after_definition);
4459      Diag(PrevPointOfInstantiation,
4460           diag::note_explicit_instantiation_definition_here);
4461      assert(PrevPointOfInstantiation.isValid() &&
4462             "Explicit instantiation without point of instantiation?");
4463      HasNoEffect = true;
4464      return false;
4465    }
4466    break;
4467
4468  case TSK_ExplicitInstantiationDefinition:
4469    switch (PrevTSK) {
4470    case TSK_Undeclared:
4471    case TSK_ImplicitInstantiation:
4472      // We're explicitly instantiating something that may have already been
4473      // implicitly instantiated; that's fine.
4474      return false;
4475
4476    case TSK_ExplicitSpecialization:
4477      // C++ DR 259, C++0x [temp.explicit]p4:
4478      //   For a given set of template parameters, if an explicit
4479      //   instantiation of a template appears after a declaration of
4480      //   an explicit specialization for that template, the explicit
4481      //   instantiation has no effect.
4482      //
4483      // In C++98/03 mode, we only give an extension warning here, because it
4484      // is not harmful to try to explicitly instantiate something that
4485      // has been explicitly specialized.
4486      if (!getLangOptions().CPlusPlus0x) {
4487        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4488          << PrevDecl;
4489        Diag(PrevDecl->getLocation(),
4490             diag::note_previous_template_specialization);
4491      }
4492      HasNoEffect = true;
4493      return false;
4494
4495    case TSK_ExplicitInstantiationDeclaration:
4496      // We're explicity instantiating a definition for something for which we
4497      // were previously asked to suppress instantiations. That's fine.
4498      return false;
4499
4500    case TSK_ExplicitInstantiationDefinition:
4501      // C++0x [temp.spec]p5:
4502      //   For a given template and a given set of template-arguments,
4503      //     - an explicit instantiation definition shall appear at most once
4504      //       in a program,
4505      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4506        << PrevDecl;
4507      Diag(PrevPointOfInstantiation,
4508           diag::note_previous_explicit_instantiation);
4509      HasNoEffect = true;
4510      return false;
4511    }
4512    break;
4513  }
4514
4515  assert(false && "Missing specialization/instantiation case?");
4516
4517  return false;
4518}
4519
4520/// \brief Perform semantic analysis for the given dependent function
4521/// template specialization.  The only possible way to get a dependent
4522/// function template specialization is with a friend declaration,
4523/// like so:
4524///
4525///   template <class T> void foo(T);
4526///   template <class T> class A {
4527///     friend void foo<>(T);
4528///   };
4529///
4530/// There really isn't any useful analysis we can do here, so we
4531/// just store the information.
4532bool
4533Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4534                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4535                                                   LookupResult &Previous) {
4536  // Remove anything from Previous that isn't a function template in
4537  // the correct context.
4538  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4539  LookupResult::Filter F = Previous.makeFilter();
4540  while (F.hasNext()) {
4541    NamedDecl *D = F.next()->getUnderlyingDecl();
4542    if (!isa<FunctionTemplateDecl>(D) ||
4543        !FDLookupContext->InEnclosingNamespaceSetOf(
4544                              D->getDeclContext()->getRedeclContext()))
4545      F.erase();
4546  }
4547  F.done();
4548
4549  // Should this be diagnosed here?
4550  if (Previous.empty()) return true;
4551
4552  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4553                                         ExplicitTemplateArgs);
4554  return false;
4555}
4556
4557/// \brief Perform semantic analysis for the given function template
4558/// specialization.
4559///
4560/// This routine performs all of the semantic analysis required for an
4561/// explicit function template specialization. On successful completion,
4562/// the function declaration \p FD will become a function template
4563/// specialization.
4564///
4565/// \param FD the function declaration, which will be updated to become a
4566/// function template specialization.
4567///
4568/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4569/// if any. Note that this may be valid info even when 0 arguments are
4570/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4571/// as it anyway contains info on the angle brackets locations.
4572///
4573/// \param PrevDecl the set of declarations that may be specialized by
4574/// this function specialization.
4575bool
4576Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4577                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4578                                          LookupResult &Previous) {
4579  // The set of function template specializations that could match this
4580  // explicit function template specialization.
4581  UnresolvedSet<8> Candidates;
4582
4583  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4584  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4585         I != E; ++I) {
4586    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4587    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4588      // Only consider templates found within the same semantic lookup scope as
4589      // FD.
4590      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4591                                Ovl->getDeclContext()->getRedeclContext()))
4592        continue;
4593
4594      // C++ [temp.expl.spec]p11:
4595      //   A trailing template-argument can be left unspecified in the
4596      //   template-id naming an explicit function template specialization
4597      //   provided it can be deduced from the function argument type.
4598      // Perform template argument deduction to determine whether we may be
4599      // specializing this template.
4600      // FIXME: It is somewhat wasteful to build
4601      TemplateDeductionInfo Info(Context, FD->getLocation());
4602      FunctionDecl *Specialization = 0;
4603      if (TemplateDeductionResult TDK
4604            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4605                                      FD->getType(),
4606                                      Specialization,
4607                                      Info)) {
4608        // FIXME: Template argument deduction failed; record why it failed, so
4609        // that we can provide nifty diagnostics.
4610        (void)TDK;
4611        continue;
4612      }
4613
4614      // Record this candidate.
4615      Candidates.addDecl(Specialization, I.getAccess());
4616    }
4617  }
4618
4619  // Find the most specialized function template.
4620  UnresolvedSetIterator Result
4621    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4622                         TPOC_Other, FD->getLocation(),
4623                  PDiag(diag::err_function_template_spec_no_match)
4624                    << FD->getDeclName(),
4625                  PDiag(diag::err_function_template_spec_ambiguous)
4626                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4627                  PDiag(diag::note_function_template_spec_matched));
4628  if (Result == Candidates.end())
4629    return true;
4630
4631  // Ignore access information;  it doesn't figure into redeclaration checking.
4632  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4633  Specialization->setLocation(FD->getLocation());
4634
4635  // FIXME: Check if the prior specialization has a point of instantiation.
4636  // If so, we have run afoul of .
4637
4638  // If this is a friend declaration, then we're not really declaring
4639  // an explicit specialization.
4640  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4641
4642  // Check the scope of this explicit specialization.
4643  if (!isFriend &&
4644      CheckTemplateSpecializationScope(*this,
4645                                       Specialization->getPrimaryTemplate(),
4646                                       Specialization, FD->getLocation(),
4647                                       false))
4648    return true;
4649
4650  // C++ [temp.expl.spec]p6:
4651  //   If a template, a member template or the member of a class template is
4652  //   explicitly specialized then that specialization shall be declared
4653  //   before the first use of that specialization that would cause an implicit
4654  //   instantiation to take place, in every translation unit in which such a
4655  //   use occurs; no diagnostic is required.
4656  FunctionTemplateSpecializationInfo *SpecInfo
4657    = Specialization->getTemplateSpecializationInfo();
4658  assert(SpecInfo && "Function template specialization info missing?");
4659
4660  bool HasNoEffect = false;
4661  if (!isFriend &&
4662      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4663                                             TSK_ExplicitSpecialization,
4664                                             Specialization,
4665                                   SpecInfo->getTemplateSpecializationKind(),
4666                                         SpecInfo->getPointOfInstantiation(),
4667                                             HasNoEffect))
4668    return true;
4669
4670  // Mark the prior declaration as an explicit specialization, so that later
4671  // clients know that this is an explicit specialization.
4672  if (!isFriend) {
4673    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4674    MarkUnusedFileScopedDecl(Specialization);
4675  }
4676
4677  // Turn the given function declaration into a function template
4678  // specialization, with the template arguments from the previous
4679  // specialization.
4680  // Take copies of (semantic and syntactic) template argument lists.
4681  const TemplateArgumentList* TemplArgs = new (Context)
4682    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4683  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4684    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4685  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4686                                        TemplArgs, /*InsertPos=*/0,
4687                                    SpecInfo->getTemplateSpecializationKind(),
4688                                        TemplArgsAsWritten);
4689
4690  // The "previous declaration" for this function template specialization is
4691  // the prior function template specialization.
4692  Previous.clear();
4693  Previous.addDecl(Specialization);
4694  return false;
4695}
4696
4697/// \brief Perform semantic analysis for the given non-template member
4698/// specialization.
4699///
4700/// This routine performs all of the semantic analysis required for an
4701/// explicit member function specialization. On successful completion,
4702/// the function declaration \p FD will become a member function
4703/// specialization.
4704///
4705/// \param Member the member declaration, which will be updated to become a
4706/// specialization.
4707///
4708/// \param Previous the set of declarations, one of which may be specialized
4709/// by this function specialization;  the set will be modified to contain the
4710/// redeclared member.
4711bool
4712Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4713  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4714
4715  // Try to find the member we are instantiating.
4716  NamedDecl *Instantiation = 0;
4717  NamedDecl *InstantiatedFrom = 0;
4718  MemberSpecializationInfo *MSInfo = 0;
4719
4720  if (Previous.empty()) {
4721    // Nowhere to look anyway.
4722  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4723    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4724           I != E; ++I) {
4725      NamedDecl *D = (*I)->getUnderlyingDecl();
4726      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4727        if (Context.hasSameType(Function->getType(), Method->getType())) {
4728          Instantiation = Method;
4729          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4730          MSInfo = Method->getMemberSpecializationInfo();
4731          break;
4732        }
4733      }
4734    }
4735  } else if (isa<VarDecl>(Member)) {
4736    VarDecl *PrevVar;
4737    if (Previous.isSingleResult() &&
4738        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4739      if (PrevVar->isStaticDataMember()) {
4740        Instantiation = PrevVar;
4741        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4742        MSInfo = PrevVar->getMemberSpecializationInfo();
4743      }
4744  } else if (isa<RecordDecl>(Member)) {
4745    CXXRecordDecl *PrevRecord;
4746    if (Previous.isSingleResult() &&
4747        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4748      Instantiation = PrevRecord;
4749      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4750      MSInfo = PrevRecord->getMemberSpecializationInfo();
4751    }
4752  }
4753
4754  if (!Instantiation) {
4755    // There is no previous declaration that matches. Since member
4756    // specializations are always out-of-line, the caller will complain about
4757    // this mismatch later.
4758    return false;
4759  }
4760
4761  // If this is a friend, just bail out here before we start turning
4762  // things into explicit specializations.
4763  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4764    // Preserve instantiation information.
4765    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4766      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4767                                      cast<CXXMethodDecl>(InstantiatedFrom),
4768        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4769    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4770      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4771                                      cast<CXXRecordDecl>(InstantiatedFrom),
4772        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4773    }
4774
4775    Previous.clear();
4776    Previous.addDecl(Instantiation);
4777    return false;
4778  }
4779
4780  // Make sure that this is a specialization of a member.
4781  if (!InstantiatedFrom) {
4782    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4783      << Member;
4784    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4785    return true;
4786  }
4787
4788  // C++ [temp.expl.spec]p6:
4789  //   If a template, a member template or the member of a class template is
4790  //   explicitly specialized then that spe- cialization shall be declared
4791  //   before the first use of that specialization that would cause an implicit
4792  //   instantiation to take place, in every translation unit in which such a
4793  //   use occurs; no diagnostic is required.
4794  assert(MSInfo && "Member specialization info missing?");
4795
4796  bool HasNoEffect = false;
4797  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4798                                             TSK_ExplicitSpecialization,
4799                                             Instantiation,
4800                                     MSInfo->getTemplateSpecializationKind(),
4801                                           MSInfo->getPointOfInstantiation(),
4802                                             HasNoEffect))
4803    return true;
4804
4805  // Check the scope of this explicit specialization.
4806  if (CheckTemplateSpecializationScope(*this,
4807                                       InstantiatedFrom,
4808                                       Instantiation, Member->getLocation(),
4809                                       false))
4810    return true;
4811
4812  // Note that this is an explicit instantiation of a member.
4813  // the original declaration to note that it is an explicit specialization
4814  // (if it was previously an implicit instantiation). This latter step
4815  // makes bookkeeping easier.
4816  if (isa<FunctionDecl>(Member)) {
4817    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4818    if (InstantiationFunction->getTemplateSpecializationKind() ==
4819          TSK_ImplicitInstantiation) {
4820      InstantiationFunction->setTemplateSpecializationKind(
4821                                                  TSK_ExplicitSpecialization);
4822      InstantiationFunction->setLocation(Member->getLocation());
4823    }
4824
4825    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4826                                        cast<CXXMethodDecl>(InstantiatedFrom),
4827                                                  TSK_ExplicitSpecialization);
4828    MarkUnusedFileScopedDecl(InstantiationFunction);
4829  } else if (isa<VarDecl>(Member)) {
4830    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4831    if (InstantiationVar->getTemplateSpecializationKind() ==
4832          TSK_ImplicitInstantiation) {
4833      InstantiationVar->setTemplateSpecializationKind(
4834                                                  TSK_ExplicitSpecialization);
4835      InstantiationVar->setLocation(Member->getLocation());
4836    }
4837
4838    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4839                                                cast<VarDecl>(InstantiatedFrom),
4840                                                TSK_ExplicitSpecialization);
4841    MarkUnusedFileScopedDecl(InstantiationVar);
4842  } else {
4843    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4844    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4845    if (InstantiationClass->getTemplateSpecializationKind() ==
4846          TSK_ImplicitInstantiation) {
4847      InstantiationClass->setTemplateSpecializationKind(
4848                                                   TSK_ExplicitSpecialization);
4849      InstantiationClass->setLocation(Member->getLocation());
4850    }
4851
4852    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4853                                        cast<CXXRecordDecl>(InstantiatedFrom),
4854                                                   TSK_ExplicitSpecialization);
4855  }
4856
4857  // Save the caller the trouble of having to figure out which declaration
4858  // this specialization matches.
4859  Previous.clear();
4860  Previous.addDecl(Instantiation);
4861  return false;
4862}
4863
4864/// \brief Check the scope of an explicit instantiation.
4865///
4866/// \returns true if a serious error occurs, false otherwise.
4867static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4868                                            SourceLocation InstLoc,
4869                                            bool WasQualifiedName) {
4870  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4871  DeclContext *CurContext = S.CurContext->getRedeclContext();
4872
4873  if (CurContext->isRecord()) {
4874    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4875      << D;
4876    return true;
4877  }
4878
4879  // C++0x [temp.explicit]p2:
4880  //   An explicit instantiation shall appear in an enclosing namespace of its
4881  //   template.
4882  //
4883  // This is DR275, which we do not retroactively apply to C++98/03.
4884  if (S.getLangOptions().CPlusPlus0x &&
4885      !CurContext->Encloses(OrigContext)) {
4886    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
4887      S.Diag(InstLoc,
4888             S.getLangOptions().CPlusPlus0x?
4889                 diag::err_explicit_instantiation_out_of_scope
4890               : diag::warn_explicit_instantiation_out_of_scope_0x)
4891        << D << NS;
4892    else
4893      S.Diag(InstLoc,
4894             S.getLangOptions().CPlusPlus0x?
4895                 diag::err_explicit_instantiation_must_be_global
4896               : diag::warn_explicit_instantiation_out_of_scope_0x)
4897        << D;
4898    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4899    return false;
4900  }
4901
4902  // C++0x [temp.explicit]p2:
4903  //   If the name declared in the explicit instantiation is an unqualified
4904  //   name, the explicit instantiation shall appear in the namespace where
4905  //   its template is declared or, if that namespace is inline (7.3.1), any
4906  //   namespace from its enclosing namespace set.
4907  if (WasQualifiedName)
4908    return false;
4909
4910  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
4911    return false;
4912
4913  S.Diag(InstLoc,
4914         S.getLangOptions().CPlusPlus0x?
4915             diag::err_explicit_instantiation_unqualified_wrong_namespace
4916           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4917    << D << OrigContext;
4918  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4919  return false;
4920}
4921
4922/// \brief Determine whether the given scope specifier has a template-id in it.
4923static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4924  if (!SS.isSet())
4925    return false;
4926
4927  // C++0x [temp.explicit]p2:
4928  //   If the explicit instantiation is for a member function, a member class
4929  //   or a static data member of a class template specialization, the name of
4930  //   the class template specialization in the qualified-id for the member
4931  //   name shall be a simple-template-id.
4932  //
4933  // C++98 has the same restriction, just worded differently.
4934  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4935       NNS; NNS = NNS->getPrefix())
4936    if (Type *T = NNS->getAsType())
4937      if (isa<TemplateSpecializationType>(T))
4938        return true;
4939
4940  return false;
4941}
4942
4943// Explicit instantiation of a class template specialization
4944DeclResult
4945Sema::ActOnExplicitInstantiation(Scope *S,
4946                                 SourceLocation ExternLoc,
4947                                 SourceLocation TemplateLoc,
4948                                 unsigned TagSpec,
4949                                 SourceLocation KWLoc,
4950                                 const CXXScopeSpec &SS,
4951                                 TemplateTy TemplateD,
4952                                 SourceLocation TemplateNameLoc,
4953                                 SourceLocation LAngleLoc,
4954                                 ASTTemplateArgsPtr TemplateArgsIn,
4955                                 SourceLocation RAngleLoc,
4956                                 AttributeList *Attr) {
4957  // Find the class template we're specializing
4958  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4959  ClassTemplateDecl *ClassTemplate
4960    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4961
4962  // Check that the specialization uses the same tag kind as the
4963  // original template.
4964  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4965  assert(Kind != TTK_Enum &&
4966         "Invalid enum tag in class template explicit instantiation!");
4967  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4968                                    Kind, KWLoc,
4969                                    *ClassTemplate->getIdentifier())) {
4970    Diag(KWLoc, diag::err_use_with_wrong_tag)
4971      << ClassTemplate
4972      << FixItHint::CreateReplacement(KWLoc,
4973                            ClassTemplate->getTemplatedDecl()->getKindName());
4974    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4975         diag::note_previous_use);
4976    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4977  }
4978
4979  // C++0x [temp.explicit]p2:
4980  //   There are two forms of explicit instantiation: an explicit instantiation
4981  //   definition and an explicit instantiation declaration. An explicit
4982  //   instantiation declaration begins with the extern keyword. [...]
4983  TemplateSpecializationKind TSK
4984    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4985                           : TSK_ExplicitInstantiationDeclaration;
4986
4987  // Translate the parser's template argument list in our AST format.
4988  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4989  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4990
4991  // Check that the template argument list is well-formed for this
4992  // template.
4993  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4994                                        TemplateArgs.size());
4995  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4996                                TemplateArgs, false, Converted))
4997    return true;
4998
4999  assert((Converted.structuredSize() ==
5000            ClassTemplate->getTemplateParameters()->size()) &&
5001         "Converted template argument list is too short!");
5002
5003  // Find the class template specialization declaration that
5004  // corresponds to these arguments.
5005  void *InsertPos = 0;
5006  ClassTemplateSpecializationDecl *PrevDecl
5007    = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
5008                                        Converted.flatSize(), InsertPos);
5009
5010  TemplateSpecializationKind PrevDecl_TSK
5011    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5012
5013  // C++0x [temp.explicit]p2:
5014  //   [...] An explicit instantiation shall appear in an enclosing
5015  //   namespace of its template. [...]
5016  //
5017  // This is C++ DR 275.
5018  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5019                                      SS.isSet()))
5020    return true;
5021
5022  ClassTemplateSpecializationDecl *Specialization = 0;
5023
5024  bool ReusedDecl = false;
5025  bool HasNoEffect = false;
5026  if (PrevDecl) {
5027    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5028                                               PrevDecl, PrevDecl_TSK,
5029                                            PrevDecl->getPointOfInstantiation(),
5030                                               HasNoEffect))
5031      return PrevDecl;
5032
5033    // Even though HasNoEffect == true means that this explicit instantiation
5034    // has no effect on semantics, we go on to put its syntax in the AST.
5035
5036    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5037        PrevDecl_TSK == TSK_Undeclared) {
5038      // Since the only prior class template specialization with these
5039      // arguments was referenced but not declared, reuse that
5040      // declaration node as our own, updating the source location
5041      // for the template name to reflect our new declaration.
5042      // (Other source locations will be updated later.)
5043      Specialization = PrevDecl;
5044      Specialization->setLocation(TemplateNameLoc);
5045      PrevDecl = 0;
5046      ReusedDecl = true;
5047    }
5048  }
5049
5050  if (!Specialization) {
5051    // Create a new class template specialization declaration node for
5052    // this explicit specialization.
5053    Specialization
5054      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5055                                             ClassTemplate->getDeclContext(),
5056                                                TemplateNameLoc,
5057                                                ClassTemplate,
5058                                                Converted, PrevDecl);
5059    SetNestedNameSpecifier(Specialization, SS);
5060
5061    if (!HasNoEffect && !PrevDecl) {
5062      // Insert the new specialization.
5063      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5064    }
5065  }
5066
5067  // Build the fully-sugared type for this explicit instantiation as
5068  // the user wrote in the explicit instantiation itself. This means
5069  // that we'll pretty-print the type retrieved from the
5070  // specialization's declaration the way that the user actually wrote
5071  // the explicit instantiation, rather than formatting the name based
5072  // on the "canonical" representation used to store the template
5073  // arguments in the specialization.
5074  TypeSourceInfo *WrittenTy
5075    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5076                                                TemplateArgs,
5077                                  Context.getTypeDeclType(Specialization));
5078  Specialization->setTypeAsWritten(WrittenTy);
5079  TemplateArgsIn.release();
5080
5081  // Set source locations for keywords.
5082  Specialization->setExternLoc(ExternLoc);
5083  Specialization->setTemplateKeywordLoc(TemplateLoc);
5084
5085  // Add the explicit instantiation into its lexical context. However,
5086  // since explicit instantiations are never found by name lookup, we
5087  // just put it into the declaration context directly.
5088  Specialization->setLexicalDeclContext(CurContext);
5089  CurContext->addDecl(Specialization);
5090
5091  // Syntax is now OK, so return if it has no other effect on semantics.
5092  if (HasNoEffect) {
5093    // Set the template specialization kind.
5094    Specialization->setTemplateSpecializationKind(TSK);
5095    return Specialization;
5096  }
5097
5098  // C++ [temp.explicit]p3:
5099  //   A definition of a class template or class member template
5100  //   shall be in scope at the point of the explicit instantiation of
5101  //   the class template or class member template.
5102  //
5103  // This check comes when we actually try to perform the
5104  // instantiation.
5105  ClassTemplateSpecializationDecl *Def
5106    = cast_or_null<ClassTemplateSpecializationDecl>(
5107                                              Specialization->getDefinition());
5108  if (!Def)
5109    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
5110  else if (TSK == TSK_ExplicitInstantiationDefinition) {
5111    MarkVTableUsed(TemplateNameLoc, Specialization, true);
5112    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
5113  }
5114
5115  // Instantiate the members of this class template specialization.
5116  Def = cast_or_null<ClassTemplateSpecializationDecl>(
5117                                       Specialization->getDefinition());
5118  if (Def) {
5119    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
5120
5121    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
5122    // TSK_ExplicitInstantiationDefinition
5123    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
5124        TSK == TSK_ExplicitInstantiationDefinition)
5125      Def->setTemplateSpecializationKind(TSK);
5126
5127    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
5128  }
5129
5130  // Set the template specialization kind.
5131  Specialization->setTemplateSpecializationKind(TSK);
5132  return Specialization;
5133}
5134
5135// Explicit instantiation of a member class of a class template.
5136DeclResult
5137Sema::ActOnExplicitInstantiation(Scope *S,
5138                                 SourceLocation ExternLoc,
5139                                 SourceLocation TemplateLoc,
5140                                 unsigned TagSpec,
5141                                 SourceLocation KWLoc,
5142                                 CXXScopeSpec &SS,
5143                                 IdentifierInfo *Name,
5144                                 SourceLocation NameLoc,
5145                                 AttributeList *Attr) {
5146
5147  bool Owned = false;
5148  bool IsDependent = false;
5149  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
5150                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
5151                        MultiTemplateParamsArg(*this, 0, 0),
5152                        Owned, IsDependent, false,
5153                        TypeResult());
5154  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
5155
5156  if (!TagD)
5157    return true;
5158
5159  TagDecl *Tag = cast<TagDecl>(TagD);
5160  if (Tag->isEnum()) {
5161    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
5162      << Context.getTypeDeclType(Tag);
5163    return true;
5164  }
5165
5166  if (Tag->isInvalidDecl())
5167    return true;
5168
5169  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
5170  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
5171  if (!Pattern) {
5172    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
5173      << Context.getTypeDeclType(Record);
5174    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
5175    return true;
5176  }
5177
5178  // C++0x [temp.explicit]p2:
5179  //   If the explicit instantiation is for a class or member class, the
5180  //   elaborated-type-specifier in the declaration shall include a
5181  //   simple-template-id.
5182  //
5183  // C++98 has the same restriction, just worded differently.
5184  if (!ScopeSpecifierHasTemplateId(SS))
5185    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
5186      << Record << SS.getRange();
5187
5188  // C++0x [temp.explicit]p2:
5189  //   There are two forms of explicit instantiation: an explicit instantiation
5190  //   definition and an explicit instantiation declaration. An explicit
5191  //   instantiation declaration begins with the extern keyword. [...]
5192  TemplateSpecializationKind TSK
5193    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5194                           : TSK_ExplicitInstantiationDeclaration;
5195
5196  // C++0x [temp.explicit]p2:
5197  //   [...] An explicit instantiation shall appear in an enclosing
5198  //   namespace of its template. [...]
5199  //
5200  // This is C++ DR 275.
5201  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
5202
5203  // Verify that it is okay to explicitly instantiate here.
5204  CXXRecordDecl *PrevDecl
5205    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
5206  if (!PrevDecl && Record->getDefinition())
5207    PrevDecl = Record;
5208  if (PrevDecl) {
5209    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
5210    bool HasNoEffect = false;
5211    assert(MSInfo && "No member specialization information?");
5212    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
5213                                               PrevDecl,
5214                                        MSInfo->getTemplateSpecializationKind(),
5215                                             MSInfo->getPointOfInstantiation(),
5216                                               HasNoEffect))
5217      return true;
5218    if (HasNoEffect)
5219      return TagD;
5220  }
5221
5222  CXXRecordDecl *RecordDef
5223    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5224  if (!RecordDef) {
5225    // C++ [temp.explicit]p3:
5226    //   A definition of a member class of a class template shall be in scope
5227    //   at the point of an explicit instantiation of the member class.
5228    CXXRecordDecl *Def
5229      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
5230    if (!Def) {
5231      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
5232        << 0 << Record->getDeclName() << Record->getDeclContext();
5233      Diag(Pattern->getLocation(), diag::note_forward_declaration)
5234        << Pattern;
5235      return true;
5236    } else {
5237      if (InstantiateClass(NameLoc, Record, Def,
5238                           getTemplateInstantiationArgs(Record),
5239                           TSK))
5240        return true;
5241
5242      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
5243      if (!RecordDef)
5244        return true;
5245    }
5246  }
5247
5248  // Instantiate all of the members of the class.
5249  InstantiateClassMembers(NameLoc, RecordDef,
5250                          getTemplateInstantiationArgs(Record), TSK);
5251
5252  if (TSK == TSK_ExplicitInstantiationDefinition)
5253    MarkVTableUsed(NameLoc, RecordDef, true);
5254
5255  // FIXME: We don't have any representation for explicit instantiations of
5256  // member classes. Such a representation is not needed for compilation, but it
5257  // should be available for clients that want to see all of the declarations in
5258  // the source code.
5259  return TagD;
5260}
5261
5262DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
5263                                            SourceLocation ExternLoc,
5264                                            SourceLocation TemplateLoc,
5265                                            Declarator &D) {
5266  // Explicit instantiations always require a name.
5267  // TODO: check if/when DNInfo should replace Name.
5268  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5269  DeclarationName Name = NameInfo.getName();
5270  if (!Name) {
5271    if (!D.isInvalidType())
5272      Diag(D.getDeclSpec().getSourceRange().getBegin(),
5273           diag::err_explicit_instantiation_requires_name)
5274        << D.getDeclSpec().getSourceRange()
5275        << D.getSourceRange();
5276
5277    return true;
5278  }
5279
5280  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5281  // we find one that is.
5282  while ((S->getFlags() & Scope::DeclScope) == 0 ||
5283         (S->getFlags() & Scope::TemplateParamScope) != 0)
5284    S = S->getParent();
5285
5286  // Determine the type of the declaration.
5287  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5288  QualType R = T->getType();
5289  if (R.isNull())
5290    return true;
5291
5292  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5293    // Cannot explicitly instantiate a typedef.
5294    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5295      << Name;
5296    return true;
5297  }
5298
5299  // C++0x [temp.explicit]p1:
5300  //   [...] An explicit instantiation of a function template shall not use the
5301  //   inline or constexpr specifiers.
5302  // Presumably, this also applies to member functions of class templates as
5303  // well.
5304  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5305    Diag(D.getDeclSpec().getInlineSpecLoc(),
5306         diag::err_explicit_instantiation_inline)
5307      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5308
5309  // FIXME: check for constexpr specifier.
5310
5311  // C++0x [temp.explicit]p2:
5312  //   There are two forms of explicit instantiation: an explicit instantiation
5313  //   definition and an explicit instantiation declaration. An explicit
5314  //   instantiation declaration begins with the extern keyword. [...]
5315  TemplateSpecializationKind TSK
5316    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5317                           : TSK_ExplicitInstantiationDeclaration;
5318
5319  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5320  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5321
5322  if (!R->isFunctionType()) {
5323    // C++ [temp.explicit]p1:
5324    //   A [...] static data member of a class template can be explicitly
5325    //   instantiated from the member definition associated with its class
5326    //   template.
5327    if (Previous.isAmbiguous())
5328      return true;
5329
5330    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5331    if (!Prev || !Prev->isStaticDataMember()) {
5332      // We expect to see a data data member here.
5333      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5334        << Name;
5335      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5336           P != PEnd; ++P)
5337        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5338      return true;
5339    }
5340
5341    if (!Prev->getInstantiatedFromStaticDataMember()) {
5342      // FIXME: Check for explicit specialization?
5343      Diag(D.getIdentifierLoc(),
5344           diag::err_explicit_instantiation_data_member_not_instantiated)
5345        << Prev;
5346      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5347      // FIXME: Can we provide a note showing where this was declared?
5348      return true;
5349    }
5350
5351    // C++0x [temp.explicit]p2:
5352    //   If the explicit instantiation is for a member function, a member class
5353    //   or a static data member of a class template specialization, the name of
5354    //   the class template specialization in the qualified-id for the member
5355    //   name shall be a simple-template-id.
5356    //
5357    // C++98 has the same restriction, just worded differently.
5358    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5359      Diag(D.getIdentifierLoc(),
5360           diag::ext_explicit_instantiation_without_qualified_id)
5361        << Prev << D.getCXXScopeSpec().getRange();
5362
5363    // Check the scope of this explicit instantiation.
5364    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5365
5366    // Verify that it is okay to explicitly instantiate here.
5367    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5368    assert(MSInfo && "Missing static data member specialization info?");
5369    bool HasNoEffect = false;
5370    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5371                                        MSInfo->getTemplateSpecializationKind(),
5372                                              MSInfo->getPointOfInstantiation(),
5373                                               HasNoEffect))
5374      return true;
5375    if (HasNoEffect)
5376      return (Decl*) 0;
5377
5378    // Instantiate static data member.
5379    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5380    if (TSK == TSK_ExplicitInstantiationDefinition)
5381      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5382
5383    // FIXME: Create an ExplicitInstantiation node?
5384    return (Decl*) 0;
5385  }
5386
5387  // If the declarator is a template-id, translate the parser's template
5388  // argument list into our AST format.
5389  bool HasExplicitTemplateArgs = false;
5390  TemplateArgumentListInfo TemplateArgs;
5391  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5392    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5393    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5394    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5395    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5396                                       TemplateId->getTemplateArgs(),
5397                                       TemplateId->NumArgs);
5398    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5399    HasExplicitTemplateArgs = true;
5400    TemplateArgsPtr.release();
5401  }
5402
5403  // C++ [temp.explicit]p1:
5404  //   A [...] function [...] can be explicitly instantiated from its template.
5405  //   A member function [...] of a class template can be explicitly
5406  //  instantiated from the member definition associated with its class
5407  //  template.
5408  UnresolvedSet<8> Matches;
5409  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5410       P != PEnd; ++P) {
5411    NamedDecl *Prev = *P;
5412    if (!HasExplicitTemplateArgs) {
5413      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5414        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5415          Matches.clear();
5416
5417          Matches.addDecl(Method, P.getAccess());
5418          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5419            break;
5420        }
5421      }
5422    }
5423
5424    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5425    if (!FunTmpl)
5426      continue;
5427
5428    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5429    FunctionDecl *Specialization = 0;
5430    if (TemplateDeductionResult TDK
5431          = DeduceTemplateArguments(FunTmpl,
5432                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5433                                    R, Specialization, Info)) {
5434      // FIXME: Keep track of almost-matches?
5435      (void)TDK;
5436      continue;
5437    }
5438
5439    Matches.addDecl(Specialization, P.getAccess());
5440  }
5441
5442  // Find the most specialized function template specialization.
5443  UnresolvedSetIterator Result
5444    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5445                         D.getIdentifierLoc(),
5446                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5447                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5448                         PDiag(diag::note_explicit_instantiation_candidate));
5449
5450  if (Result == Matches.end())
5451    return true;
5452
5453  // Ignore access control bits, we don't need them for redeclaration checking.
5454  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5455
5456  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5457    Diag(D.getIdentifierLoc(),
5458         diag::err_explicit_instantiation_member_function_not_instantiated)
5459      << Specialization
5460      << (Specialization->getTemplateSpecializationKind() ==
5461          TSK_ExplicitSpecialization);
5462    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5463    return true;
5464  }
5465
5466  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5467  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5468    PrevDecl = Specialization;
5469
5470  if (PrevDecl) {
5471    bool HasNoEffect = false;
5472    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5473                                               PrevDecl,
5474                                     PrevDecl->getTemplateSpecializationKind(),
5475                                          PrevDecl->getPointOfInstantiation(),
5476                                               HasNoEffect))
5477      return true;
5478
5479    // FIXME: We may still want to build some representation of this
5480    // explicit specialization.
5481    if (HasNoEffect)
5482      return (Decl*) 0;
5483  }
5484
5485  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5486
5487  if (TSK == TSK_ExplicitInstantiationDefinition)
5488    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5489
5490  // C++0x [temp.explicit]p2:
5491  //   If the explicit instantiation is for a member function, a member class
5492  //   or a static data member of a class template specialization, the name of
5493  //   the class template specialization in the qualified-id for the member
5494  //   name shall be a simple-template-id.
5495  //
5496  // C++98 has the same restriction, just worded differently.
5497  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5498  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5499      D.getCXXScopeSpec().isSet() &&
5500      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5501    Diag(D.getIdentifierLoc(),
5502         diag::ext_explicit_instantiation_without_qualified_id)
5503    << Specialization << D.getCXXScopeSpec().getRange();
5504
5505  CheckExplicitInstantiationScope(*this,
5506                   FunTmpl? (NamedDecl *)FunTmpl
5507                          : Specialization->getInstantiatedFromMemberFunction(),
5508                                  D.getIdentifierLoc(),
5509                                  D.getCXXScopeSpec().isSet());
5510
5511  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5512  return (Decl*) 0;
5513}
5514
5515TypeResult
5516Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5517                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5518                        SourceLocation TagLoc, SourceLocation NameLoc) {
5519  // This has to hold, because SS is expected to be defined.
5520  assert(Name && "Expected a name in a dependent tag");
5521
5522  NestedNameSpecifier *NNS
5523    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5524  if (!NNS)
5525    return true;
5526
5527  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5528
5529  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5530    Diag(NameLoc, diag::err_dependent_tag_decl)
5531      << (TUK == TUK_Definition) << Kind << SS.getRange();
5532    return true;
5533  }
5534
5535  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5536  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5537}
5538
5539TypeResult
5540Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5541                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5542                        SourceLocation IdLoc) {
5543  NestedNameSpecifier *NNS
5544    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5545  if (!NNS)
5546    return true;
5547
5548  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5549      !getLangOptions().CPlusPlus0x)
5550    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5551      << FixItHint::CreateRemoval(TypenameLoc);
5552
5553  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5554                                 TypenameLoc, SS.getRange(), IdLoc);
5555  if (T.isNull())
5556    return true;
5557
5558  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5559  if (isa<DependentNameType>(T)) {
5560    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5561    TL.setKeywordLoc(TypenameLoc);
5562    TL.setQualifierRange(SS.getRange());
5563    TL.setNameLoc(IdLoc);
5564  } else {
5565    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5566    TL.setKeywordLoc(TypenameLoc);
5567    TL.setQualifierRange(SS.getRange());
5568    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5569  }
5570
5571  return CreateParsedType(T, TSI);
5572}
5573
5574TypeResult
5575Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5576                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5577                        ParsedType Ty) {
5578  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5579      !getLangOptions().CPlusPlus0x)
5580    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5581      << FixItHint::CreateRemoval(TypenameLoc);
5582
5583  TypeSourceInfo *InnerTSI = 0;
5584  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5585
5586  assert(isa<TemplateSpecializationType>(T) &&
5587         "Expected a template specialization type");
5588
5589  if (computeDeclContext(SS, false)) {
5590    // If we can compute a declaration context, then the "typename"
5591    // keyword was superfluous. Just build an ElaboratedType to keep
5592    // track of the nested-name-specifier.
5593
5594    // Push the inner type, preserving its source locations if possible.
5595    TypeLocBuilder Builder;
5596    if (InnerTSI)
5597      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5598    else
5599      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5600
5601    /* Note: NNS already embedded in template specialization type T. */
5602    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5603    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5604    TL.setKeywordLoc(TypenameLoc);
5605    TL.setQualifierRange(SS.getRange());
5606
5607    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5608    return CreateParsedType(T, TSI);
5609  }
5610
5611  // TODO: it's really silly that we make a template specialization
5612  // type earlier only to drop it again here.
5613  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5614  DependentTemplateName *DTN =
5615    TST->getTemplateName().getAsDependentTemplateName();
5616  assert(DTN && "dependent template has non-dependent name?");
5617  assert(DTN->getQualifier()
5618         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5619  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5620                                                     DTN->getQualifier(),
5621                                                     DTN->getIdentifier(),
5622                                                     TST->getNumArgs(),
5623                                                     TST->getArgs());
5624  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5625  DependentTemplateSpecializationTypeLoc TL =
5626    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5627  if (InnerTSI) {
5628    TemplateSpecializationTypeLoc TSTL =
5629      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5630    TL.setLAngleLoc(TSTL.getLAngleLoc());
5631    TL.setRAngleLoc(TSTL.getRAngleLoc());
5632    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5633      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5634  } else {
5635    TL.initializeLocal(SourceLocation());
5636  }
5637  TL.setKeywordLoc(TypenameLoc);
5638  TL.setQualifierRange(SS.getRange());
5639  return CreateParsedType(T, TSI);
5640}
5641
5642/// \brief Build the type that describes a C++ typename specifier,
5643/// e.g., "typename T::type".
5644QualType
5645Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5646                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5647                        SourceLocation KeywordLoc, SourceRange NNSRange,
5648                        SourceLocation IILoc) {
5649  CXXScopeSpec SS;
5650  SS.setScopeRep(NNS);
5651  SS.setRange(NNSRange);
5652
5653  DeclContext *Ctx = computeDeclContext(SS);
5654  if (!Ctx) {
5655    // If the nested-name-specifier is dependent and couldn't be
5656    // resolved to a type, build a typename type.
5657    assert(NNS->isDependent());
5658    return Context.getDependentNameType(Keyword, NNS, &II);
5659  }
5660
5661  // If the nested-name-specifier refers to the current instantiation,
5662  // the "typename" keyword itself is superfluous. In C++03, the
5663  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5664  // allows such extraneous "typename" keywords, and we retroactively
5665  // apply this DR to C++03 code with only a warning. In any case we continue.
5666
5667  if (RequireCompleteDeclContext(SS, Ctx))
5668    return QualType();
5669
5670  DeclarationName Name(&II);
5671  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5672  LookupQualifiedName(Result, Ctx);
5673  unsigned DiagID = 0;
5674  Decl *Referenced = 0;
5675  switch (Result.getResultKind()) {
5676  case LookupResult::NotFound:
5677    DiagID = diag::err_typename_nested_not_found;
5678    break;
5679
5680  case LookupResult::NotFoundInCurrentInstantiation:
5681    // Okay, it's a member of an unknown instantiation.
5682    return Context.getDependentNameType(Keyword, NNS, &II);
5683
5684  case LookupResult::Found:
5685    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5686      // We found a type. Build an ElaboratedType, since the
5687      // typename-specifier was just sugar.
5688      return Context.getElaboratedType(ETK_Typename, NNS,
5689                                       Context.getTypeDeclType(Type));
5690    }
5691
5692    DiagID = diag::err_typename_nested_not_type;
5693    Referenced = Result.getFoundDecl();
5694    break;
5695
5696  case LookupResult::FoundUnresolvedValue:
5697    llvm_unreachable("unresolved using decl in non-dependent context");
5698    return QualType();
5699
5700  case LookupResult::FoundOverloaded:
5701    DiagID = diag::err_typename_nested_not_type;
5702    Referenced = *Result.begin();
5703    break;
5704
5705  case LookupResult::Ambiguous:
5706    return QualType();
5707  }
5708
5709  // If we get here, it's because name lookup did not find a
5710  // type. Emit an appropriate diagnostic and return an error.
5711  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5712                        IILoc);
5713  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5714  if (Referenced)
5715    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5716      << Name;
5717  return QualType();
5718}
5719
5720namespace {
5721  // See Sema::RebuildTypeInCurrentInstantiation
5722  class CurrentInstantiationRebuilder
5723    : public TreeTransform<CurrentInstantiationRebuilder> {
5724    SourceLocation Loc;
5725    DeclarationName Entity;
5726
5727  public:
5728    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5729
5730    CurrentInstantiationRebuilder(Sema &SemaRef,
5731                                  SourceLocation Loc,
5732                                  DeclarationName Entity)
5733    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5734      Loc(Loc), Entity(Entity) { }
5735
5736    /// \brief Determine whether the given type \p T has already been
5737    /// transformed.
5738    ///
5739    /// For the purposes of type reconstruction, a type has already been
5740    /// transformed if it is NULL or if it is not dependent.
5741    bool AlreadyTransformed(QualType T) {
5742      return T.isNull() || !T->isDependentType();
5743    }
5744
5745    /// \brief Returns the location of the entity whose type is being
5746    /// rebuilt.
5747    SourceLocation getBaseLocation() { return Loc; }
5748
5749    /// \brief Returns the name of the entity whose type is being rebuilt.
5750    DeclarationName getBaseEntity() { return Entity; }
5751
5752    /// \brief Sets the "base" location and entity when that
5753    /// information is known based on another transformation.
5754    void setBase(SourceLocation Loc, DeclarationName Entity) {
5755      this->Loc = Loc;
5756      this->Entity = Entity;
5757    }
5758  };
5759}
5760
5761/// \brief Rebuilds a type within the context of the current instantiation.
5762///
5763/// The type \p T is part of the type of an out-of-line member definition of
5764/// a class template (or class template partial specialization) that was parsed
5765/// and constructed before we entered the scope of the class template (or
5766/// partial specialization thereof). This routine will rebuild that type now
5767/// that we have entered the declarator's scope, which may produce different
5768/// canonical types, e.g.,
5769///
5770/// \code
5771/// template<typename T>
5772/// struct X {
5773///   typedef T* pointer;
5774///   pointer data();
5775/// };
5776///
5777/// template<typename T>
5778/// typename X<T>::pointer X<T>::data() { ... }
5779/// \endcode
5780///
5781/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5782/// since we do not know that we can look into X<T> when we parsed the type.
5783/// This function will rebuild the type, performing the lookup of "pointer"
5784/// in X<T> and returning an ElaboratedType whose canonical type is the same
5785/// as the canonical type of T*, allowing the return types of the out-of-line
5786/// definition and the declaration to match.
5787TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5788                                                        SourceLocation Loc,
5789                                                        DeclarationName Name) {
5790  if (!T || !T->getType()->isDependentType())
5791    return T;
5792
5793  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5794  return Rebuilder.TransformType(T);
5795}
5796
5797ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5798  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5799                                          DeclarationName());
5800  return Rebuilder.TransformExpr(E);
5801}
5802
5803bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5804  if (SS.isInvalid()) return true;
5805
5806  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5807  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5808                                          DeclarationName());
5809  NestedNameSpecifier *Rebuilt =
5810    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5811  if (!Rebuilt) return true;
5812
5813  SS.setScopeRep(Rebuilt);
5814  return false;
5815}
5816
5817/// \brief Produces a formatted string that describes the binding of
5818/// template parameters to template arguments.
5819std::string
5820Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5821                                      const TemplateArgumentList &Args) {
5822  // FIXME: For variadic templates, we'll need to get the structured list.
5823  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5824                                         Args.flat_size());
5825}
5826
5827std::string
5828Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5829                                      const TemplateArgument *Args,
5830                                      unsigned NumArgs) {
5831  std::string Result;
5832
5833  if (!Params || Params->size() == 0 || NumArgs == 0)
5834    return Result;
5835
5836  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5837    if (I >= NumArgs)
5838      break;
5839
5840    if (I == 0)
5841      Result += "[with ";
5842    else
5843      Result += ", ";
5844
5845    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5846      Result += Id->getName();
5847    } else {
5848      Result += '$';
5849      Result += llvm::utostr(I);
5850    }
5851
5852    Result += " = ";
5853
5854    switch (Args[I].getKind()) {
5855      case TemplateArgument::Null:
5856        Result += "<no value>";
5857        break;
5858
5859      case TemplateArgument::Type: {
5860        std::string TypeStr;
5861        Args[I].getAsType().getAsStringInternal(TypeStr,
5862                                                Context.PrintingPolicy);
5863        Result += TypeStr;
5864        break;
5865      }
5866
5867      case TemplateArgument::Declaration: {
5868        bool Unnamed = true;
5869        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5870          if (ND->getDeclName()) {
5871            Unnamed = false;
5872            Result += ND->getNameAsString();
5873          }
5874        }
5875
5876        if (Unnamed) {
5877          Result += "<anonymous>";
5878        }
5879        break;
5880      }
5881
5882      case TemplateArgument::Template: {
5883        std::string Str;
5884        llvm::raw_string_ostream OS(Str);
5885        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5886        Result += OS.str();
5887        break;
5888      }
5889
5890      case TemplateArgument::Integral: {
5891        Result += Args[I].getAsIntegral()->toString(10);
5892        break;
5893      }
5894
5895      case TemplateArgument::Expression: {
5896        // FIXME: This is non-optimal, since we're regurgitating the
5897        // expression we were given.
5898        std::string Str;
5899        {
5900          llvm::raw_string_ostream OS(Str);
5901          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5902                                           Context.PrintingPolicy);
5903        }
5904        Result += Str;
5905        break;
5906      }
5907
5908      case TemplateArgument::Pack:
5909        // FIXME: Format template argument packs
5910        Result += "<template argument pack>";
5911        break;
5912    }
5913  }
5914
5915  Result += ']';
5916  return Result;
5917}
5918