SemaTemplate.cpp revision a3f73b773c9a8b982b5ff65a3d3e25cd751a4709
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Parse/Template.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
63  if (!Ovl)
64    return 0;
65
66  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
67                                              FEnd = Ovl->function_end();
68       F != FEnd; ++F) {
69    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
70      // We've found a function template. Determine whether there are
71      // any other function templates we need to bundle together in an
72      // OverloadedFunctionDecl
73      for (++F; F != FEnd; ++F) {
74        if (isa<FunctionTemplateDecl>(*F))
75          break;
76      }
77
78      if (F != FEnd) {
79        // Build an overloaded function decl containing only the
80        // function templates in Ovl.
81        OverloadedFunctionDecl *OvlTemplate
82          = OverloadedFunctionDecl::Create(Context,
83                                           Ovl->getDeclContext(),
84                                           Ovl->getDeclName());
85        OvlTemplate->addOverload(FuncTmpl);
86        OvlTemplate->addOverload(*F);
87        for (++F; F != FEnd; ++F) {
88          if (isa<FunctionTemplateDecl>(*F))
89            OvlTemplate->addOverload(*F);
90        }
91
92        return OvlTemplate;
93      }
94
95      return FuncTmpl;
96    }
97  }
98
99  return 0;
100}
101
102TemplateNameKind Sema::isTemplateName(Scope *S,
103                                      const CXXScopeSpec &SS,
104                                      UnqualifiedId &Name,
105                                      TypeTy *ObjectTypePtr,
106                                      bool EnteringContext,
107                                      TemplateTy &TemplateResult) {
108  DeclarationName TName;
109
110  switch (Name.getKind()) {
111  case UnqualifiedId::IK_Identifier:
112    TName = DeclarationName(Name.Identifier);
113    break;
114
115  case UnqualifiedId::IK_OperatorFunctionId:
116    TName = Context.DeclarationNames.getCXXOperatorName(
117                                              Name.OperatorFunctionId.Operator);
118    break;
119
120  default:
121    return TNK_Non_template;
122  }
123
124  // Determine where to perform name lookup
125  DeclContext *LookupCtx = 0;
126  bool isDependent = false;
127  if (ObjectTypePtr) {
128    // This nested-name-specifier occurs in a member access expression, e.g.,
129    // x->B::f, and we are looking into the type of the object.
130    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
131    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
132    LookupCtx = computeDeclContext(ObjectType);
133    isDependent = ObjectType->isDependentType();
134    assert((isDependent || !ObjectType->isIncompleteType()) &&
135           "Caller should have completed object type");
136  } else if (SS.isSet()) {
137    // This nested-name-specifier occurs after another nested-name-specifier,
138    // so long into the context associated with the prior nested-name-specifier.
139    LookupCtx = computeDeclContext(SS, EnteringContext);
140    isDependent = isDependentScopeSpecifier(SS);
141
142    // The declaration context must be complete.
143    if (LookupCtx && RequireCompleteDeclContext(SS))
144      return TNK_Non_template;
145  }
146
147  LookupResult Found(*this, TName, SourceLocation(), LookupOrdinaryName);
148  bool ObjectTypeSearchedInScope = false;
149  if (LookupCtx) {
150    // Perform "qualified" name lookup into the declaration context we
151    // computed, which is either the type of the base of a member access
152    // expression or the declaration context associated with a prior
153    // nested-name-specifier.
154    LookupQualifiedName(Found, LookupCtx);
155
156    if (ObjectTypePtr && Found.empty()) {
157      // C++ [basic.lookup.classref]p1:
158      //   In a class member access expression (5.2.5), if the . or -> token is
159      //   immediately followed by an identifier followed by a <, the
160      //   identifier must be looked up to determine whether the < is the
161      //   beginning of a template argument list (14.2) or a less-than operator.
162      //   The identifier is first looked up in the class of the object
163      //   expression. If the identifier is not found, it is then looked up in
164      //   the context of the entire postfix-expression and shall name a class
165      //   or function template.
166      //
167      // FIXME: When we're instantiating a template, do we actually have to
168      // look in the scope of the template? Seems fishy...
169      LookupName(Found, S);
170      ObjectTypeSearchedInScope = true;
171    }
172  } else if (isDependent) {
173    // We cannot look into a dependent object type or
174    return TNK_Non_template;
175  } else {
176    // Perform unqualified name lookup in the current scope.
177    LookupName(Found, S);
178  }
179
180  // FIXME: Cope with ambiguous name-lookup results.
181  assert(!Found.isAmbiguous() &&
182         "Cannot handle template name-lookup ambiguities");
183
184  NamedDecl *Template
185    = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context));
186  if (!Template)
187    return TNK_Non_template;
188
189  if (ObjectTypePtr && !ObjectTypeSearchedInScope) {
190    // C++ [basic.lookup.classref]p1:
191    //   [...] If the lookup in the class of the object expression finds a
192    //   template, the name is also looked up in the context of the entire
193    //   postfix-expression and [...]
194    //
195    LookupResult FoundOuter(*this, TName, SourceLocation(), LookupOrdinaryName);
196    LookupName(FoundOuter, S);
197    // FIXME: Handle ambiguities in this lookup better
198    NamedDecl *OuterTemplate
199      = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context));
200
201    if (!OuterTemplate) {
202      //   - if the name is not found, the name found in the class of the
203      //     object expression is used, otherwise
204    } else if (!isa<ClassTemplateDecl>(OuterTemplate)) {
205      //   - if the name is found in the context of the entire
206      //     postfix-expression and does not name a class template, the name
207      //     found in the class of the object expression is used, otherwise
208    } else {
209      //   - if the name found is a class template, it must refer to the same
210      //     entity as the one found in the class of the object expression,
211      //     otherwise the program is ill-formed.
212      if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) {
213        Diag(Name.getSourceRange().getBegin(),
214             diag::err_nested_name_member_ref_lookup_ambiguous)
215          << TName
216          << Name.getSourceRange();
217        Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type)
218          << QualType::getFromOpaquePtr(ObjectTypePtr);
219        Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope);
220
221        // Recover by taking the template that we found in the object
222        // expression's type.
223      }
224    }
225  }
226
227  if (SS.isSet() && !SS.isInvalid()) {
228    NestedNameSpecifier *Qualifier
229      = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
230    if (OverloadedFunctionDecl *Ovl
231          = dyn_cast<OverloadedFunctionDecl>(Template))
232      TemplateResult
233        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
234                                                            Ovl));
235    else
236      TemplateResult
237        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
238                                                 cast<TemplateDecl>(Template)));
239  } else if (OverloadedFunctionDecl *Ovl
240               = dyn_cast<OverloadedFunctionDecl>(Template)) {
241    TemplateResult = TemplateTy::make(TemplateName(Ovl));
242  } else {
243    TemplateResult = TemplateTy::make(
244                                  TemplateName(cast<TemplateDecl>(Template)));
245  }
246
247  if (isa<ClassTemplateDecl>(Template) ||
248      isa<TemplateTemplateParmDecl>(Template))
249    return TNK_Type_template;
250
251  assert((isa<FunctionTemplateDecl>(Template) ||
252          isa<OverloadedFunctionDecl>(Template)) &&
253         "Unhandled template kind in Sema::isTemplateName");
254  return TNK_Function_template;
255}
256
257/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
258/// that the template parameter 'PrevDecl' is being shadowed by a new
259/// declaration at location Loc. Returns true to indicate that this is
260/// an error, and false otherwise.
261bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
262  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
263
264  // Microsoft Visual C++ permits template parameters to be shadowed.
265  if (getLangOptions().Microsoft)
266    return false;
267
268  // C++ [temp.local]p4:
269  //   A template-parameter shall not be redeclared within its
270  //   scope (including nested scopes).
271  Diag(Loc, diag::err_template_param_shadow)
272    << cast<NamedDecl>(PrevDecl)->getDeclName();
273  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
274  return true;
275}
276
277/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
278/// the parameter D to reference the templated declaration and return a pointer
279/// to the template declaration. Otherwise, do nothing to D and return null.
280TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
281  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
282    D = DeclPtrTy::make(Temp->getTemplatedDecl());
283    return Temp;
284  }
285  return 0;
286}
287
288static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
289                                            const ParsedTemplateArgument &Arg) {
290
291  switch (Arg.getKind()) {
292  case ParsedTemplateArgument::Type: {
293    DeclaratorInfo *DI;
294    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
295    if (!DI)
296      DI = SemaRef.Context.getTrivialDeclaratorInfo(T, Arg.getLocation());
297    return TemplateArgumentLoc(TemplateArgument(T), DI);
298  }
299
300  case ParsedTemplateArgument::NonType: {
301    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
302    return TemplateArgumentLoc(TemplateArgument(E), E);
303  }
304
305  case ParsedTemplateArgument::Template: {
306    TemplateName Template
307      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
308    return TemplateArgumentLoc(TemplateArgument(Template),
309                               Arg.getScopeSpec().getRange(),
310                               Arg.getLocation());
311  }
312  }
313
314  llvm::llvm_unreachable("Unhandled parsed template argument");
315  return TemplateArgumentLoc();
316}
317
318/// \brief Translates template arguments as provided by the parser
319/// into template arguments used by semantic analysis.
320void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
321                                      TemplateArgumentListInfo &TemplateArgs) {
322 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
323   TemplateArgs.addArgument(translateTemplateArgument(*this,
324                                                      TemplateArgsIn[I]));
325}
326
327/// ActOnTypeParameter - Called when a C++ template type parameter
328/// (e.g., "typename T") has been parsed. Typename specifies whether
329/// the keyword "typename" was used to declare the type parameter
330/// (otherwise, "class" was used), and KeyLoc is the location of the
331/// "class" or "typename" keyword. ParamName is the name of the
332/// parameter (NULL indicates an unnamed template parameter) and
333/// ParamName is the location of the parameter name (if any).
334/// If the type parameter has a default argument, it will be added
335/// later via ActOnTypeParameterDefault.
336Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
337                                         SourceLocation EllipsisLoc,
338                                         SourceLocation KeyLoc,
339                                         IdentifierInfo *ParamName,
340                                         SourceLocation ParamNameLoc,
341                                         unsigned Depth, unsigned Position) {
342  assert(S->isTemplateParamScope() &&
343         "Template type parameter not in template parameter scope!");
344  bool Invalid = false;
345
346  if (ParamName) {
347    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
348    if (PrevDecl && PrevDecl->isTemplateParameter())
349      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
350                                                           PrevDecl);
351  }
352
353  SourceLocation Loc = ParamNameLoc;
354  if (!ParamName)
355    Loc = KeyLoc;
356
357  TemplateTypeParmDecl *Param
358    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
359                                   Depth, Position, ParamName, Typename,
360                                   Ellipsis);
361  if (Invalid)
362    Param->setInvalidDecl();
363
364  if (ParamName) {
365    // Add the template parameter into the current scope.
366    S->AddDecl(DeclPtrTy::make(Param));
367    IdResolver.AddDecl(Param);
368  }
369
370  return DeclPtrTy::make(Param);
371}
372
373/// ActOnTypeParameterDefault - Adds a default argument (the type
374/// Default) to the given template type parameter (TypeParam).
375void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
376                                     SourceLocation EqualLoc,
377                                     SourceLocation DefaultLoc,
378                                     TypeTy *DefaultT) {
379  TemplateTypeParmDecl *Parm
380    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
381
382  DeclaratorInfo *DefaultDInfo;
383  GetTypeFromParser(DefaultT, &DefaultDInfo);
384
385  assert(DefaultDInfo && "expected source information for type");
386
387  // C++0x [temp.param]p9:
388  // A default template-argument may be specified for any kind of
389  // template-parameter that is not a template parameter pack.
390  if (Parm->isParameterPack()) {
391    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
392    return;
393  }
394
395  // C++ [temp.param]p14:
396  //   A template-parameter shall not be used in its own default argument.
397  // FIXME: Implement this check! Needs a recursive walk over the types.
398
399  // Check the template argument itself.
400  if (CheckTemplateArgument(Parm, DefaultDInfo)) {
401    Parm->setInvalidDecl();
402    return;
403  }
404
405  Parm->setDefaultArgument(DefaultDInfo, false);
406}
407
408/// \brief Check that the type of a non-type template parameter is
409/// well-formed.
410///
411/// \returns the (possibly-promoted) parameter type if valid;
412/// otherwise, produces a diagnostic and returns a NULL type.
413QualType
414Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
415  // C++ [temp.param]p4:
416  //
417  // A non-type template-parameter shall have one of the following
418  // (optionally cv-qualified) types:
419  //
420  //       -- integral or enumeration type,
421  if (T->isIntegralType() || T->isEnumeralType() ||
422      //   -- pointer to object or pointer to function,
423      (T->isPointerType() &&
424       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
425        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
426      //   -- reference to object or reference to function,
427      T->isReferenceType() ||
428      //   -- pointer to member.
429      T->isMemberPointerType() ||
430      // If T is a dependent type, we can't do the check now, so we
431      // assume that it is well-formed.
432      T->isDependentType())
433    return T;
434  // C++ [temp.param]p8:
435  //
436  //   A non-type template-parameter of type "array of T" or
437  //   "function returning T" is adjusted to be of type "pointer to
438  //   T" or "pointer to function returning T", respectively.
439  else if (T->isArrayType())
440    // FIXME: Keep the type prior to promotion?
441    return Context.getArrayDecayedType(T);
442  else if (T->isFunctionType())
443    // FIXME: Keep the type prior to promotion?
444    return Context.getPointerType(T);
445
446  Diag(Loc, diag::err_template_nontype_parm_bad_type)
447    << T;
448
449  return QualType();
450}
451
452/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
453/// template parameter (e.g., "int Size" in "template<int Size>
454/// class Array") has been parsed. S is the current scope and D is
455/// the parsed declarator.
456Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
457                                                    unsigned Depth,
458                                                    unsigned Position) {
459  DeclaratorInfo *DInfo = 0;
460  QualType T = GetTypeForDeclarator(D, S, &DInfo);
461
462  assert(S->isTemplateParamScope() &&
463         "Non-type template parameter not in template parameter scope!");
464  bool Invalid = false;
465
466  IdentifierInfo *ParamName = D.getIdentifier();
467  if (ParamName) {
468    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
469    if (PrevDecl && PrevDecl->isTemplateParameter())
470      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
471                                                           PrevDecl);
472  }
473
474  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
475  if (T.isNull()) {
476    T = Context.IntTy; // Recover with an 'int' type.
477    Invalid = true;
478  }
479
480  NonTypeTemplateParmDecl *Param
481    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
482                                      Depth, Position, ParamName, T, DInfo);
483  if (Invalid)
484    Param->setInvalidDecl();
485
486  if (D.getIdentifier()) {
487    // Add the template parameter into the current scope.
488    S->AddDecl(DeclPtrTy::make(Param));
489    IdResolver.AddDecl(Param);
490  }
491  return DeclPtrTy::make(Param);
492}
493
494/// \brief Adds a default argument to the given non-type template
495/// parameter.
496void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
497                                                SourceLocation EqualLoc,
498                                                ExprArg DefaultE) {
499  NonTypeTemplateParmDecl *TemplateParm
500    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
501  Expr *Default = static_cast<Expr *>(DefaultE.get());
502
503  // C++ [temp.param]p14:
504  //   A template-parameter shall not be used in its own default argument.
505  // FIXME: Implement this check! Needs a recursive walk over the types.
506
507  // Check the well-formedness of the default template argument.
508  TemplateArgument Converted;
509  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
510                            Converted)) {
511    TemplateParm->setInvalidDecl();
512    return;
513  }
514
515  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
516}
517
518
519/// ActOnTemplateTemplateParameter - Called when a C++ template template
520/// parameter (e.g. T in template <template <typename> class T> class array)
521/// has been parsed. S is the current scope.
522Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
523                                                     SourceLocation TmpLoc,
524                                                     TemplateParamsTy *Params,
525                                                     IdentifierInfo *Name,
526                                                     SourceLocation NameLoc,
527                                                     unsigned Depth,
528                                                     unsigned Position) {
529  assert(S->isTemplateParamScope() &&
530         "Template template parameter not in template parameter scope!");
531
532  // Construct the parameter object.
533  TemplateTemplateParmDecl *Param =
534    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
535                                     Position, Name,
536                                     (TemplateParameterList*)Params);
537
538  // Make sure the parameter is valid.
539  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
540  // do anything yet. However, if the template parameter list or (eventual)
541  // default value is ever invalidated, that will propagate here.
542  bool Invalid = false;
543  if (Invalid) {
544    Param->setInvalidDecl();
545  }
546
547  // If the tt-param has a name, then link the identifier into the scope
548  // and lookup mechanisms.
549  if (Name) {
550    S->AddDecl(DeclPtrTy::make(Param));
551    IdResolver.AddDecl(Param);
552  }
553
554  return DeclPtrTy::make(Param);
555}
556
557/// \brief Adds a default argument to the given template template
558/// parameter.
559void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
560                                                 SourceLocation EqualLoc,
561                                        const ParsedTemplateArgument &Default) {
562  TemplateTemplateParmDecl *TemplateParm
563    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
564
565  // C++ [temp.param]p14:
566  //   A template-parameter shall not be used in its own default argument.
567  // FIXME: Implement this check! Needs a recursive walk over the types.
568
569  // Check only that we have a template template argument. We don't want to
570  // try to check well-formedness now, because our template template parameter
571  // might have dependent types in its template parameters, which we wouldn't
572  // be able to match now.
573  //
574  // If none of the template template parameter's template arguments mention
575  // other template parameters, we could actually perform more checking here.
576  // However, it isn't worth doing.
577  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
578  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
579    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
580      << DefaultArg.getSourceRange();
581    return;
582  }
583
584  TemplateParm->setDefaultArgument(DefaultArg);
585}
586
587/// ActOnTemplateParameterList - Builds a TemplateParameterList that
588/// contains the template parameters in Params/NumParams.
589Sema::TemplateParamsTy *
590Sema::ActOnTemplateParameterList(unsigned Depth,
591                                 SourceLocation ExportLoc,
592                                 SourceLocation TemplateLoc,
593                                 SourceLocation LAngleLoc,
594                                 DeclPtrTy *Params, unsigned NumParams,
595                                 SourceLocation RAngleLoc) {
596  if (ExportLoc.isValid())
597    Diag(ExportLoc, diag::note_template_export_unsupported);
598
599  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
600                                       (NamedDecl**)Params, NumParams,
601                                       RAngleLoc);
602}
603
604Sema::DeclResult
605Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
606                         SourceLocation KWLoc, const CXXScopeSpec &SS,
607                         IdentifierInfo *Name, SourceLocation NameLoc,
608                         AttributeList *Attr,
609                         TemplateParameterList *TemplateParams,
610                         AccessSpecifier AS) {
611  assert(TemplateParams && TemplateParams->size() > 0 &&
612         "No template parameters");
613  assert(TUK != TUK_Reference && "Can only declare or define class templates");
614  bool Invalid = false;
615
616  // Check that we can declare a template here.
617  if (CheckTemplateDeclScope(S, TemplateParams))
618    return true;
619
620  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
621  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
622
623  // There is no such thing as an unnamed class template.
624  if (!Name) {
625    Diag(KWLoc, diag::err_template_unnamed_class);
626    return true;
627  }
628
629  // Find any previous declaration with this name.
630  DeclContext *SemanticContext;
631  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
632                        ForRedeclaration);
633  if (SS.isNotEmpty() && !SS.isInvalid()) {
634    if (RequireCompleteDeclContext(SS))
635      return true;
636
637    SemanticContext = computeDeclContext(SS, true);
638    if (!SemanticContext) {
639      // FIXME: Produce a reasonable diagnostic here
640      return true;
641    }
642
643    LookupQualifiedName(Previous, SemanticContext);
644  } else {
645    SemanticContext = CurContext;
646    LookupName(Previous, S);
647  }
648
649  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
650  NamedDecl *PrevDecl = 0;
651  if (Previous.begin() != Previous.end())
652    PrevDecl = *Previous.begin();
653
654  if (PrevDecl && TUK == TUK_Friend) {
655    // C++ [namespace.memdef]p3:
656    //   [...] When looking for a prior declaration of a class or a function
657    //   declared as a friend, and when the name of the friend class or
658    //   function is neither a qualified name nor a template-id, scopes outside
659    //   the innermost enclosing namespace scope are not considered.
660    DeclContext *OutermostContext = CurContext;
661    while (!OutermostContext->isFileContext())
662      OutermostContext = OutermostContext->getLookupParent();
663
664    if (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
665        OutermostContext->Encloses(PrevDecl->getDeclContext())) {
666      SemanticContext = PrevDecl->getDeclContext();
667    } else {
668      // Declarations in outer scopes don't matter. However, the outermost
669      // context we computed is the semantic context for our new
670      // declaration.
671      PrevDecl = 0;
672      SemanticContext = OutermostContext;
673    }
674
675    if (CurContext->isDependentContext()) {
676      // If this is a dependent context, we don't want to link the friend
677      // class template to the template in scope, because that would perform
678      // checking of the template parameter lists that can't be performed
679      // until the outer context is instantiated.
680      PrevDecl = 0;
681    }
682  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
683    PrevDecl = 0;
684
685  // If there is a previous declaration with the same name, check
686  // whether this is a valid redeclaration.
687  ClassTemplateDecl *PrevClassTemplate
688    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
689
690  // We may have found the injected-class-name of a class template,
691  // class template partial specialization, or class template specialization.
692  // In these cases, grab the template that is being defined or specialized.
693  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
694      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
695    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
696    PrevClassTemplate
697      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
698    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
699      PrevClassTemplate
700        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
701            ->getSpecializedTemplate();
702    }
703  }
704
705  if (PrevClassTemplate) {
706    // Ensure that the template parameter lists are compatible.
707    if (!TemplateParameterListsAreEqual(TemplateParams,
708                                   PrevClassTemplate->getTemplateParameters(),
709                                        /*Complain=*/true,
710                                        TPL_TemplateMatch))
711      return true;
712
713    // C++ [temp.class]p4:
714    //   In a redeclaration, partial specialization, explicit
715    //   specialization or explicit instantiation of a class template,
716    //   the class-key shall agree in kind with the original class
717    //   template declaration (7.1.5.3).
718    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
719    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
720      Diag(KWLoc, diag::err_use_with_wrong_tag)
721        << Name
722        << CodeModificationHint::CreateReplacement(KWLoc,
723                            PrevRecordDecl->getKindName());
724      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
725      Kind = PrevRecordDecl->getTagKind();
726    }
727
728    // Check for redefinition of this class template.
729    if (TUK == TUK_Definition) {
730      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
731        Diag(NameLoc, diag::err_redefinition) << Name;
732        Diag(Def->getLocation(), diag::note_previous_definition);
733        // FIXME: Would it make sense to try to "forget" the previous
734        // definition, as part of error recovery?
735        return true;
736      }
737    }
738  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
739    // Maybe we will complain about the shadowed template parameter.
740    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
741    // Just pretend that we didn't see the previous declaration.
742    PrevDecl = 0;
743  } else if (PrevDecl) {
744    // C++ [temp]p5:
745    //   A class template shall not have the same name as any other
746    //   template, class, function, object, enumeration, enumerator,
747    //   namespace, or type in the same scope (3.3), except as specified
748    //   in (14.5.4).
749    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
750    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
751    return true;
752  }
753
754  // Check the template parameter list of this declaration, possibly
755  // merging in the template parameter list from the previous class
756  // template declaration.
757  if (CheckTemplateParameterList(TemplateParams,
758            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
759    Invalid = true;
760
761  // FIXME: If we had a scope specifier, we better have a previous template
762  // declaration!
763
764  CXXRecordDecl *NewClass =
765    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
766                          PrevClassTemplate?
767                            PrevClassTemplate->getTemplatedDecl() : 0,
768                          /*DelayTypeCreation=*/true);
769
770  ClassTemplateDecl *NewTemplate
771    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
772                                DeclarationName(Name), TemplateParams,
773                                NewClass, PrevClassTemplate);
774  NewClass->setDescribedClassTemplate(NewTemplate);
775
776  // Build the type for the class template declaration now.
777  QualType T =
778    Context.getTypeDeclType(NewClass,
779                            PrevClassTemplate?
780                              PrevClassTemplate->getTemplatedDecl() : 0);
781  assert(T->isDependentType() && "Class template type is not dependent?");
782  (void)T;
783
784  // If we are providing an explicit specialization of a member that is a
785  // class template, make a note of that.
786  if (PrevClassTemplate &&
787      PrevClassTemplate->getInstantiatedFromMemberTemplate())
788    PrevClassTemplate->setMemberSpecialization();
789
790  // Set the access specifier.
791  if (!Invalid && TUK != TUK_Friend)
792    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
793
794  // Set the lexical context of these templates
795  NewClass->setLexicalDeclContext(CurContext);
796  NewTemplate->setLexicalDeclContext(CurContext);
797
798  if (TUK == TUK_Definition)
799    NewClass->startDefinition();
800
801  if (Attr)
802    ProcessDeclAttributeList(S, NewClass, Attr);
803
804  if (TUK != TUK_Friend)
805    PushOnScopeChains(NewTemplate, S);
806  else {
807    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
808      NewTemplate->setAccess(PrevClassTemplate->getAccess());
809      NewClass->setAccess(PrevClassTemplate->getAccess());
810    }
811
812    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
813                                       PrevClassTemplate != NULL);
814
815    // Friend templates are visible in fairly strange ways.
816    if (!CurContext->isDependentContext()) {
817      DeclContext *DC = SemanticContext->getLookupContext();
818      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
819      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
820        PushOnScopeChains(NewTemplate, EnclosingScope,
821                          /* AddToContext = */ false);
822    }
823
824    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
825                                            NewClass->getLocation(),
826                                            NewTemplate,
827                                    /*FIXME:*/NewClass->getLocation());
828    Friend->setAccess(AS_public);
829    CurContext->addDecl(Friend);
830  }
831
832  if (Invalid) {
833    NewTemplate->setInvalidDecl();
834    NewClass->setInvalidDecl();
835  }
836  return DeclPtrTy::make(NewTemplate);
837}
838
839/// \brief Checks the validity of a template parameter list, possibly
840/// considering the template parameter list from a previous
841/// declaration.
842///
843/// If an "old" template parameter list is provided, it must be
844/// equivalent (per TemplateParameterListsAreEqual) to the "new"
845/// template parameter list.
846///
847/// \param NewParams Template parameter list for a new template
848/// declaration. This template parameter list will be updated with any
849/// default arguments that are carried through from the previous
850/// template parameter list.
851///
852/// \param OldParams If provided, template parameter list from a
853/// previous declaration of the same template. Default template
854/// arguments will be merged from the old template parameter list to
855/// the new template parameter list.
856///
857/// \returns true if an error occurred, false otherwise.
858bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
859                                      TemplateParameterList *OldParams) {
860  bool Invalid = false;
861
862  // C++ [temp.param]p10:
863  //   The set of default template-arguments available for use with a
864  //   template declaration or definition is obtained by merging the
865  //   default arguments from the definition (if in scope) and all
866  //   declarations in scope in the same way default function
867  //   arguments are (8.3.6).
868  bool SawDefaultArgument = false;
869  SourceLocation PreviousDefaultArgLoc;
870
871  bool SawParameterPack = false;
872  SourceLocation ParameterPackLoc;
873
874  // Dummy initialization to avoid warnings.
875  TemplateParameterList::iterator OldParam = NewParams->end();
876  if (OldParams)
877    OldParam = OldParams->begin();
878
879  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
880                                    NewParamEnd = NewParams->end();
881       NewParam != NewParamEnd; ++NewParam) {
882    // Variables used to diagnose redundant default arguments
883    bool RedundantDefaultArg = false;
884    SourceLocation OldDefaultLoc;
885    SourceLocation NewDefaultLoc;
886
887    // Variables used to diagnose missing default arguments
888    bool MissingDefaultArg = false;
889
890    // C++0x [temp.param]p11:
891    // If a template parameter of a class template is a template parameter pack,
892    // it must be the last template parameter.
893    if (SawParameterPack) {
894      Diag(ParameterPackLoc,
895           diag::err_template_param_pack_must_be_last_template_parameter);
896      Invalid = true;
897    }
898
899    // Merge default arguments for template type parameters.
900    if (TemplateTypeParmDecl *NewTypeParm
901          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
902      TemplateTypeParmDecl *OldTypeParm
903          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
904
905      if (NewTypeParm->isParameterPack()) {
906        assert(!NewTypeParm->hasDefaultArgument() &&
907               "Parameter packs can't have a default argument!");
908        SawParameterPack = true;
909        ParameterPackLoc = NewTypeParm->getLocation();
910      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
911                 NewTypeParm->hasDefaultArgument()) {
912        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
913        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
914        SawDefaultArgument = true;
915        RedundantDefaultArg = true;
916        PreviousDefaultArgLoc = NewDefaultLoc;
917      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
918        // Merge the default argument from the old declaration to the
919        // new declaration.
920        SawDefaultArgument = true;
921        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
922                                        true);
923        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
924      } else if (NewTypeParm->hasDefaultArgument()) {
925        SawDefaultArgument = true;
926        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
927      } else if (SawDefaultArgument)
928        MissingDefaultArg = true;
929    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
930               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
931      // Merge default arguments for non-type template parameters
932      NonTypeTemplateParmDecl *OldNonTypeParm
933        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
934      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
935          NewNonTypeParm->hasDefaultArgument()) {
936        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
937        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
938        SawDefaultArgument = true;
939        RedundantDefaultArg = true;
940        PreviousDefaultArgLoc = NewDefaultLoc;
941      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
942        // Merge the default argument from the old declaration to the
943        // new declaration.
944        SawDefaultArgument = true;
945        // FIXME: We need to create a new kind of "default argument"
946        // expression that points to a previous template template
947        // parameter.
948        NewNonTypeParm->setDefaultArgument(
949                                        OldNonTypeParm->getDefaultArgument());
950        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
951      } else if (NewNonTypeParm->hasDefaultArgument()) {
952        SawDefaultArgument = true;
953        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
954      } else if (SawDefaultArgument)
955        MissingDefaultArg = true;
956    } else {
957    // Merge default arguments for template template parameters
958      TemplateTemplateParmDecl *NewTemplateParm
959        = cast<TemplateTemplateParmDecl>(*NewParam);
960      TemplateTemplateParmDecl *OldTemplateParm
961        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
962      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
963          NewTemplateParm->hasDefaultArgument()) {
964        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
965        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
966        SawDefaultArgument = true;
967        RedundantDefaultArg = true;
968        PreviousDefaultArgLoc = NewDefaultLoc;
969      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
970        // Merge the default argument from the old declaration to the
971        // new declaration.
972        SawDefaultArgument = true;
973        // FIXME: We need to create a new kind of "default argument" expression
974        // that points to a previous template template parameter.
975        NewTemplateParm->setDefaultArgument(
976                                        OldTemplateParm->getDefaultArgument());
977        PreviousDefaultArgLoc
978          = OldTemplateParm->getDefaultArgument().getLocation();
979      } else if (NewTemplateParm->hasDefaultArgument()) {
980        SawDefaultArgument = true;
981        PreviousDefaultArgLoc
982          = NewTemplateParm->getDefaultArgument().getLocation();
983      } else if (SawDefaultArgument)
984        MissingDefaultArg = true;
985    }
986
987    if (RedundantDefaultArg) {
988      // C++ [temp.param]p12:
989      //   A template-parameter shall not be given default arguments
990      //   by two different declarations in the same scope.
991      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
992      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
993      Invalid = true;
994    } else if (MissingDefaultArg) {
995      // C++ [temp.param]p11:
996      //   If a template-parameter has a default template-argument,
997      //   all subsequent template-parameters shall have a default
998      //   template-argument supplied.
999      Diag((*NewParam)->getLocation(),
1000           diag::err_template_param_default_arg_missing);
1001      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1002      Invalid = true;
1003    }
1004
1005    // If we have an old template parameter list that we're merging
1006    // in, move on to the next parameter.
1007    if (OldParams)
1008      ++OldParam;
1009  }
1010
1011  return Invalid;
1012}
1013
1014/// \brief Match the given template parameter lists to the given scope
1015/// specifier, returning the template parameter list that applies to the
1016/// name.
1017///
1018/// \param DeclStartLoc the start of the declaration that has a scope
1019/// specifier or a template parameter list.
1020///
1021/// \param SS the scope specifier that will be matched to the given template
1022/// parameter lists. This scope specifier precedes a qualified name that is
1023/// being declared.
1024///
1025/// \param ParamLists the template parameter lists, from the outermost to the
1026/// innermost template parameter lists.
1027///
1028/// \param NumParamLists the number of template parameter lists in ParamLists.
1029///
1030/// \param IsExplicitSpecialization will be set true if the entity being
1031/// declared is an explicit specialization, false otherwise.
1032///
1033/// \returns the template parameter list, if any, that corresponds to the
1034/// name that is preceded by the scope specifier @p SS. This template
1035/// parameter list may be have template parameters (if we're declaring a
1036/// template) or may have no template parameters (if we're declaring a
1037/// template specialization), or may be NULL (if we were's declaring isn't
1038/// itself a template).
1039TemplateParameterList *
1040Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1041                                              const CXXScopeSpec &SS,
1042                                          TemplateParameterList **ParamLists,
1043                                              unsigned NumParamLists,
1044                                              bool &IsExplicitSpecialization) {
1045  IsExplicitSpecialization = false;
1046
1047  // Find the template-ids that occur within the nested-name-specifier. These
1048  // template-ids will match up with the template parameter lists.
1049  llvm::SmallVector<const TemplateSpecializationType *, 4>
1050    TemplateIdsInSpecifier;
1051  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1052    ExplicitSpecializationsInSpecifier;
1053  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1054       NNS; NNS = NNS->getPrefix()) {
1055    if (const TemplateSpecializationType *SpecType
1056          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
1057      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1058      if (!Template)
1059        continue; // FIXME: should this be an error? probably...
1060
1061      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1062        ClassTemplateSpecializationDecl *SpecDecl
1063          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1064        // If the nested name specifier refers to an explicit specialization,
1065        // we don't need a template<> header.
1066        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1067          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1068          continue;
1069        }
1070      }
1071
1072      TemplateIdsInSpecifier.push_back(SpecType);
1073    }
1074  }
1075
1076  // Reverse the list of template-ids in the scope specifier, so that we can
1077  // more easily match up the template-ids and the template parameter lists.
1078  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1079
1080  SourceLocation FirstTemplateLoc = DeclStartLoc;
1081  if (NumParamLists)
1082    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1083
1084  // Match the template-ids found in the specifier to the template parameter
1085  // lists.
1086  unsigned Idx = 0;
1087  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1088       Idx != NumTemplateIds; ++Idx) {
1089    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1090    bool DependentTemplateId = TemplateId->isDependentType();
1091    if (Idx >= NumParamLists) {
1092      // We have a template-id without a corresponding template parameter
1093      // list.
1094      if (DependentTemplateId) {
1095        // FIXME: the location information here isn't great.
1096        Diag(SS.getRange().getBegin(),
1097             diag::err_template_spec_needs_template_parameters)
1098          << TemplateId
1099          << SS.getRange();
1100      } else {
1101        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1102          << SS.getRange()
1103          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1104                                                   "template<> ");
1105        IsExplicitSpecialization = true;
1106      }
1107      return 0;
1108    }
1109
1110    // Check the template parameter list against its corresponding template-id.
1111    if (DependentTemplateId) {
1112      TemplateDecl *Template
1113        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1114
1115      if (ClassTemplateDecl *ClassTemplate
1116            = dyn_cast<ClassTemplateDecl>(Template)) {
1117        TemplateParameterList *ExpectedTemplateParams = 0;
1118        // Is this template-id naming the primary template?
1119        if (Context.hasSameType(TemplateId,
1120                             ClassTemplate->getInjectedClassNameType(Context)))
1121          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1122        // ... or a partial specialization?
1123        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1124                   = ClassTemplate->findPartialSpecialization(TemplateId))
1125          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1126
1127        if (ExpectedTemplateParams)
1128          TemplateParameterListsAreEqual(ParamLists[Idx],
1129                                         ExpectedTemplateParams,
1130                                         true, TPL_TemplateMatch);
1131      }
1132    } else if (ParamLists[Idx]->size() > 0)
1133      Diag(ParamLists[Idx]->getTemplateLoc(),
1134           diag::err_template_param_list_matches_nontemplate)
1135        << TemplateId
1136        << ParamLists[Idx]->getSourceRange();
1137    else
1138      IsExplicitSpecialization = true;
1139  }
1140
1141  // If there were at least as many template-ids as there were template
1142  // parameter lists, then there are no template parameter lists remaining for
1143  // the declaration itself.
1144  if (Idx >= NumParamLists)
1145    return 0;
1146
1147  // If there were too many template parameter lists, complain about that now.
1148  if (Idx != NumParamLists - 1) {
1149    while (Idx < NumParamLists - 1) {
1150      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1151      Diag(ParamLists[Idx]->getTemplateLoc(),
1152           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1153                               : diag::err_template_spec_extra_headers)
1154        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1155                       ParamLists[Idx]->getRAngleLoc());
1156
1157      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1158        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1159             diag::note_explicit_template_spec_does_not_need_header)
1160          << ExplicitSpecializationsInSpecifier.back();
1161        ExplicitSpecializationsInSpecifier.pop_back();
1162      }
1163
1164      ++Idx;
1165    }
1166  }
1167
1168  // Return the last template parameter list, which corresponds to the
1169  // entity being declared.
1170  return ParamLists[NumParamLists - 1];
1171}
1172
1173QualType Sema::CheckTemplateIdType(TemplateName Name,
1174                                   SourceLocation TemplateLoc,
1175                              const TemplateArgumentListInfo &TemplateArgs) {
1176  TemplateDecl *Template = Name.getAsTemplateDecl();
1177  if (!Template) {
1178    // The template name does not resolve to a template, so we just
1179    // build a dependent template-id type.
1180    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1181  }
1182
1183  // Check that the template argument list is well-formed for this
1184  // template.
1185  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1186                                        TemplateArgs.size());
1187  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1188                                false, Converted))
1189    return QualType();
1190
1191  assert((Converted.structuredSize() ==
1192            Template->getTemplateParameters()->size()) &&
1193         "Converted template argument list is too short!");
1194
1195  QualType CanonType;
1196
1197  if (Name.isDependent() ||
1198      TemplateSpecializationType::anyDependentTemplateArguments(
1199                                                      TemplateArgs)) {
1200    // This class template specialization is a dependent
1201    // type. Therefore, its canonical type is another class template
1202    // specialization type that contains all of the converted
1203    // arguments in canonical form. This ensures that, e.g., A<T> and
1204    // A<T, T> have identical types when A is declared as:
1205    //
1206    //   template<typename T, typename U = T> struct A;
1207    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1208    CanonType = Context.getTemplateSpecializationType(CanonName,
1209                                                   Converted.getFlatArguments(),
1210                                                   Converted.flatSize());
1211
1212    // FIXME: CanonType is not actually the canonical type, and unfortunately
1213    // it is a TemplateSpecializationType that we will never use again.
1214    // In the future, we need to teach getTemplateSpecializationType to only
1215    // build the canonical type and return that to us.
1216    CanonType = Context.getCanonicalType(CanonType);
1217  } else if (ClassTemplateDecl *ClassTemplate
1218               = dyn_cast<ClassTemplateDecl>(Template)) {
1219    // Find the class template specialization declaration that
1220    // corresponds to these arguments.
1221    llvm::FoldingSetNodeID ID;
1222    ClassTemplateSpecializationDecl::Profile(ID,
1223                                             Converted.getFlatArguments(),
1224                                             Converted.flatSize(),
1225                                             Context);
1226    void *InsertPos = 0;
1227    ClassTemplateSpecializationDecl *Decl
1228      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1229    if (!Decl) {
1230      // This is the first time we have referenced this class template
1231      // specialization. Create the canonical declaration and add it to
1232      // the set of specializations.
1233      Decl = ClassTemplateSpecializationDecl::Create(Context,
1234                                    ClassTemplate->getDeclContext(),
1235                                    ClassTemplate->getLocation(),
1236                                    ClassTemplate,
1237                                    Converted, 0);
1238      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1239      Decl->setLexicalDeclContext(CurContext);
1240    }
1241
1242    CanonType = Context.getTypeDeclType(Decl);
1243  }
1244
1245  // Build the fully-sugared type for this class template
1246  // specialization, which refers back to the class template
1247  // specialization we created or found.
1248  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1249}
1250
1251Action::TypeResult
1252Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1253                          SourceLocation LAngleLoc,
1254                          ASTTemplateArgsPtr TemplateArgsIn,
1255                          SourceLocation RAngleLoc) {
1256  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1257
1258  // Translate the parser's template argument list in our AST format.
1259  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1260  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1261
1262  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1263  TemplateArgsIn.release();
1264
1265  if (Result.isNull())
1266    return true;
1267
1268  DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result);
1269  TemplateSpecializationTypeLoc TL
1270    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1271  TL.setTemplateNameLoc(TemplateLoc);
1272  TL.setLAngleLoc(LAngleLoc);
1273  TL.setRAngleLoc(RAngleLoc);
1274  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1275    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1276
1277  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1278}
1279
1280Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1281                                              TagUseKind TUK,
1282                                              DeclSpec::TST TagSpec,
1283                                              SourceLocation TagLoc) {
1284  if (TypeResult.isInvalid())
1285    return Sema::TypeResult();
1286
1287  // FIXME: preserve source info, ideally without copying the DI.
1288  DeclaratorInfo *DI;
1289  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1290
1291  // Verify the tag specifier.
1292  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1293
1294  if (const RecordType *RT = Type->getAs<RecordType>()) {
1295    RecordDecl *D = RT->getDecl();
1296
1297    IdentifierInfo *Id = D->getIdentifier();
1298    assert(Id && "templated class must have an identifier");
1299
1300    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1301      Diag(TagLoc, diag::err_use_with_wrong_tag)
1302        << Type
1303        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1304                                                   D->getKindName());
1305      Diag(D->getLocation(), diag::note_previous_use);
1306    }
1307  }
1308
1309  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1310
1311  return ElabType.getAsOpaquePtr();
1312}
1313
1314Sema::OwningExprResult Sema::BuildTemplateIdExpr(NestedNameSpecifier *Qualifier,
1315                                                 SourceRange QualifierRange,
1316                                                 TemplateName Template,
1317                                                 SourceLocation TemplateNameLoc,
1318                                 const TemplateArgumentListInfo &TemplateArgs) {
1319  // FIXME: Can we do any checking at this point? I guess we could check the
1320  // template arguments that we have against the template name, if the template
1321  // name refers to a single template. That's not a terribly common case,
1322  // though.
1323
1324  // Cope with an implicit member access in a C++ non-static member function.
1325  NamedDecl *D = Template.getAsTemplateDecl();
1326  if (!D)
1327    D = Template.getAsOverloadedFunctionDecl();
1328
1329  CXXScopeSpec SS;
1330  SS.setRange(QualifierRange);
1331  SS.setScopeRep(Qualifier);
1332  QualType ThisType, MemberType;
1333  if (D && isImplicitMemberReference(&SS, D, TemplateNameLoc,
1334                                     ThisType, MemberType)) {
1335    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
1336    return Owned(MemberExpr::Create(Context, This, true,
1337                                    Qualifier, QualifierRange,
1338                                    D, TemplateNameLoc, &TemplateArgs,
1339                                    Context.OverloadTy));
1340  }
1341
1342  return Owned(TemplateIdRefExpr::Create(Context, Context.OverloadTy,
1343                                         Qualifier, QualifierRange,
1344                                         Template, TemplateNameLoc,
1345                                         TemplateArgs));
1346}
1347
1348Sema::OwningExprResult Sema::ActOnTemplateIdExpr(const CXXScopeSpec &SS,
1349                                                 TemplateTy TemplateD,
1350                                                 SourceLocation TemplateNameLoc,
1351                                                 SourceLocation LAngleLoc,
1352                                              ASTTemplateArgsPtr TemplateArgsIn,
1353                                                 SourceLocation RAngleLoc) {
1354  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1355
1356  // Translate the parser's template argument list in our AST format.
1357  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1358  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1359  TemplateArgsIn.release();
1360
1361  return BuildTemplateIdExpr((NestedNameSpecifier *)SS.getScopeRep(),
1362                             SS.getRange(),
1363                             Template, TemplateNameLoc, TemplateArgs);
1364}
1365
1366/// \brief Form a dependent template name.
1367///
1368/// This action forms a dependent template name given the template
1369/// name and its (presumably dependent) scope specifier. For
1370/// example, given "MetaFun::template apply", the scope specifier \p
1371/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1372/// of the "template" keyword, and "apply" is the \p Name.
1373Sema::TemplateTy
1374Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1375                                 const CXXScopeSpec &SS,
1376                                 UnqualifiedId &Name,
1377                                 TypeTy *ObjectType,
1378                                 bool EnteringContext) {
1379  if ((ObjectType &&
1380       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1381      (SS.isSet() && computeDeclContext(SS, EnteringContext))) {
1382    // C++0x [temp.names]p5:
1383    //   If a name prefixed by the keyword template is not the name of
1384    //   a template, the program is ill-formed. [Note: the keyword
1385    //   template may not be applied to non-template members of class
1386    //   templates. -end note ] [ Note: as is the case with the
1387    //   typename prefix, the template prefix is allowed in cases
1388    //   where it is not strictly necessary; i.e., when the
1389    //   nested-name-specifier or the expression on the left of the ->
1390    //   or . is not dependent on a template-parameter, or the use
1391    //   does not appear in the scope of a template. -end note]
1392    //
1393    // Note: C++03 was more strict here, because it banned the use of
1394    // the "template" keyword prior to a template-name that was not a
1395    // dependent name. C++ DR468 relaxed this requirement (the
1396    // "template" keyword is now permitted). We follow the C++0x
1397    // rules, even in C++03 mode, retroactively applying the DR.
1398    TemplateTy Template;
1399    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1400                                          EnteringContext, Template);
1401    if (TNK == TNK_Non_template) {
1402      Diag(Name.getSourceRange().getBegin(),
1403           diag::err_template_kw_refers_to_non_template)
1404        << GetNameFromUnqualifiedId(Name)
1405        << Name.getSourceRange();
1406      return TemplateTy();
1407    }
1408
1409    return Template;
1410  }
1411
1412  NestedNameSpecifier *Qualifier
1413    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1414
1415  switch (Name.getKind()) {
1416  case UnqualifiedId::IK_Identifier:
1417    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1418                                                             Name.Identifier));
1419
1420  case UnqualifiedId::IK_OperatorFunctionId:
1421    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1422                                             Name.OperatorFunctionId.Operator));
1423
1424  default:
1425    break;
1426  }
1427
1428  Diag(Name.getSourceRange().getBegin(),
1429       diag::err_template_kw_refers_to_non_template)
1430    << GetNameFromUnqualifiedId(Name)
1431    << Name.getSourceRange();
1432  return TemplateTy();
1433}
1434
1435bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1436                                     const TemplateArgumentLoc &AL,
1437                                     TemplateArgumentListBuilder &Converted) {
1438  const TemplateArgument &Arg = AL.getArgument();
1439
1440  // Check template type parameter.
1441  if (Arg.getKind() != TemplateArgument::Type) {
1442    // C++ [temp.arg.type]p1:
1443    //   A template-argument for a template-parameter which is a
1444    //   type shall be a type-id.
1445
1446    // We have a template type parameter but the template argument
1447    // is not a type.
1448    SourceRange SR = AL.getSourceRange();
1449    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1450    Diag(Param->getLocation(), diag::note_template_param_here);
1451
1452    return true;
1453  }
1454
1455  if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo()))
1456    return true;
1457
1458  // Add the converted template type argument.
1459  Converted.Append(
1460                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1461  return false;
1462}
1463
1464/// \brief Substitute template arguments into the default template argument for
1465/// the given template type parameter.
1466///
1467/// \param SemaRef the semantic analysis object for which we are performing
1468/// the substitution.
1469///
1470/// \param Template the template that we are synthesizing template arguments
1471/// for.
1472///
1473/// \param TemplateLoc the location of the template name that started the
1474/// template-id we are checking.
1475///
1476/// \param RAngleLoc the location of the right angle bracket ('>') that
1477/// terminates the template-id.
1478///
1479/// \param Param the template template parameter whose default we are
1480/// substituting into.
1481///
1482/// \param Converted the list of template arguments provided for template
1483/// parameters that precede \p Param in the template parameter list.
1484///
1485/// \returns the substituted template argument, or NULL if an error occurred.
1486static DeclaratorInfo *
1487SubstDefaultTemplateArgument(Sema &SemaRef,
1488                             TemplateDecl *Template,
1489                             SourceLocation TemplateLoc,
1490                             SourceLocation RAngleLoc,
1491                             TemplateTypeParmDecl *Param,
1492                             TemplateArgumentListBuilder &Converted) {
1493  DeclaratorInfo *ArgType = Param->getDefaultArgumentInfo();
1494
1495  // If the argument type is dependent, instantiate it now based
1496  // on the previously-computed template arguments.
1497  if (ArgType->getType()->isDependentType()) {
1498    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1499                                      /*TakeArgs=*/false);
1500
1501    MultiLevelTemplateArgumentList AllTemplateArgs
1502      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1503
1504    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1505                                     Template, Converted.getFlatArguments(),
1506                                     Converted.flatSize(),
1507                                     SourceRange(TemplateLoc, RAngleLoc));
1508
1509    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1510                                Param->getDefaultArgumentLoc(),
1511                                Param->getDeclName());
1512  }
1513
1514  return ArgType;
1515}
1516
1517/// \brief Substitute template arguments into the default template argument for
1518/// the given non-type template parameter.
1519///
1520/// \param SemaRef the semantic analysis object for which we are performing
1521/// the substitution.
1522///
1523/// \param Template the template that we are synthesizing template arguments
1524/// for.
1525///
1526/// \param TemplateLoc the location of the template name that started the
1527/// template-id we are checking.
1528///
1529/// \param RAngleLoc the location of the right angle bracket ('>') that
1530/// terminates the template-id.
1531///
1532/// \param Param the non-type template parameter whose default we are
1533/// substituting into.
1534///
1535/// \param Converted the list of template arguments provided for template
1536/// parameters that precede \p Param in the template parameter list.
1537///
1538/// \returns the substituted template argument, or NULL if an error occurred.
1539static Sema::OwningExprResult
1540SubstDefaultTemplateArgument(Sema &SemaRef,
1541                             TemplateDecl *Template,
1542                             SourceLocation TemplateLoc,
1543                             SourceLocation RAngleLoc,
1544                             NonTypeTemplateParmDecl *Param,
1545                             TemplateArgumentListBuilder &Converted) {
1546  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1547                                    /*TakeArgs=*/false);
1548
1549  MultiLevelTemplateArgumentList AllTemplateArgs
1550    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1551
1552  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1553                                   Template, Converted.getFlatArguments(),
1554                                   Converted.flatSize(),
1555                                   SourceRange(TemplateLoc, RAngleLoc));
1556
1557  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1558}
1559
1560/// \brief Substitute template arguments into the default template argument for
1561/// the given template template parameter.
1562///
1563/// \param SemaRef the semantic analysis object for which we are performing
1564/// the substitution.
1565///
1566/// \param Template the template that we are synthesizing template arguments
1567/// for.
1568///
1569/// \param TemplateLoc the location of the template name that started the
1570/// template-id we are checking.
1571///
1572/// \param RAngleLoc the location of the right angle bracket ('>') that
1573/// terminates the template-id.
1574///
1575/// \param Param the template template parameter whose default we are
1576/// substituting into.
1577///
1578/// \param Converted the list of template arguments provided for template
1579/// parameters that precede \p Param in the template parameter list.
1580///
1581/// \returns the substituted template argument, or NULL if an error occurred.
1582static TemplateName
1583SubstDefaultTemplateArgument(Sema &SemaRef,
1584                             TemplateDecl *Template,
1585                             SourceLocation TemplateLoc,
1586                             SourceLocation RAngleLoc,
1587                             TemplateTemplateParmDecl *Param,
1588                             TemplateArgumentListBuilder &Converted) {
1589  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1590                                    /*TakeArgs=*/false);
1591
1592  MultiLevelTemplateArgumentList AllTemplateArgs
1593    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1594
1595  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1596                                   Template, Converted.getFlatArguments(),
1597                                   Converted.flatSize(),
1598                                   SourceRange(TemplateLoc, RAngleLoc));
1599
1600  return SemaRef.SubstTemplateName(
1601                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1602                              Param->getDefaultArgument().getTemplateNameLoc(),
1603                                   AllTemplateArgs);
1604}
1605
1606/// \brief Check that the given template argument corresponds to the given
1607/// template parameter.
1608bool Sema::CheckTemplateArgument(NamedDecl *Param,
1609                                 const TemplateArgumentLoc &Arg,
1610                                 TemplateDecl *Template,
1611                                 SourceLocation TemplateLoc,
1612                                 SourceLocation RAngleLoc,
1613                                 TemplateArgumentListBuilder &Converted) {
1614  // Check template type parameters.
1615  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1616    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1617
1618  // Check non-type template parameters.
1619  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1620    // Do substitution on the type of the non-type template parameter
1621    // with the template arguments we've seen thus far.
1622    QualType NTTPType = NTTP->getType();
1623    if (NTTPType->isDependentType()) {
1624      // Do substitution on the type of the non-type template parameter.
1625      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1626                                 NTTP, Converted.getFlatArguments(),
1627                                 Converted.flatSize(),
1628                                 SourceRange(TemplateLoc, RAngleLoc));
1629
1630      TemplateArgumentList TemplateArgs(Context, Converted,
1631                                        /*TakeArgs=*/false);
1632      NTTPType = SubstType(NTTPType,
1633                           MultiLevelTemplateArgumentList(TemplateArgs),
1634                           NTTP->getLocation(),
1635                           NTTP->getDeclName());
1636      // If that worked, check the non-type template parameter type
1637      // for validity.
1638      if (!NTTPType.isNull())
1639        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1640                                                     NTTP->getLocation());
1641      if (NTTPType.isNull())
1642        return true;
1643    }
1644
1645    switch (Arg.getArgument().getKind()) {
1646    case TemplateArgument::Null:
1647      assert(false && "Should never see a NULL template argument here");
1648      return true;
1649
1650    case TemplateArgument::Expression: {
1651      Expr *E = Arg.getArgument().getAsExpr();
1652      TemplateArgument Result;
1653      if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1654        return true;
1655
1656      Converted.Append(Result);
1657      break;
1658    }
1659
1660    case TemplateArgument::Declaration:
1661    case TemplateArgument::Integral:
1662      // We've already checked this template argument, so just copy
1663      // it to the list of converted arguments.
1664      Converted.Append(Arg.getArgument());
1665      break;
1666
1667    case TemplateArgument::Template:
1668      // We were given a template template argument. It may not be ill-formed;
1669      // see below.
1670      if (DependentTemplateName *DTN
1671            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1672        // We have a template argument such as \c T::template X, which we
1673        // parsed as a template template argument. However, since we now
1674        // know that we need a non-type template argument, convert this
1675        // template name into an expression.
1676        Expr *E = new (Context) DependentScopeDeclRefExpr(DTN->getIdentifier(),
1677                                                      Context.DependentTy,
1678                                                      Arg.getTemplateNameLoc(),
1679                                               Arg.getTemplateQualifierRange(),
1680                                                      DTN->getQualifier(),
1681                                                  /*isAddressOfOperand=*/false);
1682
1683        TemplateArgument Result;
1684        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1685          return true;
1686
1687        Converted.Append(Result);
1688        break;
1689      }
1690
1691      // We have a template argument that actually does refer to a class
1692      // template, template alias, or template template parameter, and
1693      // therefore cannot be a non-type template argument.
1694      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1695        << Arg.getSourceRange();
1696
1697      Diag(Param->getLocation(), diag::note_template_param_here);
1698      return true;
1699
1700    case TemplateArgument::Type: {
1701      // We have a non-type template parameter but the template
1702      // argument is a type.
1703
1704      // C++ [temp.arg]p2:
1705      //   In a template-argument, an ambiguity between a type-id and
1706      //   an expression is resolved to a type-id, regardless of the
1707      //   form of the corresponding template-parameter.
1708      //
1709      // We warn specifically about this case, since it can be rather
1710      // confusing for users.
1711      QualType T = Arg.getArgument().getAsType();
1712      SourceRange SR = Arg.getSourceRange();
1713      if (T->isFunctionType())
1714        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1715      else
1716        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1717      Diag(Param->getLocation(), diag::note_template_param_here);
1718      return true;
1719    }
1720
1721    case TemplateArgument::Pack:
1722      llvm::llvm_unreachable("Caller must expand template argument packs");
1723      break;
1724    }
1725
1726    return false;
1727  }
1728
1729
1730  // Check template template parameters.
1731  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
1732
1733  // Substitute into the template parameter list of the template
1734  // template parameter, since previously-supplied template arguments
1735  // may appear within the template template parameter.
1736  {
1737    // Set up a template instantiation context.
1738    LocalInstantiationScope Scope(*this);
1739    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1740                               TempParm, Converted.getFlatArguments(),
1741                               Converted.flatSize(),
1742                               SourceRange(TemplateLoc, RAngleLoc));
1743
1744    TemplateArgumentList TemplateArgs(Context, Converted,
1745                                      /*TakeArgs=*/false);
1746    TempParm = cast_or_null<TemplateTemplateParmDecl>(
1747                      SubstDecl(TempParm, CurContext,
1748                                MultiLevelTemplateArgumentList(TemplateArgs)));
1749    if (!TempParm)
1750      return true;
1751
1752    // FIXME: TempParam is leaked.
1753  }
1754
1755  switch (Arg.getArgument().getKind()) {
1756  case TemplateArgument::Null:
1757    assert(false && "Should never see a NULL template argument here");
1758    return true;
1759
1760  case TemplateArgument::Template:
1761    if (CheckTemplateArgument(TempParm, Arg))
1762      return true;
1763
1764    Converted.Append(Arg.getArgument());
1765    break;
1766
1767  case TemplateArgument::Expression:
1768  case TemplateArgument::Type:
1769    // We have a template template parameter but the template
1770    // argument does not refer to a template.
1771    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1772    return true;
1773
1774  case TemplateArgument::Declaration:
1775    llvm::llvm_unreachable(
1776                       "Declaration argument with template template parameter");
1777    break;
1778  case TemplateArgument::Integral:
1779    llvm::llvm_unreachable(
1780                          "Integral argument with template template parameter");
1781    break;
1782
1783  case TemplateArgument::Pack:
1784    llvm::llvm_unreachable("Caller must expand template argument packs");
1785    break;
1786  }
1787
1788  return false;
1789}
1790
1791/// \brief Check that the given template argument list is well-formed
1792/// for specializing the given template.
1793bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1794                                     SourceLocation TemplateLoc,
1795                                const TemplateArgumentListInfo &TemplateArgs,
1796                                     bool PartialTemplateArgs,
1797                                     TemplateArgumentListBuilder &Converted) {
1798  TemplateParameterList *Params = Template->getTemplateParameters();
1799  unsigned NumParams = Params->size();
1800  unsigned NumArgs = TemplateArgs.size();
1801  bool Invalid = false;
1802
1803  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
1804
1805  bool HasParameterPack =
1806    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1807
1808  if ((NumArgs > NumParams && !HasParameterPack) ||
1809      (NumArgs < Params->getMinRequiredArguments() &&
1810       !PartialTemplateArgs)) {
1811    // FIXME: point at either the first arg beyond what we can handle,
1812    // or the '>', depending on whether we have too many or too few
1813    // arguments.
1814    SourceRange Range;
1815    if (NumArgs > NumParams)
1816      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1817    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1818      << (NumArgs > NumParams)
1819      << (isa<ClassTemplateDecl>(Template)? 0 :
1820          isa<FunctionTemplateDecl>(Template)? 1 :
1821          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1822      << Template << Range;
1823    Diag(Template->getLocation(), diag::note_template_decl_here)
1824      << Params->getSourceRange();
1825    Invalid = true;
1826  }
1827
1828  // C++ [temp.arg]p1:
1829  //   [...] The type and form of each template-argument specified in
1830  //   a template-id shall match the type and form specified for the
1831  //   corresponding parameter declared by the template in its
1832  //   template-parameter-list.
1833  unsigned ArgIdx = 0;
1834  for (TemplateParameterList::iterator Param = Params->begin(),
1835                                       ParamEnd = Params->end();
1836       Param != ParamEnd; ++Param, ++ArgIdx) {
1837    if (ArgIdx > NumArgs && PartialTemplateArgs)
1838      break;
1839
1840    // If we have a template parameter pack, check every remaining template
1841    // argument against that template parameter pack.
1842    if ((*Param)->isTemplateParameterPack()) {
1843      Converted.BeginPack();
1844      for (; ArgIdx < NumArgs; ++ArgIdx) {
1845        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
1846                                  TemplateLoc, RAngleLoc, Converted)) {
1847          Invalid = true;
1848          break;
1849        }
1850      }
1851      Converted.EndPack();
1852      continue;
1853    }
1854
1855    if (ArgIdx < NumArgs) {
1856      // Check the template argument we were given.
1857      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
1858                                TemplateLoc, RAngleLoc, Converted))
1859        return true;
1860
1861      continue;
1862    }
1863
1864    // We have a default template argument that we will use.
1865    TemplateArgumentLoc Arg;
1866
1867    // Retrieve the default template argument from the template
1868    // parameter. For each kind of template parameter, we substitute the
1869    // template arguments provided thus far and any "outer" template arguments
1870    // (when the template parameter was part of a nested template) into
1871    // the default argument.
1872    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1873      if (!TTP->hasDefaultArgument()) {
1874        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
1875        break;
1876      }
1877
1878      DeclaratorInfo *ArgType = SubstDefaultTemplateArgument(*this,
1879                                                             Template,
1880                                                             TemplateLoc,
1881                                                             RAngleLoc,
1882                                                             TTP,
1883                                                             Converted);
1884      if (!ArgType)
1885        return true;
1886
1887      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
1888                                ArgType);
1889    } else if (NonTypeTemplateParmDecl *NTTP
1890                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1891      if (!NTTP->hasDefaultArgument()) {
1892        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
1893        break;
1894      }
1895
1896      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
1897                                                              TemplateLoc,
1898                                                              RAngleLoc,
1899                                                              NTTP,
1900                                                              Converted);
1901      if (E.isInvalid())
1902        return true;
1903
1904      Expr *Ex = E.takeAs<Expr>();
1905      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
1906    } else {
1907      TemplateTemplateParmDecl *TempParm
1908        = cast<TemplateTemplateParmDecl>(*Param);
1909
1910      if (!TempParm->hasDefaultArgument()) {
1911        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
1912        break;
1913      }
1914
1915      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
1916                                                       TemplateLoc,
1917                                                       RAngleLoc,
1918                                                       TempParm,
1919                                                       Converted);
1920      if (Name.isNull())
1921        return true;
1922
1923      Arg = TemplateArgumentLoc(TemplateArgument(Name),
1924                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
1925                  TempParm->getDefaultArgument().getTemplateNameLoc());
1926    }
1927
1928    // Introduce an instantiation record that describes where we are using
1929    // the default template argument.
1930    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
1931                                        Converted.getFlatArguments(),
1932                                        Converted.flatSize(),
1933                                        SourceRange(TemplateLoc, RAngleLoc));
1934
1935    // Check the default template argument.
1936    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
1937                              RAngleLoc, Converted))
1938      return true;
1939  }
1940
1941  return Invalid;
1942}
1943
1944/// \brief Check a template argument against its corresponding
1945/// template type parameter.
1946///
1947/// This routine implements the semantics of C++ [temp.arg.type]. It
1948/// returns true if an error occurred, and false otherwise.
1949bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1950                                 DeclaratorInfo *ArgInfo) {
1951  assert(ArgInfo && "invalid DeclaratorInfo");
1952  QualType Arg = ArgInfo->getType();
1953
1954  // C++ [temp.arg.type]p2:
1955  //   A local type, a type with no linkage, an unnamed type or a type
1956  //   compounded from any of these types shall not be used as a
1957  //   template-argument for a template type-parameter.
1958  //
1959  // FIXME: Perform the recursive and no-linkage type checks.
1960  const TagType *Tag = 0;
1961  if (const EnumType *EnumT = Arg->getAs<EnumType>())
1962    Tag = EnumT;
1963  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1964    Tag = RecordT;
1965  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
1966    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1967    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
1968      << QualType(Tag, 0) << SR;
1969  } else if (Tag && !Tag->getDecl()->getDeclName() &&
1970           !Tag->getDecl()->getTypedefForAnonDecl()) {
1971    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1972    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
1973    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1974    return true;
1975  }
1976
1977  return false;
1978}
1979
1980/// \brief Checks whether the given template argument is the address
1981/// of an object or function according to C++ [temp.arg.nontype]p1.
1982bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1983                                                          NamedDecl *&Entity) {
1984  bool Invalid = false;
1985
1986  // See through any implicit casts we added to fix the type.
1987  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1988    Arg = Cast->getSubExpr();
1989
1990  // C++0x allows nullptr, and there's no further checking to be done for that.
1991  if (Arg->getType()->isNullPtrType())
1992    return false;
1993
1994  // C++ [temp.arg.nontype]p1:
1995  //
1996  //   A template-argument for a non-type, non-template
1997  //   template-parameter shall be one of: [...]
1998  //
1999  //     -- the address of an object or function with external
2000  //        linkage, including function templates and function
2001  //        template-ids but excluding non-static class members,
2002  //        expressed as & id-expression where the & is optional if
2003  //        the name refers to a function or array, or if the
2004  //        corresponding template-parameter is a reference; or
2005  DeclRefExpr *DRE = 0;
2006
2007  // Ignore (and complain about) any excess parentheses.
2008  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2009    if (!Invalid) {
2010      Diag(Arg->getSourceRange().getBegin(),
2011           diag::err_template_arg_extra_parens)
2012        << Arg->getSourceRange();
2013      Invalid = true;
2014    }
2015
2016    Arg = Parens->getSubExpr();
2017  }
2018
2019  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2020    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2021      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2022  } else
2023    DRE = dyn_cast<DeclRefExpr>(Arg);
2024
2025  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
2026    return Diag(Arg->getSourceRange().getBegin(),
2027                diag::err_template_arg_not_object_or_func_form)
2028      << Arg->getSourceRange();
2029
2030  // Cannot refer to non-static data members
2031  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2032    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2033      << Field << Arg->getSourceRange();
2034
2035  // Cannot refer to non-static member functions
2036  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2037    if (!Method->isStatic())
2038      return Diag(Arg->getSourceRange().getBegin(),
2039                  diag::err_template_arg_method)
2040        << Method << Arg->getSourceRange();
2041
2042  // Functions must have external linkage.
2043  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2044    if (Func->getStorageClass() == FunctionDecl::Static) {
2045      Diag(Arg->getSourceRange().getBegin(),
2046           diag::err_template_arg_function_not_extern)
2047        << Func << Arg->getSourceRange();
2048      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2049        << true;
2050      return true;
2051    }
2052
2053    // Okay: we've named a function with external linkage.
2054    Entity = Func;
2055    return Invalid;
2056  }
2057
2058  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2059    if (!Var->hasGlobalStorage()) {
2060      Diag(Arg->getSourceRange().getBegin(),
2061           diag::err_template_arg_object_not_extern)
2062        << Var << Arg->getSourceRange();
2063      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2064        << true;
2065      return true;
2066    }
2067
2068    // Okay: we've named an object with external linkage
2069    Entity = Var;
2070    return Invalid;
2071  }
2072
2073  // We found something else, but we don't know specifically what it is.
2074  Diag(Arg->getSourceRange().getBegin(),
2075       diag::err_template_arg_not_object_or_func)
2076      << Arg->getSourceRange();
2077  Diag(DRE->getDecl()->getLocation(),
2078       diag::note_template_arg_refers_here);
2079  return true;
2080}
2081
2082/// \brief Checks whether the given template argument is a pointer to
2083/// member constant according to C++ [temp.arg.nontype]p1.
2084bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2085                                                TemplateArgument &Converted) {
2086  bool Invalid = false;
2087
2088  // See through any implicit casts we added to fix the type.
2089  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2090    Arg = Cast->getSubExpr();
2091
2092  // C++0x allows nullptr, and there's no further checking to be done for that.
2093  if (Arg->getType()->isNullPtrType())
2094    return false;
2095
2096  // C++ [temp.arg.nontype]p1:
2097  //
2098  //   A template-argument for a non-type, non-template
2099  //   template-parameter shall be one of: [...]
2100  //
2101  //     -- a pointer to member expressed as described in 5.3.1.
2102  DeclRefExpr *DRE = 0;
2103
2104  // Ignore (and complain about) any excess parentheses.
2105  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2106    if (!Invalid) {
2107      Diag(Arg->getSourceRange().getBegin(),
2108           diag::err_template_arg_extra_parens)
2109        << Arg->getSourceRange();
2110      Invalid = true;
2111    }
2112
2113    Arg = Parens->getSubExpr();
2114  }
2115
2116  // A pointer-to-member constant written &Class::member.
2117  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2118    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2119      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2120      if (DRE && !DRE->getQualifier())
2121        DRE = 0;
2122    }
2123  }
2124  // A constant of pointer-to-member type.
2125  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2126    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2127      if (VD->getType()->isMemberPointerType()) {
2128        if (isa<NonTypeTemplateParmDecl>(VD) ||
2129            (isa<VarDecl>(VD) &&
2130             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2131          if (Arg->isTypeDependent() || Arg->isValueDependent())
2132            Converted = TemplateArgument(Arg->Retain());
2133          else
2134            Converted = TemplateArgument(VD->getCanonicalDecl());
2135          return Invalid;
2136        }
2137      }
2138    }
2139
2140    DRE = 0;
2141  }
2142
2143  if (!DRE)
2144    return Diag(Arg->getSourceRange().getBegin(),
2145                diag::err_template_arg_not_pointer_to_member_form)
2146      << Arg->getSourceRange();
2147
2148  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2149    assert((isa<FieldDecl>(DRE->getDecl()) ||
2150            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2151           "Only non-static member pointers can make it here");
2152
2153    // Okay: this is the address of a non-static member, and therefore
2154    // a member pointer constant.
2155    if (Arg->isTypeDependent() || Arg->isValueDependent())
2156      Converted = TemplateArgument(Arg->Retain());
2157    else
2158      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2159    return Invalid;
2160  }
2161
2162  // We found something else, but we don't know specifically what it is.
2163  Diag(Arg->getSourceRange().getBegin(),
2164       diag::err_template_arg_not_pointer_to_member_form)
2165      << Arg->getSourceRange();
2166  Diag(DRE->getDecl()->getLocation(),
2167       diag::note_template_arg_refers_here);
2168  return true;
2169}
2170
2171/// \brief Check a template argument against its corresponding
2172/// non-type template parameter.
2173///
2174/// This routine implements the semantics of C++ [temp.arg.nontype].
2175/// It returns true if an error occurred, and false otherwise. \p
2176/// InstantiatedParamType is the type of the non-type template
2177/// parameter after it has been instantiated.
2178///
2179/// If no error was detected, Converted receives the converted template argument.
2180bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2181                                 QualType InstantiatedParamType, Expr *&Arg,
2182                                 TemplateArgument &Converted) {
2183  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2184
2185  // If either the parameter has a dependent type or the argument is
2186  // type-dependent, there's nothing we can check now.
2187  // FIXME: Add template argument to Converted!
2188  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2189    // FIXME: Produce a cloned, canonical expression?
2190    Converted = TemplateArgument(Arg);
2191    return false;
2192  }
2193
2194  // C++ [temp.arg.nontype]p5:
2195  //   The following conversions are performed on each expression used
2196  //   as a non-type template-argument. If a non-type
2197  //   template-argument cannot be converted to the type of the
2198  //   corresponding template-parameter then the program is
2199  //   ill-formed.
2200  //
2201  //     -- for a non-type template-parameter of integral or
2202  //        enumeration type, integral promotions (4.5) and integral
2203  //        conversions (4.7) are applied.
2204  QualType ParamType = InstantiatedParamType;
2205  QualType ArgType = Arg->getType();
2206  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2207    // C++ [temp.arg.nontype]p1:
2208    //   A template-argument for a non-type, non-template
2209    //   template-parameter shall be one of:
2210    //
2211    //     -- an integral constant-expression of integral or enumeration
2212    //        type; or
2213    //     -- the name of a non-type template-parameter; or
2214    SourceLocation NonConstantLoc;
2215    llvm::APSInt Value;
2216    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2217      Diag(Arg->getSourceRange().getBegin(),
2218           diag::err_template_arg_not_integral_or_enumeral)
2219        << ArgType << Arg->getSourceRange();
2220      Diag(Param->getLocation(), diag::note_template_param_here);
2221      return true;
2222    } else if (!Arg->isValueDependent() &&
2223               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2224      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2225        << ArgType << Arg->getSourceRange();
2226      return true;
2227    }
2228
2229    // FIXME: We need some way to more easily get the unqualified form
2230    // of the types without going all the way to the
2231    // canonical type.
2232    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
2233      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
2234    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
2235      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
2236
2237    // Try to convert the argument to the parameter's type.
2238    if (Context.hasSameType(ParamType, ArgType)) {
2239      // Okay: no conversion necessary
2240    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2241               !ParamType->isEnumeralType()) {
2242      // This is an integral promotion or conversion.
2243      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2244    } else {
2245      // We can't perform this conversion.
2246      Diag(Arg->getSourceRange().getBegin(),
2247           diag::err_template_arg_not_convertible)
2248        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2249      Diag(Param->getLocation(), diag::note_template_param_here);
2250      return true;
2251    }
2252
2253    QualType IntegerType = Context.getCanonicalType(ParamType);
2254    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2255      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2256
2257    if (!Arg->isValueDependent()) {
2258      // Check that an unsigned parameter does not receive a negative
2259      // value.
2260      if (IntegerType->isUnsignedIntegerType()
2261          && (Value.isSigned() && Value.isNegative())) {
2262        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2263          << Value.toString(10) << Param->getType()
2264          << Arg->getSourceRange();
2265        Diag(Param->getLocation(), diag::note_template_param_here);
2266        return true;
2267      }
2268
2269      // Check that we don't overflow the template parameter type.
2270      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2271      if (Value.getActiveBits() > AllowedBits) {
2272        Diag(Arg->getSourceRange().getBegin(),
2273             diag::err_template_arg_too_large)
2274          << Value.toString(10) << Param->getType()
2275          << Arg->getSourceRange();
2276        Diag(Param->getLocation(), diag::note_template_param_here);
2277        return true;
2278      }
2279
2280      if (Value.getBitWidth() != AllowedBits)
2281        Value.extOrTrunc(AllowedBits);
2282      Value.setIsSigned(IntegerType->isSignedIntegerType());
2283    }
2284
2285    // Add the value of this argument to the list of converted
2286    // arguments. We use the bitwidth and signedness of the template
2287    // parameter.
2288    if (Arg->isValueDependent()) {
2289      // The argument is value-dependent. Create a new
2290      // TemplateArgument with the converted expression.
2291      Converted = TemplateArgument(Arg);
2292      return false;
2293    }
2294
2295    Converted = TemplateArgument(Value,
2296                                 ParamType->isEnumeralType() ? ParamType
2297                                                             : IntegerType);
2298    return false;
2299  }
2300
2301  // Handle pointer-to-function, reference-to-function, and
2302  // pointer-to-member-function all in (roughly) the same way.
2303  if (// -- For a non-type template-parameter of type pointer to
2304      //    function, only the function-to-pointer conversion (4.3) is
2305      //    applied. If the template-argument represents a set of
2306      //    overloaded functions (or a pointer to such), the matching
2307      //    function is selected from the set (13.4).
2308      // In C++0x, any std::nullptr_t value can be converted.
2309      (ParamType->isPointerType() &&
2310       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2311      // -- For a non-type template-parameter of type reference to
2312      //    function, no conversions apply. If the template-argument
2313      //    represents a set of overloaded functions, the matching
2314      //    function is selected from the set (13.4).
2315      (ParamType->isReferenceType() &&
2316       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2317      // -- For a non-type template-parameter of type pointer to
2318      //    member function, no conversions apply. If the
2319      //    template-argument represents a set of overloaded member
2320      //    functions, the matching member function is selected from
2321      //    the set (13.4).
2322      // Again, C++0x allows a std::nullptr_t value.
2323      (ParamType->isMemberPointerType() &&
2324       ParamType->getAs<MemberPointerType>()->getPointeeType()
2325         ->isFunctionType())) {
2326    if (Context.hasSameUnqualifiedType(ArgType,
2327                                       ParamType.getNonReferenceType())) {
2328      // We don't have to do anything: the types already match.
2329    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2330                 ParamType->isMemberPointerType())) {
2331      ArgType = ParamType;
2332      if (ParamType->isMemberPointerType())
2333        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2334      else
2335        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2336    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2337      ArgType = Context.getPointerType(ArgType);
2338      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2339    } else if (FunctionDecl *Fn
2340                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2341      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2342        return true;
2343
2344      Arg = FixOverloadedFunctionReference(Arg, Fn);
2345      ArgType = Arg->getType();
2346      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2347        ArgType = Context.getPointerType(Arg->getType());
2348        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2349      }
2350    }
2351
2352    if (!Context.hasSameUnqualifiedType(ArgType,
2353                                        ParamType.getNonReferenceType())) {
2354      // We can't perform this conversion.
2355      Diag(Arg->getSourceRange().getBegin(),
2356           diag::err_template_arg_not_convertible)
2357        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2358      Diag(Param->getLocation(), diag::note_template_param_here);
2359      return true;
2360    }
2361
2362    if (ParamType->isMemberPointerType())
2363      return CheckTemplateArgumentPointerToMember(Arg, Converted);
2364
2365    NamedDecl *Entity = 0;
2366    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2367      return true;
2368
2369    if (Entity)
2370      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2371    Converted = TemplateArgument(Entity);
2372    return false;
2373  }
2374
2375  if (ParamType->isPointerType()) {
2376    //   -- for a non-type template-parameter of type pointer to
2377    //      object, qualification conversions (4.4) and the
2378    //      array-to-pointer conversion (4.2) are applied.
2379    // C++0x also allows a value of std::nullptr_t.
2380    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2381           "Only object pointers allowed here");
2382
2383    if (ArgType->isNullPtrType()) {
2384      ArgType = ParamType;
2385      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2386    } else if (ArgType->isArrayType()) {
2387      ArgType = Context.getArrayDecayedType(ArgType);
2388      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2389    }
2390
2391    if (IsQualificationConversion(ArgType, ParamType)) {
2392      ArgType = ParamType;
2393      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2394    }
2395
2396    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2397      // We can't perform this conversion.
2398      Diag(Arg->getSourceRange().getBegin(),
2399           diag::err_template_arg_not_convertible)
2400        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2401      Diag(Param->getLocation(), diag::note_template_param_here);
2402      return true;
2403    }
2404
2405    NamedDecl *Entity = 0;
2406    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2407      return true;
2408
2409    if (Entity)
2410      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2411    Converted = TemplateArgument(Entity);
2412    return false;
2413  }
2414
2415  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2416    //   -- For a non-type template-parameter of type reference to
2417    //      object, no conversions apply. The type referred to by the
2418    //      reference may be more cv-qualified than the (otherwise
2419    //      identical) type of the template-argument. The
2420    //      template-parameter is bound directly to the
2421    //      template-argument, which must be an lvalue.
2422    assert(ParamRefType->getPointeeType()->isObjectType() &&
2423           "Only object references allowed here");
2424
2425    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2426      Diag(Arg->getSourceRange().getBegin(),
2427           diag::err_template_arg_no_ref_bind)
2428        << InstantiatedParamType << Arg->getType()
2429        << Arg->getSourceRange();
2430      Diag(Param->getLocation(), diag::note_template_param_here);
2431      return true;
2432    }
2433
2434    unsigned ParamQuals
2435      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2436    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2437
2438    if ((ParamQuals | ArgQuals) != ParamQuals) {
2439      Diag(Arg->getSourceRange().getBegin(),
2440           diag::err_template_arg_ref_bind_ignores_quals)
2441        << InstantiatedParamType << Arg->getType()
2442        << Arg->getSourceRange();
2443      Diag(Param->getLocation(), diag::note_template_param_here);
2444      return true;
2445    }
2446
2447    NamedDecl *Entity = 0;
2448    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2449      return true;
2450
2451    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2452    Converted = TemplateArgument(Entity);
2453    return false;
2454  }
2455
2456  //     -- For a non-type template-parameter of type pointer to data
2457  //        member, qualification conversions (4.4) are applied.
2458  // C++0x allows std::nullptr_t values.
2459  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2460
2461  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2462    // Types match exactly: nothing more to do here.
2463  } else if (ArgType->isNullPtrType()) {
2464    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2465  } else if (IsQualificationConversion(ArgType, ParamType)) {
2466    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2467  } else {
2468    // We can't perform this conversion.
2469    Diag(Arg->getSourceRange().getBegin(),
2470         diag::err_template_arg_not_convertible)
2471      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2472    Diag(Param->getLocation(), diag::note_template_param_here);
2473    return true;
2474  }
2475
2476  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2477}
2478
2479/// \brief Check a template argument against its corresponding
2480/// template template parameter.
2481///
2482/// This routine implements the semantics of C++ [temp.arg.template].
2483/// It returns true if an error occurred, and false otherwise.
2484bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2485                                 const TemplateArgumentLoc &Arg) {
2486  TemplateName Name = Arg.getArgument().getAsTemplate();
2487  TemplateDecl *Template = Name.getAsTemplateDecl();
2488  if (!Template) {
2489    // Any dependent template name is fine.
2490    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2491    return false;
2492  }
2493
2494  // C++ [temp.arg.template]p1:
2495  //   A template-argument for a template template-parameter shall be
2496  //   the name of a class template, expressed as id-expression. Only
2497  //   primary class templates are considered when matching the
2498  //   template template argument with the corresponding parameter;
2499  //   partial specializations are not considered even if their
2500  //   parameter lists match that of the template template parameter.
2501  //
2502  // Note that we also allow template template parameters here, which
2503  // will happen when we are dealing with, e.g., class template
2504  // partial specializations.
2505  if (!isa<ClassTemplateDecl>(Template) &&
2506      !isa<TemplateTemplateParmDecl>(Template)) {
2507    assert(isa<FunctionTemplateDecl>(Template) &&
2508           "Only function templates are possible here");
2509    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2510    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2511      << Template;
2512  }
2513
2514  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2515                                         Param->getTemplateParameters(),
2516                                         true,
2517                                         TPL_TemplateTemplateArgumentMatch,
2518                                         Arg.getLocation());
2519}
2520
2521/// \brief Determine whether the given template parameter lists are
2522/// equivalent.
2523///
2524/// \param New  The new template parameter list, typically written in the
2525/// source code as part of a new template declaration.
2526///
2527/// \param Old  The old template parameter list, typically found via
2528/// name lookup of the template declared with this template parameter
2529/// list.
2530///
2531/// \param Complain  If true, this routine will produce a diagnostic if
2532/// the template parameter lists are not equivalent.
2533///
2534/// \param Kind describes how we are to match the template parameter lists.
2535///
2536/// \param TemplateArgLoc If this source location is valid, then we
2537/// are actually checking the template parameter list of a template
2538/// argument (New) against the template parameter list of its
2539/// corresponding template template parameter (Old). We produce
2540/// slightly different diagnostics in this scenario.
2541///
2542/// \returns True if the template parameter lists are equal, false
2543/// otherwise.
2544bool
2545Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2546                                     TemplateParameterList *Old,
2547                                     bool Complain,
2548                                     TemplateParameterListEqualKind Kind,
2549                                     SourceLocation TemplateArgLoc) {
2550  if (Old->size() != New->size()) {
2551    if (Complain) {
2552      unsigned NextDiag = diag::err_template_param_list_different_arity;
2553      if (TemplateArgLoc.isValid()) {
2554        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2555        NextDiag = diag::note_template_param_list_different_arity;
2556      }
2557      Diag(New->getTemplateLoc(), NextDiag)
2558          << (New->size() > Old->size())
2559          << (Kind != TPL_TemplateMatch)
2560          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2561      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2562        << (Kind != TPL_TemplateMatch)
2563        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2564    }
2565
2566    return false;
2567  }
2568
2569  for (TemplateParameterList::iterator OldParm = Old->begin(),
2570         OldParmEnd = Old->end(), NewParm = New->begin();
2571       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2572    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2573      if (Complain) {
2574        unsigned NextDiag = diag::err_template_param_different_kind;
2575        if (TemplateArgLoc.isValid()) {
2576          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2577          NextDiag = diag::note_template_param_different_kind;
2578        }
2579        Diag((*NewParm)->getLocation(), NextDiag)
2580          << (Kind != TPL_TemplateMatch);
2581        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2582          << (Kind != TPL_TemplateMatch);
2583      }
2584      return false;
2585    }
2586
2587    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2588      // Okay; all template type parameters are equivalent (since we
2589      // know we're at the same index).
2590    } else if (NonTypeTemplateParmDecl *OldNTTP
2591                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2592      // The types of non-type template parameters must agree.
2593      NonTypeTemplateParmDecl *NewNTTP
2594        = cast<NonTypeTemplateParmDecl>(*NewParm);
2595
2596      // If we are matching a template template argument to a template
2597      // template parameter and one of the non-type template parameter types
2598      // is dependent, then we must wait until template instantiation time
2599      // to actually compare the arguments.
2600      if (Kind == TPL_TemplateTemplateArgumentMatch &&
2601          (OldNTTP->getType()->isDependentType() ||
2602           NewNTTP->getType()->isDependentType()))
2603        continue;
2604
2605      if (Context.getCanonicalType(OldNTTP->getType()) !=
2606            Context.getCanonicalType(NewNTTP->getType())) {
2607        if (Complain) {
2608          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2609          if (TemplateArgLoc.isValid()) {
2610            Diag(TemplateArgLoc,
2611                 diag::err_template_arg_template_params_mismatch);
2612            NextDiag = diag::note_template_nontype_parm_different_type;
2613          }
2614          Diag(NewNTTP->getLocation(), NextDiag)
2615            << NewNTTP->getType()
2616            << (Kind != TPL_TemplateMatch);
2617          Diag(OldNTTP->getLocation(),
2618               diag::note_template_nontype_parm_prev_declaration)
2619            << OldNTTP->getType();
2620        }
2621        return false;
2622      }
2623    } else {
2624      // The template parameter lists of template template
2625      // parameters must agree.
2626      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2627             "Only template template parameters handled here");
2628      TemplateTemplateParmDecl *OldTTP
2629        = cast<TemplateTemplateParmDecl>(*OldParm);
2630      TemplateTemplateParmDecl *NewTTP
2631        = cast<TemplateTemplateParmDecl>(*NewParm);
2632      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2633                                          OldTTP->getTemplateParameters(),
2634                                          Complain,
2635              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
2636                                          TemplateArgLoc))
2637        return false;
2638    }
2639  }
2640
2641  return true;
2642}
2643
2644/// \brief Check whether a template can be declared within this scope.
2645///
2646/// If the template declaration is valid in this scope, returns
2647/// false. Otherwise, issues a diagnostic and returns true.
2648bool
2649Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2650  // Find the nearest enclosing declaration scope.
2651  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2652         (S->getFlags() & Scope::TemplateParamScope) != 0)
2653    S = S->getParent();
2654
2655  // C++ [temp]p2:
2656  //   A template-declaration can appear only as a namespace scope or
2657  //   class scope declaration.
2658  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2659  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2660      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2661    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2662             << TemplateParams->getSourceRange();
2663
2664  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2665    Ctx = Ctx->getParent();
2666
2667  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2668    return false;
2669
2670  return Diag(TemplateParams->getTemplateLoc(),
2671              diag::err_template_outside_namespace_or_class_scope)
2672    << TemplateParams->getSourceRange();
2673}
2674
2675/// \brief Determine what kind of template specialization the given declaration
2676/// is.
2677static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2678  if (!D)
2679    return TSK_Undeclared;
2680
2681  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2682    return Record->getTemplateSpecializationKind();
2683  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2684    return Function->getTemplateSpecializationKind();
2685  if (VarDecl *Var = dyn_cast<VarDecl>(D))
2686    return Var->getTemplateSpecializationKind();
2687
2688  return TSK_Undeclared;
2689}
2690
2691/// \brief Check whether a specialization is well-formed in the current
2692/// context.
2693///
2694/// This routine determines whether a template specialization can be declared
2695/// in the current context (C++ [temp.expl.spec]p2).
2696///
2697/// \param S the semantic analysis object for which this check is being
2698/// performed.
2699///
2700/// \param Specialized the entity being specialized or instantiated, which
2701/// may be a kind of template (class template, function template, etc.) or
2702/// a member of a class template (member function, static data member,
2703/// member class).
2704///
2705/// \param PrevDecl the previous declaration of this entity, if any.
2706///
2707/// \param Loc the location of the explicit specialization or instantiation of
2708/// this entity.
2709///
2710/// \param IsPartialSpecialization whether this is a partial specialization of
2711/// a class template.
2712///
2713/// \returns true if there was an error that we cannot recover from, false
2714/// otherwise.
2715static bool CheckTemplateSpecializationScope(Sema &S,
2716                                             NamedDecl *Specialized,
2717                                             NamedDecl *PrevDecl,
2718                                             SourceLocation Loc,
2719                                             bool IsPartialSpecialization) {
2720  // Keep these "kind" numbers in sync with the %select statements in the
2721  // various diagnostics emitted by this routine.
2722  int EntityKind = 0;
2723  bool isTemplateSpecialization = false;
2724  if (isa<ClassTemplateDecl>(Specialized)) {
2725    EntityKind = IsPartialSpecialization? 1 : 0;
2726    isTemplateSpecialization = true;
2727  } else if (isa<FunctionTemplateDecl>(Specialized)) {
2728    EntityKind = 2;
2729    isTemplateSpecialization = true;
2730  } else if (isa<CXXMethodDecl>(Specialized))
2731    EntityKind = 3;
2732  else if (isa<VarDecl>(Specialized))
2733    EntityKind = 4;
2734  else if (isa<RecordDecl>(Specialized))
2735    EntityKind = 5;
2736  else {
2737    S.Diag(Loc, diag::err_template_spec_unknown_kind);
2738    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2739    return true;
2740  }
2741
2742  // C++ [temp.expl.spec]p2:
2743  //   An explicit specialization shall be declared in the namespace
2744  //   of which the template is a member, or, for member templates, in
2745  //   the namespace of which the enclosing class or enclosing class
2746  //   template is a member. An explicit specialization of a member
2747  //   function, member class or static data member of a class
2748  //   template shall be declared in the namespace of which the class
2749  //   template is a member. Such a declaration may also be a
2750  //   definition. If the declaration is not a definition, the
2751  //   specialization may be defined later in the name- space in which
2752  //   the explicit specialization was declared, or in a namespace
2753  //   that encloses the one in which the explicit specialization was
2754  //   declared.
2755  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
2756    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
2757      << Specialized;
2758    return true;
2759  }
2760
2761  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
2762    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
2763      << Specialized;
2764    return true;
2765  }
2766
2767  // C++ [temp.class.spec]p6:
2768  //   A class template partial specialization may be declared or redeclared
2769  //   in any namespace scope in which its definition may be defined (14.5.1
2770  //   and 14.5.2).
2771  bool ComplainedAboutScope = false;
2772  DeclContext *SpecializedContext
2773    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
2774  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
2775  if ((!PrevDecl ||
2776       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
2777       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
2778    // There is no prior declaration of this entity, so this
2779    // specialization must be in the same context as the template
2780    // itself.
2781    if (!DC->Equals(SpecializedContext)) {
2782      if (isa<TranslationUnitDecl>(SpecializedContext))
2783        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
2784        << EntityKind << Specialized;
2785      else if (isa<NamespaceDecl>(SpecializedContext))
2786        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
2787        << EntityKind << Specialized
2788        << cast<NamedDecl>(SpecializedContext);
2789
2790      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2791      ComplainedAboutScope = true;
2792    }
2793  }
2794
2795  // Make sure that this redeclaration (or definition) occurs in an enclosing
2796  // namespace.
2797  // Note that HandleDeclarator() performs this check for explicit
2798  // specializations of function templates, static data members, and member
2799  // functions, so we skip the check here for those kinds of entities.
2800  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
2801  // Should we refactor that check, so that it occurs later?
2802  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
2803      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
2804        isa<FunctionDecl>(Specialized))) {
2805    if (isa<TranslationUnitDecl>(SpecializedContext))
2806      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
2807        << EntityKind << Specialized;
2808    else if (isa<NamespaceDecl>(SpecializedContext))
2809      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
2810        << EntityKind << Specialized
2811        << cast<NamedDecl>(SpecializedContext);
2812
2813    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2814  }
2815
2816  // FIXME: check for specialization-after-instantiation errors and such.
2817
2818  return false;
2819}
2820
2821/// \brief Check the non-type template arguments of a class template
2822/// partial specialization according to C++ [temp.class.spec]p9.
2823///
2824/// \param TemplateParams the template parameters of the primary class
2825/// template.
2826///
2827/// \param TemplateArg the template arguments of the class template
2828/// partial specialization.
2829///
2830/// \param MirrorsPrimaryTemplate will be set true if the class
2831/// template partial specialization arguments are identical to the
2832/// implicit template arguments of the primary template. This is not
2833/// necessarily an error (C++0x), and it is left to the caller to diagnose
2834/// this condition when it is an error.
2835///
2836/// \returns true if there was an error, false otherwise.
2837bool Sema::CheckClassTemplatePartialSpecializationArgs(
2838                                        TemplateParameterList *TemplateParams,
2839                             const TemplateArgumentListBuilder &TemplateArgs,
2840                                        bool &MirrorsPrimaryTemplate) {
2841  // FIXME: the interface to this function will have to change to
2842  // accommodate variadic templates.
2843  MirrorsPrimaryTemplate = true;
2844
2845  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2846
2847  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2848    // Determine whether the template argument list of the partial
2849    // specialization is identical to the implicit argument list of
2850    // the primary template. The caller may need to diagnostic this as
2851    // an error per C++ [temp.class.spec]p9b3.
2852    if (MirrorsPrimaryTemplate) {
2853      if (TemplateTypeParmDecl *TTP
2854            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2855        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2856              Context.getCanonicalType(ArgList[I].getAsType()))
2857          MirrorsPrimaryTemplate = false;
2858      } else if (TemplateTemplateParmDecl *TTP
2859                   = dyn_cast<TemplateTemplateParmDecl>(
2860                                                 TemplateParams->getParam(I))) {
2861        TemplateName Name = ArgList[I].getAsTemplate();
2862        TemplateTemplateParmDecl *ArgDecl
2863          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
2864        if (!ArgDecl ||
2865            ArgDecl->getIndex() != TTP->getIndex() ||
2866            ArgDecl->getDepth() != TTP->getDepth())
2867          MirrorsPrimaryTemplate = false;
2868      }
2869    }
2870
2871    NonTypeTemplateParmDecl *Param
2872      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2873    if (!Param) {
2874      continue;
2875    }
2876
2877    Expr *ArgExpr = ArgList[I].getAsExpr();
2878    if (!ArgExpr) {
2879      MirrorsPrimaryTemplate = false;
2880      continue;
2881    }
2882
2883    // C++ [temp.class.spec]p8:
2884    //   A non-type argument is non-specialized if it is the name of a
2885    //   non-type parameter. All other non-type arguments are
2886    //   specialized.
2887    //
2888    // Below, we check the two conditions that only apply to
2889    // specialized non-type arguments, so skip any non-specialized
2890    // arguments.
2891    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2892      if (NonTypeTemplateParmDecl *NTTP
2893            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2894        if (MirrorsPrimaryTemplate &&
2895            (Param->getIndex() != NTTP->getIndex() ||
2896             Param->getDepth() != NTTP->getDepth()))
2897          MirrorsPrimaryTemplate = false;
2898
2899        continue;
2900      }
2901
2902    // C++ [temp.class.spec]p9:
2903    //   Within the argument list of a class template partial
2904    //   specialization, the following restrictions apply:
2905    //     -- A partially specialized non-type argument expression
2906    //        shall not involve a template parameter of the partial
2907    //        specialization except when the argument expression is a
2908    //        simple identifier.
2909    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2910      Diag(ArgExpr->getLocStart(),
2911           diag::err_dependent_non_type_arg_in_partial_spec)
2912        << ArgExpr->getSourceRange();
2913      return true;
2914    }
2915
2916    //     -- The type of a template parameter corresponding to a
2917    //        specialized non-type argument shall not be dependent on a
2918    //        parameter of the specialization.
2919    if (Param->getType()->isDependentType()) {
2920      Diag(ArgExpr->getLocStart(),
2921           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2922        << Param->getType()
2923        << ArgExpr->getSourceRange();
2924      Diag(Param->getLocation(), diag::note_template_param_here);
2925      return true;
2926    }
2927
2928    MirrorsPrimaryTemplate = false;
2929  }
2930
2931  return false;
2932}
2933
2934Sema::DeclResult
2935Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2936                                       TagUseKind TUK,
2937                                       SourceLocation KWLoc,
2938                                       const CXXScopeSpec &SS,
2939                                       TemplateTy TemplateD,
2940                                       SourceLocation TemplateNameLoc,
2941                                       SourceLocation LAngleLoc,
2942                                       ASTTemplateArgsPtr TemplateArgsIn,
2943                                       SourceLocation RAngleLoc,
2944                                       AttributeList *Attr,
2945                               MultiTemplateParamsArg TemplateParameterLists) {
2946  assert(TUK != TUK_Reference && "References are not specializations");
2947
2948  // Find the class template we're specializing
2949  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2950  ClassTemplateDecl *ClassTemplate
2951    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
2952
2953  if (!ClassTemplate) {
2954    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
2955      << (Name.getAsTemplateDecl() &&
2956          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
2957    return true;
2958  }
2959
2960  bool isExplicitSpecialization = false;
2961  bool isPartialSpecialization = false;
2962
2963  // Check the validity of the template headers that introduce this
2964  // template.
2965  // FIXME: We probably shouldn't complain about these headers for
2966  // friend declarations.
2967  TemplateParameterList *TemplateParams
2968    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
2969                        (TemplateParameterList**)TemplateParameterLists.get(),
2970                                              TemplateParameterLists.size(),
2971                                              isExplicitSpecialization);
2972  if (TemplateParams && TemplateParams->size() > 0) {
2973    isPartialSpecialization = true;
2974
2975    // C++ [temp.class.spec]p10:
2976    //   The template parameter list of a specialization shall not
2977    //   contain default template argument values.
2978    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2979      Decl *Param = TemplateParams->getParam(I);
2980      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2981        if (TTP->hasDefaultArgument()) {
2982          Diag(TTP->getDefaultArgumentLoc(),
2983               diag::err_default_arg_in_partial_spec);
2984          TTP->removeDefaultArgument();
2985        }
2986      } else if (NonTypeTemplateParmDecl *NTTP
2987                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2988        if (Expr *DefArg = NTTP->getDefaultArgument()) {
2989          Diag(NTTP->getDefaultArgumentLoc(),
2990               diag::err_default_arg_in_partial_spec)
2991            << DefArg->getSourceRange();
2992          NTTP->setDefaultArgument(0);
2993          DefArg->Destroy(Context);
2994        }
2995      } else {
2996        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2997        if (TTP->hasDefaultArgument()) {
2998          Diag(TTP->getDefaultArgument().getLocation(),
2999               diag::err_default_arg_in_partial_spec)
3000            << TTP->getDefaultArgument().getSourceRange();
3001          TTP->setDefaultArgument(TemplateArgumentLoc());
3002        }
3003      }
3004    }
3005  } else if (TemplateParams) {
3006    if (TUK == TUK_Friend)
3007      Diag(KWLoc, diag::err_template_spec_friend)
3008        << CodeModificationHint::CreateRemoval(
3009                                SourceRange(TemplateParams->getTemplateLoc(),
3010                                            TemplateParams->getRAngleLoc()))
3011        << SourceRange(LAngleLoc, RAngleLoc);
3012    else
3013      isExplicitSpecialization = true;
3014  } else if (TUK != TUK_Friend) {
3015    Diag(KWLoc, diag::err_template_spec_needs_header)
3016      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
3017    isExplicitSpecialization = true;
3018  }
3019
3020  // Check that the specialization uses the same tag kind as the
3021  // original template.
3022  TagDecl::TagKind Kind;
3023  switch (TagSpec) {
3024  default: assert(0 && "Unknown tag type!");
3025  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3026  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3027  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3028  }
3029  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3030                                    Kind, KWLoc,
3031                                    *ClassTemplate->getIdentifier())) {
3032    Diag(KWLoc, diag::err_use_with_wrong_tag)
3033      << ClassTemplate
3034      << CodeModificationHint::CreateReplacement(KWLoc,
3035                            ClassTemplate->getTemplatedDecl()->getKindName());
3036    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3037         diag::note_previous_use);
3038    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3039  }
3040
3041  // Translate the parser's template argument list in our AST format.
3042  TemplateArgumentListInfo TemplateArgs;
3043  TemplateArgs.setLAngleLoc(LAngleLoc);
3044  TemplateArgs.setRAngleLoc(RAngleLoc);
3045  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3046
3047  // Check that the template argument list is well-formed for this
3048  // template.
3049  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3050                                        TemplateArgs.size());
3051  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3052                                TemplateArgs, false, Converted))
3053    return true;
3054
3055  assert((Converted.structuredSize() ==
3056            ClassTemplate->getTemplateParameters()->size()) &&
3057         "Converted template argument list is too short!");
3058
3059  // Find the class template (partial) specialization declaration that
3060  // corresponds to these arguments.
3061  llvm::FoldingSetNodeID ID;
3062  if (isPartialSpecialization) {
3063    bool MirrorsPrimaryTemplate;
3064    if (CheckClassTemplatePartialSpecializationArgs(
3065                                         ClassTemplate->getTemplateParameters(),
3066                                         Converted, MirrorsPrimaryTemplate))
3067      return true;
3068
3069    if (MirrorsPrimaryTemplate) {
3070      // C++ [temp.class.spec]p9b3:
3071      //
3072      //   -- The argument list of the specialization shall not be identical
3073      //      to the implicit argument list of the primary template.
3074      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3075        << (TUK == TUK_Definition)
3076        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
3077                                                           RAngleLoc));
3078      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3079                                ClassTemplate->getIdentifier(),
3080                                TemplateNameLoc,
3081                                Attr,
3082                                TemplateParams,
3083                                AS_none);
3084    }
3085
3086    // FIXME: Diagnose friend partial specializations
3087
3088    // FIXME: Template parameter list matters, too
3089    ClassTemplatePartialSpecializationDecl::Profile(ID,
3090                                                   Converted.getFlatArguments(),
3091                                                   Converted.flatSize(),
3092                                                    Context);
3093  } else
3094    ClassTemplateSpecializationDecl::Profile(ID,
3095                                             Converted.getFlatArguments(),
3096                                             Converted.flatSize(),
3097                                             Context);
3098  void *InsertPos = 0;
3099  ClassTemplateSpecializationDecl *PrevDecl = 0;
3100
3101  if (isPartialSpecialization)
3102    PrevDecl
3103      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3104                                                                    InsertPos);
3105  else
3106    PrevDecl
3107      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3108
3109  ClassTemplateSpecializationDecl *Specialization = 0;
3110
3111  // Check whether we can declare a class template specialization in
3112  // the current scope.
3113  if (TUK != TUK_Friend &&
3114      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3115                                       TemplateNameLoc,
3116                                       isPartialSpecialization))
3117    return true;
3118
3119  // The canonical type
3120  QualType CanonType;
3121  if (PrevDecl &&
3122      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3123       TUK == TUK_Friend)) {
3124    // Since the only prior class template specialization with these
3125    // arguments was referenced but not declared, or we're only
3126    // referencing this specialization as a friend, reuse that
3127    // declaration node as our own, updating its source location to
3128    // reflect our new declaration.
3129    Specialization = PrevDecl;
3130    Specialization->setLocation(TemplateNameLoc);
3131    PrevDecl = 0;
3132    CanonType = Context.getTypeDeclType(Specialization);
3133  } else if (isPartialSpecialization) {
3134    // Build the canonical type that describes the converted template
3135    // arguments of the class template partial specialization.
3136    CanonType = Context.getTemplateSpecializationType(
3137                                                  TemplateName(ClassTemplate),
3138                                                  Converted.getFlatArguments(),
3139                                                  Converted.flatSize());
3140
3141    // Create a new class template partial specialization declaration node.
3142    ClassTemplatePartialSpecializationDecl *PrevPartial
3143      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3144    ClassTemplatePartialSpecializationDecl *Partial
3145      = ClassTemplatePartialSpecializationDecl::Create(Context,
3146                                             ClassTemplate->getDeclContext(),
3147                                                       TemplateNameLoc,
3148                                                       TemplateParams,
3149                                                       ClassTemplate,
3150                                                       Converted,
3151                                                       TemplateArgs,
3152                                                       PrevPartial);
3153
3154    if (PrevPartial) {
3155      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3156      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3157    } else {
3158      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3159    }
3160    Specialization = Partial;
3161
3162    // If we are providing an explicit specialization of a member class
3163    // template specialization, make a note of that.
3164    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3165      PrevPartial->setMemberSpecialization();
3166
3167    // Check that all of the template parameters of the class template
3168    // partial specialization are deducible from the template
3169    // arguments. If not, this class template partial specialization
3170    // will never be used.
3171    llvm::SmallVector<bool, 8> DeducibleParams;
3172    DeducibleParams.resize(TemplateParams->size());
3173    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3174                               TemplateParams->getDepth(),
3175                               DeducibleParams);
3176    unsigned NumNonDeducible = 0;
3177    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3178      if (!DeducibleParams[I])
3179        ++NumNonDeducible;
3180
3181    if (NumNonDeducible) {
3182      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3183        << (NumNonDeducible > 1)
3184        << SourceRange(TemplateNameLoc, RAngleLoc);
3185      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3186        if (!DeducibleParams[I]) {
3187          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3188          if (Param->getDeclName())
3189            Diag(Param->getLocation(),
3190                 diag::note_partial_spec_unused_parameter)
3191              << Param->getDeclName();
3192          else
3193            Diag(Param->getLocation(),
3194                 diag::note_partial_spec_unused_parameter)
3195              << std::string("<anonymous>");
3196        }
3197      }
3198    }
3199  } else {
3200    // Create a new class template specialization declaration node for
3201    // this explicit specialization or friend declaration.
3202    Specialization
3203      = ClassTemplateSpecializationDecl::Create(Context,
3204                                             ClassTemplate->getDeclContext(),
3205                                                TemplateNameLoc,
3206                                                ClassTemplate,
3207                                                Converted,
3208                                                PrevDecl);
3209
3210    if (PrevDecl) {
3211      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3212      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3213    } else {
3214      ClassTemplate->getSpecializations().InsertNode(Specialization,
3215                                                     InsertPos);
3216    }
3217
3218    CanonType = Context.getTypeDeclType(Specialization);
3219  }
3220
3221  // C++ [temp.expl.spec]p6:
3222  //   If a template, a member template or the member of a class template is
3223  //   explicitly specialized then that specialization shall be declared
3224  //   before the first use of that specialization that would cause an implicit
3225  //   instantiation to take place, in every translation unit in which such a
3226  //   use occurs; no diagnostic is required.
3227  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3228    SourceRange Range(TemplateNameLoc, RAngleLoc);
3229    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3230      << Context.getTypeDeclType(Specialization) << Range;
3231
3232    Diag(PrevDecl->getPointOfInstantiation(),
3233         diag::note_instantiation_required_here)
3234      << (PrevDecl->getTemplateSpecializationKind()
3235                                                != TSK_ImplicitInstantiation);
3236    return true;
3237  }
3238
3239  // If this is not a friend, note that this is an explicit specialization.
3240  if (TUK != TUK_Friend)
3241    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3242
3243  // Check that this isn't a redefinition of this specialization.
3244  if (TUK == TUK_Definition) {
3245    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3246      SourceRange Range(TemplateNameLoc, RAngleLoc);
3247      Diag(TemplateNameLoc, diag::err_redefinition)
3248        << Context.getTypeDeclType(Specialization) << Range;
3249      Diag(Def->getLocation(), diag::note_previous_definition);
3250      Specialization->setInvalidDecl();
3251      return true;
3252    }
3253  }
3254
3255  // Build the fully-sugared type for this class template
3256  // specialization as the user wrote in the specialization
3257  // itself. This means that we'll pretty-print the type retrieved
3258  // from the specialization's declaration the way that the user
3259  // actually wrote the specialization, rather than formatting the
3260  // name based on the "canonical" representation used to store the
3261  // template arguments in the specialization.
3262  QualType WrittenTy
3263    = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3264  if (TUK != TUK_Friend)
3265    Specialization->setTypeAsWritten(WrittenTy);
3266  TemplateArgsIn.release();
3267
3268  // C++ [temp.expl.spec]p9:
3269  //   A template explicit specialization is in the scope of the
3270  //   namespace in which the template was defined.
3271  //
3272  // We actually implement this paragraph where we set the semantic
3273  // context (in the creation of the ClassTemplateSpecializationDecl),
3274  // but we also maintain the lexical context where the actual
3275  // definition occurs.
3276  Specialization->setLexicalDeclContext(CurContext);
3277
3278  // We may be starting the definition of this specialization.
3279  if (TUK == TUK_Definition)
3280    Specialization->startDefinition();
3281
3282  if (TUK == TUK_Friend) {
3283    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3284                                            TemplateNameLoc,
3285                                            WrittenTy.getTypePtr(),
3286                                            /*FIXME:*/KWLoc);
3287    Friend->setAccess(AS_public);
3288    CurContext->addDecl(Friend);
3289  } else {
3290    // Add the specialization into its lexical context, so that it can
3291    // be seen when iterating through the list of declarations in that
3292    // context. However, specializations are not found by name lookup.
3293    CurContext->addDecl(Specialization);
3294  }
3295  return DeclPtrTy::make(Specialization);
3296}
3297
3298Sema::DeclPtrTy
3299Sema::ActOnTemplateDeclarator(Scope *S,
3300                              MultiTemplateParamsArg TemplateParameterLists,
3301                              Declarator &D) {
3302  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3303}
3304
3305Sema::DeclPtrTy
3306Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3307                               MultiTemplateParamsArg TemplateParameterLists,
3308                                      Declarator &D) {
3309  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3310  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3311         "Not a function declarator!");
3312  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3313
3314  if (FTI.hasPrototype) {
3315    // FIXME: Diagnose arguments without names in C.
3316  }
3317
3318  Scope *ParentScope = FnBodyScope->getParent();
3319
3320  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3321                                  move(TemplateParameterLists),
3322                                  /*IsFunctionDefinition=*/true);
3323  if (FunctionTemplateDecl *FunctionTemplate
3324        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3325    return ActOnStartOfFunctionDef(FnBodyScope,
3326                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3327  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3328    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3329  return DeclPtrTy();
3330}
3331
3332/// \brief Diagnose cases where we have an explicit template specialization
3333/// before/after an explicit template instantiation, producing diagnostics
3334/// for those cases where they are required and determining whether the
3335/// new specialization/instantiation will have any effect.
3336///
3337/// \param NewLoc the location of the new explicit specialization or
3338/// instantiation.
3339///
3340/// \param NewTSK the kind of the new explicit specialization or instantiation.
3341///
3342/// \param PrevDecl the previous declaration of the entity.
3343///
3344/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3345///
3346/// \param PrevPointOfInstantiation if valid, indicates where the previus
3347/// declaration was instantiated (either implicitly or explicitly).
3348///
3349/// \param SuppressNew will be set to true to indicate that the new
3350/// specialization or instantiation has no effect and should be ignored.
3351///
3352/// \returns true if there was an error that should prevent the introduction of
3353/// the new declaration into the AST, false otherwise.
3354bool
3355Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3356                                             TemplateSpecializationKind NewTSK,
3357                                             NamedDecl *PrevDecl,
3358                                             TemplateSpecializationKind PrevTSK,
3359                                        SourceLocation PrevPointOfInstantiation,
3360                                             bool &SuppressNew) {
3361  SuppressNew = false;
3362
3363  switch (NewTSK) {
3364  case TSK_Undeclared:
3365  case TSK_ImplicitInstantiation:
3366    assert(false && "Don't check implicit instantiations here");
3367    return false;
3368
3369  case TSK_ExplicitSpecialization:
3370    switch (PrevTSK) {
3371    case TSK_Undeclared:
3372    case TSK_ExplicitSpecialization:
3373      // Okay, we're just specializing something that is either already
3374      // explicitly specialized or has merely been mentioned without any
3375      // instantiation.
3376      return false;
3377
3378    case TSK_ImplicitInstantiation:
3379      if (PrevPointOfInstantiation.isInvalid()) {
3380        // The declaration itself has not actually been instantiated, so it is
3381        // still okay to specialize it.
3382        return false;
3383      }
3384      // Fall through
3385
3386    case TSK_ExplicitInstantiationDeclaration:
3387    case TSK_ExplicitInstantiationDefinition:
3388      assert((PrevTSK == TSK_ImplicitInstantiation ||
3389              PrevPointOfInstantiation.isValid()) &&
3390             "Explicit instantiation without point of instantiation?");
3391
3392      // C++ [temp.expl.spec]p6:
3393      //   If a template, a member template or the member of a class template
3394      //   is explicitly specialized then that specialization shall be declared
3395      //   before the first use of that specialization that would cause an
3396      //   implicit instantiation to take place, in every translation unit in
3397      //   which such a use occurs; no diagnostic is required.
3398      Diag(NewLoc, diag::err_specialization_after_instantiation)
3399        << PrevDecl;
3400      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3401        << (PrevTSK != TSK_ImplicitInstantiation);
3402
3403      return true;
3404    }
3405    break;
3406
3407  case TSK_ExplicitInstantiationDeclaration:
3408    switch (PrevTSK) {
3409    case TSK_ExplicitInstantiationDeclaration:
3410      // This explicit instantiation declaration is redundant (that's okay).
3411      SuppressNew = true;
3412      return false;
3413
3414    case TSK_Undeclared:
3415    case TSK_ImplicitInstantiation:
3416      // We're explicitly instantiating something that may have already been
3417      // implicitly instantiated; that's fine.
3418      return false;
3419
3420    case TSK_ExplicitSpecialization:
3421      // C++0x [temp.explicit]p4:
3422      //   For a given set of template parameters, if an explicit instantiation
3423      //   of a template appears after a declaration of an explicit
3424      //   specialization for that template, the explicit instantiation has no
3425      //   effect.
3426      return false;
3427
3428    case TSK_ExplicitInstantiationDefinition:
3429      // C++0x [temp.explicit]p10:
3430      //   If an entity is the subject of both an explicit instantiation
3431      //   declaration and an explicit instantiation definition in the same
3432      //   translation unit, the definition shall follow the declaration.
3433      Diag(NewLoc,
3434           diag::err_explicit_instantiation_declaration_after_definition);
3435      Diag(PrevPointOfInstantiation,
3436           diag::note_explicit_instantiation_definition_here);
3437      assert(PrevPointOfInstantiation.isValid() &&
3438             "Explicit instantiation without point of instantiation?");
3439      SuppressNew = true;
3440      return false;
3441    }
3442    break;
3443
3444  case TSK_ExplicitInstantiationDefinition:
3445    switch (PrevTSK) {
3446    case TSK_Undeclared:
3447    case TSK_ImplicitInstantiation:
3448      // We're explicitly instantiating something that may have already been
3449      // implicitly instantiated; that's fine.
3450      return false;
3451
3452    case TSK_ExplicitSpecialization:
3453      // C++ DR 259, C++0x [temp.explicit]p4:
3454      //   For a given set of template parameters, if an explicit
3455      //   instantiation of a template appears after a declaration of
3456      //   an explicit specialization for that template, the explicit
3457      //   instantiation has no effect.
3458      //
3459      // In C++98/03 mode, we only give an extension warning here, because it
3460      // is not not harmful to try to explicitly instantiate something that
3461      // has been explicitly specialized.
3462      if (!getLangOptions().CPlusPlus0x) {
3463        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3464          << PrevDecl;
3465        Diag(PrevDecl->getLocation(),
3466             diag::note_previous_template_specialization);
3467      }
3468      SuppressNew = true;
3469      return false;
3470
3471    case TSK_ExplicitInstantiationDeclaration:
3472      // We're explicity instantiating a definition for something for which we
3473      // were previously asked to suppress instantiations. That's fine.
3474      return false;
3475
3476    case TSK_ExplicitInstantiationDefinition:
3477      // C++0x [temp.spec]p5:
3478      //   For a given template and a given set of template-arguments,
3479      //     - an explicit instantiation definition shall appear at most once
3480      //       in a program,
3481      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3482        << PrevDecl;
3483      Diag(PrevPointOfInstantiation,
3484           diag::note_previous_explicit_instantiation);
3485      SuppressNew = true;
3486      return false;
3487    }
3488    break;
3489  }
3490
3491  assert(false && "Missing specialization/instantiation case?");
3492
3493  return false;
3494}
3495
3496/// \brief Perform semantic analysis for the given function template
3497/// specialization.
3498///
3499/// This routine performs all of the semantic analysis required for an
3500/// explicit function template specialization. On successful completion,
3501/// the function declaration \p FD will become a function template
3502/// specialization.
3503///
3504/// \param FD the function declaration, which will be updated to become a
3505/// function template specialization.
3506///
3507/// \param HasExplicitTemplateArgs whether any template arguments were
3508/// explicitly provided.
3509///
3510/// \param LAngleLoc the location of the left angle bracket ('<'), if
3511/// template arguments were explicitly provided.
3512///
3513/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3514/// if any.
3515///
3516/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3517/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3518/// true as in, e.g., \c void sort<>(char*, char*);
3519///
3520/// \param RAngleLoc the location of the right angle bracket ('>'), if
3521/// template arguments were explicitly provided.
3522///
3523/// \param PrevDecl the set of declarations that
3524bool
3525Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3526                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3527                                          LookupResult &Previous) {
3528  // The set of function template specializations that could match this
3529  // explicit function template specialization.
3530  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
3531  CandidateSet Candidates;
3532
3533  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3534  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3535         I != E; ++I) {
3536    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
3537    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
3538      // Only consider templates found within the same semantic lookup scope as
3539      // FD.
3540      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3541        continue;
3542
3543      // C++ [temp.expl.spec]p11:
3544      //   A trailing template-argument can be left unspecified in the
3545      //   template-id naming an explicit function template specialization
3546      //   provided it can be deduced from the function argument type.
3547      // Perform template argument deduction to determine whether we may be
3548      // specializing this template.
3549      // FIXME: It is somewhat wasteful to build
3550      TemplateDeductionInfo Info(Context);
3551      FunctionDecl *Specialization = 0;
3552      if (TemplateDeductionResult TDK
3553            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
3554                                      FD->getType(),
3555                                      Specialization,
3556                                      Info)) {
3557        // FIXME: Template argument deduction failed; record why it failed, so
3558        // that we can provide nifty diagnostics.
3559        (void)TDK;
3560        continue;
3561      }
3562
3563      // Record this candidate.
3564      Candidates.push_back(Specialization);
3565    }
3566  }
3567
3568  // Find the most specialized function template.
3569  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
3570                                                    Candidates.size(),
3571                                                    TPOC_Other,
3572                                                    FD->getLocation(),
3573                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3574                    << FD->getDeclName(),
3575                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3576                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
3577                  PartialDiagnostic(diag::note_function_template_spec_matched));
3578  if (!Specialization)
3579    return true;
3580
3581  // FIXME: Check if the prior specialization has a point of instantiation.
3582  // If so, we have run afoul of .
3583
3584  // Check the scope of this explicit specialization.
3585  if (CheckTemplateSpecializationScope(*this,
3586                                       Specialization->getPrimaryTemplate(),
3587                                       Specialization, FD->getLocation(),
3588                                       false))
3589    return true;
3590
3591  // C++ [temp.expl.spec]p6:
3592  //   If a template, a member template or the member of a class template is
3593  //   explicitly specialized then that specialization shall be declared
3594  //   before the first use of that specialization that would cause an implicit
3595  //   instantiation to take place, in every translation unit in which such a
3596  //   use occurs; no diagnostic is required.
3597  FunctionTemplateSpecializationInfo *SpecInfo
3598    = Specialization->getTemplateSpecializationInfo();
3599  assert(SpecInfo && "Function template specialization info missing?");
3600  if (SpecInfo->getPointOfInstantiation().isValid()) {
3601    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3602      << FD;
3603    Diag(SpecInfo->getPointOfInstantiation(),
3604         diag::note_instantiation_required_here)
3605      << (Specialization->getTemplateSpecializationKind()
3606                                                != TSK_ImplicitInstantiation);
3607    return true;
3608  }
3609
3610  // Mark the prior declaration as an explicit specialization, so that later
3611  // clients know that this is an explicit specialization.
3612  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3613
3614  // Turn the given function declaration into a function template
3615  // specialization, with the template arguments from the previous
3616  // specialization.
3617  FD->setFunctionTemplateSpecialization(Context,
3618                                        Specialization->getPrimaryTemplate(),
3619                         new (Context) TemplateArgumentList(
3620                             *Specialization->getTemplateSpecializationArgs()),
3621                                        /*InsertPos=*/0,
3622                                        TSK_ExplicitSpecialization);
3623
3624  // The "previous declaration" for this function template specialization is
3625  // the prior function template specialization.
3626  Previous.clear();
3627  Previous.addDecl(Specialization);
3628  return false;
3629}
3630
3631/// \brief Perform semantic analysis for the given non-template member
3632/// specialization.
3633///
3634/// This routine performs all of the semantic analysis required for an
3635/// explicit member function specialization. On successful completion,
3636/// the function declaration \p FD will become a member function
3637/// specialization.
3638///
3639/// \param Member the member declaration, which will be updated to become a
3640/// specialization.
3641///
3642/// \param Previous the set of declarations, one of which may be specialized
3643/// by this function specialization;  the set will be modified to contain the
3644/// redeclared member.
3645bool
3646Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
3647  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3648
3649  // Try to find the member we are instantiating.
3650  NamedDecl *Instantiation = 0;
3651  NamedDecl *InstantiatedFrom = 0;
3652  MemberSpecializationInfo *MSInfo = 0;
3653
3654  if (Previous.empty()) {
3655    // Nowhere to look anyway.
3656  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3657    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3658           I != E; ++I) {
3659      NamedDecl *D = (*I)->getUnderlyingDecl();
3660      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
3661        if (Context.hasSameType(Function->getType(), Method->getType())) {
3662          Instantiation = Method;
3663          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3664          MSInfo = Method->getMemberSpecializationInfo();
3665          break;
3666        }
3667      }
3668    }
3669  } else if (isa<VarDecl>(Member)) {
3670    VarDecl *PrevVar;
3671    if (Previous.isSingleResult() &&
3672        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
3673      if (PrevVar->isStaticDataMember()) {
3674        Instantiation = PrevVar;
3675        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
3676        MSInfo = PrevVar->getMemberSpecializationInfo();
3677      }
3678  } else if (isa<RecordDecl>(Member)) {
3679    CXXRecordDecl *PrevRecord;
3680    if (Previous.isSingleResult() &&
3681        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
3682      Instantiation = PrevRecord;
3683      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
3684      MSInfo = PrevRecord->getMemberSpecializationInfo();
3685    }
3686  }
3687
3688  if (!Instantiation) {
3689    // There is no previous declaration that matches. Since member
3690    // specializations are always out-of-line, the caller will complain about
3691    // this mismatch later.
3692    return false;
3693  }
3694
3695  // Make sure that this is a specialization of a member.
3696  if (!InstantiatedFrom) {
3697    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
3698      << Member;
3699    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
3700    return true;
3701  }
3702
3703  // C++ [temp.expl.spec]p6:
3704  //   If a template, a member template or the member of a class template is
3705  //   explicitly specialized then that spe- cialization shall be declared
3706  //   before the first use of that specialization that would cause an implicit
3707  //   instantiation to take place, in every translation unit in which such a
3708  //   use occurs; no diagnostic is required.
3709  assert(MSInfo && "Member specialization info missing?");
3710  if (MSInfo->getPointOfInstantiation().isValid()) {
3711    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
3712      << Member;
3713    Diag(MSInfo->getPointOfInstantiation(),
3714         diag::note_instantiation_required_here)
3715      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
3716    return true;
3717  }
3718
3719  // Check the scope of this explicit specialization.
3720  if (CheckTemplateSpecializationScope(*this,
3721                                       InstantiatedFrom,
3722                                       Instantiation, Member->getLocation(),
3723                                       false))
3724    return true;
3725
3726  // Note that this is an explicit instantiation of a member.
3727  // the original declaration to note that it is an explicit specialization
3728  // (if it was previously an implicit instantiation). This latter step
3729  // makes bookkeeping easier.
3730  if (isa<FunctionDecl>(Member)) {
3731    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
3732    if (InstantiationFunction->getTemplateSpecializationKind() ==
3733          TSK_ImplicitInstantiation) {
3734      InstantiationFunction->setTemplateSpecializationKind(
3735                                                  TSK_ExplicitSpecialization);
3736      InstantiationFunction->setLocation(Member->getLocation());
3737    }
3738
3739    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
3740                                        cast<CXXMethodDecl>(InstantiatedFrom),
3741                                                  TSK_ExplicitSpecialization);
3742  } else if (isa<VarDecl>(Member)) {
3743    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
3744    if (InstantiationVar->getTemplateSpecializationKind() ==
3745          TSK_ImplicitInstantiation) {
3746      InstantiationVar->setTemplateSpecializationKind(
3747                                                  TSK_ExplicitSpecialization);
3748      InstantiationVar->setLocation(Member->getLocation());
3749    }
3750
3751    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
3752                                                cast<VarDecl>(InstantiatedFrom),
3753                                                TSK_ExplicitSpecialization);
3754  } else {
3755    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
3756    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
3757    if (InstantiationClass->getTemplateSpecializationKind() ==
3758          TSK_ImplicitInstantiation) {
3759      InstantiationClass->setTemplateSpecializationKind(
3760                                                   TSK_ExplicitSpecialization);
3761      InstantiationClass->setLocation(Member->getLocation());
3762    }
3763
3764    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
3765                                        cast<CXXRecordDecl>(InstantiatedFrom),
3766                                                   TSK_ExplicitSpecialization);
3767  }
3768
3769  // Save the caller the trouble of having to figure out which declaration
3770  // this specialization matches.
3771  Previous.clear();
3772  Previous.addDecl(Instantiation);
3773  return false;
3774}
3775
3776/// \brief Check the scope of an explicit instantiation.
3777static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
3778                                            SourceLocation InstLoc,
3779                                            bool WasQualifiedName) {
3780  DeclContext *ExpectedContext
3781    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
3782  DeclContext *CurContext = S.CurContext->getLookupContext();
3783
3784  // C++0x [temp.explicit]p2:
3785  //   An explicit instantiation shall appear in an enclosing namespace of its
3786  //   template.
3787  //
3788  // This is DR275, which we do not retroactively apply to C++98/03.
3789  if (S.getLangOptions().CPlusPlus0x &&
3790      !CurContext->Encloses(ExpectedContext)) {
3791    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
3792      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
3793        << D << NS;
3794    else
3795      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
3796        << D;
3797    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3798    return;
3799  }
3800
3801  // C++0x [temp.explicit]p2:
3802  //   If the name declared in the explicit instantiation is an unqualified
3803  //   name, the explicit instantiation shall appear in the namespace where
3804  //   its template is declared or, if that namespace is inline (7.3.1), any
3805  //   namespace from its enclosing namespace set.
3806  if (WasQualifiedName)
3807    return;
3808
3809  if (CurContext->Equals(ExpectedContext))
3810    return;
3811
3812  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
3813    << D << ExpectedContext;
3814  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3815}
3816
3817/// \brief Determine whether the given scope specifier has a template-id in it.
3818static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
3819  if (!SS.isSet())
3820    return false;
3821
3822  // C++0x [temp.explicit]p2:
3823  //   If the explicit instantiation is for a member function, a member class
3824  //   or a static data member of a class template specialization, the name of
3825  //   the class template specialization in the qualified-id for the member
3826  //   name shall be a simple-template-id.
3827  //
3828  // C++98 has the same restriction, just worded differently.
3829  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
3830       NNS; NNS = NNS->getPrefix())
3831    if (Type *T = NNS->getAsType())
3832      if (isa<TemplateSpecializationType>(T))
3833        return true;
3834
3835  return false;
3836}
3837
3838// Explicit instantiation of a class template specialization
3839// FIXME: Implement extern template semantics
3840Sema::DeclResult
3841Sema::ActOnExplicitInstantiation(Scope *S,
3842                                 SourceLocation ExternLoc,
3843                                 SourceLocation TemplateLoc,
3844                                 unsigned TagSpec,
3845                                 SourceLocation KWLoc,
3846                                 const CXXScopeSpec &SS,
3847                                 TemplateTy TemplateD,
3848                                 SourceLocation TemplateNameLoc,
3849                                 SourceLocation LAngleLoc,
3850                                 ASTTemplateArgsPtr TemplateArgsIn,
3851                                 SourceLocation RAngleLoc,
3852                                 AttributeList *Attr) {
3853  // Find the class template we're specializing
3854  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3855  ClassTemplateDecl *ClassTemplate
3856    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
3857
3858  // Check that the specialization uses the same tag kind as the
3859  // original template.
3860  TagDecl::TagKind Kind;
3861  switch (TagSpec) {
3862  default: assert(0 && "Unknown tag type!");
3863  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3864  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3865  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3866  }
3867  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3868                                    Kind, KWLoc,
3869                                    *ClassTemplate->getIdentifier())) {
3870    Diag(KWLoc, diag::err_use_with_wrong_tag)
3871      << ClassTemplate
3872      << CodeModificationHint::CreateReplacement(KWLoc,
3873                            ClassTemplate->getTemplatedDecl()->getKindName());
3874    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3875         diag::note_previous_use);
3876    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3877  }
3878
3879  // C++0x [temp.explicit]p2:
3880  //   There are two forms of explicit instantiation: an explicit instantiation
3881  //   definition and an explicit instantiation declaration. An explicit
3882  //   instantiation declaration begins with the extern keyword. [...]
3883  TemplateSpecializationKind TSK
3884    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3885                           : TSK_ExplicitInstantiationDeclaration;
3886
3887  // Translate the parser's template argument list in our AST format.
3888  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3889  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3890
3891  // Check that the template argument list is well-formed for this
3892  // template.
3893  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3894                                        TemplateArgs.size());
3895  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3896                                TemplateArgs, false, Converted))
3897    return true;
3898
3899  assert((Converted.structuredSize() ==
3900            ClassTemplate->getTemplateParameters()->size()) &&
3901         "Converted template argument list is too short!");
3902
3903  // Find the class template specialization declaration that
3904  // corresponds to these arguments.
3905  llvm::FoldingSetNodeID ID;
3906  ClassTemplateSpecializationDecl::Profile(ID,
3907                                           Converted.getFlatArguments(),
3908                                           Converted.flatSize(),
3909                                           Context);
3910  void *InsertPos = 0;
3911  ClassTemplateSpecializationDecl *PrevDecl
3912    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3913
3914  // C++0x [temp.explicit]p2:
3915  //   [...] An explicit instantiation shall appear in an enclosing
3916  //   namespace of its template. [...]
3917  //
3918  // This is C++ DR 275.
3919  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
3920                                  SS.isSet());
3921
3922  ClassTemplateSpecializationDecl *Specialization = 0;
3923
3924  if (PrevDecl) {
3925    bool SuppressNew = false;
3926    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
3927                                               PrevDecl,
3928                                              PrevDecl->getSpecializationKind(),
3929                                            PrevDecl->getPointOfInstantiation(),
3930                                               SuppressNew))
3931      return DeclPtrTy::make(PrevDecl);
3932
3933    if (SuppressNew)
3934      return DeclPtrTy::make(PrevDecl);
3935
3936    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
3937        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3938      // Since the only prior class template specialization with these
3939      // arguments was referenced but not declared, reuse that
3940      // declaration node as our own, updating its source location to
3941      // reflect our new declaration.
3942      Specialization = PrevDecl;
3943      Specialization->setLocation(TemplateNameLoc);
3944      PrevDecl = 0;
3945    }
3946  }
3947
3948  if (!Specialization) {
3949    // Create a new class template specialization declaration node for
3950    // this explicit specialization.
3951    Specialization
3952      = ClassTemplateSpecializationDecl::Create(Context,
3953                                             ClassTemplate->getDeclContext(),
3954                                                TemplateNameLoc,
3955                                                ClassTemplate,
3956                                                Converted, PrevDecl);
3957
3958    if (PrevDecl) {
3959      // Remove the previous declaration from the folding set, since we want
3960      // to introduce a new declaration.
3961      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3962      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3963    }
3964
3965    // Insert the new specialization.
3966    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
3967  }
3968
3969  // Build the fully-sugared type for this explicit instantiation as
3970  // the user wrote in the explicit instantiation itself. This means
3971  // that we'll pretty-print the type retrieved from the
3972  // specialization's declaration the way that the user actually wrote
3973  // the explicit instantiation, rather than formatting the name based
3974  // on the "canonical" representation used to store the template
3975  // arguments in the specialization.
3976  QualType WrittenTy
3977    = Context.getTemplateSpecializationType(Name, TemplateArgs,
3978                                  Context.getTypeDeclType(Specialization));
3979  Specialization->setTypeAsWritten(WrittenTy);
3980  TemplateArgsIn.release();
3981
3982  // Add the explicit instantiation into its lexical context. However,
3983  // since explicit instantiations are never found by name lookup, we
3984  // just put it into the declaration context directly.
3985  Specialization->setLexicalDeclContext(CurContext);
3986  CurContext->addDecl(Specialization);
3987
3988  // C++ [temp.explicit]p3:
3989  //   A definition of a class template or class member template
3990  //   shall be in scope at the point of the explicit instantiation of
3991  //   the class template or class member template.
3992  //
3993  // This check comes when we actually try to perform the
3994  // instantiation.
3995  ClassTemplateSpecializationDecl *Def
3996    = cast_or_null<ClassTemplateSpecializationDecl>(
3997                                        Specialization->getDefinition(Context));
3998  if (!Def)
3999    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4000
4001  // Instantiate the members of this class template specialization.
4002  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4003                                       Specialization->getDefinition(Context));
4004  if (Def)
4005    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4006
4007  return DeclPtrTy::make(Specialization);
4008}
4009
4010// Explicit instantiation of a member class of a class template.
4011Sema::DeclResult
4012Sema::ActOnExplicitInstantiation(Scope *S,
4013                                 SourceLocation ExternLoc,
4014                                 SourceLocation TemplateLoc,
4015                                 unsigned TagSpec,
4016                                 SourceLocation KWLoc,
4017                                 const CXXScopeSpec &SS,
4018                                 IdentifierInfo *Name,
4019                                 SourceLocation NameLoc,
4020                                 AttributeList *Attr) {
4021
4022  bool Owned = false;
4023  bool IsDependent = false;
4024  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4025                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4026                            MultiTemplateParamsArg(*this, 0, 0),
4027                            Owned, IsDependent);
4028  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4029
4030  if (!TagD)
4031    return true;
4032
4033  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4034  if (Tag->isEnum()) {
4035    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4036      << Context.getTypeDeclType(Tag);
4037    return true;
4038  }
4039
4040  if (Tag->isInvalidDecl())
4041    return true;
4042
4043  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4044  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4045  if (!Pattern) {
4046    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4047      << Context.getTypeDeclType(Record);
4048    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4049    return true;
4050  }
4051
4052  // C++0x [temp.explicit]p2:
4053  //   If the explicit instantiation is for a class or member class, the
4054  //   elaborated-type-specifier in the declaration shall include a
4055  //   simple-template-id.
4056  //
4057  // C++98 has the same restriction, just worded differently.
4058  if (!ScopeSpecifierHasTemplateId(SS))
4059    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4060      << Record << SS.getRange();
4061
4062  // C++0x [temp.explicit]p2:
4063  //   There are two forms of explicit instantiation: an explicit instantiation
4064  //   definition and an explicit instantiation declaration. An explicit
4065  //   instantiation declaration begins with the extern keyword. [...]
4066  TemplateSpecializationKind TSK
4067    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4068                           : TSK_ExplicitInstantiationDeclaration;
4069
4070  // C++0x [temp.explicit]p2:
4071  //   [...] An explicit instantiation shall appear in an enclosing
4072  //   namespace of its template. [...]
4073  //
4074  // This is C++ DR 275.
4075  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4076
4077  // Verify that it is okay to explicitly instantiate here.
4078  CXXRecordDecl *PrevDecl
4079    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4080  if (!PrevDecl && Record->getDefinition(Context))
4081    PrevDecl = Record;
4082  if (PrevDecl) {
4083    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4084    bool SuppressNew = false;
4085    assert(MSInfo && "No member specialization information?");
4086    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4087                                               PrevDecl,
4088                                        MSInfo->getTemplateSpecializationKind(),
4089                                             MSInfo->getPointOfInstantiation(),
4090                                               SuppressNew))
4091      return true;
4092    if (SuppressNew)
4093      return TagD;
4094  }
4095
4096  CXXRecordDecl *RecordDef
4097    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4098  if (!RecordDef) {
4099    // C++ [temp.explicit]p3:
4100    //   A definition of a member class of a class template shall be in scope
4101    //   at the point of an explicit instantiation of the member class.
4102    CXXRecordDecl *Def
4103      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
4104    if (!Def) {
4105      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4106        << 0 << Record->getDeclName() << Record->getDeclContext();
4107      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4108        << Pattern;
4109      return true;
4110    } else {
4111      if (InstantiateClass(NameLoc, Record, Def,
4112                           getTemplateInstantiationArgs(Record),
4113                           TSK))
4114        return true;
4115
4116      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4117      if (!RecordDef)
4118        return true;
4119    }
4120  }
4121
4122  // Instantiate all of the members of the class.
4123  InstantiateClassMembers(NameLoc, RecordDef,
4124                          getTemplateInstantiationArgs(Record), TSK);
4125
4126  // FIXME: We don't have any representation for explicit instantiations of
4127  // member classes. Such a representation is not needed for compilation, but it
4128  // should be available for clients that want to see all of the declarations in
4129  // the source code.
4130  return TagD;
4131}
4132
4133Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4134                                                  SourceLocation ExternLoc,
4135                                                  SourceLocation TemplateLoc,
4136                                                  Declarator &D) {
4137  // Explicit instantiations always require a name.
4138  DeclarationName Name = GetNameForDeclarator(D);
4139  if (!Name) {
4140    if (!D.isInvalidType())
4141      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4142           diag::err_explicit_instantiation_requires_name)
4143        << D.getDeclSpec().getSourceRange()
4144        << D.getSourceRange();
4145
4146    return true;
4147  }
4148
4149  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4150  // we find one that is.
4151  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4152         (S->getFlags() & Scope::TemplateParamScope) != 0)
4153    S = S->getParent();
4154
4155  // Determine the type of the declaration.
4156  QualType R = GetTypeForDeclarator(D, S, 0);
4157  if (R.isNull())
4158    return true;
4159
4160  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4161    // Cannot explicitly instantiate a typedef.
4162    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4163      << Name;
4164    return true;
4165  }
4166
4167  // C++0x [temp.explicit]p1:
4168  //   [...] An explicit instantiation of a function template shall not use the
4169  //   inline or constexpr specifiers.
4170  // Presumably, this also applies to member functions of class templates as
4171  // well.
4172  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4173    Diag(D.getDeclSpec().getInlineSpecLoc(),
4174         diag::err_explicit_instantiation_inline)
4175      << CodeModificationHint::CreateRemoval(
4176                              SourceRange(D.getDeclSpec().getInlineSpecLoc()));
4177
4178  // FIXME: check for constexpr specifier.
4179
4180  // C++0x [temp.explicit]p2:
4181  //   There are two forms of explicit instantiation: an explicit instantiation
4182  //   definition and an explicit instantiation declaration. An explicit
4183  //   instantiation declaration begins with the extern keyword. [...]
4184  TemplateSpecializationKind TSK
4185    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4186                           : TSK_ExplicitInstantiationDeclaration;
4187
4188  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4189  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4190
4191  if (!R->isFunctionType()) {
4192    // C++ [temp.explicit]p1:
4193    //   A [...] static data member of a class template can be explicitly
4194    //   instantiated from the member definition associated with its class
4195    //   template.
4196    if (Previous.isAmbiguous())
4197      return true;
4198
4199    VarDecl *Prev = dyn_cast_or_null<VarDecl>(
4200        Previous.getAsSingleDecl(Context));
4201    if (!Prev || !Prev->isStaticDataMember()) {
4202      // We expect to see a data data member here.
4203      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4204        << Name;
4205      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4206           P != PEnd; ++P)
4207        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4208      return true;
4209    }
4210
4211    if (!Prev->getInstantiatedFromStaticDataMember()) {
4212      // FIXME: Check for explicit specialization?
4213      Diag(D.getIdentifierLoc(),
4214           diag::err_explicit_instantiation_data_member_not_instantiated)
4215        << Prev;
4216      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4217      // FIXME: Can we provide a note showing where this was declared?
4218      return true;
4219    }
4220
4221    // C++0x [temp.explicit]p2:
4222    //   If the explicit instantiation is for a member function, a member class
4223    //   or a static data member of a class template specialization, the name of
4224    //   the class template specialization in the qualified-id for the member
4225    //   name shall be a simple-template-id.
4226    //
4227    // C++98 has the same restriction, just worded differently.
4228    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4229      Diag(D.getIdentifierLoc(),
4230           diag::err_explicit_instantiation_without_qualified_id)
4231        << Prev << D.getCXXScopeSpec().getRange();
4232
4233    // Check the scope of this explicit instantiation.
4234    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4235
4236    // Verify that it is okay to explicitly instantiate here.
4237    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4238    assert(MSInfo && "Missing static data member specialization info?");
4239    bool SuppressNew = false;
4240    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4241                                        MSInfo->getTemplateSpecializationKind(),
4242                                              MSInfo->getPointOfInstantiation(),
4243                                               SuppressNew))
4244      return true;
4245    if (SuppressNew)
4246      return DeclPtrTy();
4247
4248    // Instantiate static data member.
4249    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4250    if (TSK == TSK_ExplicitInstantiationDefinition)
4251      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4252                                            /*DefinitionRequired=*/true);
4253
4254    // FIXME: Create an ExplicitInstantiation node?
4255    return DeclPtrTy();
4256  }
4257
4258  // If the declarator is a template-id, translate the parser's template
4259  // argument list into our AST format.
4260  bool HasExplicitTemplateArgs = false;
4261  TemplateArgumentListInfo TemplateArgs;
4262  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4263    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4264    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4265    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4266    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4267                                       TemplateId->getTemplateArgs(),
4268                                       TemplateId->NumArgs);
4269    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4270    HasExplicitTemplateArgs = true;
4271    TemplateArgsPtr.release();
4272  }
4273
4274  // C++ [temp.explicit]p1:
4275  //   A [...] function [...] can be explicitly instantiated from its template.
4276  //   A member function [...] of a class template can be explicitly
4277  //  instantiated from the member definition associated with its class
4278  //  template.
4279  llvm::SmallVector<FunctionDecl *, 8> Matches;
4280  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4281       P != PEnd; ++P) {
4282    NamedDecl *Prev = *P;
4283    if (!HasExplicitTemplateArgs) {
4284      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4285        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4286          Matches.clear();
4287          Matches.push_back(Method);
4288          break;
4289        }
4290      }
4291    }
4292
4293    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4294    if (!FunTmpl)
4295      continue;
4296
4297    TemplateDeductionInfo Info(Context);
4298    FunctionDecl *Specialization = 0;
4299    if (TemplateDeductionResult TDK
4300          = DeduceTemplateArguments(FunTmpl,
4301                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4302                                    R, Specialization, Info)) {
4303      // FIXME: Keep track of almost-matches?
4304      (void)TDK;
4305      continue;
4306    }
4307
4308    Matches.push_back(Specialization);
4309  }
4310
4311  // Find the most specialized function template specialization.
4312  FunctionDecl *Specialization
4313    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other,
4314                         D.getIdentifierLoc(),
4315          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4316          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4317                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4318
4319  if (!Specialization)
4320    return true;
4321
4322  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4323    Diag(D.getIdentifierLoc(),
4324         diag::err_explicit_instantiation_member_function_not_instantiated)
4325      << Specialization
4326      << (Specialization->getTemplateSpecializationKind() ==
4327          TSK_ExplicitSpecialization);
4328    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4329    return true;
4330  }
4331
4332  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4333  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4334    PrevDecl = Specialization;
4335
4336  if (PrevDecl) {
4337    bool SuppressNew = false;
4338    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4339                                               PrevDecl,
4340                                     PrevDecl->getTemplateSpecializationKind(),
4341                                          PrevDecl->getPointOfInstantiation(),
4342                                               SuppressNew))
4343      return true;
4344
4345    // FIXME: We may still want to build some representation of this
4346    // explicit specialization.
4347    if (SuppressNew)
4348      return DeclPtrTy();
4349  }
4350
4351  if (TSK == TSK_ExplicitInstantiationDefinition)
4352    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4353                                  false, /*DefinitionRequired=*/true);
4354
4355  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4356
4357  // C++0x [temp.explicit]p2:
4358  //   If the explicit instantiation is for a member function, a member class
4359  //   or a static data member of a class template specialization, the name of
4360  //   the class template specialization in the qualified-id for the member
4361  //   name shall be a simple-template-id.
4362  //
4363  // C++98 has the same restriction, just worded differently.
4364  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4365  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4366      D.getCXXScopeSpec().isSet() &&
4367      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4368    Diag(D.getIdentifierLoc(),
4369         diag::err_explicit_instantiation_without_qualified_id)
4370    << Specialization << D.getCXXScopeSpec().getRange();
4371
4372  CheckExplicitInstantiationScope(*this,
4373                   FunTmpl? (NamedDecl *)FunTmpl
4374                          : Specialization->getInstantiatedFromMemberFunction(),
4375                                  D.getIdentifierLoc(),
4376                                  D.getCXXScopeSpec().isSet());
4377
4378  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4379  return DeclPtrTy();
4380}
4381
4382Sema::TypeResult
4383Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4384                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4385                        SourceLocation TagLoc, SourceLocation NameLoc) {
4386  // This has to hold, because SS is expected to be defined.
4387  assert(Name && "Expected a name in a dependent tag");
4388
4389  NestedNameSpecifier *NNS
4390    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4391  if (!NNS)
4392    return true;
4393
4394  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4395  if (T.isNull())
4396    return true;
4397
4398  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4399  QualType ElabType = Context.getElaboratedType(T, TagKind);
4400
4401  return ElabType.getAsOpaquePtr();
4402}
4403
4404Sema::TypeResult
4405Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4406                        const IdentifierInfo &II, SourceLocation IdLoc) {
4407  NestedNameSpecifier *NNS
4408    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4409  if (!NNS)
4410    return true;
4411
4412  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4413  if (T.isNull())
4414    return true;
4415  return T.getAsOpaquePtr();
4416}
4417
4418Sema::TypeResult
4419Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4420                        SourceLocation TemplateLoc, TypeTy *Ty) {
4421  QualType T = GetTypeFromParser(Ty);
4422  NestedNameSpecifier *NNS
4423    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4424  const TemplateSpecializationType *TemplateId
4425    = T->getAs<TemplateSpecializationType>();
4426  assert(TemplateId && "Expected a template specialization type");
4427
4428  if (computeDeclContext(SS, false)) {
4429    // If we can compute a declaration context, then the "typename"
4430    // keyword was superfluous. Just build a QualifiedNameType to keep
4431    // track of the nested-name-specifier.
4432
4433    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4434    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4435  }
4436
4437  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4438}
4439
4440/// \brief Build the type that describes a C++ typename specifier,
4441/// e.g., "typename T::type".
4442QualType
4443Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4444                        SourceRange Range) {
4445  CXXRecordDecl *CurrentInstantiation = 0;
4446  if (NNS->isDependent()) {
4447    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4448
4449    // If the nested-name-specifier does not refer to the current
4450    // instantiation, then build a typename type.
4451    if (!CurrentInstantiation)
4452      return Context.getTypenameType(NNS, &II);
4453
4454    // The nested-name-specifier refers to the current instantiation, so the
4455    // "typename" keyword itself is superfluous. In C++03, the program is
4456    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4457    // extraneous "typename" keywords, and we retroactively apply this DR to
4458    // C++03 code.
4459  }
4460
4461  DeclContext *Ctx = 0;
4462
4463  if (CurrentInstantiation)
4464    Ctx = CurrentInstantiation;
4465  else {
4466    CXXScopeSpec SS;
4467    SS.setScopeRep(NNS);
4468    SS.setRange(Range);
4469    if (RequireCompleteDeclContext(SS))
4470      return QualType();
4471
4472    Ctx = computeDeclContext(SS);
4473  }
4474  assert(Ctx && "No declaration context?");
4475
4476  DeclarationName Name(&II);
4477  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
4478  LookupQualifiedName(Result, Ctx);
4479  unsigned DiagID = 0;
4480  Decl *Referenced = 0;
4481  switch (Result.getResultKind()) {
4482  case LookupResult::NotFound:
4483    DiagID = diag::err_typename_nested_not_found;
4484    break;
4485
4486  case LookupResult::Found:
4487    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4488      // We found a type. Build a QualifiedNameType, since the
4489      // typename-specifier was just sugar. FIXME: Tell
4490      // QualifiedNameType that it has a "typename" prefix.
4491      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4492    }
4493
4494    DiagID = diag::err_typename_nested_not_type;
4495    Referenced = Result.getFoundDecl();
4496    break;
4497
4498  case LookupResult::FoundUnresolvedValue:
4499    llvm::llvm_unreachable("unresolved using decl in non-dependent context");
4500    return QualType();
4501
4502  case LookupResult::FoundOverloaded:
4503    DiagID = diag::err_typename_nested_not_type;
4504    Referenced = *Result.begin();
4505    break;
4506
4507  case LookupResult::Ambiguous:
4508    return QualType();
4509  }
4510
4511  // If we get here, it's because name lookup did not find a
4512  // type. Emit an appropriate diagnostic and return an error.
4513  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4514  if (Referenced)
4515    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4516      << Name;
4517  return QualType();
4518}
4519
4520namespace {
4521  // See Sema::RebuildTypeInCurrentInstantiation
4522  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
4523    : public TreeTransform<CurrentInstantiationRebuilder> {
4524    SourceLocation Loc;
4525    DeclarationName Entity;
4526
4527  public:
4528    CurrentInstantiationRebuilder(Sema &SemaRef,
4529                                  SourceLocation Loc,
4530                                  DeclarationName Entity)
4531    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4532      Loc(Loc), Entity(Entity) { }
4533
4534    /// \brief Determine whether the given type \p T has already been
4535    /// transformed.
4536    ///
4537    /// For the purposes of type reconstruction, a type has already been
4538    /// transformed if it is NULL or if it is not dependent.
4539    bool AlreadyTransformed(QualType T) {
4540      return T.isNull() || !T->isDependentType();
4541    }
4542
4543    /// \brief Returns the location of the entity whose type is being
4544    /// rebuilt.
4545    SourceLocation getBaseLocation() { return Loc; }
4546
4547    /// \brief Returns the name of the entity whose type is being rebuilt.
4548    DeclarationName getBaseEntity() { return Entity; }
4549
4550    /// \brief Sets the "base" location and entity when that
4551    /// information is known based on another transformation.
4552    void setBase(SourceLocation Loc, DeclarationName Entity) {
4553      this->Loc = Loc;
4554      this->Entity = Entity;
4555    }
4556
4557    /// \brief Transforms an expression by returning the expression itself
4558    /// (an identity function).
4559    ///
4560    /// FIXME: This is completely unsafe; we will need to actually clone the
4561    /// expressions.
4562    Sema::OwningExprResult TransformExpr(Expr *E) {
4563      return getSema().Owned(E);
4564    }
4565
4566    /// \brief Transforms a typename type by determining whether the type now
4567    /// refers to a member of the current instantiation, and then
4568    /// type-checking and building a QualifiedNameType (when possible).
4569    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4570  };
4571}
4572
4573QualType
4574CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4575                                                     TypenameTypeLoc TL) {
4576  TypenameType *T = TL.getTypePtr();
4577
4578  NestedNameSpecifier *NNS
4579    = TransformNestedNameSpecifier(T->getQualifier(),
4580                              /*FIXME:*/SourceRange(getBaseLocation()));
4581  if (!NNS)
4582    return QualType();
4583
4584  // If the nested-name-specifier did not change, and we cannot compute the
4585  // context corresponding to the nested-name-specifier, then this
4586  // typename type will not change; exit early.
4587  CXXScopeSpec SS;
4588  SS.setRange(SourceRange(getBaseLocation()));
4589  SS.setScopeRep(NNS);
4590
4591  QualType Result;
4592  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4593    Result = QualType(T, 0);
4594
4595  // Rebuild the typename type, which will probably turn into a
4596  // QualifiedNameType.
4597  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4598    QualType NewTemplateId
4599      = TransformType(QualType(TemplateId, 0));
4600    if (NewTemplateId.isNull())
4601      return QualType();
4602
4603    if (NNS == T->getQualifier() &&
4604        NewTemplateId == QualType(TemplateId, 0))
4605      Result = QualType(T, 0);
4606    else
4607      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4608  } else
4609    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4610                                              SourceRange(TL.getNameLoc()));
4611
4612  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4613  NewTL.setNameLoc(TL.getNameLoc());
4614  return Result;
4615}
4616
4617/// \brief Rebuilds a type within the context of the current instantiation.
4618///
4619/// The type \p T is part of the type of an out-of-line member definition of
4620/// a class template (or class template partial specialization) that was parsed
4621/// and constructed before we entered the scope of the class template (or
4622/// partial specialization thereof). This routine will rebuild that type now
4623/// that we have entered the declarator's scope, which may produce different
4624/// canonical types, e.g.,
4625///
4626/// \code
4627/// template<typename T>
4628/// struct X {
4629///   typedef T* pointer;
4630///   pointer data();
4631/// };
4632///
4633/// template<typename T>
4634/// typename X<T>::pointer X<T>::data() { ... }
4635/// \endcode
4636///
4637/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4638/// since we do not know that we can look into X<T> when we parsed the type.
4639/// This function will rebuild the type, performing the lookup of "pointer"
4640/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4641/// as the canonical type of T*, allowing the return types of the out-of-line
4642/// definition and the declaration to match.
4643QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4644                                                 DeclarationName Name) {
4645  if (T.isNull() || !T->isDependentType())
4646    return T;
4647
4648  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4649  return Rebuilder.TransformType(T);
4650}
4651
4652/// \brief Produces a formatted string that describes the binding of
4653/// template parameters to template arguments.
4654std::string
4655Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4656                                      const TemplateArgumentList &Args) {
4657  // FIXME: For variadic templates, we'll need to get the structured list.
4658  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
4659                                         Args.flat_size());
4660}
4661
4662std::string
4663Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4664                                      const TemplateArgument *Args,
4665                                      unsigned NumArgs) {
4666  std::string Result;
4667
4668  if (!Params || Params->size() == 0 || NumArgs == 0)
4669    return Result;
4670
4671  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
4672    if (I >= NumArgs)
4673      break;
4674
4675    if (I == 0)
4676      Result += "[with ";
4677    else
4678      Result += ", ";
4679
4680    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
4681      Result += Id->getName();
4682    } else {
4683      Result += '$';
4684      Result += llvm::utostr(I);
4685    }
4686
4687    Result += " = ";
4688
4689    switch (Args[I].getKind()) {
4690      case TemplateArgument::Null:
4691        Result += "<no value>";
4692        break;
4693
4694      case TemplateArgument::Type: {
4695        std::string TypeStr;
4696        Args[I].getAsType().getAsStringInternal(TypeStr,
4697                                                Context.PrintingPolicy);
4698        Result += TypeStr;
4699        break;
4700      }
4701
4702      case TemplateArgument::Declaration: {
4703        bool Unnamed = true;
4704        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
4705          if (ND->getDeclName()) {
4706            Unnamed = false;
4707            Result += ND->getNameAsString();
4708          }
4709        }
4710
4711        if (Unnamed) {
4712          Result += "<anonymous>";
4713        }
4714        break;
4715      }
4716
4717      case TemplateArgument::Template: {
4718        std::string Str;
4719        llvm::raw_string_ostream OS(Str);
4720        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
4721        Result += OS.str();
4722        break;
4723      }
4724
4725      case TemplateArgument::Integral: {
4726        Result += Args[I].getAsIntegral()->toString(10);
4727        break;
4728      }
4729
4730      case TemplateArgument::Expression: {
4731        assert(false && "No expressions in deduced template arguments!");
4732        Result += "<expression>";
4733        break;
4734      }
4735
4736      case TemplateArgument::Pack:
4737        // FIXME: Format template argument packs
4738        Result += "<template argument pack>";
4739        break;
4740    }
4741  }
4742
4743  Result += ']';
4744  return Result;
4745}
4746