SemaTemplate.cpp revision b1ce9297371b65b3726c09e85aed9781f70bca14
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclFriend.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/RecursiveASTVisitor.h"
19#include "clang/AST/TypeVisitor.h"
20#include "clang/Basic/LangOptions.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Sema/DeclSpec.h"
23#include "clang/Sema/Lookup.h"
24#include "clang/Sema/ParsedTemplate.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/SemaInternal.h"
27#include "clang/Sema/Template.h"
28#include "clang/Sema/TemplateDeduction.h"
29#include "llvm/ADT/SmallBitVector.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32using namespace clang;
33using namespace sema;
34
35// Exported for use by Parser.
36SourceRange
37clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
38                              unsigned N) {
39  if (!N) return SourceRange();
40  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
41}
42
43/// \brief Determine whether the declaration found is acceptable as the name
44/// of a template and, if so, return that template declaration. Otherwise,
45/// returns NULL.
46static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
47                                           NamedDecl *Orig,
48                                           bool AllowFunctionTemplates) {
49  NamedDecl *D = Orig->getUnderlyingDecl();
50
51  if (isa<TemplateDecl>(D)) {
52    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
53      return 0;
54
55    return Orig;
56  }
57
58  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
59    // C++ [temp.local]p1:
60    //   Like normal (non-template) classes, class templates have an
61    //   injected-class-name (Clause 9). The injected-class-name
62    //   can be used with or without a template-argument-list. When
63    //   it is used without a template-argument-list, it is
64    //   equivalent to the injected-class-name followed by the
65    //   template-parameters of the class template enclosed in
66    //   <>. When it is used with a template-argument-list, it
67    //   refers to the specified class template specialization,
68    //   which could be the current specialization or another
69    //   specialization.
70    if (Record->isInjectedClassName()) {
71      Record = cast<CXXRecordDecl>(Record->getDeclContext());
72      if (Record->getDescribedClassTemplate())
73        return Record->getDescribedClassTemplate();
74
75      if (ClassTemplateSpecializationDecl *Spec
76            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
77        return Spec->getSpecializedTemplate();
78    }
79
80    return 0;
81  }
82
83  return 0;
84}
85
86void Sema::FilterAcceptableTemplateNames(LookupResult &R,
87                                         bool AllowFunctionTemplates) {
88  // The set of class templates we've already seen.
89  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
90  LookupResult::Filter filter = R.makeFilter();
91  while (filter.hasNext()) {
92    NamedDecl *Orig = filter.next();
93    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
94                                               AllowFunctionTemplates);
95    if (!Repl)
96      filter.erase();
97    else if (Repl != Orig) {
98
99      // C++ [temp.local]p3:
100      //   A lookup that finds an injected-class-name (10.2) can result in an
101      //   ambiguity in certain cases (for example, if it is found in more than
102      //   one base class). If all of the injected-class-names that are found
103      //   refer to specializations of the same class template, and if the name
104      //   is used as a template-name, the reference refers to the class
105      //   template itself and not a specialization thereof, and is not
106      //   ambiguous.
107      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
108        if (!ClassTemplates.insert(ClassTmpl)) {
109          filter.erase();
110          continue;
111        }
112
113      // FIXME: we promote access to public here as a workaround to
114      // the fact that LookupResult doesn't let us remember that we
115      // found this template through a particular injected class name,
116      // which means we end up doing nasty things to the invariants.
117      // Pretending that access is public is *much* safer.
118      filter.replace(Repl, AS_public);
119    }
120  }
121  filter.done();
122}
123
124bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
125                                         bool AllowFunctionTemplates) {
126  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
127    if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
128      return true;
129
130  return false;
131}
132
133TemplateNameKind Sema::isTemplateName(Scope *S,
134                                      CXXScopeSpec &SS,
135                                      bool hasTemplateKeyword,
136                                      UnqualifiedId &Name,
137                                      ParsedType ObjectTypePtr,
138                                      bool EnteringContext,
139                                      TemplateTy &TemplateResult,
140                                      bool &MemberOfUnknownSpecialization) {
141  assert(getLangOpts().CPlusPlus && "No template names in C!");
142
143  DeclarationName TName;
144  MemberOfUnknownSpecialization = false;
145
146  switch (Name.getKind()) {
147  case UnqualifiedId::IK_Identifier:
148    TName = DeclarationName(Name.Identifier);
149    break;
150
151  case UnqualifiedId::IK_OperatorFunctionId:
152    TName = Context.DeclarationNames.getCXXOperatorName(
153                                              Name.OperatorFunctionId.Operator);
154    break;
155
156  case UnqualifiedId::IK_LiteralOperatorId:
157    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
158    break;
159
160  default:
161    return TNK_Non_template;
162  }
163
164  QualType ObjectType = ObjectTypePtr.get();
165
166  LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
167  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
168                     MemberOfUnknownSpecialization);
169  if (R.empty()) return TNK_Non_template;
170  if (R.isAmbiguous()) {
171    // Suppress diagnostics;  we'll redo this lookup later.
172    R.suppressDiagnostics();
173
174    // FIXME: we might have ambiguous templates, in which case we
175    // should at least parse them properly!
176    return TNK_Non_template;
177  }
178
179  TemplateName Template;
180  TemplateNameKind TemplateKind;
181
182  unsigned ResultCount = R.end() - R.begin();
183  if (ResultCount > 1) {
184    // We assume that we'll preserve the qualifier from a function
185    // template name in other ways.
186    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
187    TemplateKind = TNK_Function_template;
188
189    // We'll do this lookup again later.
190    R.suppressDiagnostics();
191  } else {
192    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
193
194    if (SS.isSet() && !SS.isInvalid()) {
195      NestedNameSpecifier *Qualifier
196        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
197      Template = Context.getQualifiedTemplateName(Qualifier,
198                                                  hasTemplateKeyword, TD);
199    } else {
200      Template = TemplateName(TD);
201    }
202
203    if (isa<FunctionTemplateDecl>(TD)) {
204      TemplateKind = TNK_Function_template;
205
206      // We'll do this lookup again later.
207      R.suppressDiagnostics();
208    } else {
209      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
210             isa<TypeAliasTemplateDecl>(TD));
211      TemplateKind = TNK_Type_template;
212    }
213  }
214
215  TemplateResult = TemplateTy::make(Template);
216  return TemplateKind;
217}
218
219bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
220                                       SourceLocation IILoc,
221                                       Scope *S,
222                                       const CXXScopeSpec *SS,
223                                       TemplateTy &SuggestedTemplate,
224                                       TemplateNameKind &SuggestedKind) {
225  // We can't recover unless there's a dependent scope specifier preceding the
226  // template name.
227  // FIXME: Typo correction?
228  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
229      computeDeclContext(*SS))
230    return false;
231
232  // The code is missing a 'template' keyword prior to the dependent template
233  // name.
234  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
235  Diag(IILoc, diag::err_template_kw_missing)
236    << Qualifier << II.getName()
237    << FixItHint::CreateInsertion(IILoc, "template ");
238  SuggestedTemplate
239    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
240  SuggestedKind = TNK_Dependent_template_name;
241  return true;
242}
243
244void Sema::LookupTemplateName(LookupResult &Found,
245                              Scope *S, CXXScopeSpec &SS,
246                              QualType ObjectType,
247                              bool EnteringContext,
248                              bool &MemberOfUnknownSpecialization) {
249  // Determine where to perform name lookup
250  MemberOfUnknownSpecialization = false;
251  DeclContext *LookupCtx = 0;
252  bool isDependent = false;
253  if (!ObjectType.isNull()) {
254    // This nested-name-specifier occurs in a member access expression, e.g.,
255    // x->B::f, and we are looking into the type of the object.
256    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
257    LookupCtx = computeDeclContext(ObjectType);
258    isDependent = ObjectType->isDependentType();
259    assert((isDependent || !ObjectType->isIncompleteType() ||
260            ObjectType->castAs<TagType>()->isBeingDefined()) &&
261           "Caller should have completed object type");
262
263    // Template names cannot appear inside an Objective-C class or object type.
264    if (ObjectType->isObjCObjectOrInterfaceType()) {
265      Found.clear();
266      return;
267    }
268  } else if (SS.isSet()) {
269    // This nested-name-specifier occurs after another nested-name-specifier,
270    // so long into the context associated with the prior nested-name-specifier.
271    LookupCtx = computeDeclContext(SS, EnteringContext);
272    isDependent = isDependentScopeSpecifier(SS);
273
274    // The declaration context must be complete.
275    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
276      return;
277  }
278
279  bool ObjectTypeSearchedInScope = false;
280  bool AllowFunctionTemplatesInLookup = true;
281  if (LookupCtx) {
282    // Perform "qualified" name lookup into the declaration context we
283    // computed, which is either the type of the base of a member access
284    // expression or the declaration context associated with a prior
285    // nested-name-specifier.
286    LookupQualifiedName(Found, LookupCtx);
287    if (!ObjectType.isNull() && Found.empty()) {
288      // C++ [basic.lookup.classref]p1:
289      //   In a class member access expression (5.2.5), if the . or -> token is
290      //   immediately followed by an identifier followed by a <, the
291      //   identifier must be looked up to determine whether the < is the
292      //   beginning of a template argument list (14.2) or a less-than operator.
293      //   The identifier is first looked up in the class of the object
294      //   expression. If the identifier is not found, it is then looked up in
295      //   the context of the entire postfix-expression and shall name a class
296      //   or function template.
297      if (S) LookupName(Found, S);
298      ObjectTypeSearchedInScope = true;
299      AllowFunctionTemplatesInLookup = false;
300    }
301  } else if (isDependent && (!S || ObjectType.isNull())) {
302    // We cannot look into a dependent object type or nested nme
303    // specifier.
304    MemberOfUnknownSpecialization = true;
305    return;
306  } else {
307    // Perform unqualified name lookup in the current scope.
308    LookupName(Found, S);
309
310    if (!ObjectType.isNull())
311      AllowFunctionTemplatesInLookup = false;
312  }
313
314  if (Found.empty() && !isDependent) {
315    // If we did not find any names, attempt to correct any typos.
316    DeclarationName Name = Found.getLookupName();
317    Found.clear();
318    // Simple filter callback that, for keywords, only accepts the C++ *_cast
319    CorrectionCandidateCallback FilterCCC;
320    FilterCCC.WantTypeSpecifiers = false;
321    FilterCCC.WantExpressionKeywords = false;
322    FilterCCC.WantRemainingKeywords = false;
323    FilterCCC.WantCXXNamedCasts = true;
324    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
325                                               Found.getLookupKind(), S, &SS,
326                                               FilterCCC, LookupCtx)) {
327      Found.setLookupName(Corrected.getCorrection());
328      if (Corrected.getCorrectionDecl())
329        Found.addDecl(Corrected.getCorrectionDecl());
330      FilterAcceptableTemplateNames(Found);
331      if (!Found.empty()) {
332        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
333        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
334        if (LookupCtx)
335          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
336            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
337            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
338                                            CorrectedStr);
339        else
340          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
341            << Name << CorrectedQuotedStr
342            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
343        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
344          Diag(Template->getLocation(), diag::note_previous_decl)
345            << CorrectedQuotedStr;
346      }
347    } else {
348      Found.setLookupName(Name);
349    }
350  }
351
352  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
353  if (Found.empty()) {
354    if (isDependent)
355      MemberOfUnknownSpecialization = true;
356    return;
357  }
358
359  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
360      !(getLangOpts().CPlusPlus11 && !Found.empty())) {
361    // C++03 [basic.lookup.classref]p1:
362    //   [...] If the lookup in the class of the object expression finds a
363    //   template, the name is also looked up in the context of the entire
364    //   postfix-expression and [...]
365    //
366    // Note: C++11 does not perform this second lookup.
367    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
368                            LookupOrdinaryName);
369    LookupName(FoundOuter, S);
370    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
371
372    if (FoundOuter.empty()) {
373      //   - if the name is not found, the name found in the class of the
374      //     object expression is used, otherwise
375    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
376               FoundOuter.isAmbiguous()) {
377      //   - if the name is found in the context of the entire
378      //     postfix-expression and does not name a class template, the name
379      //     found in the class of the object expression is used, otherwise
380      FoundOuter.clear();
381    } else if (!Found.isSuppressingDiagnostics()) {
382      //   - if the name found is a class template, it must refer to the same
383      //     entity as the one found in the class of the object expression,
384      //     otherwise the program is ill-formed.
385      if (!Found.isSingleResult() ||
386          Found.getFoundDecl()->getCanonicalDecl()
387            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
388        Diag(Found.getNameLoc(),
389             diag::ext_nested_name_member_ref_lookup_ambiguous)
390          << Found.getLookupName()
391          << ObjectType;
392        Diag(Found.getRepresentativeDecl()->getLocation(),
393             diag::note_ambig_member_ref_object_type)
394          << ObjectType;
395        Diag(FoundOuter.getFoundDecl()->getLocation(),
396             diag::note_ambig_member_ref_scope);
397
398        // Recover by taking the template that we found in the object
399        // expression's type.
400      }
401    }
402  }
403}
404
405/// ActOnDependentIdExpression - Handle a dependent id-expression that
406/// was just parsed.  This is only possible with an explicit scope
407/// specifier naming a dependent type.
408ExprResult
409Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
410                                 SourceLocation TemplateKWLoc,
411                                 const DeclarationNameInfo &NameInfo,
412                                 bool isAddressOfOperand,
413                           const TemplateArgumentListInfo *TemplateArgs) {
414  DeclContext *DC = getFunctionLevelDeclContext();
415
416  if (!isAddressOfOperand &&
417      isa<CXXMethodDecl>(DC) &&
418      cast<CXXMethodDecl>(DC)->isInstance()) {
419    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
420
421    // Since the 'this' expression is synthesized, we don't need to
422    // perform the double-lookup check.
423    NamedDecl *FirstQualifierInScope = 0;
424
425    return Owned(CXXDependentScopeMemberExpr::Create(Context,
426                                                     /*This*/ 0, ThisType,
427                                                     /*IsArrow*/ true,
428                                                     /*Op*/ SourceLocation(),
429                                               SS.getWithLocInContext(Context),
430                                                     TemplateKWLoc,
431                                                     FirstQualifierInScope,
432                                                     NameInfo,
433                                                     TemplateArgs));
434  }
435
436  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
437}
438
439ExprResult
440Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
441                                SourceLocation TemplateKWLoc,
442                                const DeclarationNameInfo &NameInfo,
443                                const TemplateArgumentListInfo *TemplateArgs) {
444  return Owned(DependentScopeDeclRefExpr::Create(Context,
445                                               SS.getWithLocInContext(Context),
446                                                 TemplateKWLoc,
447                                                 NameInfo,
448                                                 TemplateArgs));
449}
450
451/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
452/// that the template parameter 'PrevDecl' is being shadowed by a new
453/// declaration at location Loc. Returns true to indicate that this is
454/// an error, and false otherwise.
455void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
456  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
457
458  // Microsoft Visual C++ permits template parameters to be shadowed.
459  if (getLangOpts().MicrosoftExt)
460    return;
461
462  // C++ [temp.local]p4:
463  //   A template-parameter shall not be redeclared within its
464  //   scope (including nested scopes).
465  Diag(Loc, diag::err_template_param_shadow)
466    << cast<NamedDecl>(PrevDecl)->getDeclName();
467  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
468  return;
469}
470
471/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
472/// the parameter D to reference the templated declaration and return a pointer
473/// to the template declaration. Otherwise, do nothing to D and return null.
474TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
475  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
476    D = Temp->getTemplatedDecl();
477    return Temp;
478  }
479  return 0;
480}
481
482ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
483                                             SourceLocation EllipsisLoc) const {
484  assert(Kind == Template &&
485         "Only template template arguments can be pack expansions here");
486  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
487         "Template template argument pack expansion without packs");
488  ParsedTemplateArgument Result(*this);
489  Result.EllipsisLoc = EllipsisLoc;
490  return Result;
491}
492
493static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
494                                            const ParsedTemplateArgument &Arg) {
495
496  switch (Arg.getKind()) {
497  case ParsedTemplateArgument::Type: {
498    TypeSourceInfo *DI;
499    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
500    if (!DI)
501      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
502    return TemplateArgumentLoc(TemplateArgument(T), DI);
503  }
504
505  case ParsedTemplateArgument::NonType: {
506    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
507    return TemplateArgumentLoc(TemplateArgument(E), E);
508  }
509
510  case ParsedTemplateArgument::Template: {
511    TemplateName Template = Arg.getAsTemplate().get();
512    TemplateArgument TArg;
513    if (Arg.getEllipsisLoc().isValid())
514      TArg = TemplateArgument(Template, Optional<unsigned int>());
515    else
516      TArg = Template;
517    return TemplateArgumentLoc(TArg,
518                               Arg.getScopeSpec().getWithLocInContext(
519                                                              SemaRef.Context),
520                               Arg.getLocation(),
521                               Arg.getEllipsisLoc());
522  }
523  }
524
525  llvm_unreachable("Unhandled parsed template argument");
526}
527
528/// \brief Translates template arguments as provided by the parser
529/// into template arguments used by semantic analysis.
530void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
531                                      TemplateArgumentListInfo &TemplateArgs) {
532 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
533   TemplateArgs.addArgument(translateTemplateArgument(*this,
534                                                      TemplateArgsIn[I]));
535}
536
537/// ActOnTypeParameter - Called when a C++ template type parameter
538/// (e.g., "typename T") has been parsed. Typename specifies whether
539/// the keyword "typename" was used to declare the type parameter
540/// (otherwise, "class" was used), and KeyLoc is the location of the
541/// "class" or "typename" keyword. ParamName is the name of the
542/// parameter (NULL indicates an unnamed template parameter) and
543/// ParamNameLoc is the location of the parameter name (if any).
544/// If the type parameter has a default argument, it will be added
545/// later via ActOnTypeParameterDefault.
546Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
547                               SourceLocation EllipsisLoc,
548                               SourceLocation KeyLoc,
549                               IdentifierInfo *ParamName,
550                               SourceLocation ParamNameLoc,
551                               unsigned Depth, unsigned Position,
552                               SourceLocation EqualLoc,
553                               ParsedType DefaultArg) {
554  assert(S->isTemplateParamScope() &&
555         "Template type parameter not in template parameter scope!");
556  bool Invalid = false;
557
558  if (ParamName) {
559    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
560                                           LookupOrdinaryName,
561                                           ForRedeclaration);
562    if (PrevDecl && PrevDecl->isTemplateParameter()) {
563      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
564      PrevDecl = 0;
565    }
566  }
567
568  SourceLocation Loc = ParamNameLoc;
569  if (!ParamName)
570    Loc = KeyLoc;
571
572  TemplateTypeParmDecl *Param
573    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
574                                   KeyLoc, Loc, Depth, Position, ParamName,
575                                   Typename, Ellipsis);
576  Param->setAccess(AS_public);
577  if (Invalid)
578    Param->setInvalidDecl();
579
580  if (ParamName) {
581    // Add the template parameter into the current scope.
582    S->AddDecl(Param);
583    IdResolver.AddDecl(Param);
584  }
585
586  // C++0x [temp.param]p9:
587  //   A default template-argument may be specified for any kind of
588  //   template-parameter that is not a template parameter pack.
589  if (DefaultArg && Ellipsis) {
590    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
591    DefaultArg = ParsedType();
592  }
593
594  // Handle the default argument, if provided.
595  if (DefaultArg) {
596    TypeSourceInfo *DefaultTInfo;
597    GetTypeFromParser(DefaultArg, &DefaultTInfo);
598
599    assert(DefaultTInfo && "expected source information for type");
600
601    // Check for unexpanded parameter packs.
602    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
603                                        UPPC_DefaultArgument))
604      return Param;
605
606    // Check the template argument itself.
607    if (CheckTemplateArgument(Param, DefaultTInfo)) {
608      Param->setInvalidDecl();
609      return Param;
610    }
611
612    Param->setDefaultArgument(DefaultTInfo, false);
613  }
614
615  return Param;
616}
617
618/// \brief Check that the type of a non-type template parameter is
619/// well-formed.
620///
621/// \returns the (possibly-promoted) parameter type if valid;
622/// otherwise, produces a diagnostic and returns a NULL type.
623QualType
624Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
625  // We don't allow variably-modified types as the type of non-type template
626  // parameters.
627  if (T->isVariablyModifiedType()) {
628    Diag(Loc, diag::err_variably_modified_nontype_template_param)
629      << T;
630    return QualType();
631  }
632
633  // C++ [temp.param]p4:
634  //
635  // A non-type template-parameter shall have one of the following
636  // (optionally cv-qualified) types:
637  //
638  //       -- integral or enumeration type,
639  if (T->isIntegralOrEnumerationType() ||
640      //   -- pointer to object or pointer to function,
641      T->isPointerType() ||
642      //   -- reference to object or reference to function,
643      T->isReferenceType() ||
644      //   -- pointer to member,
645      T->isMemberPointerType() ||
646      //   -- std::nullptr_t.
647      T->isNullPtrType() ||
648      // If T is a dependent type, we can't do the check now, so we
649      // assume that it is well-formed.
650      T->isDependentType()) {
651    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
652    // are ignored when determining its type.
653    return T.getUnqualifiedType();
654  }
655
656  // C++ [temp.param]p8:
657  //
658  //   A non-type template-parameter of type "array of T" or
659  //   "function returning T" is adjusted to be of type "pointer to
660  //   T" or "pointer to function returning T", respectively.
661  else if (T->isArrayType())
662    // FIXME: Keep the type prior to promotion?
663    return Context.getArrayDecayedType(T);
664  else if (T->isFunctionType())
665    // FIXME: Keep the type prior to promotion?
666    return Context.getPointerType(T);
667
668  Diag(Loc, diag::err_template_nontype_parm_bad_type)
669    << T;
670
671  return QualType();
672}
673
674Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
675                                          unsigned Depth,
676                                          unsigned Position,
677                                          SourceLocation EqualLoc,
678                                          Expr *Default) {
679  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
680  QualType T = TInfo->getType();
681
682  assert(S->isTemplateParamScope() &&
683         "Non-type template parameter not in template parameter scope!");
684  bool Invalid = false;
685
686  IdentifierInfo *ParamName = D.getIdentifier();
687  if (ParamName) {
688    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
689                                           LookupOrdinaryName,
690                                           ForRedeclaration);
691    if (PrevDecl && PrevDecl->isTemplateParameter()) {
692      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
693      PrevDecl = 0;
694    }
695  }
696
697  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
698  if (T.isNull()) {
699    T = Context.IntTy; // Recover with an 'int' type.
700    Invalid = true;
701  }
702
703  bool IsParameterPack = D.hasEllipsis();
704  NonTypeTemplateParmDecl *Param
705    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
706                                      D.getLocStart(),
707                                      D.getIdentifierLoc(),
708                                      Depth, Position, ParamName, T,
709                                      IsParameterPack, TInfo);
710  Param->setAccess(AS_public);
711
712  if (Invalid)
713    Param->setInvalidDecl();
714
715  if (D.getIdentifier()) {
716    // Add the template parameter into the current scope.
717    S->AddDecl(Param);
718    IdResolver.AddDecl(Param);
719  }
720
721  // C++0x [temp.param]p9:
722  //   A default template-argument may be specified for any kind of
723  //   template-parameter that is not a template parameter pack.
724  if (Default && IsParameterPack) {
725    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
726    Default = 0;
727  }
728
729  // Check the well-formedness of the default template argument, if provided.
730  if (Default) {
731    // Check for unexpanded parameter packs.
732    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
733      return Param;
734
735    TemplateArgument Converted;
736    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
737    if (DefaultRes.isInvalid()) {
738      Param->setInvalidDecl();
739      return Param;
740    }
741    Default = DefaultRes.take();
742
743    Param->setDefaultArgument(Default, false);
744  }
745
746  return Param;
747}
748
749/// ActOnTemplateTemplateParameter - Called when a C++ template template
750/// parameter (e.g. T in template <template \<typename> class T> class array)
751/// has been parsed. S is the current scope.
752Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
753                                           SourceLocation TmpLoc,
754                                           TemplateParameterList *Params,
755                                           SourceLocation EllipsisLoc,
756                                           IdentifierInfo *Name,
757                                           SourceLocation NameLoc,
758                                           unsigned Depth,
759                                           unsigned Position,
760                                           SourceLocation EqualLoc,
761                                           ParsedTemplateArgument Default) {
762  assert(S->isTemplateParamScope() &&
763         "Template template parameter not in template parameter scope!");
764
765  // Construct the parameter object.
766  bool IsParameterPack = EllipsisLoc.isValid();
767  TemplateTemplateParmDecl *Param =
768    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
769                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
770                                     Depth, Position, IsParameterPack,
771                                     Name, Params);
772  Param->setAccess(AS_public);
773
774  // If the template template parameter has a name, then link the identifier
775  // into the scope and lookup mechanisms.
776  if (Name) {
777    S->AddDecl(Param);
778    IdResolver.AddDecl(Param);
779  }
780
781  if (Params->size() == 0) {
782    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
783    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
784    Param->setInvalidDecl();
785  }
786
787  // C++0x [temp.param]p9:
788  //   A default template-argument may be specified for any kind of
789  //   template-parameter that is not a template parameter pack.
790  if (IsParameterPack && !Default.isInvalid()) {
791    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
792    Default = ParsedTemplateArgument();
793  }
794
795  if (!Default.isInvalid()) {
796    // Check only that we have a template template argument. We don't want to
797    // try to check well-formedness now, because our template template parameter
798    // might have dependent types in its template parameters, which we wouldn't
799    // be able to match now.
800    //
801    // If none of the template template parameter's template arguments mention
802    // other template parameters, we could actually perform more checking here.
803    // However, it isn't worth doing.
804    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
805    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
806      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
807        << DefaultArg.getSourceRange();
808      return Param;
809    }
810
811    // Check for unexpanded parameter packs.
812    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
813                                        DefaultArg.getArgument().getAsTemplate(),
814                                        UPPC_DefaultArgument))
815      return Param;
816
817    Param->setDefaultArgument(DefaultArg, false);
818  }
819
820  return Param;
821}
822
823/// ActOnTemplateParameterList - Builds a TemplateParameterList that
824/// contains the template parameters in Params/NumParams.
825TemplateParameterList *
826Sema::ActOnTemplateParameterList(unsigned Depth,
827                                 SourceLocation ExportLoc,
828                                 SourceLocation TemplateLoc,
829                                 SourceLocation LAngleLoc,
830                                 Decl **Params, unsigned NumParams,
831                                 SourceLocation RAngleLoc) {
832  if (ExportLoc.isValid())
833    Diag(ExportLoc, diag::warn_template_export_unsupported);
834
835  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
836                                       (NamedDecl**)Params, NumParams,
837                                       RAngleLoc);
838}
839
840static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
841  if (SS.isSet())
842    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
843}
844
845DeclResult
846Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
847                         SourceLocation KWLoc, CXXScopeSpec &SS,
848                         IdentifierInfo *Name, SourceLocation NameLoc,
849                         AttributeList *Attr,
850                         TemplateParameterList *TemplateParams,
851                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
852                         unsigned NumOuterTemplateParamLists,
853                         TemplateParameterList** OuterTemplateParamLists) {
854  assert(TemplateParams && TemplateParams->size() > 0 &&
855         "No template parameters");
856  assert(TUK != TUK_Reference && "Can only declare or define class templates");
857  bool Invalid = false;
858
859  // Check that we can declare a template here.
860  if (CheckTemplateDeclScope(S, TemplateParams))
861    return true;
862
863  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
864  assert(Kind != TTK_Enum && "can't build template of enumerated type");
865
866  // There is no such thing as an unnamed class template.
867  if (!Name) {
868    Diag(KWLoc, diag::err_template_unnamed_class);
869    return true;
870  }
871
872  // Find any previous declaration with this name. For a friend with no
873  // scope explicitly specified, we only look for tag declarations (per
874  // C++11 [basic.lookup.elab]p2).
875  DeclContext *SemanticContext;
876  LookupResult Previous(*this, Name, NameLoc,
877                        (SS.isEmpty() && TUK == TUK_Friend)
878                          ? LookupTagName : LookupOrdinaryName,
879                        ForRedeclaration);
880  if (SS.isNotEmpty() && !SS.isInvalid()) {
881    SemanticContext = computeDeclContext(SS, true);
882    if (!SemanticContext) {
883      // FIXME: Horrible, horrible hack! We can't currently represent this
884      // in the AST, and historically we have just ignored such friend
885      // class templates, so don't complain here.
886      if (TUK != TUK_Friend)
887        Diag(NameLoc, diag::err_template_qualified_declarator_no_match)
888          << SS.getScopeRep() << SS.getRange();
889      return true;
890    }
891
892    if (RequireCompleteDeclContext(SS, SemanticContext))
893      return true;
894
895    // If we're adding a template to a dependent context, we may need to
896    // rebuilding some of the types used within the template parameter list,
897    // now that we know what the current instantiation is.
898    if (SemanticContext->isDependentContext()) {
899      ContextRAII SavedContext(*this, SemanticContext);
900      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
901        Invalid = true;
902    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
903      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
904
905    LookupQualifiedName(Previous, SemanticContext);
906  } else {
907    SemanticContext = CurContext;
908    LookupName(Previous, S);
909  }
910
911  if (Previous.isAmbiguous())
912    return true;
913
914  NamedDecl *PrevDecl = 0;
915  if (Previous.begin() != Previous.end())
916    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
917
918  // If there is a previous declaration with the same name, check
919  // whether this is a valid redeclaration.
920  ClassTemplateDecl *PrevClassTemplate
921    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
922
923  // We may have found the injected-class-name of a class template,
924  // class template partial specialization, or class template specialization.
925  // In these cases, grab the template that is being defined or specialized.
926  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
927      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
928    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
929    PrevClassTemplate
930      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
931    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
932      PrevClassTemplate
933        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
934            ->getSpecializedTemplate();
935    }
936  }
937
938  if (TUK == TUK_Friend) {
939    // C++ [namespace.memdef]p3:
940    //   [...] When looking for a prior declaration of a class or a function
941    //   declared as a friend, and when the name of the friend class or
942    //   function is neither a qualified name nor a template-id, scopes outside
943    //   the innermost enclosing namespace scope are not considered.
944    if (!SS.isSet()) {
945      DeclContext *OutermostContext = CurContext;
946      while (!OutermostContext->isFileContext())
947        OutermostContext = OutermostContext->getLookupParent();
948
949      if (PrevDecl &&
950          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
951           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
952        SemanticContext = PrevDecl->getDeclContext();
953      } else {
954        // Declarations in outer scopes don't matter. However, the outermost
955        // context we computed is the semantic context for our new
956        // declaration.
957        PrevDecl = PrevClassTemplate = 0;
958        SemanticContext = OutermostContext;
959
960        // Check that the chosen semantic context doesn't already contain a
961        // declaration of this name as a non-tag type.
962        LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
963                              ForRedeclaration);
964        DeclContext *LookupContext = SemanticContext;
965        while (LookupContext->isTransparentContext())
966          LookupContext = LookupContext->getLookupParent();
967        LookupQualifiedName(Previous, LookupContext);
968
969        if (Previous.isAmbiguous())
970          return true;
971
972        if (Previous.begin() != Previous.end())
973          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
974      }
975    }
976  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
977    PrevDecl = PrevClassTemplate = 0;
978
979  if (PrevClassTemplate) {
980    // Ensure that the template parameter lists are compatible. Skip this check
981    // for a friend in a dependent context: the template parameter list itself
982    // could be dependent.
983    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
984        !TemplateParameterListsAreEqual(TemplateParams,
985                                   PrevClassTemplate->getTemplateParameters(),
986                                        /*Complain=*/true,
987                                        TPL_TemplateMatch))
988      return true;
989
990    // C++ [temp.class]p4:
991    //   In a redeclaration, partial specialization, explicit
992    //   specialization or explicit instantiation of a class template,
993    //   the class-key shall agree in kind with the original class
994    //   template declaration (7.1.5.3).
995    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
996    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
997                                      TUK == TUK_Definition,  KWLoc, *Name)) {
998      Diag(KWLoc, diag::err_use_with_wrong_tag)
999        << Name
1000        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1001      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1002      Kind = PrevRecordDecl->getTagKind();
1003    }
1004
1005    // Check for redefinition of this class template.
1006    if (TUK == TUK_Definition) {
1007      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1008        Diag(NameLoc, diag::err_redefinition) << Name;
1009        Diag(Def->getLocation(), diag::note_previous_definition);
1010        // FIXME: Would it make sense to try to "forget" the previous
1011        // definition, as part of error recovery?
1012        return true;
1013      }
1014    }
1015  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1016    // Maybe we will complain about the shadowed template parameter.
1017    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1018    // Just pretend that we didn't see the previous declaration.
1019    PrevDecl = 0;
1020  } else if (PrevDecl) {
1021    // C++ [temp]p5:
1022    //   A class template shall not have the same name as any other
1023    //   template, class, function, object, enumeration, enumerator,
1024    //   namespace, or type in the same scope (3.3), except as specified
1025    //   in (14.5.4).
1026    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1027    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1028    return true;
1029  }
1030
1031  // Check the template parameter list of this declaration, possibly
1032  // merging in the template parameter list from the previous class
1033  // template declaration. Skip this check for a friend in a dependent
1034  // context, because the template parameter list might be dependent.
1035  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1036      CheckTemplateParameterList(TemplateParams,
1037            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
1038                                 (SS.isSet() && SemanticContext &&
1039                                  SemanticContext->isRecord() &&
1040                                  SemanticContext->isDependentContext())
1041                                   ? TPC_ClassTemplateMember
1042                                   : TPC_ClassTemplate))
1043    Invalid = true;
1044
1045  if (SS.isSet()) {
1046    // If the name of the template was qualified, we must be defining the
1047    // template out-of-line.
1048    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1049      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1050                                      : diag::err_member_def_does_not_match)
1051        << Name << SemanticContext << SS.getRange();
1052      Invalid = true;
1053    }
1054  }
1055
1056  CXXRecordDecl *NewClass =
1057    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1058                          PrevClassTemplate?
1059                            PrevClassTemplate->getTemplatedDecl() : 0,
1060                          /*DelayTypeCreation=*/true);
1061  SetNestedNameSpecifier(NewClass, SS);
1062  if (NumOuterTemplateParamLists > 0)
1063    NewClass->setTemplateParameterListsInfo(Context,
1064                                            NumOuterTemplateParamLists,
1065                                            OuterTemplateParamLists);
1066
1067  // Add alignment attributes if necessary; these attributes are checked when
1068  // the ASTContext lays out the structure.
1069  if (TUK == TUK_Definition) {
1070    AddAlignmentAttributesForRecord(NewClass);
1071    AddMsStructLayoutForRecord(NewClass);
1072  }
1073
1074  ClassTemplateDecl *NewTemplate
1075    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1076                                DeclarationName(Name), TemplateParams,
1077                                NewClass, PrevClassTemplate);
1078  NewClass->setDescribedClassTemplate(NewTemplate);
1079
1080  if (ModulePrivateLoc.isValid())
1081    NewTemplate->setModulePrivate();
1082
1083  // Build the type for the class template declaration now.
1084  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1085  T = Context.getInjectedClassNameType(NewClass, T);
1086  assert(T->isDependentType() && "Class template type is not dependent?");
1087  (void)T;
1088
1089  // If we are providing an explicit specialization of a member that is a
1090  // class template, make a note of that.
1091  if (PrevClassTemplate &&
1092      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1093    PrevClassTemplate->setMemberSpecialization();
1094
1095  // Set the access specifier.
1096  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1097    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1098
1099  // Set the lexical context of these templates
1100  NewClass->setLexicalDeclContext(CurContext);
1101  NewTemplate->setLexicalDeclContext(CurContext);
1102
1103  if (TUK == TUK_Definition)
1104    NewClass->startDefinition();
1105
1106  if (Attr)
1107    ProcessDeclAttributeList(S, NewClass, Attr);
1108
1109  if (PrevClassTemplate)
1110    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1111
1112  AddPushedVisibilityAttribute(NewClass);
1113
1114  if (TUK != TUK_Friend)
1115    PushOnScopeChains(NewTemplate, S);
1116  else {
1117    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1118      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1119      NewClass->setAccess(PrevClassTemplate->getAccess());
1120    }
1121
1122    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1123                                       PrevClassTemplate != NULL);
1124
1125    // Friend templates are visible in fairly strange ways.
1126    if (!CurContext->isDependentContext()) {
1127      DeclContext *DC = SemanticContext->getRedeclContext();
1128      DC->makeDeclVisibleInContext(NewTemplate);
1129      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1130        PushOnScopeChains(NewTemplate, EnclosingScope,
1131                          /* AddToContext = */ false);
1132    }
1133
1134    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1135                                            NewClass->getLocation(),
1136                                            NewTemplate,
1137                                    /*FIXME:*/NewClass->getLocation());
1138    Friend->setAccess(AS_public);
1139    CurContext->addDecl(Friend);
1140  }
1141
1142  if (Invalid) {
1143    NewTemplate->setInvalidDecl();
1144    NewClass->setInvalidDecl();
1145  }
1146
1147  ActOnDocumentableDecl(NewTemplate);
1148
1149  return NewTemplate;
1150}
1151
1152/// \brief Diagnose the presence of a default template argument on a
1153/// template parameter, which is ill-formed in certain contexts.
1154///
1155/// \returns true if the default template argument should be dropped.
1156static bool DiagnoseDefaultTemplateArgument(Sema &S,
1157                                            Sema::TemplateParamListContext TPC,
1158                                            SourceLocation ParamLoc,
1159                                            SourceRange DefArgRange) {
1160  switch (TPC) {
1161  case Sema::TPC_ClassTemplate:
1162  case Sema::TPC_TypeAliasTemplate:
1163    return false;
1164
1165  case Sema::TPC_FunctionTemplate:
1166  case Sema::TPC_FriendFunctionTemplateDefinition:
1167    // C++ [temp.param]p9:
1168    //   A default template-argument shall not be specified in a
1169    //   function template declaration or a function template
1170    //   definition [...]
1171    //   If a friend function template declaration specifies a default
1172    //   template-argument, that declaration shall be a definition and shall be
1173    //   the only declaration of the function template in the translation unit.
1174    // (C++98/03 doesn't have this wording; see DR226).
1175    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1176         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1177           : diag::ext_template_parameter_default_in_function_template)
1178      << DefArgRange;
1179    return false;
1180
1181  case Sema::TPC_ClassTemplateMember:
1182    // C++0x [temp.param]p9:
1183    //   A default template-argument shall not be specified in the
1184    //   template-parameter-lists of the definition of a member of a
1185    //   class template that appears outside of the member's class.
1186    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1187      << DefArgRange;
1188    return true;
1189
1190  case Sema::TPC_FriendFunctionTemplate:
1191    // C++ [temp.param]p9:
1192    //   A default template-argument shall not be specified in a
1193    //   friend template declaration.
1194    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1195      << DefArgRange;
1196    return true;
1197
1198    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1199    // for friend function templates if there is only a single
1200    // declaration (and it is a definition). Strange!
1201  }
1202
1203  llvm_unreachable("Invalid TemplateParamListContext!");
1204}
1205
1206/// \brief Check for unexpanded parameter packs within the template parameters
1207/// of a template template parameter, recursively.
1208static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1209                                             TemplateTemplateParmDecl *TTP) {
1210  // A template template parameter which is a parameter pack is also a pack
1211  // expansion.
1212  if (TTP->isParameterPack())
1213    return false;
1214
1215  TemplateParameterList *Params = TTP->getTemplateParameters();
1216  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1217    NamedDecl *P = Params->getParam(I);
1218    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1219      if (!NTTP->isParameterPack() &&
1220          S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1221                                            NTTP->getTypeSourceInfo(),
1222                                      Sema::UPPC_NonTypeTemplateParameterType))
1223        return true;
1224
1225      continue;
1226    }
1227
1228    if (TemplateTemplateParmDecl *InnerTTP
1229                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1230      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1231        return true;
1232  }
1233
1234  return false;
1235}
1236
1237/// \brief Checks the validity of a template parameter list, possibly
1238/// considering the template parameter list from a previous
1239/// declaration.
1240///
1241/// If an "old" template parameter list is provided, it must be
1242/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1243/// template parameter list.
1244///
1245/// \param NewParams Template parameter list for a new template
1246/// declaration. This template parameter list will be updated with any
1247/// default arguments that are carried through from the previous
1248/// template parameter list.
1249///
1250/// \param OldParams If provided, template parameter list from a
1251/// previous declaration of the same template. Default template
1252/// arguments will be merged from the old template parameter list to
1253/// the new template parameter list.
1254///
1255/// \param TPC Describes the context in which we are checking the given
1256/// template parameter list.
1257///
1258/// \returns true if an error occurred, false otherwise.
1259bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1260                                      TemplateParameterList *OldParams,
1261                                      TemplateParamListContext TPC) {
1262  bool Invalid = false;
1263
1264  // C++ [temp.param]p10:
1265  //   The set of default template-arguments available for use with a
1266  //   template declaration or definition is obtained by merging the
1267  //   default arguments from the definition (if in scope) and all
1268  //   declarations in scope in the same way default function
1269  //   arguments are (8.3.6).
1270  bool SawDefaultArgument = false;
1271  SourceLocation PreviousDefaultArgLoc;
1272
1273  // Dummy initialization to avoid warnings.
1274  TemplateParameterList::iterator OldParam = NewParams->end();
1275  if (OldParams)
1276    OldParam = OldParams->begin();
1277
1278  bool RemoveDefaultArguments = false;
1279  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1280                                    NewParamEnd = NewParams->end();
1281       NewParam != NewParamEnd; ++NewParam) {
1282    // Variables used to diagnose redundant default arguments
1283    bool RedundantDefaultArg = false;
1284    SourceLocation OldDefaultLoc;
1285    SourceLocation NewDefaultLoc;
1286
1287    // Variable used to diagnose missing default arguments
1288    bool MissingDefaultArg = false;
1289
1290    // Variable used to diagnose non-final parameter packs
1291    bool SawParameterPack = false;
1292
1293    if (TemplateTypeParmDecl *NewTypeParm
1294          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1295      // Check the presence of a default argument here.
1296      if (NewTypeParm->hasDefaultArgument() &&
1297          DiagnoseDefaultTemplateArgument(*this, TPC,
1298                                          NewTypeParm->getLocation(),
1299               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1300                                                       .getSourceRange()))
1301        NewTypeParm->removeDefaultArgument();
1302
1303      // Merge default arguments for template type parameters.
1304      TemplateTypeParmDecl *OldTypeParm
1305          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1306
1307      if (NewTypeParm->isParameterPack()) {
1308        assert(!NewTypeParm->hasDefaultArgument() &&
1309               "Parameter packs can't have a default argument!");
1310        SawParameterPack = true;
1311      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1312                 NewTypeParm->hasDefaultArgument()) {
1313        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1314        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1315        SawDefaultArgument = true;
1316        RedundantDefaultArg = true;
1317        PreviousDefaultArgLoc = NewDefaultLoc;
1318      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1319        // Merge the default argument from the old declaration to the
1320        // new declaration.
1321        SawDefaultArgument = true;
1322        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1323                                        true);
1324        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1325      } else if (NewTypeParm->hasDefaultArgument()) {
1326        SawDefaultArgument = true;
1327        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1328      } else if (SawDefaultArgument)
1329        MissingDefaultArg = true;
1330    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1331               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1332      // Check for unexpanded parameter packs.
1333      if (!NewNonTypeParm->isParameterPack() &&
1334          DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1335                                          NewNonTypeParm->getTypeSourceInfo(),
1336                                          UPPC_NonTypeTemplateParameterType)) {
1337        Invalid = true;
1338        continue;
1339      }
1340
1341      // Check the presence of a default argument here.
1342      if (NewNonTypeParm->hasDefaultArgument() &&
1343          DiagnoseDefaultTemplateArgument(*this, TPC,
1344                                          NewNonTypeParm->getLocation(),
1345                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1346        NewNonTypeParm->removeDefaultArgument();
1347      }
1348
1349      // Merge default arguments for non-type template parameters
1350      NonTypeTemplateParmDecl *OldNonTypeParm
1351        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1352      if (NewNonTypeParm->isParameterPack()) {
1353        assert(!NewNonTypeParm->hasDefaultArgument() &&
1354               "Parameter packs can't have a default argument!");
1355        if (!NewNonTypeParm->isPackExpansion())
1356          SawParameterPack = true;
1357      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1358          NewNonTypeParm->hasDefaultArgument()) {
1359        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1360        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1361        SawDefaultArgument = true;
1362        RedundantDefaultArg = true;
1363        PreviousDefaultArgLoc = NewDefaultLoc;
1364      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1365        // Merge the default argument from the old declaration to the
1366        // new declaration.
1367        SawDefaultArgument = true;
1368        // FIXME: We need to create a new kind of "default argument"
1369        // expression that points to a previous non-type template
1370        // parameter.
1371        NewNonTypeParm->setDefaultArgument(
1372                                         OldNonTypeParm->getDefaultArgument(),
1373                                         /*Inherited=*/ true);
1374        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1375      } else if (NewNonTypeParm->hasDefaultArgument()) {
1376        SawDefaultArgument = true;
1377        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1378      } else if (SawDefaultArgument)
1379        MissingDefaultArg = true;
1380    } else {
1381      TemplateTemplateParmDecl *NewTemplateParm
1382        = cast<TemplateTemplateParmDecl>(*NewParam);
1383
1384      // Check for unexpanded parameter packs, recursively.
1385      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1386        Invalid = true;
1387        continue;
1388      }
1389
1390      // Check the presence of a default argument here.
1391      if (NewTemplateParm->hasDefaultArgument() &&
1392          DiagnoseDefaultTemplateArgument(*this, TPC,
1393                                          NewTemplateParm->getLocation(),
1394                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1395        NewTemplateParm->removeDefaultArgument();
1396
1397      // Merge default arguments for template template parameters
1398      TemplateTemplateParmDecl *OldTemplateParm
1399        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1400      if (NewTemplateParm->isParameterPack()) {
1401        assert(!NewTemplateParm->hasDefaultArgument() &&
1402               "Parameter packs can't have a default argument!");
1403        if (!NewTemplateParm->isPackExpansion())
1404          SawParameterPack = true;
1405      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1406          NewTemplateParm->hasDefaultArgument()) {
1407        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1408        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1409        SawDefaultArgument = true;
1410        RedundantDefaultArg = true;
1411        PreviousDefaultArgLoc = NewDefaultLoc;
1412      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1413        // Merge the default argument from the old declaration to the
1414        // new declaration.
1415        SawDefaultArgument = true;
1416        // FIXME: We need to create a new kind of "default argument" expression
1417        // that points to a previous template template parameter.
1418        NewTemplateParm->setDefaultArgument(
1419                                          OldTemplateParm->getDefaultArgument(),
1420                                          /*Inherited=*/ true);
1421        PreviousDefaultArgLoc
1422          = OldTemplateParm->getDefaultArgument().getLocation();
1423      } else if (NewTemplateParm->hasDefaultArgument()) {
1424        SawDefaultArgument = true;
1425        PreviousDefaultArgLoc
1426          = NewTemplateParm->getDefaultArgument().getLocation();
1427      } else if (SawDefaultArgument)
1428        MissingDefaultArg = true;
1429    }
1430
1431    // C++11 [temp.param]p11:
1432    //   If a template parameter of a primary class template or alias template
1433    //   is a template parameter pack, it shall be the last template parameter.
1434    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1435        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1436      Diag((*NewParam)->getLocation(),
1437           diag::err_template_param_pack_must_be_last_template_parameter);
1438      Invalid = true;
1439    }
1440
1441    if (RedundantDefaultArg) {
1442      // C++ [temp.param]p12:
1443      //   A template-parameter shall not be given default arguments
1444      //   by two different declarations in the same scope.
1445      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1446      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1447      Invalid = true;
1448    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1449      // C++ [temp.param]p11:
1450      //   If a template-parameter of a class template has a default
1451      //   template-argument, each subsequent template-parameter shall either
1452      //   have a default template-argument supplied or be a template parameter
1453      //   pack.
1454      Diag((*NewParam)->getLocation(),
1455           diag::err_template_param_default_arg_missing);
1456      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1457      Invalid = true;
1458      RemoveDefaultArguments = true;
1459    }
1460
1461    // If we have an old template parameter list that we're merging
1462    // in, move on to the next parameter.
1463    if (OldParams)
1464      ++OldParam;
1465  }
1466
1467  // We were missing some default arguments at the end of the list, so remove
1468  // all of the default arguments.
1469  if (RemoveDefaultArguments) {
1470    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1471                                      NewParamEnd = NewParams->end();
1472         NewParam != NewParamEnd; ++NewParam) {
1473      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1474        TTP->removeDefaultArgument();
1475      else if (NonTypeTemplateParmDecl *NTTP
1476                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1477        NTTP->removeDefaultArgument();
1478      else
1479        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1480    }
1481  }
1482
1483  return Invalid;
1484}
1485
1486namespace {
1487
1488/// A class which looks for a use of a certain level of template
1489/// parameter.
1490struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1491  typedef RecursiveASTVisitor<DependencyChecker> super;
1492
1493  unsigned Depth;
1494  bool Match;
1495
1496  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1497    NamedDecl *ND = Params->getParam(0);
1498    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1499      Depth = PD->getDepth();
1500    } else if (NonTypeTemplateParmDecl *PD =
1501                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1502      Depth = PD->getDepth();
1503    } else {
1504      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1505    }
1506  }
1507
1508  bool Matches(unsigned ParmDepth) {
1509    if (ParmDepth >= Depth) {
1510      Match = true;
1511      return true;
1512    }
1513    return false;
1514  }
1515
1516  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1517    return !Matches(T->getDepth());
1518  }
1519
1520  bool TraverseTemplateName(TemplateName N) {
1521    if (TemplateTemplateParmDecl *PD =
1522          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1523      if (Matches(PD->getDepth())) return false;
1524    return super::TraverseTemplateName(N);
1525  }
1526
1527  bool VisitDeclRefExpr(DeclRefExpr *E) {
1528    if (NonTypeTemplateParmDecl *PD =
1529          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1530      if (PD->getDepth() == Depth) {
1531        Match = true;
1532        return false;
1533      }
1534    }
1535    return super::VisitDeclRefExpr(E);
1536  }
1537
1538  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1539    return TraverseType(T->getInjectedSpecializationType());
1540  }
1541};
1542}
1543
1544/// Determines whether a given type depends on the given parameter
1545/// list.
1546static bool
1547DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1548  DependencyChecker Checker(Params);
1549  Checker.TraverseType(T);
1550  return Checker.Match;
1551}
1552
1553// Find the source range corresponding to the named type in the given
1554// nested-name-specifier, if any.
1555static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1556                                                       QualType T,
1557                                                       const CXXScopeSpec &SS) {
1558  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1559  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1560    if (const Type *CurType = NNS->getAsType()) {
1561      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1562        return NNSLoc.getTypeLoc().getSourceRange();
1563    } else
1564      break;
1565
1566    NNSLoc = NNSLoc.getPrefix();
1567  }
1568
1569  return SourceRange();
1570}
1571
1572/// \brief Match the given template parameter lists to the given scope
1573/// specifier, returning the template parameter list that applies to the
1574/// name.
1575///
1576/// \param DeclStartLoc the start of the declaration that has a scope
1577/// specifier or a template parameter list.
1578///
1579/// \param DeclLoc The location of the declaration itself.
1580///
1581/// \param SS the scope specifier that will be matched to the given template
1582/// parameter lists. This scope specifier precedes a qualified name that is
1583/// being declared.
1584///
1585/// \param ParamLists the template parameter lists, from the outermost to the
1586/// innermost template parameter lists.
1587///
1588/// \param NumParamLists the number of template parameter lists in ParamLists.
1589///
1590/// \param IsFriend Whether to apply the slightly different rules for
1591/// matching template parameters to scope specifiers in friend
1592/// declarations.
1593///
1594/// \param IsExplicitSpecialization will be set true if the entity being
1595/// declared is an explicit specialization, false otherwise.
1596///
1597/// \returns the template parameter list, if any, that corresponds to the
1598/// name that is preceded by the scope specifier @p SS. This template
1599/// parameter list may have template parameters (if we're declaring a
1600/// template) or may have no template parameters (if we're declaring a
1601/// template specialization), or may be NULL (if what we're declaring isn't
1602/// itself a template).
1603TemplateParameterList *
1604Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1605                                              SourceLocation DeclLoc,
1606                                              const CXXScopeSpec &SS,
1607                                          TemplateParameterList **ParamLists,
1608                                              unsigned NumParamLists,
1609                                              bool IsFriend,
1610                                              bool &IsExplicitSpecialization,
1611                                              bool &Invalid) {
1612  IsExplicitSpecialization = false;
1613  Invalid = false;
1614
1615  // The sequence of nested types to which we will match up the template
1616  // parameter lists. We first build this list by starting with the type named
1617  // by the nested-name-specifier and walking out until we run out of types.
1618  SmallVector<QualType, 4> NestedTypes;
1619  QualType T;
1620  if (SS.getScopeRep()) {
1621    if (CXXRecordDecl *Record
1622              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1623      T = Context.getTypeDeclType(Record);
1624    else
1625      T = QualType(SS.getScopeRep()->getAsType(), 0);
1626  }
1627
1628  // If we found an explicit specialization that prevents us from needing
1629  // 'template<>' headers, this will be set to the location of that
1630  // explicit specialization.
1631  SourceLocation ExplicitSpecLoc;
1632
1633  while (!T.isNull()) {
1634    NestedTypes.push_back(T);
1635
1636    // Retrieve the parent of a record type.
1637    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1638      // If this type is an explicit specialization, we're done.
1639      if (ClassTemplateSpecializationDecl *Spec
1640          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1641        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1642            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1643          ExplicitSpecLoc = Spec->getLocation();
1644          break;
1645        }
1646      } else if (Record->getTemplateSpecializationKind()
1647                                                == TSK_ExplicitSpecialization) {
1648        ExplicitSpecLoc = Record->getLocation();
1649        break;
1650      }
1651
1652      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1653        T = Context.getTypeDeclType(Parent);
1654      else
1655        T = QualType();
1656      continue;
1657    }
1658
1659    if (const TemplateSpecializationType *TST
1660                                     = T->getAs<TemplateSpecializationType>()) {
1661      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1662        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1663          T = Context.getTypeDeclType(Parent);
1664        else
1665          T = QualType();
1666        continue;
1667      }
1668    }
1669
1670    // Look one step prior in a dependent template specialization type.
1671    if (const DependentTemplateSpecializationType *DependentTST
1672                          = T->getAs<DependentTemplateSpecializationType>()) {
1673      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1674        T = QualType(NNS->getAsType(), 0);
1675      else
1676        T = QualType();
1677      continue;
1678    }
1679
1680    // Look one step prior in a dependent name type.
1681    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1682      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1683        T = QualType(NNS->getAsType(), 0);
1684      else
1685        T = QualType();
1686      continue;
1687    }
1688
1689    // Retrieve the parent of an enumeration type.
1690    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1691      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1692      // check here.
1693      EnumDecl *Enum = EnumT->getDecl();
1694
1695      // Get to the parent type.
1696      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1697        T = Context.getTypeDeclType(Parent);
1698      else
1699        T = QualType();
1700      continue;
1701    }
1702
1703    T = QualType();
1704  }
1705  // Reverse the nested types list, since we want to traverse from the outermost
1706  // to the innermost while checking template-parameter-lists.
1707  std::reverse(NestedTypes.begin(), NestedTypes.end());
1708
1709  // C++0x [temp.expl.spec]p17:
1710  //   A member or a member template may be nested within many
1711  //   enclosing class templates. In an explicit specialization for
1712  //   such a member, the member declaration shall be preceded by a
1713  //   template<> for each enclosing class template that is
1714  //   explicitly specialized.
1715  bool SawNonEmptyTemplateParameterList = false;
1716  unsigned ParamIdx = 0;
1717  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1718       ++TypeIdx) {
1719    T = NestedTypes[TypeIdx];
1720
1721    // Whether we expect a 'template<>' header.
1722    bool NeedEmptyTemplateHeader = false;
1723
1724    // Whether we expect a template header with parameters.
1725    bool NeedNonemptyTemplateHeader = false;
1726
1727    // For a dependent type, the set of template parameters that we
1728    // expect to see.
1729    TemplateParameterList *ExpectedTemplateParams = 0;
1730
1731    // C++0x [temp.expl.spec]p15:
1732    //   A member or a member template may be nested within many enclosing
1733    //   class templates. In an explicit specialization for such a member, the
1734    //   member declaration shall be preceded by a template<> for each
1735    //   enclosing class template that is explicitly specialized.
1736    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1737      if (ClassTemplatePartialSpecializationDecl *Partial
1738            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1739        ExpectedTemplateParams = Partial->getTemplateParameters();
1740        NeedNonemptyTemplateHeader = true;
1741      } else if (Record->isDependentType()) {
1742        if (Record->getDescribedClassTemplate()) {
1743          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1744                                                      ->getTemplateParameters();
1745          NeedNonemptyTemplateHeader = true;
1746        }
1747      } else if (ClassTemplateSpecializationDecl *Spec
1748                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1749        // C++0x [temp.expl.spec]p4:
1750        //   Members of an explicitly specialized class template are defined
1751        //   in the same manner as members of normal classes, and not using
1752        //   the template<> syntax.
1753        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1754          NeedEmptyTemplateHeader = true;
1755        else
1756          continue;
1757      } else if (Record->getTemplateSpecializationKind()) {
1758        if (Record->getTemplateSpecializationKind()
1759                                                != TSK_ExplicitSpecialization &&
1760            TypeIdx == NumTypes - 1)
1761          IsExplicitSpecialization = true;
1762
1763        continue;
1764      }
1765    } else if (const TemplateSpecializationType *TST
1766                                     = T->getAs<TemplateSpecializationType>()) {
1767      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1768        ExpectedTemplateParams = Template->getTemplateParameters();
1769        NeedNonemptyTemplateHeader = true;
1770      }
1771    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1772      // FIXME:  We actually could/should check the template arguments here
1773      // against the corresponding template parameter list.
1774      NeedNonemptyTemplateHeader = false;
1775    }
1776
1777    // C++ [temp.expl.spec]p16:
1778    //   In an explicit specialization declaration for a member of a class
1779    //   template or a member template that ap- pears in namespace scope, the
1780    //   member template and some of its enclosing class templates may remain
1781    //   unspecialized, except that the declaration shall not explicitly
1782    //   specialize a class member template if its en- closing class templates
1783    //   are not explicitly specialized as well.
1784    if (ParamIdx < NumParamLists) {
1785      if (ParamLists[ParamIdx]->size() == 0) {
1786        if (SawNonEmptyTemplateParameterList) {
1787          Diag(DeclLoc, diag::err_specialize_member_of_template)
1788            << ParamLists[ParamIdx]->getSourceRange();
1789          Invalid = true;
1790          IsExplicitSpecialization = false;
1791          return 0;
1792        }
1793      } else
1794        SawNonEmptyTemplateParameterList = true;
1795    }
1796
1797    if (NeedEmptyTemplateHeader) {
1798      // If we're on the last of the types, and we need a 'template<>' header
1799      // here, then it's an explicit specialization.
1800      if (TypeIdx == NumTypes - 1)
1801        IsExplicitSpecialization = true;
1802
1803      if (ParamIdx < NumParamLists) {
1804        if (ParamLists[ParamIdx]->size() > 0) {
1805          // The header has template parameters when it shouldn't. Complain.
1806          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1807               diag::err_template_param_list_matches_nontemplate)
1808            << T
1809            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1810                           ParamLists[ParamIdx]->getRAngleLoc())
1811            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1812          Invalid = true;
1813          return 0;
1814        }
1815
1816        // Consume this template header.
1817        ++ParamIdx;
1818        continue;
1819      }
1820
1821      if (!IsFriend) {
1822        // We don't have a template header, but we should.
1823        SourceLocation ExpectedTemplateLoc;
1824        if (NumParamLists > 0)
1825          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1826        else
1827          ExpectedTemplateLoc = DeclStartLoc;
1828
1829        Diag(DeclLoc, diag::err_template_spec_needs_header)
1830          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1831          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1832      }
1833
1834      continue;
1835    }
1836
1837    if (NeedNonemptyTemplateHeader) {
1838      // In friend declarations we can have template-ids which don't
1839      // depend on the corresponding template parameter lists.  But
1840      // assume that empty parameter lists are supposed to match this
1841      // template-id.
1842      if (IsFriend && T->isDependentType()) {
1843        if (ParamIdx < NumParamLists &&
1844            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1845          ExpectedTemplateParams = 0;
1846        else
1847          continue;
1848      }
1849
1850      if (ParamIdx < NumParamLists) {
1851        // Check the template parameter list, if we can.
1852        if (ExpectedTemplateParams &&
1853            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1854                                            ExpectedTemplateParams,
1855                                            true, TPL_TemplateMatch))
1856          Invalid = true;
1857
1858        if (!Invalid &&
1859            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1860                                       TPC_ClassTemplateMember))
1861          Invalid = true;
1862
1863        ++ParamIdx;
1864        continue;
1865      }
1866
1867      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1868        << T
1869        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1870      Invalid = true;
1871      continue;
1872    }
1873  }
1874
1875  // If there were at least as many template-ids as there were template
1876  // parameter lists, then there are no template parameter lists remaining for
1877  // the declaration itself.
1878  if (ParamIdx >= NumParamLists)
1879    return 0;
1880
1881  // If there were too many template parameter lists, complain about that now.
1882  if (ParamIdx < NumParamLists - 1) {
1883    bool HasAnyExplicitSpecHeader = false;
1884    bool AllExplicitSpecHeaders = true;
1885    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1886      if (ParamLists[I]->size() == 0)
1887        HasAnyExplicitSpecHeader = true;
1888      else
1889        AllExplicitSpecHeaders = false;
1890    }
1891
1892    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1893         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1894                               : diag::err_template_spec_extra_headers)
1895      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1896                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1897
1898    // If there was a specialization somewhere, such that 'template<>' is
1899    // not required, and there were any 'template<>' headers, note where the
1900    // specialization occurred.
1901    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1902      Diag(ExplicitSpecLoc,
1903           diag::note_explicit_template_spec_does_not_need_header)
1904        << NestedTypes.back();
1905
1906    // We have a template parameter list with no corresponding scope, which
1907    // means that the resulting template declaration can't be instantiated
1908    // properly (we'll end up with dependent nodes when we shouldn't).
1909    if (!AllExplicitSpecHeaders)
1910      Invalid = true;
1911  }
1912
1913  // C++ [temp.expl.spec]p16:
1914  //   In an explicit specialization declaration for a member of a class
1915  //   template or a member template that ap- pears in namespace scope, the
1916  //   member template and some of its enclosing class templates may remain
1917  //   unspecialized, except that the declaration shall not explicitly
1918  //   specialize a class member template if its en- closing class templates
1919  //   are not explicitly specialized as well.
1920  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1921      SawNonEmptyTemplateParameterList) {
1922    Diag(DeclLoc, diag::err_specialize_member_of_template)
1923      << ParamLists[ParamIdx]->getSourceRange();
1924    Invalid = true;
1925    IsExplicitSpecialization = false;
1926    return 0;
1927  }
1928
1929  // Return the last template parameter list, which corresponds to the
1930  // entity being declared.
1931  return ParamLists[NumParamLists - 1];
1932}
1933
1934void Sema::NoteAllFoundTemplates(TemplateName Name) {
1935  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1936    Diag(Template->getLocation(), diag::note_template_declared_here)
1937      << (isa<FunctionTemplateDecl>(Template)? 0
1938          : isa<ClassTemplateDecl>(Template)? 1
1939          : isa<TypeAliasTemplateDecl>(Template)? 2
1940          : 3)
1941      << Template->getDeclName();
1942    return;
1943  }
1944
1945  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1946    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1947                                          IEnd = OST->end();
1948         I != IEnd; ++I)
1949      Diag((*I)->getLocation(), diag::note_template_declared_here)
1950        << 0 << (*I)->getDeclName();
1951
1952    return;
1953  }
1954}
1955
1956QualType Sema::CheckTemplateIdType(TemplateName Name,
1957                                   SourceLocation TemplateLoc,
1958                                   TemplateArgumentListInfo &TemplateArgs) {
1959  DependentTemplateName *DTN
1960    = Name.getUnderlying().getAsDependentTemplateName();
1961  if (DTN && DTN->isIdentifier())
1962    // When building a template-id where the template-name is dependent,
1963    // assume the template is a type template. Either our assumption is
1964    // correct, or the code is ill-formed and will be diagnosed when the
1965    // dependent name is substituted.
1966    return Context.getDependentTemplateSpecializationType(ETK_None,
1967                                                          DTN->getQualifier(),
1968                                                          DTN->getIdentifier(),
1969                                                          TemplateArgs);
1970
1971  TemplateDecl *Template = Name.getAsTemplateDecl();
1972  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1973    // We might have a substituted template template parameter pack. If so,
1974    // build a template specialization type for it.
1975    if (Name.getAsSubstTemplateTemplateParmPack())
1976      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1977
1978    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1979      << Name;
1980    NoteAllFoundTemplates(Name);
1981    return QualType();
1982  }
1983
1984  // Check that the template argument list is well-formed for this
1985  // template.
1986  SmallVector<TemplateArgument, 4> Converted;
1987  bool ExpansionIntoFixedList = false;
1988  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1989                                false, Converted, &ExpansionIntoFixedList))
1990    return QualType();
1991
1992  QualType CanonType;
1993
1994  bool InstantiationDependent = false;
1995  TypeAliasTemplateDecl *AliasTemplate = 0;
1996  if (!ExpansionIntoFixedList &&
1997      (AliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Template))) {
1998    // Find the canonical type for this type alias template specialization.
1999    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2000    if (Pattern->isInvalidDecl())
2001      return QualType();
2002
2003    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2004                                      Converted.data(), Converted.size());
2005
2006    // Only substitute for the innermost template argument list.
2007    MultiLevelTemplateArgumentList TemplateArgLists;
2008    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2009    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2010    for (unsigned I = 0; I < Depth; ++I)
2011      TemplateArgLists.addOuterTemplateArguments(None);
2012
2013    LocalInstantiationScope Scope(*this);
2014    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2015    if (Inst)
2016      return QualType();
2017
2018    CanonType = SubstType(Pattern->getUnderlyingType(),
2019                          TemplateArgLists, AliasTemplate->getLocation(),
2020                          AliasTemplate->getDeclName());
2021    if (CanonType.isNull())
2022      return QualType();
2023  } else if (Name.isDependent() ||
2024             TemplateSpecializationType::anyDependentTemplateArguments(
2025               TemplateArgs, InstantiationDependent)) {
2026    // This class template specialization is a dependent
2027    // type. Therefore, its canonical type is another class template
2028    // specialization type that contains all of the converted
2029    // arguments in canonical form. This ensures that, e.g., A<T> and
2030    // A<T, T> have identical types when A is declared as:
2031    //
2032    //   template<typename T, typename U = T> struct A;
2033    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2034    CanonType = Context.getTemplateSpecializationType(CanonName,
2035                                                      Converted.data(),
2036                                                      Converted.size());
2037
2038    // FIXME: CanonType is not actually the canonical type, and unfortunately
2039    // it is a TemplateSpecializationType that we will never use again.
2040    // In the future, we need to teach getTemplateSpecializationType to only
2041    // build the canonical type and return that to us.
2042    CanonType = Context.getCanonicalType(CanonType);
2043
2044    // This might work out to be a current instantiation, in which
2045    // case the canonical type needs to be the InjectedClassNameType.
2046    //
2047    // TODO: in theory this could be a simple hashtable lookup; most
2048    // changes to CurContext don't change the set of current
2049    // instantiations.
2050    if (isa<ClassTemplateDecl>(Template)) {
2051      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2052        // If we get out to a namespace, we're done.
2053        if (Ctx->isFileContext()) break;
2054
2055        // If this isn't a record, keep looking.
2056        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2057        if (!Record) continue;
2058
2059        // Look for one of the two cases with InjectedClassNameTypes
2060        // and check whether it's the same template.
2061        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2062            !Record->getDescribedClassTemplate())
2063          continue;
2064
2065        // Fetch the injected class name type and check whether its
2066        // injected type is equal to the type we just built.
2067        QualType ICNT = Context.getTypeDeclType(Record);
2068        QualType Injected = cast<InjectedClassNameType>(ICNT)
2069          ->getInjectedSpecializationType();
2070
2071        if (CanonType != Injected->getCanonicalTypeInternal())
2072          continue;
2073
2074        // If so, the canonical type of this TST is the injected
2075        // class name type of the record we just found.
2076        assert(ICNT.isCanonical());
2077        CanonType = ICNT;
2078        break;
2079      }
2080    }
2081  } else if (ClassTemplateDecl *ClassTemplate
2082               = dyn_cast<ClassTemplateDecl>(Template)) {
2083    // Find the class template specialization declaration that
2084    // corresponds to these arguments.
2085    void *InsertPos = 0;
2086    ClassTemplateSpecializationDecl *Decl
2087      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2088                                          InsertPos);
2089    if (!Decl) {
2090      // This is the first time we have referenced this class template
2091      // specialization. Create the canonical declaration and add it to
2092      // the set of specializations.
2093      Decl = ClassTemplateSpecializationDecl::Create(Context,
2094                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2095                                                ClassTemplate->getDeclContext(),
2096                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2097                                                ClassTemplate->getLocation(),
2098                                                     ClassTemplate,
2099                                                     Converted.data(),
2100                                                     Converted.size(), 0);
2101      ClassTemplate->AddSpecialization(Decl, InsertPos);
2102      if (ClassTemplate->isOutOfLine())
2103        Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2104    }
2105
2106    CanonType = Context.getTypeDeclType(Decl);
2107    assert(isa<RecordType>(CanonType) &&
2108           "type of non-dependent specialization is not a RecordType");
2109  }
2110
2111  // Build the fully-sugared type for this class template
2112  // specialization, which refers back to the class template
2113  // specialization we created or found.
2114  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2115}
2116
2117TypeResult
2118Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2119                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2120                          SourceLocation LAngleLoc,
2121                          ASTTemplateArgsPtr TemplateArgsIn,
2122                          SourceLocation RAngleLoc,
2123                          bool IsCtorOrDtorName) {
2124  if (SS.isInvalid())
2125    return true;
2126
2127  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2128
2129  // Translate the parser's template argument list in our AST format.
2130  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2131  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2132
2133  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2134    QualType T
2135      = Context.getDependentTemplateSpecializationType(ETK_None,
2136                                                       DTN->getQualifier(),
2137                                                       DTN->getIdentifier(),
2138                                                       TemplateArgs);
2139    // Build type-source information.
2140    TypeLocBuilder TLB;
2141    DependentTemplateSpecializationTypeLoc SpecTL
2142      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2143    SpecTL.setElaboratedKeywordLoc(SourceLocation());
2144    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2145    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2146    SpecTL.setTemplateNameLoc(TemplateLoc);
2147    SpecTL.setLAngleLoc(LAngleLoc);
2148    SpecTL.setRAngleLoc(RAngleLoc);
2149    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2150      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2151    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2152  }
2153
2154  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2155
2156  if (Result.isNull())
2157    return true;
2158
2159  // Build type-source information.
2160  TypeLocBuilder TLB;
2161  TemplateSpecializationTypeLoc SpecTL
2162    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2163  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2164  SpecTL.setTemplateNameLoc(TemplateLoc);
2165  SpecTL.setLAngleLoc(LAngleLoc);
2166  SpecTL.setRAngleLoc(RAngleLoc);
2167  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2168    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2169
2170  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2171  // constructor or destructor name (in such a case, the scope specifier
2172  // will be attached to the enclosing Decl or Expr node).
2173  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2174    // Create an elaborated-type-specifier containing the nested-name-specifier.
2175    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2176    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2177    ElabTL.setElaboratedKeywordLoc(SourceLocation());
2178    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2179  }
2180
2181  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2182}
2183
2184TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2185                                        TypeSpecifierType TagSpec,
2186                                        SourceLocation TagLoc,
2187                                        CXXScopeSpec &SS,
2188                                        SourceLocation TemplateKWLoc,
2189                                        TemplateTy TemplateD,
2190                                        SourceLocation TemplateLoc,
2191                                        SourceLocation LAngleLoc,
2192                                        ASTTemplateArgsPtr TemplateArgsIn,
2193                                        SourceLocation RAngleLoc) {
2194  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2195
2196  // Translate the parser's template argument list in our AST format.
2197  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2198  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2199
2200  // Determine the tag kind
2201  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2202  ElaboratedTypeKeyword Keyword
2203    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2204
2205  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2206    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2207                                                          DTN->getQualifier(),
2208                                                          DTN->getIdentifier(),
2209                                                                TemplateArgs);
2210
2211    // Build type-source information.
2212    TypeLocBuilder TLB;
2213    DependentTemplateSpecializationTypeLoc SpecTL
2214      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2215    SpecTL.setElaboratedKeywordLoc(TagLoc);
2216    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2217    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2218    SpecTL.setTemplateNameLoc(TemplateLoc);
2219    SpecTL.setLAngleLoc(LAngleLoc);
2220    SpecTL.setRAngleLoc(RAngleLoc);
2221    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2222      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2223    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2224  }
2225
2226  if (TypeAliasTemplateDecl *TAT =
2227        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2228    // C++0x [dcl.type.elab]p2:
2229    //   If the identifier resolves to a typedef-name or the simple-template-id
2230    //   resolves to an alias template specialization, the
2231    //   elaborated-type-specifier is ill-formed.
2232    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2233    Diag(TAT->getLocation(), diag::note_declared_at);
2234  }
2235
2236  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2237  if (Result.isNull())
2238    return TypeResult(true);
2239
2240  // Check the tag kind
2241  if (const RecordType *RT = Result->getAs<RecordType>()) {
2242    RecordDecl *D = RT->getDecl();
2243
2244    IdentifierInfo *Id = D->getIdentifier();
2245    assert(Id && "templated class must have an identifier");
2246
2247    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2248                                      TagLoc, *Id)) {
2249      Diag(TagLoc, diag::err_use_with_wrong_tag)
2250        << Result
2251        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2252      Diag(D->getLocation(), diag::note_previous_use);
2253    }
2254  }
2255
2256  // Provide source-location information for the template specialization.
2257  TypeLocBuilder TLB;
2258  TemplateSpecializationTypeLoc SpecTL
2259    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2260  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2261  SpecTL.setTemplateNameLoc(TemplateLoc);
2262  SpecTL.setLAngleLoc(LAngleLoc);
2263  SpecTL.setRAngleLoc(RAngleLoc);
2264  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2265    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2266
2267  // Construct an elaborated type containing the nested-name-specifier (if any)
2268  // and tag keyword.
2269  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2270  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2271  ElabTL.setElaboratedKeywordLoc(TagLoc);
2272  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2273  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2274}
2275
2276ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2277                                     SourceLocation TemplateKWLoc,
2278                                     LookupResult &R,
2279                                     bool RequiresADL,
2280                                 const TemplateArgumentListInfo *TemplateArgs) {
2281  // FIXME: Can we do any checking at this point? I guess we could check the
2282  // template arguments that we have against the template name, if the template
2283  // name refers to a single template. That's not a terribly common case,
2284  // though.
2285  // foo<int> could identify a single function unambiguously
2286  // This approach does NOT work, since f<int>(1);
2287  // gets resolved prior to resorting to overload resolution
2288  // i.e., template<class T> void f(double);
2289  //       vs template<class T, class U> void f(U);
2290
2291  // These should be filtered out by our callers.
2292  assert(!R.empty() && "empty lookup results when building templateid");
2293  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2294
2295  // We don't want lookup warnings at this point.
2296  R.suppressDiagnostics();
2297
2298  UnresolvedLookupExpr *ULE
2299    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2300                                   SS.getWithLocInContext(Context),
2301                                   TemplateKWLoc,
2302                                   R.getLookupNameInfo(),
2303                                   RequiresADL, TemplateArgs,
2304                                   R.begin(), R.end());
2305
2306  return Owned(ULE);
2307}
2308
2309// We actually only call this from template instantiation.
2310ExprResult
2311Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2312                                   SourceLocation TemplateKWLoc,
2313                                   const DeclarationNameInfo &NameInfo,
2314                             const TemplateArgumentListInfo *TemplateArgs) {
2315  assert(TemplateArgs || TemplateKWLoc.isValid());
2316  DeclContext *DC;
2317  if (!(DC = computeDeclContext(SS, false)) ||
2318      DC->isDependentContext() ||
2319      RequireCompleteDeclContext(SS, DC))
2320    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2321
2322  bool MemberOfUnknownSpecialization;
2323  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2324  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2325                     MemberOfUnknownSpecialization);
2326
2327  if (R.isAmbiguous())
2328    return ExprError();
2329
2330  if (R.empty()) {
2331    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2332      << NameInfo.getName() << SS.getRange();
2333    return ExprError();
2334  }
2335
2336  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2337    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2338      << (NestedNameSpecifier*) SS.getScopeRep()
2339      << NameInfo.getName() << SS.getRange();
2340    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2341    return ExprError();
2342  }
2343
2344  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2345}
2346
2347/// \brief Form a dependent template name.
2348///
2349/// This action forms a dependent template name given the template
2350/// name and its (presumably dependent) scope specifier. For
2351/// example, given "MetaFun::template apply", the scope specifier \p
2352/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2353/// of the "template" keyword, and "apply" is the \p Name.
2354TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2355                                                  CXXScopeSpec &SS,
2356                                                  SourceLocation TemplateKWLoc,
2357                                                  UnqualifiedId &Name,
2358                                                  ParsedType ObjectType,
2359                                                  bool EnteringContext,
2360                                                  TemplateTy &Result) {
2361  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2362    Diag(TemplateKWLoc,
2363         getLangOpts().CPlusPlus11 ?
2364           diag::warn_cxx98_compat_template_outside_of_template :
2365           diag::ext_template_outside_of_template)
2366      << FixItHint::CreateRemoval(TemplateKWLoc);
2367
2368  DeclContext *LookupCtx = 0;
2369  if (SS.isSet())
2370    LookupCtx = computeDeclContext(SS, EnteringContext);
2371  if (!LookupCtx && ObjectType)
2372    LookupCtx = computeDeclContext(ObjectType.get());
2373  if (LookupCtx) {
2374    // C++0x [temp.names]p5:
2375    //   If a name prefixed by the keyword template is not the name of
2376    //   a template, the program is ill-formed. [Note: the keyword
2377    //   template may not be applied to non-template members of class
2378    //   templates. -end note ] [ Note: as is the case with the
2379    //   typename prefix, the template prefix is allowed in cases
2380    //   where it is not strictly necessary; i.e., when the
2381    //   nested-name-specifier or the expression on the left of the ->
2382    //   or . is not dependent on a template-parameter, or the use
2383    //   does not appear in the scope of a template. -end note]
2384    //
2385    // Note: C++03 was more strict here, because it banned the use of
2386    // the "template" keyword prior to a template-name that was not a
2387    // dependent name. C++ DR468 relaxed this requirement (the
2388    // "template" keyword is now permitted). We follow the C++0x
2389    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2390    bool MemberOfUnknownSpecialization;
2391    TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
2392                                          ObjectType, EnteringContext, Result,
2393                                          MemberOfUnknownSpecialization);
2394    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2395        isa<CXXRecordDecl>(LookupCtx) &&
2396        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2397         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2398      // This is a dependent template. Handle it below.
2399    } else if (TNK == TNK_Non_template) {
2400      Diag(Name.getLocStart(),
2401           diag::err_template_kw_refers_to_non_template)
2402        << GetNameFromUnqualifiedId(Name).getName()
2403        << Name.getSourceRange()
2404        << TemplateKWLoc;
2405      return TNK_Non_template;
2406    } else {
2407      // We found something; return it.
2408      return TNK;
2409    }
2410  }
2411
2412  NestedNameSpecifier *Qualifier
2413    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2414
2415  switch (Name.getKind()) {
2416  case UnqualifiedId::IK_Identifier:
2417    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2418                                                              Name.Identifier));
2419    return TNK_Dependent_template_name;
2420
2421  case UnqualifiedId::IK_OperatorFunctionId:
2422    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2423                                             Name.OperatorFunctionId.Operator));
2424    return TNK_Dependent_template_name;
2425
2426  case UnqualifiedId::IK_LiteralOperatorId:
2427    llvm_unreachable(
2428            "We don't support these; Parse shouldn't have allowed propagation");
2429
2430  default:
2431    break;
2432  }
2433
2434  Diag(Name.getLocStart(),
2435       diag::err_template_kw_refers_to_non_template)
2436    << GetNameFromUnqualifiedId(Name).getName()
2437    << Name.getSourceRange()
2438    << TemplateKWLoc;
2439  return TNK_Non_template;
2440}
2441
2442bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2443                                     const TemplateArgumentLoc &AL,
2444                          SmallVectorImpl<TemplateArgument> &Converted) {
2445  const TemplateArgument &Arg = AL.getArgument();
2446
2447  // Check template type parameter.
2448  switch(Arg.getKind()) {
2449  case TemplateArgument::Type:
2450    // C++ [temp.arg.type]p1:
2451    //   A template-argument for a template-parameter which is a
2452    //   type shall be a type-id.
2453    break;
2454  case TemplateArgument::Template: {
2455    // We have a template type parameter but the template argument
2456    // is a template without any arguments.
2457    SourceRange SR = AL.getSourceRange();
2458    TemplateName Name = Arg.getAsTemplate();
2459    Diag(SR.getBegin(), diag::err_template_missing_args)
2460      << Name << SR;
2461    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2462      Diag(Decl->getLocation(), diag::note_template_decl_here);
2463
2464    return true;
2465  }
2466  case TemplateArgument::Expression: {
2467    // We have a template type parameter but the template argument is an
2468    // expression; see if maybe it is missing the "typename" keyword.
2469    CXXScopeSpec SS;
2470    DeclarationNameInfo NameInfo;
2471
2472    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
2473      SS.Adopt(ArgExpr->getQualifierLoc());
2474      NameInfo = ArgExpr->getNameInfo();
2475    } else if (DependentScopeDeclRefExpr *ArgExpr =
2476               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
2477      SS.Adopt(ArgExpr->getQualifierLoc());
2478      NameInfo = ArgExpr->getNameInfo();
2479    } else if (CXXDependentScopeMemberExpr *ArgExpr =
2480               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
2481      if (ArgExpr->isImplicitAccess()) {
2482        SS.Adopt(ArgExpr->getQualifierLoc());
2483        NameInfo = ArgExpr->getMemberNameInfo();
2484      }
2485    }
2486
2487    if (NameInfo.getName().isIdentifier()) {
2488      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
2489      LookupParsedName(Result, CurScope, &SS);
2490
2491      if (Result.getAsSingle<TypeDecl>() ||
2492          Result.getResultKind() ==
2493            LookupResult::NotFoundInCurrentInstantiation) {
2494        // FIXME: Add a FixIt and fix up the template argument for recovery.
2495        SourceLocation Loc = AL.getSourceRange().getBegin();
2496        Diag(Loc, diag::err_template_arg_must_be_type_suggest);
2497        Diag(Param->getLocation(), diag::note_template_param_here);
2498        return true;
2499      }
2500    }
2501    // fallthrough
2502  }
2503  default: {
2504    // We have a template type parameter but the template argument
2505    // is not a type.
2506    SourceRange SR = AL.getSourceRange();
2507    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2508    Diag(Param->getLocation(), diag::note_template_param_here);
2509
2510    return true;
2511  }
2512  }
2513
2514  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2515    return true;
2516
2517  // Add the converted template type argument.
2518  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2519
2520  // Objective-C ARC:
2521  //   If an explicitly-specified template argument type is a lifetime type
2522  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2523  if (getLangOpts().ObjCAutoRefCount &&
2524      ArgType->isObjCLifetimeType() &&
2525      !ArgType.getObjCLifetime()) {
2526    Qualifiers Qs;
2527    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2528    ArgType = Context.getQualifiedType(ArgType, Qs);
2529  }
2530
2531  Converted.push_back(TemplateArgument(ArgType));
2532  return false;
2533}
2534
2535/// \brief Substitute template arguments into the default template argument for
2536/// the given template type parameter.
2537///
2538/// \param SemaRef the semantic analysis object for which we are performing
2539/// the substitution.
2540///
2541/// \param Template the template that we are synthesizing template arguments
2542/// for.
2543///
2544/// \param TemplateLoc the location of the template name that started the
2545/// template-id we are checking.
2546///
2547/// \param RAngleLoc the location of the right angle bracket ('>') that
2548/// terminates the template-id.
2549///
2550/// \param Param the template template parameter whose default we are
2551/// substituting into.
2552///
2553/// \param Converted the list of template arguments provided for template
2554/// parameters that precede \p Param in the template parameter list.
2555/// \returns the substituted template argument, or NULL if an error occurred.
2556static TypeSourceInfo *
2557SubstDefaultTemplateArgument(Sema &SemaRef,
2558                             TemplateDecl *Template,
2559                             SourceLocation TemplateLoc,
2560                             SourceLocation RAngleLoc,
2561                             TemplateTypeParmDecl *Param,
2562                         SmallVectorImpl<TemplateArgument> &Converted) {
2563  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2564
2565  // If the argument type is dependent, instantiate it now based
2566  // on the previously-computed template arguments.
2567  if (ArgType->getType()->isDependentType()) {
2568    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2569                                      Converted.data(), Converted.size());
2570
2571    MultiLevelTemplateArgumentList AllTemplateArgs
2572      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2573
2574    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2575                                     Template, Converted,
2576                                     SourceRange(TemplateLoc, RAngleLoc));
2577    if (Inst)
2578      return 0;
2579
2580    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2581    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2582                                Param->getDefaultArgumentLoc(),
2583                                Param->getDeclName());
2584  }
2585
2586  return ArgType;
2587}
2588
2589/// \brief Substitute template arguments into the default template argument for
2590/// the given non-type template parameter.
2591///
2592/// \param SemaRef the semantic analysis object for which we are performing
2593/// the substitution.
2594///
2595/// \param Template the template that we are synthesizing template arguments
2596/// for.
2597///
2598/// \param TemplateLoc the location of the template name that started the
2599/// template-id we are checking.
2600///
2601/// \param RAngleLoc the location of the right angle bracket ('>') that
2602/// terminates the template-id.
2603///
2604/// \param Param the non-type template parameter whose default we are
2605/// substituting into.
2606///
2607/// \param Converted the list of template arguments provided for template
2608/// parameters that precede \p Param in the template parameter list.
2609///
2610/// \returns the substituted template argument, or NULL if an error occurred.
2611static ExprResult
2612SubstDefaultTemplateArgument(Sema &SemaRef,
2613                             TemplateDecl *Template,
2614                             SourceLocation TemplateLoc,
2615                             SourceLocation RAngleLoc,
2616                             NonTypeTemplateParmDecl *Param,
2617                        SmallVectorImpl<TemplateArgument> &Converted) {
2618  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2619                                    Converted.data(), Converted.size());
2620
2621  MultiLevelTemplateArgumentList AllTemplateArgs
2622    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2623
2624  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2625                                   Template, Converted,
2626                                   SourceRange(TemplateLoc, RAngleLoc));
2627  if (Inst)
2628    return ExprError();
2629
2630  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2631  EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated);
2632  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2633}
2634
2635/// \brief Substitute template arguments into the default template argument for
2636/// the given template template parameter.
2637///
2638/// \param SemaRef the semantic analysis object for which we are performing
2639/// the substitution.
2640///
2641/// \param Template the template that we are synthesizing template arguments
2642/// for.
2643///
2644/// \param TemplateLoc the location of the template name that started the
2645/// template-id we are checking.
2646///
2647/// \param RAngleLoc the location of the right angle bracket ('>') that
2648/// terminates the template-id.
2649///
2650/// \param Param the template template parameter whose default we are
2651/// substituting into.
2652///
2653/// \param Converted the list of template arguments provided for template
2654/// parameters that precede \p Param in the template parameter list.
2655///
2656/// \param QualifierLoc Will be set to the nested-name-specifier (with
2657/// source-location information) that precedes the template name.
2658///
2659/// \returns the substituted template argument, or NULL if an error occurred.
2660static TemplateName
2661SubstDefaultTemplateArgument(Sema &SemaRef,
2662                             TemplateDecl *Template,
2663                             SourceLocation TemplateLoc,
2664                             SourceLocation RAngleLoc,
2665                             TemplateTemplateParmDecl *Param,
2666                       SmallVectorImpl<TemplateArgument> &Converted,
2667                             NestedNameSpecifierLoc &QualifierLoc) {
2668  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2669                                    Converted.data(), Converted.size());
2670
2671  MultiLevelTemplateArgumentList AllTemplateArgs
2672    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2673
2674  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2675                                   Template, Converted,
2676                                   SourceRange(TemplateLoc, RAngleLoc));
2677  if (Inst)
2678    return TemplateName();
2679
2680  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
2681  // Substitute into the nested-name-specifier first,
2682  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2683  if (QualifierLoc) {
2684    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2685                                                       AllTemplateArgs);
2686    if (!QualifierLoc)
2687      return TemplateName();
2688  }
2689
2690  return SemaRef.SubstTemplateName(QualifierLoc,
2691                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2692                              Param->getDefaultArgument().getTemplateNameLoc(),
2693                                   AllTemplateArgs);
2694}
2695
2696/// \brief If the given template parameter has a default template
2697/// argument, substitute into that default template argument and
2698/// return the corresponding template argument.
2699TemplateArgumentLoc
2700Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2701                                              SourceLocation TemplateLoc,
2702                                              SourceLocation RAngleLoc,
2703                                              Decl *Param,
2704                      SmallVectorImpl<TemplateArgument> &Converted) {
2705   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2706    if (!TypeParm->hasDefaultArgument())
2707      return TemplateArgumentLoc();
2708
2709    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2710                                                      TemplateLoc,
2711                                                      RAngleLoc,
2712                                                      TypeParm,
2713                                                      Converted);
2714    if (DI)
2715      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2716
2717    return TemplateArgumentLoc();
2718  }
2719
2720  if (NonTypeTemplateParmDecl *NonTypeParm
2721        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2722    if (!NonTypeParm->hasDefaultArgument())
2723      return TemplateArgumentLoc();
2724
2725    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2726                                                  TemplateLoc,
2727                                                  RAngleLoc,
2728                                                  NonTypeParm,
2729                                                  Converted);
2730    if (Arg.isInvalid())
2731      return TemplateArgumentLoc();
2732
2733    Expr *ArgE = Arg.takeAs<Expr>();
2734    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2735  }
2736
2737  TemplateTemplateParmDecl *TempTempParm
2738    = cast<TemplateTemplateParmDecl>(Param);
2739  if (!TempTempParm->hasDefaultArgument())
2740    return TemplateArgumentLoc();
2741
2742
2743  NestedNameSpecifierLoc QualifierLoc;
2744  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2745                                                    TemplateLoc,
2746                                                    RAngleLoc,
2747                                                    TempTempParm,
2748                                                    Converted,
2749                                                    QualifierLoc);
2750  if (TName.isNull())
2751    return TemplateArgumentLoc();
2752
2753  return TemplateArgumentLoc(TemplateArgument(TName),
2754                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2755                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2756}
2757
2758/// \brief Check that the given template argument corresponds to the given
2759/// template parameter.
2760///
2761/// \param Param The template parameter against which the argument will be
2762/// checked.
2763///
2764/// \param Arg The template argument.
2765///
2766/// \param Template The template in which the template argument resides.
2767///
2768/// \param TemplateLoc The location of the template name for the template
2769/// whose argument list we're matching.
2770///
2771/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2772/// the template argument list.
2773///
2774/// \param ArgumentPackIndex The index into the argument pack where this
2775/// argument will be placed. Only valid if the parameter is a parameter pack.
2776///
2777/// \param Converted The checked, converted argument will be added to the
2778/// end of this small vector.
2779///
2780/// \param CTAK Describes how we arrived at this particular template argument:
2781/// explicitly written, deduced, etc.
2782///
2783/// \returns true on error, false otherwise.
2784bool Sema::CheckTemplateArgument(NamedDecl *Param,
2785                                 const TemplateArgumentLoc &Arg,
2786                                 NamedDecl *Template,
2787                                 SourceLocation TemplateLoc,
2788                                 SourceLocation RAngleLoc,
2789                                 unsigned ArgumentPackIndex,
2790                            SmallVectorImpl<TemplateArgument> &Converted,
2791                                 CheckTemplateArgumentKind CTAK) {
2792  // Check template type parameters.
2793  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2794    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2795
2796  // Check non-type template parameters.
2797  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2798    // Do substitution on the type of the non-type template parameter
2799    // with the template arguments we've seen thus far.  But if the
2800    // template has a dependent context then we cannot substitute yet.
2801    QualType NTTPType = NTTP->getType();
2802    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2803      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2804
2805    if (NTTPType->isDependentType() &&
2806        !isa<TemplateTemplateParmDecl>(Template) &&
2807        !Template->getDeclContext()->isDependentContext()) {
2808      // Do substitution on the type of the non-type template parameter.
2809      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2810                                 NTTP, Converted,
2811                                 SourceRange(TemplateLoc, RAngleLoc));
2812      if (Inst)
2813        return true;
2814
2815      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2816                                        Converted.data(), Converted.size());
2817      NTTPType = SubstType(NTTPType,
2818                           MultiLevelTemplateArgumentList(TemplateArgs),
2819                           NTTP->getLocation(),
2820                           NTTP->getDeclName());
2821      // If that worked, check the non-type template parameter type
2822      // for validity.
2823      if (!NTTPType.isNull())
2824        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2825                                                     NTTP->getLocation());
2826      if (NTTPType.isNull())
2827        return true;
2828    }
2829
2830    switch (Arg.getArgument().getKind()) {
2831    case TemplateArgument::Null:
2832      llvm_unreachable("Should never see a NULL template argument here");
2833
2834    case TemplateArgument::Expression: {
2835      TemplateArgument Result;
2836      ExprResult Res =
2837        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2838                              Result, CTAK);
2839      if (Res.isInvalid())
2840        return true;
2841
2842      Converted.push_back(Result);
2843      break;
2844    }
2845
2846    case TemplateArgument::Declaration:
2847    case TemplateArgument::Integral:
2848    case TemplateArgument::NullPtr:
2849      // We've already checked this template argument, so just copy
2850      // it to the list of converted arguments.
2851      Converted.push_back(Arg.getArgument());
2852      break;
2853
2854    case TemplateArgument::Template:
2855    case TemplateArgument::TemplateExpansion:
2856      // We were given a template template argument. It may not be ill-formed;
2857      // see below.
2858      if (DependentTemplateName *DTN
2859            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2860                                              .getAsDependentTemplateName()) {
2861        // We have a template argument such as \c T::template X, which we
2862        // parsed as a template template argument. However, since we now
2863        // know that we need a non-type template argument, convert this
2864        // template name into an expression.
2865
2866        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2867                                     Arg.getTemplateNameLoc());
2868
2869        CXXScopeSpec SS;
2870        SS.Adopt(Arg.getTemplateQualifierLoc());
2871        // FIXME: the template-template arg was a DependentTemplateName,
2872        // so it was provided with a template keyword. However, its source
2873        // location is not stored in the template argument structure.
2874        SourceLocation TemplateKWLoc;
2875        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2876                                                SS.getWithLocInContext(Context),
2877                                                               TemplateKWLoc,
2878                                                               NameInfo, 0));
2879
2880        // If we parsed the template argument as a pack expansion, create a
2881        // pack expansion expression.
2882        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2883          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2884          if (E.isInvalid())
2885            return true;
2886        }
2887
2888        TemplateArgument Result;
2889        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2890        if (E.isInvalid())
2891          return true;
2892
2893        Converted.push_back(Result);
2894        break;
2895      }
2896
2897      // We have a template argument that actually does refer to a class
2898      // template, alias template, or template template parameter, and
2899      // therefore cannot be a non-type template argument.
2900      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2901        << Arg.getSourceRange();
2902
2903      Diag(Param->getLocation(), diag::note_template_param_here);
2904      return true;
2905
2906    case TemplateArgument::Type: {
2907      // We have a non-type template parameter but the template
2908      // argument is a type.
2909
2910      // C++ [temp.arg]p2:
2911      //   In a template-argument, an ambiguity between a type-id and
2912      //   an expression is resolved to a type-id, regardless of the
2913      //   form of the corresponding template-parameter.
2914      //
2915      // We warn specifically about this case, since it can be rather
2916      // confusing for users.
2917      QualType T = Arg.getArgument().getAsType();
2918      SourceRange SR = Arg.getSourceRange();
2919      if (T->isFunctionType())
2920        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2921      else
2922        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2923      Diag(Param->getLocation(), diag::note_template_param_here);
2924      return true;
2925    }
2926
2927    case TemplateArgument::Pack:
2928      llvm_unreachable("Caller must expand template argument packs");
2929    }
2930
2931    return false;
2932  }
2933
2934
2935  // Check template template parameters.
2936  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2937
2938  // Substitute into the template parameter list of the template
2939  // template parameter, since previously-supplied template arguments
2940  // may appear within the template template parameter.
2941  {
2942    // Set up a template instantiation context.
2943    LocalInstantiationScope Scope(*this);
2944    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2945                               TempParm, Converted,
2946                               SourceRange(TemplateLoc, RAngleLoc));
2947    if (Inst)
2948      return true;
2949
2950    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2951                                      Converted.data(), Converted.size());
2952    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2953                      SubstDecl(TempParm, CurContext,
2954                                MultiLevelTemplateArgumentList(TemplateArgs)));
2955    if (!TempParm)
2956      return true;
2957  }
2958
2959  switch (Arg.getArgument().getKind()) {
2960  case TemplateArgument::Null:
2961    llvm_unreachable("Should never see a NULL template argument here");
2962
2963  case TemplateArgument::Template:
2964  case TemplateArgument::TemplateExpansion:
2965    if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
2966      return true;
2967
2968    Converted.push_back(Arg.getArgument());
2969    break;
2970
2971  case TemplateArgument::Expression:
2972  case TemplateArgument::Type:
2973    // We have a template template parameter but the template
2974    // argument does not refer to a template.
2975    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2976      << getLangOpts().CPlusPlus11;
2977    return true;
2978
2979  case TemplateArgument::Declaration:
2980    llvm_unreachable("Declaration argument with template template parameter");
2981  case TemplateArgument::Integral:
2982    llvm_unreachable("Integral argument with template template parameter");
2983  case TemplateArgument::NullPtr:
2984    llvm_unreachable("Null pointer argument with template template parameter");
2985
2986  case TemplateArgument::Pack:
2987    llvm_unreachable("Caller must expand template argument packs");
2988  }
2989
2990  return false;
2991}
2992
2993/// \brief Diagnose an arity mismatch in the
2994static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
2995                                  SourceLocation TemplateLoc,
2996                                  TemplateArgumentListInfo &TemplateArgs) {
2997  TemplateParameterList *Params = Template->getTemplateParameters();
2998  unsigned NumParams = Params->size();
2999  unsigned NumArgs = TemplateArgs.size();
3000
3001  SourceRange Range;
3002  if (NumArgs > NumParams)
3003    Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3004                        TemplateArgs.getRAngleLoc());
3005  S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3006    << (NumArgs > NumParams)
3007    << (isa<ClassTemplateDecl>(Template)? 0 :
3008        isa<FunctionTemplateDecl>(Template)? 1 :
3009        isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3010    << Template << Range;
3011  S.Diag(Template->getLocation(), diag::note_template_decl_here)
3012    << Params->getSourceRange();
3013  return true;
3014}
3015
3016/// \brief Check whether the template parameter is a pack expansion, and if so,
3017/// determine the number of parameters produced by that expansion. For instance:
3018///
3019/// \code
3020/// template<typename ...Ts> struct A {
3021///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3022/// };
3023/// \endcode
3024///
3025/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3026/// is not a pack expansion, so returns an empty Optional.
3027static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3028  if (NonTypeTemplateParmDecl *NTTP
3029        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3030    if (NTTP->isExpandedParameterPack())
3031      return NTTP->getNumExpansionTypes();
3032  }
3033
3034  if (TemplateTemplateParmDecl *TTP
3035        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3036    if (TTP->isExpandedParameterPack())
3037      return TTP->getNumExpansionTemplateParameters();
3038  }
3039
3040  return None;
3041}
3042
3043/// \brief Check that the given template argument list is well-formed
3044/// for specializing the given template.
3045bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3046                                     SourceLocation TemplateLoc,
3047                                     TemplateArgumentListInfo &TemplateArgs,
3048                                     bool PartialTemplateArgs,
3049                          SmallVectorImpl<TemplateArgument> &Converted,
3050                                     bool *ExpansionIntoFixedList) {
3051  if (ExpansionIntoFixedList)
3052    *ExpansionIntoFixedList = false;
3053
3054  TemplateParameterList *Params = Template->getTemplateParameters();
3055
3056  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
3057
3058  // C++ [temp.arg]p1:
3059  //   [...] The type and form of each template-argument specified in
3060  //   a template-id shall match the type and form specified for the
3061  //   corresponding parameter declared by the template in its
3062  //   template-parameter-list.
3063  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3064  SmallVector<TemplateArgument, 2> ArgumentPack;
3065  unsigned ArgIdx = 0, NumArgs = TemplateArgs.size();
3066  LocalInstantiationScope InstScope(*this, true);
3067  for (TemplateParameterList::iterator Param = Params->begin(),
3068                                       ParamEnd = Params->end();
3069       Param != ParamEnd; /* increment in loop */) {
3070    // If we have an expanded parameter pack, make sure we don't have too
3071    // many arguments.
3072    if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3073      if (*Expansions == ArgumentPack.size()) {
3074        // We're done with this parameter pack. Pack up its arguments and add
3075        // them to the list.
3076        Converted.push_back(
3077          TemplateArgument::CreatePackCopy(Context,
3078                                           ArgumentPack.data(),
3079                                           ArgumentPack.size()));
3080        ArgumentPack.clear();
3081
3082        // This argument is assigned to the next parameter.
3083        ++Param;
3084        continue;
3085      } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3086        // Not enough arguments for this parameter pack.
3087        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3088          << false
3089          << (isa<ClassTemplateDecl>(Template)? 0 :
3090              isa<FunctionTemplateDecl>(Template)? 1 :
3091              isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3092          << Template;
3093        Diag(Template->getLocation(), diag::note_template_decl_here)
3094          << Params->getSourceRange();
3095        return true;
3096      }
3097    }
3098
3099    if (ArgIdx < NumArgs) {
3100      // Check the template argument we were given.
3101      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
3102                                TemplateLoc, RAngleLoc,
3103                                ArgumentPack.size(), Converted))
3104        return true;
3105
3106      // We're now done with this argument.
3107      ++ArgIdx;
3108
3109      if ((*Param)->isTemplateParameterPack()) {
3110        // The template parameter was a template parameter pack, so take the
3111        // deduced argument and place it on the argument pack. Note that we
3112        // stay on the same template parameter so that we can deduce more
3113        // arguments.
3114        ArgumentPack.push_back(Converted.back());
3115        Converted.pop_back();
3116      } else {
3117        // Move to the next template parameter.
3118        ++Param;
3119      }
3120
3121      // If we just saw a pack expansion, then directly convert the remaining
3122      // arguments, because we don't know what parameters they'll match up
3123      // with.
3124      if (TemplateArgs[ArgIdx-1].getArgument().isPackExpansion()) {
3125        bool InFinalParameterPack = Param != ParamEnd &&
3126                                    Param + 1 == ParamEnd &&
3127                                    (*Param)->isTemplateParameterPack() &&
3128                                    !getExpandedPackSize(*Param);
3129
3130        if (!InFinalParameterPack && !ArgumentPack.empty()) {
3131          // If we were part way through filling in an expanded parameter pack,
3132          // fall back to just producing individual arguments.
3133          Converted.insert(Converted.end(),
3134                           ArgumentPack.begin(), ArgumentPack.end());
3135          ArgumentPack.clear();
3136        }
3137
3138        while (ArgIdx < NumArgs) {
3139          if (InFinalParameterPack)
3140            ArgumentPack.push_back(TemplateArgs[ArgIdx].getArgument());
3141          else
3142            Converted.push_back(TemplateArgs[ArgIdx].getArgument());
3143          ++ArgIdx;
3144        }
3145
3146        // Push the argument pack onto the list of converted arguments.
3147        if (InFinalParameterPack) {
3148          Converted.push_back(
3149            TemplateArgument::CreatePackCopy(Context,
3150                                             ArgumentPack.data(),
3151                                             ArgumentPack.size()));
3152          ArgumentPack.clear();
3153        } else if (ExpansionIntoFixedList) {
3154          // We have expanded a pack into a fixed list.
3155          *ExpansionIntoFixedList = true;
3156        }
3157
3158        return false;
3159      }
3160
3161      continue;
3162    }
3163
3164    // If we're checking a partial template argument list, we're done.
3165    if (PartialTemplateArgs) {
3166      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3167        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3168                                                         ArgumentPack.data(),
3169                                                         ArgumentPack.size()));
3170
3171      return false;
3172    }
3173
3174    // If we have a template parameter pack with no more corresponding
3175    // arguments, just break out now and we'll fill in the argument pack below.
3176    if ((*Param)->isTemplateParameterPack()) {
3177      assert(!getExpandedPackSize(*Param) &&
3178             "Should have dealt with this already");
3179
3180      // A non-expanded parameter pack before the end of the parameter list
3181      // only occurs for an ill-formed template parameter list, unless we've
3182      // got a partial argument list for a function template, so just bail out.
3183      if (Param + 1 != ParamEnd)
3184        return true;
3185
3186      Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3187                                                       ArgumentPack.data(),
3188                                                       ArgumentPack.size()));
3189      ArgumentPack.clear();
3190
3191      ++Param;
3192      continue;
3193    }
3194
3195    // Check whether we have a default argument.
3196    TemplateArgumentLoc Arg;
3197
3198    // Retrieve the default template argument from the template
3199    // parameter. For each kind of template parameter, we substitute the
3200    // template arguments provided thus far and any "outer" template arguments
3201    // (when the template parameter was part of a nested template) into
3202    // the default argument.
3203    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3204      if (!TTP->hasDefaultArgument())
3205        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3206                                     TemplateArgs);
3207
3208      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3209                                                             Template,
3210                                                             TemplateLoc,
3211                                                             RAngleLoc,
3212                                                             TTP,
3213                                                             Converted);
3214      if (!ArgType)
3215        return true;
3216
3217      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3218                                ArgType);
3219    } else if (NonTypeTemplateParmDecl *NTTP
3220                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3221      if (!NTTP->hasDefaultArgument())
3222        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3223                                     TemplateArgs);
3224
3225      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3226                                                              TemplateLoc,
3227                                                              RAngleLoc,
3228                                                              NTTP,
3229                                                              Converted);
3230      if (E.isInvalid())
3231        return true;
3232
3233      Expr *Ex = E.takeAs<Expr>();
3234      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3235    } else {
3236      TemplateTemplateParmDecl *TempParm
3237        = cast<TemplateTemplateParmDecl>(*Param);
3238
3239      if (!TempParm->hasDefaultArgument())
3240        return diagnoseArityMismatch(*this, Template, TemplateLoc,
3241                                     TemplateArgs);
3242
3243      NestedNameSpecifierLoc QualifierLoc;
3244      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3245                                                       TemplateLoc,
3246                                                       RAngleLoc,
3247                                                       TempParm,
3248                                                       Converted,
3249                                                       QualifierLoc);
3250      if (Name.isNull())
3251        return true;
3252
3253      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3254                           TempParm->getDefaultArgument().getTemplateNameLoc());
3255    }
3256
3257    // Introduce an instantiation record that describes where we are using
3258    // the default template argument.
3259    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template,
3260                                        *Param, Converted,
3261                                        SourceRange(TemplateLoc, RAngleLoc));
3262    if (Instantiating)
3263      return true;
3264
3265    // Check the default template argument.
3266    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3267                              RAngleLoc, 0, Converted))
3268      return true;
3269
3270    // Core issue 150 (assumed resolution): if this is a template template
3271    // parameter, keep track of the default template arguments from the
3272    // template definition.
3273    if (isTemplateTemplateParameter)
3274      TemplateArgs.addArgument(Arg);
3275
3276    // Move to the next template parameter and argument.
3277    ++Param;
3278    ++ArgIdx;
3279  }
3280
3281  // If we have any leftover arguments, then there were too many arguments.
3282  // Complain and fail.
3283  if (ArgIdx < NumArgs)
3284    return diagnoseArityMismatch(*this, Template, TemplateLoc, TemplateArgs);
3285
3286  return false;
3287}
3288
3289namespace {
3290  class UnnamedLocalNoLinkageFinder
3291    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3292  {
3293    Sema &S;
3294    SourceRange SR;
3295
3296    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3297
3298  public:
3299    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3300
3301    bool Visit(QualType T) {
3302      return inherited::Visit(T.getTypePtr());
3303    }
3304
3305#define TYPE(Class, Parent) \
3306    bool Visit##Class##Type(const Class##Type *);
3307#define ABSTRACT_TYPE(Class, Parent) \
3308    bool Visit##Class##Type(const Class##Type *) { return false; }
3309#define NON_CANONICAL_TYPE(Class, Parent) \
3310    bool Visit##Class##Type(const Class##Type *) { return false; }
3311#include "clang/AST/TypeNodes.def"
3312
3313    bool VisitTagDecl(const TagDecl *Tag);
3314    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3315  };
3316}
3317
3318bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3319  return false;
3320}
3321
3322bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3323  return Visit(T->getElementType());
3324}
3325
3326bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3327  return Visit(T->getPointeeType());
3328}
3329
3330bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3331                                                    const BlockPointerType* T) {
3332  return Visit(T->getPointeeType());
3333}
3334
3335bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3336                                                const LValueReferenceType* T) {
3337  return Visit(T->getPointeeType());
3338}
3339
3340bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3341                                                const RValueReferenceType* T) {
3342  return Visit(T->getPointeeType());
3343}
3344
3345bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3346                                                  const MemberPointerType* T) {
3347  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3348}
3349
3350bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3351                                                  const ConstantArrayType* T) {
3352  return Visit(T->getElementType());
3353}
3354
3355bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3356                                                 const IncompleteArrayType* T) {
3357  return Visit(T->getElementType());
3358}
3359
3360bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3361                                                   const VariableArrayType* T) {
3362  return Visit(T->getElementType());
3363}
3364
3365bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3366                                            const DependentSizedArrayType* T) {
3367  return Visit(T->getElementType());
3368}
3369
3370bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3371                                         const DependentSizedExtVectorType* T) {
3372  return Visit(T->getElementType());
3373}
3374
3375bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3376  return Visit(T->getElementType());
3377}
3378
3379bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3380  return Visit(T->getElementType());
3381}
3382
3383bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3384                                                  const FunctionProtoType* T) {
3385  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3386                                         AEnd = T->arg_type_end();
3387       A != AEnd; ++A) {
3388    if (Visit(*A))
3389      return true;
3390  }
3391
3392  return Visit(T->getResultType());
3393}
3394
3395bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3396                                               const FunctionNoProtoType* T) {
3397  return Visit(T->getResultType());
3398}
3399
3400bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3401                                                  const UnresolvedUsingType*) {
3402  return false;
3403}
3404
3405bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3406  return false;
3407}
3408
3409bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3410  return Visit(T->getUnderlyingType());
3411}
3412
3413bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3414  return false;
3415}
3416
3417bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3418                                                    const UnaryTransformType*) {
3419  return false;
3420}
3421
3422bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3423  return Visit(T->getDeducedType());
3424}
3425
3426bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3427  return VisitTagDecl(T->getDecl());
3428}
3429
3430bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3431  return VisitTagDecl(T->getDecl());
3432}
3433
3434bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3435                                                 const TemplateTypeParmType*) {
3436  return false;
3437}
3438
3439bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3440                                        const SubstTemplateTypeParmPackType *) {
3441  return false;
3442}
3443
3444bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3445                                            const TemplateSpecializationType*) {
3446  return false;
3447}
3448
3449bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3450                                              const InjectedClassNameType* T) {
3451  return VisitTagDecl(T->getDecl());
3452}
3453
3454bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3455                                                   const DependentNameType* T) {
3456  return VisitNestedNameSpecifier(T->getQualifier());
3457}
3458
3459bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3460                                 const DependentTemplateSpecializationType* T) {
3461  return VisitNestedNameSpecifier(T->getQualifier());
3462}
3463
3464bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3465                                                   const PackExpansionType* T) {
3466  return Visit(T->getPattern());
3467}
3468
3469bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3470  return false;
3471}
3472
3473bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3474                                                   const ObjCInterfaceType *) {
3475  return false;
3476}
3477
3478bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3479                                                const ObjCObjectPointerType *) {
3480  return false;
3481}
3482
3483bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3484  return Visit(T->getValueType());
3485}
3486
3487bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3488  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3489    S.Diag(SR.getBegin(),
3490           S.getLangOpts().CPlusPlus11 ?
3491             diag::warn_cxx98_compat_template_arg_local_type :
3492             diag::ext_template_arg_local_type)
3493      << S.Context.getTypeDeclType(Tag) << SR;
3494    return true;
3495  }
3496
3497  if (!Tag->hasNameForLinkage()) {
3498    S.Diag(SR.getBegin(),
3499           S.getLangOpts().CPlusPlus11 ?
3500             diag::warn_cxx98_compat_template_arg_unnamed_type :
3501             diag::ext_template_arg_unnamed_type) << SR;
3502    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3503    return true;
3504  }
3505
3506  return false;
3507}
3508
3509bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3510                                                    NestedNameSpecifier *NNS) {
3511  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3512    return true;
3513
3514  switch (NNS->getKind()) {
3515  case NestedNameSpecifier::Identifier:
3516  case NestedNameSpecifier::Namespace:
3517  case NestedNameSpecifier::NamespaceAlias:
3518  case NestedNameSpecifier::Global:
3519    return false;
3520
3521  case NestedNameSpecifier::TypeSpec:
3522  case NestedNameSpecifier::TypeSpecWithTemplate:
3523    return Visit(QualType(NNS->getAsType(), 0));
3524  }
3525  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
3526}
3527
3528
3529/// \brief Check a template argument against its corresponding
3530/// template type parameter.
3531///
3532/// This routine implements the semantics of C++ [temp.arg.type]. It
3533/// returns true if an error occurred, and false otherwise.
3534bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3535                                 TypeSourceInfo *ArgInfo) {
3536  assert(ArgInfo && "invalid TypeSourceInfo");
3537  QualType Arg = ArgInfo->getType();
3538  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3539
3540  if (Arg->isVariablyModifiedType()) {
3541    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3542  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3543    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3544  }
3545
3546  // C++03 [temp.arg.type]p2:
3547  //   A local type, a type with no linkage, an unnamed type or a type
3548  //   compounded from any of these types shall not be used as a
3549  //   template-argument for a template type-parameter.
3550  //
3551  // C++11 allows these, and even in C++03 we allow them as an extension with
3552  // a warning.
3553  if (LangOpts.CPlusPlus11 ?
3554     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3555                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3556      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3557                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3558      Arg->hasUnnamedOrLocalType()) {
3559    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3560    (void)Finder.Visit(Context.getCanonicalType(Arg));
3561  }
3562
3563  return false;
3564}
3565
3566enum NullPointerValueKind {
3567  NPV_NotNullPointer,
3568  NPV_NullPointer,
3569  NPV_Error
3570};
3571
3572/// \brief Determine whether the given template argument is a null pointer
3573/// value of the appropriate type.
3574static NullPointerValueKind
3575isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
3576                                   QualType ParamType, Expr *Arg) {
3577  if (Arg->isValueDependent() || Arg->isTypeDependent())
3578    return NPV_NotNullPointer;
3579
3580  if (!S.getLangOpts().CPlusPlus11)
3581    return NPV_NotNullPointer;
3582
3583  // Determine whether we have a constant expression.
3584  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
3585  if (ArgRV.isInvalid())
3586    return NPV_Error;
3587  Arg = ArgRV.take();
3588
3589  Expr::EvalResult EvalResult;
3590  SmallVector<PartialDiagnosticAt, 8> Notes;
3591  EvalResult.Diag = &Notes;
3592  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
3593      EvalResult.HasSideEffects) {
3594    SourceLocation DiagLoc = Arg->getExprLoc();
3595
3596    // If our only note is the usual "invalid subexpression" note, just point
3597    // the caret at its location rather than producing an essentially
3598    // redundant note.
3599    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
3600        diag::note_invalid_subexpr_in_const_expr) {
3601      DiagLoc = Notes[0].first;
3602      Notes.clear();
3603    }
3604
3605    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
3606      << Arg->getType() << Arg->getSourceRange();
3607    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
3608      S.Diag(Notes[I].first, Notes[I].second);
3609
3610    S.Diag(Param->getLocation(), diag::note_template_param_here);
3611    return NPV_Error;
3612  }
3613
3614  // C++11 [temp.arg.nontype]p1:
3615  //   - an address constant expression of type std::nullptr_t
3616  if (Arg->getType()->isNullPtrType())
3617    return NPV_NullPointer;
3618
3619  //   - a constant expression that evaluates to a null pointer value (4.10); or
3620  //   - a constant expression that evaluates to a null member pointer value
3621  //     (4.11); or
3622  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
3623      (EvalResult.Val.isMemberPointer() &&
3624       !EvalResult.Val.getMemberPointerDecl())) {
3625    // If our expression has an appropriate type, we've succeeded.
3626    bool ObjCLifetimeConversion;
3627    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
3628        S.IsQualificationConversion(Arg->getType(), ParamType, false,
3629                                     ObjCLifetimeConversion))
3630      return NPV_NullPointer;
3631
3632    // The types didn't match, but we know we got a null pointer; complain,
3633    // then recover as if the types were correct.
3634    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
3635      << Arg->getType() << ParamType << Arg->getSourceRange();
3636    S.Diag(Param->getLocation(), diag::note_template_param_here);
3637    return NPV_NullPointer;
3638  }
3639
3640  // If we don't have a null pointer value, but we do have a NULL pointer
3641  // constant, suggest a cast to the appropriate type.
3642  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
3643    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
3644    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
3645      << ParamType
3646      << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
3647      << FixItHint::CreateInsertion(S.PP.getLocForEndOfToken(Arg->getLocEnd()),
3648                                    ")");
3649    S.Diag(Param->getLocation(), diag::note_template_param_here);
3650    return NPV_NullPointer;
3651  }
3652
3653  // FIXME: If we ever want to support general, address-constant expressions
3654  // as non-type template arguments, we should return the ExprResult here to
3655  // be interpreted by the caller.
3656  return NPV_NotNullPointer;
3657}
3658
3659/// \brief Checks whether the given template argument is the address
3660/// of an object or function according to C++ [temp.arg.nontype]p1.
3661static bool
3662CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3663                                               NonTypeTemplateParmDecl *Param,
3664                                               QualType ParamType,
3665                                               Expr *ArgIn,
3666                                               TemplateArgument &Converted) {
3667  bool Invalid = false;
3668  Expr *Arg = ArgIn;
3669  QualType ArgType = Arg->getType();
3670
3671  // If our parameter has pointer type, check for a null template value.
3672  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
3673    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3674    case NPV_NullPointer:
3675      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3676      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
3677      return false;
3678
3679    case NPV_Error:
3680      return true;
3681
3682    case NPV_NotNullPointer:
3683      break;
3684    }
3685  }
3686
3687  // See through any implicit casts we added to fix the type.
3688  Arg = Arg->IgnoreImpCasts();
3689
3690  // C++ [temp.arg.nontype]p1:
3691  //
3692  //   A template-argument for a non-type, non-template
3693  //   template-parameter shall be one of: [...]
3694  //
3695  //     -- the address of an object or function with external
3696  //        linkage, including function templates and function
3697  //        template-ids but excluding non-static class members,
3698  //        expressed as & id-expression where the & is optional if
3699  //        the name refers to a function or array, or if the
3700  //        corresponding template-parameter is a reference; or
3701
3702  // In C++98/03 mode, give an extension warning on any extra parentheses.
3703  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3704  bool ExtraParens = false;
3705  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3706    if (!Invalid && !ExtraParens) {
3707      S.Diag(Arg->getLocStart(),
3708             S.getLangOpts().CPlusPlus11 ?
3709               diag::warn_cxx98_compat_template_arg_extra_parens :
3710               diag::ext_template_arg_extra_parens)
3711        << Arg->getSourceRange();
3712      ExtraParens = true;
3713    }
3714
3715    Arg = Parens->getSubExpr();
3716  }
3717
3718  while (SubstNonTypeTemplateParmExpr *subst =
3719           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3720    Arg = subst->getReplacement()->IgnoreImpCasts();
3721
3722  bool AddressTaken = false;
3723  SourceLocation AddrOpLoc;
3724  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3725    if (UnOp->getOpcode() == UO_AddrOf) {
3726      Arg = UnOp->getSubExpr();
3727      AddressTaken = true;
3728      AddrOpLoc = UnOp->getOperatorLoc();
3729    }
3730  }
3731
3732  if (S.getLangOpts().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3733    Converted = TemplateArgument(ArgIn);
3734    return false;
3735  }
3736
3737  while (SubstNonTypeTemplateParmExpr *subst =
3738           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3739    Arg = subst->getReplacement()->IgnoreImpCasts();
3740
3741  // Stop checking the precise nature of the argument if it is value dependent,
3742  // it should be checked when instantiated.
3743  if (Arg->isValueDependent()) {
3744    Converted = TemplateArgument(ArgIn);
3745    return false;
3746  }
3747
3748  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3749  if (!DRE) {
3750    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3751    << Arg->getSourceRange();
3752    S.Diag(Param->getLocation(), diag::note_template_param_here);
3753    return true;
3754  }
3755
3756  if (!isa<ValueDecl>(DRE->getDecl())) {
3757    S.Diag(Arg->getLocStart(),
3758           diag::err_template_arg_not_object_or_func_form)
3759      << Arg->getSourceRange();
3760    S.Diag(Param->getLocation(), diag::note_template_param_here);
3761    return true;
3762  }
3763
3764  ValueDecl *Entity = DRE->getDecl();
3765
3766  // Cannot refer to non-static data members
3767  if (FieldDecl *Field = dyn_cast<FieldDecl>(Entity)) {
3768    S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
3769      << Field << Arg->getSourceRange();
3770    S.Diag(Param->getLocation(), diag::note_template_param_here);
3771    return true;
3772  }
3773
3774  // Cannot refer to non-static member functions
3775  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
3776    if (!Method->isStatic()) {
3777      S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
3778        << Method << Arg->getSourceRange();
3779      S.Diag(Param->getLocation(), diag::note_template_param_here);
3780      return true;
3781    }
3782  }
3783
3784  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
3785  VarDecl *Var = dyn_cast<VarDecl>(Entity);
3786
3787  // A non-type template argument must refer to an object or function.
3788  if (!Func && !Var) {
3789    // We found something, but we don't know specifically what it is.
3790    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
3791      << Arg->getSourceRange();
3792    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3793    return true;
3794  }
3795
3796  // Address / reference template args must have external linkage in C++98.
3797  if (Entity->getFormalLinkage() == InternalLinkage) {
3798    S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
3799             diag::warn_cxx98_compat_template_arg_object_internal :
3800             diag::ext_template_arg_object_internal)
3801      << !Func << Entity << Arg->getSourceRange();
3802    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3803      << !Func;
3804  } else if (!Entity->hasLinkage()) {
3805    S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
3806      << !Func << Entity << Arg->getSourceRange();
3807    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
3808      << !Func;
3809    return true;
3810  }
3811
3812  if (Func) {
3813    // If the template parameter has pointer type, the function decays.
3814    if (ParamType->isPointerType() && !AddressTaken)
3815      ArgType = S.Context.getPointerType(Func->getType());
3816    else if (AddressTaken && ParamType->isReferenceType()) {
3817      // If we originally had an address-of operator, but the
3818      // parameter has reference type, complain and (if things look
3819      // like they will work) drop the address-of operator.
3820      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3821                                            ParamType.getNonReferenceType())) {
3822        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3823          << ParamType;
3824        S.Diag(Param->getLocation(), diag::note_template_param_here);
3825        return true;
3826      }
3827
3828      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3829        << ParamType
3830        << FixItHint::CreateRemoval(AddrOpLoc);
3831      S.Diag(Param->getLocation(), diag::note_template_param_here);
3832
3833      ArgType = Func->getType();
3834    }
3835  } else {
3836    // A value of reference type is not an object.
3837    if (Var->getType()->isReferenceType()) {
3838      S.Diag(Arg->getLocStart(),
3839             diag::err_template_arg_reference_var)
3840        << Var->getType() << Arg->getSourceRange();
3841      S.Diag(Param->getLocation(), diag::note_template_param_here);
3842      return true;
3843    }
3844
3845    // A template argument must have static storage duration.
3846    if (Var->getTLSKind()) {
3847      S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
3848        << Arg->getSourceRange();
3849      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
3850      return true;
3851    }
3852
3853    // If the template parameter has pointer type, we must have taken
3854    // the address of this object.
3855    if (ParamType->isReferenceType()) {
3856      if (AddressTaken) {
3857        // If we originally had an address-of operator, but the
3858        // parameter has reference type, complain and (if things look
3859        // like they will work) drop the address-of operator.
3860        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3861                                            ParamType.getNonReferenceType())) {
3862          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3863            << ParamType;
3864          S.Diag(Param->getLocation(), diag::note_template_param_here);
3865          return true;
3866        }
3867
3868        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3869          << ParamType
3870          << FixItHint::CreateRemoval(AddrOpLoc);
3871        S.Diag(Param->getLocation(), diag::note_template_param_here);
3872
3873        ArgType = Var->getType();
3874      }
3875    } else if (!AddressTaken && ParamType->isPointerType()) {
3876      if (Var->getType()->isArrayType()) {
3877        // Array-to-pointer decay.
3878        ArgType = S.Context.getArrayDecayedType(Var->getType());
3879      } else {
3880        // If the template parameter has pointer type but the address of
3881        // this object was not taken, complain and (possibly) recover by
3882        // taking the address of the entity.
3883        ArgType = S.Context.getPointerType(Var->getType());
3884        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3885          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3886            << ParamType;
3887          S.Diag(Param->getLocation(), diag::note_template_param_here);
3888          return true;
3889        }
3890
3891        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3892          << ParamType
3893          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3894
3895        S.Diag(Param->getLocation(), diag::note_template_param_here);
3896      }
3897    }
3898  }
3899
3900  bool ObjCLifetimeConversion;
3901  if (ParamType->isPointerType() &&
3902      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3903      S.IsQualificationConversion(ArgType, ParamType, false,
3904                                  ObjCLifetimeConversion)) {
3905    // For pointer-to-object types, qualification conversions are
3906    // permitted.
3907  } else {
3908    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3909      if (!ParamRef->getPointeeType()->isFunctionType()) {
3910        // C++ [temp.arg.nontype]p5b3:
3911        //   For a non-type template-parameter of type reference to
3912        //   object, no conversions apply. The type referred to by the
3913        //   reference may be more cv-qualified than the (otherwise
3914        //   identical) type of the template- argument. The
3915        //   template-parameter is bound directly to the
3916        //   template-argument, which shall be an lvalue.
3917
3918        // FIXME: Other qualifiers?
3919        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3920        unsigned ArgQuals = ArgType.getCVRQualifiers();
3921
3922        if ((ParamQuals | ArgQuals) != ParamQuals) {
3923          S.Diag(Arg->getLocStart(),
3924                 diag::err_template_arg_ref_bind_ignores_quals)
3925            << ParamType << Arg->getType()
3926            << Arg->getSourceRange();
3927          S.Diag(Param->getLocation(), diag::note_template_param_here);
3928          return true;
3929        }
3930      }
3931    }
3932
3933    // At this point, the template argument refers to an object or
3934    // function with external linkage. We now need to check whether the
3935    // argument and parameter types are compatible.
3936    if (!S.Context.hasSameUnqualifiedType(ArgType,
3937                                          ParamType.getNonReferenceType())) {
3938      // We can't perform this conversion or binding.
3939      if (ParamType->isReferenceType())
3940        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3941          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3942      else
3943        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3944          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3945      S.Diag(Param->getLocation(), diag::note_template_param_here);
3946      return true;
3947    }
3948  }
3949
3950  // Create the template argument.
3951  Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
3952                               ParamType->isReferenceType());
3953  S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
3954  return false;
3955}
3956
3957/// \brief Checks whether the given template argument is a pointer to
3958/// member constant according to C++ [temp.arg.nontype]p1.
3959static bool CheckTemplateArgumentPointerToMember(Sema &S,
3960                                                 NonTypeTemplateParmDecl *Param,
3961                                                 QualType ParamType,
3962                                                 Expr *&ResultArg,
3963                                                 TemplateArgument &Converted) {
3964  bool Invalid = false;
3965
3966  // Check for a null pointer value.
3967  Expr *Arg = ResultArg;
3968  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
3969  case NPV_Error:
3970    return true;
3971  case NPV_NullPointer:
3972    S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
3973    Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
3974    return false;
3975  case NPV_NotNullPointer:
3976    break;
3977  }
3978
3979  bool ObjCLifetimeConversion;
3980  if (S.IsQualificationConversion(Arg->getType(),
3981                                  ParamType.getNonReferenceType(),
3982                                  false, ObjCLifetimeConversion)) {
3983    Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
3984                              Arg->getValueKind()).take();
3985    ResultArg = Arg;
3986  } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
3987                ParamType.getNonReferenceType())) {
3988    // We can't perform this conversion.
3989    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
3990      << Arg->getType() << ParamType << Arg->getSourceRange();
3991    S.Diag(Param->getLocation(), diag::note_template_param_here);
3992    return true;
3993  }
3994
3995  // See through any implicit casts we added to fix the type.
3996  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3997    Arg = Cast->getSubExpr();
3998
3999  // C++ [temp.arg.nontype]p1:
4000  //
4001  //   A template-argument for a non-type, non-template
4002  //   template-parameter shall be one of: [...]
4003  //
4004  //     -- a pointer to member expressed as described in 5.3.1.
4005  DeclRefExpr *DRE = 0;
4006
4007  // In C++98/03 mode, give an extension warning on any extra parentheses.
4008  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4009  bool ExtraParens = false;
4010  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4011    if (!Invalid && !ExtraParens) {
4012      S.Diag(Arg->getLocStart(),
4013             S.getLangOpts().CPlusPlus11 ?
4014               diag::warn_cxx98_compat_template_arg_extra_parens :
4015               diag::ext_template_arg_extra_parens)
4016        << Arg->getSourceRange();
4017      ExtraParens = true;
4018    }
4019
4020    Arg = Parens->getSubExpr();
4021  }
4022
4023  while (SubstNonTypeTemplateParmExpr *subst =
4024           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4025    Arg = subst->getReplacement()->IgnoreImpCasts();
4026
4027  // A pointer-to-member constant written &Class::member.
4028  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4029    if (UnOp->getOpcode() == UO_AddrOf) {
4030      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4031      if (DRE && !DRE->getQualifier())
4032        DRE = 0;
4033    }
4034  }
4035  // A constant of pointer-to-member type.
4036  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4037    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4038      if (VD->getType()->isMemberPointerType()) {
4039        if (isa<NonTypeTemplateParmDecl>(VD) ||
4040            (isa<VarDecl>(VD) &&
4041             S.Context.getCanonicalType(VD->getType()).isConstQualified())) {
4042          if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4043            Converted = TemplateArgument(Arg);
4044          } else {
4045            VD = cast<ValueDecl>(VD->getCanonicalDecl());
4046            Converted = TemplateArgument(VD, /*isReferenceParam*/false);
4047          }
4048          return Invalid;
4049        }
4050      }
4051    }
4052
4053    DRE = 0;
4054  }
4055
4056  if (!DRE)
4057    return S.Diag(Arg->getLocStart(),
4058                  diag::err_template_arg_not_pointer_to_member_form)
4059      << Arg->getSourceRange();
4060
4061  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
4062    assert((isa<FieldDecl>(DRE->getDecl()) ||
4063            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4064           "Only non-static member pointers can make it here");
4065
4066    // Okay: this is the address of a non-static member, and therefore
4067    // a member pointer constant.
4068    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4069      Converted = TemplateArgument(Arg);
4070    } else {
4071      ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4072      Converted = TemplateArgument(D, /*isReferenceParam*/false);
4073    }
4074    return Invalid;
4075  }
4076
4077  // We found something else, but we don't know specifically what it is.
4078  S.Diag(Arg->getLocStart(),
4079         diag::err_template_arg_not_pointer_to_member_form)
4080    << Arg->getSourceRange();
4081  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4082  return true;
4083}
4084
4085/// \brief Check a template argument against its corresponding
4086/// non-type template parameter.
4087///
4088/// This routine implements the semantics of C++ [temp.arg.nontype].
4089/// If an error occurred, it returns ExprError(); otherwise, it
4090/// returns the converted template argument. \p
4091/// InstantiatedParamType is the type of the non-type template
4092/// parameter after it has been instantiated.
4093ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4094                                       QualType InstantiatedParamType, Expr *Arg,
4095                                       TemplateArgument &Converted,
4096                                       CheckTemplateArgumentKind CTAK) {
4097  SourceLocation StartLoc = Arg->getLocStart();
4098
4099  // If either the parameter has a dependent type or the argument is
4100  // type-dependent, there's nothing we can check now.
4101  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
4102    // FIXME: Produce a cloned, canonical expression?
4103    Converted = TemplateArgument(Arg);
4104    return Owned(Arg);
4105  }
4106
4107  // C++ [temp.arg.nontype]p5:
4108  //   The following conversions are performed on each expression used
4109  //   as a non-type template-argument. If a non-type
4110  //   template-argument cannot be converted to the type of the
4111  //   corresponding template-parameter then the program is
4112  //   ill-formed.
4113  QualType ParamType = InstantiatedParamType;
4114  if (ParamType->isIntegralOrEnumerationType()) {
4115    // C++11:
4116    //   -- for a non-type template-parameter of integral or
4117    //      enumeration type, conversions permitted in a converted
4118    //      constant expression are applied.
4119    //
4120    // C++98:
4121    //   -- for a non-type template-parameter of integral or
4122    //      enumeration type, integral promotions (4.5) and integral
4123    //      conversions (4.7) are applied.
4124
4125    if (CTAK == CTAK_Deduced &&
4126        !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4127      // C++ [temp.deduct.type]p17:
4128      //   If, in the declaration of a function template with a non-type
4129      //   template-parameter, the non-type template-parameter is used
4130      //   in an expression in the function parameter-list and, if the
4131      //   corresponding template-argument is deduced, the
4132      //   template-argument type shall match the type of the
4133      //   template-parameter exactly, except that a template-argument
4134      //   deduced from an array bound may be of any integral type.
4135      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4136        << Arg->getType().getUnqualifiedType()
4137        << ParamType.getUnqualifiedType();
4138      Diag(Param->getLocation(), diag::note_template_param_here);
4139      return ExprError();
4140    }
4141
4142    if (getLangOpts().CPlusPlus11) {
4143      // We can't check arbitrary value-dependent arguments.
4144      // FIXME: If there's no viable conversion to the template parameter type,
4145      // we should be able to diagnose that prior to instantiation.
4146      if (Arg->isValueDependent()) {
4147        Converted = TemplateArgument(Arg);
4148        return Owned(Arg);
4149      }
4150
4151      // C++ [temp.arg.nontype]p1:
4152      //   A template-argument for a non-type, non-template template-parameter
4153      //   shall be one of:
4154      //
4155      //     -- for a non-type template-parameter of integral or enumeration
4156      //        type, a converted constant expression of the type of the
4157      //        template-parameter; or
4158      llvm::APSInt Value;
4159      ExprResult ArgResult =
4160        CheckConvertedConstantExpression(Arg, ParamType, Value,
4161                                         CCEK_TemplateArg);
4162      if (ArgResult.isInvalid())
4163        return ExprError();
4164
4165      // Widen the argument value to sizeof(parameter type). This is almost
4166      // always a no-op, except when the parameter type is bool. In
4167      // that case, this may extend the argument from 1 bit to 8 bits.
4168      QualType IntegerType = ParamType;
4169      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4170        IntegerType = Enum->getDecl()->getIntegerType();
4171      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
4172
4173      Converted = TemplateArgument(Context, Value,
4174                                   Context.getCanonicalType(ParamType));
4175      return ArgResult;
4176    }
4177
4178    ExprResult ArgResult = DefaultLvalueConversion(Arg);
4179    if (ArgResult.isInvalid())
4180      return ExprError();
4181    Arg = ArgResult.take();
4182
4183    QualType ArgType = Arg->getType();
4184
4185    // C++ [temp.arg.nontype]p1:
4186    //   A template-argument for a non-type, non-template
4187    //   template-parameter shall be one of:
4188    //
4189    //     -- an integral constant-expression of integral or enumeration
4190    //        type; or
4191    //     -- the name of a non-type template-parameter; or
4192    SourceLocation NonConstantLoc;
4193    llvm::APSInt Value;
4194    if (!ArgType->isIntegralOrEnumerationType()) {
4195      Diag(Arg->getLocStart(),
4196           diag::err_template_arg_not_integral_or_enumeral)
4197        << ArgType << Arg->getSourceRange();
4198      Diag(Param->getLocation(), diag::note_template_param_here);
4199      return ExprError();
4200    } else if (!Arg->isValueDependent()) {
4201      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
4202        QualType T;
4203
4204      public:
4205        TmplArgICEDiagnoser(QualType T) : T(T) { }
4206
4207        virtual void diagnoseNotICE(Sema &S, SourceLocation Loc,
4208                                    SourceRange SR) {
4209          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
4210        }
4211      } Diagnoser(ArgType);
4212
4213      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
4214                                            false).take();
4215      if (!Arg)
4216        return ExprError();
4217    }
4218
4219    // From here on out, all we care about are the unqualified forms
4220    // of the parameter and argument types.
4221    ParamType = ParamType.getUnqualifiedType();
4222    ArgType = ArgType.getUnqualifiedType();
4223
4224    // Try to convert the argument to the parameter's type.
4225    if (Context.hasSameType(ParamType, ArgType)) {
4226      // Okay: no conversion necessary
4227    } else if (ParamType->isBooleanType()) {
4228      // This is an integral-to-boolean conversion.
4229      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
4230    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
4231               !ParamType->isEnumeralType()) {
4232      // This is an integral promotion or conversion.
4233      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
4234    } else {
4235      // We can't perform this conversion.
4236      Diag(Arg->getLocStart(),
4237           diag::err_template_arg_not_convertible)
4238        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4239      Diag(Param->getLocation(), diag::note_template_param_here);
4240      return ExprError();
4241    }
4242
4243    // Add the value of this argument to the list of converted
4244    // arguments. We use the bitwidth and signedness of the template
4245    // parameter.
4246    if (Arg->isValueDependent()) {
4247      // The argument is value-dependent. Create a new
4248      // TemplateArgument with the converted expression.
4249      Converted = TemplateArgument(Arg);
4250      return Owned(Arg);
4251    }
4252
4253    QualType IntegerType = Context.getCanonicalType(ParamType);
4254    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
4255      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
4256
4257    if (ParamType->isBooleanType()) {
4258      // Value must be zero or one.
4259      Value = Value != 0;
4260      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4261      if (Value.getBitWidth() != AllowedBits)
4262        Value = Value.extOrTrunc(AllowedBits);
4263      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4264    } else {
4265      llvm::APSInt OldValue = Value;
4266
4267      // Coerce the template argument's value to the value it will have
4268      // based on the template parameter's type.
4269      unsigned AllowedBits = Context.getTypeSize(IntegerType);
4270      if (Value.getBitWidth() != AllowedBits)
4271        Value = Value.extOrTrunc(AllowedBits);
4272      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
4273
4274      // Complain if an unsigned parameter received a negative value.
4275      if (IntegerType->isUnsignedIntegerOrEnumerationType()
4276               && (OldValue.isSigned() && OldValue.isNegative())) {
4277        Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
4278          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4279          << Arg->getSourceRange();
4280        Diag(Param->getLocation(), diag::note_template_param_here);
4281      }
4282
4283      // Complain if we overflowed the template parameter's type.
4284      unsigned RequiredBits;
4285      if (IntegerType->isUnsignedIntegerOrEnumerationType())
4286        RequiredBits = OldValue.getActiveBits();
4287      else if (OldValue.isUnsigned())
4288        RequiredBits = OldValue.getActiveBits() + 1;
4289      else
4290        RequiredBits = OldValue.getMinSignedBits();
4291      if (RequiredBits > AllowedBits) {
4292        Diag(Arg->getLocStart(),
4293             diag::warn_template_arg_too_large)
4294          << OldValue.toString(10) << Value.toString(10) << Param->getType()
4295          << Arg->getSourceRange();
4296        Diag(Param->getLocation(), diag::note_template_param_here);
4297      }
4298    }
4299
4300    Converted = TemplateArgument(Context, Value,
4301                                 ParamType->isEnumeralType()
4302                                   ? Context.getCanonicalType(ParamType)
4303                                   : IntegerType);
4304    return Owned(Arg);
4305  }
4306
4307  QualType ArgType = Arg->getType();
4308  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
4309
4310  // Handle pointer-to-function, reference-to-function, and
4311  // pointer-to-member-function all in (roughly) the same way.
4312  if (// -- For a non-type template-parameter of type pointer to
4313      //    function, only the function-to-pointer conversion (4.3) is
4314      //    applied. If the template-argument represents a set of
4315      //    overloaded functions (or a pointer to such), the matching
4316      //    function is selected from the set (13.4).
4317      (ParamType->isPointerType() &&
4318       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
4319      // -- For a non-type template-parameter of type reference to
4320      //    function, no conversions apply. If the template-argument
4321      //    represents a set of overloaded functions, the matching
4322      //    function is selected from the set (13.4).
4323      (ParamType->isReferenceType() &&
4324       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
4325      // -- For a non-type template-parameter of type pointer to
4326      //    member function, no conversions apply. If the
4327      //    template-argument represents a set of overloaded member
4328      //    functions, the matching member function is selected from
4329      //    the set (13.4).
4330      (ParamType->isMemberPointerType() &&
4331       ParamType->getAs<MemberPointerType>()->getPointeeType()
4332         ->isFunctionType())) {
4333
4334    if (Arg->getType() == Context.OverloadTy) {
4335      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
4336                                                                true,
4337                                                                FoundResult)) {
4338        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4339          return ExprError();
4340
4341        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4342        ArgType = Arg->getType();
4343      } else
4344        return ExprError();
4345    }
4346
4347    if (!ParamType->isMemberPointerType()) {
4348      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4349                                                         ParamType,
4350                                                         Arg, Converted))
4351        return ExprError();
4352      return Owned(Arg);
4353    }
4354
4355    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4356                                             Converted))
4357      return ExprError();
4358    return Owned(Arg);
4359  }
4360
4361  if (ParamType->isPointerType()) {
4362    //   -- for a non-type template-parameter of type pointer to
4363    //      object, qualification conversions (4.4) and the
4364    //      array-to-pointer conversion (4.2) are applied.
4365    // C++0x also allows a value of std::nullptr_t.
4366    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
4367           "Only object pointers allowed here");
4368
4369    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4370                                                       ParamType,
4371                                                       Arg, Converted))
4372      return ExprError();
4373    return Owned(Arg);
4374  }
4375
4376  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
4377    //   -- For a non-type template-parameter of type reference to
4378    //      object, no conversions apply. The type referred to by the
4379    //      reference may be more cv-qualified than the (otherwise
4380    //      identical) type of the template-argument. The
4381    //      template-parameter is bound directly to the
4382    //      template-argument, which must be an lvalue.
4383    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
4384           "Only object references allowed here");
4385
4386    if (Arg->getType() == Context.OverloadTy) {
4387      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
4388                                                 ParamRefType->getPointeeType(),
4389                                                                true,
4390                                                                FoundResult)) {
4391        if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
4392          return ExprError();
4393
4394        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4395        ArgType = Arg->getType();
4396      } else
4397        return ExprError();
4398    }
4399
4400    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4401                                                       ParamType,
4402                                                       Arg, Converted))
4403      return ExprError();
4404    return Owned(Arg);
4405  }
4406
4407  // Deal with parameters of type std::nullptr_t.
4408  if (ParamType->isNullPtrType()) {
4409    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4410      Converted = TemplateArgument(Arg);
4411      return Owned(Arg);
4412    }
4413
4414    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
4415    case NPV_NotNullPointer:
4416      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
4417        << Arg->getType() << ParamType;
4418      Diag(Param->getLocation(), diag::note_template_param_here);
4419      return ExprError();
4420
4421    case NPV_Error:
4422      return ExprError();
4423
4424    case NPV_NullPointer:
4425      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4426      Converted = TemplateArgument(ParamType, /*isNullPtr*/true);
4427      return Owned(Arg);
4428    }
4429  }
4430
4431  //     -- For a non-type template-parameter of type pointer to data
4432  //        member, qualification conversions (4.4) are applied.
4433  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4434
4435  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
4436                                           Converted))
4437    return ExprError();
4438  return Owned(Arg);
4439}
4440
4441/// \brief Check a template argument against its corresponding
4442/// template template parameter.
4443///
4444/// This routine implements the semantics of C++ [temp.arg.template].
4445/// It returns true if an error occurred, and false otherwise.
4446bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4447                                 const TemplateArgumentLoc &Arg,
4448                                 unsigned ArgumentPackIndex) {
4449  TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
4450  TemplateDecl *Template = Name.getAsTemplateDecl();
4451  if (!Template) {
4452    // Any dependent template name is fine.
4453    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4454    return false;
4455  }
4456
4457  // C++0x [temp.arg.template]p1:
4458  //   A template-argument for a template template-parameter shall be
4459  //   the name of a class template or an alias template, expressed as an
4460  //   id-expression. When the template-argument names a class template, only
4461  //   primary class templates are considered when matching the
4462  //   template template argument with the corresponding parameter;
4463  //   partial specializations are not considered even if their
4464  //   parameter lists match that of the template template parameter.
4465  //
4466  // Note that we also allow template template parameters here, which
4467  // will happen when we are dealing with, e.g., class template
4468  // partial specializations.
4469  if (!isa<ClassTemplateDecl>(Template) &&
4470      !isa<TemplateTemplateParmDecl>(Template) &&
4471      !isa<TypeAliasTemplateDecl>(Template)) {
4472    assert(isa<FunctionTemplateDecl>(Template) &&
4473           "Only function templates are possible here");
4474    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4475    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4476      << Template;
4477  }
4478
4479  TemplateParameterList *Params = Param->getTemplateParameters();
4480  if (Param->isExpandedParameterPack())
4481    Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
4482
4483  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4484                                         Params,
4485                                         true,
4486                                         TPL_TemplateTemplateArgumentMatch,
4487                                         Arg.getLocation());
4488}
4489
4490/// \brief Given a non-type template argument that refers to a
4491/// declaration and the type of its corresponding non-type template
4492/// parameter, produce an expression that properly refers to that
4493/// declaration.
4494ExprResult
4495Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4496                                              QualType ParamType,
4497                                              SourceLocation Loc) {
4498  // C++ [temp.param]p8:
4499  //
4500  //   A non-type template-parameter of type "array of T" or
4501  //   "function returning T" is adjusted to be of type "pointer to
4502  //   T" or "pointer to function returning T", respectively.
4503  if (ParamType->isArrayType())
4504    ParamType = Context.getArrayDecayedType(ParamType);
4505  else if (ParamType->isFunctionType())
4506    ParamType = Context.getPointerType(ParamType);
4507
4508  // For a NULL non-type template argument, return nullptr casted to the
4509  // parameter's type.
4510  if (Arg.getKind() == TemplateArgument::NullPtr) {
4511    return ImpCastExprToType(
4512             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
4513                             ParamType,
4514                             ParamType->getAs<MemberPointerType>()
4515                               ? CK_NullToMemberPointer
4516                               : CK_NullToPointer);
4517  }
4518  assert(Arg.getKind() == TemplateArgument::Declaration &&
4519         "Only declaration template arguments permitted here");
4520
4521  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4522
4523  if (VD->getDeclContext()->isRecord() &&
4524      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4525    // If the value is a class member, we might have a pointer-to-member.
4526    // Determine whether the non-type template template parameter is of
4527    // pointer-to-member type. If so, we need to build an appropriate
4528    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4529    // would refer to the member itself.
4530    if (ParamType->isMemberPointerType()) {
4531      QualType ClassType
4532        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4533      NestedNameSpecifier *Qualifier
4534        = NestedNameSpecifier::Create(Context, 0, false,
4535                                      ClassType.getTypePtr());
4536      CXXScopeSpec SS;
4537      SS.MakeTrivial(Context, Qualifier, Loc);
4538
4539      // The actual value-ness of this is unimportant, but for
4540      // internal consistency's sake, references to instance methods
4541      // are r-values.
4542      ExprValueKind VK = VK_LValue;
4543      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4544        VK = VK_RValue;
4545
4546      ExprResult RefExpr = BuildDeclRefExpr(VD,
4547                                            VD->getType().getNonReferenceType(),
4548                                            VK,
4549                                            Loc,
4550                                            &SS);
4551      if (RefExpr.isInvalid())
4552        return ExprError();
4553
4554      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4555
4556      // We might need to perform a trailing qualification conversion, since
4557      // the element type on the parameter could be more qualified than the
4558      // element type in the expression we constructed.
4559      bool ObjCLifetimeConversion;
4560      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4561                                    ParamType.getUnqualifiedType(), false,
4562                                    ObjCLifetimeConversion))
4563        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4564
4565      assert(!RefExpr.isInvalid() &&
4566             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4567                                 ParamType.getUnqualifiedType()));
4568      return RefExpr;
4569    }
4570  }
4571
4572  QualType T = VD->getType().getNonReferenceType();
4573
4574  if (ParamType->isPointerType()) {
4575    // When the non-type template parameter is a pointer, take the
4576    // address of the declaration.
4577    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4578    if (RefExpr.isInvalid())
4579      return ExprError();
4580
4581    if (T->isFunctionType() || T->isArrayType()) {
4582      // Decay functions and arrays.
4583      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4584      if (RefExpr.isInvalid())
4585        return ExprError();
4586
4587      return RefExpr;
4588    }
4589
4590    // Take the address of everything else
4591    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4592  }
4593
4594  ExprValueKind VK = VK_RValue;
4595
4596  // If the non-type template parameter has reference type, qualify the
4597  // resulting declaration reference with the extra qualifiers on the
4598  // type that the reference refers to.
4599  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4600    VK = VK_LValue;
4601    T = Context.getQualifiedType(T,
4602                              TargetRef->getPointeeType().getQualifiers());
4603  } else if (isa<FunctionDecl>(VD)) {
4604    // References to functions are always lvalues.
4605    VK = VK_LValue;
4606  }
4607
4608  return BuildDeclRefExpr(VD, T, VK, Loc);
4609}
4610
4611/// \brief Construct a new expression that refers to the given
4612/// integral template argument with the given source-location
4613/// information.
4614///
4615/// This routine takes care of the mapping from an integral template
4616/// argument (which may have any integral type) to the appropriate
4617/// literal value.
4618ExprResult
4619Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4620                                                  SourceLocation Loc) {
4621  assert(Arg.getKind() == TemplateArgument::Integral &&
4622         "Operation is only valid for integral template arguments");
4623  QualType OrigT = Arg.getIntegralType();
4624
4625  // If this is an enum type that we're instantiating, we need to use an integer
4626  // type the same size as the enumerator.  We don't want to build an
4627  // IntegerLiteral with enum type.  The integer type of an enum type can be of
4628  // any integral type with C++11 enum classes, make sure we create the right
4629  // type of literal for it.
4630  QualType T = OrigT;
4631  if (const EnumType *ET = OrigT->getAs<EnumType>())
4632    T = ET->getDecl()->getIntegerType();
4633
4634  Expr *E;
4635  if (T->isAnyCharacterType()) {
4636    CharacterLiteral::CharacterKind Kind;
4637    if (T->isWideCharType())
4638      Kind = CharacterLiteral::Wide;
4639    else if (T->isChar16Type())
4640      Kind = CharacterLiteral::UTF16;
4641    else if (T->isChar32Type())
4642      Kind = CharacterLiteral::UTF32;
4643    else
4644      Kind = CharacterLiteral::Ascii;
4645
4646    E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
4647                                       Kind, T, Loc);
4648  } else if (T->isBooleanType()) {
4649    E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
4650                                         T, Loc);
4651  } else if (T->isNullPtrType()) {
4652    E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
4653  } else {
4654    E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
4655  }
4656
4657  if (OrigT->isEnumeralType()) {
4658    // FIXME: This is a hack. We need a better way to handle substituted
4659    // non-type template parameters.
4660    E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E, 0,
4661                               Context.getTrivialTypeSourceInfo(OrigT, Loc),
4662                               Loc, Loc);
4663  }
4664
4665  return Owned(E);
4666}
4667
4668/// \brief Match two template parameters within template parameter lists.
4669static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4670                                       bool Complain,
4671                                     Sema::TemplateParameterListEqualKind Kind,
4672                                       SourceLocation TemplateArgLoc) {
4673  // Check the actual kind (type, non-type, template).
4674  if (Old->getKind() != New->getKind()) {
4675    if (Complain) {
4676      unsigned NextDiag = diag::err_template_param_different_kind;
4677      if (TemplateArgLoc.isValid()) {
4678        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4679        NextDiag = diag::note_template_param_different_kind;
4680      }
4681      S.Diag(New->getLocation(), NextDiag)
4682        << (Kind != Sema::TPL_TemplateMatch);
4683      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4684        << (Kind != Sema::TPL_TemplateMatch);
4685    }
4686
4687    return false;
4688  }
4689
4690  // Check that both are parameter packs are neither are parameter packs.
4691  // However, if we are matching a template template argument to a
4692  // template template parameter, the template template parameter can have
4693  // a parameter pack where the template template argument does not.
4694  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4695      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4696        Old->isTemplateParameterPack())) {
4697    if (Complain) {
4698      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4699      if (TemplateArgLoc.isValid()) {
4700        S.Diag(TemplateArgLoc,
4701             diag::err_template_arg_template_params_mismatch);
4702        NextDiag = diag::note_template_parameter_pack_non_pack;
4703      }
4704
4705      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4706                      : isa<NonTypeTemplateParmDecl>(New)? 1
4707                      : 2;
4708      S.Diag(New->getLocation(), NextDiag)
4709        << ParamKind << New->isParameterPack();
4710      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4711        << ParamKind << Old->isParameterPack();
4712    }
4713
4714    return false;
4715  }
4716
4717  // For non-type template parameters, check the type of the parameter.
4718  if (NonTypeTemplateParmDecl *OldNTTP
4719                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4720    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4721
4722    // If we are matching a template template argument to a template
4723    // template parameter and one of the non-type template parameter types
4724    // is dependent, then we must wait until template instantiation time
4725    // to actually compare the arguments.
4726    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4727        (OldNTTP->getType()->isDependentType() ||
4728         NewNTTP->getType()->isDependentType()))
4729      return true;
4730
4731    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4732      if (Complain) {
4733        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4734        if (TemplateArgLoc.isValid()) {
4735          S.Diag(TemplateArgLoc,
4736                 diag::err_template_arg_template_params_mismatch);
4737          NextDiag = diag::note_template_nontype_parm_different_type;
4738        }
4739        S.Diag(NewNTTP->getLocation(), NextDiag)
4740          << NewNTTP->getType()
4741          << (Kind != Sema::TPL_TemplateMatch);
4742        S.Diag(OldNTTP->getLocation(),
4743               diag::note_template_nontype_parm_prev_declaration)
4744          << OldNTTP->getType();
4745      }
4746
4747      return false;
4748    }
4749
4750    return true;
4751  }
4752
4753  // For template template parameters, check the template parameter types.
4754  // The template parameter lists of template template
4755  // parameters must agree.
4756  if (TemplateTemplateParmDecl *OldTTP
4757                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4758    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4759    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4760                                            OldTTP->getTemplateParameters(),
4761                                            Complain,
4762                                        (Kind == Sema::TPL_TemplateMatch
4763                                           ? Sema::TPL_TemplateTemplateParmMatch
4764                                           : Kind),
4765                                            TemplateArgLoc);
4766  }
4767
4768  return true;
4769}
4770
4771/// \brief Diagnose a known arity mismatch when comparing template argument
4772/// lists.
4773static
4774void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4775                                                TemplateParameterList *New,
4776                                                TemplateParameterList *Old,
4777                                      Sema::TemplateParameterListEqualKind Kind,
4778                                                SourceLocation TemplateArgLoc) {
4779  unsigned NextDiag = diag::err_template_param_list_different_arity;
4780  if (TemplateArgLoc.isValid()) {
4781    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4782    NextDiag = diag::note_template_param_list_different_arity;
4783  }
4784  S.Diag(New->getTemplateLoc(), NextDiag)
4785    << (New->size() > Old->size())
4786    << (Kind != Sema::TPL_TemplateMatch)
4787    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4788  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4789    << (Kind != Sema::TPL_TemplateMatch)
4790    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4791}
4792
4793/// \brief Determine whether the given template parameter lists are
4794/// equivalent.
4795///
4796/// \param New  The new template parameter list, typically written in the
4797/// source code as part of a new template declaration.
4798///
4799/// \param Old  The old template parameter list, typically found via
4800/// name lookup of the template declared with this template parameter
4801/// list.
4802///
4803/// \param Complain  If true, this routine will produce a diagnostic if
4804/// the template parameter lists are not equivalent.
4805///
4806/// \param Kind describes how we are to match the template parameter lists.
4807///
4808/// \param TemplateArgLoc If this source location is valid, then we
4809/// are actually checking the template parameter list of a template
4810/// argument (New) against the template parameter list of its
4811/// corresponding template template parameter (Old). We produce
4812/// slightly different diagnostics in this scenario.
4813///
4814/// \returns True if the template parameter lists are equal, false
4815/// otherwise.
4816bool
4817Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4818                                     TemplateParameterList *Old,
4819                                     bool Complain,
4820                                     TemplateParameterListEqualKind Kind,
4821                                     SourceLocation TemplateArgLoc) {
4822  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4823    if (Complain)
4824      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4825                                                 TemplateArgLoc);
4826
4827    return false;
4828  }
4829
4830  // C++0x [temp.arg.template]p3:
4831  //   A template-argument matches a template template-parameter (call it P)
4832  //   when each of the template parameters in the template-parameter-list of
4833  //   the template-argument's corresponding class template or alias template
4834  //   (call it A) matches the corresponding template parameter in the
4835  //   template-parameter-list of P. [...]
4836  TemplateParameterList::iterator NewParm = New->begin();
4837  TemplateParameterList::iterator NewParmEnd = New->end();
4838  for (TemplateParameterList::iterator OldParm = Old->begin(),
4839                                    OldParmEnd = Old->end();
4840       OldParm != OldParmEnd; ++OldParm) {
4841    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4842        !(*OldParm)->isTemplateParameterPack()) {
4843      if (NewParm == NewParmEnd) {
4844        if (Complain)
4845          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4846                                                     TemplateArgLoc);
4847
4848        return false;
4849      }
4850
4851      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4852                                      Kind, TemplateArgLoc))
4853        return false;
4854
4855      ++NewParm;
4856      continue;
4857    }
4858
4859    // C++0x [temp.arg.template]p3:
4860    //   [...] When P's template- parameter-list contains a template parameter
4861    //   pack (14.5.3), the template parameter pack will match zero or more
4862    //   template parameters or template parameter packs in the
4863    //   template-parameter-list of A with the same type and form as the
4864    //   template parameter pack in P (ignoring whether those template
4865    //   parameters are template parameter packs).
4866    for (; NewParm != NewParmEnd; ++NewParm) {
4867      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4868                                      Kind, TemplateArgLoc))
4869        return false;
4870    }
4871  }
4872
4873  // Make sure we exhausted all of the arguments.
4874  if (NewParm != NewParmEnd) {
4875    if (Complain)
4876      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4877                                                 TemplateArgLoc);
4878
4879    return false;
4880  }
4881
4882  return true;
4883}
4884
4885/// \brief Check whether a template can be declared within this scope.
4886///
4887/// If the template declaration is valid in this scope, returns
4888/// false. Otherwise, issues a diagnostic and returns true.
4889bool
4890Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4891  if (!S)
4892    return false;
4893
4894  // Find the nearest enclosing declaration scope.
4895  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4896         (S->getFlags() & Scope::TemplateParamScope) != 0)
4897    S = S->getParent();
4898
4899  // C++ [temp]p2:
4900  //   A template-declaration can appear only as a namespace scope or
4901  //   class scope declaration.
4902  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4903  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4904      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4905    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4906             << TemplateParams->getSourceRange();
4907
4908  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4909    Ctx = Ctx->getParent();
4910
4911  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4912    return false;
4913
4914  return Diag(TemplateParams->getTemplateLoc(),
4915              diag::err_template_outside_namespace_or_class_scope)
4916    << TemplateParams->getSourceRange();
4917}
4918
4919/// \brief Determine what kind of template specialization the given declaration
4920/// is.
4921static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4922  if (!D)
4923    return TSK_Undeclared;
4924
4925  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4926    return Record->getTemplateSpecializationKind();
4927  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4928    return Function->getTemplateSpecializationKind();
4929  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4930    return Var->getTemplateSpecializationKind();
4931
4932  return TSK_Undeclared;
4933}
4934
4935/// \brief Check whether a specialization is well-formed in the current
4936/// context.
4937///
4938/// This routine determines whether a template specialization can be declared
4939/// in the current context (C++ [temp.expl.spec]p2).
4940///
4941/// \param S the semantic analysis object for which this check is being
4942/// performed.
4943///
4944/// \param Specialized the entity being specialized or instantiated, which
4945/// may be a kind of template (class template, function template, etc.) or
4946/// a member of a class template (member function, static data member,
4947/// member class).
4948///
4949/// \param PrevDecl the previous declaration of this entity, if any.
4950///
4951/// \param Loc the location of the explicit specialization or instantiation of
4952/// this entity.
4953///
4954/// \param IsPartialSpecialization whether this is a partial specialization of
4955/// a class template.
4956///
4957/// \returns true if there was an error that we cannot recover from, false
4958/// otherwise.
4959static bool CheckTemplateSpecializationScope(Sema &S,
4960                                             NamedDecl *Specialized,
4961                                             NamedDecl *PrevDecl,
4962                                             SourceLocation Loc,
4963                                             bool IsPartialSpecialization) {
4964  // Keep these "kind" numbers in sync with the %select statements in the
4965  // various diagnostics emitted by this routine.
4966  int EntityKind = 0;
4967  if (isa<ClassTemplateDecl>(Specialized))
4968    EntityKind = IsPartialSpecialization? 1 : 0;
4969  else if (isa<FunctionTemplateDecl>(Specialized))
4970    EntityKind = 2;
4971  else if (isa<CXXMethodDecl>(Specialized))
4972    EntityKind = 3;
4973  else if (isa<VarDecl>(Specialized))
4974    EntityKind = 4;
4975  else if (isa<RecordDecl>(Specialized))
4976    EntityKind = 5;
4977  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
4978    EntityKind = 6;
4979  else {
4980    S.Diag(Loc, diag::err_template_spec_unknown_kind)
4981      << S.getLangOpts().CPlusPlus11;
4982    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4983    return true;
4984  }
4985
4986  // C++ [temp.expl.spec]p2:
4987  //   An explicit specialization shall be declared in the namespace
4988  //   of which the template is a member, or, for member templates, in
4989  //   the namespace of which the enclosing class or enclosing class
4990  //   template is a member. An explicit specialization of a member
4991  //   function, member class or static data member of a class
4992  //   template shall be declared in the namespace of which the class
4993  //   template is a member. Such a declaration may also be a
4994  //   definition. If the declaration is not a definition, the
4995  //   specialization may be defined later in the name- space in which
4996  //   the explicit specialization was declared, or in a namespace
4997  //   that encloses the one in which the explicit specialization was
4998  //   declared.
4999  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5000    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5001      << Specialized;
5002    return true;
5003  }
5004
5005  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5006    if (S.getLangOpts().MicrosoftExt) {
5007      // Do not warn for class scope explicit specialization during
5008      // instantiation, warning was already emitted during pattern
5009      // semantic analysis.
5010      if (!S.ActiveTemplateInstantiations.size())
5011        S.Diag(Loc, diag::ext_function_specialization_in_class)
5012          << Specialized;
5013    } else {
5014      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5015        << Specialized;
5016      return true;
5017    }
5018  }
5019
5020  if (S.CurContext->isRecord() &&
5021      !S.CurContext->Equals(Specialized->getDeclContext())) {
5022    // Make sure that we're specializing in the right record context.
5023    // Otherwise, things can go horribly wrong.
5024    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5025      << Specialized;
5026    return true;
5027  }
5028
5029  // C++ [temp.class.spec]p6:
5030  //   A class template partial specialization may be declared or redeclared
5031  //   in any namespace scope in which its definition may be defined (14.5.1
5032  //   and 14.5.2).
5033  bool ComplainedAboutScope = false;
5034  DeclContext *SpecializedContext
5035    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5036  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5037  if ((!PrevDecl ||
5038       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5039       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
5040    // C++ [temp.exp.spec]p2:
5041    //   An explicit specialization shall be declared in the namespace of which
5042    //   the template is a member, or, for member templates, in the namespace
5043    //   of which the enclosing class or enclosing class template is a member.
5044    //   An explicit specialization of a member function, member class or
5045    //   static data member of a class template shall be declared in the
5046    //   namespace of which the class template is a member.
5047    //
5048    // C++0x [temp.expl.spec]p2:
5049    //   An explicit specialization shall be declared in a namespace enclosing
5050    //   the specialized template.
5051    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5052      bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5053      if (isa<TranslationUnitDecl>(SpecializedContext)) {
5054        assert(!IsCPlusPlus11Extension &&
5055               "DC encloses TU but isn't in enclosing namespace set");
5056        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5057          << EntityKind << Specialized;
5058      } else if (isa<NamespaceDecl>(SpecializedContext)) {
5059        int Diag;
5060        if (!IsCPlusPlus11Extension)
5061          Diag = diag::err_template_spec_decl_out_of_scope;
5062        else if (!S.getLangOpts().CPlusPlus11)
5063          Diag = diag::ext_template_spec_decl_out_of_scope;
5064        else
5065          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5066        S.Diag(Loc, Diag)
5067          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5068      }
5069
5070      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5071      ComplainedAboutScope =
5072        !(IsCPlusPlus11Extension && S.getLangOpts().CPlusPlus11);
5073    }
5074  }
5075
5076  // Make sure that this redeclaration (or definition) occurs in an enclosing
5077  // namespace.
5078  // Note that HandleDeclarator() performs this check for explicit
5079  // specializations of function templates, static data members, and member
5080  // functions, so we skip the check here for those kinds of entities.
5081  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5082  // Should we refactor that check, so that it occurs later?
5083  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
5084      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
5085        isa<FunctionDecl>(Specialized))) {
5086    if (isa<TranslationUnitDecl>(SpecializedContext))
5087      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5088        << EntityKind << Specialized;
5089    else if (isa<NamespaceDecl>(SpecializedContext))
5090      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
5091        << EntityKind << Specialized
5092        << cast<NamedDecl>(SpecializedContext);
5093
5094    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5095  }
5096
5097  // FIXME: check for specialization-after-instantiation errors and such.
5098
5099  return false;
5100}
5101
5102/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
5103/// that checks non-type template partial specialization arguments.
5104static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
5105                                                NonTypeTemplateParmDecl *Param,
5106                                                  const TemplateArgument *Args,
5107                                                        unsigned NumArgs) {
5108  for (unsigned I = 0; I != NumArgs; ++I) {
5109    if (Args[I].getKind() == TemplateArgument::Pack) {
5110      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5111                                                           Args[I].pack_begin(),
5112                                                           Args[I].pack_size()))
5113        return true;
5114
5115      continue;
5116    }
5117
5118    if (Args[I].getKind() != TemplateArgument::Expression)
5119      continue;
5120
5121    Expr *ArgExpr = Args[I].getAsExpr();
5122
5123    // We can have a pack expansion of any of the bullets below.
5124    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
5125      ArgExpr = Expansion->getPattern();
5126
5127    // Strip off any implicit casts we added as part of type checking.
5128    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
5129      ArgExpr = ICE->getSubExpr();
5130
5131    // C++ [temp.class.spec]p8:
5132    //   A non-type argument is non-specialized if it is the name of a
5133    //   non-type parameter. All other non-type arguments are
5134    //   specialized.
5135    //
5136    // Below, we check the two conditions that only apply to
5137    // specialized non-type arguments, so skip any non-specialized
5138    // arguments.
5139    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
5140      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
5141        continue;
5142
5143    // C++ [temp.class.spec]p9:
5144    //   Within the argument list of a class template partial
5145    //   specialization, the following restrictions apply:
5146    //     -- A partially specialized non-type argument expression
5147    //        shall not involve a template parameter of the partial
5148    //        specialization except when the argument expression is a
5149    //        simple identifier.
5150    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
5151      S.Diag(ArgExpr->getLocStart(),
5152           diag::err_dependent_non_type_arg_in_partial_spec)
5153        << ArgExpr->getSourceRange();
5154      return true;
5155    }
5156
5157    //     -- The type of a template parameter corresponding to a
5158    //        specialized non-type argument shall not be dependent on a
5159    //        parameter of the specialization.
5160    if (Param->getType()->isDependentType()) {
5161      S.Diag(ArgExpr->getLocStart(),
5162           diag::err_dependent_typed_non_type_arg_in_partial_spec)
5163        << Param->getType()
5164        << ArgExpr->getSourceRange();
5165      S.Diag(Param->getLocation(), diag::note_template_param_here);
5166      return true;
5167    }
5168  }
5169
5170  return false;
5171}
5172
5173/// \brief Check the non-type template arguments of a class template
5174/// partial specialization according to C++ [temp.class.spec]p9.
5175///
5176/// \param TemplateParams the template parameters of the primary class
5177/// template.
5178///
5179/// \param TemplateArgs the template arguments of the class template
5180/// partial specialization.
5181///
5182/// \returns true if there was an error, false otherwise.
5183static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
5184                                        TemplateParameterList *TemplateParams,
5185                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
5186  const TemplateArgument *ArgList = TemplateArgs.data();
5187
5188  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5189    NonTypeTemplateParmDecl *Param
5190      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
5191    if (!Param)
5192      continue;
5193
5194    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
5195                                                           &ArgList[I], 1))
5196      return true;
5197  }
5198
5199  return false;
5200}
5201
5202DeclResult
5203Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
5204                                       TagUseKind TUK,
5205                                       SourceLocation KWLoc,
5206                                       SourceLocation ModulePrivateLoc,
5207                                       CXXScopeSpec &SS,
5208                                       TemplateTy TemplateD,
5209                                       SourceLocation TemplateNameLoc,
5210                                       SourceLocation LAngleLoc,
5211                                       ASTTemplateArgsPtr TemplateArgsIn,
5212                                       SourceLocation RAngleLoc,
5213                                       AttributeList *Attr,
5214                               MultiTemplateParamsArg TemplateParameterLists) {
5215  assert(TUK != TUK_Reference && "References are not specializations");
5216
5217  // NOTE: KWLoc is the location of the tag keyword. This will instead
5218  // store the location of the outermost template keyword in the declaration.
5219  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
5220    ? TemplateParameterLists[0]->getTemplateLoc() : SourceLocation();
5221
5222  // Find the class template we're specializing
5223  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5224  ClassTemplateDecl *ClassTemplate
5225    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
5226
5227  if (!ClassTemplate) {
5228    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
5229      << (Name.getAsTemplateDecl() &&
5230          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
5231    return true;
5232  }
5233
5234  bool isExplicitSpecialization = false;
5235  bool isPartialSpecialization = false;
5236
5237  // Check the validity of the template headers that introduce this
5238  // template.
5239  // FIXME: We probably shouldn't complain about these headers for
5240  // friend declarations.
5241  bool Invalid = false;
5242  TemplateParameterList *TemplateParams
5243    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
5244                                              TemplateNameLoc,
5245                                              SS,
5246                                              TemplateParameterLists.data(),
5247                                              TemplateParameterLists.size(),
5248                                              TUK == TUK_Friend,
5249                                              isExplicitSpecialization,
5250                                              Invalid);
5251  if (Invalid)
5252    return true;
5253
5254  if (TemplateParams && TemplateParams->size() > 0) {
5255    isPartialSpecialization = true;
5256
5257    if (TUK == TUK_Friend) {
5258      Diag(KWLoc, diag::err_partial_specialization_friend)
5259        << SourceRange(LAngleLoc, RAngleLoc);
5260      return true;
5261    }
5262
5263    // C++ [temp.class.spec]p10:
5264    //   The template parameter list of a specialization shall not
5265    //   contain default template argument values.
5266    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
5267      Decl *Param = TemplateParams->getParam(I);
5268      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5269        if (TTP->hasDefaultArgument()) {
5270          Diag(TTP->getDefaultArgumentLoc(),
5271               diag::err_default_arg_in_partial_spec);
5272          TTP->removeDefaultArgument();
5273        }
5274      } else if (NonTypeTemplateParmDecl *NTTP
5275                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5276        if (Expr *DefArg = NTTP->getDefaultArgument()) {
5277          Diag(NTTP->getDefaultArgumentLoc(),
5278               diag::err_default_arg_in_partial_spec)
5279            << DefArg->getSourceRange();
5280          NTTP->removeDefaultArgument();
5281        }
5282      } else {
5283        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
5284        if (TTP->hasDefaultArgument()) {
5285          Diag(TTP->getDefaultArgument().getLocation(),
5286               diag::err_default_arg_in_partial_spec)
5287            << TTP->getDefaultArgument().getSourceRange();
5288          TTP->removeDefaultArgument();
5289        }
5290      }
5291    }
5292  } else if (TemplateParams) {
5293    if (TUK == TUK_Friend)
5294      Diag(KWLoc, diag::err_template_spec_friend)
5295        << FixItHint::CreateRemoval(
5296                                SourceRange(TemplateParams->getTemplateLoc(),
5297                                            TemplateParams->getRAngleLoc()))
5298        << SourceRange(LAngleLoc, RAngleLoc);
5299    else
5300      isExplicitSpecialization = true;
5301  } else if (TUK != TUK_Friend) {
5302    Diag(KWLoc, diag::err_template_spec_needs_header)
5303      << FixItHint::CreateInsertion(KWLoc, "template<> ");
5304    TemplateKWLoc = KWLoc;
5305    isExplicitSpecialization = true;
5306  }
5307
5308  // Check that the specialization uses the same tag kind as the
5309  // original template.
5310  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5311  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
5312  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5313                                    Kind, TUK == TUK_Definition, KWLoc,
5314                                    *ClassTemplate->getIdentifier())) {
5315    Diag(KWLoc, diag::err_use_with_wrong_tag)
5316      << ClassTemplate
5317      << FixItHint::CreateReplacement(KWLoc,
5318                            ClassTemplate->getTemplatedDecl()->getKindName());
5319    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5320         diag::note_previous_use);
5321    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5322  }
5323
5324  // Translate the parser's template argument list in our AST format.
5325  TemplateArgumentListInfo TemplateArgs;
5326  TemplateArgs.setLAngleLoc(LAngleLoc);
5327  TemplateArgs.setRAngleLoc(RAngleLoc);
5328  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5329
5330  // Check for unexpanded parameter packs in any of the template arguments.
5331  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
5332    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
5333                                        UPPC_PartialSpecialization))
5334      return true;
5335
5336  // Check that the template argument list is well-formed for this
5337  // template.
5338  SmallVector<TemplateArgument, 4> Converted;
5339  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5340                                TemplateArgs, false, Converted))
5341    return true;
5342
5343  // Find the class template (partial) specialization declaration that
5344  // corresponds to these arguments.
5345  if (isPartialSpecialization) {
5346    if (CheckClassTemplatePartialSpecializationArgs(*this,
5347                                         ClassTemplate->getTemplateParameters(),
5348                                         Converted))
5349      return true;
5350
5351    bool InstantiationDependent;
5352    if (!Name.isDependent() &&
5353        !TemplateSpecializationType::anyDependentTemplateArguments(
5354                                             TemplateArgs.getArgumentArray(),
5355                                                         TemplateArgs.size(),
5356                                                     InstantiationDependent)) {
5357      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
5358        << ClassTemplate->getDeclName();
5359      isPartialSpecialization = false;
5360    }
5361  }
5362
5363  void *InsertPos = 0;
5364  ClassTemplateSpecializationDecl *PrevDecl = 0;
5365
5366  if (isPartialSpecialization)
5367    // FIXME: Template parameter list matters, too
5368    PrevDecl
5369      = ClassTemplate->findPartialSpecialization(Converted.data(),
5370                                                 Converted.size(),
5371                                                 InsertPos);
5372  else
5373    PrevDecl
5374      = ClassTemplate->findSpecialization(Converted.data(),
5375                                          Converted.size(), InsertPos);
5376
5377  ClassTemplateSpecializationDecl *Specialization = 0;
5378
5379  // Check whether we can declare a class template specialization in
5380  // the current scope.
5381  if (TUK != TUK_Friend &&
5382      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
5383                                       TemplateNameLoc,
5384                                       isPartialSpecialization))
5385    return true;
5386
5387  // The canonical type
5388  QualType CanonType;
5389  if (PrevDecl &&
5390      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
5391               TUK == TUK_Friend)) {
5392    // Since the only prior class template specialization with these
5393    // arguments was referenced but not declared, or we're only
5394    // referencing this specialization as a friend, reuse that
5395    // declaration node as our own, updating its source location and
5396    // the list of outer template parameters to reflect our new declaration.
5397    Specialization = PrevDecl;
5398    Specialization->setLocation(TemplateNameLoc);
5399    if (TemplateParameterLists.size() > 0) {
5400      Specialization->setTemplateParameterListsInfo(Context,
5401                                              TemplateParameterLists.size(),
5402                                              TemplateParameterLists.data());
5403    }
5404    PrevDecl = 0;
5405    CanonType = Context.getTypeDeclType(Specialization);
5406  } else if (isPartialSpecialization) {
5407    // Build the canonical type that describes the converted template
5408    // arguments of the class template partial specialization.
5409    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
5410    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
5411                                                      Converted.data(),
5412                                                      Converted.size());
5413
5414    if (Context.hasSameType(CanonType,
5415                        ClassTemplate->getInjectedClassNameSpecialization())) {
5416      // C++ [temp.class.spec]p9b3:
5417      //
5418      //   -- The argument list of the specialization shall not be identical
5419      //      to the implicit argument list of the primary template.
5420      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
5421        << (TUK == TUK_Definition)
5422        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
5423      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
5424                                ClassTemplate->getIdentifier(),
5425                                TemplateNameLoc,
5426                                Attr,
5427                                TemplateParams,
5428                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
5429                                TemplateParameterLists.size() - 1,
5430                                TemplateParameterLists.data());
5431    }
5432
5433    // Create a new class template partial specialization declaration node.
5434    ClassTemplatePartialSpecializationDecl *PrevPartial
5435      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5436    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5437                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5438    ClassTemplatePartialSpecializationDecl *Partial
5439      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5440                                             ClassTemplate->getDeclContext(),
5441                                                       KWLoc, TemplateNameLoc,
5442                                                       TemplateParams,
5443                                                       ClassTemplate,
5444                                                       Converted.data(),
5445                                                       Converted.size(),
5446                                                       TemplateArgs,
5447                                                       CanonType,
5448                                                       PrevPartial,
5449                                                       SequenceNumber);
5450    SetNestedNameSpecifier(Partial, SS);
5451    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5452      Partial->setTemplateParameterListsInfo(Context,
5453                                             TemplateParameterLists.size() - 1,
5454                                             TemplateParameterLists.data());
5455    }
5456
5457    if (!PrevPartial)
5458      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5459    Specialization = Partial;
5460
5461    // If we are providing an explicit specialization of a member class
5462    // template specialization, make a note of that.
5463    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5464      PrevPartial->setMemberSpecialization();
5465
5466    // Check that all of the template parameters of the class template
5467    // partial specialization are deducible from the template
5468    // arguments. If not, this class template partial specialization
5469    // will never be used.
5470    llvm::SmallBitVector DeducibleParams(TemplateParams->size());
5471    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5472                               TemplateParams->getDepth(),
5473                               DeducibleParams);
5474
5475    if (!DeducibleParams.all()) {
5476      unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
5477      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5478        << (NumNonDeducible > 1)
5479        << SourceRange(TemplateNameLoc, RAngleLoc);
5480      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5481        if (!DeducibleParams[I]) {
5482          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5483          if (Param->getDeclName())
5484            Diag(Param->getLocation(),
5485                 diag::note_partial_spec_unused_parameter)
5486              << Param->getDeclName();
5487          else
5488            Diag(Param->getLocation(),
5489                 diag::note_partial_spec_unused_parameter)
5490              << "<anonymous>";
5491        }
5492      }
5493    }
5494  } else {
5495    // Create a new class template specialization declaration node for
5496    // this explicit specialization or friend declaration.
5497    Specialization
5498      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5499                                             ClassTemplate->getDeclContext(),
5500                                                KWLoc, TemplateNameLoc,
5501                                                ClassTemplate,
5502                                                Converted.data(),
5503                                                Converted.size(),
5504                                                PrevDecl);
5505    SetNestedNameSpecifier(Specialization, SS);
5506    if (TemplateParameterLists.size() > 0) {
5507      Specialization->setTemplateParameterListsInfo(Context,
5508                                              TemplateParameterLists.size(),
5509                                              TemplateParameterLists.data());
5510    }
5511
5512    if (!PrevDecl)
5513      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5514
5515    CanonType = Context.getTypeDeclType(Specialization);
5516  }
5517
5518  // C++ [temp.expl.spec]p6:
5519  //   If a template, a member template or the member of a class template is
5520  //   explicitly specialized then that specialization shall be declared
5521  //   before the first use of that specialization that would cause an implicit
5522  //   instantiation to take place, in every translation unit in which such a
5523  //   use occurs; no diagnostic is required.
5524  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5525    bool Okay = false;
5526    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5527      // Is there any previous explicit specialization declaration?
5528      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5529        Okay = true;
5530        break;
5531      }
5532    }
5533
5534    if (!Okay) {
5535      SourceRange Range(TemplateNameLoc, RAngleLoc);
5536      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5537        << Context.getTypeDeclType(Specialization) << Range;
5538
5539      Diag(PrevDecl->getPointOfInstantiation(),
5540           diag::note_instantiation_required_here)
5541        << (PrevDecl->getTemplateSpecializationKind()
5542                                                != TSK_ImplicitInstantiation);
5543      return true;
5544    }
5545  }
5546
5547  // If this is not a friend, note that this is an explicit specialization.
5548  if (TUK != TUK_Friend)
5549    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5550
5551  // Check that this isn't a redefinition of this specialization.
5552  if (TUK == TUK_Definition) {
5553    if (RecordDecl *Def = Specialization->getDefinition()) {
5554      SourceRange Range(TemplateNameLoc, RAngleLoc);
5555      Diag(TemplateNameLoc, diag::err_redefinition)
5556        << Context.getTypeDeclType(Specialization) << Range;
5557      Diag(Def->getLocation(), diag::note_previous_definition);
5558      Specialization->setInvalidDecl();
5559      return true;
5560    }
5561  }
5562
5563  if (Attr)
5564    ProcessDeclAttributeList(S, Specialization, Attr);
5565
5566  // Add alignment attributes if necessary; these attributes are checked when
5567  // the ASTContext lays out the structure.
5568  if (TUK == TUK_Definition) {
5569    AddAlignmentAttributesForRecord(Specialization);
5570    AddMsStructLayoutForRecord(Specialization);
5571  }
5572
5573  if (ModulePrivateLoc.isValid())
5574    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5575      << (isPartialSpecialization? 1 : 0)
5576      << FixItHint::CreateRemoval(ModulePrivateLoc);
5577
5578  // Build the fully-sugared type for this class template
5579  // specialization as the user wrote in the specialization
5580  // itself. This means that we'll pretty-print the type retrieved
5581  // from the specialization's declaration the way that the user
5582  // actually wrote the specialization, rather than formatting the
5583  // name based on the "canonical" representation used to store the
5584  // template arguments in the specialization.
5585  TypeSourceInfo *WrittenTy
5586    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5587                                                TemplateArgs, CanonType);
5588  if (TUK != TUK_Friend) {
5589    Specialization->setTypeAsWritten(WrittenTy);
5590    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5591  }
5592
5593  // C++ [temp.expl.spec]p9:
5594  //   A template explicit specialization is in the scope of the
5595  //   namespace in which the template was defined.
5596  //
5597  // We actually implement this paragraph where we set the semantic
5598  // context (in the creation of the ClassTemplateSpecializationDecl),
5599  // but we also maintain the lexical context where the actual
5600  // definition occurs.
5601  Specialization->setLexicalDeclContext(CurContext);
5602
5603  // We may be starting the definition of this specialization.
5604  if (TUK == TUK_Definition)
5605    Specialization->startDefinition();
5606
5607  if (TUK == TUK_Friend) {
5608    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5609                                            TemplateNameLoc,
5610                                            WrittenTy,
5611                                            /*FIXME:*/KWLoc);
5612    Friend->setAccess(AS_public);
5613    CurContext->addDecl(Friend);
5614  } else {
5615    // Add the specialization into its lexical context, so that it can
5616    // be seen when iterating through the list of declarations in that
5617    // context. However, specializations are not found by name lookup.
5618    CurContext->addDecl(Specialization);
5619  }
5620  return Specialization;
5621}
5622
5623Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5624                              MultiTemplateParamsArg TemplateParameterLists,
5625                                    Declarator &D) {
5626  Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
5627  ActOnDocumentableDecl(NewDecl);
5628  return NewDecl;
5629}
5630
5631Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5632                               MultiTemplateParamsArg TemplateParameterLists,
5633                                            Declarator &D) {
5634  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5635  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5636
5637  if (FTI.hasPrototype) {
5638    // FIXME: Diagnose arguments without names in C.
5639  }
5640
5641  Scope *ParentScope = FnBodyScope->getParent();
5642
5643  D.setFunctionDefinitionKind(FDK_Definition);
5644  Decl *DP = HandleDeclarator(ParentScope, D,
5645                              TemplateParameterLists);
5646  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5647}
5648
5649/// \brief Strips various properties off an implicit instantiation
5650/// that has just been explicitly specialized.
5651static void StripImplicitInstantiation(NamedDecl *D) {
5652  D->dropAttrs();
5653
5654  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5655    FD->setInlineSpecified(false);
5656
5657    for (FunctionDecl::param_iterator I = FD->param_begin(),
5658                                      E = FD->param_end();
5659         I != E; ++I)
5660      (*I)->dropAttrs();
5661  }
5662}
5663
5664/// \brief Compute the diagnostic location for an explicit instantiation
5665//  declaration or definition.
5666static SourceLocation DiagLocForExplicitInstantiation(
5667    NamedDecl* D, SourceLocation PointOfInstantiation) {
5668  // Explicit instantiations following a specialization have no effect and
5669  // hence no PointOfInstantiation. In that case, walk decl backwards
5670  // until a valid name loc is found.
5671  SourceLocation PrevDiagLoc = PointOfInstantiation;
5672  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5673       Prev = Prev->getPreviousDecl()) {
5674    PrevDiagLoc = Prev->getLocation();
5675  }
5676  assert(PrevDiagLoc.isValid() &&
5677         "Explicit instantiation without point of instantiation?");
5678  return PrevDiagLoc;
5679}
5680
5681/// \brief Diagnose cases where we have an explicit template specialization
5682/// before/after an explicit template instantiation, producing diagnostics
5683/// for those cases where they are required and determining whether the
5684/// new specialization/instantiation will have any effect.
5685///
5686/// \param NewLoc the location of the new explicit specialization or
5687/// instantiation.
5688///
5689/// \param NewTSK the kind of the new explicit specialization or instantiation.
5690///
5691/// \param PrevDecl the previous declaration of the entity.
5692///
5693/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5694///
5695/// \param PrevPointOfInstantiation if valid, indicates where the previus
5696/// declaration was instantiated (either implicitly or explicitly).
5697///
5698/// \param HasNoEffect will be set to true to indicate that the new
5699/// specialization or instantiation has no effect and should be ignored.
5700///
5701/// \returns true if there was an error that should prevent the introduction of
5702/// the new declaration into the AST, false otherwise.
5703bool
5704Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5705                                             TemplateSpecializationKind NewTSK,
5706                                             NamedDecl *PrevDecl,
5707                                             TemplateSpecializationKind PrevTSK,
5708                                        SourceLocation PrevPointOfInstantiation,
5709                                             bool &HasNoEffect) {
5710  HasNoEffect = false;
5711
5712  switch (NewTSK) {
5713  case TSK_Undeclared:
5714  case TSK_ImplicitInstantiation:
5715    llvm_unreachable("Don't check implicit instantiations here");
5716
5717  case TSK_ExplicitSpecialization:
5718    switch (PrevTSK) {
5719    case TSK_Undeclared:
5720    case TSK_ExplicitSpecialization:
5721      // Okay, we're just specializing something that is either already
5722      // explicitly specialized or has merely been mentioned without any
5723      // instantiation.
5724      return false;
5725
5726    case TSK_ImplicitInstantiation:
5727      if (PrevPointOfInstantiation.isInvalid()) {
5728        // The declaration itself has not actually been instantiated, so it is
5729        // still okay to specialize it.
5730        StripImplicitInstantiation(PrevDecl);
5731        return false;
5732      }
5733      // Fall through
5734
5735    case TSK_ExplicitInstantiationDeclaration:
5736    case TSK_ExplicitInstantiationDefinition:
5737      assert((PrevTSK == TSK_ImplicitInstantiation ||
5738              PrevPointOfInstantiation.isValid()) &&
5739             "Explicit instantiation without point of instantiation?");
5740
5741      // C++ [temp.expl.spec]p6:
5742      //   If a template, a member template or the member of a class template
5743      //   is explicitly specialized then that specialization shall be declared
5744      //   before the first use of that specialization that would cause an
5745      //   implicit instantiation to take place, in every translation unit in
5746      //   which such a use occurs; no diagnostic is required.
5747      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5748        // Is there any previous explicit specialization declaration?
5749        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5750          return false;
5751      }
5752
5753      Diag(NewLoc, diag::err_specialization_after_instantiation)
5754        << PrevDecl;
5755      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5756        << (PrevTSK != TSK_ImplicitInstantiation);
5757
5758      return true;
5759    }
5760
5761  case TSK_ExplicitInstantiationDeclaration:
5762    switch (PrevTSK) {
5763    case TSK_ExplicitInstantiationDeclaration:
5764      // This explicit instantiation declaration is redundant (that's okay).
5765      HasNoEffect = true;
5766      return false;
5767
5768    case TSK_Undeclared:
5769    case TSK_ImplicitInstantiation:
5770      // We're explicitly instantiating something that may have already been
5771      // implicitly instantiated; that's fine.
5772      return false;
5773
5774    case TSK_ExplicitSpecialization:
5775      // C++0x [temp.explicit]p4:
5776      //   For a given set of template parameters, if an explicit instantiation
5777      //   of a template appears after a declaration of an explicit
5778      //   specialization for that template, the explicit instantiation has no
5779      //   effect.
5780      HasNoEffect = true;
5781      return false;
5782
5783    case TSK_ExplicitInstantiationDefinition:
5784      // C++0x [temp.explicit]p10:
5785      //   If an entity is the subject of both an explicit instantiation
5786      //   declaration and an explicit instantiation definition in the same
5787      //   translation unit, the definition shall follow the declaration.
5788      Diag(NewLoc,
5789           diag::err_explicit_instantiation_declaration_after_definition);
5790
5791      // Explicit instantiations following a specialization have no effect and
5792      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5793      // until a valid name loc is found.
5794      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5795           diag::note_explicit_instantiation_definition_here);
5796      HasNoEffect = true;
5797      return false;
5798    }
5799
5800  case TSK_ExplicitInstantiationDefinition:
5801    switch (PrevTSK) {
5802    case TSK_Undeclared:
5803    case TSK_ImplicitInstantiation:
5804      // We're explicitly instantiating something that may have already been
5805      // implicitly instantiated; that's fine.
5806      return false;
5807
5808    case TSK_ExplicitSpecialization:
5809      // C++ DR 259, C++0x [temp.explicit]p4:
5810      //   For a given set of template parameters, if an explicit
5811      //   instantiation of a template appears after a declaration of
5812      //   an explicit specialization for that template, the explicit
5813      //   instantiation has no effect.
5814      //
5815      // In C++98/03 mode, we only give an extension warning here, because it
5816      // is not harmful to try to explicitly instantiate something that
5817      // has been explicitly specialized.
5818      Diag(NewLoc, getLangOpts().CPlusPlus11 ?
5819           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5820           diag::ext_explicit_instantiation_after_specialization)
5821        << PrevDecl;
5822      Diag(PrevDecl->getLocation(),
5823           diag::note_previous_template_specialization);
5824      HasNoEffect = true;
5825      return false;
5826
5827    case TSK_ExplicitInstantiationDeclaration:
5828      // We're explicity instantiating a definition for something for which we
5829      // were previously asked to suppress instantiations. That's fine.
5830
5831      // C++0x [temp.explicit]p4:
5832      //   For a given set of template parameters, if an explicit instantiation
5833      //   of a template appears after a declaration of an explicit
5834      //   specialization for that template, the explicit instantiation has no
5835      //   effect.
5836      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5837        // Is there any previous explicit specialization declaration?
5838        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5839          HasNoEffect = true;
5840          break;
5841        }
5842      }
5843
5844      return false;
5845
5846    case TSK_ExplicitInstantiationDefinition:
5847      // C++0x [temp.spec]p5:
5848      //   For a given template and a given set of template-arguments,
5849      //     - an explicit instantiation definition shall appear at most once
5850      //       in a program,
5851      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5852        << PrevDecl;
5853      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5854           diag::note_previous_explicit_instantiation);
5855      HasNoEffect = true;
5856      return false;
5857    }
5858  }
5859
5860  llvm_unreachable("Missing specialization/instantiation case?");
5861}
5862
5863/// \brief Perform semantic analysis for the given dependent function
5864/// template specialization.
5865///
5866/// The only possible way to get a dependent function template specialization
5867/// is with a friend declaration, like so:
5868///
5869/// \code
5870///   template \<class T> void foo(T);
5871///   template \<class T> class A {
5872///     friend void foo<>(T);
5873///   };
5874/// \endcode
5875///
5876/// There really isn't any useful analysis we can do here, so we
5877/// just store the information.
5878bool
5879Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5880                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5881                                                   LookupResult &Previous) {
5882  // Remove anything from Previous that isn't a function template in
5883  // the correct context.
5884  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5885  LookupResult::Filter F = Previous.makeFilter();
5886  while (F.hasNext()) {
5887    NamedDecl *D = F.next()->getUnderlyingDecl();
5888    if (!isa<FunctionTemplateDecl>(D) ||
5889        !FDLookupContext->InEnclosingNamespaceSetOf(
5890                              D->getDeclContext()->getRedeclContext()))
5891      F.erase();
5892  }
5893  F.done();
5894
5895  // Should this be diagnosed here?
5896  if (Previous.empty()) return true;
5897
5898  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5899                                         ExplicitTemplateArgs);
5900  return false;
5901}
5902
5903/// \brief Perform semantic analysis for the given function template
5904/// specialization.
5905///
5906/// This routine performs all of the semantic analysis required for an
5907/// explicit function template specialization. On successful completion,
5908/// the function declaration \p FD will become a function template
5909/// specialization.
5910///
5911/// \param FD the function declaration, which will be updated to become a
5912/// function template specialization.
5913///
5914/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5915/// if any. Note that this may be valid info even when 0 arguments are
5916/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5917/// as it anyway contains info on the angle brackets locations.
5918///
5919/// \param Previous the set of declarations that may be specialized by
5920/// this function specialization.
5921bool
5922Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5923                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5924                                          LookupResult &Previous) {
5925  // The set of function template specializations that could match this
5926  // explicit function template specialization.
5927  UnresolvedSet<8> Candidates;
5928
5929  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5930  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5931         I != E; ++I) {
5932    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5933    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5934      // Only consider templates found within the same semantic lookup scope as
5935      // FD.
5936      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5937                                Ovl->getDeclContext()->getRedeclContext()))
5938        continue;
5939
5940      // When matching a constexpr member function template specialization
5941      // against the primary template, we don't yet know whether the
5942      // specialization has an implicit 'const' (because we don't know whether
5943      // it will be a static member function until we know which template it
5944      // specializes), so adjust it now assuming it specializes this template.
5945      QualType FT = FD->getType();
5946      if (FD->isConstexpr()) {
5947        CXXMethodDecl *OldMD =
5948          dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
5949        if (OldMD && OldMD->isConst()) {
5950          const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
5951          FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5952          EPI.TypeQuals |= Qualifiers::Const;
5953          FT = Context.getFunctionType(FPT->getResultType(), FPT->getArgTypes(),
5954                                       EPI);
5955        }
5956      }
5957
5958      // C++ [temp.expl.spec]p11:
5959      //   A trailing template-argument can be left unspecified in the
5960      //   template-id naming an explicit function template specialization
5961      //   provided it can be deduced from the function argument type.
5962      // Perform template argument deduction to determine whether we may be
5963      // specializing this template.
5964      // FIXME: It is somewhat wasteful to build
5965      TemplateDeductionInfo Info(FD->getLocation());
5966      FunctionDecl *Specialization = 0;
5967      if (TemplateDeductionResult TDK
5968            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs, FT,
5969                                      Specialization, Info)) {
5970        // FIXME: Template argument deduction failed; record why it failed, so
5971        // that we can provide nifty diagnostics.
5972        (void)TDK;
5973        continue;
5974      }
5975
5976      // Record this candidate.
5977      Candidates.addDecl(Specialization, I.getAccess());
5978    }
5979  }
5980
5981  // Find the most specialized function template.
5982  UnresolvedSetIterator Result
5983    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5984                         TPOC_Other, 0, FD->getLocation(),
5985                  PDiag(diag::err_function_template_spec_no_match)
5986                    << FD->getDeclName(),
5987                  PDiag(diag::err_function_template_spec_ambiguous)
5988                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5989                  PDiag(diag::note_function_template_spec_matched));
5990  if (Result == Candidates.end())
5991    return true;
5992
5993  // Ignore access information;  it doesn't figure into redeclaration checking.
5994  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5995
5996  FunctionTemplateSpecializationInfo *SpecInfo
5997    = Specialization->getTemplateSpecializationInfo();
5998  assert(SpecInfo && "Function template specialization info missing?");
5999
6000  // Note: do not overwrite location info if previous template
6001  // specialization kind was explicit.
6002  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6003  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6004    Specialization->setLocation(FD->getLocation());
6005    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6006    // function can differ from the template declaration with respect to
6007    // the constexpr specifier.
6008    Specialization->setConstexpr(FD->isConstexpr());
6009  }
6010
6011  // FIXME: Check if the prior specialization has a point of instantiation.
6012  // If so, we have run afoul of .
6013
6014  // If this is a friend declaration, then we're not really declaring
6015  // an explicit specialization.
6016  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6017
6018  // Check the scope of this explicit specialization.
6019  if (!isFriend &&
6020      CheckTemplateSpecializationScope(*this,
6021                                       Specialization->getPrimaryTemplate(),
6022                                       Specialization, FD->getLocation(),
6023                                       false))
6024    return true;
6025
6026  // C++ [temp.expl.spec]p6:
6027  //   If a template, a member template or the member of a class template is
6028  //   explicitly specialized then that specialization shall be declared
6029  //   before the first use of that specialization that would cause an implicit
6030  //   instantiation to take place, in every translation unit in which such a
6031  //   use occurs; no diagnostic is required.
6032  bool HasNoEffect = false;
6033  if (!isFriend &&
6034      CheckSpecializationInstantiationRedecl(FD->getLocation(),
6035                                             TSK_ExplicitSpecialization,
6036                                             Specialization,
6037                                   SpecInfo->getTemplateSpecializationKind(),
6038                                         SpecInfo->getPointOfInstantiation(),
6039                                             HasNoEffect))
6040    return true;
6041
6042  // Mark the prior declaration as an explicit specialization, so that later
6043  // clients know that this is an explicit specialization.
6044  if (!isFriend) {
6045    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6046    MarkUnusedFileScopedDecl(Specialization);
6047  }
6048
6049  // Turn the given function declaration into a function template
6050  // specialization, with the template arguments from the previous
6051  // specialization.
6052  // Take copies of (semantic and syntactic) template argument lists.
6053  const TemplateArgumentList* TemplArgs = new (Context)
6054    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6055  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
6056                                        TemplArgs, /*InsertPos=*/0,
6057                                    SpecInfo->getTemplateSpecializationKind(),
6058                                        ExplicitTemplateArgs);
6059
6060  // The "previous declaration" for this function template specialization is
6061  // the prior function template specialization.
6062  Previous.clear();
6063  Previous.addDecl(Specialization);
6064  return false;
6065}
6066
6067/// \brief Perform semantic analysis for the given non-template member
6068/// specialization.
6069///
6070/// This routine performs all of the semantic analysis required for an
6071/// explicit member function specialization. On successful completion,
6072/// the function declaration \p FD will become a member function
6073/// specialization.
6074///
6075/// \param Member the member declaration, which will be updated to become a
6076/// specialization.
6077///
6078/// \param Previous the set of declarations, one of which may be specialized
6079/// by this function specialization;  the set will be modified to contain the
6080/// redeclared member.
6081bool
6082Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6083  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6084
6085  // Try to find the member we are instantiating.
6086  NamedDecl *Instantiation = 0;
6087  NamedDecl *InstantiatedFrom = 0;
6088  MemberSpecializationInfo *MSInfo = 0;
6089
6090  if (Previous.empty()) {
6091    // Nowhere to look anyway.
6092  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
6093    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6094           I != E; ++I) {
6095      NamedDecl *D = (*I)->getUnderlyingDecl();
6096      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
6097        if (Context.hasSameType(Function->getType(), Method->getType())) {
6098          Instantiation = Method;
6099          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
6100          MSInfo = Method->getMemberSpecializationInfo();
6101          break;
6102        }
6103      }
6104    }
6105  } else if (isa<VarDecl>(Member)) {
6106    VarDecl *PrevVar;
6107    if (Previous.isSingleResult() &&
6108        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
6109      if (PrevVar->isStaticDataMember()) {
6110        Instantiation = PrevVar;
6111        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
6112        MSInfo = PrevVar->getMemberSpecializationInfo();
6113      }
6114  } else if (isa<RecordDecl>(Member)) {
6115    CXXRecordDecl *PrevRecord;
6116    if (Previous.isSingleResult() &&
6117        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
6118      Instantiation = PrevRecord;
6119      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
6120      MSInfo = PrevRecord->getMemberSpecializationInfo();
6121    }
6122  } else if (isa<EnumDecl>(Member)) {
6123    EnumDecl *PrevEnum;
6124    if (Previous.isSingleResult() &&
6125        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
6126      Instantiation = PrevEnum;
6127      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
6128      MSInfo = PrevEnum->getMemberSpecializationInfo();
6129    }
6130  }
6131
6132  if (!Instantiation) {
6133    // There is no previous declaration that matches. Since member
6134    // specializations are always out-of-line, the caller will complain about
6135    // this mismatch later.
6136    return false;
6137  }
6138
6139  // If this is a friend, just bail out here before we start turning
6140  // things into explicit specializations.
6141  if (Member->getFriendObjectKind() != Decl::FOK_None) {
6142    // Preserve instantiation information.
6143    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
6144      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
6145                                      cast<CXXMethodDecl>(InstantiatedFrom),
6146        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
6147    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
6148      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6149                                      cast<CXXRecordDecl>(InstantiatedFrom),
6150        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
6151    }
6152
6153    Previous.clear();
6154    Previous.addDecl(Instantiation);
6155    return false;
6156  }
6157
6158  // Make sure that this is a specialization of a member.
6159  if (!InstantiatedFrom) {
6160    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
6161      << Member;
6162    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
6163    return true;
6164  }
6165
6166  // C++ [temp.expl.spec]p6:
6167  //   If a template, a member template or the member of a class template is
6168  //   explicitly specialized then that specialization shall be declared
6169  //   before the first use of that specialization that would cause an implicit
6170  //   instantiation to take place, in every translation unit in which such a
6171  //   use occurs; no diagnostic is required.
6172  assert(MSInfo && "Member specialization info missing?");
6173
6174  bool HasNoEffect = false;
6175  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
6176                                             TSK_ExplicitSpecialization,
6177                                             Instantiation,
6178                                     MSInfo->getTemplateSpecializationKind(),
6179                                           MSInfo->getPointOfInstantiation(),
6180                                             HasNoEffect))
6181    return true;
6182
6183  // Check the scope of this explicit specialization.
6184  if (CheckTemplateSpecializationScope(*this,
6185                                       InstantiatedFrom,
6186                                       Instantiation, Member->getLocation(),
6187                                       false))
6188    return true;
6189
6190  // Note that this is an explicit instantiation of a member.
6191  // the original declaration to note that it is an explicit specialization
6192  // (if it was previously an implicit instantiation). This latter step
6193  // makes bookkeeping easier.
6194  if (isa<FunctionDecl>(Member)) {
6195    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
6196    if (InstantiationFunction->getTemplateSpecializationKind() ==
6197          TSK_ImplicitInstantiation) {
6198      InstantiationFunction->setTemplateSpecializationKind(
6199                                                  TSK_ExplicitSpecialization);
6200      InstantiationFunction->setLocation(Member->getLocation());
6201    }
6202
6203    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
6204                                        cast<CXXMethodDecl>(InstantiatedFrom),
6205                                                  TSK_ExplicitSpecialization);
6206    MarkUnusedFileScopedDecl(InstantiationFunction);
6207  } else if (isa<VarDecl>(Member)) {
6208    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
6209    if (InstantiationVar->getTemplateSpecializationKind() ==
6210          TSK_ImplicitInstantiation) {
6211      InstantiationVar->setTemplateSpecializationKind(
6212                                                  TSK_ExplicitSpecialization);
6213      InstantiationVar->setLocation(Member->getLocation());
6214    }
6215
6216    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
6217                                                cast<VarDecl>(InstantiatedFrom),
6218                                                TSK_ExplicitSpecialization);
6219    MarkUnusedFileScopedDecl(InstantiationVar);
6220  } else if (isa<CXXRecordDecl>(Member)) {
6221    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
6222    if (InstantiationClass->getTemplateSpecializationKind() ==
6223          TSK_ImplicitInstantiation) {
6224      InstantiationClass->setTemplateSpecializationKind(
6225                                                   TSK_ExplicitSpecialization);
6226      InstantiationClass->setLocation(Member->getLocation());
6227    }
6228
6229    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
6230                                        cast<CXXRecordDecl>(InstantiatedFrom),
6231                                                   TSK_ExplicitSpecialization);
6232  } else {
6233    assert(isa<EnumDecl>(Member) && "Only member enums remain");
6234    EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
6235    if (InstantiationEnum->getTemplateSpecializationKind() ==
6236          TSK_ImplicitInstantiation) {
6237      InstantiationEnum->setTemplateSpecializationKind(
6238                                                   TSK_ExplicitSpecialization);
6239      InstantiationEnum->setLocation(Member->getLocation());
6240    }
6241
6242    cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
6243        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
6244  }
6245
6246  // Save the caller the trouble of having to figure out which declaration
6247  // this specialization matches.
6248  Previous.clear();
6249  Previous.addDecl(Instantiation);
6250  return false;
6251}
6252
6253/// \brief Check the scope of an explicit instantiation.
6254///
6255/// \returns true if a serious error occurs, false otherwise.
6256static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
6257                                            SourceLocation InstLoc,
6258                                            bool WasQualifiedName) {
6259  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
6260  DeclContext *CurContext = S.CurContext->getRedeclContext();
6261
6262  if (CurContext->isRecord()) {
6263    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
6264      << D;
6265    return true;
6266  }
6267
6268  // C++11 [temp.explicit]p3:
6269  //   An explicit instantiation shall appear in an enclosing namespace of its
6270  //   template. If the name declared in the explicit instantiation is an
6271  //   unqualified name, the explicit instantiation shall appear in the
6272  //   namespace where its template is declared or, if that namespace is inline
6273  //   (7.3.1), any namespace from its enclosing namespace set.
6274  //
6275  // This is DR275, which we do not retroactively apply to C++98/03.
6276  if (WasQualifiedName) {
6277    if (CurContext->Encloses(OrigContext))
6278      return false;
6279  } else {
6280    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
6281      return false;
6282  }
6283
6284  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
6285    if (WasQualifiedName)
6286      S.Diag(InstLoc,
6287             S.getLangOpts().CPlusPlus11?
6288               diag::err_explicit_instantiation_out_of_scope :
6289               diag::warn_explicit_instantiation_out_of_scope_0x)
6290        << D << NS;
6291    else
6292      S.Diag(InstLoc,
6293             S.getLangOpts().CPlusPlus11?
6294               diag::err_explicit_instantiation_unqualified_wrong_namespace :
6295               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
6296        << D << NS;
6297  } else
6298    S.Diag(InstLoc,
6299           S.getLangOpts().CPlusPlus11?
6300             diag::err_explicit_instantiation_must_be_global :
6301             diag::warn_explicit_instantiation_must_be_global_0x)
6302      << D;
6303  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
6304  return false;
6305}
6306
6307/// \brief Determine whether the given scope specifier has a template-id in it.
6308static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
6309  if (!SS.isSet())
6310    return false;
6311
6312  // C++11 [temp.explicit]p3:
6313  //   If the explicit instantiation is for a member function, a member class
6314  //   or a static data member of a class template specialization, the name of
6315  //   the class template specialization in the qualified-id for the member
6316  //   name shall be a simple-template-id.
6317  //
6318  // C++98 has the same restriction, just worded differently.
6319  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
6320       NNS; NNS = NNS->getPrefix())
6321    if (const Type *T = NNS->getAsType())
6322      if (isa<TemplateSpecializationType>(T))
6323        return true;
6324
6325  return false;
6326}
6327
6328// Explicit instantiation of a class template specialization
6329DeclResult
6330Sema::ActOnExplicitInstantiation(Scope *S,
6331                                 SourceLocation ExternLoc,
6332                                 SourceLocation TemplateLoc,
6333                                 unsigned TagSpec,
6334                                 SourceLocation KWLoc,
6335                                 const CXXScopeSpec &SS,
6336                                 TemplateTy TemplateD,
6337                                 SourceLocation TemplateNameLoc,
6338                                 SourceLocation LAngleLoc,
6339                                 ASTTemplateArgsPtr TemplateArgsIn,
6340                                 SourceLocation RAngleLoc,
6341                                 AttributeList *Attr) {
6342  // Find the class template we're specializing
6343  TemplateName Name = TemplateD.getAsVal<TemplateName>();
6344  TemplateDecl *TD = Name.getAsTemplateDecl();
6345  // Check that the specialization uses the same tag kind as the
6346  // original template.
6347  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6348  assert(Kind != TTK_Enum &&
6349         "Invalid enum tag in class template explicit instantiation!");
6350
6351  if (isa<TypeAliasTemplateDecl>(TD)) {
6352      Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
6353      Diag(TD->getTemplatedDecl()->getLocation(),
6354           diag::note_previous_use);
6355    return true;
6356  }
6357
6358  ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
6359
6360  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6361                                    Kind, /*isDefinition*/false, KWLoc,
6362                                    *ClassTemplate->getIdentifier())) {
6363    Diag(KWLoc, diag::err_use_with_wrong_tag)
6364      << ClassTemplate
6365      << FixItHint::CreateReplacement(KWLoc,
6366                            ClassTemplate->getTemplatedDecl()->getKindName());
6367    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6368         diag::note_previous_use);
6369    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6370  }
6371
6372  // C++0x [temp.explicit]p2:
6373  //   There are two forms of explicit instantiation: an explicit instantiation
6374  //   definition and an explicit instantiation declaration. An explicit
6375  //   instantiation declaration begins with the extern keyword. [...]
6376  TemplateSpecializationKind TSK
6377    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6378                           : TSK_ExplicitInstantiationDeclaration;
6379
6380  // Translate the parser's template argument list in our AST format.
6381  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6382  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6383
6384  // Check that the template argument list is well-formed for this
6385  // template.
6386  SmallVector<TemplateArgument, 4> Converted;
6387  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6388                                TemplateArgs, false, Converted))
6389    return true;
6390
6391  // Find the class template specialization declaration that
6392  // corresponds to these arguments.
6393  void *InsertPos = 0;
6394  ClassTemplateSpecializationDecl *PrevDecl
6395    = ClassTemplate->findSpecialization(Converted.data(),
6396                                        Converted.size(), InsertPos);
6397
6398  TemplateSpecializationKind PrevDecl_TSK
6399    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
6400
6401  // C++0x [temp.explicit]p2:
6402  //   [...] An explicit instantiation shall appear in an enclosing
6403  //   namespace of its template. [...]
6404  //
6405  // This is C++ DR 275.
6406  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
6407                                      SS.isSet()))
6408    return true;
6409
6410  ClassTemplateSpecializationDecl *Specialization = 0;
6411
6412  bool HasNoEffect = false;
6413  if (PrevDecl) {
6414    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
6415                                               PrevDecl, PrevDecl_TSK,
6416                                            PrevDecl->getPointOfInstantiation(),
6417                                               HasNoEffect))
6418      return PrevDecl;
6419
6420    // Even though HasNoEffect == true means that this explicit instantiation
6421    // has no effect on semantics, we go on to put its syntax in the AST.
6422
6423    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
6424        PrevDecl_TSK == TSK_Undeclared) {
6425      // Since the only prior class template specialization with these
6426      // arguments was referenced but not declared, reuse that
6427      // declaration node as our own, updating the source location
6428      // for the template name to reflect our new declaration.
6429      // (Other source locations will be updated later.)
6430      Specialization = PrevDecl;
6431      Specialization->setLocation(TemplateNameLoc);
6432      PrevDecl = 0;
6433    }
6434  }
6435
6436  if (!Specialization) {
6437    // Create a new class template specialization declaration node for
6438    // this explicit specialization.
6439    Specialization
6440      = ClassTemplateSpecializationDecl::Create(Context, Kind,
6441                                             ClassTemplate->getDeclContext(),
6442                                                KWLoc, TemplateNameLoc,
6443                                                ClassTemplate,
6444                                                Converted.data(),
6445                                                Converted.size(),
6446                                                PrevDecl);
6447    SetNestedNameSpecifier(Specialization, SS);
6448
6449    if (!HasNoEffect && !PrevDecl) {
6450      // Insert the new specialization.
6451      ClassTemplate->AddSpecialization(Specialization, InsertPos);
6452    }
6453  }
6454
6455  // Build the fully-sugared type for this explicit instantiation as
6456  // the user wrote in the explicit instantiation itself. This means
6457  // that we'll pretty-print the type retrieved from the
6458  // specialization's declaration the way that the user actually wrote
6459  // the explicit instantiation, rather than formatting the name based
6460  // on the "canonical" representation used to store the template
6461  // arguments in the specialization.
6462  TypeSourceInfo *WrittenTy
6463    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6464                                                TemplateArgs,
6465                                  Context.getTypeDeclType(Specialization));
6466  Specialization->setTypeAsWritten(WrittenTy);
6467
6468  // Set source locations for keywords.
6469  Specialization->setExternLoc(ExternLoc);
6470  Specialization->setTemplateKeywordLoc(TemplateLoc);
6471  Specialization->setRBraceLoc(SourceLocation());
6472
6473  if (Attr)
6474    ProcessDeclAttributeList(S, Specialization, Attr);
6475
6476  // Add the explicit instantiation into its lexical context. However,
6477  // since explicit instantiations are never found by name lookup, we
6478  // just put it into the declaration context directly.
6479  Specialization->setLexicalDeclContext(CurContext);
6480  CurContext->addDecl(Specialization);
6481
6482  // Syntax is now OK, so return if it has no other effect on semantics.
6483  if (HasNoEffect) {
6484    // Set the template specialization kind.
6485    Specialization->setTemplateSpecializationKind(TSK);
6486    return Specialization;
6487  }
6488
6489  // C++ [temp.explicit]p3:
6490  //   A definition of a class template or class member template
6491  //   shall be in scope at the point of the explicit instantiation of
6492  //   the class template or class member template.
6493  //
6494  // This check comes when we actually try to perform the
6495  // instantiation.
6496  ClassTemplateSpecializationDecl *Def
6497    = cast_or_null<ClassTemplateSpecializationDecl>(
6498                                              Specialization->getDefinition());
6499  if (!Def)
6500    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6501  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6502    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6503    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6504  }
6505
6506  // Instantiate the members of this class template specialization.
6507  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6508                                       Specialization->getDefinition());
6509  if (Def) {
6510    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6511
6512    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6513    // TSK_ExplicitInstantiationDefinition
6514    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6515        TSK == TSK_ExplicitInstantiationDefinition)
6516      Def->setTemplateSpecializationKind(TSK);
6517
6518    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6519  }
6520
6521  // Set the template specialization kind.
6522  Specialization->setTemplateSpecializationKind(TSK);
6523  return Specialization;
6524}
6525
6526// Explicit instantiation of a member class of a class template.
6527DeclResult
6528Sema::ActOnExplicitInstantiation(Scope *S,
6529                                 SourceLocation ExternLoc,
6530                                 SourceLocation TemplateLoc,
6531                                 unsigned TagSpec,
6532                                 SourceLocation KWLoc,
6533                                 CXXScopeSpec &SS,
6534                                 IdentifierInfo *Name,
6535                                 SourceLocation NameLoc,
6536                                 AttributeList *Attr) {
6537
6538  bool Owned = false;
6539  bool IsDependent = false;
6540  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6541                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6542                        /*ModulePrivateLoc=*/SourceLocation(),
6543                        MultiTemplateParamsArg(), Owned, IsDependent,
6544                        SourceLocation(), false, TypeResult());
6545  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6546
6547  if (!TagD)
6548    return true;
6549
6550  TagDecl *Tag = cast<TagDecl>(TagD);
6551  assert(!Tag->isEnum() && "shouldn't see enumerations here");
6552
6553  if (Tag->isInvalidDecl())
6554    return true;
6555
6556  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6557  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6558  if (!Pattern) {
6559    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6560      << Context.getTypeDeclType(Record);
6561    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6562    return true;
6563  }
6564
6565  // C++0x [temp.explicit]p2:
6566  //   If the explicit instantiation is for a class or member class, the
6567  //   elaborated-type-specifier in the declaration shall include a
6568  //   simple-template-id.
6569  //
6570  // C++98 has the same restriction, just worded differently.
6571  if (!ScopeSpecifierHasTemplateId(SS))
6572    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6573      << Record << SS.getRange();
6574
6575  // C++0x [temp.explicit]p2:
6576  //   There are two forms of explicit instantiation: an explicit instantiation
6577  //   definition and an explicit instantiation declaration. An explicit
6578  //   instantiation declaration begins with the extern keyword. [...]
6579  TemplateSpecializationKind TSK
6580    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6581                           : TSK_ExplicitInstantiationDeclaration;
6582
6583  // C++0x [temp.explicit]p2:
6584  //   [...] An explicit instantiation shall appear in an enclosing
6585  //   namespace of its template. [...]
6586  //
6587  // This is C++ DR 275.
6588  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6589
6590  // Verify that it is okay to explicitly instantiate here.
6591  CXXRecordDecl *PrevDecl
6592    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
6593  if (!PrevDecl && Record->getDefinition())
6594    PrevDecl = Record;
6595  if (PrevDecl) {
6596    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6597    bool HasNoEffect = false;
6598    assert(MSInfo && "No member specialization information?");
6599    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6600                                               PrevDecl,
6601                                        MSInfo->getTemplateSpecializationKind(),
6602                                             MSInfo->getPointOfInstantiation(),
6603                                               HasNoEffect))
6604      return true;
6605    if (HasNoEffect)
6606      return TagD;
6607  }
6608
6609  CXXRecordDecl *RecordDef
6610    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6611  if (!RecordDef) {
6612    // C++ [temp.explicit]p3:
6613    //   A definition of a member class of a class template shall be in scope
6614    //   at the point of an explicit instantiation of the member class.
6615    CXXRecordDecl *Def
6616      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6617    if (!Def) {
6618      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6619        << 0 << Record->getDeclName() << Record->getDeclContext();
6620      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6621        << Pattern;
6622      return true;
6623    } else {
6624      if (InstantiateClass(NameLoc, Record, Def,
6625                           getTemplateInstantiationArgs(Record),
6626                           TSK))
6627        return true;
6628
6629      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6630      if (!RecordDef)
6631        return true;
6632    }
6633  }
6634
6635  // Instantiate all of the members of the class.
6636  InstantiateClassMembers(NameLoc, RecordDef,
6637                          getTemplateInstantiationArgs(Record), TSK);
6638
6639  if (TSK == TSK_ExplicitInstantiationDefinition)
6640    MarkVTableUsed(NameLoc, RecordDef, true);
6641
6642  // FIXME: We don't have any representation for explicit instantiations of
6643  // member classes. Such a representation is not needed for compilation, but it
6644  // should be available for clients that want to see all of the declarations in
6645  // the source code.
6646  return TagD;
6647}
6648
6649DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6650                                            SourceLocation ExternLoc,
6651                                            SourceLocation TemplateLoc,
6652                                            Declarator &D) {
6653  // Explicit instantiations always require a name.
6654  // TODO: check if/when DNInfo should replace Name.
6655  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6656  DeclarationName Name = NameInfo.getName();
6657  if (!Name) {
6658    if (!D.isInvalidType())
6659      Diag(D.getDeclSpec().getLocStart(),
6660           diag::err_explicit_instantiation_requires_name)
6661        << D.getDeclSpec().getSourceRange()
6662        << D.getSourceRange();
6663
6664    return true;
6665  }
6666
6667  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6668  // we find one that is.
6669  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6670         (S->getFlags() & Scope::TemplateParamScope) != 0)
6671    S = S->getParent();
6672
6673  // Determine the type of the declaration.
6674  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6675  QualType R = T->getType();
6676  if (R.isNull())
6677    return true;
6678
6679  // C++ [dcl.stc]p1:
6680  //   A storage-class-specifier shall not be specified in [...] an explicit
6681  //   instantiation (14.7.2) directive.
6682  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6683    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6684      << Name;
6685    return true;
6686  } else if (D.getDeclSpec().getStorageClassSpec()
6687                                                != DeclSpec::SCS_unspecified) {
6688    // Complain about then remove the storage class specifier.
6689    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6690      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6691
6692    D.getMutableDeclSpec().ClearStorageClassSpecs();
6693  }
6694
6695  // C++0x [temp.explicit]p1:
6696  //   [...] An explicit instantiation of a function template shall not use the
6697  //   inline or constexpr specifiers.
6698  // Presumably, this also applies to member functions of class templates as
6699  // well.
6700  if (D.getDeclSpec().isInlineSpecified())
6701    Diag(D.getDeclSpec().getInlineSpecLoc(),
6702         getLangOpts().CPlusPlus11 ?
6703           diag::err_explicit_instantiation_inline :
6704           diag::warn_explicit_instantiation_inline_0x)
6705      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6706  if (D.getDeclSpec().isConstexprSpecified())
6707    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6708    // not already specified.
6709    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6710         diag::err_explicit_instantiation_constexpr);
6711
6712  // C++0x [temp.explicit]p2:
6713  //   There are two forms of explicit instantiation: an explicit instantiation
6714  //   definition and an explicit instantiation declaration. An explicit
6715  //   instantiation declaration begins with the extern keyword. [...]
6716  TemplateSpecializationKind TSK
6717    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6718                           : TSK_ExplicitInstantiationDeclaration;
6719
6720  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6721  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6722
6723  if (!R->isFunctionType()) {
6724    // C++ [temp.explicit]p1:
6725    //   A [...] static data member of a class template can be explicitly
6726    //   instantiated from the member definition associated with its class
6727    //   template.
6728    if (Previous.isAmbiguous())
6729      return true;
6730
6731    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6732    if (!Prev || !Prev->isStaticDataMember()) {
6733      // We expect to see a data data member here.
6734      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6735        << Name;
6736      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6737           P != PEnd; ++P)
6738        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6739      return true;
6740    }
6741
6742    if (!Prev->getInstantiatedFromStaticDataMember()) {
6743      // FIXME: Check for explicit specialization?
6744      Diag(D.getIdentifierLoc(),
6745           diag::err_explicit_instantiation_data_member_not_instantiated)
6746        << Prev;
6747      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6748      // FIXME: Can we provide a note showing where this was declared?
6749      return true;
6750    }
6751
6752    // C++0x [temp.explicit]p2:
6753    //   If the explicit instantiation is for a member function, a member class
6754    //   or a static data member of a class template specialization, the name of
6755    //   the class template specialization in the qualified-id for the member
6756    //   name shall be a simple-template-id.
6757    //
6758    // C++98 has the same restriction, just worded differently.
6759    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6760      Diag(D.getIdentifierLoc(),
6761           diag::ext_explicit_instantiation_without_qualified_id)
6762        << Prev << D.getCXXScopeSpec().getRange();
6763
6764    // Check the scope of this explicit instantiation.
6765    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6766
6767    // Verify that it is okay to explicitly instantiate here.
6768    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6769    assert(MSInfo && "Missing static data member specialization info?");
6770    bool HasNoEffect = false;
6771    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6772                                        MSInfo->getTemplateSpecializationKind(),
6773                                              MSInfo->getPointOfInstantiation(),
6774                                               HasNoEffect))
6775      return true;
6776    if (HasNoEffect)
6777      return (Decl*) 0;
6778
6779    // Instantiate static data member.
6780    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6781    if (TSK == TSK_ExplicitInstantiationDefinition)
6782      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6783
6784    // FIXME: Create an ExplicitInstantiation node?
6785    return (Decl*) 0;
6786  }
6787
6788  // If the declarator is a template-id, translate the parser's template
6789  // argument list into our AST format.
6790  bool HasExplicitTemplateArgs = false;
6791  TemplateArgumentListInfo TemplateArgs;
6792  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6793    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6794    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6795    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6796    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6797                                       TemplateId->NumArgs);
6798    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6799    HasExplicitTemplateArgs = true;
6800  }
6801
6802  // C++ [temp.explicit]p1:
6803  //   A [...] function [...] can be explicitly instantiated from its template.
6804  //   A member function [...] of a class template can be explicitly
6805  //  instantiated from the member definition associated with its class
6806  //  template.
6807  UnresolvedSet<8> Matches;
6808  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6809       P != PEnd; ++P) {
6810    NamedDecl *Prev = *P;
6811    if (!HasExplicitTemplateArgs) {
6812      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6813        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6814          Matches.clear();
6815
6816          Matches.addDecl(Method, P.getAccess());
6817          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6818            break;
6819        }
6820      }
6821    }
6822
6823    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6824    if (!FunTmpl)
6825      continue;
6826
6827    TemplateDeductionInfo Info(D.getIdentifierLoc());
6828    FunctionDecl *Specialization = 0;
6829    if (TemplateDeductionResult TDK
6830          = DeduceTemplateArguments(FunTmpl,
6831                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6832                                    R, Specialization, Info)) {
6833      // FIXME: Keep track of almost-matches?
6834      (void)TDK;
6835      continue;
6836    }
6837
6838    Matches.addDecl(Specialization, P.getAccess());
6839  }
6840
6841  // Find the most specialized function template specialization.
6842  UnresolvedSetIterator Result
6843    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6844                         D.getIdentifierLoc(),
6845                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6846                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6847                         PDiag(diag::note_explicit_instantiation_candidate));
6848
6849  if (Result == Matches.end())
6850    return true;
6851
6852  // Ignore access control bits, we don't need them for redeclaration checking.
6853  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6854
6855  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6856    Diag(D.getIdentifierLoc(),
6857         diag::err_explicit_instantiation_member_function_not_instantiated)
6858      << Specialization
6859      << (Specialization->getTemplateSpecializationKind() ==
6860          TSK_ExplicitSpecialization);
6861    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6862    return true;
6863  }
6864
6865  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
6866  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6867    PrevDecl = Specialization;
6868
6869  if (PrevDecl) {
6870    bool HasNoEffect = false;
6871    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6872                                               PrevDecl,
6873                                     PrevDecl->getTemplateSpecializationKind(),
6874                                          PrevDecl->getPointOfInstantiation(),
6875                                               HasNoEffect))
6876      return true;
6877
6878    // FIXME: We may still want to build some representation of this
6879    // explicit specialization.
6880    if (HasNoEffect)
6881      return (Decl*) 0;
6882  }
6883
6884  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6885  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6886  if (Attr)
6887    ProcessDeclAttributeList(S, Specialization, Attr);
6888
6889  if (TSK == TSK_ExplicitInstantiationDefinition)
6890    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6891
6892  // C++0x [temp.explicit]p2:
6893  //   If the explicit instantiation is for a member function, a member class
6894  //   or a static data member of a class template specialization, the name of
6895  //   the class template specialization in the qualified-id for the member
6896  //   name shall be a simple-template-id.
6897  //
6898  // C++98 has the same restriction, just worded differently.
6899  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6900  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6901      D.getCXXScopeSpec().isSet() &&
6902      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6903    Diag(D.getIdentifierLoc(),
6904         diag::ext_explicit_instantiation_without_qualified_id)
6905    << Specialization << D.getCXXScopeSpec().getRange();
6906
6907  CheckExplicitInstantiationScope(*this,
6908                   FunTmpl? (NamedDecl *)FunTmpl
6909                          : Specialization->getInstantiatedFromMemberFunction(),
6910                                  D.getIdentifierLoc(),
6911                                  D.getCXXScopeSpec().isSet());
6912
6913  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6914  return (Decl*) 0;
6915}
6916
6917TypeResult
6918Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6919                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6920                        SourceLocation TagLoc, SourceLocation NameLoc) {
6921  // This has to hold, because SS is expected to be defined.
6922  assert(Name && "Expected a name in a dependent tag");
6923
6924  NestedNameSpecifier *NNS
6925    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6926  if (!NNS)
6927    return true;
6928
6929  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6930
6931  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6932    Diag(NameLoc, diag::err_dependent_tag_decl)
6933      << (TUK == TUK_Definition) << Kind << SS.getRange();
6934    return true;
6935  }
6936
6937  // Create the resulting type.
6938  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6939  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6940
6941  // Create type-source location information for this type.
6942  TypeLocBuilder TLB;
6943  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6944  TL.setElaboratedKeywordLoc(TagLoc);
6945  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6946  TL.setNameLoc(NameLoc);
6947  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6948}
6949
6950TypeResult
6951Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6952                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6953                        SourceLocation IdLoc) {
6954  if (SS.isInvalid())
6955    return true;
6956
6957  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6958    Diag(TypenameLoc,
6959         getLangOpts().CPlusPlus11 ?
6960           diag::warn_cxx98_compat_typename_outside_of_template :
6961           diag::ext_typename_outside_of_template)
6962      << FixItHint::CreateRemoval(TypenameLoc);
6963
6964  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6965  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6966                                 TypenameLoc, QualifierLoc, II, IdLoc);
6967  if (T.isNull())
6968    return true;
6969
6970  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6971  if (isa<DependentNameType>(T)) {
6972    DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
6973    TL.setElaboratedKeywordLoc(TypenameLoc);
6974    TL.setQualifierLoc(QualifierLoc);
6975    TL.setNameLoc(IdLoc);
6976  } else {
6977    ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
6978    TL.setElaboratedKeywordLoc(TypenameLoc);
6979    TL.setQualifierLoc(QualifierLoc);
6980    TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
6981  }
6982
6983  return CreateParsedType(T, TSI);
6984}
6985
6986TypeResult
6987Sema::ActOnTypenameType(Scope *S,
6988                        SourceLocation TypenameLoc,
6989                        const CXXScopeSpec &SS,
6990                        SourceLocation TemplateKWLoc,
6991                        TemplateTy TemplateIn,
6992                        SourceLocation TemplateNameLoc,
6993                        SourceLocation LAngleLoc,
6994                        ASTTemplateArgsPtr TemplateArgsIn,
6995                        SourceLocation RAngleLoc) {
6996  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6997    Diag(TypenameLoc,
6998         getLangOpts().CPlusPlus11 ?
6999           diag::warn_cxx98_compat_typename_outside_of_template :
7000           diag::ext_typename_outside_of_template)
7001      << FixItHint::CreateRemoval(TypenameLoc);
7002
7003  // Translate the parser's template argument list in our AST format.
7004  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7005  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7006
7007  TemplateName Template = TemplateIn.get();
7008  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
7009    // Construct a dependent template specialization type.
7010    assert(DTN && "dependent template has non-dependent name?");
7011    assert(DTN->getQualifier()
7012           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
7013    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
7014                                                          DTN->getQualifier(),
7015                                                          DTN->getIdentifier(),
7016                                                                TemplateArgs);
7017
7018    // Create source-location information for this type.
7019    TypeLocBuilder Builder;
7020    DependentTemplateSpecializationTypeLoc SpecTL
7021    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
7022    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
7023    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
7024    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7025    SpecTL.setTemplateNameLoc(TemplateNameLoc);
7026    SpecTL.setLAngleLoc(LAngleLoc);
7027    SpecTL.setRAngleLoc(RAngleLoc);
7028    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7029      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7030    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
7031  }
7032
7033  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
7034  if (T.isNull())
7035    return true;
7036
7037  // Provide source-location information for the template specialization type.
7038  TypeLocBuilder Builder;
7039  TemplateSpecializationTypeLoc SpecTL
7040    = Builder.push<TemplateSpecializationTypeLoc>(T);
7041  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
7042  SpecTL.setTemplateNameLoc(TemplateNameLoc);
7043  SpecTL.setLAngleLoc(LAngleLoc);
7044  SpecTL.setRAngleLoc(RAngleLoc);
7045  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
7046    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
7047
7048  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
7049  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
7050  TL.setElaboratedKeywordLoc(TypenameLoc);
7051  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7052
7053  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
7054  return CreateParsedType(T, TSI);
7055}
7056
7057
7058/// Determine whether this failed name lookup should be treated as being
7059/// disabled by a usage of std::enable_if.
7060static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
7061                       SourceRange &CondRange) {
7062  // We must be looking for a ::type...
7063  if (!II.isStr("type"))
7064    return false;
7065
7066  // ... within an explicitly-written template specialization...
7067  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
7068    return false;
7069  TypeLoc EnableIfTy = NNS.getTypeLoc();
7070  TemplateSpecializationTypeLoc EnableIfTSTLoc =
7071      EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
7072  if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
7073    return false;
7074  const TemplateSpecializationType *EnableIfTST =
7075    cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
7076
7077  // ... which names a complete class template declaration...
7078  const TemplateDecl *EnableIfDecl =
7079    EnableIfTST->getTemplateName().getAsTemplateDecl();
7080  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
7081    return false;
7082
7083  // ... called "enable_if".
7084  const IdentifierInfo *EnableIfII =
7085    EnableIfDecl->getDeclName().getAsIdentifierInfo();
7086  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
7087    return false;
7088
7089  // Assume the first template argument is the condition.
7090  CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
7091  return true;
7092}
7093
7094/// \brief Build the type that describes a C++ typename specifier,
7095/// e.g., "typename T::type".
7096QualType
7097Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
7098                        SourceLocation KeywordLoc,
7099                        NestedNameSpecifierLoc QualifierLoc,
7100                        const IdentifierInfo &II,
7101                        SourceLocation IILoc) {
7102  CXXScopeSpec SS;
7103  SS.Adopt(QualifierLoc);
7104
7105  DeclContext *Ctx = computeDeclContext(SS);
7106  if (!Ctx) {
7107    // If the nested-name-specifier is dependent and couldn't be
7108    // resolved to a type, build a typename type.
7109    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
7110    return Context.getDependentNameType(Keyword,
7111                                        QualifierLoc.getNestedNameSpecifier(),
7112                                        &II);
7113  }
7114
7115  // If the nested-name-specifier refers to the current instantiation,
7116  // the "typename" keyword itself is superfluous. In C++03, the
7117  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
7118  // allows such extraneous "typename" keywords, and we retroactively
7119  // apply this DR to C++03 code with only a warning. In any case we continue.
7120
7121  if (RequireCompleteDeclContext(SS, Ctx))
7122    return QualType();
7123
7124  DeclarationName Name(&II);
7125  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
7126  LookupQualifiedName(Result, Ctx);
7127  unsigned DiagID = 0;
7128  Decl *Referenced = 0;
7129  switch (Result.getResultKind()) {
7130  case LookupResult::NotFound: {
7131    // If we're looking up 'type' within a template named 'enable_if', produce
7132    // a more specific diagnostic.
7133    SourceRange CondRange;
7134    if (isEnableIf(QualifierLoc, II, CondRange)) {
7135      Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
7136        << Ctx << CondRange;
7137      return QualType();
7138    }
7139
7140    DiagID = diag::err_typename_nested_not_found;
7141    break;
7142  }
7143
7144  case LookupResult::FoundUnresolvedValue: {
7145    // We found a using declaration that is a value. Most likely, the using
7146    // declaration itself is meant to have the 'typename' keyword.
7147    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7148                          IILoc);
7149    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
7150      << Name << Ctx << FullRange;
7151    if (UnresolvedUsingValueDecl *Using
7152          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
7153      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
7154      Diag(Loc, diag::note_using_value_decl_missing_typename)
7155        << FixItHint::CreateInsertion(Loc, "typename ");
7156    }
7157  }
7158  // Fall through to create a dependent typename type, from which we can recover
7159  // better.
7160
7161  case LookupResult::NotFoundInCurrentInstantiation:
7162    // Okay, it's a member of an unknown instantiation.
7163    return Context.getDependentNameType(Keyword,
7164                                        QualifierLoc.getNestedNameSpecifier(),
7165                                        &II);
7166
7167  case LookupResult::Found:
7168    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
7169      // We found a type. Build an ElaboratedType, since the
7170      // typename-specifier was just sugar.
7171      return Context.getElaboratedType(ETK_Typename,
7172                                       QualifierLoc.getNestedNameSpecifier(),
7173                                       Context.getTypeDeclType(Type));
7174    }
7175
7176    DiagID = diag::err_typename_nested_not_type;
7177    Referenced = Result.getFoundDecl();
7178    break;
7179
7180  case LookupResult::FoundOverloaded:
7181    DiagID = diag::err_typename_nested_not_type;
7182    Referenced = *Result.begin();
7183    break;
7184
7185  case LookupResult::Ambiguous:
7186    return QualType();
7187  }
7188
7189  // If we get here, it's because name lookup did not find a
7190  // type. Emit an appropriate diagnostic and return an error.
7191  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
7192                        IILoc);
7193  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
7194  if (Referenced)
7195    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
7196      << Name;
7197  return QualType();
7198}
7199
7200namespace {
7201  // See Sema::RebuildTypeInCurrentInstantiation
7202  class CurrentInstantiationRebuilder
7203    : public TreeTransform<CurrentInstantiationRebuilder> {
7204    SourceLocation Loc;
7205    DeclarationName Entity;
7206
7207  public:
7208    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
7209
7210    CurrentInstantiationRebuilder(Sema &SemaRef,
7211                                  SourceLocation Loc,
7212                                  DeclarationName Entity)
7213    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
7214      Loc(Loc), Entity(Entity) { }
7215
7216    /// \brief Determine whether the given type \p T has already been
7217    /// transformed.
7218    ///
7219    /// For the purposes of type reconstruction, a type has already been
7220    /// transformed if it is NULL or if it is not dependent.
7221    bool AlreadyTransformed(QualType T) {
7222      return T.isNull() || !T->isDependentType();
7223    }
7224
7225    /// \brief Returns the location of the entity whose type is being
7226    /// rebuilt.
7227    SourceLocation getBaseLocation() { return Loc; }
7228
7229    /// \brief Returns the name of the entity whose type is being rebuilt.
7230    DeclarationName getBaseEntity() { return Entity; }
7231
7232    /// \brief Sets the "base" location and entity when that
7233    /// information is known based on another transformation.
7234    void setBase(SourceLocation Loc, DeclarationName Entity) {
7235      this->Loc = Loc;
7236      this->Entity = Entity;
7237    }
7238
7239    ExprResult TransformLambdaExpr(LambdaExpr *E) {
7240      // Lambdas never need to be transformed.
7241      return E;
7242    }
7243  };
7244}
7245
7246/// \brief Rebuilds a type within the context of the current instantiation.
7247///
7248/// The type \p T is part of the type of an out-of-line member definition of
7249/// a class template (or class template partial specialization) that was parsed
7250/// and constructed before we entered the scope of the class template (or
7251/// partial specialization thereof). This routine will rebuild that type now
7252/// that we have entered the declarator's scope, which may produce different
7253/// canonical types, e.g.,
7254///
7255/// \code
7256/// template<typename T>
7257/// struct X {
7258///   typedef T* pointer;
7259///   pointer data();
7260/// };
7261///
7262/// template<typename T>
7263/// typename X<T>::pointer X<T>::data() { ... }
7264/// \endcode
7265///
7266/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
7267/// since we do not know that we can look into X<T> when we parsed the type.
7268/// This function will rebuild the type, performing the lookup of "pointer"
7269/// in X<T> and returning an ElaboratedType whose canonical type is the same
7270/// as the canonical type of T*, allowing the return types of the out-of-line
7271/// definition and the declaration to match.
7272TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7273                                                        SourceLocation Loc,
7274                                                        DeclarationName Name) {
7275  if (!T || !T->getType()->isDependentType())
7276    return T;
7277
7278  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
7279  return Rebuilder.TransformType(T);
7280}
7281
7282ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
7283  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
7284                                          DeclarationName());
7285  return Rebuilder.TransformExpr(E);
7286}
7287
7288bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
7289  if (SS.isInvalid())
7290    return true;
7291
7292  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7293  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
7294                                          DeclarationName());
7295  NestedNameSpecifierLoc Rebuilt
7296    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
7297  if (!Rebuilt)
7298    return true;
7299
7300  SS.Adopt(Rebuilt);
7301  return false;
7302}
7303
7304/// \brief Rebuild the template parameters now that we know we're in a current
7305/// instantiation.
7306bool Sema::RebuildTemplateParamsInCurrentInstantiation(
7307                                               TemplateParameterList *Params) {
7308  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7309    Decl *Param = Params->getParam(I);
7310
7311    // There is nothing to rebuild in a type parameter.
7312    if (isa<TemplateTypeParmDecl>(Param))
7313      continue;
7314
7315    // Rebuild the template parameter list of a template template parameter.
7316    if (TemplateTemplateParmDecl *TTP
7317        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
7318      if (RebuildTemplateParamsInCurrentInstantiation(
7319            TTP->getTemplateParameters()))
7320        return true;
7321
7322      continue;
7323    }
7324
7325    // Rebuild the type of a non-type template parameter.
7326    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
7327    TypeSourceInfo *NewTSI
7328      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
7329                                          NTTP->getLocation(),
7330                                          NTTP->getDeclName());
7331    if (!NewTSI)
7332      return true;
7333
7334    if (NewTSI != NTTP->getTypeSourceInfo()) {
7335      NTTP->setTypeSourceInfo(NewTSI);
7336      NTTP->setType(NewTSI->getType());
7337    }
7338  }
7339
7340  return false;
7341}
7342
7343/// \brief Produces a formatted string that describes the binding of
7344/// template parameters to template arguments.
7345std::string
7346Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7347                                      const TemplateArgumentList &Args) {
7348  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
7349}
7350
7351std::string
7352Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7353                                      const TemplateArgument *Args,
7354                                      unsigned NumArgs) {
7355  SmallString<128> Str;
7356  llvm::raw_svector_ostream Out(Str);
7357
7358  if (!Params || Params->size() == 0 || NumArgs == 0)
7359    return std::string();
7360
7361  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
7362    if (I >= NumArgs)
7363      break;
7364
7365    if (I == 0)
7366      Out << "[with ";
7367    else
7368      Out << ", ";
7369
7370    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
7371      Out << Id->getName();
7372    } else {
7373      Out << '$' << I;
7374    }
7375
7376    Out << " = ";
7377    Args[I].print(getPrintingPolicy(), Out);
7378  }
7379
7380  Out << ']';
7381  return Out.str();
7382}
7383
7384void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
7385  if (!FD)
7386    return;
7387  FD->setLateTemplateParsed(Flag);
7388}
7389
7390bool Sema::IsInsideALocalClassWithinATemplateFunction() {
7391  DeclContext *DC = CurContext;
7392
7393  while (DC) {
7394    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
7395      const FunctionDecl *FD = RD->isLocalClass();
7396      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
7397    } else if (DC->isTranslationUnit() || DC->isNamespace())
7398      return false;
7399
7400    DC = DC->getParent();
7401  }
7402  return false;
7403}
7404