SemaTemplate.cpp revision a57c339c88bf248af2aba7f1bae1c284c69e82dd
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "TreeTransform.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Expr.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Parse/Template.h"
20#include "clang/Basic/LangOptions.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/ADT/StringExtras.h"
24using namespace clang;
25
26/// \brief Determine whether the declaration found is acceptable as the name
27/// of a template and, if so, return that template declaration. Otherwise,
28/// returns NULL.
29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
30  if (!D)
31    return 0;
32
33  if (isa<TemplateDecl>(D))
34    return D;
35
36  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
37    // C++ [temp.local]p1:
38    //   Like normal (non-template) classes, class templates have an
39    //   injected-class-name (Clause 9). The injected-class-name
40    //   can be used with or without a template-argument-list. When
41    //   it is used without a template-argument-list, it is
42    //   equivalent to the injected-class-name followed by the
43    //   template-parameters of the class template enclosed in
44    //   <>. When it is used with a template-argument-list, it
45    //   refers to the specified class template specialization,
46    //   which could be the current specialization or another
47    //   specialization.
48    if (Record->isInjectedClassName()) {
49      Record = cast<CXXRecordDecl>(Record->getDeclContext());
50      if (Record->getDescribedClassTemplate())
51        return Record->getDescribedClassTemplate();
52
53      if (ClassTemplateSpecializationDecl *Spec
54            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
55        return Spec->getSpecializedTemplate();
56    }
57
58    return 0;
59  }
60
61  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
62  if (!Ovl)
63    return 0;
64
65  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
66                                              FEnd = Ovl->function_end();
67       F != FEnd; ++F) {
68    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
69      // We've found a function template. Determine whether there are
70      // any other function templates we need to bundle together in an
71      // OverloadedFunctionDecl
72      for (++F; F != FEnd; ++F) {
73        if (isa<FunctionTemplateDecl>(*F))
74          break;
75      }
76
77      if (F != FEnd) {
78        // Build an overloaded function decl containing only the
79        // function templates in Ovl.
80        OverloadedFunctionDecl *OvlTemplate
81          = OverloadedFunctionDecl::Create(Context,
82                                           Ovl->getDeclContext(),
83                                           Ovl->getDeclName());
84        OvlTemplate->addOverload(FuncTmpl);
85        OvlTemplate->addOverload(*F);
86        for (++F; F != FEnd; ++F) {
87          if (isa<FunctionTemplateDecl>(*F))
88            OvlTemplate->addOverload(*F);
89        }
90
91        return OvlTemplate;
92      }
93
94      return FuncTmpl;
95    }
96  }
97
98  return 0;
99}
100
101TemplateNameKind Sema::isTemplateName(Scope *S,
102                                      const CXXScopeSpec &SS,
103                                      UnqualifiedId &Name,
104                                      TypeTy *ObjectTypePtr,
105                                      bool EnteringContext,
106                                      TemplateTy &TemplateResult) {
107  DeclarationName TName;
108
109  switch (Name.getKind()) {
110  case UnqualifiedId::IK_Identifier:
111    TName = DeclarationName(Name.Identifier);
112    break;
113
114  case UnqualifiedId::IK_OperatorFunctionId:
115    TName = Context.DeclarationNames.getCXXOperatorName(
116                                              Name.OperatorFunctionId.Operator);
117    break;
118
119  default:
120    return TNK_Non_template;
121  }
122
123  // Determine where to perform name lookup
124  DeclContext *LookupCtx = 0;
125  bool isDependent = false;
126  if (ObjectTypePtr) {
127    // This nested-name-specifier occurs in a member access expression, e.g.,
128    // x->B::f, and we are looking into the type of the object.
129    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
130    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
131    LookupCtx = computeDeclContext(ObjectType);
132    isDependent = ObjectType->isDependentType();
133  } else if (SS.isSet()) {
134    // This nested-name-specifier occurs after another nested-name-specifier,
135    // so long into the context associated with the prior nested-name-specifier.
136
137    LookupCtx = computeDeclContext(SS, EnteringContext);
138    isDependent = isDependentScopeSpecifier(SS);
139  }
140
141  LookupResult Found;
142  bool ObjectTypeSearchedInScope = false;
143  if (LookupCtx) {
144    // Perform "qualified" name lookup into the declaration context we
145    // computed, which is either the type of the base of a member access
146    // expression or the declaration context associated with a prior
147    // nested-name-specifier.
148
149    // The declaration context must be complete.
150    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS))
151      return TNK_Non_template;
152
153    LookupQualifiedName(Found, LookupCtx, TName, LookupOrdinaryName);
154
155    if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) {
156      // C++ [basic.lookup.classref]p1:
157      //   In a class member access expression (5.2.5), if the . or -> token is
158      //   immediately followed by an identifier followed by a <, the
159      //   identifier must be looked up to determine whether the < is the
160      //   beginning of a template argument list (14.2) or a less-than operator.
161      //   The identifier is first looked up in the class of the object
162      //   expression. If the identifier is not found, it is then looked up in
163      //   the context of the entire postfix-expression and shall name a class
164      //   or function template.
165      //
166      // FIXME: When we're instantiating a template, do we actually have to
167      // look in the scope of the template? Seems fishy...
168      LookupName(Found, S, TName, LookupOrdinaryName);
169      ObjectTypeSearchedInScope = true;
170    }
171  } else if (isDependent) {
172    // We cannot look into a dependent object type or
173    return TNK_Non_template;
174  } else {
175    // Perform unqualified name lookup in the current scope.
176    LookupName(Found, S, TName, LookupOrdinaryName);
177  }
178
179  // FIXME: Cope with ambiguous name-lookup results.
180  assert(!Found.isAmbiguous() &&
181         "Cannot handle template name-lookup ambiguities");
182
183  NamedDecl *Template
184    = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context));
185  if (!Template)
186    return TNK_Non_template;
187
188  if (ObjectTypePtr && !ObjectTypeSearchedInScope) {
189    // C++ [basic.lookup.classref]p1:
190    //   [...] If the lookup in the class of the object expression finds a
191    //   template, the name is also looked up in the context of the entire
192    //   postfix-expression and [...]
193    //
194    LookupResult FoundOuter;
195    LookupName(FoundOuter, S, TName, LookupOrdinaryName);
196    // FIXME: Handle ambiguities in this lookup better
197    NamedDecl *OuterTemplate
198      = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context));
199
200    if (!OuterTemplate) {
201      //   - if the name is not found, the name found in the class of the
202      //     object expression is used, otherwise
203    } else if (!isa<ClassTemplateDecl>(OuterTemplate)) {
204      //   - if the name is found in the context of the entire
205      //     postfix-expression and does not name a class template, the name
206      //     found in the class of the object expression is used, otherwise
207    } else {
208      //   - if the name found is a class template, it must refer to the same
209      //     entity as the one found in the class of the object expression,
210      //     otherwise the program is ill-formed.
211      if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) {
212        Diag(Name.getSourceRange().getBegin(),
213             diag::err_nested_name_member_ref_lookup_ambiguous)
214          << TName
215          << Name.getSourceRange();
216        Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type)
217          << QualType::getFromOpaquePtr(ObjectTypePtr);
218        Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope);
219
220        // Recover by taking the template that we found in the object
221        // expression's type.
222      }
223    }
224  }
225
226  if (SS.isSet() && !SS.isInvalid()) {
227    NestedNameSpecifier *Qualifier
228      = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
229    if (OverloadedFunctionDecl *Ovl
230          = dyn_cast<OverloadedFunctionDecl>(Template))
231      TemplateResult
232        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
233                                                            Ovl));
234    else
235      TemplateResult
236        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
237                                                 cast<TemplateDecl>(Template)));
238  } else if (OverloadedFunctionDecl *Ovl
239               = dyn_cast<OverloadedFunctionDecl>(Template)) {
240    TemplateResult = TemplateTy::make(TemplateName(Ovl));
241  } else {
242    TemplateResult = TemplateTy::make(
243                                  TemplateName(cast<TemplateDecl>(Template)));
244  }
245
246  if (isa<ClassTemplateDecl>(Template) ||
247      isa<TemplateTemplateParmDecl>(Template))
248    return TNK_Type_template;
249
250  assert((isa<FunctionTemplateDecl>(Template) ||
251          isa<OverloadedFunctionDecl>(Template)) &&
252         "Unhandled template kind in Sema::isTemplateName");
253  return TNK_Function_template;
254}
255
256/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
257/// that the template parameter 'PrevDecl' is being shadowed by a new
258/// declaration at location Loc. Returns true to indicate that this is
259/// an error, and false otherwise.
260bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
261  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
262
263  // Microsoft Visual C++ permits template parameters to be shadowed.
264  if (getLangOptions().Microsoft)
265    return false;
266
267  // C++ [temp.local]p4:
268  //   A template-parameter shall not be redeclared within its
269  //   scope (including nested scopes).
270  Diag(Loc, diag::err_template_param_shadow)
271    << cast<NamedDecl>(PrevDecl)->getDeclName();
272  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
273  return true;
274}
275
276/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
277/// the parameter D to reference the templated declaration and return a pointer
278/// to the template declaration. Otherwise, do nothing to D and return null.
279TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
280  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
281    D = DeclPtrTy::make(Temp->getTemplatedDecl());
282    return Temp;
283  }
284  return 0;
285}
286
287static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
288                                            const ParsedTemplateArgument &Arg) {
289
290  switch (Arg.getKind()) {
291  case ParsedTemplateArgument::Type: {
292    DeclaratorInfo *DI;
293    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
294    if (!DI)
295      DI = SemaRef.Context.getTrivialDeclaratorInfo(T, Arg.getLocation());
296    return TemplateArgumentLoc(TemplateArgument(T), DI);
297  }
298
299  case ParsedTemplateArgument::NonType: {
300    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
301    return TemplateArgumentLoc(TemplateArgument(E), E);
302  }
303
304  case ParsedTemplateArgument::Template: {
305    TemplateName Template
306      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
307    return TemplateArgumentLoc(TemplateArgument(Template),
308                               Arg.getScopeSpec().getRange(),
309                               Arg.getLocation());
310  }
311  }
312
313  llvm::llvm_unreachable("Unhandled parsed template argument");
314  return TemplateArgumentLoc();
315}
316
317/// \brief Translates template arguments as provided by the parser
318/// into template arguments used by semantic analysis.
319void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
320                     llvm::SmallVectorImpl<TemplateArgumentLoc> &TemplateArgs) {
321 TemplateArgs.reserve(TemplateArgsIn.size());
322
323 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
324   TemplateArgs.push_back(translateTemplateArgument(*this, TemplateArgsIn[I]));
325}
326
327/// ActOnTypeParameter - Called when a C++ template type parameter
328/// (e.g., "typename T") has been parsed. Typename specifies whether
329/// the keyword "typename" was used to declare the type parameter
330/// (otherwise, "class" was used), and KeyLoc is the location of the
331/// "class" or "typename" keyword. ParamName is the name of the
332/// parameter (NULL indicates an unnamed template parameter) and
333/// ParamName is the location of the parameter name (if any).
334/// If the type parameter has a default argument, it will be added
335/// later via ActOnTypeParameterDefault.
336Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
337                                         SourceLocation EllipsisLoc,
338                                         SourceLocation KeyLoc,
339                                         IdentifierInfo *ParamName,
340                                         SourceLocation ParamNameLoc,
341                                         unsigned Depth, unsigned Position) {
342  assert(S->isTemplateParamScope() &&
343         "Template type parameter not in template parameter scope!");
344  bool Invalid = false;
345
346  if (ParamName) {
347    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
348    if (PrevDecl && PrevDecl->isTemplateParameter())
349      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
350                                                           PrevDecl);
351  }
352
353  SourceLocation Loc = ParamNameLoc;
354  if (!ParamName)
355    Loc = KeyLoc;
356
357  TemplateTypeParmDecl *Param
358    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
359                                   Depth, Position, ParamName, Typename,
360                                   Ellipsis);
361  if (Invalid)
362    Param->setInvalidDecl();
363
364  if (ParamName) {
365    // Add the template parameter into the current scope.
366    S->AddDecl(DeclPtrTy::make(Param));
367    IdResolver.AddDecl(Param);
368  }
369
370  return DeclPtrTy::make(Param);
371}
372
373/// ActOnTypeParameterDefault - Adds a default argument (the type
374/// Default) to the given template type parameter (TypeParam).
375void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
376                                     SourceLocation EqualLoc,
377                                     SourceLocation DefaultLoc,
378                                     TypeTy *DefaultT) {
379  TemplateTypeParmDecl *Parm
380    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
381
382  DeclaratorInfo *DefaultDInfo;
383  GetTypeFromParser(DefaultT, &DefaultDInfo);
384
385  assert(DefaultDInfo && "expected source information for type");
386
387  // C++0x [temp.param]p9:
388  // A default template-argument may be specified for any kind of
389  // template-parameter that is not a template parameter pack.
390  if (Parm->isParameterPack()) {
391    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
392    return;
393  }
394
395  // C++ [temp.param]p14:
396  //   A template-parameter shall not be used in its own default argument.
397  // FIXME: Implement this check! Needs a recursive walk over the types.
398
399  // Check the template argument itself.
400  if (CheckTemplateArgument(Parm, DefaultDInfo)) {
401    Parm->setInvalidDecl();
402    return;
403  }
404
405  Parm->setDefaultArgument(DefaultDInfo, false);
406}
407
408/// \brief Check that the type of a non-type template parameter is
409/// well-formed.
410///
411/// \returns the (possibly-promoted) parameter type if valid;
412/// otherwise, produces a diagnostic and returns a NULL type.
413QualType
414Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
415  // C++ [temp.param]p4:
416  //
417  // A non-type template-parameter shall have one of the following
418  // (optionally cv-qualified) types:
419  //
420  //       -- integral or enumeration type,
421  if (T->isIntegralType() || T->isEnumeralType() ||
422      //   -- pointer to object or pointer to function,
423      (T->isPointerType() &&
424       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
425        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
426      //   -- reference to object or reference to function,
427      T->isReferenceType() ||
428      //   -- pointer to member.
429      T->isMemberPointerType() ||
430      // If T is a dependent type, we can't do the check now, so we
431      // assume that it is well-formed.
432      T->isDependentType())
433    return T;
434  // C++ [temp.param]p8:
435  //
436  //   A non-type template-parameter of type "array of T" or
437  //   "function returning T" is adjusted to be of type "pointer to
438  //   T" or "pointer to function returning T", respectively.
439  else if (T->isArrayType())
440    // FIXME: Keep the type prior to promotion?
441    return Context.getArrayDecayedType(T);
442  else if (T->isFunctionType())
443    // FIXME: Keep the type prior to promotion?
444    return Context.getPointerType(T);
445
446  Diag(Loc, diag::err_template_nontype_parm_bad_type)
447    << T;
448
449  return QualType();
450}
451
452/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
453/// template parameter (e.g., "int Size" in "template<int Size>
454/// class Array") has been parsed. S is the current scope and D is
455/// the parsed declarator.
456Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
457                                                    unsigned Depth,
458                                                    unsigned Position) {
459  DeclaratorInfo *DInfo = 0;
460  QualType T = GetTypeForDeclarator(D, S, &DInfo);
461
462  assert(S->isTemplateParamScope() &&
463         "Non-type template parameter not in template parameter scope!");
464  bool Invalid = false;
465
466  IdentifierInfo *ParamName = D.getIdentifier();
467  if (ParamName) {
468    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
469    if (PrevDecl && PrevDecl->isTemplateParameter())
470      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
471                                                           PrevDecl);
472  }
473
474  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
475  if (T.isNull()) {
476    T = Context.IntTy; // Recover with an 'int' type.
477    Invalid = true;
478  }
479
480  NonTypeTemplateParmDecl *Param
481    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
482                                      Depth, Position, ParamName, T, DInfo);
483  if (Invalid)
484    Param->setInvalidDecl();
485
486  if (D.getIdentifier()) {
487    // Add the template parameter into the current scope.
488    S->AddDecl(DeclPtrTy::make(Param));
489    IdResolver.AddDecl(Param);
490  }
491  return DeclPtrTy::make(Param);
492}
493
494/// \brief Adds a default argument to the given non-type template
495/// parameter.
496void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
497                                                SourceLocation EqualLoc,
498                                                ExprArg DefaultE) {
499  NonTypeTemplateParmDecl *TemplateParm
500    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
501  Expr *Default = static_cast<Expr *>(DefaultE.get());
502
503  // C++ [temp.param]p14:
504  //   A template-parameter shall not be used in its own default argument.
505  // FIXME: Implement this check! Needs a recursive walk over the types.
506
507  // Check the well-formedness of the default template argument.
508  TemplateArgument Converted;
509  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
510                            Converted)) {
511    TemplateParm->setInvalidDecl();
512    return;
513  }
514
515  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
516}
517
518
519/// ActOnTemplateTemplateParameter - Called when a C++ template template
520/// parameter (e.g. T in template <template <typename> class T> class array)
521/// has been parsed. S is the current scope.
522Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
523                                                     SourceLocation TmpLoc,
524                                                     TemplateParamsTy *Params,
525                                                     IdentifierInfo *Name,
526                                                     SourceLocation NameLoc,
527                                                     unsigned Depth,
528                                                     unsigned Position) {
529  assert(S->isTemplateParamScope() &&
530         "Template template parameter not in template parameter scope!");
531
532  // Construct the parameter object.
533  TemplateTemplateParmDecl *Param =
534    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
535                                     Position, Name,
536                                     (TemplateParameterList*)Params);
537
538  // Make sure the parameter is valid.
539  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
540  // do anything yet. However, if the template parameter list or (eventual)
541  // default value is ever invalidated, that will propagate here.
542  bool Invalid = false;
543  if (Invalid) {
544    Param->setInvalidDecl();
545  }
546
547  // If the tt-param has a name, then link the identifier into the scope
548  // and lookup mechanisms.
549  if (Name) {
550    S->AddDecl(DeclPtrTy::make(Param));
551    IdResolver.AddDecl(Param);
552  }
553
554  return DeclPtrTy::make(Param);
555}
556
557/// \brief Adds a default argument to the given template template
558/// parameter.
559void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
560                                                 SourceLocation EqualLoc,
561                                        const ParsedTemplateArgument &Default) {
562  TemplateTemplateParmDecl *TemplateParm
563    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
564
565  // C++ [temp.param]p14:
566  //   A template-parameter shall not be used in its own default argument.
567  // FIXME: Implement this check! Needs a recursive walk over the types.
568
569  // Check only that we have a template template argument. We don't want to
570  // try to check well-formedness now, because our template template parameter
571  // might have dependent types in its template parameters, which we wouldn't
572  // be able to match now.
573  //
574  // If none of the template template parameter's template arguments mention
575  // other template parameters, we could actually perform more checking here.
576  // However, it isn't worth doing.
577  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
578  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
579    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
580      << DefaultArg.getSourceRange();
581    return;
582  }
583
584  TemplateParm->setDefaultArgument(DefaultArg);
585}
586
587/// ActOnTemplateParameterList - Builds a TemplateParameterList that
588/// contains the template parameters in Params/NumParams.
589Sema::TemplateParamsTy *
590Sema::ActOnTemplateParameterList(unsigned Depth,
591                                 SourceLocation ExportLoc,
592                                 SourceLocation TemplateLoc,
593                                 SourceLocation LAngleLoc,
594                                 DeclPtrTy *Params, unsigned NumParams,
595                                 SourceLocation RAngleLoc) {
596  if (ExportLoc.isValid())
597    Diag(ExportLoc, diag::note_template_export_unsupported);
598
599  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
600                                       (NamedDecl**)Params, NumParams,
601                                       RAngleLoc);
602}
603
604Sema::DeclResult
605Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
606                         SourceLocation KWLoc, const CXXScopeSpec &SS,
607                         IdentifierInfo *Name, SourceLocation NameLoc,
608                         AttributeList *Attr,
609                         TemplateParameterList *TemplateParams,
610                         AccessSpecifier AS) {
611  assert(TemplateParams && TemplateParams->size() > 0 &&
612         "No template parameters");
613  assert(TUK != TUK_Reference && "Can only declare or define class templates");
614  bool Invalid = false;
615
616  // Check that we can declare a template here.
617  if (CheckTemplateDeclScope(S, TemplateParams))
618    return true;
619
620  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
621  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
622
623  // There is no such thing as an unnamed class template.
624  if (!Name) {
625    Diag(KWLoc, diag::err_template_unnamed_class);
626    return true;
627  }
628
629  // Find any previous declaration with this name.
630  DeclContext *SemanticContext;
631  LookupResult Previous;
632  if (SS.isNotEmpty() && !SS.isInvalid()) {
633    if (RequireCompleteDeclContext(SS))
634      return true;
635
636    SemanticContext = computeDeclContext(SS, true);
637    if (!SemanticContext) {
638      // FIXME: Produce a reasonable diagnostic here
639      return true;
640    }
641
642    LookupQualifiedName(Previous, SemanticContext, Name, LookupOrdinaryName,
643                                   true);
644  } else {
645    SemanticContext = CurContext;
646    LookupName(Previous, S, Name, LookupOrdinaryName, true);
647  }
648
649  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
650  NamedDecl *PrevDecl = 0;
651  if (Previous.begin() != Previous.end())
652    PrevDecl = *Previous.begin();
653
654  if (PrevDecl && TUK == TUK_Friend) {
655    // C++ [namespace.memdef]p3:
656    //   [...] When looking for a prior declaration of a class or a function
657    //   declared as a friend, and when the name of the friend class or
658    //   function is neither a qualified name nor a template-id, scopes outside
659    //   the innermost enclosing namespace scope are not considered.
660    DeclContext *OutermostContext = CurContext;
661    while (!OutermostContext->isFileContext())
662      OutermostContext = OutermostContext->getLookupParent();
663
664    if (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
665        OutermostContext->Encloses(PrevDecl->getDeclContext())) {
666      SemanticContext = PrevDecl->getDeclContext();
667    } else {
668      // Declarations in outer scopes don't matter. However, the outermost
669      // context we computed is the semantic context for our new
670      // declaration.
671      PrevDecl = 0;
672      SemanticContext = OutermostContext;
673    }
674
675    if (CurContext->isDependentContext()) {
676      // If this is a dependent context, we don't want to link the friend
677      // class template to the template in scope, because that would perform
678      // checking of the template parameter lists that can't be performed
679      // until the outer context is instantiated.
680      PrevDecl = 0;
681    }
682  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
683    PrevDecl = 0;
684
685  // If there is a previous declaration with the same name, check
686  // whether this is a valid redeclaration.
687  ClassTemplateDecl *PrevClassTemplate
688    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
689
690  // We may have found the injected-class-name of a class template,
691  // class template partial specialization, or class template specialization.
692  // In these cases, grab the template that is being defined or specialized.
693  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
694      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
695    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
696    PrevClassTemplate
697      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
698    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
699      PrevClassTemplate
700        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
701            ->getSpecializedTemplate();
702    }
703  }
704
705  if (PrevClassTemplate) {
706    // Ensure that the template parameter lists are compatible.
707    if (!TemplateParameterListsAreEqual(TemplateParams,
708                                   PrevClassTemplate->getTemplateParameters(),
709                                        /*Complain=*/true))
710      return true;
711
712    // C++ [temp.class]p4:
713    //   In a redeclaration, partial specialization, explicit
714    //   specialization or explicit instantiation of a class template,
715    //   the class-key shall agree in kind with the original class
716    //   template declaration (7.1.5.3).
717    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
718    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
719      Diag(KWLoc, diag::err_use_with_wrong_tag)
720        << Name
721        << CodeModificationHint::CreateReplacement(KWLoc,
722                            PrevRecordDecl->getKindName());
723      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
724      Kind = PrevRecordDecl->getTagKind();
725    }
726
727    // Check for redefinition of this class template.
728    if (TUK == TUK_Definition) {
729      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
730        Diag(NameLoc, diag::err_redefinition) << Name;
731        Diag(Def->getLocation(), diag::note_previous_definition);
732        // FIXME: Would it make sense to try to "forget" the previous
733        // definition, as part of error recovery?
734        return true;
735      }
736    }
737  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
738    // Maybe we will complain about the shadowed template parameter.
739    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
740    // Just pretend that we didn't see the previous declaration.
741    PrevDecl = 0;
742  } else if (PrevDecl) {
743    // C++ [temp]p5:
744    //   A class template shall not have the same name as any other
745    //   template, class, function, object, enumeration, enumerator,
746    //   namespace, or type in the same scope (3.3), except as specified
747    //   in (14.5.4).
748    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
749    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
750    return true;
751  }
752
753  // Check the template parameter list of this declaration, possibly
754  // merging in the template parameter list from the previous class
755  // template declaration.
756  if (CheckTemplateParameterList(TemplateParams,
757            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
758    Invalid = true;
759
760  // FIXME: If we had a scope specifier, we better have a previous template
761  // declaration!
762
763  CXXRecordDecl *NewClass =
764    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
765                          PrevClassTemplate?
766                            PrevClassTemplate->getTemplatedDecl() : 0,
767                          /*DelayTypeCreation=*/true);
768
769  ClassTemplateDecl *NewTemplate
770    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
771                                DeclarationName(Name), TemplateParams,
772                                NewClass, PrevClassTemplate);
773  NewClass->setDescribedClassTemplate(NewTemplate);
774
775  // Build the type for the class template declaration now.
776  QualType T =
777    Context.getTypeDeclType(NewClass,
778                            PrevClassTemplate?
779                              PrevClassTemplate->getTemplatedDecl() : 0);
780  assert(T->isDependentType() && "Class template type is not dependent?");
781  (void)T;
782
783  // If we are providing an explicit specialization of a member that is a
784  // class template, make a note of that.
785  if (PrevClassTemplate &&
786      PrevClassTemplate->getInstantiatedFromMemberTemplate())
787    PrevClassTemplate->setMemberSpecialization();
788
789  // Set the access specifier.
790  if (!Invalid && TUK != TUK_Friend)
791    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
792
793  // Set the lexical context of these templates
794  NewClass->setLexicalDeclContext(CurContext);
795  NewTemplate->setLexicalDeclContext(CurContext);
796
797  if (TUK == TUK_Definition)
798    NewClass->startDefinition();
799
800  if (Attr)
801    ProcessDeclAttributeList(S, NewClass, Attr);
802
803  if (TUK != TUK_Friend)
804    PushOnScopeChains(NewTemplate, S);
805  else {
806    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
807      NewTemplate->setAccess(PrevClassTemplate->getAccess());
808      NewClass->setAccess(PrevClassTemplate->getAccess());
809    }
810
811    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
812                                       PrevClassTemplate != NULL);
813
814    // Friend templates are visible in fairly strange ways.
815    if (!CurContext->isDependentContext()) {
816      DeclContext *DC = SemanticContext->getLookupContext();
817      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
818      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
819        PushOnScopeChains(NewTemplate, EnclosingScope,
820                          /* AddToContext = */ false);
821    }
822
823    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
824                                            NewClass->getLocation(),
825                                            NewTemplate,
826                                    /*FIXME:*/NewClass->getLocation());
827    Friend->setAccess(AS_public);
828    CurContext->addDecl(Friend);
829  }
830
831  if (Invalid) {
832    NewTemplate->setInvalidDecl();
833    NewClass->setInvalidDecl();
834  }
835  return DeclPtrTy::make(NewTemplate);
836}
837
838/// \brief Checks the validity of a template parameter list, possibly
839/// considering the template parameter list from a previous
840/// declaration.
841///
842/// If an "old" template parameter list is provided, it must be
843/// equivalent (per TemplateParameterListsAreEqual) to the "new"
844/// template parameter list.
845///
846/// \param NewParams Template parameter list for a new template
847/// declaration. This template parameter list will be updated with any
848/// default arguments that are carried through from the previous
849/// template parameter list.
850///
851/// \param OldParams If provided, template parameter list from a
852/// previous declaration of the same template. Default template
853/// arguments will be merged from the old template parameter list to
854/// the new template parameter list.
855///
856/// \returns true if an error occurred, false otherwise.
857bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
858                                      TemplateParameterList *OldParams) {
859  bool Invalid = false;
860
861  // C++ [temp.param]p10:
862  //   The set of default template-arguments available for use with a
863  //   template declaration or definition is obtained by merging the
864  //   default arguments from the definition (if in scope) and all
865  //   declarations in scope in the same way default function
866  //   arguments are (8.3.6).
867  bool SawDefaultArgument = false;
868  SourceLocation PreviousDefaultArgLoc;
869
870  bool SawParameterPack = false;
871  SourceLocation ParameterPackLoc;
872
873  // Dummy initialization to avoid warnings.
874  TemplateParameterList::iterator OldParam = NewParams->end();
875  if (OldParams)
876    OldParam = OldParams->begin();
877
878  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
879                                    NewParamEnd = NewParams->end();
880       NewParam != NewParamEnd; ++NewParam) {
881    // Variables used to diagnose redundant default arguments
882    bool RedundantDefaultArg = false;
883    SourceLocation OldDefaultLoc;
884    SourceLocation NewDefaultLoc;
885
886    // Variables used to diagnose missing default arguments
887    bool MissingDefaultArg = false;
888
889    // C++0x [temp.param]p11:
890    // If a template parameter of a class template is a template parameter pack,
891    // it must be the last template parameter.
892    if (SawParameterPack) {
893      Diag(ParameterPackLoc,
894           diag::err_template_param_pack_must_be_last_template_parameter);
895      Invalid = true;
896    }
897
898    // Merge default arguments for template type parameters.
899    if (TemplateTypeParmDecl *NewTypeParm
900          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
901      TemplateTypeParmDecl *OldTypeParm
902          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
903
904      if (NewTypeParm->isParameterPack()) {
905        assert(!NewTypeParm->hasDefaultArgument() &&
906               "Parameter packs can't have a default argument!");
907        SawParameterPack = true;
908        ParameterPackLoc = NewTypeParm->getLocation();
909      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
910                 NewTypeParm->hasDefaultArgument()) {
911        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
912        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
913        SawDefaultArgument = true;
914        RedundantDefaultArg = true;
915        PreviousDefaultArgLoc = NewDefaultLoc;
916      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
917        // Merge the default argument from the old declaration to the
918        // new declaration.
919        SawDefaultArgument = true;
920        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
921                                        true);
922        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
923      } else if (NewTypeParm->hasDefaultArgument()) {
924        SawDefaultArgument = true;
925        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
926      } else if (SawDefaultArgument)
927        MissingDefaultArg = true;
928    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
929               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
930      // Merge default arguments for non-type template parameters
931      NonTypeTemplateParmDecl *OldNonTypeParm
932        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
933      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
934          NewNonTypeParm->hasDefaultArgument()) {
935        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
936        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
937        SawDefaultArgument = true;
938        RedundantDefaultArg = true;
939        PreviousDefaultArgLoc = NewDefaultLoc;
940      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
941        // Merge the default argument from the old declaration to the
942        // new declaration.
943        SawDefaultArgument = true;
944        // FIXME: We need to create a new kind of "default argument"
945        // expression that points to a previous template template
946        // parameter.
947        NewNonTypeParm->setDefaultArgument(
948                                        OldNonTypeParm->getDefaultArgument());
949        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
950      } else if (NewNonTypeParm->hasDefaultArgument()) {
951        SawDefaultArgument = true;
952        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
953      } else if (SawDefaultArgument)
954        MissingDefaultArg = true;
955    } else {
956    // Merge default arguments for template template parameters
957      TemplateTemplateParmDecl *NewTemplateParm
958        = cast<TemplateTemplateParmDecl>(*NewParam);
959      TemplateTemplateParmDecl *OldTemplateParm
960        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
961      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
962          NewTemplateParm->hasDefaultArgument()) {
963        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
964        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
965        SawDefaultArgument = true;
966        RedundantDefaultArg = true;
967        PreviousDefaultArgLoc = NewDefaultLoc;
968      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
969        // Merge the default argument from the old declaration to the
970        // new declaration.
971        SawDefaultArgument = true;
972        // FIXME: We need to create a new kind of "default argument" expression
973        // that points to a previous template template parameter.
974        NewTemplateParm->setDefaultArgument(
975                                        OldTemplateParm->getDefaultArgument());
976        PreviousDefaultArgLoc
977          = OldTemplateParm->getDefaultArgument().getLocation();
978      } else if (NewTemplateParm->hasDefaultArgument()) {
979        SawDefaultArgument = true;
980        PreviousDefaultArgLoc
981          = NewTemplateParm->getDefaultArgument().getLocation();
982      } else if (SawDefaultArgument)
983        MissingDefaultArg = true;
984    }
985
986    if (RedundantDefaultArg) {
987      // C++ [temp.param]p12:
988      //   A template-parameter shall not be given default arguments
989      //   by two different declarations in the same scope.
990      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
991      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
992      Invalid = true;
993    } else if (MissingDefaultArg) {
994      // C++ [temp.param]p11:
995      //   If a template-parameter has a default template-argument,
996      //   all subsequent template-parameters shall have a default
997      //   template-argument supplied.
998      Diag((*NewParam)->getLocation(),
999           diag::err_template_param_default_arg_missing);
1000      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1001      Invalid = true;
1002    }
1003
1004    // If we have an old template parameter list that we're merging
1005    // in, move on to the next parameter.
1006    if (OldParams)
1007      ++OldParam;
1008  }
1009
1010  return Invalid;
1011}
1012
1013/// \brief Match the given template parameter lists to the given scope
1014/// specifier, returning the template parameter list that applies to the
1015/// name.
1016///
1017/// \param DeclStartLoc the start of the declaration that has a scope
1018/// specifier or a template parameter list.
1019///
1020/// \param SS the scope specifier that will be matched to the given template
1021/// parameter lists. This scope specifier precedes a qualified name that is
1022/// being declared.
1023///
1024/// \param ParamLists the template parameter lists, from the outermost to the
1025/// innermost template parameter lists.
1026///
1027/// \param NumParamLists the number of template parameter lists in ParamLists.
1028///
1029/// \param IsExplicitSpecialization will be set true if the entity being
1030/// declared is an explicit specialization, false otherwise.
1031///
1032/// \returns the template parameter list, if any, that corresponds to the
1033/// name that is preceded by the scope specifier @p SS. This template
1034/// parameter list may be have template parameters (if we're declaring a
1035/// template) or may have no template parameters (if we're declaring a
1036/// template specialization), or may be NULL (if we were's declaring isn't
1037/// itself a template).
1038TemplateParameterList *
1039Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1040                                              const CXXScopeSpec &SS,
1041                                          TemplateParameterList **ParamLists,
1042                                              unsigned NumParamLists,
1043                                              bool &IsExplicitSpecialization) {
1044  IsExplicitSpecialization = false;
1045
1046  // Find the template-ids that occur within the nested-name-specifier. These
1047  // template-ids will match up with the template parameter lists.
1048  llvm::SmallVector<const TemplateSpecializationType *, 4>
1049    TemplateIdsInSpecifier;
1050  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1051       NNS; NNS = NNS->getPrefix()) {
1052    if (const TemplateSpecializationType *SpecType
1053          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
1054      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1055      if (!Template)
1056        continue; // FIXME: should this be an error? probably...
1057
1058      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1059        ClassTemplateSpecializationDecl *SpecDecl
1060          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1061        // If the nested name specifier refers to an explicit specialization,
1062        // we don't need a template<> header.
1063        // FIXME: revisit this approach once we cope with specializations
1064        // properly.
1065        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
1066          continue;
1067      }
1068
1069      TemplateIdsInSpecifier.push_back(SpecType);
1070    }
1071  }
1072
1073  // Reverse the list of template-ids in the scope specifier, so that we can
1074  // more easily match up the template-ids and the template parameter lists.
1075  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1076
1077  SourceLocation FirstTemplateLoc = DeclStartLoc;
1078  if (NumParamLists)
1079    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1080
1081  // Match the template-ids found in the specifier to the template parameter
1082  // lists.
1083  unsigned Idx = 0;
1084  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1085       Idx != NumTemplateIds; ++Idx) {
1086    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1087    bool DependentTemplateId = TemplateId->isDependentType();
1088    if (Idx >= NumParamLists) {
1089      // We have a template-id without a corresponding template parameter
1090      // list.
1091      if (DependentTemplateId) {
1092        // FIXME: the location information here isn't great.
1093        Diag(SS.getRange().getBegin(),
1094             diag::err_template_spec_needs_template_parameters)
1095          << TemplateId
1096          << SS.getRange();
1097      } else {
1098        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1099          << SS.getRange()
1100          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1101                                                   "template<> ");
1102        IsExplicitSpecialization = true;
1103      }
1104      return 0;
1105    }
1106
1107    // Check the template parameter list against its corresponding template-id.
1108    if (DependentTemplateId) {
1109      TemplateDecl *Template
1110        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1111
1112      if (ClassTemplateDecl *ClassTemplate
1113            = dyn_cast<ClassTemplateDecl>(Template)) {
1114        TemplateParameterList *ExpectedTemplateParams = 0;
1115        // Is this template-id naming the primary template?
1116        if (Context.hasSameType(TemplateId,
1117                             ClassTemplate->getInjectedClassNameType(Context)))
1118          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1119        // ... or a partial specialization?
1120        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1121                   = ClassTemplate->findPartialSpecialization(TemplateId))
1122          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1123
1124        if (ExpectedTemplateParams)
1125          TemplateParameterListsAreEqual(ParamLists[Idx],
1126                                         ExpectedTemplateParams,
1127                                         true);
1128      }
1129    } else if (ParamLists[Idx]->size() > 0)
1130      Diag(ParamLists[Idx]->getTemplateLoc(),
1131           diag::err_template_param_list_matches_nontemplate)
1132        << TemplateId
1133        << ParamLists[Idx]->getSourceRange();
1134    else
1135      IsExplicitSpecialization = true;
1136  }
1137
1138  // If there were at least as many template-ids as there were template
1139  // parameter lists, then there are no template parameter lists remaining for
1140  // the declaration itself.
1141  if (Idx >= NumParamLists)
1142    return 0;
1143
1144  // If there were too many template parameter lists, complain about that now.
1145  if (Idx != NumParamLists - 1) {
1146    while (Idx < NumParamLists - 1) {
1147      Diag(ParamLists[Idx]->getTemplateLoc(),
1148           diag::err_template_spec_extra_headers)
1149        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1150                       ParamLists[Idx]->getRAngleLoc());
1151      ++Idx;
1152    }
1153  }
1154
1155  // Return the last template parameter list, which corresponds to the
1156  // entity being declared.
1157  return ParamLists[NumParamLists - 1];
1158}
1159
1160QualType Sema::CheckTemplateIdType(TemplateName Name,
1161                                   SourceLocation TemplateLoc,
1162                                   SourceLocation LAngleLoc,
1163                                   const TemplateArgumentLoc *TemplateArgs,
1164                                   unsigned NumTemplateArgs,
1165                                   SourceLocation RAngleLoc) {
1166  TemplateDecl *Template = Name.getAsTemplateDecl();
1167  if (!Template) {
1168    // The template name does not resolve to a template, so we just
1169    // build a dependent template-id type.
1170    return Context.getTemplateSpecializationType(Name, TemplateArgs,
1171                                                 NumTemplateArgs);
1172  }
1173
1174  // Check that the template argument list is well-formed for this
1175  // template.
1176  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1177                                        NumTemplateArgs);
1178  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
1179                                TemplateArgs, NumTemplateArgs, RAngleLoc,
1180                                false, Converted))
1181    return QualType();
1182
1183  assert((Converted.structuredSize() ==
1184            Template->getTemplateParameters()->size()) &&
1185         "Converted template argument list is too short!");
1186
1187  QualType CanonType;
1188
1189  if (TemplateSpecializationType::anyDependentTemplateArguments(
1190                                                      TemplateArgs,
1191                                                      NumTemplateArgs)) {
1192    // This class template specialization is a dependent
1193    // type. Therefore, its canonical type is another class template
1194    // specialization type that contains all of the converted
1195    // arguments in canonical form. This ensures that, e.g., A<T> and
1196    // A<T, T> have identical types when A is declared as:
1197    //
1198    //   template<typename T, typename U = T> struct A;
1199    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1200    CanonType = Context.getTemplateSpecializationType(CanonName,
1201                                                   Converted.getFlatArguments(),
1202                                                   Converted.flatSize());
1203
1204    // FIXME: CanonType is not actually the canonical type, and unfortunately
1205    // it is a TemplateSpecializationType that we will never use again.
1206    // In the future, we need to teach getTemplateSpecializationType to only
1207    // build the canonical type and return that to us.
1208    CanonType = Context.getCanonicalType(CanonType);
1209  } else if (ClassTemplateDecl *ClassTemplate
1210               = dyn_cast<ClassTemplateDecl>(Template)) {
1211    // Find the class template specialization declaration that
1212    // corresponds to these arguments.
1213    llvm::FoldingSetNodeID ID;
1214    ClassTemplateSpecializationDecl::Profile(ID,
1215                                             Converted.getFlatArguments(),
1216                                             Converted.flatSize(),
1217                                             Context);
1218    void *InsertPos = 0;
1219    ClassTemplateSpecializationDecl *Decl
1220      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1221    if (!Decl) {
1222      // This is the first time we have referenced this class template
1223      // specialization. Create the canonical declaration and add it to
1224      // the set of specializations.
1225      Decl = ClassTemplateSpecializationDecl::Create(Context,
1226                                    ClassTemplate->getDeclContext(),
1227                                    ClassTemplate->getLocation(),
1228                                    ClassTemplate,
1229                                    Converted, 0);
1230      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1231      Decl->setLexicalDeclContext(CurContext);
1232    }
1233
1234    CanonType = Context.getTypeDeclType(Decl);
1235  }
1236
1237  // Build the fully-sugared type for this class template
1238  // specialization, which refers back to the class template
1239  // specialization we created or found.
1240  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1241                                               NumTemplateArgs, CanonType);
1242}
1243
1244Action::TypeResult
1245Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1246                          SourceLocation LAngleLoc,
1247                          ASTTemplateArgsPtr TemplateArgsIn,
1248                          SourceLocation RAngleLoc) {
1249  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1250
1251  // Translate the parser's template argument list in our AST format.
1252  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
1253  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1254
1255  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1256                                        TemplateArgs.data(),
1257                                        TemplateArgs.size(),
1258                                        RAngleLoc);
1259  TemplateArgsIn.release();
1260
1261  if (Result.isNull())
1262    return true;
1263
1264  DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result);
1265  TemplateSpecializationTypeLoc TL
1266    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1267  TL.setTemplateNameLoc(TemplateLoc);
1268  TL.setLAngleLoc(LAngleLoc);
1269  TL.setRAngleLoc(RAngleLoc);
1270  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1271    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1272
1273  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1274}
1275
1276Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1277                                              TagUseKind TUK,
1278                                              DeclSpec::TST TagSpec,
1279                                              SourceLocation TagLoc) {
1280  if (TypeResult.isInvalid())
1281    return Sema::TypeResult();
1282
1283  // FIXME: preserve source info, ideally without copying the DI.
1284  DeclaratorInfo *DI;
1285  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1286
1287  // Verify the tag specifier.
1288  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1289
1290  if (const RecordType *RT = Type->getAs<RecordType>()) {
1291    RecordDecl *D = RT->getDecl();
1292
1293    IdentifierInfo *Id = D->getIdentifier();
1294    assert(Id && "templated class must have an identifier");
1295
1296    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1297      Diag(TagLoc, diag::err_use_with_wrong_tag)
1298        << Type
1299        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1300                                                   D->getKindName());
1301      Diag(D->getLocation(), diag::note_previous_use);
1302    }
1303  }
1304
1305  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1306
1307  return ElabType.getAsOpaquePtr();
1308}
1309
1310Sema::OwningExprResult Sema::BuildTemplateIdExpr(NestedNameSpecifier *Qualifier,
1311                                                 SourceRange QualifierRange,
1312                                                 TemplateName Template,
1313                                                 SourceLocation TemplateNameLoc,
1314                                                 SourceLocation LAngleLoc,
1315                                        const TemplateArgumentLoc *TemplateArgs,
1316                                                 unsigned NumTemplateArgs,
1317                                                 SourceLocation RAngleLoc) {
1318  // FIXME: Can we do any checking at this point? I guess we could check the
1319  // template arguments that we have against the template name, if the template
1320  // name refers to a single template. That's not a terribly common case,
1321  // though.
1322
1323  // Cope with an implicit member access in a C++ non-static member function.
1324  NamedDecl *D = Template.getAsTemplateDecl();
1325  if (!D)
1326    D = Template.getAsOverloadedFunctionDecl();
1327
1328  CXXScopeSpec SS;
1329  SS.setRange(QualifierRange);
1330  SS.setScopeRep(Qualifier);
1331  QualType ThisType, MemberType;
1332  if (D && isImplicitMemberReference(&SS, D, TemplateNameLoc,
1333                                     ThisType, MemberType)) {
1334    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
1335    return Owned(MemberExpr::Create(Context, This, true,
1336                                    Qualifier, QualifierRange,
1337                                    D, TemplateNameLoc, true,
1338                                    LAngleLoc, TemplateArgs,
1339                                    NumTemplateArgs, RAngleLoc,
1340                                    Context.OverloadTy));
1341  }
1342
1343  return Owned(TemplateIdRefExpr::Create(Context, Context.OverloadTy,
1344                                         Qualifier, QualifierRange,
1345                                         Template, TemplateNameLoc, LAngleLoc,
1346                                         TemplateArgs,
1347                                         NumTemplateArgs, RAngleLoc));
1348}
1349
1350Sema::OwningExprResult Sema::ActOnTemplateIdExpr(const CXXScopeSpec &SS,
1351                                                 TemplateTy TemplateD,
1352                                                 SourceLocation TemplateNameLoc,
1353                                                 SourceLocation LAngleLoc,
1354                                              ASTTemplateArgsPtr TemplateArgsIn,
1355                                                 SourceLocation RAngleLoc) {
1356  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1357
1358  // Translate the parser's template argument list in our AST format.
1359  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
1360  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1361  TemplateArgsIn.release();
1362
1363  return BuildTemplateIdExpr((NestedNameSpecifier *)SS.getScopeRep(),
1364                             SS.getRange(),
1365                             Template, TemplateNameLoc, LAngleLoc,
1366                             TemplateArgs.data(), TemplateArgs.size(),
1367                             RAngleLoc);
1368}
1369
1370/// \brief Form a dependent template name.
1371///
1372/// This action forms a dependent template name given the template
1373/// name and its (presumably dependent) scope specifier. For
1374/// example, given "MetaFun::template apply", the scope specifier \p
1375/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1376/// of the "template" keyword, and "apply" is the \p Name.
1377Sema::TemplateTy
1378Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1379                                 const CXXScopeSpec &SS,
1380                                 UnqualifiedId &Name,
1381                                 TypeTy *ObjectType) {
1382  if ((ObjectType &&
1383       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1384      (SS.isSet() && computeDeclContext(SS, false))) {
1385    // C++0x [temp.names]p5:
1386    //   If a name prefixed by the keyword template is not the name of
1387    //   a template, the program is ill-formed. [Note: the keyword
1388    //   template may not be applied to non-template members of class
1389    //   templates. -end note ] [ Note: as is the case with the
1390    //   typename prefix, the template prefix is allowed in cases
1391    //   where it is not strictly necessary; i.e., when the
1392    //   nested-name-specifier or the expression on the left of the ->
1393    //   or . is not dependent on a template-parameter, or the use
1394    //   does not appear in the scope of a template. -end note]
1395    //
1396    // Note: C++03 was more strict here, because it banned the use of
1397    // the "template" keyword prior to a template-name that was not a
1398    // dependent name. C++ DR468 relaxed this requirement (the
1399    // "template" keyword is now permitted). We follow the C++0x
1400    // rules, even in C++03 mode, retroactively applying the DR.
1401    TemplateTy Template;
1402    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1403                                          false, Template);
1404    if (TNK == TNK_Non_template) {
1405      Diag(Name.getSourceRange().getBegin(),
1406           diag::err_template_kw_refers_to_non_template)
1407        << GetNameFromUnqualifiedId(Name)
1408        << Name.getSourceRange();
1409      return TemplateTy();
1410    }
1411
1412    return Template;
1413  }
1414
1415  NestedNameSpecifier *Qualifier
1416    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1417
1418  switch (Name.getKind()) {
1419  case UnqualifiedId::IK_Identifier:
1420    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1421                                                             Name.Identifier));
1422
1423  case UnqualifiedId::IK_OperatorFunctionId:
1424    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1425                                             Name.OperatorFunctionId.Operator));
1426
1427  default:
1428    break;
1429  }
1430
1431  Diag(Name.getSourceRange().getBegin(),
1432       diag::err_template_kw_refers_to_non_template)
1433    << GetNameFromUnqualifiedId(Name)
1434    << Name.getSourceRange();
1435  return TemplateTy();
1436}
1437
1438bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1439                                     const TemplateArgumentLoc &AL,
1440                                     TemplateArgumentListBuilder &Converted) {
1441  const TemplateArgument &Arg = AL.getArgument();
1442
1443  // Check template type parameter.
1444  if (Arg.getKind() != TemplateArgument::Type) {
1445    // C++ [temp.arg.type]p1:
1446    //   A template-argument for a template-parameter which is a
1447    //   type shall be a type-id.
1448
1449    // We have a template type parameter but the template argument
1450    // is not a type.
1451    SourceRange SR = AL.getSourceRange();
1452    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1453    Diag(Param->getLocation(), diag::note_template_param_here);
1454
1455    return true;
1456  }
1457
1458  if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo()))
1459    return true;
1460
1461  // Add the converted template type argument.
1462  Converted.Append(
1463                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1464  return false;
1465}
1466
1467/// \brief Substitute template arguments into the default template argument for
1468/// the given template type parameter.
1469///
1470/// \param SemaRef the semantic analysis object for which we are performing
1471/// the substitution.
1472///
1473/// \param Template the template that we are synthesizing template arguments
1474/// for.
1475///
1476/// \param TemplateLoc the location of the template name that started the
1477/// template-id we are checking.
1478///
1479/// \param RAngleLoc the location of the right angle bracket ('>') that
1480/// terminates the template-id.
1481///
1482/// \param Param the template template parameter whose default we are
1483/// substituting into.
1484///
1485/// \param Converted the list of template arguments provided for template
1486/// parameters that precede \p Param in the template parameter list.
1487///
1488/// \returns the substituted template argument, or NULL if an error occurred.
1489static DeclaratorInfo *
1490SubstDefaultTemplateArgument(Sema &SemaRef,
1491                             TemplateDecl *Template,
1492                             SourceLocation TemplateLoc,
1493                             SourceLocation RAngleLoc,
1494                             TemplateTypeParmDecl *Param,
1495                             TemplateArgumentListBuilder &Converted) {
1496  DeclaratorInfo *ArgType = Param->getDefaultArgumentInfo();
1497
1498  // If the argument type is dependent, instantiate it now based
1499  // on the previously-computed template arguments.
1500  if (ArgType->getType()->isDependentType()) {
1501    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1502                                      /*TakeArgs=*/false);
1503
1504    MultiLevelTemplateArgumentList AllTemplateArgs
1505      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1506
1507    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1508                                     Template, Converted.getFlatArguments(),
1509                                     Converted.flatSize(),
1510                                     SourceRange(TemplateLoc, RAngleLoc));
1511
1512    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1513                                Param->getDefaultArgumentLoc(),
1514                                Param->getDeclName());
1515  }
1516
1517  return ArgType;
1518}
1519
1520/// \brief Substitute template arguments into the default template argument for
1521/// the given non-type template parameter.
1522///
1523/// \param SemaRef the semantic analysis object for which we are performing
1524/// the substitution.
1525///
1526/// \param Template the template that we are synthesizing template arguments
1527/// for.
1528///
1529/// \param TemplateLoc the location of the template name that started the
1530/// template-id we are checking.
1531///
1532/// \param RAngleLoc the location of the right angle bracket ('>') that
1533/// terminates the template-id.
1534///
1535/// \param Param the non-type template parameter whose default we are
1536/// substituting into.
1537///
1538/// \param Converted the list of template arguments provided for template
1539/// parameters that precede \p Param in the template parameter list.
1540///
1541/// \returns the substituted template argument, or NULL if an error occurred.
1542static Sema::OwningExprResult
1543SubstDefaultTemplateArgument(Sema &SemaRef,
1544                             TemplateDecl *Template,
1545                             SourceLocation TemplateLoc,
1546                             SourceLocation RAngleLoc,
1547                             NonTypeTemplateParmDecl *Param,
1548                             TemplateArgumentListBuilder &Converted) {
1549  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1550                                    /*TakeArgs=*/false);
1551
1552  MultiLevelTemplateArgumentList AllTemplateArgs
1553    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1554
1555  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1556                                   Template, Converted.getFlatArguments(),
1557                                   Converted.flatSize(),
1558                                   SourceRange(TemplateLoc, RAngleLoc));
1559
1560  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1561}
1562
1563/// \brief Substitute template arguments into the default template argument for
1564/// the given template template parameter.
1565///
1566/// \param SemaRef the semantic analysis object for which we are performing
1567/// the substitution.
1568///
1569/// \param Template the template that we are synthesizing template arguments
1570/// for.
1571///
1572/// \param TemplateLoc the location of the template name that started the
1573/// template-id we are checking.
1574///
1575/// \param RAngleLoc the location of the right angle bracket ('>') that
1576/// terminates the template-id.
1577///
1578/// \param Param the template template parameter whose default we are
1579/// substituting into.
1580///
1581/// \param Converted the list of template arguments provided for template
1582/// parameters that precede \p Param in the template parameter list.
1583///
1584/// \returns the substituted template argument, or NULL if an error occurred.
1585static TemplateName
1586SubstDefaultTemplateArgument(Sema &SemaRef,
1587                             TemplateDecl *Template,
1588                             SourceLocation TemplateLoc,
1589                             SourceLocation RAngleLoc,
1590                             TemplateTemplateParmDecl *Param,
1591                             TemplateArgumentListBuilder &Converted) {
1592  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1593                                    /*TakeArgs=*/false);
1594
1595  MultiLevelTemplateArgumentList AllTemplateArgs
1596    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1597
1598  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1599                                   Template, Converted.getFlatArguments(),
1600                                   Converted.flatSize(),
1601                                   SourceRange(TemplateLoc, RAngleLoc));
1602
1603  return SemaRef.SubstTemplateName(
1604                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1605                              Param->getDefaultArgument().getTemplateNameLoc(),
1606                                   AllTemplateArgs);
1607}
1608
1609/// \brief Check that the given template argument corresponds to the given
1610/// template parameter.
1611bool Sema::CheckTemplateArgument(NamedDecl *Param,
1612                                 const TemplateArgumentLoc &Arg,
1613                                 TemplateDecl *Template,
1614                                 SourceLocation TemplateLoc,
1615                                 SourceLocation RAngleLoc,
1616                                 TemplateArgumentListBuilder &Converted) {
1617  // Check template type parameters.
1618  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1619    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1620
1621  // Check non-type template parameters.
1622  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1623    // Do substitution on the type of the non-type template parameter
1624    // with the template arguments we've seen thus far.
1625    QualType NTTPType = NTTP->getType();
1626    if (NTTPType->isDependentType()) {
1627      // Do substitution on the type of the non-type template parameter.
1628      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1629                                 NTTP, Converted.getFlatArguments(),
1630                                 Converted.flatSize(),
1631                                 SourceRange(TemplateLoc, RAngleLoc));
1632
1633      TemplateArgumentList TemplateArgs(Context, Converted,
1634                                        /*TakeArgs=*/false);
1635      NTTPType = SubstType(NTTPType,
1636                           MultiLevelTemplateArgumentList(TemplateArgs),
1637                           NTTP->getLocation(),
1638                           NTTP->getDeclName());
1639      // If that worked, check the non-type template parameter type
1640      // for validity.
1641      if (!NTTPType.isNull())
1642        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1643                                                     NTTP->getLocation());
1644      if (NTTPType.isNull())
1645        return true;
1646    }
1647
1648    switch (Arg.getArgument().getKind()) {
1649    case TemplateArgument::Null:
1650      assert(false && "Should never see a NULL template argument here");
1651      return true;
1652
1653    case TemplateArgument::Expression: {
1654      Expr *E = Arg.getArgument().getAsExpr();
1655      TemplateArgument Result;
1656      if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1657        return true;
1658
1659      Converted.Append(Result);
1660      break;
1661    }
1662
1663    case TemplateArgument::Declaration:
1664    case TemplateArgument::Integral:
1665      // We've already checked this template argument, so just copy
1666      // it to the list of converted arguments.
1667      Converted.Append(Arg.getArgument());
1668      break;
1669
1670    case TemplateArgument::Template:
1671      // We were given a template template argument. It may not be ill-formed;
1672      // see below.
1673      if (DependentTemplateName *DTN
1674            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1675        // We have a template argument such as \c T::template X, which we
1676        // parsed as a template template argument. However, since we now
1677        // know that we need a non-type template argument, convert this
1678        // template name into an expression.
1679        Expr *E = new (Context) UnresolvedDeclRefExpr(DTN->getIdentifier(),
1680                                                      Context.DependentTy,
1681                                                      Arg.getTemplateNameLoc(),
1682                                               Arg.getTemplateQualifierRange(),
1683                                                      DTN->getQualifier(),
1684                                                  /*isAddressOfOperand=*/false);
1685
1686        TemplateArgument Result;
1687        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1688          return true;
1689
1690        Converted.Append(Result);
1691        break;
1692      }
1693
1694      // We have a template argument that actually does refer to a class
1695      // template, template alias, or template template parameter, and
1696      // therefore cannot be a non-type template argument.
1697      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1698        << Arg.getSourceRange();
1699
1700      Diag(Param->getLocation(), diag::note_template_param_here);
1701      return true;
1702
1703    case TemplateArgument::Type: {
1704      // We have a non-type template parameter but the template
1705      // argument is a type.
1706
1707      // C++ [temp.arg]p2:
1708      //   In a template-argument, an ambiguity between a type-id and
1709      //   an expression is resolved to a type-id, regardless of the
1710      //   form of the corresponding template-parameter.
1711      //
1712      // We warn specifically about this case, since it can be rather
1713      // confusing for users.
1714      QualType T = Arg.getArgument().getAsType();
1715      SourceRange SR = Arg.getSourceRange();
1716      if (T->isFunctionType())
1717        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1718      else
1719        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1720      Diag(Param->getLocation(), diag::note_template_param_here);
1721      return true;
1722    }
1723
1724    case TemplateArgument::Pack:
1725      llvm::llvm_unreachable("Caller must expand template argument packs");
1726      break;
1727    }
1728
1729    return false;
1730  }
1731
1732
1733  // Check template template parameters.
1734  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
1735
1736  // Substitute into the template parameter list of the template
1737  // template parameter, since previously-supplied template arguments
1738  // may appear within the template template parameter.
1739  {
1740    // Set up a template instantiation context.
1741    LocalInstantiationScope Scope(*this);
1742    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1743                               TempParm, Converted.getFlatArguments(),
1744                               Converted.flatSize(),
1745                               SourceRange(TemplateLoc, RAngleLoc));
1746
1747    TemplateArgumentList TemplateArgs(Context, Converted,
1748                                      /*TakeArgs=*/false);
1749    TempParm = cast_or_null<TemplateTemplateParmDecl>(
1750                      SubstDecl(TempParm, CurContext,
1751                                MultiLevelTemplateArgumentList(TemplateArgs)));
1752    if (!TempParm)
1753      return true;
1754
1755    // FIXME: TempParam is leaked.
1756  }
1757
1758  switch (Arg.getArgument().getKind()) {
1759  case TemplateArgument::Null:
1760    assert(false && "Should never see a NULL template argument here");
1761    return true;
1762
1763  case TemplateArgument::Template:
1764    if (CheckTemplateArgument(TempParm, Arg))
1765      return true;
1766
1767    Converted.Append(Arg.getArgument());
1768    break;
1769
1770  case TemplateArgument::Expression:
1771  case TemplateArgument::Type:
1772    // We have a template template parameter but the template
1773    // argument does not refer to a template.
1774    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1775    return true;
1776
1777  case TemplateArgument::Declaration:
1778    llvm::llvm_unreachable(
1779                       "Declaration argument with template template parameter");
1780    break;
1781  case TemplateArgument::Integral:
1782    llvm::llvm_unreachable(
1783                          "Integral argument with template template parameter");
1784    break;
1785
1786  case TemplateArgument::Pack:
1787    llvm::llvm_unreachable("Caller must expand template argument packs");
1788    break;
1789  }
1790
1791  return false;
1792}
1793
1794/// \brief Check that the given template argument list is well-formed
1795/// for specializing the given template.
1796bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1797                                     SourceLocation TemplateLoc,
1798                                     SourceLocation LAngleLoc,
1799                                     const TemplateArgumentLoc *TemplateArgs,
1800                                     unsigned NumTemplateArgs,
1801                                     SourceLocation RAngleLoc,
1802                                     bool PartialTemplateArgs,
1803                                     TemplateArgumentListBuilder &Converted) {
1804  TemplateParameterList *Params = Template->getTemplateParameters();
1805  unsigned NumParams = Params->size();
1806  unsigned NumArgs = NumTemplateArgs;
1807  bool Invalid = false;
1808
1809  bool HasParameterPack =
1810    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1811
1812  if ((NumArgs > NumParams && !HasParameterPack) ||
1813      (NumArgs < Params->getMinRequiredArguments() &&
1814       !PartialTemplateArgs)) {
1815    // FIXME: point at either the first arg beyond what we can handle,
1816    // or the '>', depending on whether we have too many or too few
1817    // arguments.
1818    SourceRange Range;
1819    if (NumArgs > NumParams)
1820      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1821    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1822      << (NumArgs > NumParams)
1823      << (isa<ClassTemplateDecl>(Template)? 0 :
1824          isa<FunctionTemplateDecl>(Template)? 1 :
1825          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1826      << Template << Range;
1827    Diag(Template->getLocation(), diag::note_template_decl_here)
1828      << Params->getSourceRange();
1829    Invalid = true;
1830  }
1831
1832  // C++ [temp.arg]p1:
1833  //   [...] The type and form of each template-argument specified in
1834  //   a template-id shall match the type and form specified for the
1835  //   corresponding parameter declared by the template in its
1836  //   template-parameter-list.
1837  unsigned ArgIdx = 0;
1838  for (TemplateParameterList::iterator Param = Params->begin(),
1839                                       ParamEnd = Params->end();
1840       Param != ParamEnd; ++Param, ++ArgIdx) {
1841    if (ArgIdx > NumArgs && PartialTemplateArgs)
1842      break;
1843
1844    // If we have a template parameter pack, check every remaining template
1845    // argument against that template parameter pack.
1846    if ((*Param)->isTemplateParameterPack()) {
1847      Converted.BeginPack();
1848      for (; ArgIdx < NumArgs; ++ArgIdx) {
1849        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
1850                                  TemplateLoc, RAngleLoc, Converted)) {
1851          Invalid = true;
1852          break;
1853        }
1854      }
1855      Converted.EndPack();
1856      continue;
1857    }
1858
1859    if (ArgIdx < NumArgs) {
1860      // Check the template argument we were given.
1861      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
1862                                TemplateLoc, RAngleLoc, Converted))
1863        return true;
1864
1865      continue;
1866    }
1867
1868    // We have a default template argument that we will use.
1869    TemplateArgumentLoc Arg;
1870
1871    // Retrieve the default template argument from the template
1872    // parameter. For each kind of template parameter, we substitute the
1873    // template arguments provided thus far and any "outer" template arguments
1874    // (when the template parameter was part of a nested template) into
1875    // the default argument.
1876    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1877      if (!TTP->hasDefaultArgument()) {
1878        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
1879        break;
1880      }
1881
1882      DeclaratorInfo *ArgType = SubstDefaultTemplateArgument(*this,
1883                                                             Template,
1884                                                             TemplateLoc,
1885                                                             RAngleLoc,
1886                                                             TTP,
1887                                                             Converted);
1888      if (!ArgType)
1889        return true;
1890
1891      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
1892                                ArgType);
1893    } else if (NonTypeTemplateParmDecl *NTTP
1894                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1895      if (!NTTP->hasDefaultArgument()) {
1896        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
1897        break;
1898      }
1899
1900      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
1901                                                              TemplateLoc,
1902                                                              RAngleLoc,
1903                                                              NTTP,
1904                                                              Converted);
1905      if (E.isInvalid())
1906        return true;
1907
1908      Expr *Ex = E.takeAs<Expr>();
1909      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
1910    } else {
1911      TemplateTemplateParmDecl *TempParm
1912        = cast<TemplateTemplateParmDecl>(*Param);
1913
1914      if (!TempParm->hasDefaultArgument()) {
1915        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
1916        break;
1917      }
1918
1919      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
1920                                                       TemplateLoc,
1921                                                       RAngleLoc,
1922                                                       TempParm,
1923                                                       Converted);
1924      if (Name.isNull())
1925        return true;
1926
1927      Arg = TemplateArgumentLoc(TemplateArgument(Name),
1928                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
1929                  TempParm->getDefaultArgument().getTemplateNameLoc());
1930    }
1931
1932    // Introduce an instantiation record that describes where we are using
1933    // the default template argument.
1934    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
1935                                        Converted.getFlatArguments(),
1936                                        Converted.flatSize(),
1937                                        SourceRange(TemplateLoc, RAngleLoc));
1938
1939    // Check the default template argument.
1940    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
1941                              RAngleLoc, Converted))
1942      return true;
1943  }
1944
1945  return Invalid;
1946}
1947
1948/// \brief Check a template argument against its corresponding
1949/// template type parameter.
1950///
1951/// This routine implements the semantics of C++ [temp.arg.type]. It
1952/// returns true if an error occurred, and false otherwise.
1953bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1954                                 DeclaratorInfo *ArgInfo) {
1955  assert(ArgInfo && "invalid DeclaratorInfo");
1956  QualType Arg = ArgInfo->getType();
1957
1958  // C++ [temp.arg.type]p2:
1959  //   A local type, a type with no linkage, an unnamed type or a type
1960  //   compounded from any of these types shall not be used as a
1961  //   template-argument for a template type-parameter.
1962  //
1963  // FIXME: Perform the recursive and no-linkage type checks.
1964  const TagType *Tag = 0;
1965  if (const EnumType *EnumT = Arg->getAs<EnumType>())
1966    Tag = EnumT;
1967  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1968    Tag = RecordT;
1969  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
1970    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1971    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
1972      << QualType(Tag, 0) << SR;
1973  } else if (Tag && !Tag->getDecl()->getDeclName() &&
1974           !Tag->getDecl()->getTypedefForAnonDecl()) {
1975    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1976    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
1977    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1978    return true;
1979  }
1980
1981  return false;
1982}
1983
1984/// \brief Checks whether the given template argument is the address
1985/// of an object or function according to C++ [temp.arg.nontype]p1.
1986bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1987                                                          NamedDecl *&Entity) {
1988  bool Invalid = false;
1989
1990  // See through any implicit casts we added to fix the type.
1991  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1992    Arg = Cast->getSubExpr();
1993
1994  // C++0x allows nullptr, and there's no further checking to be done for that.
1995  if (Arg->getType()->isNullPtrType())
1996    return false;
1997
1998  // C++ [temp.arg.nontype]p1:
1999  //
2000  //   A template-argument for a non-type, non-template
2001  //   template-parameter shall be one of: [...]
2002  //
2003  //     -- the address of an object or function with external
2004  //        linkage, including function templates and function
2005  //        template-ids but excluding non-static class members,
2006  //        expressed as & id-expression where the & is optional if
2007  //        the name refers to a function or array, or if the
2008  //        corresponding template-parameter is a reference; or
2009  DeclRefExpr *DRE = 0;
2010
2011  // Ignore (and complain about) any excess parentheses.
2012  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2013    if (!Invalid) {
2014      Diag(Arg->getSourceRange().getBegin(),
2015           diag::err_template_arg_extra_parens)
2016        << Arg->getSourceRange();
2017      Invalid = true;
2018    }
2019
2020    Arg = Parens->getSubExpr();
2021  }
2022
2023  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2024    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2025      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2026  } else
2027    DRE = dyn_cast<DeclRefExpr>(Arg);
2028
2029  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
2030    return Diag(Arg->getSourceRange().getBegin(),
2031                diag::err_template_arg_not_object_or_func_form)
2032      << Arg->getSourceRange();
2033
2034  // Cannot refer to non-static data members
2035  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2036    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2037      << Field << Arg->getSourceRange();
2038
2039  // Cannot refer to non-static member functions
2040  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2041    if (!Method->isStatic())
2042      return Diag(Arg->getSourceRange().getBegin(),
2043                  diag::err_template_arg_method)
2044        << Method << Arg->getSourceRange();
2045
2046  // Functions must have external linkage.
2047  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2048    if (Func->getStorageClass() == FunctionDecl::Static) {
2049      Diag(Arg->getSourceRange().getBegin(),
2050           diag::err_template_arg_function_not_extern)
2051        << Func << Arg->getSourceRange();
2052      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2053        << true;
2054      return true;
2055    }
2056
2057    // Okay: we've named a function with external linkage.
2058    Entity = Func;
2059    return Invalid;
2060  }
2061
2062  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2063    if (!Var->hasGlobalStorage()) {
2064      Diag(Arg->getSourceRange().getBegin(),
2065           diag::err_template_arg_object_not_extern)
2066        << Var << Arg->getSourceRange();
2067      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2068        << true;
2069      return true;
2070    }
2071
2072    // Okay: we've named an object with external linkage
2073    Entity = Var;
2074    return Invalid;
2075  }
2076
2077  // We found something else, but we don't know specifically what it is.
2078  Diag(Arg->getSourceRange().getBegin(),
2079       diag::err_template_arg_not_object_or_func)
2080      << Arg->getSourceRange();
2081  Diag(DRE->getDecl()->getLocation(),
2082       diag::note_template_arg_refers_here);
2083  return true;
2084}
2085
2086/// \brief Checks whether the given template argument is a pointer to
2087/// member constant according to C++ [temp.arg.nontype]p1.
2088bool
2089Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
2090  bool Invalid = false;
2091
2092  // See through any implicit casts we added to fix the type.
2093  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2094    Arg = Cast->getSubExpr();
2095
2096  // C++0x allows nullptr, and there's no further checking to be done for that.
2097  if (Arg->getType()->isNullPtrType())
2098    return false;
2099
2100  // C++ [temp.arg.nontype]p1:
2101  //
2102  //   A template-argument for a non-type, non-template
2103  //   template-parameter shall be one of: [...]
2104  //
2105  //     -- a pointer to member expressed as described in 5.3.1.
2106  DeclRefExpr *DRE = 0;
2107
2108  // Ignore (and complain about) any excess parentheses.
2109  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2110    if (!Invalid) {
2111      Diag(Arg->getSourceRange().getBegin(),
2112           diag::err_template_arg_extra_parens)
2113        << Arg->getSourceRange();
2114      Invalid = true;
2115    }
2116
2117    Arg = Parens->getSubExpr();
2118  }
2119
2120  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
2121    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2122      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2123      if (DRE && !DRE->getQualifier())
2124        DRE = 0;
2125    }
2126
2127  if (!DRE)
2128    return Diag(Arg->getSourceRange().getBegin(),
2129                diag::err_template_arg_not_pointer_to_member_form)
2130      << Arg->getSourceRange();
2131
2132  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2133    assert((isa<FieldDecl>(DRE->getDecl()) ||
2134            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2135           "Only non-static member pointers can make it here");
2136
2137    // Okay: this is the address of a non-static member, and therefore
2138    // a member pointer constant.
2139    Member = DRE->getDecl();
2140    return Invalid;
2141  }
2142
2143  // We found something else, but we don't know specifically what it is.
2144  Diag(Arg->getSourceRange().getBegin(),
2145       diag::err_template_arg_not_pointer_to_member_form)
2146      << Arg->getSourceRange();
2147  Diag(DRE->getDecl()->getLocation(),
2148       diag::note_template_arg_refers_here);
2149  return true;
2150}
2151
2152/// \brief Check a template argument against its corresponding
2153/// non-type template parameter.
2154///
2155/// This routine implements the semantics of C++ [temp.arg.nontype].
2156/// It returns true if an error occurred, and false otherwise. \p
2157/// InstantiatedParamType is the type of the non-type template
2158/// parameter after it has been instantiated.
2159///
2160/// If no error was detected, Converted receives the converted template argument.
2161bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2162                                 QualType InstantiatedParamType, Expr *&Arg,
2163                                 TemplateArgument &Converted) {
2164  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2165
2166  // If either the parameter has a dependent type or the argument is
2167  // type-dependent, there's nothing we can check now.
2168  // FIXME: Add template argument to Converted!
2169  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2170    // FIXME: Produce a cloned, canonical expression?
2171    Converted = TemplateArgument(Arg);
2172    return false;
2173  }
2174
2175  // C++ [temp.arg.nontype]p5:
2176  //   The following conversions are performed on each expression used
2177  //   as a non-type template-argument. If a non-type
2178  //   template-argument cannot be converted to the type of the
2179  //   corresponding template-parameter then the program is
2180  //   ill-formed.
2181  //
2182  //     -- for a non-type template-parameter of integral or
2183  //        enumeration type, integral promotions (4.5) and integral
2184  //        conversions (4.7) are applied.
2185  QualType ParamType = InstantiatedParamType;
2186  QualType ArgType = Arg->getType();
2187  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2188    // C++ [temp.arg.nontype]p1:
2189    //   A template-argument for a non-type, non-template
2190    //   template-parameter shall be one of:
2191    //
2192    //     -- an integral constant-expression of integral or enumeration
2193    //        type; or
2194    //     -- the name of a non-type template-parameter; or
2195    SourceLocation NonConstantLoc;
2196    llvm::APSInt Value;
2197    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2198      Diag(Arg->getSourceRange().getBegin(),
2199           diag::err_template_arg_not_integral_or_enumeral)
2200        << ArgType << Arg->getSourceRange();
2201      Diag(Param->getLocation(), diag::note_template_param_here);
2202      return true;
2203    } else if (!Arg->isValueDependent() &&
2204               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2205      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2206        << ArgType << Arg->getSourceRange();
2207      return true;
2208    }
2209
2210    // FIXME: We need some way to more easily get the unqualified form
2211    // of the types without going all the way to the
2212    // canonical type.
2213    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
2214      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
2215    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
2216      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
2217
2218    // Try to convert the argument to the parameter's type.
2219    if (Context.hasSameType(ParamType, ArgType)) {
2220      // Okay: no conversion necessary
2221    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2222               !ParamType->isEnumeralType()) {
2223      // This is an integral promotion or conversion.
2224      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2225    } else {
2226      // We can't perform this conversion.
2227      Diag(Arg->getSourceRange().getBegin(),
2228           diag::err_template_arg_not_convertible)
2229        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2230      Diag(Param->getLocation(), diag::note_template_param_here);
2231      return true;
2232    }
2233
2234    QualType IntegerType = Context.getCanonicalType(ParamType);
2235    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2236      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2237
2238    if (!Arg->isValueDependent()) {
2239      // Check that an unsigned parameter does not receive a negative
2240      // value.
2241      if (IntegerType->isUnsignedIntegerType()
2242          && (Value.isSigned() && Value.isNegative())) {
2243        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2244          << Value.toString(10) << Param->getType()
2245          << Arg->getSourceRange();
2246        Diag(Param->getLocation(), diag::note_template_param_here);
2247        return true;
2248      }
2249
2250      // Check that we don't overflow the template parameter type.
2251      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2252      if (Value.getActiveBits() > AllowedBits) {
2253        Diag(Arg->getSourceRange().getBegin(),
2254             diag::err_template_arg_too_large)
2255          << Value.toString(10) << Param->getType()
2256          << Arg->getSourceRange();
2257        Diag(Param->getLocation(), diag::note_template_param_here);
2258        return true;
2259      }
2260
2261      if (Value.getBitWidth() != AllowedBits)
2262        Value.extOrTrunc(AllowedBits);
2263      Value.setIsSigned(IntegerType->isSignedIntegerType());
2264    }
2265
2266    // Add the value of this argument to the list of converted
2267    // arguments. We use the bitwidth and signedness of the template
2268    // parameter.
2269    if (Arg->isValueDependent()) {
2270      // The argument is value-dependent. Create a new
2271      // TemplateArgument with the converted expression.
2272      Converted = TemplateArgument(Arg);
2273      return false;
2274    }
2275
2276    Converted = TemplateArgument(Value,
2277                                 ParamType->isEnumeralType() ? ParamType
2278                                                             : IntegerType);
2279    return false;
2280  }
2281
2282  // Handle pointer-to-function, reference-to-function, and
2283  // pointer-to-member-function all in (roughly) the same way.
2284  if (// -- For a non-type template-parameter of type pointer to
2285      //    function, only the function-to-pointer conversion (4.3) is
2286      //    applied. If the template-argument represents a set of
2287      //    overloaded functions (or a pointer to such), the matching
2288      //    function is selected from the set (13.4).
2289      // In C++0x, any std::nullptr_t value can be converted.
2290      (ParamType->isPointerType() &&
2291       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2292      // -- For a non-type template-parameter of type reference to
2293      //    function, no conversions apply. If the template-argument
2294      //    represents a set of overloaded functions, the matching
2295      //    function is selected from the set (13.4).
2296      (ParamType->isReferenceType() &&
2297       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2298      // -- For a non-type template-parameter of type pointer to
2299      //    member function, no conversions apply. If the
2300      //    template-argument represents a set of overloaded member
2301      //    functions, the matching member function is selected from
2302      //    the set (13.4).
2303      // Again, C++0x allows a std::nullptr_t value.
2304      (ParamType->isMemberPointerType() &&
2305       ParamType->getAs<MemberPointerType>()->getPointeeType()
2306         ->isFunctionType())) {
2307    if (Context.hasSameUnqualifiedType(ArgType,
2308                                       ParamType.getNonReferenceType())) {
2309      // We don't have to do anything: the types already match.
2310    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2311                 ParamType->isMemberPointerType())) {
2312      ArgType = ParamType;
2313      if (ParamType->isMemberPointerType())
2314        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2315      else
2316        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2317    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2318      ArgType = Context.getPointerType(ArgType);
2319      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2320    } else if (FunctionDecl *Fn
2321                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2322      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2323        return true;
2324
2325      Arg = FixOverloadedFunctionReference(Arg, Fn);
2326      ArgType = Arg->getType();
2327      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2328        ArgType = Context.getPointerType(Arg->getType());
2329        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2330      }
2331    }
2332
2333    if (!Context.hasSameUnqualifiedType(ArgType,
2334                                        ParamType.getNonReferenceType())) {
2335      // We can't perform this conversion.
2336      Diag(Arg->getSourceRange().getBegin(),
2337           diag::err_template_arg_not_convertible)
2338        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2339      Diag(Param->getLocation(), diag::note_template_param_here);
2340      return true;
2341    }
2342
2343    if (ParamType->isMemberPointerType()) {
2344      NamedDecl *Member = 0;
2345      if (CheckTemplateArgumentPointerToMember(Arg, Member))
2346        return true;
2347
2348      if (Member)
2349        Member = cast<NamedDecl>(Member->getCanonicalDecl());
2350      Converted = TemplateArgument(Member);
2351      return false;
2352    }
2353
2354    NamedDecl *Entity = 0;
2355    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2356      return true;
2357
2358    if (Entity)
2359      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2360    Converted = TemplateArgument(Entity);
2361    return false;
2362  }
2363
2364  if (ParamType->isPointerType()) {
2365    //   -- for a non-type template-parameter of type pointer to
2366    //      object, qualification conversions (4.4) and the
2367    //      array-to-pointer conversion (4.2) are applied.
2368    // C++0x also allows a value of std::nullptr_t.
2369    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2370           "Only object pointers allowed here");
2371
2372    if (ArgType->isNullPtrType()) {
2373      ArgType = ParamType;
2374      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2375    } else if (ArgType->isArrayType()) {
2376      ArgType = Context.getArrayDecayedType(ArgType);
2377      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2378    }
2379
2380    if (IsQualificationConversion(ArgType, ParamType)) {
2381      ArgType = ParamType;
2382      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2383    }
2384
2385    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2386      // We can't perform this conversion.
2387      Diag(Arg->getSourceRange().getBegin(),
2388           diag::err_template_arg_not_convertible)
2389        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2390      Diag(Param->getLocation(), diag::note_template_param_here);
2391      return true;
2392    }
2393
2394    NamedDecl *Entity = 0;
2395    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2396      return true;
2397
2398    if (Entity)
2399      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2400    Converted = TemplateArgument(Entity);
2401    return false;
2402  }
2403
2404  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2405    //   -- For a non-type template-parameter of type reference to
2406    //      object, no conversions apply. The type referred to by the
2407    //      reference may be more cv-qualified than the (otherwise
2408    //      identical) type of the template-argument. The
2409    //      template-parameter is bound directly to the
2410    //      template-argument, which must be an lvalue.
2411    assert(ParamRefType->getPointeeType()->isObjectType() &&
2412           "Only object references allowed here");
2413
2414    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2415      Diag(Arg->getSourceRange().getBegin(),
2416           diag::err_template_arg_no_ref_bind)
2417        << InstantiatedParamType << Arg->getType()
2418        << Arg->getSourceRange();
2419      Diag(Param->getLocation(), diag::note_template_param_here);
2420      return true;
2421    }
2422
2423    unsigned ParamQuals
2424      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2425    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2426
2427    if ((ParamQuals | ArgQuals) != ParamQuals) {
2428      Diag(Arg->getSourceRange().getBegin(),
2429           diag::err_template_arg_ref_bind_ignores_quals)
2430        << InstantiatedParamType << Arg->getType()
2431        << Arg->getSourceRange();
2432      Diag(Param->getLocation(), diag::note_template_param_here);
2433      return true;
2434    }
2435
2436    NamedDecl *Entity = 0;
2437    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2438      return true;
2439
2440    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2441    Converted = TemplateArgument(Entity);
2442    return false;
2443  }
2444
2445  //     -- For a non-type template-parameter of type pointer to data
2446  //        member, qualification conversions (4.4) are applied.
2447  // C++0x allows std::nullptr_t values.
2448  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2449
2450  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2451    // Types match exactly: nothing more to do here.
2452  } else if (ArgType->isNullPtrType()) {
2453    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2454  } else if (IsQualificationConversion(ArgType, ParamType)) {
2455    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2456  } else {
2457    // We can't perform this conversion.
2458    Diag(Arg->getSourceRange().getBegin(),
2459         diag::err_template_arg_not_convertible)
2460      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2461    Diag(Param->getLocation(), diag::note_template_param_here);
2462    return true;
2463  }
2464
2465  NamedDecl *Member = 0;
2466  if (CheckTemplateArgumentPointerToMember(Arg, Member))
2467    return true;
2468
2469  if (Member)
2470    Member = cast<NamedDecl>(Member->getCanonicalDecl());
2471  Converted = TemplateArgument(Member);
2472  return false;
2473}
2474
2475/// \brief Check a template argument against its corresponding
2476/// template template parameter.
2477///
2478/// This routine implements the semantics of C++ [temp.arg.template].
2479/// It returns true if an error occurred, and false otherwise.
2480bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2481                                 const TemplateArgumentLoc &Arg) {
2482  TemplateName Name = Arg.getArgument().getAsTemplate();
2483  TemplateDecl *Template = Name.getAsTemplateDecl();
2484  if (!Template) {
2485    // Any dependent template name is fine.
2486    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2487    return false;
2488  }
2489
2490  // C++ [temp.arg.template]p1:
2491  //   A template-argument for a template template-parameter shall be
2492  //   the name of a class template, expressed as id-expression. Only
2493  //   primary class templates are considered when matching the
2494  //   template template argument with the corresponding parameter;
2495  //   partial specializations are not considered even if their
2496  //   parameter lists match that of the template template parameter.
2497  //
2498  // Note that we also allow template template parameters here, which
2499  // will happen when we are dealing with, e.g., class template
2500  // partial specializations.
2501  if (!isa<ClassTemplateDecl>(Template) &&
2502      !isa<TemplateTemplateParmDecl>(Template)) {
2503    assert(isa<FunctionTemplateDecl>(Template) &&
2504           "Only function templates are possible here");
2505    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2506    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2507      << Template;
2508  }
2509
2510  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2511                                         Param->getTemplateParameters(),
2512                                         true, true,
2513                                         Arg.getLocation());
2514}
2515
2516/// \brief Determine whether the given template parameter lists are
2517/// equivalent.
2518///
2519/// \param New  The new template parameter list, typically written in the
2520/// source code as part of a new template declaration.
2521///
2522/// \param Old  The old template parameter list, typically found via
2523/// name lookup of the template declared with this template parameter
2524/// list.
2525///
2526/// \param Complain  If true, this routine will produce a diagnostic if
2527/// the template parameter lists are not equivalent.
2528///
2529/// \param IsTemplateTemplateParm  If true, this routine is being
2530/// called to compare the template parameter lists of a template
2531/// template parameter.
2532///
2533/// \param TemplateArgLoc If this source location is valid, then we
2534/// are actually checking the template parameter list of a template
2535/// argument (New) against the template parameter list of its
2536/// corresponding template template parameter (Old). We produce
2537/// slightly different diagnostics in this scenario.
2538///
2539/// \returns True if the template parameter lists are equal, false
2540/// otherwise.
2541bool
2542Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2543                                     TemplateParameterList *Old,
2544                                     bool Complain,
2545                                     bool IsTemplateTemplateParm,
2546                                     SourceLocation TemplateArgLoc) {
2547  if (Old->size() != New->size()) {
2548    if (Complain) {
2549      unsigned NextDiag = diag::err_template_param_list_different_arity;
2550      if (TemplateArgLoc.isValid()) {
2551        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2552        NextDiag = diag::note_template_param_list_different_arity;
2553      }
2554      Diag(New->getTemplateLoc(), NextDiag)
2555          << (New->size() > Old->size())
2556          << IsTemplateTemplateParm
2557          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2558      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2559        << IsTemplateTemplateParm
2560        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2561    }
2562
2563    return false;
2564  }
2565
2566  for (TemplateParameterList::iterator OldParm = Old->begin(),
2567         OldParmEnd = Old->end(), NewParm = New->begin();
2568       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2569    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2570      if (Complain) {
2571        unsigned NextDiag = diag::err_template_param_different_kind;
2572        if (TemplateArgLoc.isValid()) {
2573          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2574          NextDiag = diag::note_template_param_different_kind;
2575        }
2576        Diag((*NewParm)->getLocation(), NextDiag)
2577          << IsTemplateTemplateParm;
2578        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2579          << IsTemplateTemplateParm;
2580      }
2581      return false;
2582    }
2583
2584    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2585      // Okay; all template type parameters are equivalent (since we
2586      // know we're at the same index).
2587    } else if (NonTypeTemplateParmDecl *OldNTTP
2588                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2589      // The types of non-type template parameters must agree.
2590      NonTypeTemplateParmDecl *NewNTTP
2591        = cast<NonTypeTemplateParmDecl>(*NewParm);
2592      if (Context.getCanonicalType(OldNTTP->getType()) !=
2593            Context.getCanonicalType(NewNTTP->getType())) {
2594        if (Complain) {
2595          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2596          if (TemplateArgLoc.isValid()) {
2597            Diag(TemplateArgLoc,
2598                 diag::err_template_arg_template_params_mismatch);
2599            NextDiag = diag::note_template_nontype_parm_different_type;
2600          }
2601          Diag(NewNTTP->getLocation(), NextDiag)
2602            << NewNTTP->getType()
2603            << IsTemplateTemplateParm;
2604          Diag(OldNTTP->getLocation(),
2605               diag::note_template_nontype_parm_prev_declaration)
2606            << OldNTTP->getType();
2607        }
2608        return false;
2609      }
2610      assert(OldNTTP->getDepth() == NewNTTP->getDepth() &&
2611             "Non-type template parameter depth mismatch");
2612      assert(OldNTTP->getPosition() == NewNTTP->getPosition() &&
2613             "Non-type template parameter position mismatch");
2614    } else {
2615      // The template parameter lists of template template
2616      // parameters must agree.
2617      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2618             "Only template template parameters handled here");
2619      TemplateTemplateParmDecl *OldTTP
2620        = cast<TemplateTemplateParmDecl>(*OldParm);
2621      TemplateTemplateParmDecl *NewTTP
2622        = cast<TemplateTemplateParmDecl>(*NewParm);
2623      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2624                                          OldTTP->getTemplateParameters(),
2625                                          Complain,
2626                                          /*IsTemplateTemplateParm=*/true,
2627                                          TemplateArgLoc))
2628        return false;
2629
2630      assert(OldTTP->getDepth() == NewTTP->getDepth() &&
2631             "Template template parameter depth mismatch");
2632      assert(OldTTP->getPosition() == NewTTP->getPosition() &&
2633             "Template template parameter position mismatch");
2634    }
2635  }
2636
2637  return true;
2638}
2639
2640/// \brief Check whether a template can be declared within this scope.
2641///
2642/// If the template declaration is valid in this scope, returns
2643/// false. Otherwise, issues a diagnostic and returns true.
2644bool
2645Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2646  // Find the nearest enclosing declaration scope.
2647  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2648         (S->getFlags() & Scope::TemplateParamScope) != 0)
2649    S = S->getParent();
2650
2651  // C++ [temp]p2:
2652  //   A template-declaration can appear only as a namespace scope or
2653  //   class scope declaration.
2654  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2655  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2656      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2657    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2658             << TemplateParams->getSourceRange();
2659
2660  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2661    Ctx = Ctx->getParent();
2662
2663  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2664    return false;
2665
2666  return Diag(TemplateParams->getTemplateLoc(),
2667              diag::err_template_outside_namespace_or_class_scope)
2668    << TemplateParams->getSourceRange();
2669}
2670
2671/// \brief Determine what kind of template specialization the given declaration
2672/// is.
2673static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2674  if (!D)
2675    return TSK_Undeclared;
2676
2677  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2678    return Record->getTemplateSpecializationKind();
2679  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2680    return Function->getTemplateSpecializationKind();
2681  if (VarDecl *Var = dyn_cast<VarDecl>(D))
2682    return Var->getTemplateSpecializationKind();
2683
2684  return TSK_Undeclared;
2685}
2686
2687/// \brief Check whether a specialization is well-formed in the current
2688/// context.
2689///
2690/// This routine determines whether a template specialization can be declared
2691/// in the current context (C++ [temp.expl.spec]p2).
2692///
2693/// \param S the semantic analysis object for which this check is being
2694/// performed.
2695///
2696/// \param Specialized the entity being specialized or instantiated, which
2697/// may be a kind of template (class template, function template, etc.) or
2698/// a member of a class template (member function, static data member,
2699/// member class).
2700///
2701/// \param PrevDecl the previous declaration of this entity, if any.
2702///
2703/// \param Loc the location of the explicit specialization or instantiation of
2704/// this entity.
2705///
2706/// \param IsPartialSpecialization whether this is a partial specialization of
2707/// a class template.
2708///
2709/// \returns true if there was an error that we cannot recover from, false
2710/// otherwise.
2711static bool CheckTemplateSpecializationScope(Sema &S,
2712                                             NamedDecl *Specialized,
2713                                             NamedDecl *PrevDecl,
2714                                             SourceLocation Loc,
2715                                             bool IsPartialSpecialization) {
2716  // Keep these "kind" numbers in sync with the %select statements in the
2717  // various diagnostics emitted by this routine.
2718  int EntityKind = 0;
2719  bool isTemplateSpecialization = false;
2720  if (isa<ClassTemplateDecl>(Specialized)) {
2721    EntityKind = IsPartialSpecialization? 1 : 0;
2722    isTemplateSpecialization = true;
2723  } else if (isa<FunctionTemplateDecl>(Specialized)) {
2724    EntityKind = 2;
2725    isTemplateSpecialization = true;
2726  } else if (isa<CXXMethodDecl>(Specialized))
2727    EntityKind = 3;
2728  else if (isa<VarDecl>(Specialized))
2729    EntityKind = 4;
2730  else if (isa<RecordDecl>(Specialized))
2731    EntityKind = 5;
2732  else {
2733    S.Diag(Loc, diag::err_template_spec_unknown_kind);
2734    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2735    return true;
2736  }
2737
2738  // C++ [temp.expl.spec]p2:
2739  //   An explicit specialization shall be declared in the namespace
2740  //   of which the template is a member, or, for member templates, in
2741  //   the namespace of which the enclosing class or enclosing class
2742  //   template is a member. An explicit specialization of a member
2743  //   function, member class or static data member of a class
2744  //   template shall be declared in the namespace of which the class
2745  //   template is a member. Such a declaration may also be a
2746  //   definition. If the declaration is not a definition, the
2747  //   specialization may be defined later in the name- space in which
2748  //   the explicit specialization was declared, or in a namespace
2749  //   that encloses the one in which the explicit specialization was
2750  //   declared.
2751  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
2752    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
2753      << Specialized;
2754    return true;
2755  }
2756
2757  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
2758    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
2759      << Specialized;
2760    return true;
2761  }
2762
2763  // C++ [temp.class.spec]p6:
2764  //   A class template partial specialization may be declared or redeclared
2765  //   in any namespace scope in which its definition may be defined (14.5.1
2766  //   and 14.5.2).
2767  bool ComplainedAboutScope = false;
2768  DeclContext *SpecializedContext
2769    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
2770  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
2771  if ((!PrevDecl ||
2772       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
2773       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
2774    // There is no prior declaration of this entity, so this
2775    // specialization must be in the same context as the template
2776    // itself.
2777    if (!DC->Equals(SpecializedContext)) {
2778      if (isa<TranslationUnitDecl>(SpecializedContext))
2779        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
2780        << EntityKind << Specialized;
2781      else if (isa<NamespaceDecl>(SpecializedContext))
2782        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
2783        << EntityKind << Specialized
2784        << cast<NamedDecl>(SpecializedContext);
2785
2786      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2787      ComplainedAboutScope = true;
2788    }
2789  }
2790
2791  // Make sure that this redeclaration (or definition) occurs in an enclosing
2792  // namespace.
2793  // Note that HandleDeclarator() performs this check for explicit
2794  // specializations of function templates, static data members, and member
2795  // functions, so we skip the check here for those kinds of entities.
2796  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
2797  // Should we refactor that check, so that it occurs later?
2798  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
2799      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
2800        isa<FunctionDecl>(Specialized))) {
2801    if (isa<TranslationUnitDecl>(SpecializedContext))
2802      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
2803        << EntityKind << Specialized;
2804    else if (isa<NamespaceDecl>(SpecializedContext))
2805      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
2806        << EntityKind << Specialized
2807        << cast<NamedDecl>(SpecializedContext);
2808
2809    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2810  }
2811
2812  // FIXME: check for specialization-after-instantiation errors and such.
2813
2814  return false;
2815}
2816
2817/// \brief Check the non-type template arguments of a class template
2818/// partial specialization according to C++ [temp.class.spec]p9.
2819///
2820/// \param TemplateParams the template parameters of the primary class
2821/// template.
2822///
2823/// \param TemplateArg the template arguments of the class template
2824/// partial specialization.
2825///
2826/// \param MirrorsPrimaryTemplate will be set true if the class
2827/// template partial specialization arguments are identical to the
2828/// implicit template arguments of the primary template. This is not
2829/// necessarily an error (C++0x), and it is left to the caller to diagnose
2830/// this condition when it is an error.
2831///
2832/// \returns true if there was an error, false otherwise.
2833bool Sema::CheckClassTemplatePartialSpecializationArgs(
2834                                        TemplateParameterList *TemplateParams,
2835                             const TemplateArgumentListBuilder &TemplateArgs,
2836                                        bool &MirrorsPrimaryTemplate) {
2837  // FIXME: the interface to this function will have to change to
2838  // accommodate variadic templates.
2839  MirrorsPrimaryTemplate = true;
2840
2841  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2842
2843  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2844    // Determine whether the template argument list of the partial
2845    // specialization is identical to the implicit argument list of
2846    // the primary template. The caller may need to diagnostic this as
2847    // an error per C++ [temp.class.spec]p9b3.
2848    if (MirrorsPrimaryTemplate) {
2849      if (TemplateTypeParmDecl *TTP
2850            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2851        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2852              Context.getCanonicalType(ArgList[I].getAsType()))
2853          MirrorsPrimaryTemplate = false;
2854      } else if (TemplateTemplateParmDecl *TTP
2855                   = dyn_cast<TemplateTemplateParmDecl>(
2856                                                 TemplateParams->getParam(I))) {
2857        TemplateName Name = ArgList[I].getAsTemplate();
2858        TemplateTemplateParmDecl *ArgDecl
2859          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
2860        if (!ArgDecl ||
2861            ArgDecl->getIndex() != TTP->getIndex() ||
2862            ArgDecl->getDepth() != TTP->getDepth())
2863          MirrorsPrimaryTemplate = false;
2864      }
2865    }
2866
2867    NonTypeTemplateParmDecl *Param
2868      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2869    if (!Param) {
2870      continue;
2871    }
2872
2873    Expr *ArgExpr = ArgList[I].getAsExpr();
2874    if (!ArgExpr) {
2875      MirrorsPrimaryTemplate = false;
2876      continue;
2877    }
2878
2879    // C++ [temp.class.spec]p8:
2880    //   A non-type argument is non-specialized if it is the name of a
2881    //   non-type parameter. All other non-type arguments are
2882    //   specialized.
2883    //
2884    // Below, we check the two conditions that only apply to
2885    // specialized non-type arguments, so skip any non-specialized
2886    // arguments.
2887    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2888      if (NonTypeTemplateParmDecl *NTTP
2889            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2890        if (MirrorsPrimaryTemplate &&
2891            (Param->getIndex() != NTTP->getIndex() ||
2892             Param->getDepth() != NTTP->getDepth()))
2893          MirrorsPrimaryTemplate = false;
2894
2895        continue;
2896      }
2897
2898    // C++ [temp.class.spec]p9:
2899    //   Within the argument list of a class template partial
2900    //   specialization, the following restrictions apply:
2901    //     -- A partially specialized non-type argument expression
2902    //        shall not involve a template parameter of the partial
2903    //        specialization except when the argument expression is a
2904    //        simple identifier.
2905    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2906      Diag(ArgExpr->getLocStart(),
2907           diag::err_dependent_non_type_arg_in_partial_spec)
2908        << ArgExpr->getSourceRange();
2909      return true;
2910    }
2911
2912    //     -- The type of a template parameter corresponding to a
2913    //        specialized non-type argument shall not be dependent on a
2914    //        parameter of the specialization.
2915    if (Param->getType()->isDependentType()) {
2916      Diag(ArgExpr->getLocStart(),
2917           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2918        << Param->getType()
2919        << ArgExpr->getSourceRange();
2920      Diag(Param->getLocation(), diag::note_template_param_here);
2921      return true;
2922    }
2923
2924    MirrorsPrimaryTemplate = false;
2925  }
2926
2927  return false;
2928}
2929
2930Sema::DeclResult
2931Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2932                                       TagUseKind TUK,
2933                                       SourceLocation KWLoc,
2934                                       const CXXScopeSpec &SS,
2935                                       TemplateTy TemplateD,
2936                                       SourceLocation TemplateNameLoc,
2937                                       SourceLocation LAngleLoc,
2938                                       ASTTemplateArgsPtr TemplateArgsIn,
2939                                       SourceLocation RAngleLoc,
2940                                       AttributeList *Attr,
2941                               MultiTemplateParamsArg TemplateParameterLists) {
2942  assert(TUK != TUK_Reference && "References are not specializations");
2943
2944  // Find the class template we're specializing
2945  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2946  ClassTemplateDecl *ClassTemplate
2947    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2948
2949  bool isExplicitSpecialization = false;
2950  bool isPartialSpecialization = false;
2951
2952  // Check the validity of the template headers that introduce this
2953  // template.
2954  // FIXME: We probably shouldn't complain about these headers for
2955  // friend declarations.
2956  TemplateParameterList *TemplateParams
2957    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
2958                        (TemplateParameterList**)TemplateParameterLists.get(),
2959                                              TemplateParameterLists.size(),
2960                                              isExplicitSpecialization);
2961  if (TemplateParams && TemplateParams->size() > 0) {
2962    isPartialSpecialization = true;
2963
2964    // C++ [temp.class.spec]p10:
2965    //   The template parameter list of a specialization shall not
2966    //   contain default template argument values.
2967    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2968      Decl *Param = TemplateParams->getParam(I);
2969      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2970        if (TTP->hasDefaultArgument()) {
2971          Diag(TTP->getDefaultArgumentLoc(),
2972               diag::err_default_arg_in_partial_spec);
2973          TTP->removeDefaultArgument();
2974        }
2975      } else if (NonTypeTemplateParmDecl *NTTP
2976                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2977        if (Expr *DefArg = NTTP->getDefaultArgument()) {
2978          Diag(NTTP->getDefaultArgumentLoc(),
2979               diag::err_default_arg_in_partial_spec)
2980            << DefArg->getSourceRange();
2981          NTTP->setDefaultArgument(0);
2982          DefArg->Destroy(Context);
2983        }
2984      } else {
2985        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2986        if (TTP->hasDefaultArgument()) {
2987          Diag(TTP->getDefaultArgument().getLocation(),
2988               diag::err_default_arg_in_partial_spec)
2989            << TTP->getDefaultArgument().getSourceRange();
2990          TTP->setDefaultArgument(TemplateArgumentLoc());
2991        }
2992      }
2993    }
2994  } else if (TemplateParams) {
2995    if (TUK == TUK_Friend)
2996      Diag(KWLoc, diag::err_template_spec_friend)
2997        << CodeModificationHint::CreateRemoval(
2998                                SourceRange(TemplateParams->getTemplateLoc(),
2999                                            TemplateParams->getRAngleLoc()))
3000        << SourceRange(LAngleLoc, RAngleLoc);
3001    else
3002      isExplicitSpecialization = true;
3003  } else if (TUK != TUK_Friend) {
3004    Diag(KWLoc, diag::err_template_spec_needs_header)
3005      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
3006    isExplicitSpecialization = true;
3007  }
3008
3009  // Check that the specialization uses the same tag kind as the
3010  // original template.
3011  TagDecl::TagKind Kind;
3012  switch (TagSpec) {
3013  default: assert(0 && "Unknown tag type!");
3014  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3015  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3016  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3017  }
3018  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3019                                    Kind, KWLoc,
3020                                    *ClassTemplate->getIdentifier())) {
3021    Diag(KWLoc, diag::err_use_with_wrong_tag)
3022      << ClassTemplate
3023      << CodeModificationHint::CreateReplacement(KWLoc,
3024                            ClassTemplate->getTemplatedDecl()->getKindName());
3025    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3026         diag::note_previous_use);
3027    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3028  }
3029
3030  // Translate the parser's template argument list in our AST format.
3031  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
3032  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3033
3034  // Check that the template argument list is well-formed for this
3035  // template.
3036  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3037                                        TemplateArgs.size());
3038  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
3039                                TemplateArgs.data(), TemplateArgs.size(),
3040                                RAngleLoc, false, Converted))
3041    return true;
3042
3043  assert((Converted.structuredSize() ==
3044            ClassTemplate->getTemplateParameters()->size()) &&
3045         "Converted template argument list is too short!");
3046
3047  // Find the class template (partial) specialization declaration that
3048  // corresponds to these arguments.
3049  llvm::FoldingSetNodeID ID;
3050  if (isPartialSpecialization) {
3051    bool MirrorsPrimaryTemplate;
3052    if (CheckClassTemplatePartialSpecializationArgs(
3053                                         ClassTemplate->getTemplateParameters(),
3054                                         Converted, MirrorsPrimaryTemplate))
3055      return true;
3056
3057    if (MirrorsPrimaryTemplate) {
3058      // C++ [temp.class.spec]p9b3:
3059      //
3060      //   -- The argument list of the specialization shall not be identical
3061      //      to the implicit argument list of the primary template.
3062      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3063        << (TUK == TUK_Definition)
3064        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
3065                                                           RAngleLoc));
3066      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3067                                ClassTemplate->getIdentifier(),
3068                                TemplateNameLoc,
3069                                Attr,
3070                                TemplateParams,
3071                                AS_none);
3072    }
3073
3074    // FIXME: Diagnose friend partial specializations
3075
3076    // FIXME: Template parameter list matters, too
3077    ClassTemplatePartialSpecializationDecl::Profile(ID,
3078                                                   Converted.getFlatArguments(),
3079                                                   Converted.flatSize(),
3080                                                    Context);
3081  } else
3082    ClassTemplateSpecializationDecl::Profile(ID,
3083                                             Converted.getFlatArguments(),
3084                                             Converted.flatSize(),
3085                                             Context);
3086  void *InsertPos = 0;
3087  ClassTemplateSpecializationDecl *PrevDecl = 0;
3088
3089  if (isPartialSpecialization)
3090    PrevDecl
3091      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3092                                                                    InsertPos);
3093  else
3094    PrevDecl
3095      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3096
3097  ClassTemplateSpecializationDecl *Specialization = 0;
3098
3099  // Check whether we can declare a class template specialization in
3100  // the current scope.
3101  if (TUK != TUK_Friend &&
3102      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3103                                       TemplateNameLoc,
3104                                       isPartialSpecialization))
3105    return true;
3106
3107  // The canonical type
3108  QualType CanonType;
3109  if (PrevDecl &&
3110      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3111       TUK == TUK_Friend)) {
3112    // Since the only prior class template specialization with these
3113    // arguments was referenced but not declared, or we're only
3114    // referencing this specialization as a friend, reuse that
3115    // declaration node as our own, updating its source location to
3116    // reflect our new declaration.
3117    Specialization = PrevDecl;
3118    Specialization->setLocation(TemplateNameLoc);
3119    PrevDecl = 0;
3120    CanonType = Context.getTypeDeclType(Specialization);
3121  } else if (isPartialSpecialization) {
3122    // Build the canonical type that describes the converted template
3123    // arguments of the class template partial specialization.
3124    CanonType = Context.getTemplateSpecializationType(
3125                                                  TemplateName(ClassTemplate),
3126                                                  Converted.getFlatArguments(),
3127                                                  Converted.flatSize());
3128
3129    // Create a new class template partial specialization declaration node.
3130    ClassTemplatePartialSpecializationDecl *PrevPartial
3131      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3132    ClassTemplatePartialSpecializationDecl *Partial
3133      = ClassTemplatePartialSpecializationDecl::Create(Context,
3134                                             ClassTemplate->getDeclContext(),
3135                                                       TemplateNameLoc,
3136                                                       TemplateParams,
3137                                                       ClassTemplate,
3138                                                       Converted,
3139                                                       TemplateArgs.data(),
3140                                                       TemplateArgs.size(),
3141                                                       PrevPartial);
3142
3143    if (PrevPartial) {
3144      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3145      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3146    } else {
3147      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3148    }
3149    Specialization = Partial;
3150
3151    // If we are providing an explicit specialization of a member class
3152    // template specialization, make a note of that.
3153    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3154      PrevPartial->setMemberSpecialization();
3155
3156    // Check that all of the template parameters of the class template
3157    // partial specialization are deducible from the template
3158    // arguments. If not, this class template partial specialization
3159    // will never be used.
3160    llvm::SmallVector<bool, 8> DeducibleParams;
3161    DeducibleParams.resize(TemplateParams->size());
3162    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3163                               TemplateParams->getDepth(),
3164                               DeducibleParams);
3165    unsigned NumNonDeducible = 0;
3166    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3167      if (!DeducibleParams[I])
3168        ++NumNonDeducible;
3169
3170    if (NumNonDeducible) {
3171      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3172        << (NumNonDeducible > 1)
3173        << SourceRange(TemplateNameLoc, RAngleLoc);
3174      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3175        if (!DeducibleParams[I]) {
3176          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3177          if (Param->getDeclName())
3178            Diag(Param->getLocation(),
3179                 diag::note_partial_spec_unused_parameter)
3180              << Param->getDeclName();
3181          else
3182            Diag(Param->getLocation(),
3183                 diag::note_partial_spec_unused_parameter)
3184              << std::string("<anonymous>");
3185        }
3186      }
3187    }
3188  } else {
3189    // Create a new class template specialization declaration node for
3190    // this explicit specialization or friend declaration.
3191    Specialization
3192      = ClassTemplateSpecializationDecl::Create(Context,
3193                                             ClassTemplate->getDeclContext(),
3194                                                TemplateNameLoc,
3195                                                ClassTemplate,
3196                                                Converted,
3197                                                PrevDecl);
3198
3199    if (PrevDecl) {
3200      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3201      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3202    } else {
3203      ClassTemplate->getSpecializations().InsertNode(Specialization,
3204                                                     InsertPos);
3205    }
3206
3207    CanonType = Context.getTypeDeclType(Specialization);
3208  }
3209
3210  // C++ [temp.expl.spec]p6:
3211  //   If a template, a member template or the member of a class template is
3212  //   explicitly specialized then that specialization shall be declared
3213  //   before the first use of that specialization that would cause an implicit
3214  //   instantiation to take place, in every translation unit in which such a
3215  //   use occurs; no diagnostic is required.
3216  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3217    SourceRange Range(TemplateNameLoc, RAngleLoc);
3218    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3219      << Context.getTypeDeclType(Specialization) << Range;
3220
3221    Diag(PrevDecl->getPointOfInstantiation(),
3222         diag::note_instantiation_required_here)
3223      << (PrevDecl->getTemplateSpecializationKind()
3224                                                != TSK_ImplicitInstantiation);
3225    return true;
3226  }
3227
3228  // If this is not a friend, note that this is an explicit specialization.
3229  if (TUK != TUK_Friend)
3230    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3231
3232  // Check that this isn't a redefinition of this specialization.
3233  if (TUK == TUK_Definition) {
3234    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3235      SourceRange Range(TemplateNameLoc, RAngleLoc);
3236      Diag(TemplateNameLoc, diag::err_redefinition)
3237        << Context.getTypeDeclType(Specialization) << Range;
3238      Diag(Def->getLocation(), diag::note_previous_definition);
3239      Specialization->setInvalidDecl();
3240      return true;
3241    }
3242  }
3243
3244  // Build the fully-sugared type for this class template
3245  // specialization as the user wrote in the specialization
3246  // itself. This means that we'll pretty-print the type retrieved
3247  // from the specialization's declaration the way that the user
3248  // actually wrote the specialization, rather than formatting the
3249  // name based on the "canonical" representation used to store the
3250  // template arguments in the specialization.
3251  QualType WrittenTy
3252    = Context.getTemplateSpecializationType(Name,
3253                                            TemplateArgs.data(),
3254                                            TemplateArgs.size(),
3255                                            CanonType);
3256  if (TUK != TUK_Friend)
3257    Specialization->setTypeAsWritten(WrittenTy);
3258  TemplateArgsIn.release();
3259
3260  // C++ [temp.expl.spec]p9:
3261  //   A template explicit specialization is in the scope of the
3262  //   namespace in which the template was defined.
3263  //
3264  // We actually implement this paragraph where we set the semantic
3265  // context (in the creation of the ClassTemplateSpecializationDecl),
3266  // but we also maintain the lexical context where the actual
3267  // definition occurs.
3268  Specialization->setLexicalDeclContext(CurContext);
3269
3270  // We may be starting the definition of this specialization.
3271  if (TUK == TUK_Definition)
3272    Specialization->startDefinition();
3273
3274  if (TUK == TUK_Friend) {
3275    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3276                                            TemplateNameLoc,
3277                                            WrittenTy.getTypePtr(),
3278                                            /*FIXME:*/KWLoc);
3279    Friend->setAccess(AS_public);
3280    CurContext->addDecl(Friend);
3281  } else {
3282    // Add the specialization into its lexical context, so that it can
3283    // be seen when iterating through the list of declarations in that
3284    // context. However, specializations are not found by name lookup.
3285    CurContext->addDecl(Specialization);
3286  }
3287  return DeclPtrTy::make(Specialization);
3288}
3289
3290Sema::DeclPtrTy
3291Sema::ActOnTemplateDeclarator(Scope *S,
3292                              MultiTemplateParamsArg TemplateParameterLists,
3293                              Declarator &D) {
3294  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3295}
3296
3297Sema::DeclPtrTy
3298Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3299                               MultiTemplateParamsArg TemplateParameterLists,
3300                                      Declarator &D) {
3301  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3302  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3303         "Not a function declarator!");
3304  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3305
3306  if (FTI.hasPrototype) {
3307    // FIXME: Diagnose arguments without names in C.
3308  }
3309
3310  Scope *ParentScope = FnBodyScope->getParent();
3311
3312  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3313                                  move(TemplateParameterLists),
3314                                  /*IsFunctionDefinition=*/true);
3315  if (FunctionTemplateDecl *FunctionTemplate
3316        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3317    return ActOnStartOfFunctionDef(FnBodyScope,
3318                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3319  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3320    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3321  return DeclPtrTy();
3322}
3323
3324/// \brief Diagnose cases where we have an explicit template specialization
3325/// before/after an explicit template instantiation, producing diagnostics
3326/// for those cases where they are required and determining whether the
3327/// new specialization/instantiation will have any effect.
3328///
3329/// \param NewLoc the location of the new explicit specialization or
3330/// instantiation.
3331///
3332/// \param NewTSK the kind of the new explicit specialization or instantiation.
3333///
3334/// \param PrevDecl the previous declaration of the entity.
3335///
3336/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3337///
3338/// \param PrevPointOfInstantiation if valid, indicates where the previus
3339/// declaration was instantiated (either implicitly or explicitly).
3340///
3341/// \param SuppressNew will be set to true to indicate that the new
3342/// specialization or instantiation has no effect and should be ignored.
3343///
3344/// \returns true if there was an error that should prevent the introduction of
3345/// the new declaration into the AST, false otherwise.
3346bool
3347Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3348                                             TemplateSpecializationKind NewTSK,
3349                                             NamedDecl *PrevDecl,
3350                                             TemplateSpecializationKind PrevTSK,
3351                                        SourceLocation PrevPointOfInstantiation,
3352                                             bool &SuppressNew) {
3353  SuppressNew = false;
3354
3355  switch (NewTSK) {
3356  case TSK_Undeclared:
3357  case TSK_ImplicitInstantiation:
3358    assert(false && "Don't check implicit instantiations here");
3359    return false;
3360
3361  case TSK_ExplicitSpecialization:
3362    switch (PrevTSK) {
3363    case TSK_Undeclared:
3364    case TSK_ExplicitSpecialization:
3365      // Okay, we're just specializing something that is either already
3366      // explicitly specialized or has merely been mentioned without any
3367      // instantiation.
3368      return false;
3369
3370    case TSK_ImplicitInstantiation:
3371      if (PrevPointOfInstantiation.isInvalid()) {
3372        // The declaration itself has not actually been instantiated, so it is
3373        // still okay to specialize it.
3374        return false;
3375      }
3376      // Fall through
3377
3378    case TSK_ExplicitInstantiationDeclaration:
3379    case TSK_ExplicitInstantiationDefinition:
3380      assert((PrevTSK == TSK_ImplicitInstantiation ||
3381              PrevPointOfInstantiation.isValid()) &&
3382             "Explicit instantiation without point of instantiation?");
3383
3384      // C++ [temp.expl.spec]p6:
3385      //   If a template, a member template or the member of a class template
3386      //   is explicitly specialized then that specialization shall be declared
3387      //   before the first use of that specialization that would cause an
3388      //   implicit instantiation to take place, in every translation unit in
3389      //   which such a use occurs; no diagnostic is required.
3390      Diag(NewLoc, diag::err_specialization_after_instantiation)
3391        << PrevDecl;
3392      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3393        << (PrevTSK != TSK_ImplicitInstantiation);
3394
3395      return true;
3396    }
3397    break;
3398
3399  case TSK_ExplicitInstantiationDeclaration:
3400    switch (PrevTSK) {
3401    case TSK_ExplicitInstantiationDeclaration:
3402      // This explicit instantiation declaration is redundant (that's okay).
3403      SuppressNew = true;
3404      return false;
3405
3406    case TSK_Undeclared:
3407    case TSK_ImplicitInstantiation:
3408      // We're explicitly instantiating something that may have already been
3409      // implicitly instantiated; that's fine.
3410      return false;
3411
3412    case TSK_ExplicitSpecialization:
3413      // C++0x [temp.explicit]p4:
3414      //   For a given set of template parameters, if an explicit instantiation
3415      //   of a template appears after a declaration of an explicit
3416      //   specialization for that template, the explicit instantiation has no
3417      //   effect.
3418      return false;
3419
3420    case TSK_ExplicitInstantiationDefinition:
3421      // C++0x [temp.explicit]p10:
3422      //   If an entity is the subject of both an explicit instantiation
3423      //   declaration and an explicit instantiation definition in the same
3424      //   translation unit, the definition shall follow the declaration.
3425      Diag(NewLoc,
3426           diag::err_explicit_instantiation_declaration_after_definition);
3427      Diag(PrevPointOfInstantiation,
3428           diag::note_explicit_instantiation_definition_here);
3429      assert(PrevPointOfInstantiation.isValid() &&
3430             "Explicit instantiation without point of instantiation?");
3431      SuppressNew = true;
3432      return false;
3433    }
3434    break;
3435
3436  case TSK_ExplicitInstantiationDefinition:
3437    switch (PrevTSK) {
3438    case TSK_Undeclared:
3439    case TSK_ImplicitInstantiation:
3440      // We're explicitly instantiating something that may have already been
3441      // implicitly instantiated; that's fine.
3442      return false;
3443
3444    case TSK_ExplicitSpecialization:
3445      // C++ DR 259, C++0x [temp.explicit]p4:
3446      //   For a given set of template parameters, if an explicit
3447      //   instantiation of a template appears after a declaration of
3448      //   an explicit specialization for that template, the explicit
3449      //   instantiation has no effect.
3450      //
3451      // In C++98/03 mode, we only give an extension warning here, because it
3452      // is not not harmful to try to explicitly instantiate something that
3453      // has been explicitly specialized.
3454      if (!getLangOptions().CPlusPlus0x) {
3455        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3456          << PrevDecl;
3457        Diag(PrevDecl->getLocation(),
3458             diag::note_previous_template_specialization);
3459      }
3460      SuppressNew = true;
3461      return false;
3462
3463    case TSK_ExplicitInstantiationDeclaration:
3464      // We're explicity instantiating a definition for something for which we
3465      // were previously asked to suppress instantiations. That's fine.
3466      return false;
3467
3468    case TSK_ExplicitInstantiationDefinition:
3469      // C++0x [temp.spec]p5:
3470      //   For a given template and a given set of template-arguments,
3471      //     - an explicit instantiation definition shall appear at most once
3472      //       in a program,
3473      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3474        << PrevDecl;
3475      Diag(PrevPointOfInstantiation,
3476           diag::note_previous_explicit_instantiation);
3477      SuppressNew = true;
3478      return false;
3479    }
3480    break;
3481  }
3482
3483  assert(false && "Missing specialization/instantiation case?");
3484
3485  return false;
3486}
3487
3488/// \brief Perform semantic analysis for the given function template
3489/// specialization.
3490///
3491/// This routine performs all of the semantic analysis required for an
3492/// explicit function template specialization. On successful completion,
3493/// the function declaration \p FD will become a function template
3494/// specialization.
3495///
3496/// \param FD the function declaration, which will be updated to become a
3497/// function template specialization.
3498///
3499/// \param HasExplicitTemplateArgs whether any template arguments were
3500/// explicitly provided.
3501///
3502/// \param LAngleLoc the location of the left angle bracket ('<'), if
3503/// template arguments were explicitly provided.
3504///
3505/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3506/// if any.
3507///
3508/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3509/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3510/// true as in, e.g., \c void sort<>(char*, char*);
3511///
3512/// \param RAngleLoc the location of the right angle bracket ('>'), if
3513/// template arguments were explicitly provided.
3514///
3515/// \param PrevDecl the set of declarations that
3516bool
3517Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3518                                          bool HasExplicitTemplateArgs,
3519                                          SourceLocation LAngleLoc,
3520                           const TemplateArgumentLoc *ExplicitTemplateArgs,
3521                                          unsigned NumExplicitTemplateArgs,
3522                                          SourceLocation RAngleLoc,
3523                                          NamedDecl *&PrevDecl) {
3524  // The set of function template specializations that could match this
3525  // explicit function template specialization.
3526  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
3527  CandidateSet Candidates;
3528
3529  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3530  for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) {
3531    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Ovl)) {
3532      // Only consider templates found within the same semantic lookup scope as
3533      // FD.
3534      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3535        continue;
3536
3537      // C++ [temp.expl.spec]p11:
3538      //   A trailing template-argument can be left unspecified in the
3539      //   template-id naming an explicit function template specialization
3540      //   provided it can be deduced from the function argument type.
3541      // Perform template argument deduction to determine whether we may be
3542      // specializing this template.
3543      // FIXME: It is somewhat wasteful to build
3544      TemplateDeductionInfo Info(Context);
3545      FunctionDecl *Specialization = 0;
3546      if (TemplateDeductionResult TDK
3547            = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
3548                                      ExplicitTemplateArgs,
3549                                      NumExplicitTemplateArgs,
3550                                      FD->getType(),
3551                                      Specialization,
3552                                      Info)) {
3553        // FIXME: Template argument deduction failed; record why it failed, so
3554        // that we can provide nifty diagnostics.
3555        (void)TDK;
3556        continue;
3557      }
3558
3559      // Record this candidate.
3560      Candidates.push_back(Specialization);
3561    }
3562  }
3563
3564  // Find the most specialized function template.
3565  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
3566                                                    Candidates.size(),
3567                                                    TPOC_Other,
3568                                                    FD->getLocation(),
3569                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3570                    << FD->getDeclName(),
3571                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3572                    << FD->getDeclName() << HasExplicitTemplateArgs,
3573                  PartialDiagnostic(diag::note_function_template_spec_matched));
3574  if (!Specialization)
3575    return true;
3576
3577  // FIXME: Check if the prior specialization has a point of instantiation.
3578  // If so, we have run afoul of .
3579
3580  // Check the scope of this explicit specialization.
3581  if (CheckTemplateSpecializationScope(*this,
3582                                       Specialization->getPrimaryTemplate(),
3583                                       Specialization, FD->getLocation(),
3584                                       false))
3585    return true;
3586
3587  // C++ [temp.expl.spec]p6:
3588  //   If a template, a member template or the member of a class template is
3589  //   explicitly specialized then that specialization shall be declared
3590  //   before the first use of that specialization that would cause an implicit
3591  //   instantiation to take place, in every translation unit in which such a
3592  //   use occurs; no diagnostic is required.
3593  FunctionTemplateSpecializationInfo *SpecInfo
3594    = Specialization->getTemplateSpecializationInfo();
3595  assert(SpecInfo && "Function template specialization info missing?");
3596  if (SpecInfo->getPointOfInstantiation().isValid()) {
3597    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3598      << FD;
3599    Diag(SpecInfo->getPointOfInstantiation(),
3600         diag::note_instantiation_required_here)
3601      << (Specialization->getTemplateSpecializationKind()
3602                                                != TSK_ImplicitInstantiation);
3603    return true;
3604  }
3605
3606  // Mark the prior declaration as an explicit specialization, so that later
3607  // clients know that this is an explicit specialization.
3608  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3609
3610  // Turn the given function declaration into a function template
3611  // specialization, with the template arguments from the previous
3612  // specialization.
3613  FD->setFunctionTemplateSpecialization(Context,
3614                                        Specialization->getPrimaryTemplate(),
3615                         new (Context) TemplateArgumentList(
3616                             *Specialization->getTemplateSpecializationArgs()),
3617                                        /*InsertPos=*/0,
3618                                        TSK_ExplicitSpecialization);
3619
3620  // The "previous declaration" for this function template specialization is
3621  // the prior function template specialization.
3622  PrevDecl = Specialization;
3623  return false;
3624}
3625
3626/// \brief Perform semantic analysis for the given non-template member
3627/// specialization.
3628///
3629/// This routine performs all of the semantic analysis required for an
3630/// explicit member function specialization. On successful completion,
3631/// the function declaration \p FD will become a member function
3632/// specialization.
3633///
3634/// \param Member the member declaration, which will be updated to become a
3635/// specialization.
3636///
3637/// \param PrevDecl the set of declarations, one of which may be specialized
3638/// by this function specialization.
3639bool
3640Sema::CheckMemberSpecialization(NamedDecl *Member, NamedDecl *&PrevDecl) {
3641  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3642
3643  // Try to find the member we are instantiating.
3644  NamedDecl *Instantiation = 0;
3645  NamedDecl *InstantiatedFrom = 0;
3646  MemberSpecializationInfo *MSInfo = 0;
3647
3648  if (!PrevDecl) {
3649    // Nowhere to look anyway.
3650  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3651    for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) {
3652      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Ovl)) {
3653        if (Context.hasSameType(Function->getType(), Method->getType())) {
3654          Instantiation = Method;
3655          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3656          MSInfo = Method->getMemberSpecializationInfo();
3657          break;
3658        }
3659      }
3660    }
3661  } else if (isa<VarDecl>(Member)) {
3662    if (VarDecl *PrevVar = dyn_cast<VarDecl>(PrevDecl))
3663      if (PrevVar->isStaticDataMember()) {
3664        Instantiation = PrevDecl;
3665        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
3666        MSInfo = PrevVar->getMemberSpecializationInfo();
3667      }
3668  } else if (isa<RecordDecl>(Member)) {
3669    if (CXXRecordDecl *PrevRecord = dyn_cast<CXXRecordDecl>(PrevDecl)) {
3670      Instantiation = PrevDecl;
3671      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
3672      MSInfo = PrevRecord->getMemberSpecializationInfo();
3673    }
3674  }
3675
3676  if (!Instantiation) {
3677    // There is no previous declaration that matches. Since member
3678    // specializations are always out-of-line, the caller will complain about
3679    // this mismatch later.
3680    return false;
3681  }
3682
3683  // Make sure that this is a specialization of a member.
3684  if (!InstantiatedFrom) {
3685    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
3686      << Member;
3687    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
3688    return true;
3689  }
3690
3691  // C++ [temp.expl.spec]p6:
3692  //   If a template, a member template or the member of a class template is
3693  //   explicitly specialized then that spe- cialization shall be declared
3694  //   before the first use of that specialization that would cause an implicit
3695  //   instantiation to take place, in every translation unit in which such a
3696  //   use occurs; no diagnostic is required.
3697  assert(MSInfo && "Member specialization info missing?");
3698  if (MSInfo->getPointOfInstantiation().isValid()) {
3699    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
3700      << Member;
3701    Diag(MSInfo->getPointOfInstantiation(),
3702         diag::note_instantiation_required_here)
3703      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
3704    return true;
3705  }
3706
3707  // Check the scope of this explicit specialization.
3708  if (CheckTemplateSpecializationScope(*this,
3709                                       InstantiatedFrom,
3710                                       Instantiation, Member->getLocation(),
3711                                       false))
3712    return true;
3713
3714  // Note that this is an explicit instantiation of a member.
3715  // the original declaration to note that it is an explicit specialization
3716  // (if it was previously an implicit instantiation). This latter step
3717  // makes bookkeeping easier.
3718  if (isa<FunctionDecl>(Member)) {
3719    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
3720    if (InstantiationFunction->getTemplateSpecializationKind() ==
3721          TSK_ImplicitInstantiation) {
3722      InstantiationFunction->setTemplateSpecializationKind(
3723                                                  TSK_ExplicitSpecialization);
3724      InstantiationFunction->setLocation(Member->getLocation());
3725    }
3726
3727    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
3728                                        cast<CXXMethodDecl>(InstantiatedFrom),
3729                                                  TSK_ExplicitSpecialization);
3730  } else if (isa<VarDecl>(Member)) {
3731    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
3732    if (InstantiationVar->getTemplateSpecializationKind() ==
3733          TSK_ImplicitInstantiation) {
3734      InstantiationVar->setTemplateSpecializationKind(
3735                                                  TSK_ExplicitSpecialization);
3736      InstantiationVar->setLocation(Member->getLocation());
3737    }
3738
3739    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
3740                                                cast<VarDecl>(InstantiatedFrom),
3741                                                TSK_ExplicitSpecialization);
3742  } else {
3743    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
3744    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
3745    if (InstantiationClass->getTemplateSpecializationKind() ==
3746          TSK_ImplicitInstantiation) {
3747      InstantiationClass->setTemplateSpecializationKind(
3748                                                   TSK_ExplicitSpecialization);
3749      InstantiationClass->setLocation(Member->getLocation());
3750    }
3751
3752    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
3753                                        cast<CXXRecordDecl>(InstantiatedFrom),
3754                                                   TSK_ExplicitSpecialization);
3755  }
3756
3757  // Save the caller the trouble of having to figure out which declaration
3758  // this specialization matches.
3759  PrevDecl = Instantiation;
3760  return false;
3761}
3762
3763/// \brief Check the scope of an explicit instantiation.
3764static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
3765                                            SourceLocation InstLoc,
3766                                            bool WasQualifiedName) {
3767  DeclContext *ExpectedContext
3768    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
3769  DeclContext *CurContext = S.CurContext->getLookupContext();
3770
3771  // C++0x [temp.explicit]p2:
3772  //   An explicit instantiation shall appear in an enclosing namespace of its
3773  //   template.
3774  //
3775  // This is DR275, which we do not retroactively apply to C++98/03.
3776  if (S.getLangOptions().CPlusPlus0x &&
3777      !CurContext->Encloses(ExpectedContext)) {
3778    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
3779      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
3780        << D << NS;
3781    else
3782      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
3783        << D;
3784    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3785    return;
3786  }
3787
3788  // C++0x [temp.explicit]p2:
3789  //   If the name declared in the explicit instantiation is an unqualified
3790  //   name, the explicit instantiation shall appear in the namespace where
3791  //   its template is declared or, if that namespace is inline (7.3.1), any
3792  //   namespace from its enclosing namespace set.
3793  if (WasQualifiedName)
3794    return;
3795
3796  if (CurContext->Equals(ExpectedContext))
3797    return;
3798
3799  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
3800    << D << ExpectedContext;
3801  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3802}
3803
3804/// \brief Determine whether the given scope specifier has a template-id in it.
3805static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
3806  if (!SS.isSet())
3807    return false;
3808
3809  // C++0x [temp.explicit]p2:
3810  //   If the explicit instantiation is for a member function, a member class
3811  //   or a static data member of a class template specialization, the name of
3812  //   the class template specialization in the qualified-id for the member
3813  //   name shall be a simple-template-id.
3814  //
3815  // C++98 has the same restriction, just worded differently.
3816  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
3817       NNS; NNS = NNS->getPrefix())
3818    if (Type *T = NNS->getAsType())
3819      if (isa<TemplateSpecializationType>(T))
3820        return true;
3821
3822  return false;
3823}
3824
3825// Explicit instantiation of a class template specialization
3826// FIXME: Implement extern template semantics
3827Sema::DeclResult
3828Sema::ActOnExplicitInstantiation(Scope *S,
3829                                 SourceLocation ExternLoc,
3830                                 SourceLocation TemplateLoc,
3831                                 unsigned TagSpec,
3832                                 SourceLocation KWLoc,
3833                                 const CXXScopeSpec &SS,
3834                                 TemplateTy TemplateD,
3835                                 SourceLocation TemplateNameLoc,
3836                                 SourceLocation LAngleLoc,
3837                                 ASTTemplateArgsPtr TemplateArgsIn,
3838                                 SourceLocation RAngleLoc,
3839                                 AttributeList *Attr) {
3840  // Find the class template we're specializing
3841  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3842  ClassTemplateDecl *ClassTemplate
3843    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
3844
3845  // Check that the specialization uses the same tag kind as the
3846  // original template.
3847  TagDecl::TagKind Kind;
3848  switch (TagSpec) {
3849  default: assert(0 && "Unknown tag type!");
3850  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3851  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3852  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3853  }
3854  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3855                                    Kind, KWLoc,
3856                                    *ClassTemplate->getIdentifier())) {
3857    Diag(KWLoc, diag::err_use_with_wrong_tag)
3858      << ClassTemplate
3859      << CodeModificationHint::CreateReplacement(KWLoc,
3860                            ClassTemplate->getTemplatedDecl()->getKindName());
3861    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3862         diag::note_previous_use);
3863    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3864  }
3865
3866  // C++0x [temp.explicit]p2:
3867  //   There are two forms of explicit instantiation: an explicit instantiation
3868  //   definition and an explicit instantiation declaration. An explicit
3869  //   instantiation declaration begins with the extern keyword. [...]
3870  TemplateSpecializationKind TSK
3871    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3872                           : TSK_ExplicitInstantiationDeclaration;
3873
3874  // Translate the parser's template argument list in our AST format.
3875  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
3876  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3877
3878  // Check that the template argument list is well-formed for this
3879  // template.
3880  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3881                                        TemplateArgs.size());
3882  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
3883                                TemplateArgs.data(), TemplateArgs.size(),
3884                                RAngleLoc, false, Converted))
3885    return true;
3886
3887  assert((Converted.structuredSize() ==
3888            ClassTemplate->getTemplateParameters()->size()) &&
3889         "Converted template argument list is too short!");
3890
3891  // Find the class template specialization declaration that
3892  // corresponds to these arguments.
3893  llvm::FoldingSetNodeID ID;
3894  ClassTemplateSpecializationDecl::Profile(ID,
3895                                           Converted.getFlatArguments(),
3896                                           Converted.flatSize(),
3897                                           Context);
3898  void *InsertPos = 0;
3899  ClassTemplateSpecializationDecl *PrevDecl
3900    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3901
3902  // C++0x [temp.explicit]p2:
3903  //   [...] An explicit instantiation shall appear in an enclosing
3904  //   namespace of its template. [...]
3905  //
3906  // This is C++ DR 275.
3907  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
3908                                  SS.isSet());
3909
3910  ClassTemplateSpecializationDecl *Specialization = 0;
3911
3912  if (PrevDecl) {
3913    bool SuppressNew = false;
3914    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
3915                                               PrevDecl,
3916                                              PrevDecl->getSpecializationKind(),
3917                                            PrevDecl->getPointOfInstantiation(),
3918                                               SuppressNew))
3919      return DeclPtrTy::make(PrevDecl);
3920
3921    if (SuppressNew)
3922      return DeclPtrTy::make(PrevDecl);
3923
3924    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
3925        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3926      // Since the only prior class template specialization with these
3927      // arguments was referenced but not declared, reuse that
3928      // declaration node as our own, updating its source location to
3929      // reflect our new declaration.
3930      Specialization = PrevDecl;
3931      Specialization->setLocation(TemplateNameLoc);
3932      PrevDecl = 0;
3933    }
3934  }
3935
3936  if (!Specialization) {
3937    // Create a new class template specialization declaration node for
3938    // this explicit specialization.
3939    Specialization
3940      = ClassTemplateSpecializationDecl::Create(Context,
3941                                             ClassTemplate->getDeclContext(),
3942                                                TemplateNameLoc,
3943                                                ClassTemplate,
3944                                                Converted, PrevDecl);
3945
3946    if (PrevDecl) {
3947      // Remove the previous declaration from the folding set, since we want
3948      // to introduce a new declaration.
3949      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3950      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3951    }
3952
3953    // Insert the new specialization.
3954    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
3955  }
3956
3957  // Build the fully-sugared type for this explicit instantiation as
3958  // the user wrote in the explicit instantiation itself. This means
3959  // that we'll pretty-print the type retrieved from the
3960  // specialization's declaration the way that the user actually wrote
3961  // the explicit instantiation, rather than formatting the name based
3962  // on the "canonical" representation used to store the template
3963  // arguments in the specialization.
3964  QualType WrittenTy
3965    = Context.getTemplateSpecializationType(Name,
3966                                            TemplateArgs.data(),
3967                                            TemplateArgs.size(),
3968                                  Context.getTypeDeclType(Specialization));
3969  Specialization->setTypeAsWritten(WrittenTy);
3970  TemplateArgsIn.release();
3971
3972  // Add the explicit instantiation into its lexical context. However,
3973  // since explicit instantiations are never found by name lookup, we
3974  // just put it into the declaration context directly.
3975  Specialization->setLexicalDeclContext(CurContext);
3976  CurContext->addDecl(Specialization);
3977
3978  // C++ [temp.explicit]p3:
3979  //   A definition of a class template or class member template
3980  //   shall be in scope at the point of the explicit instantiation of
3981  //   the class template or class member template.
3982  //
3983  // This check comes when we actually try to perform the
3984  // instantiation.
3985  ClassTemplateSpecializationDecl *Def
3986    = cast_or_null<ClassTemplateSpecializationDecl>(
3987                                        Specialization->getDefinition(Context));
3988  if (!Def)
3989    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
3990
3991  // Instantiate the members of this class template specialization.
3992  Def = cast_or_null<ClassTemplateSpecializationDecl>(
3993                                       Specialization->getDefinition(Context));
3994  if (Def)
3995    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
3996
3997  return DeclPtrTy::make(Specialization);
3998}
3999
4000// Explicit instantiation of a member class of a class template.
4001Sema::DeclResult
4002Sema::ActOnExplicitInstantiation(Scope *S,
4003                                 SourceLocation ExternLoc,
4004                                 SourceLocation TemplateLoc,
4005                                 unsigned TagSpec,
4006                                 SourceLocation KWLoc,
4007                                 const CXXScopeSpec &SS,
4008                                 IdentifierInfo *Name,
4009                                 SourceLocation NameLoc,
4010                                 AttributeList *Attr) {
4011
4012  bool Owned = false;
4013  bool IsDependent = false;
4014  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4015                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4016                            MultiTemplateParamsArg(*this, 0, 0),
4017                            Owned, IsDependent);
4018  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4019
4020  if (!TagD)
4021    return true;
4022
4023  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4024  if (Tag->isEnum()) {
4025    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4026      << Context.getTypeDeclType(Tag);
4027    return true;
4028  }
4029
4030  if (Tag->isInvalidDecl())
4031    return true;
4032
4033  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4034  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4035  if (!Pattern) {
4036    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4037      << Context.getTypeDeclType(Record);
4038    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4039    return true;
4040  }
4041
4042  // C++0x [temp.explicit]p2:
4043  //   If the explicit instantiation is for a class or member class, the
4044  //   elaborated-type-specifier in the declaration shall include a
4045  //   simple-template-id.
4046  //
4047  // C++98 has the same restriction, just worded differently.
4048  if (!ScopeSpecifierHasTemplateId(SS))
4049    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4050      << Record << SS.getRange();
4051
4052  // C++0x [temp.explicit]p2:
4053  //   There are two forms of explicit instantiation: an explicit instantiation
4054  //   definition and an explicit instantiation declaration. An explicit
4055  //   instantiation declaration begins with the extern keyword. [...]
4056  TemplateSpecializationKind TSK
4057    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4058                           : TSK_ExplicitInstantiationDeclaration;
4059
4060  // C++0x [temp.explicit]p2:
4061  //   [...] An explicit instantiation shall appear in an enclosing
4062  //   namespace of its template. [...]
4063  //
4064  // This is C++ DR 275.
4065  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4066
4067  // Verify that it is okay to explicitly instantiate here.
4068  CXXRecordDecl *PrevDecl
4069    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4070  if (!PrevDecl && Record->getDefinition(Context))
4071    PrevDecl = Record;
4072  if (PrevDecl) {
4073    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4074    bool SuppressNew = false;
4075    assert(MSInfo && "No member specialization information?");
4076    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4077                                               PrevDecl,
4078                                        MSInfo->getTemplateSpecializationKind(),
4079                                             MSInfo->getPointOfInstantiation(),
4080                                               SuppressNew))
4081      return true;
4082    if (SuppressNew)
4083      return TagD;
4084  }
4085
4086  CXXRecordDecl *RecordDef
4087    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4088  if (!RecordDef) {
4089    // C++ [temp.explicit]p3:
4090    //   A definition of a member class of a class template shall be in scope
4091    //   at the point of an explicit instantiation of the member class.
4092    CXXRecordDecl *Def
4093      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
4094    if (!Def) {
4095      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4096        << 0 << Record->getDeclName() << Record->getDeclContext();
4097      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4098        << Pattern;
4099      return true;
4100    } else {
4101      if (InstantiateClass(NameLoc, Record, Def,
4102                           getTemplateInstantiationArgs(Record),
4103                           TSK))
4104        return true;
4105
4106      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4107      if (!RecordDef)
4108        return true;
4109    }
4110  }
4111
4112  // Instantiate all of the members of the class.
4113  InstantiateClassMembers(NameLoc, RecordDef,
4114                          getTemplateInstantiationArgs(Record), TSK);
4115
4116  // FIXME: We don't have any representation for explicit instantiations of
4117  // member classes. Such a representation is not needed for compilation, but it
4118  // should be available for clients that want to see all of the declarations in
4119  // the source code.
4120  return TagD;
4121}
4122
4123Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4124                                                  SourceLocation ExternLoc,
4125                                                  SourceLocation TemplateLoc,
4126                                                  Declarator &D) {
4127  // Explicit instantiations always require a name.
4128  DeclarationName Name = GetNameForDeclarator(D);
4129  if (!Name) {
4130    if (!D.isInvalidType())
4131      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4132           diag::err_explicit_instantiation_requires_name)
4133        << D.getDeclSpec().getSourceRange()
4134        << D.getSourceRange();
4135
4136    return true;
4137  }
4138
4139  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4140  // we find one that is.
4141  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4142         (S->getFlags() & Scope::TemplateParamScope) != 0)
4143    S = S->getParent();
4144
4145  // Determine the type of the declaration.
4146  QualType R = GetTypeForDeclarator(D, S, 0);
4147  if (R.isNull())
4148    return true;
4149
4150  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4151    // Cannot explicitly instantiate a typedef.
4152    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4153      << Name;
4154    return true;
4155  }
4156
4157  // C++0x [temp.explicit]p1:
4158  //   [...] An explicit instantiation of a function template shall not use the
4159  //   inline or constexpr specifiers.
4160  // Presumably, this also applies to member functions of class templates as
4161  // well.
4162  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4163    Diag(D.getDeclSpec().getInlineSpecLoc(),
4164         diag::err_explicit_instantiation_inline)
4165      << CodeModificationHint::CreateRemoval(
4166                              SourceRange(D.getDeclSpec().getInlineSpecLoc()));
4167
4168  // FIXME: check for constexpr specifier.
4169
4170  // C++0x [temp.explicit]p2:
4171  //   There are two forms of explicit instantiation: an explicit instantiation
4172  //   definition and an explicit instantiation declaration. An explicit
4173  //   instantiation declaration begins with the extern keyword. [...]
4174  TemplateSpecializationKind TSK
4175    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4176                           : TSK_ExplicitInstantiationDeclaration;
4177
4178  LookupResult Previous;
4179  LookupParsedName(Previous, S, &D.getCXXScopeSpec(),
4180                   Name, LookupOrdinaryName);
4181
4182  if (!R->isFunctionType()) {
4183    // C++ [temp.explicit]p1:
4184    //   A [...] static data member of a class template can be explicitly
4185    //   instantiated from the member definition associated with its class
4186    //   template.
4187    if (Previous.isAmbiguous()) {
4188      return DiagnoseAmbiguousLookup(Previous, Name, D.getIdentifierLoc(),
4189                                     D.getSourceRange());
4190    }
4191
4192    VarDecl *Prev = dyn_cast_or_null<VarDecl>(
4193        Previous.getAsSingleDecl(Context));
4194    if (!Prev || !Prev->isStaticDataMember()) {
4195      // We expect to see a data data member here.
4196      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4197        << Name;
4198      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4199           P != PEnd; ++P)
4200        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4201      return true;
4202    }
4203
4204    if (!Prev->getInstantiatedFromStaticDataMember()) {
4205      // FIXME: Check for explicit specialization?
4206      Diag(D.getIdentifierLoc(),
4207           diag::err_explicit_instantiation_data_member_not_instantiated)
4208        << Prev;
4209      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4210      // FIXME: Can we provide a note showing where this was declared?
4211      return true;
4212    }
4213
4214    // C++0x [temp.explicit]p2:
4215    //   If the explicit instantiation is for a member function, a member class
4216    //   or a static data member of a class template specialization, the name of
4217    //   the class template specialization in the qualified-id for the member
4218    //   name shall be a simple-template-id.
4219    //
4220    // C++98 has the same restriction, just worded differently.
4221    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4222      Diag(D.getIdentifierLoc(),
4223           diag::err_explicit_instantiation_without_qualified_id)
4224        << Prev << D.getCXXScopeSpec().getRange();
4225
4226    // Check the scope of this explicit instantiation.
4227    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4228
4229    // Verify that it is okay to explicitly instantiate here.
4230    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4231    assert(MSInfo && "Missing static data member specialization info?");
4232    bool SuppressNew = false;
4233    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4234                                        MSInfo->getTemplateSpecializationKind(),
4235                                              MSInfo->getPointOfInstantiation(),
4236                                               SuppressNew))
4237      return true;
4238    if (SuppressNew)
4239      return DeclPtrTy();
4240
4241    // Instantiate static data member.
4242    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4243    if (TSK == TSK_ExplicitInstantiationDefinition)
4244      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4245                                            /*DefinitionRequired=*/true);
4246
4247    // FIXME: Create an ExplicitInstantiation node?
4248    return DeclPtrTy();
4249  }
4250
4251  // If the declarator is a template-id, translate the parser's template
4252  // argument list into our AST format.
4253  bool HasExplicitTemplateArgs = false;
4254  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
4255  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4256    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4257    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4258                                       TemplateId->getTemplateArgs(),
4259                                       TemplateId->NumArgs);
4260    translateTemplateArguments(TemplateArgsPtr,
4261                               TemplateArgs);
4262    HasExplicitTemplateArgs = true;
4263    TemplateArgsPtr.release();
4264  }
4265
4266  // C++ [temp.explicit]p1:
4267  //   A [...] function [...] can be explicitly instantiated from its template.
4268  //   A member function [...] of a class template can be explicitly
4269  //  instantiated from the member definition associated with its class
4270  //  template.
4271  llvm::SmallVector<FunctionDecl *, 8> Matches;
4272  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4273       P != PEnd; ++P) {
4274    NamedDecl *Prev = *P;
4275    if (!HasExplicitTemplateArgs) {
4276      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4277        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4278          Matches.clear();
4279          Matches.push_back(Method);
4280          break;
4281        }
4282      }
4283    }
4284
4285    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4286    if (!FunTmpl)
4287      continue;
4288
4289    TemplateDeductionInfo Info(Context);
4290    FunctionDecl *Specialization = 0;
4291    if (TemplateDeductionResult TDK
4292          = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
4293                                    TemplateArgs.data(), TemplateArgs.size(),
4294                                    R, Specialization, Info)) {
4295      // FIXME: Keep track of almost-matches?
4296      (void)TDK;
4297      continue;
4298    }
4299
4300    Matches.push_back(Specialization);
4301  }
4302
4303  // Find the most specialized function template specialization.
4304  FunctionDecl *Specialization
4305    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other,
4306                         D.getIdentifierLoc(),
4307          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4308          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4309                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4310
4311  if (!Specialization)
4312    return true;
4313
4314  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4315    Diag(D.getIdentifierLoc(),
4316         diag::err_explicit_instantiation_member_function_not_instantiated)
4317      << Specialization
4318      << (Specialization->getTemplateSpecializationKind() ==
4319          TSK_ExplicitSpecialization);
4320    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4321    return true;
4322  }
4323
4324  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4325  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4326    PrevDecl = Specialization;
4327
4328  if (PrevDecl) {
4329    bool SuppressNew = false;
4330    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4331                                               PrevDecl,
4332                                     PrevDecl->getTemplateSpecializationKind(),
4333                                          PrevDecl->getPointOfInstantiation(),
4334                                               SuppressNew))
4335      return true;
4336
4337    // FIXME: We may still want to build some representation of this
4338    // explicit specialization.
4339    if (SuppressNew)
4340      return DeclPtrTy();
4341  }
4342
4343  if (TSK == TSK_ExplicitInstantiationDefinition)
4344    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4345                                  false, /*DefinitionRequired=*/true);
4346
4347  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4348
4349  // C++0x [temp.explicit]p2:
4350  //   If the explicit instantiation is for a member function, a member class
4351  //   or a static data member of a class template specialization, the name of
4352  //   the class template specialization in the qualified-id for the member
4353  //   name shall be a simple-template-id.
4354  //
4355  // C++98 has the same restriction, just worded differently.
4356  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4357  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4358      D.getCXXScopeSpec().isSet() &&
4359      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4360    Diag(D.getIdentifierLoc(),
4361         diag::err_explicit_instantiation_without_qualified_id)
4362    << Specialization << D.getCXXScopeSpec().getRange();
4363
4364  CheckExplicitInstantiationScope(*this,
4365                   FunTmpl? (NamedDecl *)FunTmpl
4366                          : Specialization->getInstantiatedFromMemberFunction(),
4367                                  D.getIdentifierLoc(),
4368                                  D.getCXXScopeSpec().isSet());
4369
4370  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4371  return DeclPtrTy();
4372}
4373
4374Sema::TypeResult
4375Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4376                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4377                        SourceLocation TagLoc, SourceLocation NameLoc) {
4378  // This has to hold, because SS is expected to be defined.
4379  assert(Name && "Expected a name in a dependent tag");
4380
4381  NestedNameSpecifier *NNS
4382    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4383  if (!NNS)
4384    return true;
4385
4386  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4387  if (T.isNull())
4388    return true;
4389
4390  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4391  QualType ElabType = Context.getElaboratedType(T, TagKind);
4392
4393  return ElabType.getAsOpaquePtr();
4394}
4395
4396Sema::TypeResult
4397Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4398                        const IdentifierInfo &II, SourceLocation IdLoc) {
4399  NestedNameSpecifier *NNS
4400    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4401  if (!NNS)
4402    return true;
4403
4404  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4405  if (T.isNull())
4406    return true;
4407  return T.getAsOpaquePtr();
4408}
4409
4410Sema::TypeResult
4411Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4412                        SourceLocation TemplateLoc, TypeTy *Ty) {
4413  QualType T = GetTypeFromParser(Ty);
4414  NestedNameSpecifier *NNS
4415    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4416  const TemplateSpecializationType *TemplateId
4417    = T->getAs<TemplateSpecializationType>();
4418  assert(TemplateId && "Expected a template specialization type");
4419
4420  if (computeDeclContext(SS, false)) {
4421    // If we can compute a declaration context, then the "typename"
4422    // keyword was superfluous. Just build a QualifiedNameType to keep
4423    // track of the nested-name-specifier.
4424
4425    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4426    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4427  }
4428
4429  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4430}
4431
4432/// \brief Build the type that describes a C++ typename specifier,
4433/// e.g., "typename T::type".
4434QualType
4435Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4436                        SourceRange Range) {
4437  CXXRecordDecl *CurrentInstantiation = 0;
4438  if (NNS->isDependent()) {
4439    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4440
4441    // If the nested-name-specifier does not refer to the current
4442    // instantiation, then build a typename type.
4443    if (!CurrentInstantiation)
4444      return Context.getTypenameType(NNS, &II);
4445
4446    // The nested-name-specifier refers to the current instantiation, so the
4447    // "typename" keyword itself is superfluous. In C++03, the program is
4448    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4449    // extraneous "typename" keywords, and we retroactively apply this DR to
4450    // C++03 code.
4451  }
4452
4453  DeclContext *Ctx = 0;
4454
4455  if (CurrentInstantiation)
4456    Ctx = CurrentInstantiation;
4457  else {
4458    CXXScopeSpec SS;
4459    SS.setScopeRep(NNS);
4460    SS.setRange(Range);
4461    if (RequireCompleteDeclContext(SS))
4462      return QualType();
4463
4464    Ctx = computeDeclContext(SS);
4465  }
4466  assert(Ctx && "No declaration context?");
4467
4468  DeclarationName Name(&II);
4469  LookupResult Result;
4470  LookupQualifiedName(Result, Ctx, Name, LookupOrdinaryName, false);
4471  unsigned DiagID = 0;
4472  Decl *Referenced = 0;
4473  switch (Result.getKind()) {
4474  case LookupResult::NotFound:
4475    DiagID = diag::err_typename_nested_not_found;
4476    break;
4477
4478  case LookupResult::Found:
4479    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4480      // We found a type. Build a QualifiedNameType, since the
4481      // typename-specifier was just sugar. FIXME: Tell
4482      // QualifiedNameType that it has a "typename" prefix.
4483      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4484    }
4485
4486    DiagID = diag::err_typename_nested_not_type;
4487    Referenced = Result.getFoundDecl();
4488    break;
4489
4490  case LookupResult::FoundOverloaded:
4491    DiagID = diag::err_typename_nested_not_type;
4492    Referenced = *Result.begin();
4493    break;
4494
4495  case LookupResult::Ambiguous:
4496    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
4497    return QualType();
4498  }
4499
4500  // If we get here, it's because name lookup did not find a
4501  // type. Emit an appropriate diagnostic and return an error.
4502  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4503  if (Referenced)
4504    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4505      << Name;
4506  return QualType();
4507}
4508
4509namespace {
4510  // See Sema::RebuildTypeInCurrentInstantiation
4511  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
4512    : public TreeTransform<CurrentInstantiationRebuilder> {
4513    SourceLocation Loc;
4514    DeclarationName Entity;
4515
4516  public:
4517    CurrentInstantiationRebuilder(Sema &SemaRef,
4518                                  SourceLocation Loc,
4519                                  DeclarationName Entity)
4520    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4521      Loc(Loc), Entity(Entity) { }
4522
4523    /// \brief Determine whether the given type \p T has already been
4524    /// transformed.
4525    ///
4526    /// For the purposes of type reconstruction, a type has already been
4527    /// transformed if it is NULL or if it is not dependent.
4528    bool AlreadyTransformed(QualType T) {
4529      return T.isNull() || !T->isDependentType();
4530    }
4531
4532    /// \brief Returns the location of the entity whose type is being
4533    /// rebuilt.
4534    SourceLocation getBaseLocation() { return Loc; }
4535
4536    /// \brief Returns the name of the entity whose type is being rebuilt.
4537    DeclarationName getBaseEntity() { return Entity; }
4538
4539    /// \brief Sets the "base" location and entity when that
4540    /// information is known based on another transformation.
4541    void setBase(SourceLocation Loc, DeclarationName Entity) {
4542      this->Loc = Loc;
4543      this->Entity = Entity;
4544    }
4545
4546    /// \brief Transforms an expression by returning the expression itself
4547    /// (an identity function).
4548    ///
4549    /// FIXME: This is completely unsafe; we will need to actually clone the
4550    /// expressions.
4551    Sema::OwningExprResult TransformExpr(Expr *E) {
4552      return getSema().Owned(E);
4553    }
4554
4555    /// \brief Transforms a typename type by determining whether the type now
4556    /// refers to a member of the current instantiation, and then
4557    /// type-checking and building a QualifiedNameType (when possible).
4558    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4559  };
4560}
4561
4562QualType
4563CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4564                                                     TypenameTypeLoc TL) {
4565  TypenameType *T = TL.getTypePtr();
4566
4567  NestedNameSpecifier *NNS
4568    = TransformNestedNameSpecifier(T->getQualifier(),
4569                              /*FIXME:*/SourceRange(getBaseLocation()));
4570  if (!NNS)
4571    return QualType();
4572
4573  // If the nested-name-specifier did not change, and we cannot compute the
4574  // context corresponding to the nested-name-specifier, then this
4575  // typename type will not change; exit early.
4576  CXXScopeSpec SS;
4577  SS.setRange(SourceRange(getBaseLocation()));
4578  SS.setScopeRep(NNS);
4579
4580  QualType Result;
4581  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4582    Result = QualType(T, 0);
4583
4584  // Rebuild the typename type, which will probably turn into a
4585  // QualifiedNameType.
4586  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4587    QualType NewTemplateId
4588      = TransformType(QualType(TemplateId, 0));
4589    if (NewTemplateId.isNull())
4590      return QualType();
4591
4592    if (NNS == T->getQualifier() &&
4593        NewTemplateId == QualType(TemplateId, 0))
4594      Result = QualType(T, 0);
4595    else
4596      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4597  } else
4598    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4599                                              SourceRange(TL.getNameLoc()));
4600
4601  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4602  NewTL.setNameLoc(TL.getNameLoc());
4603  return Result;
4604}
4605
4606/// \brief Rebuilds a type within the context of the current instantiation.
4607///
4608/// The type \p T is part of the type of an out-of-line member definition of
4609/// a class template (or class template partial specialization) that was parsed
4610/// and constructed before we entered the scope of the class template (or
4611/// partial specialization thereof). This routine will rebuild that type now
4612/// that we have entered the declarator's scope, which may produce different
4613/// canonical types, e.g.,
4614///
4615/// \code
4616/// template<typename T>
4617/// struct X {
4618///   typedef T* pointer;
4619///   pointer data();
4620/// };
4621///
4622/// template<typename T>
4623/// typename X<T>::pointer X<T>::data() { ... }
4624/// \endcode
4625///
4626/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4627/// since we do not know that we can look into X<T> when we parsed the type.
4628/// This function will rebuild the type, performing the lookup of "pointer"
4629/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4630/// as the canonical type of T*, allowing the return types of the out-of-line
4631/// definition and the declaration to match.
4632QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4633                                                 DeclarationName Name) {
4634  if (T.isNull() || !T->isDependentType())
4635    return T;
4636
4637  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4638  return Rebuilder.TransformType(T);
4639}
4640
4641/// \brief Produces a formatted string that describes the binding of
4642/// template parameters to template arguments.
4643std::string
4644Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4645                                      const TemplateArgumentList &Args) {
4646  // FIXME: For variadic templates, we'll need to get the structured list.
4647  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
4648                                         Args.flat_size());
4649}
4650
4651std::string
4652Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4653                                      const TemplateArgument *Args,
4654                                      unsigned NumArgs) {
4655  std::string Result;
4656
4657  if (!Params || Params->size() == 0 || NumArgs == 0)
4658    return Result;
4659
4660  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
4661    if (I >= NumArgs)
4662      break;
4663
4664    if (I == 0)
4665      Result += "[with ";
4666    else
4667      Result += ", ";
4668
4669    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
4670      Result += Id->getName();
4671    } else {
4672      Result += '$';
4673      Result += llvm::utostr(I);
4674    }
4675
4676    Result += " = ";
4677
4678    switch (Args[I].getKind()) {
4679      case TemplateArgument::Null:
4680        Result += "<no value>";
4681        break;
4682
4683      case TemplateArgument::Type: {
4684        std::string TypeStr;
4685        Args[I].getAsType().getAsStringInternal(TypeStr,
4686                                                Context.PrintingPolicy);
4687        Result += TypeStr;
4688        break;
4689      }
4690
4691      case TemplateArgument::Declaration: {
4692        bool Unnamed = true;
4693        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
4694          if (ND->getDeclName()) {
4695            Unnamed = false;
4696            Result += ND->getNameAsString();
4697          }
4698        }
4699
4700        if (Unnamed) {
4701          Result += "<anonymous>";
4702        }
4703        break;
4704      }
4705
4706      case TemplateArgument::Template: {
4707        std::string Str;
4708        llvm::raw_string_ostream OS(Str);
4709        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
4710        Result += OS.str();
4711        break;
4712      }
4713
4714      case TemplateArgument::Integral: {
4715        Result += Args[I].getAsIntegral()->toString(10);
4716        break;
4717      }
4718
4719      case TemplateArgument::Expression: {
4720        assert(false && "No expressions in deduced template arguments!");
4721        Result += "<expression>";
4722        break;
4723      }
4724
4725      case TemplateArgument::Pack:
4726        // FIXME: Format template argument packs
4727        Result += "<template argument pack>";
4728        break;
4729    }
4730  }
4731
4732  Result += ']';
4733  return Result;
4734}
4735