SemaTemplate.cpp revision b88ea9f1d1a402b0c9479c1c71a10cf65a5d4157
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Parse/Template.h"
22#include "clang/Basic/LangOptions.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "llvm/ADT/StringExtras.h"
25using namespace clang;
26
27/// \brief Determine whether the declaration found is acceptable as the name
28/// of a template and, if so, return that template declaration. Otherwise,
29/// returns NULL.
30static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
31  if (!D)
32    return 0;
33
34  if (isa<TemplateDecl>(D))
35    return D;
36
37  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
38    // C++ [temp.local]p1:
39    //   Like normal (non-template) classes, class templates have an
40    //   injected-class-name (Clause 9). The injected-class-name
41    //   can be used with or without a template-argument-list. When
42    //   it is used without a template-argument-list, it is
43    //   equivalent to the injected-class-name followed by the
44    //   template-parameters of the class template enclosed in
45    //   <>. When it is used with a template-argument-list, it
46    //   refers to the specified class template specialization,
47    //   which could be the current specialization or another
48    //   specialization.
49    if (Record->isInjectedClassName()) {
50      Record = cast<CXXRecordDecl>(Record->getDeclContext());
51      if (Record->getDescribedClassTemplate())
52        return Record->getDescribedClassTemplate();
53
54      if (ClassTemplateSpecializationDecl *Spec
55            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
56        return Spec->getSpecializedTemplate();
57    }
58
59    return 0;
60  }
61
62  return 0;
63}
64
65static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
66  LookupResult::Filter filter = R.makeFilter();
67  while (filter.hasNext()) {
68    NamedDecl *Orig = filter.next();
69    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
70    if (!Repl)
71      filter.erase();
72    else if (Repl != Orig)
73      filter.replace(Repl);
74  }
75  filter.done();
76}
77
78TemplateNameKind Sema::isTemplateName(Scope *S,
79                                      const CXXScopeSpec &SS,
80                                      UnqualifiedId &Name,
81                                      TypeTy *ObjectTypePtr,
82                                      bool EnteringContext,
83                                      TemplateTy &TemplateResult) {
84  assert(getLangOptions().CPlusPlus && "No template names in C!");
85
86  DeclarationName TName;
87
88  switch (Name.getKind()) {
89  case UnqualifiedId::IK_Identifier:
90    TName = DeclarationName(Name.Identifier);
91    break;
92
93  case UnqualifiedId::IK_OperatorFunctionId:
94    TName = Context.DeclarationNames.getCXXOperatorName(
95                                              Name.OperatorFunctionId.Operator);
96    break;
97
98  case UnqualifiedId::IK_LiteralOperatorId:
99    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
100    break;
101
102  default:
103    return TNK_Non_template;
104  }
105
106  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
107
108  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
109                 LookupOrdinaryName);
110  R.suppressDiagnostics();
111  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
112  if (R.empty())
113    return TNK_Non_template;
114
115  TemplateName Template;
116  TemplateNameKind TemplateKind;
117
118  unsigned ResultCount = R.end() - R.begin();
119  if (ResultCount > 1) {
120    // We assume that we'll preserve the qualifier from a function
121    // template name in other ways.
122    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
123    TemplateKind = TNK_Function_template;
124  } else {
125    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
126
127    if (SS.isSet() && !SS.isInvalid()) {
128      NestedNameSpecifier *Qualifier
129        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
130      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
131    } else {
132      Template = TemplateName(TD);
133    }
134
135    if (isa<FunctionTemplateDecl>(TD))
136      TemplateKind = TNK_Function_template;
137    else {
138      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
139      TemplateKind = TNK_Type_template;
140    }
141  }
142
143  TemplateResult = TemplateTy::make(Template);
144  return TemplateKind;
145}
146
147bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
148                                       SourceLocation IILoc,
149                                       Scope *S,
150                                       const CXXScopeSpec *SS,
151                                       TemplateTy &SuggestedTemplate,
152                                       TemplateNameKind &SuggestedKind) {
153  // We can't recover unless there's a dependent scope specifier preceding the
154  // template name.
155  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
156      computeDeclContext(*SS))
157    return false;
158
159  // The code is missing a 'template' keyword prior to the dependent template
160  // name.
161  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
162  Diag(IILoc, diag::err_template_kw_missing)
163    << Qualifier << II.getName()
164    << FixItHint::CreateInsertion(IILoc, "template ");
165  SuggestedTemplate
166    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
167  SuggestedKind = TNK_Dependent_template_name;
168  return true;
169}
170
171void Sema::LookupTemplateName(LookupResult &Found,
172                              Scope *S, const CXXScopeSpec &SS,
173                              QualType ObjectType,
174                              bool EnteringContext) {
175  // Determine where to perform name lookup
176  DeclContext *LookupCtx = 0;
177  bool isDependent = false;
178  if (!ObjectType.isNull()) {
179    // This nested-name-specifier occurs in a member access expression, e.g.,
180    // x->B::f, and we are looking into the type of the object.
181    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
182    LookupCtx = computeDeclContext(ObjectType);
183    isDependent = ObjectType->isDependentType();
184    assert((isDependent || !ObjectType->isIncompleteType()) &&
185           "Caller should have completed object type");
186  } else if (SS.isSet()) {
187    // This nested-name-specifier occurs after another nested-name-specifier,
188    // so long into the context associated with the prior nested-name-specifier.
189    LookupCtx = computeDeclContext(SS, EnteringContext);
190    isDependent = isDependentScopeSpecifier(SS);
191
192    // The declaration context must be complete.
193    if (LookupCtx && RequireCompleteDeclContext(SS))
194      return;
195  }
196
197  bool ObjectTypeSearchedInScope = false;
198  if (LookupCtx) {
199    // Perform "qualified" name lookup into the declaration context we
200    // computed, which is either the type of the base of a member access
201    // expression or the declaration context associated with a prior
202    // nested-name-specifier.
203    LookupQualifiedName(Found, LookupCtx);
204
205    if (!ObjectType.isNull() && Found.empty()) {
206      // C++ [basic.lookup.classref]p1:
207      //   In a class member access expression (5.2.5), if the . or -> token is
208      //   immediately followed by an identifier followed by a <, the
209      //   identifier must be looked up to determine whether the < is the
210      //   beginning of a template argument list (14.2) or a less-than operator.
211      //   The identifier is first looked up in the class of the object
212      //   expression. If the identifier is not found, it is then looked up in
213      //   the context of the entire postfix-expression and shall name a class
214      //   or function template.
215      //
216      // FIXME: When we're instantiating a template, do we actually have to
217      // look in the scope of the template? Seems fishy...
218      if (S) LookupName(Found, S);
219      ObjectTypeSearchedInScope = true;
220    }
221  } else if (isDependent) {
222    // We cannot look into a dependent object type or nested nme
223    // specifier.
224    return;
225  } else {
226    // Perform unqualified name lookup in the current scope.
227    LookupName(Found, S);
228  }
229
230  // FIXME: Cope with ambiguous name-lookup results.
231  assert(!Found.isAmbiguous() &&
232         "Cannot handle template name-lookup ambiguities");
233
234  if (Found.empty() && !isDependent) {
235    // If we did not find any names, attempt to correct any typos.
236    DeclarationName Name = Found.getLookupName();
237    if (CorrectTypo(Found, S, &SS, LookupCtx)) {
238      FilterAcceptableTemplateNames(Context, Found);
239      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
240        if (LookupCtx)
241          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
242            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
243            << FixItHint::CreateReplacement(Found.getNameLoc(),
244                                          Found.getLookupName().getAsString());
245        else
246          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
247            << Name << Found.getLookupName()
248            << FixItHint::CreateReplacement(Found.getNameLoc(),
249                                          Found.getLookupName().getAsString());
250        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
251          Diag(Template->getLocation(), diag::note_previous_decl)
252            << Template->getDeclName();
253      } else
254        Found.clear();
255    } else {
256      Found.clear();
257    }
258  }
259
260  FilterAcceptableTemplateNames(Context, Found);
261  if (Found.empty())
262    return;
263
264  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
265    // C++ [basic.lookup.classref]p1:
266    //   [...] If the lookup in the class of the object expression finds a
267    //   template, the name is also looked up in the context of the entire
268    //   postfix-expression and [...]
269    //
270    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
271                            LookupOrdinaryName);
272    LookupName(FoundOuter, S);
273    FilterAcceptableTemplateNames(Context, FoundOuter);
274    // FIXME: Handle ambiguities in this lookup better
275
276    if (FoundOuter.empty()) {
277      //   - if the name is not found, the name found in the class of the
278      //     object expression is used, otherwise
279    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
280      //   - if the name is found in the context of the entire
281      //     postfix-expression and does not name a class template, the name
282      //     found in the class of the object expression is used, otherwise
283    } else {
284      //   - if the name found is a class template, it must refer to the same
285      //     entity as the one found in the class of the object expression,
286      //     otherwise the program is ill-formed.
287      if (!Found.isSingleResult() ||
288          Found.getFoundDecl()->getCanonicalDecl()
289            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
290        Diag(Found.getNameLoc(),
291             diag::err_nested_name_member_ref_lookup_ambiguous)
292          << Found.getLookupName();
293        Diag(Found.getRepresentativeDecl()->getLocation(),
294             diag::note_ambig_member_ref_object_type)
295          << ObjectType;
296        Diag(FoundOuter.getFoundDecl()->getLocation(),
297             diag::note_ambig_member_ref_scope);
298
299        // Recover by taking the template that we found in the object
300        // expression's type.
301      }
302    }
303  }
304}
305
306/// ActOnDependentIdExpression - Handle a dependent id-expression that
307/// was just parsed.  This is only possible with an explicit scope
308/// specifier naming a dependent type.
309Sema::OwningExprResult
310Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
311                                 DeclarationName Name,
312                                 SourceLocation NameLoc,
313                                 bool isAddressOfOperand,
314                           const TemplateArgumentListInfo *TemplateArgs) {
315  NestedNameSpecifier *Qualifier
316    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
317
318  if (!isAddressOfOperand &&
319      isa<CXXMethodDecl>(CurContext) &&
320      cast<CXXMethodDecl>(CurContext)->isInstance()) {
321    QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
322
323    // Since the 'this' expression is synthesized, we don't need to
324    // perform the double-lookup check.
325    NamedDecl *FirstQualifierInScope = 0;
326
327    return Owned(CXXDependentScopeMemberExpr::Create(Context,
328                                                     /*This*/ 0, ThisType,
329                                                     /*IsArrow*/ true,
330                                                     /*Op*/ SourceLocation(),
331                                                     Qualifier, SS.getRange(),
332                                                     FirstQualifierInScope,
333                                                     Name, NameLoc,
334                                                     TemplateArgs));
335  }
336
337  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
338}
339
340Sema::OwningExprResult
341Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
342                                DeclarationName Name,
343                                SourceLocation NameLoc,
344                                const TemplateArgumentListInfo *TemplateArgs) {
345  return Owned(DependentScopeDeclRefExpr::Create(Context,
346               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
347                                                 SS.getRange(),
348                                                 Name, NameLoc,
349                                                 TemplateArgs));
350}
351
352/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
353/// that the template parameter 'PrevDecl' is being shadowed by a new
354/// declaration at location Loc. Returns true to indicate that this is
355/// an error, and false otherwise.
356bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
357  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
358
359  // Microsoft Visual C++ permits template parameters to be shadowed.
360  if (getLangOptions().Microsoft)
361    return false;
362
363  // C++ [temp.local]p4:
364  //   A template-parameter shall not be redeclared within its
365  //   scope (including nested scopes).
366  Diag(Loc, diag::err_template_param_shadow)
367    << cast<NamedDecl>(PrevDecl)->getDeclName();
368  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
369  return true;
370}
371
372/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
373/// the parameter D to reference the templated declaration and return a pointer
374/// to the template declaration. Otherwise, do nothing to D and return null.
375TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
376  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
377    D = DeclPtrTy::make(Temp->getTemplatedDecl());
378    return Temp;
379  }
380  return 0;
381}
382
383static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
384                                            const ParsedTemplateArgument &Arg) {
385
386  switch (Arg.getKind()) {
387  case ParsedTemplateArgument::Type: {
388    TypeSourceInfo *DI;
389    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
390    if (!DI)
391      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
392    return TemplateArgumentLoc(TemplateArgument(T), DI);
393  }
394
395  case ParsedTemplateArgument::NonType: {
396    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
397    return TemplateArgumentLoc(TemplateArgument(E), E);
398  }
399
400  case ParsedTemplateArgument::Template: {
401    TemplateName Template
402      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
403    return TemplateArgumentLoc(TemplateArgument(Template),
404                               Arg.getScopeSpec().getRange(),
405                               Arg.getLocation());
406  }
407  }
408
409  llvm_unreachable("Unhandled parsed template argument");
410  return TemplateArgumentLoc();
411}
412
413/// \brief Translates template arguments as provided by the parser
414/// into template arguments used by semantic analysis.
415void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
416                                      TemplateArgumentListInfo &TemplateArgs) {
417 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
418   TemplateArgs.addArgument(translateTemplateArgument(*this,
419                                                      TemplateArgsIn[I]));
420}
421
422/// ActOnTypeParameter - Called when a C++ template type parameter
423/// (e.g., "typename T") has been parsed. Typename specifies whether
424/// the keyword "typename" was used to declare the type parameter
425/// (otherwise, "class" was used), and KeyLoc is the location of the
426/// "class" or "typename" keyword. ParamName is the name of the
427/// parameter (NULL indicates an unnamed template parameter) and
428/// ParamName is the location of the parameter name (if any).
429/// If the type parameter has a default argument, it will be added
430/// later via ActOnTypeParameterDefault.
431Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
432                                         SourceLocation EllipsisLoc,
433                                         SourceLocation KeyLoc,
434                                         IdentifierInfo *ParamName,
435                                         SourceLocation ParamNameLoc,
436                                         unsigned Depth, unsigned Position) {
437  assert(S->isTemplateParamScope() &&
438         "Template type parameter not in template parameter scope!");
439  bool Invalid = false;
440
441  if (ParamName) {
442    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
443    if (PrevDecl && PrevDecl->isTemplateParameter())
444      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
445                                                           PrevDecl);
446  }
447
448  SourceLocation Loc = ParamNameLoc;
449  if (!ParamName)
450    Loc = KeyLoc;
451
452  TemplateTypeParmDecl *Param
453    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
454                                   Loc, Depth, Position, ParamName, Typename,
455                                   Ellipsis);
456  if (Invalid)
457    Param->setInvalidDecl();
458
459  if (ParamName) {
460    // Add the template parameter into the current scope.
461    S->AddDecl(DeclPtrTy::make(Param));
462    IdResolver.AddDecl(Param);
463  }
464
465  return DeclPtrTy::make(Param);
466}
467
468/// ActOnTypeParameterDefault - Adds a default argument (the type
469/// Default) to the given template type parameter (TypeParam).
470void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
471                                     SourceLocation EqualLoc,
472                                     SourceLocation DefaultLoc,
473                                     TypeTy *DefaultT) {
474  TemplateTypeParmDecl *Parm
475    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
476
477  TypeSourceInfo *DefaultTInfo;
478  GetTypeFromParser(DefaultT, &DefaultTInfo);
479
480  assert(DefaultTInfo && "expected source information for type");
481
482  // C++0x [temp.param]p9:
483  // A default template-argument may be specified for any kind of
484  // template-parameter that is not a template parameter pack.
485  if (Parm->isParameterPack()) {
486    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
487    return;
488  }
489
490  // C++ [temp.param]p14:
491  //   A template-parameter shall not be used in its own default argument.
492  // FIXME: Implement this check! Needs a recursive walk over the types.
493
494  // Check the template argument itself.
495  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
496    Parm->setInvalidDecl();
497    return;
498  }
499
500  Parm->setDefaultArgument(DefaultTInfo, false);
501}
502
503/// \brief Check that the type of a non-type template parameter is
504/// well-formed.
505///
506/// \returns the (possibly-promoted) parameter type if valid;
507/// otherwise, produces a diagnostic and returns a NULL type.
508QualType
509Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
510  // C++ [temp.param]p4:
511  //
512  // A non-type template-parameter shall have one of the following
513  // (optionally cv-qualified) types:
514  //
515  //       -- integral or enumeration type,
516  if (T->isIntegralType() || T->isEnumeralType() ||
517      //   -- pointer to object or pointer to function,
518      (T->isPointerType() &&
519       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
520        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
521      //   -- reference to object or reference to function,
522      T->isReferenceType() ||
523      //   -- pointer to member.
524      T->isMemberPointerType() ||
525      // If T is a dependent type, we can't do the check now, so we
526      // assume that it is well-formed.
527      T->isDependentType())
528    return T;
529  // C++ [temp.param]p8:
530  //
531  //   A non-type template-parameter of type "array of T" or
532  //   "function returning T" is adjusted to be of type "pointer to
533  //   T" or "pointer to function returning T", respectively.
534  else if (T->isArrayType())
535    // FIXME: Keep the type prior to promotion?
536    return Context.getArrayDecayedType(T);
537  else if (T->isFunctionType())
538    // FIXME: Keep the type prior to promotion?
539    return Context.getPointerType(T);
540
541  Diag(Loc, diag::err_template_nontype_parm_bad_type)
542    << T;
543
544  return QualType();
545}
546
547/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
548/// template parameter (e.g., "int Size" in "template<int Size>
549/// class Array") has been parsed. S is the current scope and D is
550/// the parsed declarator.
551Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
552                                                    unsigned Depth,
553                                                    unsigned Position) {
554  TypeSourceInfo *TInfo = 0;
555  QualType T = GetTypeForDeclarator(D, S, &TInfo);
556
557  assert(S->isTemplateParamScope() &&
558         "Non-type template parameter not in template parameter scope!");
559  bool Invalid = false;
560
561  IdentifierInfo *ParamName = D.getIdentifier();
562  if (ParamName) {
563    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
564    if (PrevDecl && PrevDecl->isTemplateParameter())
565      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
566                                                           PrevDecl);
567  }
568
569  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
570  if (T.isNull()) {
571    T = Context.IntTy; // Recover with an 'int' type.
572    Invalid = true;
573  }
574
575  NonTypeTemplateParmDecl *Param
576    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
577                                      D.getIdentifierLoc(),
578                                      Depth, Position, ParamName, T, TInfo);
579  if (Invalid)
580    Param->setInvalidDecl();
581
582  if (D.getIdentifier()) {
583    // Add the template parameter into the current scope.
584    S->AddDecl(DeclPtrTy::make(Param));
585    IdResolver.AddDecl(Param);
586  }
587  return DeclPtrTy::make(Param);
588}
589
590/// \brief Adds a default argument to the given non-type template
591/// parameter.
592void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
593                                                SourceLocation EqualLoc,
594                                                ExprArg DefaultE) {
595  NonTypeTemplateParmDecl *TemplateParm
596    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
597  Expr *Default = static_cast<Expr *>(DefaultE.get());
598
599  // C++ [temp.param]p14:
600  //   A template-parameter shall not be used in its own default argument.
601  // FIXME: Implement this check! Needs a recursive walk over the types.
602
603  // Check the well-formedness of the default template argument.
604  TemplateArgument Converted;
605  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
606                            Converted)) {
607    TemplateParm->setInvalidDecl();
608    return;
609  }
610
611  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
612}
613
614
615/// ActOnTemplateTemplateParameter - Called when a C++ template template
616/// parameter (e.g. T in template <template <typename> class T> class array)
617/// has been parsed. S is the current scope.
618Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
619                                                     SourceLocation TmpLoc,
620                                                     TemplateParamsTy *Params,
621                                                     IdentifierInfo *Name,
622                                                     SourceLocation NameLoc,
623                                                     unsigned Depth,
624                                                     unsigned Position) {
625  assert(S->isTemplateParamScope() &&
626         "Template template parameter not in template parameter scope!");
627
628  // Construct the parameter object.
629  TemplateTemplateParmDecl *Param =
630    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
631                                     TmpLoc, Depth, Position, Name,
632                                     (TemplateParameterList*)Params);
633
634  // Make sure the parameter is valid.
635  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
636  // do anything yet. However, if the template parameter list or (eventual)
637  // default value is ever invalidated, that will propagate here.
638  bool Invalid = false;
639  if (Invalid) {
640    Param->setInvalidDecl();
641  }
642
643  // If the tt-param has a name, then link the identifier into the scope
644  // and lookup mechanisms.
645  if (Name) {
646    S->AddDecl(DeclPtrTy::make(Param));
647    IdResolver.AddDecl(Param);
648  }
649
650  return DeclPtrTy::make(Param);
651}
652
653/// \brief Adds a default argument to the given template template
654/// parameter.
655void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
656                                                 SourceLocation EqualLoc,
657                                        const ParsedTemplateArgument &Default) {
658  TemplateTemplateParmDecl *TemplateParm
659    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
660
661  // C++ [temp.param]p14:
662  //   A template-parameter shall not be used in its own default argument.
663  // FIXME: Implement this check! Needs a recursive walk over the types.
664
665  // Check only that we have a template template argument. We don't want to
666  // try to check well-formedness now, because our template template parameter
667  // might have dependent types in its template parameters, which we wouldn't
668  // be able to match now.
669  //
670  // If none of the template template parameter's template arguments mention
671  // other template parameters, we could actually perform more checking here.
672  // However, it isn't worth doing.
673  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
674  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
675    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
676      << DefaultArg.getSourceRange();
677    return;
678  }
679
680  TemplateParm->setDefaultArgument(DefaultArg);
681}
682
683/// ActOnTemplateParameterList - Builds a TemplateParameterList that
684/// contains the template parameters in Params/NumParams.
685Sema::TemplateParamsTy *
686Sema::ActOnTemplateParameterList(unsigned Depth,
687                                 SourceLocation ExportLoc,
688                                 SourceLocation TemplateLoc,
689                                 SourceLocation LAngleLoc,
690                                 DeclPtrTy *Params, unsigned NumParams,
691                                 SourceLocation RAngleLoc) {
692  if (ExportLoc.isValid())
693    Diag(ExportLoc, diag::warn_template_export_unsupported);
694
695  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
696                                       (NamedDecl**)Params, NumParams,
697                                       RAngleLoc);
698}
699
700static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
701  if (SS.isSet())
702    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
703                        SS.getRange());
704}
705
706Sema::DeclResult
707Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
708                         SourceLocation KWLoc, const CXXScopeSpec &SS,
709                         IdentifierInfo *Name, SourceLocation NameLoc,
710                         AttributeList *Attr,
711                         TemplateParameterList *TemplateParams,
712                         AccessSpecifier AS) {
713  assert(TemplateParams && TemplateParams->size() > 0 &&
714         "No template parameters");
715  assert(TUK != TUK_Reference && "Can only declare or define class templates");
716  bool Invalid = false;
717
718  // Check that we can declare a template here.
719  if (CheckTemplateDeclScope(S, TemplateParams))
720    return true;
721
722  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
723  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
724
725  // There is no such thing as an unnamed class template.
726  if (!Name) {
727    Diag(KWLoc, diag::err_template_unnamed_class);
728    return true;
729  }
730
731  // Find any previous declaration with this name.
732  DeclContext *SemanticContext;
733  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
734                        ForRedeclaration);
735  if (SS.isNotEmpty() && !SS.isInvalid()) {
736    if (RequireCompleteDeclContext(SS))
737      return true;
738
739    SemanticContext = computeDeclContext(SS, true);
740    if (!SemanticContext) {
741      // FIXME: Produce a reasonable diagnostic here
742      return true;
743    }
744
745    LookupQualifiedName(Previous, SemanticContext);
746  } else {
747    SemanticContext = CurContext;
748    LookupName(Previous, S);
749  }
750
751  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
752  NamedDecl *PrevDecl = 0;
753  if (Previous.begin() != Previous.end())
754    PrevDecl = *Previous.begin();
755
756  // If there is a previous declaration with the same name, check
757  // whether this is a valid redeclaration.
758  ClassTemplateDecl *PrevClassTemplate
759    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
760
761  // We may have found the injected-class-name of a class template,
762  // class template partial specialization, or class template specialization.
763  // In these cases, grab the template that is being defined or specialized.
764  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
765      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
766    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
767    PrevClassTemplate
768      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
769    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
770      PrevClassTemplate
771        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
772            ->getSpecializedTemplate();
773    }
774  }
775
776  if (TUK == TUK_Friend) {
777    // C++ [namespace.memdef]p3:
778    //   [...] When looking for a prior declaration of a class or a function
779    //   declared as a friend, and when the name of the friend class or
780    //   function is neither a qualified name nor a template-id, scopes outside
781    //   the innermost enclosing namespace scope are not considered.
782    DeclContext *OutermostContext = CurContext;
783    while (!OutermostContext->isFileContext())
784      OutermostContext = OutermostContext->getLookupParent();
785
786    if (PrevDecl &&
787        (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
788         OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
789      SemanticContext = PrevDecl->getDeclContext();
790    } else {
791      // Declarations in outer scopes don't matter. However, the outermost
792      // context we computed is the semantic context for our new
793      // declaration.
794      PrevDecl = PrevClassTemplate = 0;
795      SemanticContext = OutermostContext;
796    }
797
798    if (CurContext->isDependentContext()) {
799      // If this is a dependent context, we don't want to link the friend
800      // class template to the template in scope, because that would perform
801      // checking of the template parameter lists that can't be performed
802      // until the outer context is instantiated.
803      PrevDecl = PrevClassTemplate = 0;
804    }
805  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
806    PrevDecl = PrevClassTemplate = 0;
807
808  if (PrevClassTemplate) {
809    // Ensure that the template parameter lists are compatible.
810    if (!TemplateParameterListsAreEqual(TemplateParams,
811                                   PrevClassTemplate->getTemplateParameters(),
812                                        /*Complain=*/true,
813                                        TPL_TemplateMatch))
814      return true;
815
816    // C++ [temp.class]p4:
817    //   In a redeclaration, partial specialization, explicit
818    //   specialization or explicit instantiation of a class template,
819    //   the class-key shall agree in kind with the original class
820    //   template declaration (7.1.5.3).
821    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
822    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
823      Diag(KWLoc, diag::err_use_with_wrong_tag)
824        << Name
825        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
826      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
827      Kind = PrevRecordDecl->getTagKind();
828    }
829
830    // Check for redefinition of this class template.
831    if (TUK == TUK_Definition) {
832      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
833        Diag(NameLoc, diag::err_redefinition) << Name;
834        Diag(Def->getLocation(), diag::note_previous_definition);
835        // FIXME: Would it make sense to try to "forget" the previous
836        // definition, as part of error recovery?
837        return true;
838      }
839    }
840  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
841    // Maybe we will complain about the shadowed template parameter.
842    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
843    // Just pretend that we didn't see the previous declaration.
844    PrevDecl = 0;
845  } else if (PrevDecl) {
846    // C++ [temp]p5:
847    //   A class template shall not have the same name as any other
848    //   template, class, function, object, enumeration, enumerator,
849    //   namespace, or type in the same scope (3.3), except as specified
850    //   in (14.5.4).
851    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
852    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
853    return true;
854  }
855
856  // Check the template parameter list of this declaration, possibly
857  // merging in the template parameter list from the previous class
858  // template declaration.
859  if (CheckTemplateParameterList(TemplateParams,
860            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
861                                 TPC_ClassTemplate))
862    Invalid = true;
863
864  // FIXME: If we had a scope specifier, we better have a previous template
865  // declaration!
866
867  CXXRecordDecl *NewClass =
868    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
869                          PrevClassTemplate?
870                            PrevClassTemplate->getTemplatedDecl() : 0,
871                          /*DelayTypeCreation=*/true);
872  SetNestedNameSpecifier(NewClass, SS);
873
874  ClassTemplateDecl *NewTemplate
875    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
876                                DeclarationName(Name), TemplateParams,
877                                NewClass, PrevClassTemplate);
878  NewClass->setDescribedClassTemplate(NewTemplate);
879
880  // Build the type for the class template declaration now.
881  QualType T = NewTemplate->getInjectedClassNameSpecialization(Context);
882  T = Context.getInjectedClassNameType(NewClass, T);
883  assert(T->isDependentType() && "Class template type is not dependent?");
884  (void)T;
885
886  // If we are providing an explicit specialization of a member that is a
887  // class template, make a note of that.
888  if (PrevClassTemplate &&
889      PrevClassTemplate->getInstantiatedFromMemberTemplate())
890    PrevClassTemplate->setMemberSpecialization();
891
892  // Set the access specifier.
893  if (!Invalid && TUK != TUK_Friend)
894    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
895
896  // Set the lexical context of these templates
897  NewClass->setLexicalDeclContext(CurContext);
898  NewTemplate->setLexicalDeclContext(CurContext);
899
900  if (TUK == TUK_Definition)
901    NewClass->startDefinition();
902
903  if (Attr)
904    ProcessDeclAttributeList(S, NewClass, Attr);
905
906  if (TUK != TUK_Friend)
907    PushOnScopeChains(NewTemplate, S);
908  else {
909    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
910      NewTemplate->setAccess(PrevClassTemplate->getAccess());
911      NewClass->setAccess(PrevClassTemplate->getAccess());
912    }
913
914    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
915                                       PrevClassTemplate != NULL);
916
917    // Friend templates are visible in fairly strange ways.
918    if (!CurContext->isDependentContext()) {
919      DeclContext *DC = SemanticContext->getLookupContext();
920      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
921      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
922        PushOnScopeChains(NewTemplate, EnclosingScope,
923                          /* AddToContext = */ false);
924    }
925
926    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
927                                            NewClass->getLocation(),
928                                            NewTemplate,
929                                    /*FIXME:*/NewClass->getLocation());
930    Friend->setAccess(AS_public);
931    CurContext->addDecl(Friend);
932  }
933
934  if (Invalid) {
935    NewTemplate->setInvalidDecl();
936    NewClass->setInvalidDecl();
937  }
938  return DeclPtrTy::make(NewTemplate);
939}
940
941/// \brief Diagnose the presence of a default template argument on a
942/// template parameter, which is ill-formed in certain contexts.
943///
944/// \returns true if the default template argument should be dropped.
945static bool DiagnoseDefaultTemplateArgument(Sema &S,
946                                            Sema::TemplateParamListContext TPC,
947                                            SourceLocation ParamLoc,
948                                            SourceRange DefArgRange) {
949  switch (TPC) {
950  case Sema::TPC_ClassTemplate:
951    return false;
952
953  case Sema::TPC_FunctionTemplate:
954    // C++ [temp.param]p9:
955    //   A default template-argument shall not be specified in a
956    //   function template declaration or a function template
957    //   definition [...]
958    // (This sentence is not in C++0x, per DR226).
959    if (!S.getLangOptions().CPlusPlus0x)
960      S.Diag(ParamLoc,
961             diag::err_template_parameter_default_in_function_template)
962        << DefArgRange;
963    return false;
964
965  case Sema::TPC_ClassTemplateMember:
966    // C++0x [temp.param]p9:
967    //   A default template-argument shall not be specified in the
968    //   template-parameter-lists of the definition of a member of a
969    //   class template that appears outside of the member's class.
970    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
971      << DefArgRange;
972    return true;
973
974  case Sema::TPC_FriendFunctionTemplate:
975    // C++ [temp.param]p9:
976    //   A default template-argument shall not be specified in a
977    //   friend template declaration.
978    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
979      << DefArgRange;
980    return true;
981
982    // FIXME: C++0x [temp.param]p9 allows default template-arguments
983    // for friend function templates if there is only a single
984    // declaration (and it is a definition). Strange!
985  }
986
987  return false;
988}
989
990/// \brief Checks the validity of a template parameter list, possibly
991/// considering the template parameter list from a previous
992/// declaration.
993///
994/// If an "old" template parameter list is provided, it must be
995/// equivalent (per TemplateParameterListsAreEqual) to the "new"
996/// template parameter list.
997///
998/// \param NewParams Template parameter list for a new template
999/// declaration. This template parameter list will be updated with any
1000/// default arguments that are carried through from the previous
1001/// template parameter list.
1002///
1003/// \param OldParams If provided, template parameter list from a
1004/// previous declaration of the same template. Default template
1005/// arguments will be merged from the old template parameter list to
1006/// the new template parameter list.
1007///
1008/// \param TPC Describes the context in which we are checking the given
1009/// template parameter list.
1010///
1011/// \returns true if an error occurred, false otherwise.
1012bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1013                                      TemplateParameterList *OldParams,
1014                                      TemplateParamListContext TPC) {
1015  bool Invalid = false;
1016
1017  // C++ [temp.param]p10:
1018  //   The set of default template-arguments available for use with a
1019  //   template declaration or definition is obtained by merging the
1020  //   default arguments from the definition (if in scope) and all
1021  //   declarations in scope in the same way default function
1022  //   arguments are (8.3.6).
1023  bool SawDefaultArgument = false;
1024  SourceLocation PreviousDefaultArgLoc;
1025
1026  bool SawParameterPack = false;
1027  SourceLocation ParameterPackLoc;
1028
1029  // Dummy initialization to avoid warnings.
1030  TemplateParameterList::iterator OldParam = NewParams->end();
1031  if (OldParams)
1032    OldParam = OldParams->begin();
1033
1034  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1035                                    NewParamEnd = NewParams->end();
1036       NewParam != NewParamEnd; ++NewParam) {
1037    // Variables used to diagnose redundant default arguments
1038    bool RedundantDefaultArg = false;
1039    SourceLocation OldDefaultLoc;
1040    SourceLocation NewDefaultLoc;
1041
1042    // Variables used to diagnose missing default arguments
1043    bool MissingDefaultArg = false;
1044
1045    // C++0x [temp.param]p11:
1046    // If a template parameter of a class template is a template parameter pack,
1047    // it must be the last template parameter.
1048    if (SawParameterPack) {
1049      Diag(ParameterPackLoc,
1050           diag::err_template_param_pack_must_be_last_template_parameter);
1051      Invalid = true;
1052    }
1053
1054    if (TemplateTypeParmDecl *NewTypeParm
1055          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1056      // Check the presence of a default argument here.
1057      if (NewTypeParm->hasDefaultArgument() &&
1058          DiagnoseDefaultTemplateArgument(*this, TPC,
1059                                          NewTypeParm->getLocation(),
1060               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1061                                                       .getFullSourceRange()))
1062        NewTypeParm->removeDefaultArgument();
1063
1064      // Merge default arguments for template type parameters.
1065      TemplateTypeParmDecl *OldTypeParm
1066          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1067
1068      if (NewTypeParm->isParameterPack()) {
1069        assert(!NewTypeParm->hasDefaultArgument() &&
1070               "Parameter packs can't have a default argument!");
1071        SawParameterPack = true;
1072        ParameterPackLoc = NewTypeParm->getLocation();
1073      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1074                 NewTypeParm->hasDefaultArgument()) {
1075        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1076        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1077        SawDefaultArgument = true;
1078        RedundantDefaultArg = true;
1079        PreviousDefaultArgLoc = NewDefaultLoc;
1080      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1081        // Merge the default argument from the old declaration to the
1082        // new declaration.
1083        SawDefaultArgument = true;
1084        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1085                                        true);
1086        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1087      } else if (NewTypeParm->hasDefaultArgument()) {
1088        SawDefaultArgument = true;
1089        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1090      } else if (SawDefaultArgument)
1091        MissingDefaultArg = true;
1092    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1093               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1094      // Check the presence of a default argument here.
1095      if (NewNonTypeParm->hasDefaultArgument() &&
1096          DiagnoseDefaultTemplateArgument(*this, TPC,
1097                                          NewNonTypeParm->getLocation(),
1098                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1099        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1100        NewNonTypeParm->setDefaultArgument(0);
1101      }
1102
1103      // Merge default arguments for non-type template parameters
1104      NonTypeTemplateParmDecl *OldNonTypeParm
1105        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1106      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1107          NewNonTypeParm->hasDefaultArgument()) {
1108        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1109        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1110        SawDefaultArgument = true;
1111        RedundantDefaultArg = true;
1112        PreviousDefaultArgLoc = NewDefaultLoc;
1113      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1114        // Merge the default argument from the old declaration to the
1115        // new declaration.
1116        SawDefaultArgument = true;
1117        // FIXME: We need to create a new kind of "default argument"
1118        // expression that points to a previous template template
1119        // parameter.
1120        NewNonTypeParm->setDefaultArgument(
1121                                        OldNonTypeParm->getDefaultArgument());
1122        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1123      } else if (NewNonTypeParm->hasDefaultArgument()) {
1124        SawDefaultArgument = true;
1125        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1126      } else if (SawDefaultArgument)
1127        MissingDefaultArg = true;
1128    } else {
1129      // Check the presence of a default argument here.
1130      TemplateTemplateParmDecl *NewTemplateParm
1131        = cast<TemplateTemplateParmDecl>(*NewParam);
1132      if (NewTemplateParm->hasDefaultArgument() &&
1133          DiagnoseDefaultTemplateArgument(*this, TPC,
1134                                          NewTemplateParm->getLocation(),
1135                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1136        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1137
1138      // Merge default arguments for template template parameters
1139      TemplateTemplateParmDecl *OldTemplateParm
1140        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1141      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1142          NewTemplateParm->hasDefaultArgument()) {
1143        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1144        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1145        SawDefaultArgument = true;
1146        RedundantDefaultArg = true;
1147        PreviousDefaultArgLoc = NewDefaultLoc;
1148      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1149        // Merge the default argument from the old declaration to the
1150        // new declaration.
1151        SawDefaultArgument = true;
1152        // FIXME: We need to create a new kind of "default argument" expression
1153        // that points to a previous template template parameter.
1154        NewTemplateParm->setDefaultArgument(
1155                                        OldTemplateParm->getDefaultArgument());
1156        PreviousDefaultArgLoc
1157          = OldTemplateParm->getDefaultArgument().getLocation();
1158      } else if (NewTemplateParm->hasDefaultArgument()) {
1159        SawDefaultArgument = true;
1160        PreviousDefaultArgLoc
1161          = NewTemplateParm->getDefaultArgument().getLocation();
1162      } else if (SawDefaultArgument)
1163        MissingDefaultArg = true;
1164    }
1165
1166    if (RedundantDefaultArg) {
1167      // C++ [temp.param]p12:
1168      //   A template-parameter shall not be given default arguments
1169      //   by two different declarations in the same scope.
1170      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1171      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1172      Invalid = true;
1173    } else if (MissingDefaultArg) {
1174      // C++ [temp.param]p11:
1175      //   If a template-parameter has a default template-argument,
1176      //   all subsequent template-parameters shall have a default
1177      //   template-argument supplied.
1178      Diag((*NewParam)->getLocation(),
1179           diag::err_template_param_default_arg_missing);
1180      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1181      Invalid = true;
1182    }
1183
1184    // If we have an old template parameter list that we're merging
1185    // in, move on to the next parameter.
1186    if (OldParams)
1187      ++OldParam;
1188  }
1189
1190  return Invalid;
1191}
1192
1193/// \brief Match the given template parameter lists to the given scope
1194/// specifier, returning the template parameter list that applies to the
1195/// name.
1196///
1197/// \param DeclStartLoc the start of the declaration that has a scope
1198/// specifier or a template parameter list.
1199///
1200/// \param SS the scope specifier that will be matched to the given template
1201/// parameter lists. This scope specifier precedes a qualified name that is
1202/// being declared.
1203///
1204/// \param ParamLists the template parameter lists, from the outermost to the
1205/// innermost template parameter lists.
1206///
1207/// \param NumParamLists the number of template parameter lists in ParamLists.
1208///
1209/// \param IsExplicitSpecialization will be set true if the entity being
1210/// declared is an explicit specialization, false otherwise.
1211///
1212/// \returns the template parameter list, if any, that corresponds to the
1213/// name that is preceded by the scope specifier @p SS. This template
1214/// parameter list may be have template parameters (if we're declaring a
1215/// template) or may have no template parameters (if we're declaring a
1216/// template specialization), or may be NULL (if we were's declaring isn't
1217/// itself a template).
1218TemplateParameterList *
1219Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1220                                              const CXXScopeSpec &SS,
1221                                          TemplateParameterList **ParamLists,
1222                                              unsigned NumParamLists,
1223                                              bool &IsExplicitSpecialization) {
1224  IsExplicitSpecialization = false;
1225
1226  // Find the template-ids that occur within the nested-name-specifier. These
1227  // template-ids will match up with the template parameter lists.
1228  llvm::SmallVector<const TemplateSpecializationType *, 4>
1229    TemplateIdsInSpecifier;
1230  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1231    ExplicitSpecializationsInSpecifier;
1232  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1233       NNS; NNS = NNS->getPrefix()) {
1234    const Type *T = NNS->getAsType();
1235    if (!T) break;
1236
1237    // C++0x [temp.expl.spec]p17:
1238    //   A member or a member template may be nested within many
1239    //   enclosing class templates. In an explicit specialization for
1240    //   such a member, the member declaration shall be preceded by a
1241    //   template<> for each enclosing class template that is
1242    //   explicitly specialized.
1243    //
1244    // Following the existing practice of GNU and EDG, we allow a typedef of a
1245    // template specialization type.
1246    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1247      T = TT->LookThroughTypedefs().getTypePtr();
1248
1249    if (const TemplateSpecializationType *SpecType
1250                                  = dyn_cast<TemplateSpecializationType>(T)) {
1251      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1252      if (!Template)
1253        continue; // FIXME: should this be an error? probably...
1254
1255      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1256        ClassTemplateSpecializationDecl *SpecDecl
1257          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1258        // If the nested name specifier refers to an explicit specialization,
1259        // we don't need a template<> header.
1260        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1261          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1262          continue;
1263        }
1264      }
1265
1266      TemplateIdsInSpecifier.push_back(SpecType);
1267    }
1268  }
1269
1270  // Reverse the list of template-ids in the scope specifier, so that we can
1271  // more easily match up the template-ids and the template parameter lists.
1272  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1273
1274  SourceLocation FirstTemplateLoc = DeclStartLoc;
1275  if (NumParamLists)
1276    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1277
1278  // Match the template-ids found in the specifier to the template parameter
1279  // lists.
1280  unsigned Idx = 0;
1281  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1282       Idx != NumTemplateIds; ++Idx) {
1283    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1284    bool DependentTemplateId = TemplateId->isDependentType();
1285    if (Idx >= NumParamLists) {
1286      // We have a template-id without a corresponding template parameter
1287      // list.
1288      if (DependentTemplateId) {
1289        // FIXME: the location information here isn't great.
1290        Diag(SS.getRange().getBegin(),
1291             diag::err_template_spec_needs_template_parameters)
1292          << TemplateId
1293          << SS.getRange();
1294      } else {
1295        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1296          << SS.getRange()
1297          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1298        IsExplicitSpecialization = true;
1299      }
1300      return 0;
1301    }
1302
1303    // Check the template parameter list against its corresponding template-id.
1304    if (DependentTemplateId) {
1305      TemplateDecl *Template
1306        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1307
1308      if (ClassTemplateDecl *ClassTemplate
1309            = dyn_cast<ClassTemplateDecl>(Template)) {
1310        TemplateParameterList *ExpectedTemplateParams = 0;
1311        // Is this template-id naming the primary template?
1312        if (Context.hasSameType(TemplateId,
1313                 ClassTemplate->getInjectedClassNameSpecialization(Context)))
1314          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1315        // ... or a partial specialization?
1316        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1317                   = ClassTemplate->findPartialSpecialization(TemplateId))
1318          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1319
1320        if (ExpectedTemplateParams)
1321          TemplateParameterListsAreEqual(ParamLists[Idx],
1322                                         ExpectedTemplateParams,
1323                                         true, TPL_TemplateMatch);
1324      }
1325
1326      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1327    } else if (ParamLists[Idx]->size() > 0)
1328      Diag(ParamLists[Idx]->getTemplateLoc(),
1329           diag::err_template_param_list_matches_nontemplate)
1330        << TemplateId
1331        << ParamLists[Idx]->getSourceRange();
1332    else
1333      IsExplicitSpecialization = true;
1334  }
1335
1336  // If there were at least as many template-ids as there were template
1337  // parameter lists, then there are no template parameter lists remaining for
1338  // the declaration itself.
1339  if (Idx >= NumParamLists)
1340    return 0;
1341
1342  // If there were too many template parameter lists, complain about that now.
1343  if (Idx != NumParamLists - 1) {
1344    while (Idx < NumParamLists - 1) {
1345      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1346      Diag(ParamLists[Idx]->getTemplateLoc(),
1347           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1348                               : diag::err_template_spec_extra_headers)
1349        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1350                       ParamLists[Idx]->getRAngleLoc());
1351
1352      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1353        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1354             diag::note_explicit_template_spec_does_not_need_header)
1355          << ExplicitSpecializationsInSpecifier.back();
1356        ExplicitSpecializationsInSpecifier.pop_back();
1357      }
1358
1359      ++Idx;
1360    }
1361  }
1362
1363  // Return the last template parameter list, which corresponds to the
1364  // entity being declared.
1365  return ParamLists[NumParamLists - 1];
1366}
1367
1368QualType Sema::CheckTemplateIdType(TemplateName Name,
1369                                   SourceLocation TemplateLoc,
1370                              const TemplateArgumentListInfo &TemplateArgs) {
1371  TemplateDecl *Template = Name.getAsTemplateDecl();
1372  if (!Template) {
1373    // The template name does not resolve to a template, so we just
1374    // build a dependent template-id type.
1375    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1376  }
1377
1378  // Check that the template argument list is well-formed for this
1379  // template.
1380  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1381                                        TemplateArgs.size());
1382  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1383                                false, Converted))
1384    return QualType();
1385
1386  assert((Converted.structuredSize() ==
1387            Template->getTemplateParameters()->size()) &&
1388         "Converted template argument list is too short!");
1389
1390  QualType CanonType;
1391
1392  if (Name.isDependent() ||
1393      TemplateSpecializationType::anyDependentTemplateArguments(
1394                                                      TemplateArgs)) {
1395    // This class template specialization is a dependent
1396    // type. Therefore, its canonical type is another class template
1397    // specialization type that contains all of the converted
1398    // arguments in canonical form. This ensures that, e.g., A<T> and
1399    // A<T, T> have identical types when A is declared as:
1400    //
1401    //   template<typename T, typename U = T> struct A;
1402    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1403    CanonType = Context.getTemplateSpecializationType(CanonName,
1404                                                   Converted.getFlatArguments(),
1405                                                   Converted.flatSize());
1406
1407    // FIXME: CanonType is not actually the canonical type, and unfortunately
1408    // it is a TemplateSpecializationType that we will never use again.
1409    // In the future, we need to teach getTemplateSpecializationType to only
1410    // build the canonical type and return that to us.
1411    CanonType = Context.getCanonicalType(CanonType);
1412  } else if (ClassTemplateDecl *ClassTemplate
1413               = dyn_cast<ClassTemplateDecl>(Template)) {
1414    // Find the class template specialization declaration that
1415    // corresponds to these arguments.
1416    llvm::FoldingSetNodeID ID;
1417    ClassTemplateSpecializationDecl::Profile(ID,
1418                                             Converted.getFlatArguments(),
1419                                             Converted.flatSize(),
1420                                             Context);
1421    void *InsertPos = 0;
1422    ClassTemplateSpecializationDecl *Decl
1423      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1424    if (!Decl) {
1425      // This is the first time we have referenced this class template
1426      // specialization. Create the canonical declaration and add it to
1427      // the set of specializations.
1428      Decl = ClassTemplateSpecializationDecl::Create(Context,
1429                                    ClassTemplate->getDeclContext(),
1430                                    ClassTemplate->getLocation(),
1431                                    ClassTemplate,
1432                                    Converted, 0);
1433      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1434      Decl->setLexicalDeclContext(CurContext);
1435    }
1436
1437    CanonType = Context.getTypeDeclType(Decl);
1438    assert(isa<RecordType>(CanonType) &&
1439           "type of non-dependent specialization is not a RecordType");
1440  }
1441
1442  // Build the fully-sugared type for this class template
1443  // specialization, which refers back to the class template
1444  // specialization we created or found.
1445  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1446}
1447
1448Action::TypeResult
1449Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1450                          SourceLocation LAngleLoc,
1451                          ASTTemplateArgsPtr TemplateArgsIn,
1452                          SourceLocation RAngleLoc) {
1453  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1454
1455  // Translate the parser's template argument list in our AST format.
1456  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1457  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1458
1459  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1460  TemplateArgsIn.release();
1461
1462  if (Result.isNull())
1463    return true;
1464
1465  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1466  TemplateSpecializationTypeLoc TL
1467    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1468  TL.setTemplateNameLoc(TemplateLoc);
1469  TL.setLAngleLoc(LAngleLoc);
1470  TL.setRAngleLoc(RAngleLoc);
1471  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1472    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1473
1474  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1475}
1476
1477Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1478                                              TagUseKind TUK,
1479                                              DeclSpec::TST TagSpec,
1480                                              SourceLocation TagLoc) {
1481  if (TypeResult.isInvalid())
1482    return Sema::TypeResult();
1483
1484  // FIXME: preserve source info, ideally without copying the DI.
1485  TypeSourceInfo *DI;
1486  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1487
1488  // Verify the tag specifier.
1489  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1490
1491  if (const RecordType *RT = Type->getAs<RecordType>()) {
1492    RecordDecl *D = RT->getDecl();
1493
1494    IdentifierInfo *Id = D->getIdentifier();
1495    assert(Id && "templated class must have an identifier");
1496
1497    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1498      Diag(TagLoc, diag::err_use_with_wrong_tag)
1499        << Type
1500        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1501      Diag(D->getLocation(), diag::note_previous_use);
1502    }
1503  }
1504
1505  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1506
1507  return ElabType.getAsOpaquePtr();
1508}
1509
1510Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1511                                                 LookupResult &R,
1512                                                 bool RequiresADL,
1513                                 const TemplateArgumentListInfo &TemplateArgs) {
1514  // FIXME: Can we do any checking at this point? I guess we could check the
1515  // template arguments that we have against the template name, if the template
1516  // name refers to a single template. That's not a terribly common case,
1517  // though.
1518
1519  // These should be filtered out by our callers.
1520  assert(!R.empty() && "empty lookup results when building templateid");
1521  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1522
1523  NestedNameSpecifier *Qualifier = 0;
1524  SourceRange QualifierRange;
1525  if (SS.isSet()) {
1526    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1527    QualifierRange = SS.getRange();
1528  }
1529
1530  // We don't want lookup warnings at this point.
1531  R.suppressDiagnostics();
1532
1533  bool Dependent
1534    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1535                                              &TemplateArgs);
1536  UnresolvedLookupExpr *ULE
1537    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1538                                   Qualifier, QualifierRange,
1539                                   R.getLookupName(), R.getNameLoc(),
1540                                   RequiresADL, TemplateArgs);
1541  ULE->addDecls(R.begin(), R.end());
1542
1543  return Owned(ULE);
1544}
1545
1546// We actually only call this from template instantiation.
1547Sema::OwningExprResult
1548Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS,
1549                                   DeclarationName Name,
1550                                   SourceLocation NameLoc,
1551                             const TemplateArgumentListInfo &TemplateArgs) {
1552  DeclContext *DC;
1553  if (!(DC = computeDeclContext(SS, false)) ||
1554      DC->isDependentContext() ||
1555      RequireCompleteDeclContext(SS))
1556    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1557
1558  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1559  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1560
1561  if (R.isAmbiguous())
1562    return ExprError();
1563
1564  if (R.empty()) {
1565    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1566      << Name << SS.getRange();
1567    return ExprError();
1568  }
1569
1570  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1571    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1572      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1573    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1574    return ExprError();
1575  }
1576
1577  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1578}
1579
1580/// \brief Form a dependent template name.
1581///
1582/// This action forms a dependent template name given the template
1583/// name and its (presumably dependent) scope specifier. For
1584/// example, given "MetaFun::template apply", the scope specifier \p
1585/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1586/// of the "template" keyword, and "apply" is the \p Name.
1587Sema::TemplateTy
1588Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1589                                 const CXXScopeSpec &SS,
1590                                 UnqualifiedId &Name,
1591                                 TypeTy *ObjectType,
1592                                 bool EnteringContext) {
1593  DeclContext *LookupCtx = 0;
1594  if (SS.isSet())
1595    LookupCtx = computeDeclContext(SS, EnteringContext);
1596  if (!LookupCtx && ObjectType)
1597    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1598  if (LookupCtx) {
1599    // C++0x [temp.names]p5:
1600    //   If a name prefixed by the keyword template is not the name of
1601    //   a template, the program is ill-formed. [Note: the keyword
1602    //   template may not be applied to non-template members of class
1603    //   templates. -end note ] [ Note: as is the case with the
1604    //   typename prefix, the template prefix is allowed in cases
1605    //   where it is not strictly necessary; i.e., when the
1606    //   nested-name-specifier or the expression on the left of the ->
1607    //   or . is not dependent on a template-parameter, or the use
1608    //   does not appear in the scope of a template. -end note]
1609    //
1610    // Note: C++03 was more strict here, because it banned the use of
1611    // the "template" keyword prior to a template-name that was not a
1612    // dependent name. C++ DR468 relaxed this requirement (the
1613    // "template" keyword is now permitted). We follow the C++0x
1614    // rules, even in C++03 mode, retroactively applying the DR.
1615    TemplateTy Template;
1616    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1617                                          EnteringContext, Template);
1618    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1619        isa<CXXRecordDecl>(LookupCtx) &&
1620        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1621      // This is a dependent template.
1622    } else if (TNK == TNK_Non_template) {
1623      Diag(Name.getSourceRange().getBegin(),
1624           diag::err_template_kw_refers_to_non_template)
1625        << GetNameFromUnqualifiedId(Name)
1626        << Name.getSourceRange();
1627      return TemplateTy();
1628    } else {
1629      // We found something; return it.
1630      return Template;
1631    }
1632  }
1633
1634  NestedNameSpecifier *Qualifier
1635    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1636
1637  switch (Name.getKind()) {
1638  case UnqualifiedId::IK_Identifier:
1639    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1640                                                             Name.Identifier));
1641
1642  case UnqualifiedId::IK_OperatorFunctionId:
1643    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1644                                             Name.OperatorFunctionId.Operator));
1645
1646  case UnqualifiedId::IK_LiteralOperatorId:
1647    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1648
1649  default:
1650    break;
1651  }
1652
1653  Diag(Name.getSourceRange().getBegin(),
1654       diag::err_template_kw_refers_to_non_template)
1655    << GetNameFromUnqualifiedId(Name)
1656    << Name.getSourceRange();
1657  return TemplateTy();
1658}
1659
1660bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1661                                     const TemplateArgumentLoc &AL,
1662                                     TemplateArgumentListBuilder &Converted) {
1663  const TemplateArgument &Arg = AL.getArgument();
1664
1665  // Check template type parameter.
1666  if (Arg.getKind() != TemplateArgument::Type) {
1667    // C++ [temp.arg.type]p1:
1668    //   A template-argument for a template-parameter which is a
1669    //   type shall be a type-id.
1670
1671    // We have a template type parameter but the template argument
1672    // is not a type.
1673    SourceRange SR = AL.getSourceRange();
1674    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1675    Diag(Param->getLocation(), diag::note_template_param_here);
1676
1677    return true;
1678  }
1679
1680  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1681    return true;
1682
1683  // Add the converted template type argument.
1684  Converted.Append(
1685                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1686  return false;
1687}
1688
1689/// \brief Substitute template arguments into the default template argument for
1690/// the given template type parameter.
1691///
1692/// \param SemaRef the semantic analysis object for which we are performing
1693/// the substitution.
1694///
1695/// \param Template the template that we are synthesizing template arguments
1696/// for.
1697///
1698/// \param TemplateLoc the location of the template name that started the
1699/// template-id we are checking.
1700///
1701/// \param RAngleLoc the location of the right angle bracket ('>') that
1702/// terminates the template-id.
1703///
1704/// \param Param the template template parameter whose default we are
1705/// substituting into.
1706///
1707/// \param Converted the list of template arguments provided for template
1708/// parameters that precede \p Param in the template parameter list.
1709///
1710/// \returns the substituted template argument, or NULL if an error occurred.
1711static TypeSourceInfo *
1712SubstDefaultTemplateArgument(Sema &SemaRef,
1713                             TemplateDecl *Template,
1714                             SourceLocation TemplateLoc,
1715                             SourceLocation RAngleLoc,
1716                             TemplateTypeParmDecl *Param,
1717                             TemplateArgumentListBuilder &Converted) {
1718  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1719
1720  // If the argument type is dependent, instantiate it now based
1721  // on the previously-computed template arguments.
1722  if (ArgType->getType()->isDependentType()) {
1723    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1724                                      /*TakeArgs=*/false);
1725
1726    MultiLevelTemplateArgumentList AllTemplateArgs
1727      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1728
1729    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1730                                     Template, Converted.getFlatArguments(),
1731                                     Converted.flatSize(),
1732                                     SourceRange(TemplateLoc, RAngleLoc));
1733
1734    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1735                                Param->getDefaultArgumentLoc(),
1736                                Param->getDeclName());
1737  }
1738
1739  return ArgType;
1740}
1741
1742/// \brief Substitute template arguments into the default template argument for
1743/// the given non-type template parameter.
1744///
1745/// \param SemaRef the semantic analysis object for which we are performing
1746/// the substitution.
1747///
1748/// \param Template the template that we are synthesizing template arguments
1749/// for.
1750///
1751/// \param TemplateLoc the location of the template name that started the
1752/// template-id we are checking.
1753///
1754/// \param RAngleLoc the location of the right angle bracket ('>') that
1755/// terminates the template-id.
1756///
1757/// \param Param the non-type template parameter whose default we are
1758/// substituting into.
1759///
1760/// \param Converted the list of template arguments provided for template
1761/// parameters that precede \p Param in the template parameter list.
1762///
1763/// \returns the substituted template argument, or NULL if an error occurred.
1764static Sema::OwningExprResult
1765SubstDefaultTemplateArgument(Sema &SemaRef,
1766                             TemplateDecl *Template,
1767                             SourceLocation TemplateLoc,
1768                             SourceLocation RAngleLoc,
1769                             NonTypeTemplateParmDecl *Param,
1770                             TemplateArgumentListBuilder &Converted) {
1771  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1772                                    /*TakeArgs=*/false);
1773
1774  MultiLevelTemplateArgumentList AllTemplateArgs
1775    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1776
1777  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1778                                   Template, Converted.getFlatArguments(),
1779                                   Converted.flatSize(),
1780                                   SourceRange(TemplateLoc, RAngleLoc));
1781
1782  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1783}
1784
1785/// \brief Substitute template arguments into the default template argument for
1786/// the given template template parameter.
1787///
1788/// \param SemaRef the semantic analysis object for which we are performing
1789/// the substitution.
1790///
1791/// \param Template the template that we are synthesizing template arguments
1792/// for.
1793///
1794/// \param TemplateLoc the location of the template name that started the
1795/// template-id we are checking.
1796///
1797/// \param RAngleLoc the location of the right angle bracket ('>') that
1798/// terminates the template-id.
1799///
1800/// \param Param the template template parameter whose default we are
1801/// substituting into.
1802///
1803/// \param Converted the list of template arguments provided for template
1804/// parameters that precede \p Param in the template parameter list.
1805///
1806/// \returns the substituted template argument, or NULL if an error occurred.
1807static TemplateName
1808SubstDefaultTemplateArgument(Sema &SemaRef,
1809                             TemplateDecl *Template,
1810                             SourceLocation TemplateLoc,
1811                             SourceLocation RAngleLoc,
1812                             TemplateTemplateParmDecl *Param,
1813                             TemplateArgumentListBuilder &Converted) {
1814  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1815                                    /*TakeArgs=*/false);
1816
1817  MultiLevelTemplateArgumentList AllTemplateArgs
1818    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1819
1820  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1821                                   Template, Converted.getFlatArguments(),
1822                                   Converted.flatSize(),
1823                                   SourceRange(TemplateLoc, RAngleLoc));
1824
1825  return SemaRef.SubstTemplateName(
1826                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1827                              Param->getDefaultArgument().getTemplateNameLoc(),
1828                                   AllTemplateArgs);
1829}
1830
1831/// \brief If the given template parameter has a default template
1832/// argument, substitute into that default template argument and
1833/// return the corresponding template argument.
1834TemplateArgumentLoc
1835Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1836                                              SourceLocation TemplateLoc,
1837                                              SourceLocation RAngleLoc,
1838                                              Decl *Param,
1839                                     TemplateArgumentListBuilder &Converted) {
1840  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1841    if (!TypeParm->hasDefaultArgument())
1842      return TemplateArgumentLoc();
1843
1844    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1845                                                      TemplateLoc,
1846                                                      RAngleLoc,
1847                                                      TypeParm,
1848                                                      Converted);
1849    if (DI)
1850      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1851
1852    return TemplateArgumentLoc();
1853  }
1854
1855  if (NonTypeTemplateParmDecl *NonTypeParm
1856        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1857    if (!NonTypeParm->hasDefaultArgument())
1858      return TemplateArgumentLoc();
1859
1860    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1861                                                        TemplateLoc,
1862                                                        RAngleLoc,
1863                                                        NonTypeParm,
1864                                                        Converted);
1865    if (Arg.isInvalid())
1866      return TemplateArgumentLoc();
1867
1868    Expr *ArgE = Arg.takeAs<Expr>();
1869    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1870  }
1871
1872  TemplateTemplateParmDecl *TempTempParm
1873    = cast<TemplateTemplateParmDecl>(Param);
1874  if (!TempTempParm->hasDefaultArgument())
1875    return TemplateArgumentLoc();
1876
1877  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1878                                                    TemplateLoc,
1879                                                    RAngleLoc,
1880                                                    TempTempParm,
1881                                                    Converted);
1882  if (TName.isNull())
1883    return TemplateArgumentLoc();
1884
1885  return TemplateArgumentLoc(TemplateArgument(TName),
1886                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1887                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1888}
1889
1890/// \brief Check that the given template argument corresponds to the given
1891/// template parameter.
1892bool Sema::CheckTemplateArgument(NamedDecl *Param,
1893                                 const TemplateArgumentLoc &Arg,
1894                                 TemplateDecl *Template,
1895                                 SourceLocation TemplateLoc,
1896                                 SourceLocation RAngleLoc,
1897                                 TemplateArgumentListBuilder &Converted,
1898                                 CheckTemplateArgumentKind CTAK) {
1899  // Check template type parameters.
1900  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1901    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1902
1903  // Check non-type template parameters.
1904  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1905    // Do substitution on the type of the non-type template parameter
1906    // with the template arguments we've seen thus far.
1907    QualType NTTPType = NTTP->getType();
1908    if (NTTPType->isDependentType()) {
1909      // Do substitution on the type of the non-type template parameter.
1910      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1911                                 NTTP, Converted.getFlatArguments(),
1912                                 Converted.flatSize(),
1913                                 SourceRange(TemplateLoc, RAngleLoc));
1914
1915      TemplateArgumentList TemplateArgs(Context, Converted,
1916                                        /*TakeArgs=*/false);
1917      NTTPType = SubstType(NTTPType,
1918                           MultiLevelTemplateArgumentList(TemplateArgs),
1919                           NTTP->getLocation(),
1920                           NTTP->getDeclName());
1921      // If that worked, check the non-type template parameter type
1922      // for validity.
1923      if (!NTTPType.isNull())
1924        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1925                                                     NTTP->getLocation());
1926      if (NTTPType.isNull())
1927        return true;
1928    }
1929
1930    switch (Arg.getArgument().getKind()) {
1931    case TemplateArgument::Null:
1932      assert(false && "Should never see a NULL template argument here");
1933      return true;
1934
1935    case TemplateArgument::Expression: {
1936      Expr *E = Arg.getArgument().getAsExpr();
1937      TemplateArgument Result;
1938      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
1939        return true;
1940
1941      Converted.Append(Result);
1942      break;
1943    }
1944
1945    case TemplateArgument::Declaration:
1946    case TemplateArgument::Integral:
1947      // We've already checked this template argument, so just copy
1948      // it to the list of converted arguments.
1949      Converted.Append(Arg.getArgument());
1950      break;
1951
1952    case TemplateArgument::Template:
1953      // We were given a template template argument. It may not be ill-formed;
1954      // see below.
1955      if (DependentTemplateName *DTN
1956            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1957        // We have a template argument such as \c T::template X, which we
1958        // parsed as a template template argument. However, since we now
1959        // know that we need a non-type template argument, convert this
1960        // template name into an expression.
1961        Expr *E = DependentScopeDeclRefExpr::Create(Context,
1962                                                    DTN->getQualifier(),
1963                                               Arg.getTemplateQualifierRange(),
1964                                                    DTN->getIdentifier(),
1965                                                    Arg.getTemplateNameLoc());
1966
1967        TemplateArgument Result;
1968        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1969          return true;
1970
1971        Converted.Append(Result);
1972        break;
1973      }
1974
1975      // We have a template argument that actually does refer to a class
1976      // template, template alias, or template template parameter, and
1977      // therefore cannot be a non-type template argument.
1978      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1979        << Arg.getSourceRange();
1980
1981      Diag(Param->getLocation(), diag::note_template_param_here);
1982      return true;
1983
1984    case TemplateArgument::Type: {
1985      // We have a non-type template parameter but the template
1986      // argument is a type.
1987
1988      // C++ [temp.arg]p2:
1989      //   In a template-argument, an ambiguity between a type-id and
1990      //   an expression is resolved to a type-id, regardless of the
1991      //   form of the corresponding template-parameter.
1992      //
1993      // We warn specifically about this case, since it can be rather
1994      // confusing for users.
1995      QualType T = Arg.getArgument().getAsType();
1996      SourceRange SR = Arg.getSourceRange();
1997      if (T->isFunctionType())
1998        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1999      else
2000        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2001      Diag(Param->getLocation(), diag::note_template_param_here);
2002      return true;
2003    }
2004
2005    case TemplateArgument::Pack:
2006      llvm_unreachable("Caller must expand template argument packs");
2007      break;
2008    }
2009
2010    return false;
2011  }
2012
2013
2014  // Check template template parameters.
2015  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2016
2017  // Substitute into the template parameter list of the template
2018  // template parameter, since previously-supplied template arguments
2019  // may appear within the template template parameter.
2020  {
2021    // Set up a template instantiation context.
2022    LocalInstantiationScope Scope(*this);
2023    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2024                               TempParm, Converted.getFlatArguments(),
2025                               Converted.flatSize(),
2026                               SourceRange(TemplateLoc, RAngleLoc));
2027
2028    TemplateArgumentList TemplateArgs(Context, Converted,
2029                                      /*TakeArgs=*/false);
2030    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2031                      SubstDecl(TempParm, CurContext,
2032                                MultiLevelTemplateArgumentList(TemplateArgs)));
2033    if (!TempParm)
2034      return true;
2035
2036    // FIXME: TempParam is leaked.
2037  }
2038
2039  switch (Arg.getArgument().getKind()) {
2040  case TemplateArgument::Null:
2041    assert(false && "Should never see a NULL template argument here");
2042    return true;
2043
2044  case TemplateArgument::Template:
2045    if (CheckTemplateArgument(TempParm, Arg))
2046      return true;
2047
2048    Converted.Append(Arg.getArgument());
2049    break;
2050
2051  case TemplateArgument::Expression:
2052  case TemplateArgument::Type:
2053    // We have a template template parameter but the template
2054    // argument does not refer to a template.
2055    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2056    return true;
2057
2058  case TemplateArgument::Declaration:
2059    llvm_unreachable(
2060                       "Declaration argument with template template parameter");
2061    break;
2062  case TemplateArgument::Integral:
2063    llvm_unreachable(
2064                          "Integral argument with template template parameter");
2065    break;
2066
2067  case TemplateArgument::Pack:
2068    llvm_unreachable("Caller must expand template argument packs");
2069    break;
2070  }
2071
2072  return false;
2073}
2074
2075/// \brief Check that the given template argument list is well-formed
2076/// for specializing the given template.
2077bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2078                                     SourceLocation TemplateLoc,
2079                                const TemplateArgumentListInfo &TemplateArgs,
2080                                     bool PartialTemplateArgs,
2081                                     TemplateArgumentListBuilder &Converted) {
2082  TemplateParameterList *Params = Template->getTemplateParameters();
2083  unsigned NumParams = Params->size();
2084  unsigned NumArgs = TemplateArgs.size();
2085  bool Invalid = false;
2086
2087  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2088
2089  bool HasParameterPack =
2090    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2091
2092  if ((NumArgs > NumParams && !HasParameterPack) ||
2093      (NumArgs < Params->getMinRequiredArguments() &&
2094       !PartialTemplateArgs)) {
2095    // FIXME: point at either the first arg beyond what we can handle,
2096    // or the '>', depending on whether we have too many or too few
2097    // arguments.
2098    SourceRange Range;
2099    if (NumArgs > NumParams)
2100      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2101    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2102      << (NumArgs > NumParams)
2103      << (isa<ClassTemplateDecl>(Template)? 0 :
2104          isa<FunctionTemplateDecl>(Template)? 1 :
2105          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2106      << Template << Range;
2107    Diag(Template->getLocation(), diag::note_template_decl_here)
2108      << Params->getSourceRange();
2109    Invalid = true;
2110  }
2111
2112  // C++ [temp.arg]p1:
2113  //   [...] The type and form of each template-argument specified in
2114  //   a template-id shall match the type and form specified for the
2115  //   corresponding parameter declared by the template in its
2116  //   template-parameter-list.
2117  unsigned ArgIdx = 0;
2118  for (TemplateParameterList::iterator Param = Params->begin(),
2119                                       ParamEnd = Params->end();
2120       Param != ParamEnd; ++Param, ++ArgIdx) {
2121    if (ArgIdx > NumArgs && PartialTemplateArgs)
2122      break;
2123
2124    // If we have a template parameter pack, check every remaining template
2125    // argument against that template parameter pack.
2126    if ((*Param)->isTemplateParameterPack()) {
2127      Converted.BeginPack();
2128      for (; ArgIdx < NumArgs; ++ArgIdx) {
2129        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2130                                  TemplateLoc, RAngleLoc, Converted)) {
2131          Invalid = true;
2132          break;
2133        }
2134      }
2135      Converted.EndPack();
2136      continue;
2137    }
2138
2139    if (ArgIdx < NumArgs) {
2140      // Check the template argument we were given.
2141      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2142                                TemplateLoc, RAngleLoc, Converted))
2143        return true;
2144
2145      continue;
2146    }
2147
2148    // We have a default template argument that we will use.
2149    TemplateArgumentLoc Arg;
2150
2151    // Retrieve the default template argument from the template
2152    // parameter. For each kind of template parameter, we substitute the
2153    // template arguments provided thus far and any "outer" template arguments
2154    // (when the template parameter was part of a nested template) into
2155    // the default argument.
2156    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2157      if (!TTP->hasDefaultArgument()) {
2158        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2159        break;
2160      }
2161
2162      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2163                                                             Template,
2164                                                             TemplateLoc,
2165                                                             RAngleLoc,
2166                                                             TTP,
2167                                                             Converted);
2168      if (!ArgType)
2169        return true;
2170
2171      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2172                                ArgType);
2173    } else if (NonTypeTemplateParmDecl *NTTP
2174                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2175      if (!NTTP->hasDefaultArgument()) {
2176        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2177        break;
2178      }
2179
2180      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2181                                                              TemplateLoc,
2182                                                              RAngleLoc,
2183                                                              NTTP,
2184                                                              Converted);
2185      if (E.isInvalid())
2186        return true;
2187
2188      Expr *Ex = E.takeAs<Expr>();
2189      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2190    } else {
2191      TemplateTemplateParmDecl *TempParm
2192        = cast<TemplateTemplateParmDecl>(*Param);
2193
2194      if (!TempParm->hasDefaultArgument()) {
2195        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2196        break;
2197      }
2198
2199      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2200                                                       TemplateLoc,
2201                                                       RAngleLoc,
2202                                                       TempParm,
2203                                                       Converted);
2204      if (Name.isNull())
2205        return true;
2206
2207      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2208                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2209                  TempParm->getDefaultArgument().getTemplateNameLoc());
2210    }
2211
2212    // Introduce an instantiation record that describes where we are using
2213    // the default template argument.
2214    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2215                                        Converted.getFlatArguments(),
2216                                        Converted.flatSize(),
2217                                        SourceRange(TemplateLoc, RAngleLoc));
2218
2219    // Check the default template argument.
2220    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2221                              RAngleLoc, Converted))
2222      return true;
2223  }
2224
2225  return Invalid;
2226}
2227
2228/// \brief Check a template argument against its corresponding
2229/// template type parameter.
2230///
2231/// This routine implements the semantics of C++ [temp.arg.type]. It
2232/// returns true if an error occurred, and false otherwise.
2233bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2234                                 TypeSourceInfo *ArgInfo) {
2235  assert(ArgInfo && "invalid TypeSourceInfo");
2236  QualType Arg = ArgInfo->getType();
2237
2238  // C++ [temp.arg.type]p2:
2239  //   A local type, a type with no linkage, an unnamed type or a type
2240  //   compounded from any of these types shall not be used as a
2241  //   template-argument for a template type-parameter.
2242  //
2243  // FIXME: Perform the recursive and no-linkage type checks.
2244  const TagType *Tag = 0;
2245  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2246    Tag = EnumT;
2247  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2248    Tag = RecordT;
2249  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2250    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2251    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2252      << QualType(Tag, 0) << SR;
2253  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2254           !Tag->getDecl()->getTypedefForAnonDecl()) {
2255    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2256    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2257    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2258    return true;
2259  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2260    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2261    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2262  }
2263
2264  return false;
2265}
2266
2267/// \brief Checks whether the given template argument is the address
2268/// of an object or function according to C++ [temp.arg.nontype]p1.
2269bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
2270                                                          NamedDecl *&Entity) {
2271  bool Invalid = false;
2272
2273  // See through any implicit casts we added to fix the type.
2274  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2275    Arg = Cast->getSubExpr();
2276
2277  // C++0x allows nullptr, and there's no further checking to be done for that.
2278  if (Arg->getType()->isNullPtrType())
2279    return false;
2280
2281  // C++ [temp.arg.nontype]p1:
2282  //
2283  //   A template-argument for a non-type, non-template
2284  //   template-parameter shall be one of: [...]
2285  //
2286  //     -- the address of an object or function with external
2287  //        linkage, including function templates and function
2288  //        template-ids but excluding non-static class members,
2289  //        expressed as & id-expression where the & is optional if
2290  //        the name refers to a function or array, or if the
2291  //        corresponding template-parameter is a reference; or
2292  DeclRefExpr *DRE = 0;
2293
2294  // Ignore (and complain about) any excess parentheses.
2295  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2296    if (!Invalid) {
2297      Diag(Arg->getSourceRange().getBegin(),
2298           diag::err_template_arg_extra_parens)
2299        << Arg->getSourceRange();
2300      Invalid = true;
2301    }
2302
2303    Arg = Parens->getSubExpr();
2304  }
2305
2306  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2307    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2308      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2309  } else
2310    DRE = dyn_cast<DeclRefExpr>(Arg);
2311
2312  if (!DRE)
2313    return Diag(Arg->getSourceRange().getBegin(),
2314                diag::err_template_arg_not_decl_ref)
2315      << Arg->getSourceRange();
2316
2317  // Stop checking the precise nature of the argument if it is value dependent,
2318  // it should be checked when instantiated.
2319  if (Arg->isValueDependent())
2320    return false;
2321
2322  if (!isa<ValueDecl>(DRE->getDecl()))
2323    return Diag(Arg->getSourceRange().getBegin(),
2324                diag::err_template_arg_not_object_or_func_form)
2325      << Arg->getSourceRange();
2326
2327  // Cannot refer to non-static data members
2328  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2329    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2330      << Field << Arg->getSourceRange();
2331
2332  // Cannot refer to non-static member functions
2333  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2334    if (!Method->isStatic())
2335      return Diag(Arg->getSourceRange().getBegin(),
2336                  diag::err_template_arg_method)
2337        << Method << Arg->getSourceRange();
2338
2339  // Functions must have external linkage.
2340  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2341    if (!isExternalLinkage(Func->getLinkage())) {
2342      Diag(Arg->getSourceRange().getBegin(),
2343           diag::err_template_arg_function_not_extern)
2344        << Func << Arg->getSourceRange();
2345      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2346        << true;
2347      return true;
2348    }
2349
2350    // Okay: we've named a function with external linkage.
2351    Entity = Func;
2352    return Invalid;
2353  }
2354
2355  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2356    if (!isExternalLinkage(Var->getLinkage())) {
2357      Diag(Arg->getSourceRange().getBegin(),
2358           diag::err_template_arg_object_not_extern)
2359        << Var << Arg->getSourceRange();
2360      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2361        << true;
2362      return true;
2363    }
2364
2365    // Okay: we've named an object with external linkage
2366    Entity = Var;
2367    return Invalid;
2368  }
2369
2370  // We found something else, but we don't know specifically what it is.
2371  Diag(Arg->getSourceRange().getBegin(),
2372       diag::err_template_arg_not_object_or_func)
2373      << Arg->getSourceRange();
2374  Diag(DRE->getDecl()->getLocation(),
2375       diag::note_template_arg_refers_here);
2376  return true;
2377}
2378
2379/// \brief Checks whether the given template argument is a pointer to
2380/// member constant according to C++ [temp.arg.nontype]p1.
2381bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2382                                                TemplateArgument &Converted) {
2383  bool Invalid = false;
2384
2385  // See through any implicit casts we added to fix the type.
2386  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2387    Arg = Cast->getSubExpr();
2388
2389  // C++0x allows nullptr, and there's no further checking to be done for that.
2390  if (Arg->getType()->isNullPtrType())
2391    return false;
2392
2393  // C++ [temp.arg.nontype]p1:
2394  //
2395  //   A template-argument for a non-type, non-template
2396  //   template-parameter shall be one of: [...]
2397  //
2398  //     -- a pointer to member expressed as described in 5.3.1.
2399  DeclRefExpr *DRE = 0;
2400
2401  // Ignore (and complain about) any excess parentheses.
2402  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2403    if (!Invalid) {
2404      Diag(Arg->getSourceRange().getBegin(),
2405           diag::err_template_arg_extra_parens)
2406        << Arg->getSourceRange();
2407      Invalid = true;
2408    }
2409
2410    Arg = Parens->getSubExpr();
2411  }
2412
2413  // A pointer-to-member constant written &Class::member.
2414  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2415    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2416      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2417      if (DRE && !DRE->getQualifier())
2418        DRE = 0;
2419    }
2420  }
2421  // A constant of pointer-to-member type.
2422  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2423    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2424      if (VD->getType()->isMemberPointerType()) {
2425        if (isa<NonTypeTemplateParmDecl>(VD) ||
2426            (isa<VarDecl>(VD) &&
2427             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2428          if (Arg->isTypeDependent() || Arg->isValueDependent())
2429            Converted = TemplateArgument(Arg->Retain());
2430          else
2431            Converted = TemplateArgument(VD->getCanonicalDecl());
2432          return Invalid;
2433        }
2434      }
2435    }
2436
2437    DRE = 0;
2438  }
2439
2440  if (!DRE)
2441    return Diag(Arg->getSourceRange().getBegin(),
2442                diag::err_template_arg_not_pointer_to_member_form)
2443      << Arg->getSourceRange();
2444
2445  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2446    assert((isa<FieldDecl>(DRE->getDecl()) ||
2447            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2448           "Only non-static member pointers can make it here");
2449
2450    // Okay: this is the address of a non-static member, and therefore
2451    // a member pointer constant.
2452    if (Arg->isTypeDependent() || Arg->isValueDependent())
2453      Converted = TemplateArgument(Arg->Retain());
2454    else
2455      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2456    return Invalid;
2457  }
2458
2459  // We found something else, but we don't know specifically what it is.
2460  Diag(Arg->getSourceRange().getBegin(),
2461       diag::err_template_arg_not_pointer_to_member_form)
2462      << Arg->getSourceRange();
2463  Diag(DRE->getDecl()->getLocation(),
2464       diag::note_template_arg_refers_here);
2465  return true;
2466}
2467
2468/// \brief Check a template argument against its corresponding
2469/// non-type template parameter.
2470///
2471/// This routine implements the semantics of C++ [temp.arg.nontype].
2472/// It returns true if an error occurred, and false otherwise. \p
2473/// InstantiatedParamType is the type of the non-type template
2474/// parameter after it has been instantiated.
2475///
2476/// If no error was detected, Converted receives the converted template argument.
2477bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2478                                 QualType InstantiatedParamType, Expr *&Arg,
2479                                 TemplateArgument &Converted,
2480                                 CheckTemplateArgumentKind CTAK) {
2481  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2482
2483  // If either the parameter has a dependent type or the argument is
2484  // type-dependent, there's nothing we can check now.
2485  // FIXME: Add template argument to Converted!
2486  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2487    // FIXME: Produce a cloned, canonical expression?
2488    Converted = TemplateArgument(Arg);
2489    return false;
2490  }
2491
2492  // C++ [temp.arg.nontype]p5:
2493  //   The following conversions are performed on each expression used
2494  //   as a non-type template-argument. If a non-type
2495  //   template-argument cannot be converted to the type of the
2496  //   corresponding template-parameter then the program is
2497  //   ill-formed.
2498  //
2499  //     -- for a non-type template-parameter of integral or
2500  //        enumeration type, integral promotions (4.5) and integral
2501  //        conversions (4.7) are applied.
2502  QualType ParamType = InstantiatedParamType;
2503  QualType ArgType = Arg->getType();
2504  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2505    // C++ [temp.arg.nontype]p1:
2506    //   A template-argument for a non-type, non-template
2507    //   template-parameter shall be one of:
2508    //
2509    //     -- an integral constant-expression of integral or enumeration
2510    //        type; or
2511    //     -- the name of a non-type template-parameter; or
2512    SourceLocation NonConstantLoc;
2513    llvm::APSInt Value;
2514    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2515      Diag(Arg->getSourceRange().getBegin(),
2516           diag::err_template_arg_not_integral_or_enumeral)
2517        << ArgType << Arg->getSourceRange();
2518      Diag(Param->getLocation(), diag::note_template_param_here);
2519      return true;
2520    } else if (!Arg->isValueDependent() &&
2521               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2522      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2523        << ArgType << Arg->getSourceRange();
2524      return true;
2525    }
2526
2527    // From here on out, all we care about are the unqualified forms
2528    // of the parameter and argument types.
2529    ParamType = ParamType.getUnqualifiedType();
2530    ArgType = ArgType.getUnqualifiedType();
2531
2532    // Try to convert the argument to the parameter's type.
2533    if (Context.hasSameType(ParamType, ArgType)) {
2534      // Okay: no conversion necessary
2535    } else if (CTAK == CTAK_Deduced) {
2536      // C++ [temp.deduct.type]p17:
2537      //   If, in the declaration of a function template with a non-type
2538      //   template-parameter, the non-type template- parameter is used
2539      //   in an expression in the function parameter-list and, if the
2540      //   corresponding template-argument is deduced, the
2541      //   template-argument type shall match the type of the
2542      //   template-parameter exactly, except that a template-argument
2543      //   deduced from an array bound may be of any integral type.
2544      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2545        << ArgType << ParamType;
2546      Diag(Param->getLocation(), diag::note_template_param_here);
2547      return true;
2548    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2549               !ParamType->isEnumeralType()) {
2550      // This is an integral promotion or conversion.
2551      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2552    } else {
2553      // We can't perform this conversion.
2554      Diag(Arg->getSourceRange().getBegin(),
2555           diag::err_template_arg_not_convertible)
2556        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2557      Diag(Param->getLocation(), diag::note_template_param_here);
2558      return true;
2559    }
2560
2561    QualType IntegerType = Context.getCanonicalType(ParamType);
2562    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2563      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2564
2565    if (!Arg->isValueDependent()) {
2566      llvm::APSInt OldValue = Value;
2567
2568      // Coerce the template argument's value to the value it will have
2569      // based on the template parameter's type.
2570      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2571      if (Value.getBitWidth() != AllowedBits)
2572        Value.extOrTrunc(AllowedBits);
2573      Value.setIsSigned(IntegerType->isSignedIntegerType());
2574
2575      // Complain if an unsigned parameter received a negative value.
2576      if (IntegerType->isUnsignedIntegerType()
2577          && (OldValue.isSigned() && OldValue.isNegative())) {
2578        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2579          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2580          << Arg->getSourceRange();
2581        Diag(Param->getLocation(), diag::note_template_param_here);
2582      }
2583
2584      // Complain if we overflowed the template parameter's type.
2585      unsigned RequiredBits;
2586      if (IntegerType->isUnsignedIntegerType())
2587        RequiredBits = OldValue.getActiveBits();
2588      else if (OldValue.isUnsigned())
2589        RequiredBits = OldValue.getActiveBits() + 1;
2590      else
2591        RequiredBits = OldValue.getMinSignedBits();
2592      if (RequiredBits > AllowedBits) {
2593        Diag(Arg->getSourceRange().getBegin(),
2594             diag::warn_template_arg_too_large)
2595          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2596          << Arg->getSourceRange();
2597        Diag(Param->getLocation(), diag::note_template_param_here);
2598      }
2599    }
2600
2601    // Add the value of this argument to the list of converted
2602    // arguments. We use the bitwidth and signedness of the template
2603    // parameter.
2604    if (Arg->isValueDependent()) {
2605      // The argument is value-dependent. Create a new
2606      // TemplateArgument with the converted expression.
2607      Converted = TemplateArgument(Arg);
2608      return false;
2609    }
2610
2611    Converted = TemplateArgument(Value,
2612                                 ParamType->isEnumeralType() ? ParamType
2613                                                             : IntegerType);
2614    return false;
2615  }
2616
2617  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2618
2619  // Handle pointer-to-function, reference-to-function, and
2620  // pointer-to-member-function all in (roughly) the same way.
2621  if (// -- For a non-type template-parameter of type pointer to
2622      //    function, only the function-to-pointer conversion (4.3) is
2623      //    applied. If the template-argument represents a set of
2624      //    overloaded functions (or a pointer to such), the matching
2625      //    function is selected from the set (13.4).
2626      // In C++0x, any std::nullptr_t value can be converted.
2627      (ParamType->isPointerType() &&
2628       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2629      // -- For a non-type template-parameter of type reference to
2630      //    function, no conversions apply. If the template-argument
2631      //    represents a set of overloaded functions, the matching
2632      //    function is selected from the set (13.4).
2633      (ParamType->isReferenceType() &&
2634       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2635      // -- For a non-type template-parameter of type pointer to
2636      //    member function, no conversions apply. If the
2637      //    template-argument represents a set of overloaded member
2638      //    functions, the matching member function is selected from
2639      //    the set (13.4).
2640      // Again, C++0x allows a std::nullptr_t value.
2641      (ParamType->isMemberPointerType() &&
2642       ParamType->getAs<MemberPointerType>()->getPointeeType()
2643         ->isFunctionType())) {
2644    if (Context.hasSameUnqualifiedType(ArgType,
2645                                       ParamType.getNonReferenceType())) {
2646      // We don't have to do anything: the types already match.
2647    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2648                 ParamType->isMemberPointerType())) {
2649      ArgType = ParamType;
2650      if (ParamType->isMemberPointerType())
2651        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2652      else
2653        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2654    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2655      ArgType = Context.getPointerType(ArgType);
2656      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2657    } else if (FunctionDecl *Fn
2658                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true,
2659                                                      FoundResult)) {
2660      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2661        return true;
2662
2663      Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2664      ArgType = Arg->getType();
2665      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2666        ArgType = Context.getPointerType(Arg->getType());
2667        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2668      }
2669    }
2670
2671    if (!Context.hasSameUnqualifiedType(ArgType,
2672                                        ParamType.getNonReferenceType())) {
2673      // We can't perform this conversion.
2674      Diag(Arg->getSourceRange().getBegin(),
2675           diag::err_template_arg_not_convertible)
2676        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2677      Diag(Param->getLocation(), diag::note_template_param_here);
2678      return true;
2679    }
2680
2681    if (ParamType->isMemberPointerType())
2682      return CheckTemplateArgumentPointerToMember(Arg, Converted);
2683
2684    NamedDecl *Entity = 0;
2685    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2686      return true;
2687
2688    if (Arg->isValueDependent()) {
2689      Converted = TemplateArgument(Arg);
2690    } else {
2691      if (Entity)
2692        Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2693      Converted = TemplateArgument(Entity);
2694    }
2695    return false;
2696  }
2697
2698  if (ParamType->isPointerType()) {
2699    //   -- for a non-type template-parameter of type pointer to
2700    //      object, qualification conversions (4.4) and the
2701    //      array-to-pointer conversion (4.2) are applied.
2702    // C++0x also allows a value of std::nullptr_t.
2703    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2704           "Only object pointers allowed here");
2705
2706    if (ArgType->isNullPtrType()) {
2707      ArgType = ParamType;
2708      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2709    } else if (ArgType->isArrayType()) {
2710      ArgType = Context.getArrayDecayedType(ArgType);
2711      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2712    }
2713
2714    if (IsQualificationConversion(ArgType, ParamType)) {
2715      ArgType = ParamType;
2716      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2717    }
2718
2719    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2720      // We can't perform this conversion.
2721      Diag(Arg->getSourceRange().getBegin(),
2722           diag::err_template_arg_not_convertible)
2723        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2724      Diag(Param->getLocation(), diag::note_template_param_here);
2725      return true;
2726    }
2727
2728    NamedDecl *Entity = 0;
2729    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2730      return true;
2731
2732    if (Arg->isValueDependent()) {
2733      Converted = TemplateArgument(Arg);
2734    } else {
2735      if (Entity)
2736        Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2737      Converted = TemplateArgument(Entity);
2738    }
2739    return false;
2740  }
2741
2742  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2743    //   -- For a non-type template-parameter of type reference to
2744    //      object, no conversions apply. The type referred to by the
2745    //      reference may be more cv-qualified than the (otherwise
2746    //      identical) type of the template-argument. The
2747    //      template-parameter is bound directly to the
2748    //      template-argument, which must be an lvalue.
2749    assert(ParamRefType->getPointeeType()->isObjectType() &&
2750           "Only object references allowed here");
2751
2752    QualType ReferredType = ParamRefType->getPointeeType();
2753    if (!Context.hasSameUnqualifiedType(ReferredType, ArgType)) {
2754      Diag(Arg->getSourceRange().getBegin(),
2755           diag::err_template_arg_no_ref_bind)
2756        << InstantiatedParamType << Arg->getType()
2757        << Arg->getSourceRange();
2758      Diag(Param->getLocation(), diag::note_template_param_here);
2759      return true;
2760    }
2761
2762    unsigned ParamQuals
2763      = Context.getCanonicalType(ReferredType).getCVRQualifiers();
2764    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2765
2766    if ((ParamQuals | ArgQuals) != ParamQuals) {
2767      Diag(Arg->getSourceRange().getBegin(),
2768           diag::err_template_arg_ref_bind_ignores_quals)
2769        << InstantiatedParamType << Arg->getType()
2770        << Arg->getSourceRange();
2771      Diag(Param->getLocation(), diag::note_template_param_here);
2772      return true;
2773    }
2774
2775    NamedDecl *Entity = 0;
2776    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2777      return true;
2778
2779    if (Arg->isValueDependent()) {
2780      Converted = TemplateArgument(Arg);
2781    } else {
2782      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2783      Converted = TemplateArgument(Entity);
2784    }
2785    return false;
2786  }
2787
2788  //     -- For a non-type template-parameter of type pointer to data
2789  //        member, qualification conversions (4.4) are applied.
2790  // C++0x allows std::nullptr_t values.
2791  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2792
2793  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2794    // Types match exactly: nothing more to do here.
2795  } else if (ArgType->isNullPtrType()) {
2796    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2797  } else if (IsQualificationConversion(ArgType, ParamType)) {
2798    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2799  } else {
2800    // We can't perform this conversion.
2801    Diag(Arg->getSourceRange().getBegin(),
2802         diag::err_template_arg_not_convertible)
2803      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2804    Diag(Param->getLocation(), diag::note_template_param_here);
2805    return true;
2806  }
2807
2808  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2809}
2810
2811/// \brief Check a template argument against its corresponding
2812/// template template parameter.
2813///
2814/// This routine implements the semantics of C++ [temp.arg.template].
2815/// It returns true if an error occurred, and false otherwise.
2816bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2817                                 const TemplateArgumentLoc &Arg) {
2818  TemplateName Name = Arg.getArgument().getAsTemplate();
2819  TemplateDecl *Template = Name.getAsTemplateDecl();
2820  if (!Template) {
2821    // Any dependent template name is fine.
2822    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2823    return false;
2824  }
2825
2826  // C++ [temp.arg.template]p1:
2827  //   A template-argument for a template template-parameter shall be
2828  //   the name of a class template, expressed as id-expression. Only
2829  //   primary class templates are considered when matching the
2830  //   template template argument with the corresponding parameter;
2831  //   partial specializations are not considered even if their
2832  //   parameter lists match that of the template template parameter.
2833  //
2834  // Note that we also allow template template parameters here, which
2835  // will happen when we are dealing with, e.g., class template
2836  // partial specializations.
2837  if (!isa<ClassTemplateDecl>(Template) &&
2838      !isa<TemplateTemplateParmDecl>(Template)) {
2839    assert(isa<FunctionTemplateDecl>(Template) &&
2840           "Only function templates are possible here");
2841    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2842    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2843      << Template;
2844  }
2845
2846  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2847                                         Param->getTemplateParameters(),
2848                                         true,
2849                                         TPL_TemplateTemplateArgumentMatch,
2850                                         Arg.getLocation());
2851}
2852
2853/// \brief Given a non-type template argument that refers to a
2854/// declaration and the type of its corresponding non-type template
2855/// parameter, produce an expression that properly refers to that
2856/// declaration.
2857Sema::OwningExprResult
2858Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
2859                                              QualType ParamType,
2860                                              SourceLocation Loc) {
2861  assert(Arg.getKind() == TemplateArgument::Declaration &&
2862         "Only declaration template arguments permitted here");
2863  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
2864
2865  if (VD->getDeclContext()->isRecord() &&
2866      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
2867    // If the value is a class member, we might have a pointer-to-member.
2868    // Determine whether the non-type template template parameter is of
2869    // pointer-to-member type. If so, we need to build an appropriate
2870    // expression for a pointer-to-member, since a "normal" DeclRefExpr
2871    // would refer to the member itself.
2872    if (ParamType->isMemberPointerType()) {
2873      QualType ClassType
2874        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
2875      NestedNameSpecifier *Qualifier
2876        = NestedNameSpecifier::Create(Context, 0, false, ClassType.getTypePtr());
2877      CXXScopeSpec SS;
2878      SS.setScopeRep(Qualifier);
2879      OwningExprResult RefExpr = BuildDeclRefExpr(VD,
2880                                           VD->getType().getNonReferenceType(),
2881                                                  Loc,
2882                                                  &SS);
2883      if (RefExpr.isInvalid())
2884        return ExprError();
2885
2886      RefExpr = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(RefExpr));
2887      assert(!RefExpr.isInvalid() &&
2888             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
2889                                 ParamType));
2890      return move(RefExpr);
2891    }
2892  }
2893
2894  QualType T = VD->getType().getNonReferenceType();
2895  if (ParamType->isPointerType()) {
2896    // C++03 [temp.arg.nontype]p5:
2897    //  - For a non-type template-parameter of type pointer to
2898    //    object, qualification conversions and the array-to-pointer
2899    //    conversion are applied.
2900    //  - For a non-type template-parameter of type pointer to
2901    //    function, only the function-to-pointer conversion is
2902    //    applied.
2903    OwningExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
2904    if (RefExpr.isInvalid())
2905      return ExprError();
2906
2907    // Decay functions and arrays.
2908    Expr *RefE = (Expr *)RefExpr.get();
2909    DefaultFunctionArrayConversion(RefE);
2910    if (RefE != RefExpr.get()) {
2911      RefExpr.release();
2912      RefExpr = Owned(RefE);
2913    }
2914
2915    // Qualification conversions.
2916    RefExpr.release();
2917    ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CastExpr::CK_NoOp);
2918    return Owned(RefE);
2919  }
2920
2921  // If the non-type template parameter has reference type, qualify the
2922  // resulting declaration reference with the extra qualifiers on the
2923  // type that the reference refers to.
2924  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
2925    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
2926
2927  return BuildDeclRefExpr(VD, T, Loc);
2928}
2929
2930/// \brief Construct a new expression that refers to the given
2931/// integral template argument with the given source-location
2932/// information.
2933///
2934/// This routine takes care of the mapping from an integral template
2935/// argument (which may have any integral type) to the appropriate
2936/// literal value.
2937Sema::OwningExprResult
2938Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
2939                                                  SourceLocation Loc) {
2940  assert(Arg.getKind() == TemplateArgument::Integral &&
2941         "Operation is only value for integral template arguments");
2942  QualType T = Arg.getIntegralType();
2943  if (T->isCharType() || T->isWideCharType())
2944    return Owned(new (Context) CharacterLiteral(
2945                                             Arg.getAsIntegral()->getZExtValue(),
2946                                             T->isWideCharType(),
2947                                             T,
2948                                             Loc));
2949  if (T->isBooleanType())
2950    return Owned(new (Context) CXXBoolLiteralExpr(
2951                                            Arg.getAsIntegral()->getBoolValue(),
2952                                            T,
2953                                            Loc));
2954
2955  return Owned(new (Context) IntegerLiteral(*Arg.getAsIntegral(), T, Loc));
2956}
2957
2958
2959/// \brief Determine whether the given template parameter lists are
2960/// equivalent.
2961///
2962/// \param New  The new template parameter list, typically written in the
2963/// source code as part of a new template declaration.
2964///
2965/// \param Old  The old template parameter list, typically found via
2966/// name lookup of the template declared with this template parameter
2967/// list.
2968///
2969/// \param Complain  If true, this routine will produce a diagnostic if
2970/// the template parameter lists are not equivalent.
2971///
2972/// \param Kind describes how we are to match the template parameter lists.
2973///
2974/// \param TemplateArgLoc If this source location is valid, then we
2975/// are actually checking the template parameter list of a template
2976/// argument (New) against the template parameter list of its
2977/// corresponding template template parameter (Old). We produce
2978/// slightly different diagnostics in this scenario.
2979///
2980/// \returns True if the template parameter lists are equal, false
2981/// otherwise.
2982bool
2983Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2984                                     TemplateParameterList *Old,
2985                                     bool Complain,
2986                                     TemplateParameterListEqualKind Kind,
2987                                     SourceLocation TemplateArgLoc) {
2988  if (Old->size() != New->size()) {
2989    if (Complain) {
2990      unsigned NextDiag = diag::err_template_param_list_different_arity;
2991      if (TemplateArgLoc.isValid()) {
2992        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2993        NextDiag = diag::note_template_param_list_different_arity;
2994      }
2995      Diag(New->getTemplateLoc(), NextDiag)
2996          << (New->size() > Old->size())
2997          << (Kind != TPL_TemplateMatch)
2998          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2999      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3000        << (Kind != TPL_TemplateMatch)
3001        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3002    }
3003
3004    return false;
3005  }
3006
3007  for (TemplateParameterList::iterator OldParm = Old->begin(),
3008         OldParmEnd = Old->end(), NewParm = New->begin();
3009       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3010    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3011      if (Complain) {
3012        unsigned NextDiag = diag::err_template_param_different_kind;
3013        if (TemplateArgLoc.isValid()) {
3014          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3015          NextDiag = diag::note_template_param_different_kind;
3016        }
3017        Diag((*NewParm)->getLocation(), NextDiag)
3018          << (Kind != TPL_TemplateMatch);
3019        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3020          << (Kind != TPL_TemplateMatch);
3021      }
3022      return false;
3023    }
3024
3025    if (isa<TemplateTypeParmDecl>(*OldParm)) {
3026      // Okay; all template type parameters are equivalent (since we
3027      // know we're at the same index).
3028    } else if (NonTypeTemplateParmDecl *OldNTTP
3029                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3030      // The types of non-type template parameters must agree.
3031      NonTypeTemplateParmDecl *NewNTTP
3032        = cast<NonTypeTemplateParmDecl>(*NewParm);
3033
3034      // If we are matching a template template argument to a template
3035      // template parameter and one of the non-type template parameter types
3036      // is dependent, then we must wait until template instantiation time
3037      // to actually compare the arguments.
3038      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3039          (OldNTTP->getType()->isDependentType() ||
3040           NewNTTP->getType()->isDependentType()))
3041        continue;
3042
3043      if (Context.getCanonicalType(OldNTTP->getType()) !=
3044            Context.getCanonicalType(NewNTTP->getType())) {
3045        if (Complain) {
3046          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3047          if (TemplateArgLoc.isValid()) {
3048            Diag(TemplateArgLoc,
3049                 diag::err_template_arg_template_params_mismatch);
3050            NextDiag = diag::note_template_nontype_parm_different_type;
3051          }
3052          Diag(NewNTTP->getLocation(), NextDiag)
3053            << NewNTTP->getType()
3054            << (Kind != TPL_TemplateMatch);
3055          Diag(OldNTTP->getLocation(),
3056               diag::note_template_nontype_parm_prev_declaration)
3057            << OldNTTP->getType();
3058        }
3059        return false;
3060      }
3061    } else {
3062      // The template parameter lists of template template
3063      // parameters must agree.
3064      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3065             "Only template template parameters handled here");
3066      TemplateTemplateParmDecl *OldTTP
3067        = cast<TemplateTemplateParmDecl>(*OldParm);
3068      TemplateTemplateParmDecl *NewTTP
3069        = cast<TemplateTemplateParmDecl>(*NewParm);
3070      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3071                                          OldTTP->getTemplateParameters(),
3072                                          Complain,
3073              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3074                                          TemplateArgLoc))
3075        return false;
3076    }
3077  }
3078
3079  return true;
3080}
3081
3082/// \brief Check whether a template can be declared within this scope.
3083///
3084/// If the template declaration is valid in this scope, returns
3085/// false. Otherwise, issues a diagnostic and returns true.
3086bool
3087Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3088  // Find the nearest enclosing declaration scope.
3089  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3090         (S->getFlags() & Scope::TemplateParamScope) != 0)
3091    S = S->getParent();
3092
3093  // C++ [temp]p2:
3094  //   A template-declaration can appear only as a namespace scope or
3095  //   class scope declaration.
3096  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3097  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3098      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3099    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3100             << TemplateParams->getSourceRange();
3101
3102  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3103    Ctx = Ctx->getParent();
3104
3105  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3106    return false;
3107
3108  return Diag(TemplateParams->getTemplateLoc(),
3109              diag::err_template_outside_namespace_or_class_scope)
3110    << TemplateParams->getSourceRange();
3111}
3112
3113/// \brief Determine what kind of template specialization the given declaration
3114/// is.
3115static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3116  if (!D)
3117    return TSK_Undeclared;
3118
3119  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3120    return Record->getTemplateSpecializationKind();
3121  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3122    return Function->getTemplateSpecializationKind();
3123  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3124    return Var->getTemplateSpecializationKind();
3125
3126  return TSK_Undeclared;
3127}
3128
3129/// \brief Check whether a specialization is well-formed in the current
3130/// context.
3131///
3132/// This routine determines whether a template specialization can be declared
3133/// in the current context (C++ [temp.expl.spec]p2).
3134///
3135/// \param S the semantic analysis object for which this check is being
3136/// performed.
3137///
3138/// \param Specialized the entity being specialized or instantiated, which
3139/// may be a kind of template (class template, function template, etc.) or
3140/// a member of a class template (member function, static data member,
3141/// member class).
3142///
3143/// \param PrevDecl the previous declaration of this entity, if any.
3144///
3145/// \param Loc the location of the explicit specialization or instantiation of
3146/// this entity.
3147///
3148/// \param IsPartialSpecialization whether this is a partial specialization of
3149/// a class template.
3150///
3151/// \returns true if there was an error that we cannot recover from, false
3152/// otherwise.
3153static bool CheckTemplateSpecializationScope(Sema &S,
3154                                             NamedDecl *Specialized,
3155                                             NamedDecl *PrevDecl,
3156                                             SourceLocation Loc,
3157                                             bool IsPartialSpecialization) {
3158  // Keep these "kind" numbers in sync with the %select statements in the
3159  // various diagnostics emitted by this routine.
3160  int EntityKind = 0;
3161  bool isTemplateSpecialization = false;
3162  if (isa<ClassTemplateDecl>(Specialized)) {
3163    EntityKind = IsPartialSpecialization? 1 : 0;
3164    isTemplateSpecialization = true;
3165  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3166    EntityKind = 2;
3167    isTemplateSpecialization = true;
3168  } else if (isa<CXXMethodDecl>(Specialized))
3169    EntityKind = 3;
3170  else if (isa<VarDecl>(Specialized))
3171    EntityKind = 4;
3172  else if (isa<RecordDecl>(Specialized))
3173    EntityKind = 5;
3174  else {
3175    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3176    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3177    return true;
3178  }
3179
3180  // C++ [temp.expl.spec]p2:
3181  //   An explicit specialization shall be declared in the namespace
3182  //   of which the template is a member, or, for member templates, in
3183  //   the namespace of which the enclosing class or enclosing class
3184  //   template is a member. An explicit specialization of a member
3185  //   function, member class or static data member of a class
3186  //   template shall be declared in the namespace of which the class
3187  //   template is a member. Such a declaration may also be a
3188  //   definition. If the declaration is not a definition, the
3189  //   specialization may be defined later in the name- space in which
3190  //   the explicit specialization was declared, or in a namespace
3191  //   that encloses the one in which the explicit specialization was
3192  //   declared.
3193  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3194    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3195      << Specialized;
3196    return true;
3197  }
3198
3199  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3200    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3201      << Specialized;
3202    return true;
3203  }
3204
3205  // C++ [temp.class.spec]p6:
3206  //   A class template partial specialization may be declared or redeclared
3207  //   in any namespace scope in which its definition may be defined (14.5.1
3208  //   and 14.5.2).
3209  bool ComplainedAboutScope = false;
3210  DeclContext *SpecializedContext
3211    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3212  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3213  if ((!PrevDecl ||
3214       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3215       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3216    // There is no prior declaration of this entity, so this
3217    // specialization must be in the same context as the template
3218    // itself.
3219    if (!DC->Equals(SpecializedContext)) {
3220      if (isa<TranslationUnitDecl>(SpecializedContext))
3221        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3222        << EntityKind << Specialized;
3223      else if (isa<NamespaceDecl>(SpecializedContext))
3224        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3225        << EntityKind << Specialized
3226        << cast<NamedDecl>(SpecializedContext);
3227
3228      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3229      ComplainedAboutScope = true;
3230    }
3231  }
3232
3233  // Make sure that this redeclaration (or definition) occurs in an enclosing
3234  // namespace.
3235  // Note that HandleDeclarator() performs this check for explicit
3236  // specializations of function templates, static data members, and member
3237  // functions, so we skip the check here for those kinds of entities.
3238  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3239  // Should we refactor that check, so that it occurs later?
3240  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3241      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3242        isa<FunctionDecl>(Specialized))) {
3243    if (isa<TranslationUnitDecl>(SpecializedContext))
3244      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3245        << EntityKind << Specialized;
3246    else if (isa<NamespaceDecl>(SpecializedContext))
3247      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3248        << EntityKind << Specialized
3249        << cast<NamedDecl>(SpecializedContext);
3250
3251    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3252  }
3253
3254  // FIXME: check for specialization-after-instantiation errors and such.
3255
3256  return false;
3257}
3258
3259/// \brief Check the non-type template arguments of a class template
3260/// partial specialization according to C++ [temp.class.spec]p9.
3261///
3262/// \param TemplateParams the template parameters of the primary class
3263/// template.
3264///
3265/// \param TemplateArg the template arguments of the class template
3266/// partial specialization.
3267///
3268/// \param MirrorsPrimaryTemplate will be set true if the class
3269/// template partial specialization arguments are identical to the
3270/// implicit template arguments of the primary template. This is not
3271/// necessarily an error (C++0x), and it is left to the caller to diagnose
3272/// this condition when it is an error.
3273///
3274/// \returns true if there was an error, false otherwise.
3275bool Sema::CheckClassTemplatePartialSpecializationArgs(
3276                                        TemplateParameterList *TemplateParams,
3277                             const TemplateArgumentListBuilder &TemplateArgs,
3278                                        bool &MirrorsPrimaryTemplate) {
3279  // FIXME: the interface to this function will have to change to
3280  // accommodate variadic templates.
3281  MirrorsPrimaryTemplate = true;
3282
3283  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3284
3285  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3286    // Determine whether the template argument list of the partial
3287    // specialization is identical to the implicit argument list of
3288    // the primary template. The caller may need to diagnostic this as
3289    // an error per C++ [temp.class.spec]p9b3.
3290    if (MirrorsPrimaryTemplate) {
3291      if (TemplateTypeParmDecl *TTP
3292            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3293        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3294              Context.getCanonicalType(ArgList[I].getAsType()))
3295          MirrorsPrimaryTemplate = false;
3296      } else if (TemplateTemplateParmDecl *TTP
3297                   = dyn_cast<TemplateTemplateParmDecl>(
3298                                                 TemplateParams->getParam(I))) {
3299        TemplateName Name = ArgList[I].getAsTemplate();
3300        TemplateTemplateParmDecl *ArgDecl
3301          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3302        if (!ArgDecl ||
3303            ArgDecl->getIndex() != TTP->getIndex() ||
3304            ArgDecl->getDepth() != TTP->getDepth())
3305          MirrorsPrimaryTemplate = false;
3306      }
3307    }
3308
3309    NonTypeTemplateParmDecl *Param
3310      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3311    if (!Param) {
3312      continue;
3313    }
3314
3315    Expr *ArgExpr = ArgList[I].getAsExpr();
3316    if (!ArgExpr) {
3317      MirrorsPrimaryTemplate = false;
3318      continue;
3319    }
3320
3321    // C++ [temp.class.spec]p8:
3322    //   A non-type argument is non-specialized if it is the name of a
3323    //   non-type parameter. All other non-type arguments are
3324    //   specialized.
3325    //
3326    // Below, we check the two conditions that only apply to
3327    // specialized non-type arguments, so skip any non-specialized
3328    // arguments.
3329    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3330      if (NonTypeTemplateParmDecl *NTTP
3331            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3332        if (MirrorsPrimaryTemplate &&
3333            (Param->getIndex() != NTTP->getIndex() ||
3334             Param->getDepth() != NTTP->getDepth()))
3335          MirrorsPrimaryTemplate = false;
3336
3337        continue;
3338      }
3339
3340    // C++ [temp.class.spec]p9:
3341    //   Within the argument list of a class template partial
3342    //   specialization, the following restrictions apply:
3343    //     -- A partially specialized non-type argument expression
3344    //        shall not involve a template parameter of the partial
3345    //        specialization except when the argument expression is a
3346    //        simple identifier.
3347    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3348      Diag(ArgExpr->getLocStart(),
3349           diag::err_dependent_non_type_arg_in_partial_spec)
3350        << ArgExpr->getSourceRange();
3351      return true;
3352    }
3353
3354    //     -- The type of a template parameter corresponding to a
3355    //        specialized non-type argument shall not be dependent on a
3356    //        parameter of the specialization.
3357    if (Param->getType()->isDependentType()) {
3358      Diag(ArgExpr->getLocStart(),
3359           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3360        << Param->getType()
3361        << ArgExpr->getSourceRange();
3362      Diag(Param->getLocation(), diag::note_template_param_here);
3363      return true;
3364    }
3365
3366    MirrorsPrimaryTemplate = false;
3367  }
3368
3369  return false;
3370}
3371
3372/// \brief Retrieve the previous declaration of the given declaration.
3373static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3374  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3375    return VD->getPreviousDeclaration();
3376  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3377    return FD->getPreviousDeclaration();
3378  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3379    return TD->getPreviousDeclaration();
3380  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3381    return TD->getPreviousDeclaration();
3382  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3383    return FTD->getPreviousDeclaration();
3384  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3385    return CTD->getPreviousDeclaration();
3386  return 0;
3387}
3388
3389Sema::DeclResult
3390Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3391                                       TagUseKind TUK,
3392                                       SourceLocation KWLoc,
3393                                       const CXXScopeSpec &SS,
3394                                       TemplateTy TemplateD,
3395                                       SourceLocation TemplateNameLoc,
3396                                       SourceLocation LAngleLoc,
3397                                       ASTTemplateArgsPtr TemplateArgsIn,
3398                                       SourceLocation RAngleLoc,
3399                                       AttributeList *Attr,
3400                               MultiTemplateParamsArg TemplateParameterLists) {
3401  assert(TUK != TUK_Reference && "References are not specializations");
3402
3403  // Find the class template we're specializing
3404  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3405  ClassTemplateDecl *ClassTemplate
3406    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3407
3408  if (!ClassTemplate) {
3409    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3410      << (Name.getAsTemplateDecl() &&
3411          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3412    return true;
3413  }
3414
3415  bool isExplicitSpecialization = false;
3416  bool isPartialSpecialization = false;
3417
3418  // Check the validity of the template headers that introduce this
3419  // template.
3420  // FIXME: We probably shouldn't complain about these headers for
3421  // friend declarations.
3422  TemplateParameterList *TemplateParams
3423    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3424                        (TemplateParameterList**)TemplateParameterLists.get(),
3425                                              TemplateParameterLists.size(),
3426                                              isExplicitSpecialization);
3427  if (TemplateParams && TemplateParams->size() > 0) {
3428    isPartialSpecialization = true;
3429
3430    // C++ [temp.class.spec]p10:
3431    //   The template parameter list of a specialization shall not
3432    //   contain default template argument values.
3433    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3434      Decl *Param = TemplateParams->getParam(I);
3435      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3436        if (TTP->hasDefaultArgument()) {
3437          Diag(TTP->getDefaultArgumentLoc(),
3438               diag::err_default_arg_in_partial_spec);
3439          TTP->removeDefaultArgument();
3440        }
3441      } else if (NonTypeTemplateParmDecl *NTTP
3442                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3443        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3444          Diag(NTTP->getDefaultArgumentLoc(),
3445               diag::err_default_arg_in_partial_spec)
3446            << DefArg->getSourceRange();
3447          NTTP->setDefaultArgument(0);
3448          DefArg->Destroy(Context);
3449        }
3450      } else {
3451        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3452        if (TTP->hasDefaultArgument()) {
3453          Diag(TTP->getDefaultArgument().getLocation(),
3454               diag::err_default_arg_in_partial_spec)
3455            << TTP->getDefaultArgument().getSourceRange();
3456          TTP->setDefaultArgument(TemplateArgumentLoc());
3457        }
3458      }
3459    }
3460  } else if (TemplateParams) {
3461    if (TUK == TUK_Friend)
3462      Diag(KWLoc, diag::err_template_spec_friend)
3463        << FixItHint::CreateRemoval(
3464                                SourceRange(TemplateParams->getTemplateLoc(),
3465                                            TemplateParams->getRAngleLoc()))
3466        << SourceRange(LAngleLoc, RAngleLoc);
3467    else
3468      isExplicitSpecialization = true;
3469  } else if (TUK != TUK_Friend) {
3470    Diag(KWLoc, diag::err_template_spec_needs_header)
3471      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3472    isExplicitSpecialization = true;
3473  }
3474
3475  // Check that the specialization uses the same tag kind as the
3476  // original template.
3477  TagDecl::TagKind Kind;
3478  switch (TagSpec) {
3479  default: assert(0 && "Unknown tag type!");
3480  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3481  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3482  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3483  }
3484  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3485                                    Kind, KWLoc,
3486                                    *ClassTemplate->getIdentifier())) {
3487    Diag(KWLoc, diag::err_use_with_wrong_tag)
3488      << ClassTemplate
3489      << FixItHint::CreateReplacement(KWLoc,
3490                            ClassTemplate->getTemplatedDecl()->getKindName());
3491    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3492         diag::note_previous_use);
3493    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3494  }
3495
3496  // Translate the parser's template argument list in our AST format.
3497  TemplateArgumentListInfo TemplateArgs;
3498  TemplateArgs.setLAngleLoc(LAngleLoc);
3499  TemplateArgs.setRAngleLoc(RAngleLoc);
3500  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3501
3502  // Check that the template argument list is well-formed for this
3503  // template.
3504  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3505                                        TemplateArgs.size());
3506  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3507                                TemplateArgs, false, Converted))
3508    return true;
3509
3510  assert((Converted.structuredSize() ==
3511            ClassTemplate->getTemplateParameters()->size()) &&
3512         "Converted template argument list is too short!");
3513
3514  // Find the class template (partial) specialization declaration that
3515  // corresponds to these arguments.
3516  llvm::FoldingSetNodeID ID;
3517  if (isPartialSpecialization) {
3518    bool MirrorsPrimaryTemplate;
3519    if (CheckClassTemplatePartialSpecializationArgs(
3520                                         ClassTemplate->getTemplateParameters(),
3521                                         Converted, MirrorsPrimaryTemplate))
3522      return true;
3523
3524    if (MirrorsPrimaryTemplate) {
3525      // C++ [temp.class.spec]p9b3:
3526      //
3527      //   -- The argument list of the specialization shall not be identical
3528      //      to the implicit argument list of the primary template.
3529      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3530        << (TUK == TUK_Definition)
3531        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3532      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3533                                ClassTemplate->getIdentifier(),
3534                                TemplateNameLoc,
3535                                Attr,
3536                                TemplateParams,
3537                                AS_none);
3538    }
3539
3540    // FIXME: Diagnose friend partial specializations
3541
3542    if (!Name.isDependent() &&
3543        !TemplateSpecializationType::anyDependentTemplateArguments(
3544                                             TemplateArgs.getArgumentArray(),
3545                                                         TemplateArgs.size())) {
3546      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3547        << ClassTemplate->getDeclName();
3548      isPartialSpecialization = false;
3549    } else {
3550      // FIXME: Template parameter list matters, too
3551      ClassTemplatePartialSpecializationDecl::Profile(ID,
3552                                                  Converted.getFlatArguments(),
3553                                                      Converted.flatSize(),
3554                                                      Context);
3555    }
3556  }
3557
3558  if (!isPartialSpecialization)
3559    ClassTemplateSpecializationDecl::Profile(ID,
3560                                             Converted.getFlatArguments(),
3561                                             Converted.flatSize(),
3562                                             Context);
3563  void *InsertPos = 0;
3564  ClassTemplateSpecializationDecl *PrevDecl = 0;
3565
3566  if (isPartialSpecialization)
3567    PrevDecl
3568      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3569                                                                    InsertPos);
3570  else
3571    PrevDecl
3572      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3573
3574  ClassTemplateSpecializationDecl *Specialization = 0;
3575
3576  // Check whether we can declare a class template specialization in
3577  // the current scope.
3578  if (TUK != TUK_Friend &&
3579      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3580                                       TemplateNameLoc,
3581                                       isPartialSpecialization))
3582    return true;
3583
3584  // The canonical type
3585  QualType CanonType;
3586  if (PrevDecl &&
3587      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3588               TUK == TUK_Friend)) {
3589    // Since the only prior class template specialization with these
3590    // arguments was referenced but not declared, or we're only
3591    // referencing this specialization as a friend, reuse that
3592    // declaration node as our own, updating its source location to
3593    // reflect our new declaration.
3594    Specialization = PrevDecl;
3595    Specialization->setLocation(TemplateNameLoc);
3596    PrevDecl = 0;
3597    CanonType = Context.getTypeDeclType(Specialization);
3598  } else if (isPartialSpecialization) {
3599    // Build the canonical type that describes the converted template
3600    // arguments of the class template partial specialization.
3601    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3602    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3603                                                  Converted.getFlatArguments(),
3604                                                  Converted.flatSize());
3605
3606    // Create a new class template partial specialization declaration node.
3607    ClassTemplatePartialSpecializationDecl *PrevPartial
3608      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3609    ClassTemplatePartialSpecializationDecl *Partial
3610      = ClassTemplatePartialSpecializationDecl::Create(Context,
3611                                             ClassTemplate->getDeclContext(),
3612                                                       TemplateNameLoc,
3613                                                       TemplateParams,
3614                                                       ClassTemplate,
3615                                                       Converted,
3616                                                       TemplateArgs,
3617                                                       CanonType,
3618                                                       PrevPartial);
3619    SetNestedNameSpecifier(Partial, SS);
3620
3621    if (PrevPartial) {
3622      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3623      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3624    } else {
3625      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3626    }
3627    Specialization = Partial;
3628
3629    // If we are providing an explicit specialization of a member class
3630    // template specialization, make a note of that.
3631    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3632      PrevPartial->setMemberSpecialization();
3633
3634    // Check that all of the template parameters of the class template
3635    // partial specialization are deducible from the template
3636    // arguments. If not, this class template partial specialization
3637    // will never be used.
3638    llvm::SmallVector<bool, 8> DeducibleParams;
3639    DeducibleParams.resize(TemplateParams->size());
3640    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3641                               TemplateParams->getDepth(),
3642                               DeducibleParams);
3643    unsigned NumNonDeducible = 0;
3644    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3645      if (!DeducibleParams[I])
3646        ++NumNonDeducible;
3647
3648    if (NumNonDeducible) {
3649      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3650        << (NumNonDeducible > 1)
3651        << SourceRange(TemplateNameLoc, RAngleLoc);
3652      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3653        if (!DeducibleParams[I]) {
3654          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3655          if (Param->getDeclName())
3656            Diag(Param->getLocation(),
3657                 diag::note_partial_spec_unused_parameter)
3658              << Param->getDeclName();
3659          else
3660            Diag(Param->getLocation(),
3661                 diag::note_partial_spec_unused_parameter)
3662              << std::string("<anonymous>");
3663        }
3664      }
3665    }
3666  } else {
3667    // Create a new class template specialization declaration node for
3668    // this explicit specialization or friend declaration.
3669    Specialization
3670      = ClassTemplateSpecializationDecl::Create(Context,
3671                                             ClassTemplate->getDeclContext(),
3672                                                TemplateNameLoc,
3673                                                ClassTemplate,
3674                                                Converted,
3675                                                PrevDecl);
3676    SetNestedNameSpecifier(Specialization, SS);
3677
3678    if (PrevDecl) {
3679      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3680      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3681    } else {
3682      ClassTemplate->getSpecializations().InsertNode(Specialization,
3683                                                     InsertPos);
3684    }
3685
3686    CanonType = Context.getTypeDeclType(Specialization);
3687  }
3688
3689  // C++ [temp.expl.spec]p6:
3690  //   If a template, a member template or the member of a class template is
3691  //   explicitly specialized then that specialization shall be declared
3692  //   before the first use of that specialization that would cause an implicit
3693  //   instantiation to take place, in every translation unit in which such a
3694  //   use occurs; no diagnostic is required.
3695  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3696    bool Okay = false;
3697    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3698      // Is there any previous explicit specialization declaration?
3699      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3700        Okay = true;
3701        break;
3702      }
3703    }
3704
3705    if (!Okay) {
3706      SourceRange Range(TemplateNameLoc, RAngleLoc);
3707      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3708        << Context.getTypeDeclType(Specialization) << Range;
3709
3710      Diag(PrevDecl->getPointOfInstantiation(),
3711           diag::note_instantiation_required_here)
3712        << (PrevDecl->getTemplateSpecializationKind()
3713                                                != TSK_ImplicitInstantiation);
3714      return true;
3715    }
3716  }
3717
3718  // If this is not a friend, note that this is an explicit specialization.
3719  if (TUK != TUK_Friend)
3720    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3721
3722  // Check that this isn't a redefinition of this specialization.
3723  if (TUK == TUK_Definition) {
3724    if (RecordDecl *Def = Specialization->getDefinition()) {
3725      SourceRange Range(TemplateNameLoc, RAngleLoc);
3726      Diag(TemplateNameLoc, diag::err_redefinition)
3727        << Context.getTypeDeclType(Specialization) << Range;
3728      Diag(Def->getLocation(), diag::note_previous_definition);
3729      Specialization->setInvalidDecl();
3730      return true;
3731    }
3732  }
3733
3734  // Build the fully-sugared type for this class template
3735  // specialization as the user wrote in the specialization
3736  // itself. This means that we'll pretty-print the type retrieved
3737  // from the specialization's declaration the way that the user
3738  // actually wrote the specialization, rather than formatting the
3739  // name based on the "canonical" representation used to store the
3740  // template arguments in the specialization.
3741  TypeSourceInfo *WrittenTy
3742    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3743                                                TemplateArgs, CanonType);
3744  if (TUK != TUK_Friend)
3745    Specialization->setTypeAsWritten(WrittenTy);
3746  TemplateArgsIn.release();
3747
3748  // C++ [temp.expl.spec]p9:
3749  //   A template explicit specialization is in the scope of the
3750  //   namespace in which the template was defined.
3751  //
3752  // We actually implement this paragraph where we set the semantic
3753  // context (in the creation of the ClassTemplateSpecializationDecl),
3754  // but we also maintain the lexical context where the actual
3755  // definition occurs.
3756  Specialization->setLexicalDeclContext(CurContext);
3757
3758  // We may be starting the definition of this specialization.
3759  if (TUK == TUK_Definition)
3760    Specialization->startDefinition();
3761
3762  if (TUK == TUK_Friend) {
3763    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3764                                            TemplateNameLoc,
3765                                            WrittenTy,
3766                                            /*FIXME:*/KWLoc);
3767    Friend->setAccess(AS_public);
3768    CurContext->addDecl(Friend);
3769  } else {
3770    // Add the specialization into its lexical context, so that it can
3771    // be seen when iterating through the list of declarations in that
3772    // context. However, specializations are not found by name lookup.
3773    CurContext->addDecl(Specialization);
3774  }
3775  return DeclPtrTy::make(Specialization);
3776}
3777
3778Sema::DeclPtrTy
3779Sema::ActOnTemplateDeclarator(Scope *S,
3780                              MultiTemplateParamsArg TemplateParameterLists,
3781                              Declarator &D) {
3782  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3783}
3784
3785Sema::DeclPtrTy
3786Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3787                               MultiTemplateParamsArg TemplateParameterLists,
3788                                      Declarator &D) {
3789  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3790  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3791         "Not a function declarator!");
3792  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3793
3794  if (FTI.hasPrototype) {
3795    // FIXME: Diagnose arguments without names in C.
3796  }
3797
3798  Scope *ParentScope = FnBodyScope->getParent();
3799
3800  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3801                                  move(TemplateParameterLists),
3802                                  /*IsFunctionDefinition=*/true);
3803  if (FunctionTemplateDecl *FunctionTemplate
3804        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3805    return ActOnStartOfFunctionDef(FnBodyScope,
3806                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3807  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3808    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3809  return DeclPtrTy();
3810}
3811
3812/// \brief Strips various properties off an implicit instantiation
3813/// that has just been explicitly specialized.
3814static void StripImplicitInstantiation(NamedDecl *D) {
3815  D->invalidateAttrs();
3816
3817  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3818    FD->setInlineSpecified(false);
3819  }
3820}
3821
3822/// \brief Diagnose cases where we have an explicit template specialization
3823/// before/after an explicit template instantiation, producing diagnostics
3824/// for those cases where they are required and determining whether the
3825/// new specialization/instantiation will have any effect.
3826///
3827/// \param NewLoc the location of the new explicit specialization or
3828/// instantiation.
3829///
3830/// \param NewTSK the kind of the new explicit specialization or instantiation.
3831///
3832/// \param PrevDecl the previous declaration of the entity.
3833///
3834/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3835///
3836/// \param PrevPointOfInstantiation if valid, indicates where the previus
3837/// declaration was instantiated (either implicitly or explicitly).
3838///
3839/// \param SuppressNew will be set to true to indicate that the new
3840/// specialization or instantiation has no effect and should be ignored.
3841///
3842/// \returns true if there was an error that should prevent the introduction of
3843/// the new declaration into the AST, false otherwise.
3844bool
3845Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3846                                             TemplateSpecializationKind NewTSK,
3847                                             NamedDecl *PrevDecl,
3848                                             TemplateSpecializationKind PrevTSK,
3849                                        SourceLocation PrevPointOfInstantiation,
3850                                             bool &SuppressNew) {
3851  SuppressNew = false;
3852
3853  switch (NewTSK) {
3854  case TSK_Undeclared:
3855  case TSK_ImplicitInstantiation:
3856    assert(false && "Don't check implicit instantiations here");
3857    return false;
3858
3859  case TSK_ExplicitSpecialization:
3860    switch (PrevTSK) {
3861    case TSK_Undeclared:
3862    case TSK_ExplicitSpecialization:
3863      // Okay, we're just specializing something that is either already
3864      // explicitly specialized or has merely been mentioned without any
3865      // instantiation.
3866      return false;
3867
3868    case TSK_ImplicitInstantiation:
3869      if (PrevPointOfInstantiation.isInvalid()) {
3870        // The declaration itself has not actually been instantiated, so it is
3871        // still okay to specialize it.
3872        StripImplicitInstantiation(PrevDecl);
3873        return false;
3874      }
3875      // Fall through
3876
3877    case TSK_ExplicitInstantiationDeclaration:
3878    case TSK_ExplicitInstantiationDefinition:
3879      assert((PrevTSK == TSK_ImplicitInstantiation ||
3880              PrevPointOfInstantiation.isValid()) &&
3881             "Explicit instantiation without point of instantiation?");
3882
3883      // C++ [temp.expl.spec]p6:
3884      //   If a template, a member template or the member of a class template
3885      //   is explicitly specialized then that specialization shall be declared
3886      //   before the first use of that specialization that would cause an
3887      //   implicit instantiation to take place, in every translation unit in
3888      //   which such a use occurs; no diagnostic is required.
3889      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3890        // Is there any previous explicit specialization declaration?
3891        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
3892          return false;
3893      }
3894
3895      Diag(NewLoc, diag::err_specialization_after_instantiation)
3896        << PrevDecl;
3897      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3898        << (PrevTSK != TSK_ImplicitInstantiation);
3899
3900      return true;
3901    }
3902    break;
3903
3904  case TSK_ExplicitInstantiationDeclaration:
3905    switch (PrevTSK) {
3906    case TSK_ExplicitInstantiationDeclaration:
3907      // This explicit instantiation declaration is redundant (that's okay).
3908      SuppressNew = true;
3909      return false;
3910
3911    case TSK_Undeclared:
3912    case TSK_ImplicitInstantiation:
3913      // We're explicitly instantiating something that may have already been
3914      // implicitly instantiated; that's fine.
3915      return false;
3916
3917    case TSK_ExplicitSpecialization:
3918      // C++0x [temp.explicit]p4:
3919      //   For a given set of template parameters, if an explicit instantiation
3920      //   of a template appears after a declaration of an explicit
3921      //   specialization for that template, the explicit instantiation has no
3922      //   effect.
3923      SuppressNew = true;
3924      return false;
3925
3926    case TSK_ExplicitInstantiationDefinition:
3927      // C++0x [temp.explicit]p10:
3928      //   If an entity is the subject of both an explicit instantiation
3929      //   declaration and an explicit instantiation definition in the same
3930      //   translation unit, the definition shall follow the declaration.
3931      Diag(NewLoc,
3932           diag::err_explicit_instantiation_declaration_after_definition);
3933      Diag(PrevPointOfInstantiation,
3934           diag::note_explicit_instantiation_definition_here);
3935      assert(PrevPointOfInstantiation.isValid() &&
3936             "Explicit instantiation without point of instantiation?");
3937      SuppressNew = true;
3938      return false;
3939    }
3940    break;
3941
3942  case TSK_ExplicitInstantiationDefinition:
3943    switch (PrevTSK) {
3944    case TSK_Undeclared:
3945    case TSK_ImplicitInstantiation:
3946      // We're explicitly instantiating something that may have already been
3947      // implicitly instantiated; that's fine.
3948      return false;
3949
3950    case TSK_ExplicitSpecialization:
3951      // C++ DR 259, C++0x [temp.explicit]p4:
3952      //   For a given set of template parameters, if an explicit
3953      //   instantiation of a template appears after a declaration of
3954      //   an explicit specialization for that template, the explicit
3955      //   instantiation has no effect.
3956      //
3957      // In C++98/03 mode, we only give an extension warning here, because it
3958      // is not not harmful to try to explicitly instantiate something that
3959      // has been explicitly specialized.
3960      if (!getLangOptions().CPlusPlus0x) {
3961        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3962          << PrevDecl;
3963        Diag(PrevDecl->getLocation(),
3964             diag::note_previous_template_specialization);
3965      }
3966      SuppressNew = true;
3967      return false;
3968
3969    case TSK_ExplicitInstantiationDeclaration:
3970      // We're explicity instantiating a definition for something for which we
3971      // were previously asked to suppress instantiations. That's fine.
3972      return false;
3973
3974    case TSK_ExplicitInstantiationDefinition:
3975      // C++0x [temp.spec]p5:
3976      //   For a given template and a given set of template-arguments,
3977      //     - an explicit instantiation definition shall appear at most once
3978      //       in a program,
3979      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3980        << PrevDecl;
3981      Diag(PrevPointOfInstantiation,
3982           diag::note_previous_explicit_instantiation);
3983      SuppressNew = true;
3984      return false;
3985    }
3986    break;
3987  }
3988
3989  assert(false && "Missing specialization/instantiation case?");
3990
3991  return false;
3992}
3993
3994/// \brief Perform semantic analysis for the given function template
3995/// specialization.
3996///
3997/// This routine performs all of the semantic analysis required for an
3998/// explicit function template specialization. On successful completion,
3999/// the function declaration \p FD will become a function template
4000/// specialization.
4001///
4002/// \param FD the function declaration, which will be updated to become a
4003/// function template specialization.
4004///
4005/// \param HasExplicitTemplateArgs whether any template arguments were
4006/// explicitly provided.
4007///
4008/// \param LAngleLoc the location of the left angle bracket ('<'), if
4009/// template arguments were explicitly provided.
4010///
4011/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4012/// if any.
4013///
4014/// \param NumExplicitTemplateArgs the number of explicitly-provided template
4015/// arguments. This number may be zero even when HasExplicitTemplateArgs is
4016/// true as in, e.g., \c void sort<>(char*, char*);
4017///
4018/// \param RAngleLoc the location of the right angle bracket ('>'), if
4019/// template arguments were explicitly provided.
4020///
4021/// \param PrevDecl the set of declarations that
4022bool
4023Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4024                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4025                                          LookupResult &Previous) {
4026  // The set of function template specializations that could match this
4027  // explicit function template specialization.
4028  UnresolvedSet<8> Candidates;
4029
4030  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
4031  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4032         I != E; ++I) {
4033    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4034    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4035      // Only consider templates found within the same semantic lookup scope as
4036      // FD.
4037      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
4038        continue;
4039
4040      // C++ [temp.expl.spec]p11:
4041      //   A trailing template-argument can be left unspecified in the
4042      //   template-id naming an explicit function template specialization
4043      //   provided it can be deduced from the function argument type.
4044      // Perform template argument deduction to determine whether we may be
4045      // specializing this template.
4046      // FIXME: It is somewhat wasteful to build
4047      TemplateDeductionInfo Info(Context, FD->getLocation());
4048      FunctionDecl *Specialization = 0;
4049      if (TemplateDeductionResult TDK
4050            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4051                                      FD->getType(),
4052                                      Specialization,
4053                                      Info)) {
4054        // FIXME: Template argument deduction failed; record why it failed, so
4055        // that we can provide nifty diagnostics.
4056        (void)TDK;
4057        continue;
4058      }
4059
4060      // Record this candidate.
4061      Candidates.addDecl(Specialization, I.getAccess());
4062    }
4063  }
4064
4065  // Find the most specialized function template.
4066  UnresolvedSetIterator Result
4067    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4068                         TPOC_Other, FD->getLocation(),
4069                  PDiag(diag::err_function_template_spec_no_match)
4070                    << FD->getDeclName(),
4071                  PDiag(diag::err_function_template_spec_ambiguous)
4072                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4073                  PDiag(diag::note_function_template_spec_matched));
4074  if (Result == Candidates.end())
4075    return true;
4076
4077  // Ignore access information;  it doesn't figure into redeclaration checking.
4078  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4079
4080  // FIXME: Check if the prior specialization has a point of instantiation.
4081  // If so, we have run afoul of .
4082
4083  // If this is a friend declaration, then we're not really declaring
4084  // an explicit specialization.
4085  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4086
4087  // Check the scope of this explicit specialization.
4088  if (!isFriend &&
4089      CheckTemplateSpecializationScope(*this,
4090                                       Specialization->getPrimaryTemplate(),
4091                                       Specialization, FD->getLocation(),
4092                                       false))
4093    return true;
4094
4095  // C++ [temp.expl.spec]p6:
4096  //   If a template, a member template or the member of a class template is
4097  //   explicitly specialized then that specialization shall be declared
4098  //   before the first use of that specialization that would cause an implicit
4099  //   instantiation to take place, in every translation unit in which such a
4100  //   use occurs; no diagnostic is required.
4101  FunctionTemplateSpecializationInfo *SpecInfo
4102    = Specialization->getTemplateSpecializationInfo();
4103  assert(SpecInfo && "Function template specialization info missing?");
4104
4105  bool SuppressNew = false;
4106  if (!isFriend &&
4107      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4108                                             TSK_ExplicitSpecialization,
4109                                             Specialization,
4110                                   SpecInfo->getTemplateSpecializationKind(),
4111                                         SpecInfo->getPointOfInstantiation(),
4112                                             SuppressNew))
4113    return true;
4114
4115  // Mark the prior declaration as an explicit specialization, so that later
4116  // clients know that this is an explicit specialization.
4117  if (!isFriend)
4118    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4119
4120  // Turn the given function declaration into a function template
4121  // specialization, with the template arguments from the previous
4122  // specialization.
4123  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4124                         new (Context) TemplateArgumentList(
4125                             *Specialization->getTemplateSpecializationArgs()),
4126                                        /*InsertPos=*/0,
4127                                    SpecInfo->getTemplateSpecializationKind());
4128
4129  // The "previous declaration" for this function template specialization is
4130  // the prior function template specialization.
4131  Previous.clear();
4132  Previous.addDecl(Specialization);
4133  return false;
4134}
4135
4136/// \brief Perform semantic analysis for the given non-template member
4137/// specialization.
4138///
4139/// This routine performs all of the semantic analysis required for an
4140/// explicit member function specialization. On successful completion,
4141/// the function declaration \p FD will become a member function
4142/// specialization.
4143///
4144/// \param Member the member declaration, which will be updated to become a
4145/// specialization.
4146///
4147/// \param Previous the set of declarations, one of which may be specialized
4148/// by this function specialization;  the set will be modified to contain the
4149/// redeclared member.
4150bool
4151Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4152  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4153
4154  // Try to find the member we are instantiating.
4155  NamedDecl *Instantiation = 0;
4156  NamedDecl *InstantiatedFrom = 0;
4157  MemberSpecializationInfo *MSInfo = 0;
4158
4159  if (Previous.empty()) {
4160    // Nowhere to look anyway.
4161  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4162    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4163           I != E; ++I) {
4164      NamedDecl *D = (*I)->getUnderlyingDecl();
4165      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4166        if (Context.hasSameType(Function->getType(), Method->getType())) {
4167          Instantiation = Method;
4168          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4169          MSInfo = Method->getMemberSpecializationInfo();
4170          break;
4171        }
4172      }
4173    }
4174  } else if (isa<VarDecl>(Member)) {
4175    VarDecl *PrevVar;
4176    if (Previous.isSingleResult() &&
4177        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4178      if (PrevVar->isStaticDataMember()) {
4179        Instantiation = PrevVar;
4180        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4181        MSInfo = PrevVar->getMemberSpecializationInfo();
4182      }
4183  } else if (isa<RecordDecl>(Member)) {
4184    CXXRecordDecl *PrevRecord;
4185    if (Previous.isSingleResult() &&
4186        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4187      Instantiation = PrevRecord;
4188      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4189      MSInfo = PrevRecord->getMemberSpecializationInfo();
4190    }
4191  }
4192
4193  if (!Instantiation) {
4194    // There is no previous declaration that matches. Since member
4195    // specializations are always out-of-line, the caller will complain about
4196    // this mismatch later.
4197    return false;
4198  }
4199
4200  // Make sure that this is a specialization of a member.
4201  if (!InstantiatedFrom) {
4202    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4203      << Member;
4204    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4205    return true;
4206  }
4207
4208  // C++ [temp.expl.spec]p6:
4209  //   If a template, a member template or the member of a class template is
4210  //   explicitly specialized then that spe- cialization shall be declared
4211  //   before the first use of that specialization that would cause an implicit
4212  //   instantiation to take place, in every translation unit in which such a
4213  //   use occurs; no diagnostic is required.
4214  assert(MSInfo && "Member specialization info missing?");
4215
4216  bool SuppressNew = false;
4217  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4218                                             TSK_ExplicitSpecialization,
4219                                             Instantiation,
4220                                     MSInfo->getTemplateSpecializationKind(),
4221                                           MSInfo->getPointOfInstantiation(),
4222                                             SuppressNew))
4223    return true;
4224
4225  // Check the scope of this explicit specialization.
4226  if (CheckTemplateSpecializationScope(*this,
4227                                       InstantiatedFrom,
4228                                       Instantiation, Member->getLocation(),
4229                                       false))
4230    return true;
4231
4232  // Note that this is an explicit instantiation of a member.
4233  // the original declaration to note that it is an explicit specialization
4234  // (if it was previously an implicit instantiation). This latter step
4235  // makes bookkeeping easier.
4236  if (isa<FunctionDecl>(Member)) {
4237    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4238    if (InstantiationFunction->getTemplateSpecializationKind() ==
4239          TSK_ImplicitInstantiation) {
4240      InstantiationFunction->setTemplateSpecializationKind(
4241                                                  TSK_ExplicitSpecialization);
4242      InstantiationFunction->setLocation(Member->getLocation());
4243    }
4244
4245    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4246                                        cast<CXXMethodDecl>(InstantiatedFrom),
4247                                                  TSK_ExplicitSpecialization);
4248  } else if (isa<VarDecl>(Member)) {
4249    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4250    if (InstantiationVar->getTemplateSpecializationKind() ==
4251          TSK_ImplicitInstantiation) {
4252      InstantiationVar->setTemplateSpecializationKind(
4253                                                  TSK_ExplicitSpecialization);
4254      InstantiationVar->setLocation(Member->getLocation());
4255    }
4256
4257    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4258                                                cast<VarDecl>(InstantiatedFrom),
4259                                                TSK_ExplicitSpecialization);
4260  } else {
4261    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4262    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4263    if (InstantiationClass->getTemplateSpecializationKind() ==
4264          TSK_ImplicitInstantiation) {
4265      InstantiationClass->setTemplateSpecializationKind(
4266                                                   TSK_ExplicitSpecialization);
4267      InstantiationClass->setLocation(Member->getLocation());
4268    }
4269
4270    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4271                                        cast<CXXRecordDecl>(InstantiatedFrom),
4272                                                   TSK_ExplicitSpecialization);
4273  }
4274
4275  // Save the caller the trouble of having to figure out which declaration
4276  // this specialization matches.
4277  Previous.clear();
4278  Previous.addDecl(Instantiation);
4279  return false;
4280}
4281
4282/// \brief Check the scope of an explicit instantiation.
4283static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4284                                            SourceLocation InstLoc,
4285                                            bool WasQualifiedName) {
4286  DeclContext *ExpectedContext
4287    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4288  DeclContext *CurContext = S.CurContext->getLookupContext();
4289
4290  // C++0x [temp.explicit]p2:
4291  //   An explicit instantiation shall appear in an enclosing namespace of its
4292  //   template.
4293  //
4294  // This is DR275, which we do not retroactively apply to C++98/03.
4295  if (S.getLangOptions().CPlusPlus0x &&
4296      !CurContext->Encloses(ExpectedContext)) {
4297    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4298      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
4299        << D << NS;
4300    else
4301      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
4302        << D;
4303    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4304    return;
4305  }
4306
4307  // C++0x [temp.explicit]p2:
4308  //   If the name declared in the explicit instantiation is an unqualified
4309  //   name, the explicit instantiation shall appear in the namespace where
4310  //   its template is declared or, if that namespace is inline (7.3.1), any
4311  //   namespace from its enclosing namespace set.
4312  if (WasQualifiedName)
4313    return;
4314
4315  if (CurContext->Equals(ExpectedContext))
4316    return;
4317
4318  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
4319    << D << ExpectedContext;
4320  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4321}
4322
4323/// \brief Determine whether the given scope specifier has a template-id in it.
4324static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4325  if (!SS.isSet())
4326    return false;
4327
4328  // C++0x [temp.explicit]p2:
4329  //   If the explicit instantiation is for a member function, a member class
4330  //   or a static data member of a class template specialization, the name of
4331  //   the class template specialization in the qualified-id for the member
4332  //   name shall be a simple-template-id.
4333  //
4334  // C++98 has the same restriction, just worded differently.
4335  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4336       NNS; NNS = NNS->getPrefix())
4337    if (Type *T = NNS->getAsType())
4338      if (isa<TemplateSpecializationType>(T))
4339        return true;
4340
4341  return false;
4342}
4343
4344// Explicit instantiation of a class template specialization
4345// FIXME: Implement extern template semantics
4346Sema::DeclResult
4347Sema::ActOnExplicitInstantiation(Scope *S,
4348                                 SourceLocation ExternLoc,
4349                                 SourceLocation TemplateLoc,
4350                                 unsigned TagSpec,
4351                                 SourceLocation KWLoc,
4352                                 const CXXScopeSpec &SS,
4353                                 TemplateTy TemplateD,
4354                                 SourceLocation TemplateNameLoc,
4355                                 SourceLocation LAngleLoc,
4356                                 ASTTemplateArgsPtr TemplateArgsIn,
4357                                 SourceLocation RAngleLoc,
4358                                 AttributeList *Attr) {
4359  // Find the class template we're specializing
4360  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4361  ClassTemplateDecl *ClassTemplate
4362    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4363
4364  // Check that the specialization uses the same tag kind as the
4365  // original template.
4366  TagDecl::TagKind Kind;
4367  switch (TagSpec) {
4368  default: assert(0 && "Unknown tag type!");
4369  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4370  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
4371  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
4372  }
4373  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4374                                    Kind, KWLoc,
4375                                    *ClassTemplate->getIdentifier())) {
4376    Diag(KWLoc, diag::err_use_with_wrong_tag)
4377      << ClassTemplate
4378      << FixItHint::CreateReplacement(KWLoc,
4379                            ClassTemplate->getTemplatedDecl()->getKindName());
4380    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4381         diag::note_previous_use);
4382    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4383  }
4384
4385  // C++0x [temp.explicit]p2:
4386  //   There are two forms of explicit instantiation: an explicit instantiation
4387  //   definition and an explicit instantiation declaration. An explicit
4388  //   instantiation declaration begins with the extern keyword. [...]
4389  TemplateSpecializationKind TSK
4390    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4391                           : TSK_ExplicitInstantiationDeclaration;
4392
4393  // Translate the parser's template argument list in our AST format.
4394  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4395  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4396
4397  // Check that the template argument list is well-formed for this
4398  // template.
4399  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4400                                        TemplateArgs.size());
4401  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4402                                TemplateArgs, false, Converted))
4403    return true;
4404
4405  assert((Converted.structuredSize() ==
4406            ClassTemplate->getTemplateParameters()->size()) &&
4407         "Converted template argument list is too short!");
4408
4409  // Find the class template specialization declaration that
4410  // corresponds to these arguments.
4411  llvm::FoldingSetNodeID ID;
4412  ClassTemplateSpecializationDecl::Profile(ID,
4413                                           Converted.getFlatArguments(),
4414                                           Converted.flatSize(),
4415                                           Context);
4416  void *InsertPos = 0;
4417  ClassTemplateSpecializationDecl *PrevDecl
4418    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4419
4420  // C++0x [temp.explicit]p2:
4421  //   [...] An explicit instantiation shall appear in an enclosing
4422  //   namespace of its template. [...]
4423  //
4424  // This is C++ DR 275.
4425  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4426                                  SS.isSet());
4427
4428  ClassTemplateSpecializationDecl *Specialization = 0;
4429
4430  bool ReusedDecl = false;
4431  if (PrevDecl) {
4432    bool SuppressNew = false;
4433    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4434                                               PrevDecl,
4435                                              PrevDecl->getSpecializationKind(),
4436                                            PrevDecl->getPointOfInstantiation(),
4437                                               SuppressNew))
4438      return DeclPtrTy::make(PrevDecl);
4439
4440    if (SuppressNew)
4441      return DeclPtrTy::make(PrevDecl);
4442
4443    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4444        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4445      // Since the only prior class template specialization with these
4446      // arguments was referenced but not declared, reuse that
4447      // declaration node as our own, updating its source location to
4448      // reflect our new declaration.
4449      Specialization = PrevDecl;
4450      Specialization->setLocation(TemplateNameLoc);
4451      PrevDecl = 0;
4452      ReusedDecl = true;
4453    }
4454  }
4455
4456  if (!Specialization) {
4457    // Create a new class template specialization declaration node for
4458    // this explicit specialization.
4459    Specialization
4460      = ClassTemplateSpecializationDecl::Create(Context,
4461                                             ClassTemplate->getDeclContext(),
4462                                                TemplateNameLoc,
4463                                                ClassTemplate,
4464                                                Converted, PrevDecl);
4465    SetNestedNameSpecifier(Specialization, SS);
4466
4467    if (PrevDecl) {
4468      // Remove the previous declaration from the folding set, since we want
4469      // to introduce a new declaration.
4470      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4471      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4472    }
4473
4474    // Insert the new specialization.
4475    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4476  }
4477
4478  // Build the fully-sugared type for this explicit instantiation as
4479  // the user wrote in the explicit instantiation itself. This means
4480  // that we'll pretty-print the type retrieved from the
4481  // specialization's declaration the way that the user actually wrote
4482  // the explicit instantiation, rather than formatting the name based
4483  // on the "canonical" representation used to store the template
4484  // arguments in the specialization.
4485  TypeSourceInfo *WrittenTy
4486    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4487                                                TemplateArgs,
4488                                  Context.getTypeDeclType(Specialization));
4489  Specialization->setTypeAsWritten(WrittenTy);
4490  TemplateArgsIn.release();
4491
4492  if (!ReusedDecl) {
4493    // Add the explicit instantiation into its lexical context. However,
4494    // since explicit instantiations are never found by name lookup, we
4495    // just put it into the declaration context directly.
4496    Specialization->setLexicalDeclContext(CurContext);
4497    CurContext->addDecl(Specialization);
4498  }
4499
4500  // C++ [temp.explicit]p3:
4501  //   A definition of a class template or class member template
4502  //   shall be in scope at the point of the explicit instantiation of
4503  //   the class template or class member template.
4504  //
4505  // This check comes when we actually try to perform the
4506  // instantiation.
4507  ClassTemplateSpecializationDecl *Def
4508    = cast_or_null<ClassTemplateSpecializationDecl>(
4509                                              Specialization->getDefinition());
4510  if (!Def)
4511    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4512
4513  // Instantiate the members of this class template specialization.
4514  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4515                                       Specialization->getDefinition());
4516  if (Def) {
4517    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4518
4519    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4520    // TSK_ExplicitInstantiationDefinition
4521    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4522        TSK == TSK_ExplicitInstantiationDefinition)
4523      Def->setTemplateSpecializationKind(TSK);
4524
4525    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4526  }
4527
4528  return DeclPtrTy::make(Specialization);
4529}
4530
4531// Explicit instantiation of a member class of a class template.
4532Sema::DeclResult
4533Sema::ActOnExplicitInstantiation(Scope *S,
4534                                 SourceLocation ExternLoc,
4535                                 SourceLocation TemplateLoc,
4536                                 unsigned TagSpec,
4537                                 SourceLocation KWLoc,
4538                                 const CXXScopeSpec &SS,
4539                                 IdentifierInfo *Name,
4540                                 SourceLocation NameLoc,
4541                                 AttributeList *Attr) {
4542
4543  bool Owned = false;
4544  bool IsDependent = false;
4545  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4546                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4547                            MultiTemplateParamsArg(*this, 0, 0),
4548                            Owned, IsDependent);
4549  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4550
4551  if (!TagD)
4552    return true;
4553
4554  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4555  if (Tag->isEnum()) {
4556    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4557      << Context.getTypeDeclType(Tag);
4558    return true;
4559  }
4560
4561  if (Tag->isInvalidDecl())
4562    return true;
4563
4564  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4565  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4566  if (!Pattern) {
4567    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4568      << Context.getTypeDeclType(Record);
4569    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4570    return true;
4571  }
4572
4573  // C++0x [temp.explicit]p2:
4574  //   If the explicit instantiation is for a class or member class, the
4575  //   elaborated-type-specifier in the declaration shall include a
4576  //   simple-template-id.
4577  //
4578  // C++98 has the same restriction, just worded differently.
4579  if (!ScopeSpecifierHasTemplateId(SS))
4580    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4581      << Record << SS.getRange();
4582
4583  // C++0x [temp.explicit]p2:
4584  //   There are two forms of explicit instantiation: an explicit instantiation
4585  //   definition and an explicit instantiation declaration. An explicit
4586  //   instantiation declaration begins with the extern keyword. [...]
4587  TemplateSpecializationKind TSK
4588    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4589                           : TSK_ExplicitInstantiationDeclaration;
4590
4591  // C++0x [temp.explicit]p2:
4592  //   [...] An explicit instantiation shall appear in an enclosing
4593  //   namespace of its template. [...]
4594  //
4595  // This is C++ DR 275.
4596  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4597
4598  // Verify that it is okay to explicitly instantiate here.
4599  CXXRecordDecl *PrevDecl
4600    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4601  if (!PrevDecl && Record->getDefinition())
4602    PrevDecl = Record;
4603  if (PrevDecl) {
4604    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4605    bool SuppressNew = false;
4606    assert(MSInfo && "No member specialization information?");
4607    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4608                                               PrevDecl,
4609                                        MSInfo->getTemplateSpecializationKind(),
4610                                             MSInfo->getPointOfInstantiation(),
4611                                               SuppressNew))
4612      return true;
4613    if (SuppressNew)
4614      return TagD;
4615  }
4616
4617  CXXRecordDecl *RecordDef
4618    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4619  if (!RecordDef) {
4620    // C++ [temp.explicit]p3:
4621    //   A definition of a member class of a class template shall be in scope
4622    //   at the point of an explicit instantiation of the member class.
4623    CXXRecordDecl *Def
4624      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4625    if (!Def) {
4626      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4627        << 0 << Record->getDeclName() << Record->getDeclContext();
4628      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4629        << Pattern;
4630      return true;
4631    } else {
4632      if (InstantiateClass(NameLoc, Record, Def,
4633                           getTemplateInstantiationArgs(Record),
4634                           TSK))
4635        return true;
4636
4637      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4638      if (!RecordDef)
4639        return true;
4640    }
4641  }
4642
4643  // Instantiate all of the members of the class.
4644  InstantiateClassMembers(NameLoc, RecordDef,
4645                          getTemplateInstantiationArgs(Record), TSK);
4646
4647  // FIXME: We don't have any representation for explicit instantiations of
4648  // member classes. Such a representation is not needed for compilation, but it
4649  // should be available for clients that want to see all of the declarations in
4650  // the source code.
4651  return TagD;
4652}
4653
4654Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4655                                                  SourceLocation ExternLoc,
4656                                                  SourceLocation TemplateLoc,
4657                                                  Declarator &D) {
4658  // Explicit instantiations always require a name.
4659  DeclarationName Name = GetNameForDeclarator(D);
4660  if (!Name) {
4661    if (!D.isInvalidType())
4662      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4663           diag::err_explicit_instantiation_requires_name)
4664        << D.getDeclSpec().getSourceRange()
4665        << D.getSourceRange();
4666
4667    return true;
4668  }
4669
4670  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4671  // we find one that is.
4672  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4673         (S->getFlags() & Scope::TemplateParamScope) != 0)
4674    S = S->getParent();
4675
4676  // Determine the type of the declaration.
4677  QualType R = GetTypeForDeclarator(D, S, 0);
4678  if (R.isNull())
4679    return true;
4680
4681  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4682    // Cannot explicitly instantiate a typedef.
4683    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4684      << Name;
4685    return true;
4686  }
4687
4688  // C++0x [temp.explicit]p1:
4689  //   [...] An explicit instantiation of a function template shall not use the
4690  //   inline or constexpr specifiers.
4691  // Presumably, this also applies to member functions of class templates as
4692  // well.
4693  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4694    Diag(D.getDeclSpec().getInlineSpecLoc(),
4695         diag::err_explicit_instantiation_inline)
4696      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4697
4698  // FIXME: check for constexpr specifier.
4699
4700  // C++0x [temp.explicit]p2:
4701  //   There are two forms of explicit instantiation: an explicit instantiation
4702  //   definition and an explicit instantiation declaration. An explicit
4703  //   instantiation declaration begins with the extern keyword. [...]
4704  TemplateSpecializationKind TSK
4705    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4706                           : TSK_ExplicitInstantiationDeclaration;
4707
4708  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4709  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4710
4711  if (!R->isFunctionType()) {
4712    // C++ [temp.explicit]p1:
4713    //   A [...] static data member of a class template can be explicitly
4714    //   instantiated from the member definition associated with its class
4715    //   template.
4716    if (Previous.isAmbiguous())
4717      return true;
4718
4719    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
4720    if (!Prev || !Prev->isStaticDataMember()) {
4721      // We expect to see a data data member here.
4722      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4723        << Name;
4724      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4725           P != PEnd; ++P)
4726        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4727      return true;
4728    }
4729
4730    if (!Prev->getInstantiatedFromStaticDataMember()) {
4731      // FIXME: Check for explicit specialization?
4732      Diag(D.getIdentifierLoc(),
4733           diag::err_explicit_instantiation_data_member_not_instantiated)
4734        << Prev;
4735      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4736      // FIXME: Can we provide a note showing where this was declared?
4737      return true;
4738    }
4739
4740    // C++0x [temp.explicit]p2:
4741    //   If the explicit instantiation is for a member function, a member class
4742    //   or a static data member of a class template specialization, the name of
4743    //   the class template specialization in the qualified-id for the member
4744    //   name shall be a simple-template-id.
4745    //
4746    // C++98 has the same restriction, just worded differently.
4747    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4748      Diag(D.getIdentifierLoc(),
4749           diag::err_explicit_instantiation_without_qualified_id)
4750        << Prev << D.getCXXScopeSpec().getRange();
4751
4752    // Check the scope of this explicit instantiation.
4753    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4754
4755    // Verify that it is okay to explicitly instantiate here.
4756    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4757    assert(MSInfo && "Missing static data member specialization info?");
4758    bool SuppressNew = false;
4759    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4760                                        MSInfo->getTemplateSpecializationKind(),
4761                                              MSInfo->getPointOfInstantiation(),
4762                                               SuppressNew))
4763      return true;
4764    if (SuppressNew)
4765      return DeclPtrTy();
4766
4767    // Instantiate static data member.
4768    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4769    if (TSK == TSK_ExplicitInstantiationDefinition)
4770      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4771                                            /*DefinitionRequired=*/true);
4772
4773    // FIXME: Create an ExplicitInstantiation node?
4774    return DeclPtrTy();
4775  }
4776
4777  // If the declarator is a template-id, translate the parser's template
4778  // argument list into our AST format.
4779  bool HasExplicitTemplateArgs = false;
4780  TemplateArgumentListInfo TemplateArgs;
4781  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4782    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4783    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4784    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4785    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4786                                       TemplateId->getTemplateArgs(),
4787                                       TemplateId->NumArgs);
4788    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4789    HasExplicitTemplateArgs = true;
4790    TemplateArgsPtr.release();
4791  }
4792
4793  // C++ [temp.explicit]p1:
4794  //   A [...] function [...] can be explicitly instantiated from its template.
4795  //   A member function [...] of a class template can be explicitly
4796  //  instantiated from the member definition associated with its class
4797  //  template.
4798  UnresolvedSet<8> Matches;
4799  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4800       P != PEnd; ++P) {
4801    NamedDecl *Prev = *P;
4802    if (!HasExplicitTemplateArgs) {
4803      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4804        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4805          Matches.clear();
4806
4807          Matches.addDecl(Method, P.getAccess());
4808          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
4809            break;
4810        }
4811      }
4812    }
4813
4814    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4815    if (!FunTmpl)
4816      continue;
4817
4818    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
4819    FunctionDecl *Specialization = 0;
4820    if (TemplateDeductionResult TDK
4821          = DeduceTemplateArguments(FunTmpl,
4822                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4823                                    R, Specialization, Info)) {
4824      // FIXME: Keep track of almost-matches?
4825      (void)TDK;
4826      continue;
4827    }
4828
4829    Matches.addDecl(Specialization, P.getAccess());
4830  }
4831
4832  // Find the most specialized function template specialization.
4833  UnresolvedSetIterator Result
4834    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
4835                         D.getIdentifierLoc(),
4836                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
4837                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
4838                         PDiag(diag::note_explicit_instantiation_candidate));
4839
4840  if (Result == Matches.end())
4841    return true;
4842
4843  // Ignore access control bits, we don't need them for redeclaration checking.
4844  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4845
4846  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4847    Diag(D.getIdentifierLoc(),
4848         diag::err_explicit_instantiation_member_function_not_instantiated)
4849      << Specialization
4850      << (Specialization->getTemplateSpecializationKind() ==
4851          TSK_ExplicitSpecialization);
4852    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4853    return true;
4854  }
4855
4856  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4857  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4858    PrevDecl = Specialization;
4859
4860  if (PrevDecl) {
4861    bool SuppressNew = false;
4862    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4863                                               PrevDecl,
4864                                     PrevDecl->getTemplateSpecializationKind(),
4865                                          PrevDecl->getPointOfInstantiation(),
4866                                               SuppressNew))
4867      return true;
4868
4869    // FIXME: We may still want to build some representation of this
4870    // explicit specialization.
4871    if (SuppressNew)
4872      return DeclPtrTy();
4873  }
4874
4875  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4876
4877  if (TSK == TSK_ExplicitInstantiationDefinition)
4878    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4879                                  false, /*DefinitionRequired=*/true);
4880
4881  // C++0x [temp.explicit]p2:
4882  //   If the explicit instantiation is for a member function, a member class
4883  //   or a static data member of a class template specialization, the name of
4884  //   the class template specialization in the qualified-id for the member
4885  //   name shall be a simple-template-id.
4886  //
4887  // C++98 has the same restriction, just worded differently.
4888  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4889  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4890      D.getCXXScopeSpec().isSet() &&
4891      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4892    Diag(D.getIdentifierLoc(),
4893         diag::err_explicit_instantiation_without_qualified_id)
4894    << Specialization << D.getCXXScopeSpec().getRange();
4895
4896  CheckExplicitInstantiationScope(*this,
4897                   FunTmpl? (NamedDecl *)FunTmpl
4898                          : Specialization->getInstantiatedFromMemberFunction(),
4899                                  D.getIdentifierLoc(),
4900                                  D.getCXXScopeSpec().isSet());
4901
4902  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4903  return DeclPtrTy();
4904}
4905
4906Sema::TypeResult
4907Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4908                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4909                        SourceLocation TagLoc, SourceLocation NameLoc) {
4910  // This has to hold, because SS is expected to be defined.
4911  assert(Name && "Expected a name in a dependent tag");
4912
4913  NestedNameSpecifier *NNS
4914    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4915  if (!NNS)
4916    return true;
4917
4918  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4919  if (T.isNull())
4920    return true;
4921
4922  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4923  QualType ElabType = Context.getElaboratedType(T, TagKind);
4924
4925  return ElabType.getAsOpaquePtr();
4926}
4927
4928Sema::TypeResult
4929Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4930                        const IdentifierInfo &II, SourceLocation IdLoc) {
4931  NestedNameSpecifier *NNS
4932    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4933  if (!NNS)
4934    return true;
4935
4936  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4937  if (T.isNull())
4938    return true;
4939  return T.getAsOpaquePtr();
4940}
4941
4942Sema::TypeResult
4943Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4944                        SourceLocation TemplateLoc, TypeTy *Ty) {
4945  QualType T = GetTypeFromParser(Ty);
4946  NestedNameSpecifier *NNS
4947    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4948  const TemplateSpecializationType *TemplateId
4949    = T->getAs<TemplateSpecializationType>();
4950  assert(TemplateId && "Expected a template specialization type");
4951
4952  if (computeDeclContext(SS, false)) {
4953    // If we can compute a declaration context, then the "typename"
4954    // keyword was superfluous. Just build a QualifiedNameType to keep
4955    // track of the nested-name-specifier.
4956
4957    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4958    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4959  }
4960
4961  return Context.getDependentNameType(NNS, TemplateId).getAsOpaquePtr();
4962}
4963
4964/// \brief Build the type that describes a C++ typename specifier,
4965/// e.g., "typename T::type".
4966QualType
4967Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4968                        SourceRange Range) {
4969  CXXRecordDecl *CurrentInstantiation = 0;
4970  if (NNS->isDependent()) {
4971    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4972
4973    // If the nested-name-specifier does not refer to the current
4974    // instantiation, then build a typename type.
4975    if (!CurrentInstantiation)
4976      return Context.getDependentNameType(NNS, &II);
4977
4978    // The nested-name-specifier refers to the current instantiation, so the
4979    // "typename" keyword itself is superfluous. In C++03, the program is
4980    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4981    // extraneous "typename" keywords, and we retroactively apply this DR to
4982    // C++03 code.
4983  }
4984
4985  DeclContext *Ctx = 0;
4986
4987  if (CurrentInstantiation)
4988    Ctx = CurrentInstantiation;
4989  else {
4990    CXXScopeSpec SS;
4991    SS.setScopeRep(NNS);
4992    SS.setRange(Range);
4993    if (RequireCompleteDeclContext(SS))
4994      return QualType();
4995
4996    Ctx = computeDeclContext(SS);
4997  }
4998  assert(Ctx && "No declaration context?");
4999
5000  DeclarationName Name(&II);
5001  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
5002  LookupQualifiedName(Result, Ctx);
5003  unsigned DiagID = 0;
5004  Decl *Referenced = 0;
5005  switch (Result.getResultKind()) {
5006  case LookupResult::NotFound:
5007    DiagID = diag::err_typename_nested_not_found;
5008    break;
5009
5010  case LookupResult::NotFoundInCurrentInstantiation:
5011    // Okay, it's a member of an unknown instantiation.
5012    return Context.getDependentNameType(NNS, &II);
5013
5014  case LookupResult::Found:
5015    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5016      // We found a type. Build a QualifiedNameType, since the
5017      // typename-specifier was just sugar. FIXME: Tell
5018      // QualifiedNameType that it has a "typename" prefix.
5019      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
5020    }
5021
5022    DiagID = diag::err_typename_nested_not_type;
5023    Referenced = Result.getFoundDecl();
5024    break;
5025
5026  case LookupResult::FoundUnresolvedValue:
5027    llvm_unreachable("unresolved using decl in non-dependent context");
5028    return QualType();
5029
5030  case LookupResult::FoundOverloaded:
5031    DiagID = diag::err_typename_nested_not_type;
5032    Referenced = *Result.begin();
5033    break;
5034
5035  case LookupResult::Ambiguous:
5036    return QualType();
5037  }
5038
5039  // If we get here, it's because name lookup did not find a
5040  // type. Emit an appropriate diagnostic and return an error.
5041  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
5042  if (Referenced)
5043    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5044      << Name;
5045  return QualType();
5046}
5047
5048namespace {
5049  // See Sema::RebuildTypeInCurrentInstantiation
5050  class CurrentInstantiationRebuilder
5051    : public TreeTransform<CurrentInstantiationRebuilder> {
5052    SourceLocation Loc;
5053    DeclarationName Entity;
5054
5055  public:
5056    CurrentInstantiationRebuilder(Sema &SemaRef,
5057                                  SourceLocation Loc,
5058                                  DeclarationName Entity)
5059    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5060      Loc(Loc), Entity(Entity) { }
5061
5062    /// \brief Determine whether the given type \p T has already been
5063    /// transformed.
5064    ///
5065    /// For the purposes of type reconstruction, a type has already been
5066    /// transformed if it is NULL or if it is not dependent.
5067    bool AlreadyTransformed(QualType T) {
5068      return T.isNull() || !T->isDependentType();
5069    }
5070
5071    /// \brief Returns the location of the entity whose type is being
5072    /// rebuilt.
5073    SourceLocation getBaseLocation() { return Loc; }
5074
5075    /// \brief Returns the name of the entity whose type is being rebuilt.
5076    DeclarationName getBaseEntity() { return Entity; }
5077
5078    /// \brief Sets the "base" location and entity when that
5079    /// information is known based on another transformation.
5080    void setBase(SourceLocation Loc, DeclarationName Entity) {
5081      this->Loc = Loc;
5082      this->Entity = Entity;
5083    }
5084
5085    /// \brief Transforms an expression by returning the expression itself
5086    /// (an identity function).
5087    ///
5088    /// FIXME: This is completely unsafe; we will need to actually clone the
5089    /// expressions.
5090    Sema::OwningExprResult TransformExpr(Expr *E) {
5091      return getSema().Owned(E);
5092    }
5093
5094    /// \brief Transforms a typename type by determining whether the type now
5095    /// refers to a member of the current instantiation, and then
5096    /// type-checking and building a QualifiedNameType (when possible).
5097    QualType TransformDependentNameType(TypeLocBuilder &TLB, DependentNameTypeLoc TL,
5098                                   QualType ObjectType);
5099  };
5100}
5101
5102QualType
5103CurrentInstantiationRebuilder::TransformDependentNameType(TypeLocBuilder &TLB,
5104                                                     DependentNameTypeLoc TL,
5105                                                     QualType ObjectType) {
5106  DependentNameType *T = TL.getTypePtr();
5107
5108  NestedNameSpecifier *NNS
5109    = TransformNestedNameSpecifier(T->getQualifier(),
5110                                   /*FIXME:*/SourceRange(getBaseLocation()),
5111                                   ObjectType);
5112  if (!NNS)
5113    return QualType();
5114
5115  // If the nested-name-specifier did not change, and we cannot compute the
5116  // context corresponding to the nested-name-specifier, then this
5117  // typename type will not change; exit early.
5118  CXXScopeSpec SS;
5119  SS.setRange(SourceRange(getBaseLocation()));
5120  SS.setScopeRep(NNS);
5121
5122  QualType Result;
5123  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
5124    Result = QualType(T, 0);
5125
5126  // Rebuild the typename type, which will probably turn into a
5127  // QualifiedNameType.
5128  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
5129    QualType NewTemplateId
5130      = TransformType(QualType(TemplateId, 0));
5131    if (NewTemplateId.isNull())
5132      return QualType();
5133
5134    if (NNS == T->getQualifier() &&
5135        NewTemplateId == QualType(TemplateId, 0))
5136      Result = QualType(T, 0);
5137    else
5138      Result = getDerived().RebuildDependentNameType(NNS, NewTemplateId);
5139  } else
5140    Result = getDerived().RebuildDependentNameType(NNS, T->getIdentifier(),
5141                                              SourceRange(TL.getNameLoc()));
5142
5143  if (Result.isNull())
5144    return QualType();
5145
5146  DependentNameTypeLoc NewTL = TLB.push<DependentNameTypeLoc>(Result);
5147  NewTL.setNameLoc(TL.getNameLoc());
5148  return Result;
5149}
5150
5151/// \brief Rebuilds a type within the context of the current instantiation.
5152///
5153/// The type \p T is part of the type of an out-of-line member definition of
5154/// a class template (or class template partial specialization) that was parsed
5155/// and constructed before we entered the scope of the class template (or
5156/// partial specialization thereof). This routine will rebuild that type now
5157/// that we have entered the declarator's scope, which may produce different
5158/// canonical types, e.g.,
5159///
5160/// \code
5161/// template<typename T>
5162/// struct X {
5163///   typedef T* pointer;
5164///   pointer data();
5165/// };
5166///
5167/// template<typename T>
5168/// typename X<T>::pointer X<T>::data() { ... }
5169/// \endcode
5170///
5171/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5172/// since we do not know that we can look into X<T> when we parsed the type.
5173/// This function will rebuild the type, performing the lookup of "pointer"
5174/// in X<T> and returning a QualifiedNameType whose canonical type is the same
5175/// as the canonical type of T*, allowing the return types of the out-of-line
5176/// definition and the declaration to match.
5177QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
5178                                                 DeclarationName Name) {
5179  if (T.isNull() || !T->isDependentType())
5180    return T;
5181
5182  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5183  return Rebuilder.TransformType(T);
5184}
5185
5186/// \brief Produces a formatted string that describes the binding of
5187/// template parameters to template arguments.
5188std::string
5189Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5190                                      const TemplateArgumentList &Args) {
5191  // FIXME: For variadic templates, we'll need to get the structured list.
5192  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5193                                         Args.flat_size());
5194}
5195
5196std::string
5197Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5198                                      const TemplateArgument *Args,
5199                                      unsigned NumArgs) {
5200  std::string Result;
5201
5202  if (!Params || Params->size() == 0 || NumArgs == 0)
5203    return Result;
5204
5205  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5206    if (I >= NumArgs)
5207      break;
5208
5209    if (I == 0)
5210      Result += "[with ";
5211    else
5212      Result += ", ";
5213
5214    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5215      Result += Id->getName();
5216    } else {
5217      Result += '$';
5218      Result += llvm::utostr(I);
5219    }
5220
5221    Result += " = ";
5222
5223    switch (Args[I].getKind()) {
5224      case TemplateArgument::Null:
5225        Result += "<no value>";
5226        break;
5227
5228      case TemplateArgument::Type: {
5229        std::string TypeStr;
5230        Args[I].getAsType().getAsStringInternal(TypeStr,
5231                                                Context.PrintingPolicy);
5232        Result += TypeStr;
5233        break;
5234      }
5235
5236      case TemplateArgument::Declaration: {
5237        bool Unnamed = true;
5238        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5239          if (ND->getDeclName()) {
5240            Unnamed = false;
5241            Result += ND->getNameAsString();
5242          }
5243        }
5244
5245        if (Unnamed) {
5246          Result += "<anonymous>";
5247        }
5248        break;
5249      }
5250
5251      case TemplateArgument::Template: {
5252        std::string Str;
5253        llvm::raw_string_ostream OS(Str);
5254        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5255        Result += OS.str();
5256        break;
5257      }
5258
5259      case TemplateArgument::Integral: {
5260        Result += Args[I].getAsIntegral()->toString(10);
5261        break;
5262      }
5263
5264      case TemplateArgument::Expression: {
5265        assert(false && "No expressions in deduced template arguments!");
5266        Result += "<expression>";
5267        break;
5268      }
5269
5270      case TemplateArgument::Pack:
5271        // FIXME: Format template argument packs
5272        Result += "<template argument pack>";
5273        break;
5274    }
5275  }
5276
5277  Result += ']';
5278  return Result;
5279}
5280