SemaTemplate.cpp revision bfc2eaa077e7f914cfbf35ffdf53da889847838c
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ParsedTemplate.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "llvm/ADT/StringExtras.h"
28using namespace clang;
29using namespace sema;
30
31/// \brief Determine whether the declaration found is acceptable as the name
32/// of a template and, if so, return that template declaration. Otherwise,
33/// returns NULL.
34static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
35                                           NamedDecl *Orig) {
36  NamedDecl *D = Orig->getUnderlyingDecl();
37
38  if (isa<TemplateDecl>(D))
39    return Orig;
40
41  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
42    // C++ [temp.local]p1:
43    //   Like normal (non-template) classes, class templates have an
44    //   injected-class-name (Clause 9). The injected-class-name
45    //   can be used with or without a template-argument-list. When
46    //   it is used without a template-argument-list, it is
47    //   equivalent to the injected-class-name followed by the
48    //   template-parameters of the class template enclosed in
49    //   <>. When it is used with a template-argument-list, it
50    //   refers to the specified class template specialization,
51    //   which could be the current specialization or another
52    //   specialization.
53    if (Record->isInjectedClassName()) {
54      Record = cast<CXXRecordDecl>(Record->getDeclContext());
55      if (Record->getDescribedClassTemplate())
56        return Record->getDescribedClassTemplate();
57
58      if (ClassTemplateSpecializationDecl *Spec
59            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
60        return Spec->getSpecializedTemplate();
61    }
62
63    return 0;
64  }
65
66  return 0;
67}
68
69static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
70  // The set of class templates we've already seen.
71  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
72  LookupResult::Filter filter = R.makeFilter();
73  while (filter.hasNext()) {
74    NamedDecl *Orig = filter.next();
75    NamedDecl *Repl = isAcceptableTemplateName(C, Orig);
76    if (!Repl)
77      filter.erase();
78    else if (Repl != Orig) {
79
80      // C++ [temp.local]p3:
81      //   A lookup that finds an injected-class-name (10.2) can result in an
82      //   ambiguity in certain cases (for example, if it is found in more than
83      //   one base class). If all of the injected-class-names that are found
84      //   refer to specializations of the same class template, and if the name
85      //   is followed by a template-argument-list, the reference refers to the
86      //   class template itself and not a specialization thereof, and is not
87      //   ambiguous.
88      //
89      // FIXME: Will we eventually have to do the same for alias templates?
90      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
91        if (!ClassTemplates.insert(ClassTmpl)) {
92          filter.erase();
93          continue;
94        }
95
96      // FIXME: we promote access to public here as a workaround to
97      // the fact that LookupResult doesn't let us remember that we
98      // found this template through a particular injected class name,
99      // which means we end up doing nasty things to the invariants.
100      // Pretending that access is public is *much* safer.
101      filter.replace(Repl, AS_public);
102    }
103  }
104  filter.done();
105}
106
107TemplateNameKind Sema::isTemplateName(Scope *S,
108                                      CXXScopeSpec &SS,
109                                      bool hasTemplateKeyword,
110                                      UnqualifiedId &Name,
111                                      ParsedType ObjectTypePtr,
112                                      bool EnteringContext,
113                                      TemplateTy &TemplateResult,
114                                      bool &MemberOfUnknownSpecialization) {
115  assert(getLangOptions().CPlusPlus && "No template names in C!");
116
117  DeclarationName TName;
118  MemberOfUnknownSpecialization = false;
119
120  switch (Name.getKind()) {
121  case UnqualifiedId::IK_Identifier:
122    TName = DeclarationName(Name.Identifier);
123    break;
124
125  case UnqualifiedId::IK_OperatorFunctionId:
126    TName = Context.DeclarationNames.getCXXOperatorName(
127                                              Name.OperatorFunctionId.Operator);
128    break;
129
130  case UnqualifiedId::IK_LiteralOperatorId:
131    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
132    break;
133
134  default:
135    return TNK_Non_template;
136  }
137
138  QualType ObjectType = ObjectTypePtr.get();
139
140  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
141                 LookupOrdinaryName);
142  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
143                     MemberOfUnknownSpecialization);
144  if (R.empty()) return TNK_Non_template;
145  if (R.isAmbiguous()) {
146    // Suppress diagnostics;  we'll redo this lookup later.
147    R.suppressDiagnostics();
148
149    // FIXME: we might have ambiguous templates, in which case we
150    // should at least parse them properly!
151    return TNK_Non_template;
152  }
153
154  TemplateName Template;
155  TemplateNameKind TemplateKind;
156
157  unsigned ResultCount = R.end() - R.begin();
158  if (ResultCount > 1) {
159    // We assume that we'll preserve the qualifier from a function
160    // template name in other ways.
161    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
162    TemplateKind = TNK_Function_template;
163
164    // We'll do this lookup again later.
165    R.suppressDiagnostics();
166  } else {
167    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
168
169    if (SS.isSet() && !SS.isInvalid()) {
170      NestedNameSpecifier *Qualifier
171        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
172      Template = Context.getQualifiedTemplateName(Qualifier,
173                                                  hasTemplateKeyword, TD);
174    } else {
175      Template = TemplateName(TD);
176    }
177
178    if (isa<FunctionTemplateDecl>(TD)) {
179      TemplateKind = TNK_Function_template;
180
181      // We'll do this lookup again later.
182      R.suppressDiagnostics();
183    } else {
184      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
185      TemplateKind = TNK_Type_template;
186    }
187  }
188
189  TemplateResult = TemplateTy::make(Template);
190  return TemplateKind;
191}
192
193bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
194                                       SourceLocation IILoc,
195                                       Scope *S,
196                                       const CXXScopeSpec *SS,
197                                       TemplateTy &SuggestedTemplate,
198                                       TemplateNameKind &SuggestedKind) {
199  // We can't recover unless there's a dependent scope specifier preceding the
200  // template name.
201  // FIXME: Typo correction?
202  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
203      computeDeclContext(*SS))
204    return false;
205
206  // The code is missing a 'template' keyword prior to the dependent template
207  // name.
208  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
209  Diag(IILoc, diag::err_template_kw_missing)
210    << Qualifier << II.getName()
211    << FixItHint::CreateInsertion(IILoc, "template ");
212  SuggestedTemplate
213    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
214  SuggestedKind = TNK_Dependent_template_name;
215  return true;
216}
217
218void Sema::LookupTemplateName(LookupResult &Found,
219                              Scope *S, CXXScopeSpec &SS,
220                              QualType ObjectType,
221                              bool EnteringContext,
222                              bool &MemberOfUnknownSpecialization) {
223  // Determine where to perform name lookup
224  MemberOfUnknownSpecialization = false;
225  DeclContext *LookupCtx = 0;
226  bool isDependent = false;
227  if (!ObjectType.isNull()) {
228    // This nested-name-specifier occurs in a member access expression, e.g.,
229    // x->B::f, and we are looking into the type of the object.
230    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
231    LookupCtx = computeDeclContext(ObjectType);
232    isDependent = ObjectType->isDependentType();
233    assert((isDependent || !ObjectType->isIncompleteType()) &&
234           "Caller should have completed object type");
235  } else if (SS.isSet()) {
236    // This nested-name-specifier occurs after another nested-name-specifier,
237    // so long into the context associated with the prior nested-name-specifier.
238    LookupCtx = computeDeclContext(SS, EnteringContext);
239    isDependent = isDependentScopeSpecifier(SS);
240
241    // The declaration context must be complete.
242    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
243      return;
244  }
245
246  bool ObjectTypeSearchedInScope = false;
247  if (LookupCtx) {
248    // Perform "qualified" name lookup into the declaration context we
249    // computed, which is either the type of the base of a member access
250    // expression or the declaration context associated with a prior
251    // nested-name-specifier.
252    LookupQualifiedName(Found, LookupCtx);
253
254    if (!ObjectType.isNull() && Found.empty()) {
255      // C++ [basic.lookup.classref]p1:
256      //   In a class member access expression (5.2.5), if the . or -> token is
257      //   immediately followed by an identifier followed by a <, the
258      //   identifier must be looked up to determine whether the < is the
259      //   beginning of a template argument list (14.2) or a less-than operator.
260      //   The identifier is first looked up in the class of the object
261      //   expression. If the identifier is not found, it is then looked up in
262      //   the context of the entire postfix-expression and shall name a class
263      //   or function template.
264      if (S) LookupName(Found, S);
265      ObjectTypeSearchedInScope = true;
266    }
267  } else if (isDependent && (!S || ObjectType.isNull())) {
268    // We cannot look into a dependent object type or nested nme
269    // specifier.
270    MemberOfUnknownSpecialization = true;
271    return;
272  } else {
273    // Perform unqualified name lookup in the current scope.
274    LookupName(Found, S);
275  }
276
277  if (Found.empty() && !isDependent) {
278    // If we did not find any names, attempt to correct any typos.
279    DeclarationName Name = Found.getLookupName();
280    if (DeclarationName Corrected = CorrectTypo(Found, S, &SS, LookupCtx,
281                                                false, CTC_CXXCasts)) {
282      FilterAcceptableTemplateNames(Context, Found);
283      if (!Found.empty()) {
284        if (LookupCtx)
285          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
286            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
287            << FixItHint::CreateReplacement(Found.getNameLoc(),
288                                          Found.getLookupName().getAsString());
289        else
290          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
291            << Name << Found.getLookupName()
292            << FixItHint::CreateReplacement(Found.getNameLoc(),
293                                          Found.getLookupName().getAsString());
294        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
295          Diag(Template->getLocation(), diag::note_previous_decl)
296            << Template->getDeclName();
297      }
298    } else {
299      Found.clear();
300      Found.setLookupName(Name);
301    }
302  }
303
304  FilterAcceptableTemplateNames(Context, Found);
305  if (Found.empty()) {
306    if (isDependent)
307      MemberOfUnknownSpecialization = true;
308    return;
309  }
310
311  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
312    // C++ [basic.lookup.classref]p1:
313    //   [...] If the lookup in the class of the object expression finds a
314    //   template, the name is also looked up in the context of the entire
315    //   postfix-expression and [...]
316    //
317    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
318                            LookupOrdinaryName);
319    LookupName(FoundOuter, S);
320    FilterAcceptableTemplateNames(Context, FoundOuter);
321
322    if (FoundOuter.empty()) {
323      //   - if the name is not found, the name found in the class of the
324      //     object expression is used, otherwise
325    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
326      //   - if the name is found in the context of the entire
327      //     postfix-expression and does not name a class template, the name
328      //     found in the class of the object expression is used, otherwise
329    } else if (!Found.isSuppressingDiagnostics()) {
330      //   - if the name found is a class template, it must refer to the same
331      //     entity as the one found in the class of the object expression,
332      //     otherwise the program is ill-formed.
333      if (!Found.isSingleResult() ||
334          Found.getFoundDecl()->getCanonicalDecl()
335            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
336        Diag(Found.getNameLoc(),
337             diag::ext_nested_name_member_ref_lookup_ambiguous)
338          << Found.getLookupName()
339          << ObjectType;
340        Diag(Found.getRepresentativeDecl()->getLocation(),
341             diag::note_ambig_member_ref_object_type)
342          << ObjectType;
343        Diag(FoundOuter.getFoundDecl()->getLocation(),
344             diag::note_ambig_member_ref_scope);
345
346        // Recover by taking the template that we found in the object
347        // expression's type.
348      }
349    }
350  }
351}
352
353/// ActOnDependentIdExpression - Handle a dependent id-expression that
354/// was just parsed.  This is only possible with an explicit scope
355/// specifier naming a dependent type.
356ExprResult
357Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
358                                 const DeclarationNameInfo &NameInfo,
359                                 bool isAddressOfOperand,
360                           const TemplateArgumentListInfo *TemplateArgs) {
361  NestedNameSpecifier *Qualifier
362    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
363
364  DeclContext *DC = getFunctionLevelDeclContext();
365
366  if (!isAddressOfOperand &&
367      isa<CXXMethodDecl>(DC) &&
368      cast<CXXMethodDecl>(DC)->isInstance()) {
369    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
370
371    // Since the 'this' expression is synthesized, we don't need to
372    // perform the double-lookup check.
373    NamedDecl *FirstQualifierInScope = 0;
374
375    return Owned(CXXDependentScopeMemberExpr::Create(Context,
376                                                     /*This*/ 0, ThisType,
377                                                     /*IsArrow*/ true,
378                                                     /*Op*/ SourceLocation(),
379                                                     Qualifier, SS.getRange(),
380                                                     FirstQualifierInScope,
381                                                     NameInfo,
382                                                     TemplateArgs));
383  }
384
385  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
386}
387
388ExprResult
389Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
390                                const DeclarationNameInfo &NameInfo,
391                                const TemplateArgumentListInfo *TemplateArgs) {
392  return Owned(DependentScopeDeclRefExpr::Create(Context,
393               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
394                                                 SS.getRange(),
395                                                 NameInfo,
396                                                 TemplateArgs));
397}
398
399/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
400/// that the template parameter 'PrevDecl' is being shadowed by a new
401/// declaration at location Loc. Returns true to indicate that this is
402/// an error, and false otherwise.
403bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
404  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
405
406  // Microsoft Visual C++ permits template parameters to be shadowed.
407  if (getLangOptions().Microsoft)
408    return false;
409
410  // C++ [temp.local]p4:
411  //   A template-parameter shall not be redeclared within its
412  //   scope (including nested scopes).
413  Diag(Loc, diag::err_template_param_shadow)
414    << cast<NamedDecl>(PrevDecl)->getDeclName();
415  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
416  return true;
417}
418
419/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
420/// the parameter D to reference the templated declaration and return a pointer
421/// to the template declaration. Otherwise, do nothing to D and return null.
422TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
423  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
424    D = Temp->getTemplatedDecl();
425    return Temp;
426  }
427  return 0;
428}
429
430static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
431                                            const ParsedTemplateArgument &Arg) {
432
433  switch (Arg.getKind()) {
434  case ParsedTemplateArgument::Type: {
435    TypeSourceInfo *DI;
436    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
437    if (!DI)
438      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
439    return TemplateArgumentLoc(TemplateArgument(T), DI);
440  }
441
442  case ParsedTemplateArgument::NonType: {
443    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
444    return TemplateArgumentLoc(TemplateArgument(E), E);
445  }
446
447  case ParsedTemplateArgument::Template: {
448    TemplateName Template = Arg.getAsTemplate().get();
449    return TemplateArgumentLoc(TemplateArgument(Template),
450                               Arg.getScopeSpec().getRange(),
451                               Arg.getLocation());
452  }
453  }
454
455  llvm_unreachable("Unhandled parsed template argument");
456  return TemplateArgumentLoc();
457}
458
459/// \brief Translates template arguments as provided by the parser
460/// into template arguments used by semantic analysis.
461void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
462                                      TemplateArgumentListInfo &TemplateArgs) {
463 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
464   TemplateArgs.addArgument(translateTemplateArgument(*this,
465                                                      TemplateArgsIn[I]));
466}
467
468/// ActOnTypeParameter - Called when a C++ template type parameter
469/// (e.g., "typename T") has been parsed. Typename specifies whether
470/// the keyword "typename" was used to declare the type parameter
471/// (otherwise, "class" was used), and KeyLoc is the location of the
472/// "class" or "typename" keyword. ParamName is the name of the
473/// parameter (NULL indicates an unnamed template parameter) and
474/// ParamName is the location of the parameter name (if any).
475/// If the type parameter has a default argument, it will be added
476/// later via ActOnTypeParameterDefault.
477Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
478                               SourceLocation EllipsisLoc,
479                               SourceLocation KeyLoc,
480                               IdentifierInfo *ParamName,
481                               SourceLocation ParamNameLoc,
482                               unsigned Depth, unsigned Position,
483                               SourceLocation EqualLoc,
484                               ParsedType DefaultArg) {
485  assert(S->isTemplateParamScope() &&
486         "Template type parameter not in template parameter scope!");
487  bool Invalid = false;
488
489  if (ParamName) {
490    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
491                                           LookupOrdinaryName,
492                                           ForRedeclaration);
493    if (PrevDecl && PrevDecl->isTemplateParameter())
494      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
495                                                           PrevDecl);
496  }
497
498  SourceLocation Loc = ParamNameLoc;
499  if (!ParamName)
500    Loc = KeyLoc;
501
502  TemplateTypeParmDecl *Param
503    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
504                                   Loc, Depth, Position, ParamName, Typename,
505                                   Ellipsis);
506  if (Invalid)
507    Param->setInvalidDecl();
508
509  if (ParamName) {
510    // Add the template parameter into the current scope.
511    S->AddDecl(Param);
512    IdResolver.AddDecl(Param);
513  }
514
515  // Handle the default argument, if provided.
516  if (DefaultArg) {
517    TypeSourceInfo *DefaultTInfo;
518    GetTypeFromParser(DefaultArg, &DefaultTInfo);
519
520    assert(DefaultTInfo && "expected source information for type");
521
522    // C++0x [temp.param]p9:
523    // A default template-argument may be specified for any kind of
524    // template-parameter that is not a template parameter pack.
525    if (Ellipsis) {
526      Diag(EqualLoc, diag::err_template_param_pack_default_arg);
527      return Param;
528    }
529
530    // Check the template argument itself.
531    if (CheckTemplateArgument(Param, DefaultTInfo)) {
532      Param->setInvalidDecl();
533      return Param;
534    }
535
536    Param->setDefaultArgument(DefaultTInfo, false);
537  }
538
539  return Param;
540}
541
542/// \brief Check that the type of a non-type template parameter is
543/// well-formed.
544///
545/// \returns the (possibly-promoted) parameter type if valid;
546/// otherwise, produces a diagnostic and returns a NULL type.
547QualType
548Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
549  // We don't allow variably-modified types as the type of non-type template
550  // parameters.
551  if (T->isVariablyModifiedType()) {
552    Diag(Loc, diag::err_variably_modified_nontype_template_param)
553      << T;
554    return QualType();
555  }
556
557  // C++ [temp.param]p4:
558  //
559  // A non-type template-parameter shall have one of the following
560  // (optionally cv-qualified) types:
561  //
562  //       -- integral or enumeration type,
563  if (T->isIntegralOrEnumerationType() ||
564      //   -- pointer to object or pointer to function,
565      T->isPointerType() ||
566      //   -- reference to object or reference to function,
567      T->isReferenceType() ||
568      //   -- pointer to member.
569      T->isMemberPointerType() ||
570      // If T is a dependent type, we can't do the check now, so we
571      // assume that it is well-formed.
572      T->isDependentType())
573    return T;
574  // C++ [temp.param]p8:
575  //
576  //   A non-type template-parameter of type "array of T" or
577  //   "function returning T" is adjusted to be of type "pointer to
578  //   T" or "pointer to function returning T", respectively.
579  else if (T->isArrayType())
580    // FIXME: Keep the type prior to promotion?
581    return Context.getArrayDecayedType(T);
582  else if (T->isFunctionType())
583    // FIXME: Keep the type prior to promotion?
584    return Context.getPointerType(T);
585
586  Diag(Loc, diag::err_template_nontype_parm_bad_type)
587    << T;
588
589  return QualType();
590}
591
592Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
593                                          unsigned Depth,
594                                          unsigned Position,
595                                          SourceLocation EqualLoc,
596                                          Expr *Default) {
597  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
598  QualType T = TInfo->getType();
599
600  assert(S->isTemplateParamScope() &&
601         "Non-type template parameter not in template parameter scope!");
602  bool Invalid = false;
603
604  IdentifierInfo *ParamName = D.getIdentifier();
605  if (ParamName) {
606    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
607                                           LookupOrdinaryName,
608                                           ForRedeclaration);
609    if (PrevDecl && PrevDecl->isTemplateParameter())
610      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
611                                                           PrevDecl);
612  }
613
614  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
615  if (T.isNull()) {
616    T = Context.IntTy; // Recover with an 'int' type.
617    Invalid = true;
618  }
619
620  NonTypeTemplateParmDecl *Param
621    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
622                                      D.getIdentifierLoc(),
623                                      Depth, Position, ParamName, T, TInfo);
624  if (Invalid)
625    Param->setInvalidDecl();
626
627  if (D.getIdentifier()) {
628    // Add the template parameter into the current scope.
629    S->AddDecl(Param);
630    IdResolver.AddDecl(Param);
631  }
632
633  // Check the well-formedness of the default template argument, if provided.
634  if (Default) {
635    TemplateArgument Converted;
636    if (CheckTemplateArgument(Param, Param->getType(), Default, Converted)) {
637      Param->setInvalidDecl();
638      return Param;
639    }
640
641    Param->setDefaultArgument(Default, false);
642  }
643
644  return Param;
645}
646
647/// ActOnTemplateTemplateParameter - Called when a C++ template template
648/// parameter (e.g. T in template <template <typename> class T> class array)
649/// has been parsed. S is the current scope.
650Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
651                                           SourceLocation TmpLoc,
652                                           TemplateParamsTy *Params,
653                                           IdentifierInfo *Name,
654                                           SourceLocation NameLoc,
655                                           unsigned Depth,
656                                           unsigned Position,
657                                           SourceLocation EqualLoc,
658                                       const ParsedTemplateArgument &Default) {
659  assert(S->isTemplateParamScope() &&
660         "Template template parameter not in template parameter scope!");
661
662  // Construct the parameter object.
663  TemplateTemplateParmDecl *Param =
664    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
665                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
666                                     Depth, Position, Name,
667                                     (TemplateParameterList*)Params);
668
669  // If the template template parameter has a name, then link the identifier
670  // into the scope and lookup mechanisms.
671  if (Name) {
672    S->AddDecl(Param);
673    IdResolver.AddDecl(Param);
674  }
675
676  if (!Default.isInvalid()) {
677    // Check only that we have a template template argument. We don't want to
678    // try to check well-formedness now, because our template template parameter
679    // might have dependent types in its template parameters, which we wouldn't
680    // be able to match now.
681    //
682    // If none of the template template parameter's template arguments mention
683    // other template parameters, we could actually perform more checking here.
684    // However, it isn't worth doing.
685    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
686    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
687      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
688        << DefaultArg.getSourceRange();
689      return Param;
690    }
691
692    Param->setDefaultArgument(DefaultArg, false);
693  }
694
695  return Param;
696}
697
698/// ActOnTemplateParameterList - Builds a TemplateParameterList that
699/// contains the template parameters in Params/NumParams.
700Sema::TemplateParamsTy *
701Sema::ActOnTemplateParameterList(unsigned Depth,
702                                 SourceLocation ExportLoc,
703                                 SourceLocation TemplateLoc,
704                                 SourceLocation LAngleLoc,
705                                 Decl **Params, unsigned NumParams,
706                                 SourceLocation RAngleLoc) {
707  if (ExportLoc.isValid())
708    Diag(ExportLoc, diag::warn_template_export_unsupported);
709
710  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
711                                       (NamedDecl**)Params, NumParams,
712                                       RAngleLoc);
713}
714
715static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
716  if (SS.isSet())
717    T->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
718                        SS.getRange());
719}
720
721DeclResult
722Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
723                         SourceLocation KWLoc, CXXScopeSpec &SS,
724                         IdentifierInfo *Name, SourceLocation NameLoc,
725                         AttributeList *Attr,
726                         TemplateParameterList *TemplateParams,
727                         AccessSpecifier AS) {
728  assert(TemplateParams && TemplateParams->size() > 0 &&
729         "No template parameters");
730  assert(TUK != TUK_Reference && "Can only declare or define class templates");
731  bool Invalid = false;
732
733  // Check that we can declare a template here.
734  if (CheckTemplateDeclScope(S, TemplateParams))
735    return true;
736
737  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
738  assert(Kind != TTK_Enum && "can't build template of enumerated type");
739
740  // There is no such thing as an unnamed class template.
741  if (!Name) {
742    Diag(KWLoc, diag::err_template_unnamed_class);
743    return true;
744  }
745
746  // Find any previous declaration with this name.
747  DeclContext *SemanticContext;
748  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
749                        ForRedeclaration);
750  if (SS.isNotEmpty() && !SS.isInvalid()) {
751    SemanticContext = computeDeclContext(SS, true);
752    if (!SemanticContext) {
753      // FIXME: Produce a reasonable diagnostic here
754      return true;
755    }
756
757    if (RequireCompleteDeclContext(SS, SemanticContext))
758      return true;
759
760    LookupQualifiedName(Previous, SemanticContext);
761  } else {
762    SemanticContext = CurContext;
763    LookupName(Previous, S);
764  }
765
766  if (Previous.isAmbiguous())
767    return true;
768
769  NamedDecl *PrevDecl = 0;
770  if (Previous.begin() != Previous.end())
771    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
772
773  // If there is a previous declaration with the same name, check
774  // whether this is a valid redeclaration.
775  ClassTemplateDecl *PrevClassTemplate
776    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
777
778  // We may have found the injected-class-name of a class template,
779  // class template partial specialization, or class template specialization.
780  // In these cases, grab the template that is being defined or specialized.
781  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
782      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
783    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
784    PrevClassTemplate
785      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
786    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
787      PrevClassTemplate
788        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
789            ->getSpecializedTemplate();
790    }
791  }
792
793  if (TUK == TUK_Friend) {
794    // C++ [namespace.memdef]p3:
795    //   [...] When looking for a prior declaration of a class or a function
796    //   declared as a friend, and when the name of the friend class or
797    //   function is neither a qualified name nor a template-id, scopes outside
798    //   the innermost enclosing namespace scope are not considered.
799    if (!SS.isSet()) {
800      DeclContext *OutermostContext = CurContext;
801      while (!OutermostContext->isFileContext())
802        OutermostContext = OutermostContext->getLookupParent();
803
804      if (PrevDecl &&
805          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
806           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
807        SemanticContext = PrevDecl->getDeclContext();
808      } else {
809        // Declarations in outer scopes don't matter. However, the outermost
810        // context we computed is the semantic context for our new
811        // declaration.
812        PrevDecl = PrevClassTemplate = 0;
813        SemanticContext = OutermostContext;
814      }
815    }
816
817    if (CurContext->isDependentContext()) {
818      // If this is a dependent context, we don't want to link the friend
819      // class template to the template in scope, because that would perform
820      // checking of the template parameter lists that can't be performed
821      // until the outer context is instantiated.
822      PrevDecl = PrevClassTemplate = 0;
823    }
824  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
825    PrevDecl = PrevClassTemplate = 0;
826
827  if (PrevClassTemplate) {
828    // Ensure that the template parameter lists are compatible.
829    if (!TemplateParameterListsAreEqual(TemplateParams,
830                                   PrevClassTemplate->getTemplateParameters(),
831                                        /*Complain=*/true,
832                                        TPL_TemplateMatch))
833      return true;
834
835    // C++ [temp.class]p4:
836    //   In a redeclaration, partial specialization, explicit
837    //   specialization or explicit instantiation of a class template,
838    //   the class-key shall agree in kind with the original class
839    //   template declaration (7.1.5.3).
840    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
841    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
842      Diag(KWLoc, diag::err_use_with_wrong_tag)
843        << Name
844        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
845      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
846      Kind = PrevRecordDecl->getTagKind();
847    }
848
849    // Check for redefinition of this class template.
850    if (TUK == TUK_Definition) {
851      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
852        Diag(NameLoc, diag::err_redefinition) << Name;
853        Diag(Def->getLocation(), diag::note_previous_definition);
854        // FIXME: Would it make sense to try to "forget" the previous
855        // definition, as part of error recovery?
856        return true;
857      }
858    }
859  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
860    // Maybe we will complain about the shadowed template parameter.
861    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
862    // Just pretend that we didn't see the previous declaration.
863    PrevDecl = 0;
864  } else if (PrevDecl) {
865    // C++ [temp]p5:
866    //   A class template shall not have the same name as any other
867    //   template, class, function, object, enumeration, enumerator,
868    //   namespace, or type in the same scope (3.3), except as specified
869    //   in (14.5.4).
870    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
871    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
872    return true;
873  }
874
875  // Check the template parameter list of this declaration, possibly
876  // merging in the template parameter list from the previous class
877  // template declaration.
878  if (CheckTemplateParameterList(TemplateParams,
879            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
880                                 TPC_ClassTemplate))
881    Invalid = true;
882
883  if (SS.isSet()) {
884    // If the name of the template was qualified, we must be defining the
885    // template out-of-line.
886    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
887        !(TUK == TUK_Friend && CurContext->isDependentContext()))
888      Diag(NameLoc, diag::err_member_def_does_not_match)
889        << Name << SemanticContext << SS.getRange();
890  }
891
892  CXXRecordDecl *NewClass =
893    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
894                          PrevClassTemplate?
895                            PrevClassTemplate->getTemplatedDecl() : 0,
896                          /*DelayTypeCreation=*/true);
897  SetNestedNameSpecifier(NewClass, SS);
898
899  ClassTemplateDecl *NewTemplate
900    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
901                                DeclarationName(Name), TemplateParams,
902                                NewClass, PrevClassTemplate);
903  NewClass->setDescribedClassTemplate(NewTemplate);
904
905  // Build the type for the class template declaration now.
906  QualType T = NewTemplate->getInjectedClassNameSpecialization();
907  T = Context.getInjectedClassNameType(NewClass, T);
908  assert(T->isDependentType() && "Class template type is not dependent?");
909  (void)T;
910
911  // If we are providing an explicit specialization of a member that is a
912  // class template, make a note of that.
913  if (PrevClassTemplate &&
914      PrevClassTemplate->getInstantiatedFromMemberTemplate())
915    PrevClassTemplate->setMemberSpecialization();
916
917  // Set the access specifier.
918  if (!Invalid && TUK != TUK_Friend)
919    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
920
921  // Set the lexical context of these templates
922  NewClass->setLexicalDeclContext(CurContext);
923  NewTemplate->setLexicalDeclContext(CurContext);
924
925  if (TUK == TUK_Definition)
926    NewClass->startDefinition();
927
928  if (Attr)
929    ProcessDeclAttributeList(S, NewClass, Attr);
930
931  if (TUK != TUK_Friend)
932    PushOnScopeChains(NewTemplate, S);
933  else {
934    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
935      NewTemplate->setAccess(PrevClassTemplate->getAccess());
936      NewClass->setAccess(PrevClassTemplate->getAccess());
937    }
938
939    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
940                                       PrevClassTemplate != NULL);
941
942    // Friend templates are visible in fairly strange ways.
943    if (!CurContext->isDependentContext()) {
944      DeclContext *DC = SemanticContext->getRedeclContext();
945      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
946      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
947        PushOnScopeChains(NewTemplate, EnclosingScope,
948                          /* AddToContext = */ false);
949    }
950
951    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
952                                            NewClass->getLocation(),
953                                            NewTemplate,
954                                    /*FIXME:*/NewClass->getLocation());
955    Friend->setAccess(AS_public);
956    CurContext->addDecl(Friend);
957  }
958
959  if (Invalid) {
960    NewTemplate->setInvalidDecl();
961    NewClass->setInvalidDecl();
962  }
963  return NewTemplate;
964}
965
966/// \brief Diagnose the presence of a default template argument on a
967/// template parameter, which is ill-formed in certain contexts.
968///
969/// \returns true if the default template argument should be dropped.
970static bool DiagnoseDefaultTemplateArgument(Sema &S,
971                                            Sema::TemplateParamListContext TPC,
972                                            SourceLocation ParamLoc,
973                                            SourceRange DefArgRange) {
974  switch (TPC) {
975  case Sema::TPC_ClassTemplate:
976    return false;
977
978  case Sema::TPC_FunctionTemplate:
979    // C++ [temp.param]p9:
980    //   A default template-argument shall not be specified in a
981    //   function template declaration or a function template
982    //   definition [...]
983    // (This sentence is not in C++0x, per DR226).
984    if (!S.getLangOptions().CPlusPlus0x)
985      S.Diag(ParamLoc,
986             diag::err_template_parameter_default_in_function_template)
987        << DefArgRange;
988    return false;
989
990  case Sema::TPC_ClassTemplateMember:
991    // C++0x [temp.param]p9:
992    //   A default template-argument shall not be specified in the
993    //   template-parameter-lists of the definition of a member of a
994    //   class template that appears outside of the member's class.
995    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
996      << DefArgRange;
997    return true;
998
999  case Sema::TPC_FriendFunctionTemplate:
1000    // C++ [temp.param]p9:
1001    //   A default template-argument shall not be specified in a
1002    //   friend template declaration.
1003    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1004      << DefArgRange;
1005    return true;
1006
1007    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1008    // for friend function templates if there is only a single
1009    // declaration (and it is a definition). Strange!
1010  }
1011
1012  return false;
1013}
1014
1015/// \brief Checks the validity of a template parameter list, possibly
1016/// considering the template parameter list from a previous
1017/// declaration.
1018///
1019/// If an "old" template parameter list is provided, it must be
1020/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1021/// template parameter list.
1022///
1023/// \param NewParams Template parameter list for a new template
1024/// declaration. This template parameter list will be updated with any
1025/// default arguments that are carried through from the previous
1026/// template parameter list.
1027///
1028/// \param OldParams If provided, template parameter list from a
1029/// previous declaration of the same template. Default template
1030/// arguments will be merged from the old template parameter list to
1031/// the new template parameter list.
1032///
1033/// \param TPC Describes the context in which we are checking the given
1034/// template parameter list.
1035///
1036/// \returns true if an error occurred, false otherwise.
1037bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1038                                      TemplateParameterList *OldParams,
1039                                      TemplateParamListContext TPC) {
1040  bool Invalid = false;
1041
1042  // C++ [temp.param]p10:
1043  //   The set of default template-arguments available for use with a
1044  //   template declaration or definition is obtained by merging the
1045  //   default arguments from the definition (if in scope) and all
1046  //   declarations in scope in the same way default function
1047  //   arguments are (8.3.6).
1048  bool SawDefaultArgument = false;
1049  SourceLocation PreviousDefaultArgLoc;
1050
1051  bool SawParameterPack = false;
1052  SourceLocation ParameterPackLoc;
1053
1054  // Dummy initialization to avoid warnings.
1055  TemplateParameterList::iterator OldParam = NewParams->end();
1056  if (OldParams)
1057    OldParam = OldParams->begin();
1058
1059  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1060                                    NewParamEnd = NewParams->end();
1061       NewParam != NewParamEnd; ++NewParam) {
1062    // Variables used to diagnose redundant default arguments
1063    bool RedundantDefaultArg = false;
1064    SourceLocation OldDefaultLoc;
1065    SourceLocation NewDefaultLoc;
1066
1067    // Variables used to diagnose missing default arguments
1068    bool MissingDefaultArg = false;
1069
1070    // C++0x [temp.param]p11:
1071    // If a template parameter of a class template is a template parameter pack,
1072    // it must be the last template parameter.
1073    if (SawParameterPack) {
1074      Diag(ParameterPackLoc,
1075           diag::err_template_param_pack_must_be_last_template_parameter);
1076      Invalid = true;
1077    }
1078
1079    if (TemplateTypeParmDecl *NewTypeParm
1080          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1081      // Check the presence of a default argument here.
1082      if (NewTypeParm->hasDefaultArgument() &&
1083          DiagnoseDefaultTemplateArgument(*this, TPC,
1084                                          NewTypeParm->getLocation(),
1085               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1086                                                       .getSourceRange()))
1087        NewTypeParm->removeDefaultArgument();
1088
1089      // Merge default arguments for template type parameters.
1090      TemplateTypeParmDecl *OldTypeParm
1091          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1092
1093      if (NewTypeParm->isParameterPack()) {
1094        assert(!NewTypeParm->hasDefaultArgument() &&
1095               "Parameter packs can't have a default argument!");
1096        SawParameterPack = true;
1097        ParameterPackLoc = NewTypeParm->getLocation();
1098      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1099                 NewTypeParm->hasDefaultArgument()) {
1100        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1101        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1102        SawDefaultArgument = true;
1103        RedundantDefaultArg = true;
1104        PreviousDefaultArgLoc = NewDefaultLoc;
1105      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1106        // Merge the default argument from the old declaration to the
1107        // new declaration.
1108        SawDefaultArgument = true;
1109        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1110                                        true);
1111        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1112      } else if (NewTypeParm->hasDefaultArgument()) {
1113        SawDefaultArgument = true;
1114        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1115      } else if (SawDefaultArgument)
1116        MissingDefaultArg = true;
1117    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1118               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1119      // Check the presence of a default argument here.
1120      if (NewNonTypeParm->hasDefaultArgument() &&
1121          DiagnoseDefaultTemplateArgument(*this, TPC,
1122                                          NewNonTypeParm->getLocation(),
1123                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1124        NewNonTypeParm->removeDefaultArgument();
1125      }
1126
1127      // Merge default arguments for non-type template parameters
1128      NonTypeTemplateParmDecl *OldNonTypeParm
1129        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1130      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1131          NewNonTypeParm->hasDefaultArgument()) {
1132        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1133        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1134        SawDefaultArgument = true;
1135        RedundantDefaultArg = true;
1136        PreviousDefaultArgLoc = NewDefaultLoc;
1137      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1138        // Merge the default argument from the old declaration to the
1139        // new declaration.
1140        SawDefaultArgument = true;
1141        // FIXME: We need to create a new kind of "default argument"
1142        // expression that points to a previous template template
1143        // parameter.
1144        NewNonTypeParm->setDefaultArgument(
1145                                         OldNonTypeParm->getDefaultArgument(),
1146                                         /*Inherited=*/ true);
1147        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1148      } else if (NewNonTypeParm->hasDefaultArgument()) {
1149        SawDefaultArgument = true;
1150        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1151      } else if (SawDefaultArgument)
1152        MissingDefaultArg = true;
1153    } else {
1154      // Check the presence of a default argument here.
1155      TemplateTemplateParmDecl *NewTemplateParm
1156        = cast<TemplateTemplateParmDecl>(*NewParam);
1157      if (NewTemplateParm->hasDefaultArgument() &&
1158          DiagnoseDefaultTemplateArgument(*this, TPC,
1159                                          NewTemplateParm->getLocation(),
1160                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1161        NewTemplateParm->removeDefaultArgument();
1162
1163      // Merge default arguments for template template parameters
1164      TemplateTemplateParmDecl *OldTemplateParm
1165        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1166      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1167          NewTemplateParm->hasDefaultArgument()) {
1168        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1169        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1170        SawDefaultArgument = true;
1171        RedundantDefaultArg = true;
1172        PreviousDefaultArgLoc = NewDefaultLoc;
1173      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1174        // Merge the default argument from the old declaration to the
1175        // new declaration.
1176        SawDefaultArgument = true;
1177        // FIXME: We need to create a new kind of "default argument" expression
1178        // that points to a previous template template parameter.
1179        NewTemplateParm->setDefaultArgument(
1180                                          OldTemplateParm->getDefaultArgument(),
1181                                          /*Inherited=*/ true);
1182        PreviousDefaultArgLoc
1183          = OldTemplateParm->getDefaultArgument().getLocation();
1184      } else if (NewTemplateParm->hasDefaultArgument()) {
1185        SawDefaultArgument = true;
1186        PreviousDefaultArgLoc
1187          = NewTemplateParm->getDefaultArgument().getLocation();
1188      } else if (SawDefaultArgument)
1189        MissingDefaultArg = true;
1190    }
1191
1192    if (RedundantDefaultArg) {
1193      // C++ [temp.param]p12:
1194      //   A template-parameter shall not be given default arguments
1195      //   by two different declarations in the same scope.
1196      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1197      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1198      Invalid = true;
1199    } else if (MissingDefaultArg) {
1200      // C++ [temp.param]p11:
1201      //   If a template-parameter has a default template-argument,
1202      //   all subsequent template-parameters shall have a default
1203      //   template-argument supplied.
1204      Diag((*NewParam)->getLocation(),
1205           diag::err_template_param_default_arg_missing);
1206      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1207      Invalid = true;
1208    }
1209
1210    // If we have an old template parameter list that we're merging
1211    // in, move on to the next parameter.
1212    if (OldParams)
1213      ++OldParam;
1214  }
1215
1216  return Invalid;
1217}
1218
1219/// \brief Match the given template parameter lists to the given scope
1220/// specifier, returning the template parameter list that applies to the
1221/// name.
1222///
1223/// \param DeclStartLoc the start of the declaration that has a scope
1224/// specifier or a template parameter list.
1225///
1226/// \param SS the scope specifier that will be matched to the given template
1227/// parameter lists. This scope specifier precedes a qualified name that is
1228/// being declared.
1229///
1230/// \param ParamLists the template parameter lists, from the outermost to the
1231/// innermost template parameter lists.
1232///
1233/// \param NumParamLists the number of template parameter lists in ParamLists.
1234///
1235/// \param IsFriend Whether to apply the slightly different rules for
1236/// matching template parameters to scope specifiers in friend
1237/// declarations.
1238///
1239/// \param IsExplicitSpecialization will be set true if the entity being
1240/// declared is an explicit specialization, false otherwise.
1241///
1242/// \returns the template parameter list, if any, that corresponds to the
1243/// name that is preceded by the scope specifier @p SS. This template
1244/// parameter list may be have template parameters (if we're declaring a
1245/// template) or may have no template parameters (if we're declaring a
1246/// template specialization), or may be NULL (if we were's declaring isn't
1247/// itself a template).
1248TemplateParameterList *
1249Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1250                                              const CXXScopeSpec &SS,
1251                                          TemplateParameterList **ParamLists,
1252                                              unsigned NumParamLists,
1253                                              bool IsFriend,
1254                                              bool &IsExplicitSpecialization,
1255                                              bool &Invalid) {
1256  IsExplicitSpecialization = false;
1257
1258  // Find the template-ids that occur within the nested-name-specifier. These
1259  // template-ids will match up with the template parameter lists.
1260  llvm::SmallVector<const TemplateSpecializationType *, 4>
1261    TemplateIdsInSpecifier;
1262  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1263    ExplicitSpecializationsInSpecifier;
1264  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1265       NNS; NNS = NNS->getPrefix()) {
1266    const Type *T = NNS->getAsType();
1267    if (!T) break;
1268
1269    // C++0x [temp.expl.spec]p17:
1270    //   A member or a member template may be nested within many
1271    //   enclosing class templates. In an explicit specialization for
1272    //   such a member, the member declaration shall be preceded by a
1273    //   template<> for each enclosing class template that is
1274    //   explicitly specialized.
1275    //
1276    // Following the existing practice of GNU and EDG, we allow a typedef of a
1277    // template specialization type.
1278    if (const TypedefType *TT = dyn_cast<TypedefType>(T))
1279      T = TT->LookThroughTypedefs().getTypePtr();
1280
1281    if (const TemplateSpecializationType *SpecType
1282                                  = dyn_cast<TemplateSpecializationType>(T)) {
1283      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1284      if (!Template)
1285        continue; // FIXME: should this be an error? probably...
1286
1287      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1288        ClassTemplateSpecializationDecl *SpecDecl
1289          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1290        // If the nested name specifier refers to an explicit specialization,
1291        // we don't need a template<> header.
1292        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1293          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1294          continue;
1295        }
1296      }
1297
1298      TemplateIdsInSpecifier.push_back(SpecType);
1299    }
1300  }
1301
1302  // Reverse the list of template-ids in the scope specifier, so that we can
1303  // more easily match up the template-ids and the template parameter lists.
1304  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1305
1306  SourceLocation FirstTemplateLoc = DeclStartLoc;
1307  if (NumParamLists)
1308    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1309
1310  // Match the template-ids found in the specifier to the template parameter
1311  // lists.
1312  unsigned Idx = 0;
1313  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1314       Idx != NumTemplateIds; ++Idx) {
1315    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1316    bool DependentTemplateId = TemplateId->isDependentType();
1317    if (Idx >= NumParamLists) {
1318      // We have a template-id without a corresponding template parameter
1319      // list.
1320
1321      // ...which is fine if this is a friend declaration.
1322      if (IsFriend) {
1323        IsExplicitSpecialization = true;
1324        break;
1325      }
1326
1327      if (DependentTemplateId) {
1328        // FIXME: the location information here isn't great.
1329        Diag(SS.getRange().getBegin(),
1330             diag::err_template_spec_needs_template_parameters)
1331          << TemplateId
1332          << SS.getRange();
1333        Invalid = true;
1334      } else {
1335        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1336          << SS.getRange()
1337          << FixItHint::CreateInsertion(FirstTemplateLoc, "template<> ");
1338        IsExplicitSpecialization = true;
1339      }
1340      return 0;
1341    }
1342
1343    // Check the template parameter list against its corresponding template-id.
1344    if (DependentTemplateId) {
1345      TemplateParameterList *ExpectedTemplateParams = 0;
1346
1347      // Are there cases in (e.g.) friends where this won't match?
1348      if (const InjectedClassNameType *Injected
1349            = TemplateId->getAs<InjectedClassNameType>()) {
1350        CXXRecordDecl *Record = Injected->getDecl();
1351        if (ClassTemplatePartialSpecializationDecl *Partial =
1352              dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
1353          ExpectedTemplateParams = Partial->getTemplateParameters();
1354        else
1355          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1356            ->getTemplateParameters();
1357      }
1358
1359      if (ExpectedTemplateParams)
1360        TemplateParameterListsAreEqual(ParamLists[Idx],
1361                                       ExpectedTemplateParams,
1362                                       true, TPL_TemplateMatch);
1363
1364      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1365    } else if (ParamLists[Idx]->size() > 0)
1366      Diag(ParamLists[Idx]->getTemplateLoc(),
1367           diag::err_template_param_list_matches_nontemplate)
1368        << TemplateId
1369        << ParamLists[Idx]->getSourceRange();
1370    else
1371      IsExplicitSpecialization = true;
1372  }
1373
1374  // If there were at least as many template-ids as there were template
1375  // parameter lists, then there are no template parameter lists remaining for
1376  // the declaration itself.
1377  if (Idx >= NumParamLists)
1378    return 0;
1379
1380  // If there were too many template parameter lists, complain about that now.
1381  if (Idx != NumParamLists - 1) {
1382    while (Idx < NumParamLists - 1) {
1383      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1384      Diag(ParamLists[Idx]->getTemplateLoc(),
1385           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1386                               : diag::err_template_spec_extra_headers)
1387        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1388                       ParamLists[Idx]->getRAngleLoc());
1389
1390      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1391        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1392             diag::note_explicit_template_spec_does_not_need_header)
1393          << ExplicitSpecializationsInSpecifier.back();
1394        ExplicitSpecializationsInSpecifier.pop_back();
1395      }
1396
1397      // We have a template parameter list with no corresponding scope, which
1398      // means that the resulting template declaration can't be instantiated
1399      // properly (we'll end up with dependent nodes when we shouldn't).
1400      if (!isExplicitSpecHeader)
1401        Invalid = true;
1402
1403      ++Idx;
1404    }
1405  }
1406
1407  // Return the last template parameter list, which corresponds to the
1408  // entity being declared.
1409  return ParamLists[NumParamLists - 1];
1410}
1411
1412QualType Sema::CheckTemplateIdType(TemplateName Name,
1413                                   SourceLocation TemplateLoc,
1414                              const TemplateArgumentListInfo &TemplateArgs) {
1415  TemplateDecl *Template = Name.getAsTemplateDecl();
1416  if (!Template) {
1417    // The template name does not resolve to a template, so we just
1418    // build a dependent template-id type.
1419    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1420  }
1421
1422  // Check that the template argument list is well-formed for this
1423  // template.
1424  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1425                                        TemplateArgs.size());
1426  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1427                                false, Converted))
1428    return QualType();
1429
1430  assert((Converted.structuredSize() ==
1431            Template->getTemplateParameters()->size()) &&
1432         "Converted template argument list is too short!");
1433
1434  QualType CanonType;
1435
1436  if (Name.isDependent() ||
1437      TemplateSpecializationType::anyDependentTemplateArguments(
1438                                                      TemplateArgs)) {
1439    // This class template specialization is a dependent
1440    // type. Therefore, its canonical type is another class template
1441    // specialization type that contains all of the converted
1442    // arguments in canonical form. This ensures that, e.g., A<T> and
1443    // A<T, T> have identical types when A is declared as:
1444    //
1445    //   template<typename T, typename U = T> struct A;
1446    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1447    CanonType = Context.getTemplateSpecializationType(CanonName,
1448                                                   Converted.getFlatArguments(),
1449                                                   Converted.flatSize());
1450
1451    // FIXME: CanonType is not actually the canonical type, and unfortunately
1452    // it is a TemplateSpecializationType that we will never use again.
1453    // In the future, we need to teach getTemplateSpecializationType to only
1454    // build the canonical type and return that to us.
1455    CanonType = Context.getCanonicalType(CanonType);
1456
1457    // This might work out to be a current instantiation, in which
1458    // case the canonical type needs to be the InjectedClassNameType.
1459    //
1460    // TODO: in theory this could be a simple hashtable lookup; most
1461    // changes to CurContext don't change the set of current
1462    // instantiations.
1463    if (isa<ClassTemplateDecl>(Template)) {
1464      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1465        // If we get out to a namespace, we're done.
1466        if (Ctx->isFileContext()) break;
1467
1468        // If this isn't a record, keep looking.
1469        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1470        if (!Record) continue;
1471
1472        // Look for one of the two cases with InjectedClassNameTypes
1473        // and check whether it's the same template.
1474        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1475            !Record->getDescribedClassTemplate())
1476          continue;
1477
1478        // Fetch the injected class name type and check whether its
1479        // injected type is equal to the type we just built.
1480        QualType ICNT = Context.getTypeDeclType(Record);
1481        QualType Injected = cast<InjectedClassNameType>(ICNT)
1482          ->getInjectedSpecializationType();
1483
1484        if (CanonType != Injected->getCanonicalTypeInternal())
1485          continue;
1486
1487        // If so, the canonical type of this TST is the injected
1488        // class name type of the record we just found.
1489        assert(ICNT.isCanonical());
1490        CanonType = ICNT;
1491        break;
1492      }
1493    }
1494  } else if (ClassTemplateDecl *ClassTemplate
1495               = dyn_cast<ClassTemplateDecl>(Template)) {
1496    // Find the class template specialization declaration that
1497    // corresponds to these arguments.
1498    void *InsertPos = 0;
1499    ClassTemplateSpecializationDecl *Decl
1500      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
1501                                          Converted.flatSize(), InsertPos);
1502    if (!Decl) {
1503      // This is the first time we have referenced this class template
1504      // specialization. Create the canonical declaration and add it to
1505      // the set of specializations.
1506      Decl = ClassTemplateSpecializationDecl::Create(Context,
1507                            ClassTemplate->getTemplatedDecl()->getTagKind(),
1508                                                ClassTemplate->getDeclContext(),
1509                                                ClassTemplate->getLocation(),
1510                                                ClassTemplate,
1511                                                Converted, 0);
1512      ClassTemplate->AddSpecialization(Decl, InsertPos);
1513      Decl->setLexicalDeclContext(CurContext);
1514    }
1515
1516    CanonType = Context.getTypeDeclType(Decl);
1517    assert(isa<RecordType>(CanonType) &&
1518           "type of non-dependent specialization is not a RecordType");
1519  }
1520
1521  // Build the fully-sugared type for this class template
1522  // specialization, which refers back to the class template
1523  // specialization we created or found.
1524  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1525}
1526
1527TypeResult
1528Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1529                          SourceLocation LAngleLoc,
1530                          ASTTemplateArgsPtr TemplateArgsIn,
1531                          SourceLocation RAngleLoc) {
1532  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1533
1534  // Translate the parser's template argument list in our AST format.
1535  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1536  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1537
1538  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1539  TemplateArgsIn.release();
1540
1541  if (Result.isNull())
1542    return true;
1543
1544  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1545  TemplateSpecializationTypeLoc TL
1546    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1547  TL.setTemplateNameLoc(TemplateLoc);
1548  TL.setLAngleLoc(LAngleLoc);
1549  TL.setRAngleLoc(RAngleLoc);
1550  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1551    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1552
1553  return CreateParsedType(Result, DI);
1554}
1555
1556TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1557                                        TagUseKind TUK,
1558                                        TypeSpecifierType TagSpec,
1559                                        SourceLocation TagLoc) {
1560  if (TypeResult.isInvalid())
1561    return ::TypeResult();
1562
1563  // FIXME: preserve source info, ideally without copying the DI.
1564  TypeSourceInfo *DI;
1565  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1566
1567  // Verify the tag specifier.
1568  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1569
1570  if (const RecordType *RT = Type->getAs<RecordType>()) {
1571    RecordDecl *D = RT->getDecl();
1572
1573    IdentifierInfo *Id = D->getIdentifier();
1574    assert(Id && "templated class must have an identifier");
1575
1576    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1577      Diag(TagLoc, diag::err_use_with_wrong_tag)
1578        << Type
1579        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
1580      Diag(D->getLocation(), diag::note_previous_use);
1581    }
1582  }
1583
1584  ElaboratedTypeKeyword Keyword
1585    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
1586  QualType ElabType = Context.getElaboratedType(Keyword, /*NNS=*/0, Type);
1587
1588  return ParsedType::make(ElabType);
1589}
1590
1591ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1592                                                 LookupResult &R,
1593                                                 bool RequiresADL,
1594                                 const TemplateArgumentListInfo &TemplateArgs) {
1595  // FIXME: Can we do any checking at this point? I guess we could check the
1596  // template arguments that we have against the template name, if the template
1597  // name refers to a single template. That's not a terribly common case,
1598  // though.
1599
1600  // These should be filtered out by our callers.
1601  assert(!R.empty() && "empty lookup results when building templateid");
1602  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1603
1604  NestedNameSpecifier *Qualifier = 0;
1605  SourceRange QualifierRange;
1606  if (SS.isSet()) {
1607    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1608    QualifierRange = SS.getRange();
1609  }
1610
1611  // We don't want lookup warnings at this point.
1612  R.suppressDiagnostics();
1613
1614  bool Dependent
1615    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1616                                              &TemplateArgs);
1617  UnresolvedLookupExpr *ULE
1618    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1619                                   Qualifier, QualifierRange,
1620                                   R.getLookupNameInfo(),
1621                                   RequiresADL, TemplateArgs,
1622                                   R.begin(), R.end());
1623
1624  return Owned(ULE);
1625}
1626
1627// We actually only call this from template instantiation.
1628ExprResult
1629Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
1630                                   const DeclarationNameInfo &NameInfo,
1631                             const TemplateArgumentListInfo &TemplateArgs) {
1632  DeclContext *DC;
1633  if (!(DC = computeDeclContext(SS, false)) ||
1634      DC->isDependentContext() ||
1635      RequireCompleteDeclContext(SS, DC))
1636    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
1637
1638  bool MemberOfUnknownSpecialization;
1639  LookupResult R(*this, NameInfo, LookupOrdinaryName);
1640  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
1641                     MemberOfUnknownSpecialization);
1642
1643  if (R.isAmbiguous())
1644    return ExprError();
1645
1646  if (R.empty()) {
1647    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
1648      << NameInfo.getName() << SS.getRange();
1649    return ExprError();
1650  }
1651
1652  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1653    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
1654      << (NestedNameSpecifier*) SS.getScopeRep()
1655      << NameInfo.getName() << SS.getRange();
1656    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1657    return ExprError();
1658  }
1659
1660  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1661}
1662
1663/// \brief Form a dependent template name.
1664///
1665/// This action forms a dependent template name given the template
1666/// name and its (presumably dependent) scope specifier. For
1667/// example, given "MetaFun::template apply", the scope specifier \p
1668/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1669/// of the "template" keyword, and "apply" is the \p Name.
1670TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
1671                                                  SourceLocation TemplateKWLoc,
1672                                                  CXXScopeSpec &SS,
1673                                                  UnqualifiedId &Name,
1674                                                  ParsedType ObjectType,
1675                                                  bool EnteringContext,
1676                                                  TemplateTy &Result) {
1677  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent() &&
1678      !getLangOptions().CPlusPlus0x)
1679    Diag(TemplateKWLoc, diag::ext_template_outside_of_template)
1680      << FixItHint::CreateRemoval(TemplateKWLoc);
1681
1682  DeclContext *LookupCtx = 0;
1683  if (SS.isSet())
1684    LookupCtx = computeDeclContext(SS, EnteringContext);
1685  if (!LookupCtx && ObjectType)
1686    LookupCtx = computeDeclContext(ObjectType.get());
1687  if (LookupCtx) {
1688    // C++0x [temp.names]p5:
1689    //   If a name prefixed by the keyword template is not the name of
1690    //   a template, the program is ill-formed. [Note: the keyword
1691    //   template may not be applied to non-template members of class
1692    //   templates. -end note ] [ Note: as is the case with the
1693    //   typename prefix, the template prefix is allowed in cases
1694    //   where it is not strictly necessary; i.e., when the
1695    //   nested-name-specifier or the expression on the left of the ->
1696    //   or . is not dependent on a template-parameter, or the use
1697    //   does not appear in the scope of a template. -end note]
1698    //
1699    // Note: C++03 was more strict here, because it banned the use of
1700    // the "template" keyword prior to a template-name that was not a
1701    // dependent name. C++ DR468 relaxed this requirement (the
1702    // "template" keyword is now permitted). We follow the C++0x
1703    // rules, even in C++03 mode with a warning, retroactively applying the DR.
1704    bool MemberOfUnknownSpecialization;
1705    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
1706                                          ObjectType, EnteringContext, Result,
1707                                          MemberOfUnknownSpecialization);
1708    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1709        isa<CXXRecordDecl>(LookupCtx) &&
1710        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1711      // This is a dependent template. Handle it below.
1712    } else if (TNK == TNK_Non_template) {
1713      Diag(Name.getSourceRange().getBegin(),
1714           diag::err_template_kw_refers_to_non_template)
1715        << GetNameFromUnqualifiedId(Name).getName()
1716        << Name.getSourceRange()
1717        << TemplateKWLoc;
1718      return TNK_Non_template;
1719    } else {
1720      // We found something; return it.
1721      return TNK;
1722    }
1723  }
1724
1725  NestedNameSpecifier *Qualifier
1726    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1727
1728  switch (Name.getKind()) {
1729  case UnqualifiedId::IK_Identifier:
1730    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1731                                                              Name.Identifier));
1732    return TNK_Dependent_template_name;
1733
1734  case UnqualifiedId::IK_OperatorFunctionId:
1735    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1736                                             Name.OperatorFunctionId.Operator));
1737    return TNK_Dependent_template_name;
1738
1739  case UnqualifiedId::IK_LiteralOperatorId:
1740    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1741
1742  default:
1743    break;
1744  }
1745
1746  Diag(Name.getSourceRange().getBegin(),
1747       diag::err_template_kw_refers_to_non_template)
1748    << GetNameFromUnqualifiedId(Name).getName()
1749    << Name.getSourceRange()
1750    << TemplateKWLoc;
1751  return TNK_Non_template;
1752}
1753
1754bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1755                                     const TemplateArgumentLoc &AL,
1756                                     TemplateArgumentListBuilder &Converted) {
1757  const TemplateArgument &Arg = AL.getArgument();
1758
1759  // Check template type parameter.
1760  switch(Arg.getKind()) {
1761  case TemplateArgument::Type:
1762    // C++ [temp.arg.type]p1:
1763    //   A template-argument for a template-parameter which is a
1764    //   type shall be a type-id.
1765    break;
1766  case TemplateArgument::Template: {
1767    // We have a template type parameter but the template argument
1768    // is a template without any arguments.
1769    SourceRange SR = AL.getSourceRange();
1770    TemplateName Name = Arg.getAsTemplate();
1771    Diag(SR.getBegin(), diag::err_template_missing_args)
1772      << Name << SR;
1773    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
1774      Diag(Decl->getLocation(), diag::note_template_decl_here);
1775
1776    return true;
1777  }
1778  default: {
1779    // We have a template type parameter but the template argument
1780    // is not a type.
1781    SourceRange SR = AL.getSourceRange();
1782    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1783    Diag(Param->getLocation(), diag::note_template_param_here);
1784
1785    return true;
1786  }
1787  }
1788
1789  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1790    return true;
1791
1792  // Add the converted template type argument.
1793  Converted.Append(
1794                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1795  return false;
1796}
1797
1798/// \brief Substitute template arguments into the default template argument for
1799/// the given template type parameter.
1800///
1801/// \param SemaRef the semantic analysis object for which we are performing
1802/// the substitution.
1803///
1804/// \param Template the template that we are synthesizing template arguments
1805/// for.
1806///
1807/// \param TemplateLoc the location of the template name that started the
1808/// template-id we are checking.
1809///
1810/// \param RAngleLoc the location of the right angle bracket ('>') that
1811/// terminates the template-id.
1812///
1813/// \param Param the template template parameter whose default we are
1814/// substituting into.
1815///
1816/// \param Converted the list of template arguments provided for template
1817/// parameters that precede \p Param in the template parameter list.
1818///
1819/// \returns the substituted template argument, or NULL if an error occurred.
1820static TypeSourceInfo *
1821SubstDefaultTemplateArgument(Sema &SemaRef,
1822                             TemplateDecl *Template,
1823                             SourceLocation TemplateLoc,
1824                             SourceLocation RAngleLoc,
1825                             TemplateTypeParmDecl *Param,
1826                             TemplateArgumentListBuilder &Converted) {
1827  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1828
1829  // If the argument type is dependent, instantiate it now based
1830  // on the previously-computed template arguments.
1831  if (ArgType->getType()->isDependentType()) {
1832    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1833                                      /*TakeArgs=*/false);
1834
1835    MultiLevelTemplateArgumentList AllTemplateArgs
1836      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1837
1838    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1839                                     Template, Converted.getFlatArguments(),
1840                                     Converted.flatSize(),
1841                                     SourceRange(TemplateLoc, RAngleLoc));
1842
1843    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1844                                Param->getDefaultArgumentLoc(),
1845                                Param->getDeclName());
1846  }
1847
1848  return ArgType;
1849}
1850
1851/// \brief Substitute template arguments into the default template argument for
1852/// the given non-type template parameter.
1853///
1854/// \param SemaRef the semantic analysis object for which we are performing
1855/// the substitution.
1856///
1857/// \param Template the template that we are synthesizing template arguments
1858/// for.
1859///
1860/// \param TemplateLoc the location of the template name that started the
1861/// template-id we are checking.
1862///
1863/// \param RAngleLoc the location of the right angle bracket ('>') that
1864/// terminates the template-id.
1865///
1866/// \param Param the non-type template parameter whose default we are
1867/// substituting into.
1868///
1869/// \param Converted the list of template arguments provided for template
1870/// parameters that precede \p Param in the template parameter list.
1871///
1872/// \returns the substituted template argument, or NULL if an error occurred.
1873static ExprResult
1874SubstDefaultTemplateArgument(Sema &SemaRef,
1875                             TemplateDecl *Template,
1876                             SourceLocation TemplateLoc,
1877                             SourceLocation RAngleLoc,
1878                             NonTypeTemplateParmDecl *Param,
1879                             TemplateArgumentListBuilder &Converted) {
1880  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1881                                    /*TakeArgs=*/false);
1882
1883  MultiLevelTemplateArgumentList AllTemplateArgs
1884    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1885
1886  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1887                                   Template, Converted.getFlatArguments(),
1888                                   Converted.flatSize(),
1889                                   SourceRange(TemplateLoc, RAngleLoc));
1890
1891  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1892}
1893
1894/// \brief Substitute template arguments into the default template argument for
1895/// the given template template parameter.
1896///
1897/// \param SemaRef the semantic analysis object for which we are performing
1898/// the substitution.
1899///
1900/// \param Template the template that we are synthesizing template arguments
1901/// for.
1902///
1903/// \param TemplateLoc the location of the template name that started the
1904/// template-id we are checking.
1905///
1906/// \param RAngleLoc the location of the right angle bracket ('>') that
1907/// terminates the template-id.
1908///
1909/// \param Param the template template parameter whose default we are
1910/// substituting into.
1911///
1912/// \param Converted the list of template arguments provided for template
1913/// parameters that precede \p Param in the template parameter list.
1914///
1915/// \returns the substituted template argument, or NULL if an error occurred.
1916static TemplateName
1917SubstDefaultTemplateArgument(Sema &SemaRef,
1918                             TemplateDecl *Template,
1919                             SourceLocation TemplateLoc,
1920                             SourceLocation RAngleLoc,
1921                             TemplateTemplateParmDecl *Param,
1922                             TemplateArgumentListBuilder &Converted) {
1923  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1924                                    /*TakeArgs=*/false);
1925
1926  MultiLevelTemplateArgumentList AllTemplateArgs
1927    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1928
1929  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1930                                   Template, Converted.getFlatArguments(),
1931                                   Converted.flatSize(),
1932                                   SourceRange(TemplateLoc, RAngleLoc));
1933
1934  return SemaRef.SubstTemplateName(
1935                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1936                              Param->getDefaultArgument().getTemplateNameLoc(),
1937                                   AllTemplateArgs);
1938}
1939
1940/// \brief If the given template parameter has a default template
1941/// argument, substitute into that default template argument and
1942/// return the corresponding template argument.
1943TemplateArgumentLoc
1944Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1945                                              SourceLocation TemplateLoc,
1946                                              SourceLocation RAngleLoc,
1947                                              Decl *Param,
1948                                     TemplateArgumentListBuilder &Converted) {
1949  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1950    if (!TypeParm->hasDefaultArgument())
1951      return TemplateArgumentLoc();
1952
1953    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1954                                                      TemplateLoc,
1955                                                      RAngleLoc,
1956                                                      TypeParm,
1957                                                      Converted);
1958    if (DI)
1959      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1960
1961    return TemplateArgumentLoc();
1962  }
1963
1964  if (NonTypeTemplateParmDecl *NonTypeParm
1965        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1966    if (!NonTypeParm->hasDefaultArgument())
1967      return TemplateArgumentLoc();
1968
1969    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1970                                                        TemplateLoc,
1971                                                        RAngleLoc,
1972                                                        NonTypeParm,
1973                                                        Converted);
1974    if (Arg.isInvalid())
1975      return TemplateArgumentLoc();
1976
1977    Expr *ArgE = Arg.takeAs<Expr>();
1978    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1979  }
1980
1981  TemplateTemplateParmDecl *TempTempParm
1982    = cast<TemplateTemplateParmDecl>(Param);
1983  if (!TempTempParm->hasDefaultArgument())
1984    return TemplateArgumentLoc();
1985
1986  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1987                                                    TemplateLoc,
1988                                                    RAngleLoc,
1989                                                    TempTempParm,
1990                                                    Converted);
1991  if (TName.isNull())
1992    return TemplateArgumentLoc();
1993
1994  return TemplateArgumentLoc(TemplateArgument(TName),
1995                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1996                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1997}
1998
1999/// \brief Check that the given template argument corresponds to the given
2000/// template parameter.
2001bool Sema::CheckTemplateArgument(NamedDecl *Param,
2002                                 const TemplateArgumentLoc &Arg,
2003                                 TemplateDecl *Template,
2004                                 SourceLocation TemplateLoc,
2005                                 SourceLocation RAngleLoc,
2006                                 TemplateArgumentListBuilder &Converted,
2007                                 CheckTemplateArgumentKind CTAK) {
2008  // Check template type parameters.
2009  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2010    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2011
2012  // Check non-type template parameters.
2013  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2014    // Do substitution on the type of the non-type template parameter
2015    // with the template arguments we've seen thus far.
2016    QualType NTTPType = NTTP->getType();
2017    if (NTTPType->isDependentType()) {
2018      // Do substitution on the type of the non-type template parameter.
2019      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2020                                 NTTP, Converted.getFlatArguments(),
2021                                 Converted.flatSize(),
2022                                 SourceRange(TemplateLoc, RAngleLoc));
2023
2024      TemplateArgumentList TemplateArgs(Context, Converted,
2025                                        /*TakeArgs=*/false);
2026      NTTPType = SubstType(NTTPType,
2027                           MultiLevelTemplateArgumentList(TemplateArgs),
2028                           NTTP->getLocation(),
2029                           NTTP->getDeclName());
2030      // If that worked, check the non-type template parameter type
2031      // for validity.
2032      if (!NTTPType.isNull())
2033        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2034                                                     NTTP->getLocation());
2035      if (NTTPType.isNull())
2036        return true;
2037    }
2038
2039    switch (Arg.getArgument().getKind()) {
2040    case TemplateArgument::Null:
2041      assert(false && "Should never see a NULL template argument here");
2042      return true;
2043
2044    case TemplateArgument::Expression: {
2045      Expr *E = Arg.getArgument().getAsExpr();
2046      TemplateArgument Result;
2047      if (CheckTemplateArgument(NTTP, NTTPType, E, Result, CTAK))
2048        return true;
2049
2050      Converted.Append(Result);
2051      break;
2052    }
2053
2054    case TemplateArgument::Declaration:
2055    case TemplateArgument::Integral:
2056      // We've already checked this template argument, so just copy
2057      // it to the list of converted arguments.
2058      Converted.Append(Arg.getArgument());
2059      break;
2060
2061    case TemplateArgument::Template:
2062      // We were given a template template argument. It may not be ill-formed;
2063      // see below.
2064      if (DependentTemplateName *DTN
2065            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
2066        // We have a template argument such as \c T::template X, which we
2067        // parsed as a template template argument. However, since we now
2068        // know that we need a non-type template argument, convert this
2069        // template name into an expression.
2070
2071        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2072                                     Arg.getTemplateNameLoc());
2073
2074        Expr *E = DependentScopeDeclRefExpr::Create(Context,
2075                                                    DTN->getQualifier(),
2076                                               Arg.getTemplateQualifierRange(),
2077                                                    NameInfo);
2078
2079        TemplateArgument Result;
2080        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
2081          return true;
2082
2083        Converted.Append(Result);
2084        break;
2085      }
2086
2087      // We have a template argument that actually does refer to a class
2088      // template, template alias, or template template parameter, and
2089      // therefore cannot be a non-type template argument.
2090      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2091        << Arg.getSourceRange();
2092
2093      Diag(Param->getLocation(), diag::note_template_param_here);
2094      return true;
2095
2096    case TemplateArgument::Type: {
2097      // We have a non-type template parameter but the template
2098      // argument is a type.
2099
2100      // C++ [temp.arg]p2:
2101      //   In a template-argument, an ambiguity between a type-id and
2102      //   an expression is resolved to a type-id, regardless of the
2103      //   form of the corresponding template-parameter.
2104      //
2105      // We warn specifically about this case, since it can be rather
2106      // confusing for users.
2107      QualType T = Arg.getArgument().getAsType();
2108      SourceRange SR = Arg.getSourceRange();
2109      if (T->isFunctionType())
2110        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2111      else
2112        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2113      Diag(Param->getLocation(), diag::note_template_param_here);
2114      return true;
2115    }
2116
2117    case TemplateArgument::Pack:
2118      llvm_unreachable("Caller must expand template argument packs");
2119      break;
2120    }
2121
2122    return false;
2123  }
2124
2125
2126  // Check template template parameters.
2127  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2128
2129  // Substitute into the template parameter list of the template
2130  // template parameter, since previously-supplied template arguments
2131  // may appear within the template template parameter.
2132  {
2133    // Set up a template instantiation context.
2134    LocalInstantiationScope Scope(*this);
2135    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2136                               TempParm, Converted.getFlatArguments(),
2137                               Converted.flatSize(),
2138                               SourceRange(TemplateLoc, RAngleLoc));
2139
2140    TemplateArgumentList TemplateArgs(Context, Converted,
2141                                      /*TakeArgs=*/false);
2142    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2143                      SubstDecl(TempParm, CurContext,
2144                                MultiLevelTemplateArgumentList(TemplateArgs)));
2145    if (!TempParm)
2146      return true;
2147
2148    // FIXME: TempParam is leaked.
2149  }
2150
2151  switch (Arg.getArgument().getKind()) {
2152  case TemplateArgument::Null:
2153    assert(false && "Should never see a NULL template argument here");
2154    return true;
2155
2156  case TemplateArgument::Template:
2157    if (CheckTemplateArgument(TempParm, Arg))
2158      return true;
2159
2160    Converted.Append(Arg.getArgument());
2161    break;
2162
2163  case TemplateArgument::Expression:
2164  case TemplateArgument::Type:
2165    // We have a template template parameter but the template
2166    // argument does not refer to a template.
2167    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2168    return true;
2169
2170  case TemplateArgument::Declaration:
2171    llvm_unreachable(
2172                       "Declaration argument with template template parameter");
2173    break;
2174  case TemplateArgument::Integral:
2175    llvm_unreachable(
2176                          "Integral argument with template template parameter");
2177    break;
2178
2179  case TemplateArgument::Pack:
2180    llvm_unreachable("Caller must expand template argument packs");
2181    break;
2182  }
2183
2184  return false;
2185}
2186
2187/// \brief Check that the given template argument list is well-formed
2188/// for specializing the given template.
2189bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2190                                     SourceLocation TemplateLoc,
2191                                const TemplateArgumentListInfo &TemplateArgs,
2192                                     bool PartialTemplateArgs,
2193                                     TemplateArgumentListBuilder &Converted) {
2194  TemplateParameterList *Params = Template->getTemplateParameters();
2195  unsigned NumParams = Params->size();
2196  unsigned NumArgs = TemplateArgs.size();
2197  bool Invalid = false;
2198
2199  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2200
2201  bool HasParameterPack =
2202    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2203
2204  if ((NumArgs > NumParams && !HasParameterPack) ||
2205      (NumArgs < Params->getMinRequiredArguments() &&
2206       !PartialTemplateArgs)) {
2207    // FIXME: point at either the first arg beyond what we can handle,
2208    // or the '>', depending on whether we have too many or too few
2209    // arguments.
2210    SourceRange Range;
2211    if (NumArgs > NumParams)
2212      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2213    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2214      << (NumArgs > NumParams)
2215      << (isa<ClassTemplateDecl>(Template)? 0 :
2216          isa<FunctionTemplateDecl>(Template)? 1 :
2217          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2218      << Template << Range;
2219    Diag(Template->getLocation(), diag::note_template_decl_here)
2220      << Params->getSourceRange();
2221    Invalid = true;
2222  }
2223
2224  // C++ [temp.arg]p1:
2225  //   [...] The type and form of each template-argument specified in
2226  //   a template-id shall match the type and form specified for the
2227  //   corresponding parameter declared by the template in its
2228  //   template-parameter-list.
2229  unsigned ArgIdx = 0;
2230  for (TemplateParameterList::iterator Param = Params->begin(),
2231                                       ParamEnd = Params->end();
2232       Param != ParamEnd; ++Param, ++ArgIdx) {
2233    if (ArgIdx > NumArgs && PartialTemplateArgs)
2234      break;
2235
2236    // If we have a template parameter pack, check every remaining template
2237    // argument against that template parameter pack.
2238    if ((*Param)->isTemplateParameterPack()) {
2239      Converted.BeginPack();
2240      for (; ArgIdx < NumArgs; ++ArgIdx) {
2241        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2242                                  TemplateLoc, RAngleLoc, Converted)) {
2243          Invalid = true;
2244          break;
2245        }
2246      }
2247      Converted.EndPack();
2248      continue;
2249    }
2250
2251    if (ArgIdx < NumArgs) {
2252      // Check the template argument we were given.
2253      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2254                                TemplateLoc, RAngleLoc, Converted))
2255        return true;
2256
2257      continue;
2258    }
2259
2260    // We have a default template argument that we will use.
2261    TemplateArgumentLoc Arg;
2262
2263    // Retrieve the default template argument from the template
2264    // parameter. For each kind of template parameter, we substitute the
2265    // template arguments provided thus far and any "outer" template arguments
2266    // (when the template parameter was part of a nested template) into
2267    // the default argument.
2268    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2269      if (!TTP->hasDefaultArgument()) {
2270        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2271        break;
2272      }
2273
2274      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2275                                                             Template,
2276                                                             TemplateLoc,
2277                                                             RAngleLoc,
2278                                                             TTP,
2279                                                             Converted);
2280      if (!ArgType)
2281        return true;
2282
2283      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2284                                ArgType);
2285    } else if (NonTypeTemplateParmDecl *NTTP
2286                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2287      if (!NTTP->hasDefaultArgument()) {
2288        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2289        break;
2290      }
2291
2292      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2293                                                              TemplateLoc,
2294                                                              RAngleLoc,
2295                                                              NTTP,
2296                                                              Converted);
2297      if (E.isInvalid())
2298        return true;
2299
2300      Expr *Ex = E.takeAs<Expr>();
2301      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2302    } else {
2303      TemplateTemplateParmDecl *TempParm
2304        = cast<TemplateTemplateParmDecl>(*Param);
2305
2306      if (!TempParm->hasDefaultArgument()) {
2307        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2308        break;
2309      }
2310
2311      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2312                                                       TemplateLoc,
2313                                                       RAngleLoc,
2314                                                       TempParm,
2315                                                       Converted);
2316      if (Name.isNull())
2317        return true;
2318
2319      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2320                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2321                  TempParm->getDefaultArgument().getTemplateNameLoc());
2322    }
2323
2324    // Introduce an instantiation record that describes where we are using
2325    // the default template argument.
2326    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2327                                        Converted.getFlatArguments(),
2328                                        Converted.flatSize(),
2329                                        SourceRange(TemplateLoc, RAngleLoc));
2330
2331    // Check the default template argument.
2332    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2333                              RAngleLoc, Converted))
2334      return true;
2335  }
2336
2337  return Invalid;
2338}
2339
2340/// \brief Check a template argument against its corresponding
2341/// template type parameter.
2342///
2343/// This routine implements the semantics of C++ [temp.arg.type]. It
2344/// returns true if an error occurred, and false otherwise.
2345bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2346                                 TypeSourceInfo *ArgInfo) {
2347  assert(ArgInfo && "invalid TypeSourceInfo");
2348  QualType Arg = ArgInfo->getType();
2349
2350  // C++03 [temp.arg.type]p2:
2351  //   A local type, a type with no linkage, an unnamed type or a type
2352  //   compounded from any of these types shall not be used as a
2353  //   template-argument for a template type-parameter.
2354  // C++0x allows these, and even in C++03 we allow them as an extension with
2355  // a warning.
2356  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2357  if (!LangOpts.CPlusPlus0x) {
2358    const TagType *Tag = 0;
2359    if (const EnumType *EnumT = Arg->getAs<EnumType>())
2360      Tag = EnumT;
2361    else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2362      Tag = RecordT;
2363    if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2364      SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
2365      Diag(SR.getBegin(), diag::ext_template_arg_local_type)
2366        << QualType(Tag, 0) << SR;
2367    } else if (Tag && !Tag->getDecl()->getDeclName() &&
2368               !Tag->getDecl()->getTypedefForAnonDecl()) {
2369      Diag(SR.getBegin(), diag::ext_template_arg_unnamed_type) << SR;
2370      Diag(Tag->getDecl()->getLocation(),
2371           diag::note_template_unnamed_type_here);
2372    }
2373  }
2374
2375  if (Arg->isVariablyModifiedType()) {
2376    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
2377  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2378    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2379  }
2380
2381  return false;
2382}
2383
2384/// \brief Checks whether the given template argument is the address
2385/// of an object or function according to C++ [temp.arg.nontype]p1.
2386static bool
2387CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
2388                                               NonTypeTemplateParmDecl *Param,
2389                                               QualType ParamType,
2390                                               Expr *ArgIn,
2391                                               TemplateArgument &Converted) {
2392  bool Invalid = false;
2393  Expr *Arg = ArgIn;
2394  QualType ArgType = Arg->getType();
2395
2396  // See through any implicit casts we added to fix the type.
2397  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2398    Arg = Cast->getSubExpr();
2399
2400  // C++ [temp.arg.nontype]p1:
2401  //
2402  //   A template-argument for a non-type, non-template
2403  //   template-parameter shall be one of: [...]
2404  //
2405  //     -- the address of an object or function with external
2406  //        linkage, including function templates and function
2407  //        template-ids but excluding non-static class members,
2408  //        expressed as & id-expression where the & is optional if
2409  //        the name refers to a function or array, or if the
2410  //        corresponding template-parameter is a reference; or
2411  DeclRefExpr *DRE = 0;
2412
2413  // Ignore (and complain about) any excess parentheses.
2414  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2415    if (!Invalid) {
2416      S.Diag(Arg->getSourceRange().getBegin(),
2417             diag::err_template_arg_extra_parens)
2418        << Arg->getSourceRange();
2419      Invalid = true;
2420    }
2421
2422    Arg = Parens->getSubExpr();
2423  }
2424
2425  bool AddressTaken = false;
2426  SourceLocation AddrOpLoc;
2427  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2428    if (UnOp->getOpcode() == UO_AddrOf) {
2429      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2430      AddressTaken = true;
2431      AddrOpLoc = UnOp->getOperatorLoc();
2432    }
2433  } else
2434    DRE = dyn_cast<DeclRefExpr>(Arg);
2435
2436  if (!DRE) {
2437    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
2438      << Arg->getSourceRange();
2439    S.Diag(Param->getLocation(), diag::note_template_param_here);
2440    return true;
2441  }
2442
2443  // Stop checking the precise nature of the argument if it is value dependent,
2444  // it should be checked when instantiated.
2445  if (Arg->isValueDependent()) {
2446    Converted = TemplateArgument(ArgIn->Retain());
2447    return false;
2448  }
2449
2450  if (!isa<ValueDecl>(DRE->getDecl())) {
2451    S.Diag(Arg->getSourceRange().getBegin(),
2452           diag::err_template_arg_not_object_or_func_form)
2453      << Arg->getSourceRange();
2454    S.Diag(Param->getLocation(), diag::note_template_param_here);
2455    return true;
2456  }
2457
2458  NamedDecl *Entity = 0;
2459
2460  // Cannot refer to non-static data members
2461  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
2462    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2463      << Field << Arg->getSourceRange();
2464    S.Diag(Param->getLocation(), diag::note_template_param_here);
2465    return true;
2466  }
2467
2468  // Cannot refer to non-static member functions
2469  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2470    if (!Method->isStatic()) {
2471      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
2472        << Method << Arg->getSourceRange();
2473      S.Diag(Param->getLocation(), diag::note_template_param_here);
2474      return true;
2475    }
2476
2477  // Functions must have external linkage.
2478  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2479    if (!isExternalLinkage(Func->getLinkage())) {
2480      S.Diag(Arg->getSourceRange().getBegin(),
2481             diag::err_template_arg_function_not_extern)
2482        << Func << Arg->getSourceRange();
2483      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2484        << true;
2485      return true;
2486    }
2487
2488    // Okay: we've named a function with external linkage.
2489    Entity = Func;
2490
2491    // If the template parameter has pointer type, the function decays.
2492    if (ParamType->isPointerType() && !AddressTaken)
2493      ArgType = S.Context.getPointerType(Func->getType());
2494    else if (AddressTaken && ParamType->isReferenceType()) {
2495      // If we originally had an address-of operator, but the
2496      // parameter has reference type, complain and (if things look
2497      // like they will work) drop the address-of operator.
2498      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
2499                                            ParamType.getNonReferenceType())) {
2500        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2501          << ParamType;
2502        S.Diag(Param->getLocation(), diag::note_template_param_here);
2503        return true;
2504      }
2505
2506      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2507        << ParamType
2508        << FixItHint::CreateRemoval(AddrOpLoc);
2509      S.Diag(Param->getLocation(), diag::note_template_param_here);
2510
2511      ArgType = Func->getType();
2512    }
2513  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2514    if (!isExternalLinkage(Var->getLinkage())) {
2515      S.Diag(Arg->getSourceRange().getBegin(),
2516             diag::err_template_arg_object_not_extern)
2517        << Var << Arg->getSourceRange();
2518      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2519        << true;
2520      return true;
2521    }
2522
2523    // A value of reference type is not an object.
2524    if (Var->getType()->isReferenceType()) {
2525      S.Diag(Arg->getSourceRange().getBegin(),
2526             diag::err_template_arg_reference_var)
2527        << Var->getType() << Arg->getSourceRange();
2528      S.Diag(Param->getLocation(), diag::note_template_param_here);
2529      return true;
2530    }
2531
2532    // Okay: we've named an object with external linkage
2533    Entity = Var;
2534
2535    // If the template parameter has pointer type, we must have taken
2536    // the address of this object.
2537    if (ParamType->isReferenceType()) {
2538      if (AddressTaken) {
2539        // If we originally had an address-of operator, but the
2540        // parameter has reference type, complain and (if things look
2541        // like they will work) drop the address-of operator.
2542        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
2543                                            ParamType.getNonReferenceType())) {
2544          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2545            << ParamType;
2546          S.Diag(Param->getLocation(), diag::note_template_param_here);
2547          return true;
2548        }
2549
2550        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
2551          << ParamType
2552          << FixItHint::CreateRemoval(AddrOpLoc);
2553        S.Diag(Param->getLocation(), diag::note_template_param_here);
2554
2555        ArgType = Var->getType();
2556      }
2557    } else if (!AddressTaken && ParamType->isPointerType()) {
2558      if (Var->getType()->isArrayType()) {
2559        // Array-to-pointer decay.
2560        ArgType = S.Context.getArrayDecayedType(Var->getType());
2561      } else {
2562        // If the template parameter has pointer type but the address of
2563        // this object was not taken, complain and (possibly) recover by
2564        // taking the address of the entity.
2565        ArgType = S.Context.getPointerType(Var->getType());
2566        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2567          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2568            << ParamType;
2569          S.Diag(Param->getLocation(), diag::note_template_param_here);
2570          return true;
2571        }
2572
2573        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
2574          << ParamType
2575          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
2576
2577        S.Diag(Param->getLocation(), diag::note_template_param_here);
2578      }
2579    }
2580  } else {
2581    // We found something else, but we don't know specifically what it is.
2582    S.Diag(Arg->getSourceRange().getBegin(),
2583           diag::err_template_arg_not_object_or_func)
2584      << Arg->getSourceRange();
2585    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
2586    return true;
2587  }
2588
2589  if (ParamType->isPointerType() &&
2590      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
2591      S.IsQualificationConversion(ArgType, ParamType)) {
2592    // For pointer-to-object types, qualification conversions are
2593    // permitted.
2594  } else {
2595    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
2596      if (!ParamRef->getPointeeType()->isFunctionType()) {
2597        // C++ [temp.arg.nontype]p5b3:
2598        //   For a non-type template-parameter of type reference to
2599        //   object, no conversions apply. The type referred to by the
2600        //   reference may be more cv-qualified than the (otherwise
2601        //   identical) type of the template- argument. The
2602        //   template-parameter is bound directly to the
2603        //   template-argument, which shall be an lvalue.
2604
2605        // FIXME: Other qualifiers?
2606        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
2607        unsigned ArgQuals = ArgType.getCVRQualifiers();
2608
2609        if ((ParamQuals | ArgQuals) != ParamQuals) {
2610          S.Diag(Arg->getSourceRange().getBegin(),
2611                 diag::err_template_arg_ref_bind_ignores_quals)
2612            << ParamType << Arg->getType()
2613            << Arg->getSourceRange();
2614          S.Diag(Param->getLocation(), diag::note_template_param_here);
2615          return true;
2616        }
2617      }
2618    }
2619
2620    // At this point, the template argument refers to an object or
2621    // function with external linkage. We now need to check whether the
2622    // argument and parameter types are compatible.
2623    if (!S.Context.hasSameUnqualifiedType(ArgType,
2624                                          ParamType.getNonReferenceType())) {
2625      // We can't perform this conversion or binding.
2626      if (ParamType->isReferenceType())
2627        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
2628          << ParamType << Arg->getType() << Arg->getSourceRange();
2629      else
2630        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
2631          << Arg->getType() << ParamType << Arg->getSourceRange();
2632      S.Diag(Param->getLocation(), diag::note_template_param_here);
2633      return true;
2634    }
2635  }
2636
2637  // Create the template argument.
2638  Converted = TemplateArgument(Entity->getCanonicalDecl());
2639  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
2640  return false;
2641}
2642
2643/// \brief Checks whether the given template argument is a pointer to
2644/// member constant according to C++ [temp.arg.nontype]p1.
2645bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2646                                                TemplateArgument &Converted) {
2647  bool Invalid = false;
2648
2649  // See through any implicit casts we added to fix the type.
2650  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2651    Arg = Cast->getSubExpr();
2652
2653  // C++ [temp.arg.nontype]p1:
2654  //
2655  //   A template-argument for a non-type, non-template
2656  //   template-parameter shall be one of: [...]
2657  //
2658  //     -- a pointer to member expressed as described in 5.3.1.
2659  DeclRefExpr *DRE = 0;
2660
2661  // Ignore (and complain about) any excess parentheses.
2662  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2663    if (!Invalid) {
2664      Diag(Arg->getSourceRange().getBegin(),
2665           diag::err_template_arg_extra_parens)
2666        << Arg->getSourceRange();
2667      Invalid = true;
2668    }
2669
2670    Arg = Parens->getSubExpr();
2671  }
2672
2673  // A pointer-to-member constant written &Class::member.
2674  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2675    if (UnOp->getOpcode() == UO_AddrOf) {
2676      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2677      if (DRE && !DRE->getQualifier())
2678        DRE = 0;
2679    }
2680  }
2681  // A constant of pointer-to-member type.
2682  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2683    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2684      if (VD->getType()->isMemberPointerType()) {
2685        if (isa<NonTypeTemplateParmDecl>(VD) ||
2686            (isa<VarDecl>(VD) &&
2687             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2688          if (Arg->isTypeDependent() || Arg->isValueDependent())
2689            Converted = TemplateArgument(Arg->Retain());
2690          else
2691            Converted = TemplateArgument(VD->getCanonicalDecl());
2692          return Invalid;
2693        }
2694      }
2695    }
2696
2697    DRE = 0;
2698  }
2699
2700  if (!DRE)
2701    return Diag(Arg->getSourceRange().getBegin(),
2702                diag::err_template_arg_not_pointer_to_member_form)
2703      << Arg->getSourceRange();
2704
2705  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2706    assert((isa<FieldDecl>(DRE->getDecl()) ||
2707            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2708           "Only non-static member pointers can make it here");
2709
2710    // Okay: this is the address of a non-static member, and therefore
2711    // a member pointer constant.
2712    if (Arg->isTypeDependent() || Arg->isValueDependent())
2713      Converted = TemplateArgument(Arg->Retain());
2714    else
2715      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2716    return Invalid;
2717  }
2718
2719  // We found something else, but we don't know specifically what it is.
2720  Diag(Arg->getSourceRange().getBegin(),
2721       diag::err_template_arg_not_pointer_to_member_form)
2722      << Arg->getSourceRange();
2723  Diag(DRE->getDecl()->getLocation(),
2724       diag::note_template_arg_refers_here);
2725  return true;
2726}
2727
2728/// \brief Check a template argument against its corresponding
2729/// non-type template parameter.
2730///
2731/// This routine implements the semantics of C++ [temp.arg.nontype].
2732/// It returns true if an error occurred, and false otherwise. \p
2733/// InstantiatedParamType is the type of the non-type template
2734/// parameter after it has been instantiated.
2735///
2736/// If no error was detected, Converted receives the converted template argument.
2737bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2738                                 QualType InstantiatedParamType, Expr *&Arg,
2739                                 TemplateArgument &Converted,
2740                                 CheckTemplateArgumentKind CTAK) {
2741  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2742
2743  // If either the parameter has a dependent type or the argument is
2744  // type-dependent, there's nothing we can check now.
2745  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2746    // FIXME: Produce a cloned, canonical expression?
2747    Converted = TemplateArgument(Arg);
2748    return false;
2749  }
2750
2751  // C++ [temp.arg.nontype]p5:
2752  //   The following conversions are performed on each expression used
2753  //   as a non-type template-argument. If a non-type
2754  //   template-argument cannot be converted to the type of the
2755  //   corresponding template-parameter then the program is
2756  //   ill-formed.
2757  //
2758  //     -- for a non-type template-parameter of integral or
2759  //        enumeration type, integral promotions (4.5) and integral
2760  //        conversions (4.7) are applied.
2761  QualType ParamType = InstantiatedParamType;
2762  QualType ArgType = Arg->getType();
2763  if (ParamType->isIntegralOrEnumerationType()) {
2764    // C++ [temp.arg.nontype]p1:
2765    //   A template-argument for a non-type, non-template
2766    //   template-parameter shall be one of:
2767    //
2768    //     -- an integral constant-expression of integral or enumeration
2769    //        type; or
2770    //     -- the name of a non-type template-parameter; or
2771    SourceLocation NonConstantLoc;
2772    llvm::APSInt Value;
2773    if (!ArgType->isIntegralOrEnumerationType()) {
2774      Diag(Arg->getSourceRange().getBegin(),
2775           diag::err_template_arg_not_integral_or_enumeral)
2776        << ArgType << Arg->getSourceRange();
2777      Diag(Param->getLocation(), diag::note_template_param_here);
2778      return true;
2779    } else if (!Arg->isValueDependent() &&
2780               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2781      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2782        << ArgType << Arg->getSourceRange();
2783      return true;
2784    }
2785
2786    // From here on out, all we care about are the unqualified forms
2787    // of the parameter and argument types.
2788    ParamType = ParamType.getUnqualifiedType();
2789    ArgType = ArgType.getUnqualifiedType();
2790
2791    // Try to convert the argument to the parameter's type.
2792    if (Context.hasSameType(ParamType, ArgType)) {
2793      // Okay: no conversion necessary
2794    } else if (CTAK == CTAK_Deduced) {
2795      // C++ [temp.deduct.type]p17:
2796      //   If, in the declaration of a function template with a non-type
2797      //   template-parameter, the non-type template- parameter is used
2798      //   in an expression in the function parameter-list and, if the
2799      //   corresponding template-argument is deduced, the
2800      //   template-argument type shall match the type of the
2801      //   template-parameter exactly, except that a template-argument
2802      //   deduced from an array bound may be of any integral type.
2803      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
2804        << ArgType << ParamType;
2805      Diag(Param->getLocation(), diag::note_template_param_here);
2806      return true;
2807    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2808               !ParamType->isEnumeralType()) {
2809      // This is an integral promotion or conversion.
2810      ImpCastExprToType(Arg, ParamType, CK_IntegralCast);
2811    } else {
2812      // We can't perform this conversion.
2813      Diag(Arg->getSourceRange().getBegin(),
2814           diag::err_template_arg_not_convertible)
2815        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2816      Diag(Param->getLocation(), diag::note_template_param_here);
2817      return true;
2818    }
2819
2820    QualType IntegerType = Context.getCanonicalType(ParamType);
2821    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2822      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2823
2824    if (!Arg->isValueDependent()) {
2825      llvm::APSInt OldValue = Value;
2826
2827      // Coerce the template argument's value to the value it will have
2828      // based on the template parameter's type.
2829      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2830      if (Value.getBitWidth() != AllowedBits)
2831        Value.extOrTrunc(AllowedBits);
2832      Value.setIsSigned(IntegerType->isSignedIntegerType());
2833
2834      // Complain if an unsigned parameter received a negative value.
2835      if (IntegerType->isUnsignedIntegerType()
2836          && (OldValue.isSigned() && OldValue.isNegative())) {
2837        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
2838          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2839          << Arg->getSourceRange();
2840        Diag(Param->getLocation(), diag::note_template_param_here);
2841      }
2842
2843      // Complain if we overflowed the template parameter's type.
2844      unsigned RequiredBits;
2845      if (IntegerType->isUnsignedIntegerType())
2846        RequiredBits = OldValue.getActiveBits();
2847      else if (OldValue.isUnsigned())
2848        RequiredBits = OldValue.getActiveBits() + 1;
2849      else
2850        RequiredBits = OldValue.getMinSignedBits();
2851      if (RequiredBits > AllowedBits) {
2852        Diag(Arg->getSourceRange().getBegin(),
2853             diag::warn_template_arg_too_large)
2854          << OldValue.toString(10) << Value.toString(10) << Param->getType()
2855          << Arg->getSourceRange();
2856        Diag(Param->getLocation(), diag::note_template_param_here);
2857      }
2858    }
2859
2860    // Add the value of this argument to the list of converted
2861    // arguments. We use the bitwidth and signedness of the template
2862    // parameter.
2863    if (Arg->isValueDependent()) {
2864      // The argument is value-dependent. Create a new
2865      // TemplateArgument with the converted expression.
2866      Converted = TemplateArgument(Arg);
2867      return false;
2868    }
2869
2870    Converted = TemplateArgument(Value,
2871                                 ParamType->isEnumeralType() ? ParamType
2872                                                             : IntegerType);
2873    return false;
2874  }
2875
2876  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
2877
2878  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
2879  // from a template argument of type std::nullptr_t to a non-type
2880  // template parameter of type pointer to object, pointer to
2881  // function, or pointer-to-member, respectively.
2882  if (ArgType->isNullPtrType() &&
2883      (ParamType->isPointerType() || ParamType->isMemberPointerType())) {
2884    Converted = TemplateArgument((NamedDecl *)0);
2885    return false;
2886  }
2887
2888  // Handle pointer-to-function, reference-to-function, and
2889  // pointer-to-member-function all in (roughly) the same way.
2890  if (// -- For a non-type template-parameter of type pointer to
2891      //    function, only the function-to-pointer conversion (4.3) is
2892      //    applied. If the template-argument represents a set of
2893      //    overloaded functions (or a pointer to such), the matching
2894      //    function is selected from the set (13.4).
2895      (ParamType->isPointerType() &&
2896       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2897      // -- For a non-type template-parameter of type reference to
2898      //    function, no conversions apply. If the template-argument
2899      //    represents a set of overloaded functions, the matching
2900      //    function is selected from the set (13.4).
2901      (ParamType->isReferenceType() &&
2902       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2903      // -- For a non-type template-parameter of type pointer to
2904      //    member function, no conversions apply. If the
2905      //    template-argument represents a set of overloaded member
2906      //    functions, the matching member function is selected from
2907      //    the set (13.4).
2908      (ParamType->isMemberPointerType() &&
2909       ParamType->getAs<MemberPointerType>()->getPointeeType()
2910         ->isFunctionType())) {
2911
2912    if (Arg->getType() == Context.OverloadTy) {
2913      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
2914                                                                true,
2915                                                                FoundResult)) {
2916        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2917          return true;
2918
2919        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2920        ArgType = Arg->getType();
2921      } else
2922        return true;
2923    }
2924
2925    if (!ParamType->isMemberPointerType())
2926      return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2927                                                            ParamType,
2928                                                            Arg, Converted);
2929
2930    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType())) {
2931      ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
2932    } else if (!Context.hasSameUnqualifiedType(ArgType,
2933                                           ParamType.getNonReferenceType())) {
2934      // We can't perform this conversion.
2935      Diag(Arg->getSourceRange().getBegin(),
2936           diag::err_template_arg_not_convertible)
2937        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2938      Diag(Param->getLocation(), diag::note_template_param_here);
2939      return true;
2940    }
2941
2942    return CheckTemplateArgumentPointerToMember(Arg, Converted);
2943  }
2944
2945  if (ParamType->isPointerType()) {
2946    //   -- for a non-type template-parameter of type pointer to
2947    //      object, qualification conversions (4.4) and the
2948    //      array-to-pointer conversion (4.2) are applied.
2949    // C++0x also allows a value of std::nullptr_t.
2950    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
2951           "Only object pointers allowed here");
2952
2953    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2954                                                          ParamType,
2955                                                          Arg, Converted);
2956  }
2957
2958  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2959    //   -- For a non-type template-parameter of type reference to
2960    //      object, no conversions apply. The type referred to by the
2961    //      reference may be more cv-qualified than the (otherwise
2962    //      identical) type of the template-argument. The
2963    //      template-parameter is bound directly to the
2964    //      template-argument, which must be an lvalue.
2965    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
2966           "Only object references allowed here");
2967
2968    if (Arg->getType() == Context.OverloadTy) {
2969      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
2970                                                 ParamRefType->getPointeeType(),
2971                                                                true,
2972                                                                FoundResult)) {
2973        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2974          return true;
2975
2976        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
2977        ArgType = Arg->getType();
2978      } else
2979        return true;
2980    }
2981
2982    return CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
2983                                                          ParamType,
2984                                                          Arg, Converted);
2985  }
2986
2987  //     -- For a non-type template-parameter of type pointer to data
2988  //        member, qualification conversions (4.4) are applied.
2989  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2990
2991  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2992    // Types match exactly: nothing more to do here.
2993  } else if (IsQualificationConversion(ArgType, ParamType)) {
2994    ImpCastExprToType(Arg, ParamType, CK_NoOp, CastCategory(Arg));
2995  } else {
2996    // We can't perform this conversion.
2997    Diag(Arg->getSourceRange().getBegin(),
2998         diag::err_template_arg_not_convertible)
2999      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3000    Diag(Param->getLocation(), diag::note_template_param_here);
3001    return true;
3002  }
3003
3004  return CheckTemplateArgumentPointerToMember(Arg, Converted);
3005}
3006
3007/// \brief Check a template argument against its corresponding
3008/// template template parameter.
3009///
3010/// This routine implements the semantics of C++ [temp.arg.template].
3011/// It returns true if an error occurred, and false otherwise.
3012bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
3013                                 const TemplateArgumentLoc &Arg) {
3014  TemplateName Name = Arg.getArgument().getAsTemplate();
3015  TemplateDecl *Template = Name.getAsTemplateDecl();
3016  if (!Template) {
3017    // Any dependent template name is fine.
3018    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
3019    return false;
3020  }
3021
3022  // C++ [temp.arg.template]p1:
3023  //   A template-argument for a template template-parameter shall be
3024  //   the name of a class template, expressed as id-expression. Only
3025  //   primary class templates are considered when matching the
3026  //   template template argument with the corresponding parameter;
3027  //   partial specializations are not considered even if their
3028  //   parameter lists match that of the template template parameter.
3029  //
3030  // Note that we also allow template template parameters here, which
3031  // will happen when we are dealing with, e.g., class template
3032  // partial specializations.
3033  if (!isa<ClassTemplateDecl>(Template) &&
3034      !isa<TemplateTemplateParmDecl>(Template)) {
3035    assert(isa<FunctionTemplateDecl>(Template) &&
3036           "Only function templates are possible here");
3037    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
3038    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
3039      << Template;
3040  }
3041
3042  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
3043                                         Param->getTemplateParameters(),
3044                                         true,
3045                                         TPL_TemplateTemplateArgumentMatch,
3046                                         Arg.getLocation());
3047}
3048
3049/// \brief Given a non-type template argument that refers to a
3050/// declaration and the type of its corresponding non-type template
3051/// parameter, produce an expression that properly refers to that
3052/// declaration.
3053ExprResult
3054Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
3055                                              QualType ParamType,
3056                                              SourceLocation Loc) {
3057  assert(Arg.getKind() == TemplateArgument::Declaration &&
3058         "Only declaration template arguments permitted here");
3059  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
3060
3061  if (VD->getDeclContext()->isRecord() &&
3062      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
3063    // If the value is a class member, we might have a pointer-to-member.
3064    // Determine whether the non-type template template parameter is of
3065    // pointer-to-member type. If so, we need to build an appropriate
3066    // expression for a pointer-to-member, since a "normal" DeclRefExpr
3067    // would refer to the member itself.
3068    if (ParamType->isMemberPointerType()) {
3069      QualType ClassType
3070        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
3071      NestedNameSpecifier *Qualifier
3072        = NestedNameSpecifier::Create(Context, 0, false,
3073                                      ClassType.getTypePtr());
3074      CXXScopeSpec SS;
3075      SS.setScopeRep(Qualifier);
3076      ExprResult RefExpr = BuildDeclRefExpr(VD,
3077                                           VD->getType().getNonReferenceType(),
3078                                                  Loc,
3079                                                  &SS);
3080      if (RefExpr.isInvalid())
3081        return ExprError();
3082
3083      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3084
3085      // We might need to perform a trailing qualification conversion, since
3086      // the element type on the parameter could be more qualified than the
3087      // element type in the expression we constructed.
3088      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
3089                                    ParamType.getUnqualifiedType())) {
3090        Expr *RefE = RefExpr.takeAs<Expr>();
3091        ImpCastExprToType(RefE, ParamType.getUnqualifiedType(), CK_NoOp);
3092        RefExpr = Owned(RefE);
3093      }
3094
3095      assert(!RefExpr.isInvalid() &&
3096             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
3097                                 ParamType.getUnqualifiedType()));
3098      return move(RefExpr);
3099    }
3100  }
3101
3102  QualType T = VD->getType().getNonReferenceType();
3103  if (ParamType->isPointerType()) {
3104    // When the non-type template parameter is a pointer, take the
3105    // address of the declaration.
3106    ExprResult RefExpr = BuildDeclRefExpr(VD, T, Loc);
3107    if (RefExpr.isInvalid())
3108      return ExprError();
3109
3110    if (T->isFunctionType() || T->isArrayType()) {
3111      // Decay functions and arrays.
3112      Expr *RefE = (Expr *)RefExpr.get();
3113      DefaultFunctionArrayConversion(RefE);
3114      if (RefE != RefExpr.get()) {
3115        RefExpr.release();
3116        RefExpr = Owned(RefE);
3117      }
3118
3119      return move(RefExpr);
3120    }
3121
3122    // Take the address of everything else
3123    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
3124  }
3125
3126  // If the non-type template parameter has reference type, qualify the
3127  // resulting declaration reference with the extra qualifiers on the
3128  // type that the reference refers to.
3129  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>())
3130    T = Context.getQualifiedType(T, TargetRef->getPointeeType().getQualifiers());
3131
3132  return BuildDeclRefExpr(VD, T, Loc);
3133}
3134
3135/// \brief Construct a new expression that refers to the given
3136/// integral template argument with the given source-location
3137/// information.
3138///
3139/// This routine takes care of the mapping from an integral template
3140/// argument (which may have any integral type) to the appropriate
3141/// literal value.
3142ExprResult
3143Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
3144                                                  SourceLocation Loc) {
3145  assert(Arg.getKind() == TemplateArgument::Integral &&
3146         "Operation is only value for integral template arguments");
3147  QualType T = Arg.getIntegralType();
3148  if (T->isCharType() || T->isWideCharType())
3149    return Owned(new (Context) CharacterLiteral(
3150                                             Arg.getAsIntegral()->getZExtValue(),
3151                                             T->isWideCharType(),
3152                                             T,
3153                                             Loc));
3154  if (T->isBooleanType())
3155    return Owned(new (Context) CXXBoolLiteralExpr(
3156                                            Arg.getAsIntegral()->getBoolValue(),
3157                                            T,
3158                                            Loc));
3159
3160  return Owned(IntegerLiteral::Create(Context, *Arg.getAsIntegral(), T, Loc));
3161}
3162
3163
3164/// \brief Determine whether the given template parameter lists are
3165/// equivalent.
3166///
3167/// \param New  The new template parameter list, typically written in the
3168/// source code as part of a new template declaration.
3169///
3170/// \param Old  The old template parameter list, typically found via
3171/// name lookup of the template declared with this template parameter
3172/// list.
3173///
3174/// \param Complain  If true, this routine will produce a diagnostic if
3175/// the template parameter lists are not equivalent.
3176///
3177/// \param Kind describes how we are to match the template parameter lists.
3178///
3179/// \param TemplateArgLoc If this source location is valid, then we
3180/// are actually checking the template parameter list of a template
3181/// argument (New) against the template parameter list of its
3182/// corresponding template template parameter (Old). We produce
3183/// slightly different diagnostics in this scenario.
3184///
3185/// \returns True if the template parameter lists are equal, false
3186/// otherwise.
3187bool
3188Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
3189                                     TemplateParameterList *Old,
3190                                     bool Complain,
3191                                     TemplateParameterListEqualKind Kind,
3192                                     SourceLocation TemplateArgLoc) {
3193  if (Old->size() != New->size()) {
3194    if (Complain) {
3195      unsigned NextDiag = diag::err_template_param_list_different_arity;
3196      if (TemplateArgLoc.isValid()) {
3197        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3198        NextDiag = diag::note_template_param_list_different_arity;
3199      }
3200      Diag(New->getTemplateLoc(), NextDiag)
3201          << (New->size() > Old->size())
3202          << (Kind != TPL_TemplateMatch)
3203          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
3204      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
3205        << (Kind != TPL_TemplateMatch)
3206        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
3207    }
3208
3209    return false;
3210  }
3211
3212  for (TemplateParameterList::iterator OldParm = Old->begin(),
3213         OldParmEnd = Old->end(), NewParm = New->begin();
3214       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
3215    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
3216      if (Complain) {
3217        unsigned NextDiag = diag::err_template_param_different_kind;
3218        if (TemplateArgLoc.isValid()) {
3219          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
3220          NextDiag = diag::note_template_param_different_kind;
3221        }
3222        Diag((*NewParm)->getLocation(), NextDiag)
3223          << (Kind != TPL_TemplateMatch);
3224        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
3225          << (Kind != TPL_TemplateMatch);
3226      }
3227      return false;
3228    }
3229
3230    if (TemplateTypeParmDecl *OldTTP
3231                                  = dyn_cast<TemplateTypeParmDecl>(*OldParm)) {
3232      // Template type parameters are equivalent if either both are template
3233      // type parameter packs or neither are (since we know we're at the same
3234      // index).
3235      TemplateTypeParmDecl *NewTTP = cast<TemplateTypeParmDecl>(*NewParm);
3236      if (OldTTP->isParameterPack() != NewTTP->isParameterPack()) {
3237        // FIXME: Implement the rules in C++0x [temp.arg.template]p5 that
3238        // allow one to match a template parameter pack in the template
3239        // parameter list of a template template parameter to one or more
3240        // template parameters in the template parameter list of the
3241        // corresponding template template argument.
3242        if (Complain) {
3243          unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
3244          if (TemplateArgLoc.isValid()) {
3245            Diag(TemplateArgLoc,
3246                 diag::err_template_arg_template_params_mismatch);
3247            NextDiag = diag::note_template_parameter_pack_non_pack;
3248          }
3249          Diag(NewTTP->getLocation(), NextDiag)
3250            << 0 << NewTTP->isParameterPack();
3251          Diag(OldTTP->getLocation(), diag::note_template_parameter_pack_here)
3252            << 0 << OldTTP->isParameterPack();
3253        }
3254        return false;
3255      }
3256    } else if (NonTypeTemplateParmDecl *OldNTTP
3257                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
3258      // The types of non-type template parameters must agree.
3259      NonTypeTemplateParmDecl *NewNTTP
3260        = cast<NonTypeTemplateParmDecl>(*NewParm);
3261
3262      // If we are matching a template template argument to a template
3263      // template parameter and one of the non-type template parameter types
3264      // is dependent, then we must wait until template instantiation time
3265      // to actually compare the arguments.
3266      if (Kind == TPL_TemplateTemplateArgumentMatch &&
3267          (OldNTTP->getType()->isDependentType() ||
3268           NewNTTP->getType()->isDependentType()))
3269        continue;
3270
3271      if (Context.getCanonicalType(OldNTTP->getType()) !=
3272            Context.getCanonicalType(NewNTTP->getType())) {
3273        if (Complain) {
3274          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
3275          if (TemplateArgLoc.isValid()) {
3276            Diag(TemplateArgLoc,
3277                 diag::err_template_arg_template_params_mismatch);
3278            NextDiag = diag::note_template_nontype_parm_different_type;
3279          }
3280          Diag(NewNTTP->getLocation(), NextDiag)
3281            << NewNTTP->getType()
3282            << (Kind != TPL_TemplateMatch);
3283          Diag(OldNTTP->getLocation(),
3284               diag::note_template_nontype_parm_prev_declaration)
3285            << OldNTTP->getType();
3286        }
3287        return false;
3288      }
3289    } else {
3290      // The template parameter lists of template template
3291      // parameters must agree.
3292      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
3293             "Only template template parameters handled here");
3294      TemplateTemplateParmDecl *OldTTP
3295        = cast<TemplateTemplateParmDecl>(*OldParm);
3296      TemplateTemplateParmDecl *NewTTP
3297        = cast<TemplateTemplateParmDecl>(*NewParm);
3298      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
3299                                          OldTTP->getTemplateParameters(),
3300                                          Complain,
3301              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
3302                                          TemplateArgLoc))
3303        return false;
3304    }
3305  }
3306
3307  return true;
3308}
3309
3310/// \brief Check whether a template can be declared within this scope.
3311///
3312/// If the template declaration is valid in this scope, returns
3313/// false. Otherwise, issues a diagnostic and returns true.
3314bool
3315Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
3316  // Find the nearest enclosing declaration scope.
3317  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3318         (S->getFlags() & Scope::TemplateParamScope) != 0)
3319    S = S->getParent();
3320
3321  // C++ [temp]p2:
3322  //   A template-declaration can appear only as a namespace scope or
3323  //   class scope declaration.
3324  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
3325  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
3326      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
3327    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
3328             << TemplateParams->getSourceRange();
3329
3330  while (Ctx && isa<LinkageSpecDecl>(Ctx))
3331    Ctx = Ctx->getParent();
3332
3333  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
3334    return false;
3335
3336  return Diag(TemplateParams->getTemplateLoc(),
3337              diag::err_template_outside_namespace_or_class_scope)
3338    << TemplateParams->getSourceRange();
3339}
3340
3341/// \brief Determine what kind of template specialization the given declaration
3342/// is.
3343static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
3344  if (!D)
3345    return TSK_Undeclared;
3346
3347  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
3348    return Record->getTemplateSpecializationKind();
3349  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
3350    return Function->getTemplateSpecializationKind();
3351  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3352    return Var->getTemplateSpecializationKind();
3353
3354  return TSK_Undeclared;
3355}
3356
3357/// \brief Check whether a specialization is well-formed in the current
3358/// context.
3359///
3360/// This routine determines whether a template specialization can be declared
3361/// in the current context (C++ [temp.expl.spec]p2).
3362///
3363/// \param S the semantic analysis object for which this check is being
3364/// performed.
3365///
3366/// \param Specialized the entity being specialized or instantiated, which
3367/// may be a kind of template (class template, function template, etc.) or
3368/// a member of a class template (member function, static data member,
3369/// member class).
3370///
3371/// \param PrevDecl the previous declaration of this entity, if any.
3372///
3373/// \param Loc the location of the explicit specialization or instantiation of
3374/// this entity.
3375///
3376/// \param IsPartialSpecialization whether this is a partial specialization of
3377/// a class template.
3378///
3379/// \returns true if there was an error that we cannot recover from, false
3380/// otherwise.
3381static bool CheckTemplateSpecializationScope(Sema &S,
3382                                             NamedDecl *Specialized,
3383                                             NamedDecl *PrevDecl,
3384                                             SourceLocation Loc,
3385                                             bool IsPartialSpecialization) {
3386  // Keep these "kind" numbers in sync with the %select statements in the
3387  // various diagnostics emitted by this routine.
3388  int EntityKind = 0;
3389  bool isTemplateSpecialization = false;
3390  if (isa<ClassTemplateDecl>(Specialized)) {
3391    EntityKind = IsPartialSpecialization? 1 : 0;
3392    isTemplateSpecialization = true;
3393  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3394    EntityKind = 2;
3395    isTemplateSpecialization = true;
3396  } else if (isa<CXXMethodDecl>(Specialized))
3397    EntityKind = 3;
3398  else if (isa<VarDecl>(Specialized))
3399    EntityKind = 4;
3400  else if (isa<RecordDecl>(Specialized))
3401    EntityKind = 5;
3402  else {
3403    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3404    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3405    return true;
3406  }
3407
3408  // C++ [temp.expl.spec]p2:
3409  //   An explicit specialization shall be declared in the namespace
3410  //   of which the template is a member, or, for member templates, in
3411  //   the namespace of which the enclosing class or enclosing class
3412  //   template is a member. An explicit specialization of a member
3413  //   function, member class or static data member of a class
3414  //   template shall be declared in the namespace of which the class
3415  //   template is a member. Such a declaration may also be a
3416  //   definition. If the declaration is not a definition, the
3417  //   specialization may be defined later in the name- space in which
3418  //   the explicit specialization was declared, or in a namespace
3419  //   that encloses the one in which the explicit specialization was
3420  //   declared.
3421  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
3422    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3423      << Specialized;
3424    return true;
3425  }
3426
3427  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3428    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3429      << Specialized;
3430    return true;
3431  }
3432
3433  // C++ [temp.class.spec]p6:
3434  //   A class template partial specialization may be declared or redeclared
3435  //   in any namespace scope in which its definition may be defined (14.5.1
3436  //   and 14.5.2).
3437  bool ComplainedAboutScope = false;
3438  DeclContext *SpecializedContext
3439    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3440  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3441  if ((!PrevDecl ||
3442       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3443       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3444    // C++ [temp.exp.spec]p2:
3445    //   An explicit specialization shall be declared in the namespace of which
3446    //   the template is a member, or, for member templates, in the namespace
3447    //   of which the enclosing class or enclosing class template is a member.
3448    //   An explicit specialization of a member function, member class or
3449    //   static data member of a class template shall be declared in the
3450    //   namespace of which the class template is a member.
3451    //
3452    // C++0x [temp.expl.spec]p2:
3453    //   An explicit specialization shall be declared in a namespace enclosing
3454    //   the specialized template.
3455    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext) &&
3456        !(S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext))) {
3457      bool IsCPlusPlus0xExtension
3458        = !S.getLangOptions().CPlusPlus0x && DC->Encloses(SpecializedContext);
3459      if (isa<TranslationUnitDecl>(SpecializedContext))
3460        S.Diag(Loc, IsCPlusPlus0xExtension
3461                      ? diag::ext_template_spec_decl_out_of_scope_global
3462                      : diag::err_template_spec_decl_out_of_scope_global)
3463          << EntityKind << Specialized;
3464      else if (isa<NamespaceDecl>(SpecializedContext))
3465        S.Diag(Loc, IsCPlusPlus0xExtension
3466                      ? diag::ext_template_spec_decl_out_of_scope
3467                      : diag::err_template_spec_decl_out_of_scope)
3468          << EntityKind << Specialized
3469          << cast<NamedDecl>(SpecializedContext);
3470
3471      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3472      ComplainedAboutScope = true;
3473    }
3474  }
3475
3476  // Make sure that this redeclaration (or definition) occurs in an enclosing
3477  // namespace.
3478  // Note that HandleDeclarator() performs this check for explicit
3479  // specializations of function templates, static data members, and member
3480  // functions, so we skip the check here for those kinds of entities.
3481  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3482  // Should we refactor that check, so that it occurs later?
3483  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3484      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3485        isa<FunctionDecl>(Specialized))) {
3486    if (isa<TranslationUnitDecl>(SpecializedContext))
3487      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3488        << EntityKind << Specialized;
3489    else if (isa<NamespaceDecl>(SpecializedContext))
3490      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3491        << EntityKind << Specialized
3492        << cast<NamedDecl>(SpecializedContext);
3493
3494    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3495  }
3496
3497  // FIXME: check for specialization-after-instantiation errors and such.
3498
3499  return false;
3500}
3501
3502/// \brief Check the non-type template arguments of a class template
3503/// partial specialization according to C++ [temp.class.spec]p9.
3504///
3505/// \param TemplateParams the template parameters of the primary class
3506/// template.
3507///
3508/// \param TemplateArg the template arguments of the class template
3509/// partial specialization.
3510///
3511/// \param MirrorsPrimaryTemplate will be set true if the class
3512/// template partial specialization arguments are identical to the
3513/// implicit template arguments of the primary template. This is not
3514/// necessarily an error (C++0x), and it is left to the caller to diagnose
3515/// this condition when it is an error.
3516///
3517/// \returns true if there was an error, false otherwise.
3518bool Sema::CheckClassTemplatePartialSpecializationArgs(
3519                                        TemplateParameterList *TemplateParams,
3520                             const TemplateArgumentListBuilder &TemplateArgs,
3521                                        bool &MirrorsPrimaryTemplate) {
3522  // FIXME: the interface to this function will have to change to
3523  // accommodate variadic templates.
3524  MirrorsPrimaryTemplate = true;
3525
3526  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3527
3528  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3529    // Determine whether the template argument list of the partial
3530    // specialization is identical to the implicit argument list of
3531    // the primary template. The caller may need to diagnostic this as
3532    // an error per C++ [temp.class.spec]p9b3.
3533    if (MirrorsPrimaryTemplate) {
3534      if (TemplateTypeParmDecl *TTP
3535            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3536        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3537              Context.getCanonicalType(ArgList[I].getAsType()))
3538          MirrorsPrimaryTemplate = false;
3539      } else if (TemplateTemplateParmDecl *TTP
3540                   = dyn_cast<TemplateTemplateParmDecl>(
3541                                                 TemplateParams->getParam(I))) {
3542        TemplateName Name = ArgList[I].getAsTemplate();
3543        TemplateTemplateParmDecl *ArgDecl
3544          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3545        if (!ArgDecl ||
3546            ArgDecl->getIndex() != TTP->getIndex() ||
3547            ArgDecl->getDepth() != TTP->getDepth())
3548          MirrorsPrimaryTemplate = false;
3549      }
3550    }
3551
3552    NonTypeTemplateParmDecl *Param
3553      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3554    if (!Param) {
3555      continue;
3556    }
3557
3558    Expr *ArgExpr = ArgList[I].getAsExpr();
3559    if (!ArgExpr) {
3560      MirrorsPrimaryTemplate = false;
3561      continue;
3562    }
3563
3564    // C++ [temp.class.spec]p8:
3565    //   A non-type argument is non-specialized if it is the name of a
3566    //   non-type parameter. All other non-type arguments are
3567    //   specialized.
3568    //
3569    // Below, we check the two conditions that only apply to
3570    // specialized non-type arguments, so skip any non-specialized
3571    // arguments.
3572    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3573      if (NonTypeTemplateParmDecl *NTTP
3574            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3575        if (MirrorsPrimaryTemplate &&
3576            (Param->getIndex() != NTTP->getIndex() ||
3577             Param->getDepth() != NTTP->getDepth()))
3578          MirrorsPrimaryTemplate = false;
3579
3580        continue;
3581      }
3582
3583    // C++ [temp.class.spec]p9:
3584    //   Within the argument list of a class template partial
3585    //   specialization, the following restrictions apply:
3586    //     -- A partially specialized non-type argument expression
3587    //        shall not involve a template parameter of the partial
3588    //        specialization except when the argument expression is a
3589    //        simple identifier.
3590    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3591      Diag(ArgExpr->getLocStart(),
3592           diag::err_dependent_non_type_arg_in_partial_spec)
3593        << ArgExpr->getSourceRange();
3594      return true;
3595    }
3596
3597    //     -- The type of a template parameter corresponding to a
3598    //        specialized non-type argument shall not be dependent on a
3599    //        parameter of the specialization.
3600    if (Param->getType()->isDependentType()) {
3601      Diag(ArgExpr->getLocStart(),
3602           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3603        << Param->getType()
3604        << ArgExpr->getSourceRange();
3605      Diag(Param->getLocation(), diag::note_template_param_here);
3606      return true;
3607    }
3608
3609    MirrorsPrimaryTemplate = false;
3610  }
3611
3612  return false;
3613}
3614
3615/// \brief Retrieve the previous declaration of the given declaration.
3616static NamedDecl *getPreviousDecl(NamedDecl *ND) {
3617  if (VarDecl *VD = dyn_cast<VarDecl>(ND))
3618    return VD->getPreviousDeclaration();
3619  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
3620    return FD->getPreviousDeclaration();
3621  if (TagDecl *TD = dyn_cast<TagDecl>(ND))
3622    return TD->getPreviousDeclaration();
3623  if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
3624    return TD->getPreviousDeclaration();
3625  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
3626    return FTD->getPreviousDeclaration();
3627  if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(ND))
3628    return CTD->getPreviousDeclaration();
3629  return 0;
3630}
3631
3632DeclResult
3633Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3634                                       TagUseKind TUK,
3635                                       SourceLocation KWLoc,
3636                                       CXXScopeSpec &SS,
3637                                       TemplateTy TemplateD,
3638                                       SourceLocation TemplateNameLoc,
3639                                       SourceLocation LAngleLoc,
3640                                       ASTTemplateArgsPtr TemplateArgsIn,
3641                                       SourceLocation RAngleLoc,
3642                                       AttributeList *Attr,
3643                               MultiTemplateParamsArg TemplateParameterLists) {
3644  assert(TUK != TUK_Reference && "References are not specializations");
3645
3646  // Find the class template we're specializing
3647  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3648  ClassTemplateDecl *ClassTemplate
3649    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3650
3651  if (!ClassTemplate) {
3652    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3653      << (Name.getAsTemplateDecl() &&
3654          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3655    return true;
3656  }
3657
3658  bool isExplicitSpecialization = false;
3659  bool isPartialSpecialization = false;
3660
3661  // Check the validity of the template headers that introduce this
3662  // template.
3663  // FIXME: We probably shouldn't complain about these headers for
3664  // friend declarations.
3665  bool Invalid = false;
3666  TemplateParameterList *TemplateParams
3667    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3668                        (TemplateParameterList**)TemplateParameterLists.get(),
3669                                              TemplateParameterLists.size(),
3670                                              TUK == TUK_Friend,
3671                                              isExplicitSpecialization,
3672                                              Invalid);
3673  if (Invalid)
3674    return true;
3675
3676  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
3677  if (TemplateParams)
3678    --NumMatchedTemplateParamLists;
3679
3680  if (TemplateParams && TemplateParams->size() > 0) {
3681    isPartialSpecialization = true;
3682
3683    // C++ [temp.class.spec]p10:
3684    //   The template parameter list of a specialization shall not
3685    //   contain default template argument values.
3686    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3687      Decl *Param = TemplateParams->getParam(I);
3688      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3689        if (TTP->hasDefaultArgument()) {
3690          Diag(TTP->getDefaultArgumentLoc(),
3691               diag::err_default_arg_in_partial_spec);
3692          TTP->removeDefaultArgument();
3693        }
3694      } else if (NonTypeTemplateParmDecl *NTTP
3695                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3696        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3697          Diag(NTTP->getDefaultArgumentLoc(),
3698               diag::err_default_arg_in_partial_spec)
3699            << DefArg->getSourceRange();
3700          NTTP->removeDefaultArgument();
3701        }
3702      } else {
3703        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3704        if (TTP->hasDefaultArgument()) {
3705          Diag(TTP->getDefaultArgument().getLocation(),
3706               diag::err_default_arg_in_partial_spec)
3707            << TTP->getDefaultArgument().getSourceRange();
3708          TTP->removeDefaultArgument();
3709        }
3710      }
3711    }
3712  } else if (TemplateParams) {
3713    if (TUK == TUK_Friend)
3714      Diag(KWLoc, diag::err_template_spec_friend)
3715        << FixItHint::CreateRemoval(
3716                                SourceRange(TemplateParams->getTemplateLoc(),
3717                                            TemplateParams->getRAngleLoc()))
3718        << SourceRange(LAngleLoc, RAngleLoc);
3719    else
3720      isExplicitSpecialization = true;
3721  } else if (TUK != TUK_Friend) {
3722    Diag(KWLoc, diag::err_template_spec_needs_header)
3723      << FixItHint::CreateInsertion(KWLoc, "template<> ");
3724    isExplicitSpecialization = true;
3725  }
3726
3727  // Check that the specialization uses the same tag kind as the
3728  // original template.
3729  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3730  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
3731  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3732                                    Kind, KWLoc,
3733                                    *ClassTemplate->getIdentifier())) {
3734    Diag(KWLoc, diag::err_use_with_wrong_tag)
3735      << ClassTemplate
3736      << FixItHint::CreateReplacement(KWLoc,
3737                            ClassTemplate->getTemplatedDecl()->getKindName());
3738    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3739         diag::note_previous_use);
3740    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3741  }
3742
3743  // Translate the parser's template argument list in our AST format.
3744  TemplateArgumentListInfo TemplateArgs;
3745  TemplateArgs.setLAngleLoc(LAngleLoc);
3746  TemplateArgs.setRAngleLoc(RAngleLoc);
3747  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3748
3749  // Check that the template argument list is well-formed for this
3750  // template.
3751  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3752                                        TemplateArgs.size());
3753  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3754                                TemplateArgs, false, Converted))
3755    return true;
3756
3757  assert((Converted.structuredSize() ==
3758            ClassTemplate->getTemplateParameters()->size()) &&
3759         "Converted template argument list is too short!");
3760
3761  // Find the class template (partial) specialization declaration that
3762  // corresponds to these arguments.
3763  if (isPartialSpecialization) {
3764    bool MirrorsPrimaryTemplate;
3765    if (CheckClassTemplatePartialSpecializationArgs(
3766                                         ClassTemplate->getTemplateParameters(),
3767                                         Converted, MirrorsPrimaryTemplate))
3768      return true;
3769
3770    if (MirrorsPrimaryTemplate) {
3771      // C++ [temp.class.spec]p9b3:
3772      //
3773      //   -- The argument list of the specialization shall not be identical
3774      //      to the implicit argument list of the primary template.
3775      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3776        << (TUK == TUK_Definition)
3777        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
3778      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3779                                ClassTemplate->getIdentifier(),
3780                                TemplateNameLoc,
3781                                Attr,
3782                                TemplateParams,
3783                                AS_none);
3784    }
3785
3786    // FIXME: Diagnose friend partial specializations
3787
3788    if (!Name.isDependent() &&
3789        !TemplateSpecializationType::anyDependentTemplateArguments(
3790                                             TemplateArgs.getArgumentArray(),
3791                                                         TemplateArgs.size())) {
3792      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3793        << ClassTemplate->getDeclName();
3794      isPartialSpecialization = false;
3795    }
3796  }
3797
3798  void *InsertPos = 0;
3799  ClassTemplateSpecializationDecl *PrevDecl = 0;
3800
3801  if (isPartialSpecialization)
3802    // FIXME: Template parameter list matters, too
3803    PrevDecl
3804      = ClassTemplate->findPartialSpecialization(Converted.getFlatArguments(),
3805                                                 Converted.flatSize(),
3806                                                 InsertPos);
3807  else
3808    PrevDecl
3809      = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
3810                                          Converted.flatSize(), InsertPos);
3811
3812  ClassTemplateSpecializationDecl *Specialization = 0;
3813
3814  // Check whether we can declare a class template specialization in
3815  // the current scope.
3816  if (TUK != TUK_Friend &&
3817      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3818                                       TemplateNameLoc,
3819                                       isPartialSpecialization))
3820    return true;
3821
3822  // The canonical type
3823  QualType CanonType;
3824  if (PrevDecl &&
3825      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3826               TUK == TUK_Friend)) {
3827    // Since the only prior class template specialization with these
3828    // arguments was referenced but not declared, or we're only
3829    // referencing this specialization as a friend, reuse that
3830    // declaration node as our own, updating its source location to
3831    // reflect our new declaration.
3832    Specialization = PrevDecl;
3833    Specialization->setLocation(TemplateNameLoc);
3834    PrevDecl = 0;
3835    CanonType = Context.getTypeDeclType(Specialization);
3836  } else if (isPartialSpecialization) {
3837    // Build the canonical type that describes the converted template
3838    // arguments of the class template partial specialization.
3839    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3840    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3841                                                  Converted.getFlatArguments(),
3842                                                  Converted.flatSize());
3843
3844    // Create a new class template partial specialization declaration node.
3845    ClassTemplatePartialSpecializationDecl *PrevPartial
3846      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3847    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
3848                            : ClassTemplate->getNextPartialSpecSequenceNumber();
3849    ClassTemplatePartialSpecializationDecl *Partial
3850      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
3851                                             ClassTemplate->getDeclContext(),
3852                                                       TemplateNameLoc,
3853                                                       TemplateParams,
3854                                                       ClassTemplate,
3855                                                       Converted,
3856                                                       TemplateArgs,
3857                                                       CanonType,
3858                                                       PrevPartial,
3859                                                       SequenceNumber);
3860    SetNestedNameSpecifier(Partial, SS);
3861    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
3862      Partial->setTemplateParameterListsInfo(Context,
3863                                             NumMatchedTemplateParamLists,
3864                    (TemplateParameterList**) TemplateParameterLists.release());
3865    }
3866
3867    if (!PrevPartial)
3868      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
3869    Specialization = Partial;
3870
3871    // If we are providing an explicit specialization of a member class
3872    // template specialization, make a note of that.
3873    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3874      PrevPartial->setMemberSpecialization();
3875
3876    // Check that all of the template parameters of the class template
3877    // partial specialization are deducible from the template
3878    // arguments. If not, this class template partial specialization
3879    // will never be used.
3880    llvm::SmallVector<bool, 8> DeducibleParams;
3881    DeducibleParams.resize(TemplateParams->size());
3882    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3883                               TemplateParams->getDepth(),
3884                               DeducibleParams);
3885    unsigned NumNonDeducible = 0;
3886    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3887      if (!DeducibleParams[I])
3888        ++NumNonDeducible;
3889
3890    if (NumNonDeducible) {
3891      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3892        << (NumNonDeducible > 1)
3893        << SourceRange(TemplateNameLoc, RAngleLoc);
3894      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3895        if (!DeducibleParams[I]) {
3896          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3897          if (Param->getDeclName())
3898            Diag(Param->getLocation(),
3899                 diag::note_partial_spec_unused_parameter)
3900              << Param->getDeclName();
3901          else
3902            Diag(Param->getLocation(),
3903                 diag::note_partial_spec_unused_parameter)
3904              << "<anonymous>";
3905        }
3906      }
3907    }
3908  } else {
3909    // Create a new class template specialization declaration node for
3910    // this explicit specialization or friend declaration.
3911    Specialization
3912      = ClassTemplateSpecializationDecl::Create(Context, Kind,
3913                                             ClassTemplate->getDeclContext(),
3914                                                TemplateNameLoc,
3915                                                ClassTemplate,
3916                                                Converted,
3917                                                PrevDecl);
3918    SetNestedNameSpecifier(Specialization, SS);
3919    if (NumMatchedTemplateParamLists > 0 && SS.isSet()) {
3920      Specialization->setTemplateParameterListsInfo(Context,
3921                                                  NumMatchedTemplateParamLists,
3922                    (TemplateParameterList**) TemplateParameterLists.release());
3923    }
3924
3925    if (!PrevDecl)
3926      ClassTemplate->AddSpecialization(Specialization, InsertPos);
3927
3928    CanonType = Context.getTypeDeclType(Specialization);
3929  }
3930
3931  // C++ [temp.expl.spec]p6:
3932  //   If a template, a member template or the member of a class template is
3933  //   explicitly specialized then that specialization shall be declared
3934  //   before the first use of that specialization that would cause an implicit
3935  //   instantiation to take place, in every translation unit in which such a
3936  //   use occurs; no diagnostic is required.
3937  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3938    bool Okay = false;
3939    for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
3940      // Is there any previous explicit specialization declaration?
3941      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
3942        Okay = true;
3943        break;
3944      }
3945    }
3946
3947    if (!Okay) {
3948      SourceRange Range(TemplateNameLoc, RAngleLoc);
3949      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3950        << Context.getTypeDeclType(Specialization) << Range;
3951
3952      Diag(PrevDecl->getPointOfInstantiation(),
3953           diag::note_instantiation_required_here)
3954        << (PrevDecl->getTemplateSpecializationKind()
3955                                                != TSK_ImplicitInstantiation);
3956      return true;
3957    }
3958  }
3959
3960  // If this is not a friend, note that this is an explicit specialization.
3961  if (TUK != TUK_Friend)
3962    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3963
3964  // Check that this isn't a redefinition of this specialization.
3965  if (TUK == TUK_Definition) {
3966    if (RecordDecl *Def = Specialization->getDefinition()) {
3967      SourceRange Range(TemplateNameLoc, RAngleLoc);
3968      Diag(TemplateNameLoc, diag::err_redefinition)
3969        << Context.getTypeDeclType(Specialization) << Range;
3970      Diag(Def->getLocation(), diag::note_previous_definition);
3971      Specialization->setInvalidDecl();
3972      return true;
3973    }
3974  }
3975
3976  // Build the fully-sugared type for this class template
3977  // specialization as the user wrote in the specialization
3978  // itself. This means that we'll pretty-print the type retrieved
3979  // from the specialization's declaration the way that the user
3980  // actually wrote the specialization, rather than formatting the
3981  // name based on the "canonical" representation used to store the
3982  // template arguments in the specialization.
3983  TypeSourceInfo *WrittenTy
3984    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
3985                                                TemplateArgs, CanonType);
3986  if (TUK != TUK_Friend) {
3987    Specialization->setTypeAsWritten(WrittenTy);
3988    if (TemplateParams)
3989      Specialization->setTemplateKeywordLoc(TemplateParams->getTemplateLoc());
3990  }
3991  TemplateArgsIn.release();
3992
3993  // C++ [temp.expl.spec]p9:
3994  //   A template explicit specialization is in the scope of the
3995  //   namespace in which the template was defined.
3996  //
3997  // We actually implement this paragraph where we set the semantic
3998  // context (in the creation of the ClassTemplateSpecializationDecl),
3999  // but we also maintain the lexical context where the actual
4000  // definition occurs.
4001  Specialization->setLexicalDeclContext(CurContext);
4002
4003  // We may be starting the definition of this specialization.
4004  if (TUK == TUK_Definition)
4005    Specialization->startDefinition();
4006
4007  if (TUK == TUK_Friend) {
4008    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
4009                                            TemplateNameLoc,
4010                                            WrittenTy,
4011                                            /*FIXME:*/KWLoc);
4012    Friend->setAccess(AS_public);
4013    CurContext->addDecl(Friend);
4014  } else {
4015    // Add the specialization into its lexical context, so that it can
4016    // be seen when iterating through the list of declarations in that
4017    // context. However, specializations are not found by name lookup.
4018    CurContext->addDecl(Specialization);
4019  }
4020  return Specialization;
4021}
4022
4023Decl *Sema::ActOnTemplateDeclarator(Scope *S,
4024                              MultiTemplateParamsArg TemplateParameterLists,
4025                                    Declarator &D) {
4026  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
4027}
4028
4029Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
4030                               MultiTemplateParamsArg TemplateParameterLists,
4031                                            Declarator &D) {
4032  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4033  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4034         "Not a function declarator!");
4035  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4036
4037  if (FTI.hasPrototype) {
4038    // FIXME: Diagnose arguments without names in C.
4039  }
4040
4041  Scope *ParentScope = FnBodyScope->getParent();
4042
4043  Decl *DP = HandleDeclarator(ParentScope, D,
4044                              move(TemplateParameterLists),
4045                              /*IsFunctionDefinition=*/true);
4046  if (FunctionTemplateDecl *FunctionTemplate
4047        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
4048    return ActOnStartOfFunctionDef(FnBodyScope,
4049                                   FunctionTemplate->getTemplatedDecl());
4050  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
4051    return ActOnStartOfFunctionDef(FnBodyScope, Function);
4052  return 0;
4053}
4054
4055/// \brief Strips various properties off an implicit instantiation
4056/// that has just been explicitly specialized.
4057static void StripImplicitInstantiation(NamedDecl *D) {
4058  D->dropAttrs();
4059
4060  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
4061    FD->setInlineSpecified(false);
4062  }
4063}
4064
4065/// \brief Diagnose cases where we have an explicit template specialization
4066/// before/after an explicit template instantiation, producing diagnostics
4067/// for those cases where they are required and determining whether the
4068/// new specialization/instantiation will have any effect.
4069///
4070/// \param NewLoc the location of the new explicit specialization or
4071/// instantiation.
4072///
4073/// \param NewTSK the kind of the new explicit specialization or instantiation.
4074///
4075/// \param PrevDecl the previous declaration of the entity.
4076///
4077/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
4078///
4079/// \param PrevPointOfInstantiation if valid, indicates where the previus
4080/// declaration was instantiated (either implicitly or explicitly).
4081///
4082/// \param HasNoEffect will be set to true to indicate that the new
4083/// specialization or instantiation has no effect and should be ignored.
4084///
4085/// \returns true if there was an error that should prevent the introduction of
4086/// the new declaration into the AST, false otherwise.
4087bool
4088Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
4089                                             TemplateSpecializationKind NewTSK,
4090                                             NamedDecl *PrevDecl,
4091                                             TemplateSpecializationKind PrevTSK,
4092                                        SourceLocation PrevPointOfInstantiation,
4093                                             bool &HasNoEffect) {
4094  HasNoEffect = false;
4095
4096  switch (NewTSK) {
4097  case TSK_Undeclared:
4098  case TSK_ImplicitInstantiation:
4099    assert(false && "Don't check implicit instantiations here");
4100    return false;
4101
4102  case TSK_ExplicitSpecialization:
4103    switch (PrevTSK) {
4104    case TSK_Undeclared:
4105    case TSK_ExplicitSpecialization:
4106      // Okay, we're just specializing something that is either already
4107      // explicitly specialized or has merely been mentioned without any
4108      // instantiation.
4109      return false;
4110
4111    case TSK_ImplicitInstantiation:
4112      if (PrevPointOfInstantiation.isInvalid()) {
4113        // The declaration itself has not actually been instantiated, so it is
4114        // still okay to specialize it.
4115        StripImplicitInstantiation(PrevDecl);
4116        return false;
4117      }
4118      // Fall through
4119
4120    case TSK_ExplicitInstantiationDeclaration:
4121    case TSK_ExplicitInstantiationDefinition:
4122      assert((PrevTSK == TSK_ImplicitInstantiation ||
4123              PrevPointOfInstantiation.isValid()) &&
4124             "Explicit instantiation without point of instantiation?");
4125
4126      // C++ [temp.expl.spec]p6:
4127      //   If a template, a member template or the member of a class template
4128      //   is explicitly specialized then that specialization shall be declared
4129      //   before the first use of that specialization that would cause an
4130      //   implicit instantiation to take place, in every translation unit in
4131      //   which such a use occurs; no diagnostic is required.
4132      for (NamedDecl *Prev = PrevDecl; Prev; Prev = getPreviousDecl(Prev)) {
4133        // Is there any previous explicit specialization declaration?
4134        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
4135          return false;
4136      }
4137
4138      Diag(NewLoc, diag::err_specialization_after_instantiation)
4139        << PrevDecl;
4140      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
4141        << (PrevTSK != TSK_ImplicitInstantiation);
4142
4143      return true;
4144    }
4145    break;
4146
4147  case TSK_ExplicitInstantiationDeclaration:
4148    switch (PrevTSK) {
4149    case TSK_ExplicitInstantiationDeclaration:
4150      // This explicit instantiation declaration is redundant (that's okay).
4151      HasNoEffect = true;
4152      return false;
4153
4154    case TSK_Undeclared:
4155    case TSK_ImplicitInstantiation:
4156      // We're explicitly instantiating something that may have already been
4157      // implicitly instantiated; that's fine.
4158      return false;
4159
4160    case TSK_ExplicitSpecialization:
4161      // C++0x [temp.explicit]p4:
4162      //   For a given set of template parameters, if an explicit instantiation
4163      //   of a template appears after a declaration of an explicit
4164      //   specialization for that template, the explicit instantiation has no
4165      //   effect.
4166      HasNoEffect = true;
4167      return false;
4168
4169    case TSK_ExplicitInstantiationDefinition:
4170      // C++0x [temp.explicit]p10:
4171      //   If an entity is the subject of both an explicit instantiation
4172      //   declaration and an explicit instantiation definition in the same
4173      //   translation unit, the definition shall follow the declaration.
4174      Diag(NewLoc,
4175           diag::err_explicit_instantiation_declaration_after_definition);
4176      Diag(PrevPointOfInstantiation,
4177           diag::note_explicit_instantiation_definition_here);
4178      assert(PrevPointOfInstantiation.isValid() &&
4179             "Explicit instantiation without point of instantiation?");
4180      HasNoEffect = true;
4181      return false;
4182    }
4183    break;
4184
4185  case TSK_ExplicitInstantiationDefinition:
4186    switch (PrevTSK) {
4187    case TSK_Undeclared:
4188    case TSK_ImplicitInstantiation:
4189      // We're explicitly instantiating something that may have already been
4190      // implicitly instantiated; that's fine.
4191      return false;
4192
4193    case TSK_ExplicitSpecialization:
4194      // C++ DR 259, C++0x [temp.explicit]p4:
4195      //   For a given set of template parameters, if an explicit
4196      //   instantiation of a template appears after a declaration of
4197      //   an explicit specialization for that template, the explicit
4198      //   instantiation has no effect.
4199      //
4200      // In C++98/03 mode, we only give an extension warning here, because it
4201      // is not harmful to try to explicitly instantiate something that
4202      // has been explicitly specialized.
4203      if (!getLangOptions().CPlusPlus0x) {
4204        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
4205          << PrevDecl;
4206        Diag(PrevDecl->getLocation(),
4207             diag::note_previous_template_specialization);
4208      }
4209      HasNoEffect = true;
4210      return false;
4211
4212    case TSK_ExplicitInstantiationDeclaration:
4213      // We're explicity instantiating a definition for something for which we
4214      // were previously asked to suppress instantiations. That's fine.
4215      return false;
4216
4217    case TSK_ExplicitInstantiationDefinition:
4218      // C++0x [temp.spec]p5:
4219      //   For a given template and a given set of template-arguments,
4220      //     - an explicit instantiation definition shall appear at most once
4221      //       in a program,
4222      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
4223        << PrevDecl;
4224      Diag(PrevPointOfInstantiation,
4225           diag::note_previous_explicit_instantiation);
4226      HasNoEffect = true;
4227      return false;
4228    }
4229    break;
4230  }
4231
4232  assert(false && "Missing specialization/instantiation case?");
4233
4234  return false;
4235}
4236
4237/// \brief Perform semantic analysis for the given dependent function
4238/// template specialization.  The only possible way to get a dependent
4239/// function template specialization is with a friend declaration,
4240/// like so:
4241///
4242///   template <class T> void foo(T);
4243///   template <class T> class A {
4244///     friend void foo<>(T);
4245///   };
4246///
4247/// There really isn't any useful analysis we can do here, so we
4248/// just store the information.
4249bool
4250Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
4251                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
4252                                                   LookupResult &Previous) {
4253  // Remove anything from Previous that isn't a function template in
4254  // the correct context.
4255  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4256  LookupResult::Filter F = Previous.makeFilter();
4257  while (F.hasNext()) {
4258    NamedDecl *D = F.next()->getUnderlyingDecl();
4259    if (!isa<FunctionTemplateDecl>(D) ||
4260        !FDLookupContext->InEnclosingNamespaceSetOf(
4261                              D->getDeclContext()->getRedeclContext()))
4262      F.erase();
4263  }
4264  F.done();
4265
4266  // Should this be diagnosed here?
4267  if (Previous.empty()) return true;
4268
4269  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
4270                                         ExplicitTemplateArgs);
4271  return false;
4272}
4273
4274/// \brief Perform semantic analysis for the given function template
4275/// specialization.
4276///
4277/// This routine performs all of the semantic analysis required for an
4278/// explicit function template specialization. On successful completion,
4279/// the function declaration \p FD will become a function template
4280/// specialization.
4281///
4282/// \param FD the function declaration, which will be updated to become a
4283/// function template specialization.
4284///
4285/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
4286/// if any. Note that this may be valid info even when 0 arguments are
4287/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
4288/// as it anyway contains info on the angle brackets locations.
4289///
4290/// \param PrevDecl the set of declarations that may be specialized by
4291/// this function specialization.
4292bool
4293Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
4294                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
4295                                          LookupResult &Previous) {
4296  // The set of function template specializations that could match this
4297  // explicit function template specialization.
4298  UnresolvedSet<8> Candidates;
4299
4300  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
4301  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4302         I != E; ++I) {
4303    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
4304    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
4305      // Only consider templates found within the same semantic lookup scope as
4306      // FD.
4307      if (!FDLookupContext->InEnclosingNamespaceSetOf(
4308                                Ovl->getDeclContext()->getRedeclContext()))
4309        continue;
4310
4311      // C++ [temp.expl.spec]p11:
4312      //   A trailing template-argument can be left unspecified in the
4313      //   template-id naming an explicit function template specialization
4314      //   provided it can be deduced from the function argument type.
4315      // Perform template argument deduction to determine whether we may be
4316      // specializing this template.
4317      // FIXME: It is somewhat wasteful to build
4318      TemplateDeductionInfo Info(Context, FD->getLocation());
4319      FunctionDecl *Specialization = 0;
4320      if (TemplateDeductionResult TDK
4321            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
4322                                      FD->getType(),
4323                                      Specialization,
4324                                      Info)) {
4325        // FIXME: Template argument deduction failed; record why it failed, so
4326        // that we can provide nifty diagnostics.
4327        (void)TDK;
4328        continue;
4329      }
4330
4331      // Record this candidate.
4332      Candidates.addDecl(Specialization, I.getAccess());
4333    }
4334  }
4335
4336  // Find the most specialized function template.
4337  UnresolvedSetIterator Result
4338    = getMostSpecialized(Candidates.begin(), Candidates.end(),
4339                         TPOC_Other, FD->getLocation(),
4340                  PDiag(diag::err_function_template_spec_no_match)
4341                    << FD->getDeclName(),
4342                  PDiag(diag::err_function_template_spec_ambiguous)
4343                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
4344                  PDiag(diag::note_function_template_spec_matched));
4345  if (Result == Candidates.end())
4346    return true;
4347
4348  // Ignore access information;  it doesn't figure into redeclaration checking.
4349  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4350  Specialization->setLocation(FD->getLocation());
4351
4352  // FIXME: Check if the prior specialization has a point of instantiation.
4353  // If so, we have run afoul of .
4354
4355  // If this is a friend declaration, then we're not really declaring
4356  // an explicit specialization.
4357  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
4358
4359  // Check the scope of this explicit specialization.
4360  if (!isFriend &&
4361      CheckTemplateSpecializationScope(*this,
4362                                       Specialization->getPrimaryTemplate(),
4363                                       Specialization, FD->getLocation(),
4364                                       false))
4365    return true;
4366
4367  // C++ [temp.expl.spec]p6:
4368  //   If a template, a member template or the member of a class template is
4369  //   explicitly specialized then that specialization shall be declared
4370  //   before the first use of that specialization that would cause an implicit
4371  //   instantiation to take place, in every translation unit in which such a
4372  //   use occurs; no diagnostic is required.
4373  FunctionTemplateSpecializationInfo *SpecInfo
4374    = Specialization->getTemplateSpecializationInfo();
4375  assert(SpecInfo && "Function template specialization info missing?");
4376
4377  bool HasNoEffect = false;
4378  if (!isFriend &&
4379      CheckSpecializationInstantiationRedecl(FD->getLocation(),
4380                                             TSK_ExplicitSpecialization,
4381                                             Specialization,
4382                                   SpecInfo->getTemplateSpecializationKind(),
4383                                         SpecInfo->getPointOfInstantiation(),
4384                                             HasNoEffect))
4385    return true;
4386
4387  // Mark the prior declaration as an explicit specialization, so that later
4388  // clients know that this is an explicit specialization.
4389  if (!isFriend) {
4390    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
4391    MarkUnusedFileScopedDecl(Specialization);
4392  }
4393
4394  // Turn the given function declaration into a function template
4395  // specialization, with the template arguments from the previous
4396  // specialization.
4397  // Take copies of (semantic and syntactic) template argument lists.
4398  const TemplateArgumentList* TemplArgs = new (Context)
4399    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
4400  const TemplateArgumentListInfo* TemplArgsAsWritten = ExplicitTemplateArgs
4401    ? new (Context) TemplateArgumentListInfo(*ExplicitTemplateArgs) : 0;
4402  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
4403                                        TemplArgs, /*InsertPos=*/0,
4404                                    SpecInfo->getTemplateSpecializationKind(),
4405                                        TemplArgsAsWritten);
4406
4407  // The "previous declaration" for this function template specialization is
4408  // the prior function template specialization.
4409  Previous.clear();
4410  Previous.addDecl(Specialization);
4411  return false;
4412}
4413
4414/// \brief Perform semantic analysis for the given non-template member
4415/// specialization.
4416///
4417/// This routine performs all of the semantic analysis required for an
4418/// explicit member function specialization. On successful completion,
4419/// the function declaration \p FD will become a member function
4420/// specialization.
4421///
4422/// \param Member the member declaration, which will be updated to become a
4423/// specialization.
4424///
4425/// \param Previous the set of declarations, one of which may be specialized
4426/// by this function specialization;  the set will be modified to contain the
4427/// redeclared member.
4428bool
4429Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
4430  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
4431
4432  // Try to find the member we are instantiating.
4433  NamedDecl *Instantiation = 0;
4434  NamedDecl *InstantiatedFrom = 0;
4435  MemberSpecializationInfo *MSInfo = 0;
4436
4437  if (Previous.empty()) {
4438    // Nowhere to look anyway.
4439  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
4440    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4441           I != E; ++I) {
4442      NamedDecl *D = (*I)->getUnderlyingDecl();
4443      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4444        if (Context.hasSameType(Function->getType(), Method->getType())) {
4445          Instantiation = Method;
4446          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
4447          MSInfo = Method->getMemberSpecializationInfo();
4448          break;
4449        }
4450      }
4451    }
4452  } else if (isa<VarDecl>(Member)) {
4453    VarDecl *PrevVar;
4454    if (Previous.isSingleResult() &&
4455        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4456      if (PrevVar->isStaticDataMember()) {
4457        Instantiation = PrevVar;
4458        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4459        MSInfo = PrevVar->getMemberSpecializationInfo();
4460      }
4461  } else if (isa<RecordDecl>(Member)) {
4462    CXXRecordDecl *PrevRecord;
4463    if (Previous.isSingleResult() &&
4464        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4465      Instantiation = PrevRecord;
4466      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4467      MSInfo = PrevRecord->getMemberSpecializationInfo();
4468    }
4469  }
4470
4471  if (!Instantiation) {
4472    // There is no previous declaration that matches. Since member
4473    // specializations are always out-of-line, the caller will complain about
4474    // this mismatch later.
4475    return false;
4476  }
4477
4478  // If this is a friend, just bail out here before we start turning
4479  // things into explicit specializations.
4480  if (Member->getFriendObjectKind() != Decl::FOK_None) {
4481    // Preserve instantiation information.
4482    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
4483      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
4484                                      cast<CXXMethodDecl>(InstantiatedFrom),
4485        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
4486    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
4487      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4488                                      cast<CXXRecordDecl>(InstantiatedFrom),
4489        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
4490    }
4491
4492    Previous.clear();
4493    Previous.addDecl(Instantiation);
4494    return false;
4495  }
4496
4497  // Make sure that this is a specialization of a member.
4498  if (!InstantiatedFrom) {
4499    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4500      << Member;
4501    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4502    return true;
4503  }
4504
4505  // C++ [temp.expl.spec]p6:
4506  //   If a template, a member template or the member of a class template is
4507  //   explicitly specialized then that spe- cialization shall be declared
4508  //   before the first use of that specialization that would cause an implicit
4509  //   instantiation to take place, in every translation unit in which such a
4510  //   use occurs; no diagnostic is required.
4511  assert(MSInfo && "Member specialization info missing?");
4512
4513  bool HasNoEffect = false;
4514  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
4515                                             TSK_ExplicitSpecialization,
4516                                             Instantiation,
4517                                     MSInfo->getTemplateSpecializationKind(),
4518                                           MSInfo->getPointOfInstantiation(),
4519                                             HasNoEffect))
4520    return true;
4521
4522  // Check the scope of this explicit specialization.
4523  if (CheckTemplateSpecializationScope(*this,
4524                                       InstantiatedFrom,
4525                                       Instantiation, Member->getLocation(),
4526                                       false))
4527    return true;
4528
4529  // Note that this is an explicit instantiation of a member.
4530  // the original declaration to note that it is an explicit specialization
4531  // (if it was previously an implicit instantiation). This latter step
4532  // makes bookkeeping easier.
4533  if (isa<FunctionDecl>(Member)) {
4534    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4535    if (InstantiationFunction->getTemplateSpecializationKind() ==
4536          TSK_ImplicitInstantiation) {
4537      InstantiationFunction->setTemplateSpecializationKind(
4538                                                  TSK_ExplicitSpecialization);
4539      InstantiationFunction->setLocation(Member->getLocation());
4540    }
4541
4542    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4543                                        cast<CXXMethodDecl>(InstantiatedFrom),
4544                                                  TSK_ExplicitSpecialization);
4545    MarkUnusedFileScopedDecl(InstantiationFunction);
4546  } else if (isa<VarDecl>(Member)) {
4547    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4548    if (InstantiationVar->getTemplateSpecializationKind() ==
4549          TSK_ImplicitInstantiation) {
4550      InstantiationVar->setTemplateSpecializationKind(
4551                                                  TSK_ExplicitSpecialization);
4552      InstantiationVar->setLocation(Member->getLocation());
4553    }
4554
4555    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4556                                                cast<VarDecl>(InstantiatedFrom),
4557                                                TSK_ExplicitSpecialization);
4558    MarkUnusedFileScopedDecl(InstantiationVar);
4559  } else {
4560    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4561    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4562    if (InstantiationClass->getTemplateSpecializationKind() ==
4563          TSK_ImplicitInstantiation) {
4564      InstantiationClass->setTemplateSpecializationKind(
4565                                                   TSK_ExplicitSpecialization);
4566      InstantiationClass->setLocation(Member->getLocation());
4567    }
4568
4569    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4570                                        cast<CXXRecordDecl>(InstantiatedFrom),
4571                                                   TSK_ExplicitSpecialization);
4572  }
4573
4574  // Save the caller the trouble of having to figure out which declaration
4575  // this specialization matches.
4576  Previous.clear();
4577  Previous.addDecl(Instantiation);
4578  return false;
4579}
4580
4581/// \brief Check the scope of an explicit instantiation.
4582///
4583/// \returns true if a serious error occurs, false otherwise.
4584static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4585                                            SourceLocation InstLoc,
4586                                            bool WasQualifiedName) {
4587  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
4588  DeclContext *CurContext = S.CurContext->getRedeclContext();
4589
4590  if (CurContext->isRecord()) {
4591    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
4592      << D;
4593    return true;
4594  }
4595
4596  // C++0x [temp.explicit]p2:
4597  //   An explicit instantiation shall appear in an enclosing namespace of its
4598  //   template.
4599  //
4600  // This is DR275, which we do not retroactively apply to C++98/03.
4601  if (S.getLangOptions().CPlusPlus0x &&
4602      !CurContext->Encloses(OrigContext)) {
4603    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext))
4604      S.Diag(InstLoc,
4605             S.getLangOptions().CPlusPlus0x?
4606                 diag::err_explicit_instantiation_out_of_scope
4607               : diag::warn_explicit_instantiation_out_of_scope_0x)
4608        << D << NS;
4609    else
4610      S.Diag(InstLoc,
4611             S.getLangOptions().CPlusPlus0x?
4612                 diag::err_explicit_instantiation_must_be_global
4613               : diag::warn_explicit_instantiation_out_of_scope_0x)
4614        << D;
4615    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4616    return false;
4617  }
4618
4619  // C++0x [temp.explicit]p2:
4620  //   If the name declared in the explicit instantiation is an unqualified
4621  //   name, the explicit instantiation shall appear in the namespace where
4622  //   its template is declared or, if that namespace is inline (7.3.1), any
4623  //   namespace from its enclosing namespace set.
4624  if (WasQualifiedName)
4625    return false;
4626
4627  if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
4628    return false;
4629
4630  S.Diag(InstLoc,
4631         S.getLangOptions().CPlusPlus0x?
4632             diag::err_explicit_instantiation_unqualified_wrong_namespace
4633           : diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
4634    << D << OrigContext;
4635  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4636  return false;
4637}
4638
4639/// \brief Determine whether the given scope specifier has a template-id in it.
4640static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4641  if (!SS.isSet())
4642    return false;
4643
4644  // C++0x [temp.explicit]p2:
4645  //   If the explicit instantiation is for a member function, a member class
4646  //   or a static data member of a class template specialization, the name of
4647  //   the class template specialization in the qualified-id for the member
4648  //   name shall be a simple-template-id.
4649  //
4650  // C++98 has the same restriction, just worded differently.
4651  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4652       NNS; NNS = NNS->getPrefix())
4653    if (Type *T = NNS->getAsType())
4654      if (isa<TemplateSpecializationType>(T))
4655        return true;
4656
4657  return false;
4658}
4659
4660// Explicit instantiation of a class template specialization
4661DeclResult
4662Sema::ActOnExplicitInstantiation(Scope *S,
4663                                 SourceLocation ExternLoc,
4664                                 SourceLocation TemplateLoc,
4665                                 unsigned TagSpec,
4666                                 SourceLocation KWLoc,
4667                                 const CXXScopeSpec &SS,
4668                                 TemplateTy TemplateD,
4669                                 SourceLocation TemplateNameLoc,
4670                                 SourceLocation LAngleLoc,
4671                                 ASTTemplateArgsPtr TemplateArgsIn,
4672                                 SourceLocation RAngleLoc,
4673                                 AttributeList *Attr) {
4674  // Find the class template we're specializing
4675  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4676  ClassTemplateDecl *ClassTemplate
4677    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4678
4679  // Check that the specialization uses the same tag kind as the
4680  // original template.
4681  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4682  assert(Kind != TTK_Enum &&
4683         "Invalid enum tag in class template explicit instantiation!");
4684  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4685                                    Kind, KWLoc,
4686                                    *ClassTemplate->getIdentifier())) {
4687    Diag(KWLoc, diag::err_use_with_wrong_tag)
4688      << ClassTemplate
4689      << FixItHint::CreateReplacement(KWLoc,
4690                            ClassTemplate->getTemplatedDecl()->getKindName());
4691    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4692         diag::note_previous_use);
4693    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4694  }
4695
4696  // C++0x [temp.explicit]p2:
4697  //   There are two forms of explicit instantiation: an explicit instantiation
4698  //   definition and an explicit instantiation declaration. An explicit
4699  //   instantiation declaration begins with the extern keyword. [...]
4700  TemplateSpecializationKind TSK
4701    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4702                           : TSK_ExplicitInstantiationDeclaration;
4703
4704  // Translate the parser's template argument list in our AST format.
4705  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4706  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4707
4708  // Check that the template argument list is well-formed for this
4709  // template.
4710  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4711                                        TemplateArgs.size());
4712  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4713                                TemplateArgs, false, Converted))
4714    return true;
4715
4716  assert((Converted.structuredSize() ==
4717            ClassTemplate->getTemplateParameters()->size()) &&
4718         "Converted template argument list is too short!");
4719
4720  // Find the class template specialization declaration that
4721  // corresponds to these arguments.
4722  void *InsertPos = 0;
4723  ClassTemplateSpecializationDecl *PrevDecl
4724    = ClassTemplate->findSpecialization(Converted.getFlatArguments(),
4725                                        Converted.flatSize(), InsertPos);
4726
4727  TemplateSpecializationKind PrevDecl_TSK
4728    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
4729
4730  // C++0x [temp.explicit]p2:
4731  //   [...] An explicit instantiation shall appear in an enclosing
4732  //   namespace of its template. [...]
4733  //
4734  // This is C++ DR 275.
4735  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4736                                      SS.isSet()))
4737    return true;
4738
4739  ClassTemplateSpecializationDecl *Specialization = 0;
4740
4741  bool ReusedDecl = false;
4742  bool HasNoEffect = false;
4743  if (PrevDecl) {
4744    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4745                                               PrevDecl, PrevDecl_TSK,
4746                                            PrevDecl->getPointOfInstantiation(),
4747                                               HasNoEffect))
4748      return PrevDecl;
4749
4750    // Even though HasNoEffect == true means that this explicit instantiation
4751    // has no effect on semantics, we go on to put its syntax in the AST.
4752
4753    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
4754        PrevDecl_TSK == TSK_Undeclared) {
4755      // Since the only prior class template specialization with these
4756      // arguments was referenced but not declared, reuse that
4757      // declaration node as our own, updating the source location
4758      // for the template name to reflect our new declaration.
4759      // (Other source locations will be updated later.)
4760      Specialization = PrevDecl;
4761      Specialization->setLocation(TemplateNameLoc);
4762      PrevDecl = 0;
4763      ReusedDecl = true;
4764    }
4765  }
4766
4767  if (!Specialization) {
4768    // Create a new class template specialization declaration node for
4769    // this explicit specialization.
4770    Specialization
4771      = ClassTemplateSpecializationDecl::Create(Context, Kind,
4772                                             ClassTemplate->getDeclContext(),
4773                                                TemplateNameLoc,
4774                                                ClassTemplate,
4775                                                Converted, PrevDecl);
4776    SetNestedNameSpecifier(Specialization, SS);
4777
4778    if (!HasNoEffect && !PrevDecl) {
4779      // Insert the new specialization.
4780      ClassTemplate->AddSpecialization(Specialization, InsertPos);
4781    }
4782  }
4783
4784  // Build the fully-sugared type for this explicit instantiation as
4785  // the user wrote in the explicit instantiation itself. This means
4786  // that we'll pretty-print the type retrieved from the
4787  // specialization's declaration the way that the user actually wrote
4788  // the explicit instantiation, rather than formatting the name based
4789  // on the "canonical" representation used to store the template
4790  // arguments in the specialization.
4791  TypeSourceInfo *WrittenTy
4792    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
4793                                                TemplateArgs,
4794                                  Context.getTypeDeclType(Specialization));
4795  Specialization->setTypeAsWritten(WrittenTy);
4796  TemplateArgsIn.release();
4797
4798  // Set source locations for keywords.
4799  Specialization->setExternLoc(ExternLoc);
4800  Specialization->setTemplateKeywordLoc(TemplateLoc);
4801
4802  // Add the explicit instantiation into its lexical context. However,
4803  // since explicit instantiations are never found by name lookup, we
4804  // just put it into the declaration context directly.
4805  Specialization->setLexicalDeclContext(CurContext);
4806  CurContext->addDecl(Specialization);
4807
4808  // Syntax is now OK, so return if it has no other effect on semantics.
4809  if (HasNoEffect) {
4810    // Set the template specialization kind.
4811    Specialization->setTemplateSpecializationKind(TSK);
4812    return Specialization;
4813  }
4814
4815  // C++ [temp.explicit]p3:
4816  //   A definition of a class template or class member template
4817  //   shall be in scope at the point of the explicit instantiation of
4818  //   the class template or class member template.
4819  //
4820  // This check comes when we actually try to perform the
4821  // instantiation.
4822  ClassTemplateSpecializationDecl *Def
4823    = cast_or_null<ClassTemplateSpecializationDecl>(
4824                                              Specialization->getDefinition());
4825  if (!Def)
4826    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4827  else if (TSK == TSK_ExplicitInstantiationDefinition) {
4828    MarkVTableUsed(TemplateNameLoc, Specialization, true);
4829    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
4830  }
4831
4832  // Instantiate the members of this class template specialization.
4833  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4834                                       Specialization->getDefinition());
4835  if (Def) {
4836    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
4837
4838    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
4839    // TSK_ExplicitInstantiationDefinition
4840    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
4841        TSK == TSK_ExplicitInstantiationDefinition)
4842      Def->setTemplateSpecializationKind(TSK);
4843
4844    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4845  }
4846
4847  // Set the template specialization kind.
4848  Specialization->setTemplateSpecializationKind(TSK);
4849  return Specialization;
4850}
4851
4852// Explicit instantiation of a member class of a class template.
4853DeclResult
4854Sema::ActOnExplicitInstantiation(Scope *S,
4855                                 SourceLocation ExternLoc,
4856                                 SourceLocation TemplateLoc,
4857                                 unsigned TagSpec,
4858                                 SourceLocation KWLoc,
4859                                 CXXScopeSpec &SS,
4860                                 IdentifierInfo *Name,
4861                                 SourceLocation NameLoc,
4862                                 AttributeList *Attr) {
4863
4864  bool Owned = false;
4865  bool IsDependent = false;
4866  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
4867                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
4868                        MultiTemplateParamsArg(*this, 0, 0),
4869                        Owned, IsDependent);
4870  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4871
4872  if (!TagD)
4873    return true;
4874
4875  TagDecl *Tag = cast<TagDecl>(TagD);
4876  if (Tag->isEnum()) {
4877    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4878      << Context.getTypeDeclType(Tag);
4879    return true;
4880  }
4881
4882  if (Tag->isInvalidDecl())
4883    return true;
4884
4885  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4886  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4887  if (!Pattern) {
4888    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4889      << Context.getTypeDeclType(Record);
4890    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4891    return true;
4892  }
4893
4894  // C++0x [temp.explicit]p2:
4895  //   If the explicit instantiation is for a class or member class, the
4896  //   elaborated-type-specifier in the declaration shall include a
4897  //   simple-template-id.
4898  //
4899  // C++98 has the same restriction, just worded differently.
4900  if (!ScopeSpecifierHasTemplateId(SS))
4901    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
4902      << Record << SS.getRange();
4903
4904  // C++0x [temp.explicit]p2:
4905  //   There are two forms of explicit instantiation: an explicit instantiation
4906  //   definition and an explicit instantiation declaration. An explicit
4907  //   instantiation declaration begins with the extern keyword. [...]
4908  TemplateSpecializationKind TSK
4909    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4910                           : TSK_ExplicitInstantiationDeclaration;
4911
4912  // C++0x [temp.explicit]p2:
4913  //   [...] An explicit instantiation shall appear in an enclosing
4914  //   namespace of its template. [...]
4915  //
4916  // This is C++ DR 275.
4917  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4918
4919  // Verify that it is okay to explicitly instantiate here.
4920  CXXRecordDecl *PrevDecl
4921    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4922  if (!PrevDecl && Record->getDefinition())
4923    PrevDecl = Record;
4924  if (PrevDecl) {
4925    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4926    bool HasNoEffect = false;
4927    assert(MSInfo && "No member specialization information?");
4928    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4929                                               PrevDecl,
4930                                        MSInfo->getTemplateSpecializationKind(),
4931                                             MSInfo->getPointOfInstantiation(),
4932                                               HasNoEffect))
4933      return true;
4934    if (HasNoEffect)
4935      return TagD;
4936  }
4937
4938  CXXRecordDecl *RecordDef
4939    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4940  if (!RecordDef) {
4941    // C++ [temp.explicit]p3:
4942    //   A definition of a member class of a class template shall be in scope
4943    //   at the point of an explicit instantiation of the member class.
4944    CXXRecordDecl *Def
4945      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
4946    if (!Def) {
4947      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4948        << 0 << Record->getDeclName() << Record->getDeclContext();
4949      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4950        << Pattern;
4951      return true;
4952    } else {
4953      if (InstantiateClass(NameLoc, Record, Def,
4954                           getTemplateInstantiationArgs(Record),
4955                           TSK))
4956        return true;
4957
4958      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
4959      if (!RecordDef)
4960        return true;
4961    }
4962  }
4963
4964  // Instantiate all of the members of the class.
4965  InstantiateClassMembers(NameLoc, RecordDef,
4966                          getTemplateInstantiationArgs(Record), TSK);
4967
4968  if (TSK == TSK_ExplicitInstantiationDefinition)
4969    MarkVTableUsed(NameLoc, RecordDef, true);
4970
4971  // FIXME: We don't have any representation for explicit instantiations of
4972  // member classes. Such a representation is not needed for compilation, but it
4973  // should be available for clients that want to see all of the declarations in
4974  // the source code.
4975  return TagD;
4976}
4977
4978DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4979                                            SourceLocation ExternLoc,
4980                                            SourceLocation TemplateLoc,
4981                                            Declarator &D) {
4982  // Explicit instantiations always require a name.
4983  // TODO: check if/when DNInfo should replace Name.
4984  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4985  DeclarationName Name = NameInfo.getName();
4986  if (!Name) {
4987    if (!D.isInvalidType())
4988      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4989           diag::err_explicit_instantiation_requires_name)
4990        << D.getDeclSpec().getSourceRange()
4991        << D.getSourceRange();
4992
4993    return true;
4994  }
4995
4996  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4997  // we find one that is.
4998  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4999         (S->getFlags() & Scope::TemplateParamScope) != 0)
5000    S = S->getParent();
5001
5002  // Determine the type of the declaration.
5003  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
5004  QualType R = T->getType();
5005  if (R.isNull())
5006    return true;
5007
5008  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5009    // Cannot explicitly instantiate a typedef.
5010    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
5011      << Name;
5012    return true;
5013  }
5014
5015  // C++0x [temp.explicit]p1:
5016  //   [...] An explicit instantiation of a function template shall not use the
5017  //   inline or constexpr specifiers.
5018  // Presumably, this also applies to member functions of class templates as
5019  // well.
5020  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
5021    Diag(D.getDeclSpec().getInlineSpecLoc(),
5022         diag::err_explicit_instantiation_inline)
5023      <<FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5024
5025  // FIXME: check for constexpr specifier.
5026
5027  // C++0x [temp.explicit]p2:
5028  //   There are two forms of explicit instantiation: an explicit instantiation
5029  //   definition and an explicit instantiation declaration. An explicit
5030  //   instantiation declaration begins with the extern keyword. [...]
5031  TemplateSpecializationKind TSK
5032    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5033                           : TSK_ExplicitInstantiationDeclaration;
5034
5035  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
5036  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
5037
5038  if (!R->isFunctionType()) {
5039    // C++ [temp.explicit]p1:
5040    //   A [...] static data member of a class template can be explicitly
5041    //   instantiated from the member definition associated with its class
5042    //   template.
5043    if (Previous.isAmbiguous())
5044      return true;
5045
5046    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
5047    if (!Prev || !Prev->isStaticDataMember()) {
5048      // We expect to see a data data member here.
5049      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
5050        << Name;
5051      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5052           P != PEnd; ++P)
5053        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
5054      return true;
5055    }
5056
5057    if (!Prev->getInstantiatedFromStaticDataMember()) {
5058      // FIXME: Check for explicit specialization?
5059      Diag(D.getIdentifierLoc(),
5060           diag::err_explicit_instantiation_data_member_not_instantiated)
5061        << Prev;
5062      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
5063      // FIXME: Can we provide a note showing where this was declared?
5064      return true;
5065    }
5066
5067    // C++0x [temp.explicit]p2:
5068    //   If the explicit instantiation is for a member function, a member class
5069    //   or a static data member of a class template specialization, the name of
5070    //   the class template specialization in the qualified-id for the member
5071    //   name shall be a simple-template-id.
5072    //
5073    // C++98 has the same restriction, just worded differently.
5074    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5075      Diag(D.getIdentifierLoc(),
5076           diag::ext_explicit_instantiation_without_qualified_id)
5077        << Prev << D.getCXXScopeSpec().getRange();
5078
5079    // Check the scope of this explicit instantiation.
5080    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
5081
5082    // Verify that it is okay to explicitly instantiate here.
5083    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
5084    assert(MSInfo && "Missing static data member specialization info?");
5085    bool HasNoEffect = false;
5086    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
5087                                        MSInfo->getTemplateSpecializationKind(),
5088                                              MSInfo->getPointOfInstantiation(),
5089                                               HasNoEffect))
5090      return true;
5091    if (HasNoEffect)
5092      return (Decl*) 0;
5093
5094    // Instantiate static data member.
5095    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5096    if (TSK == TSK_ExplicitInstantiationDefinition)
5097      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
5098
5099    // FIXME: Create an ExplicitInstantiation node?
5100    return (Decl*) 0;
5101  }
5102
5103  // If the declarator is a template-id, translate the parser's template
5104  // argument list into our AST format.
5105  bool HasExplicitTemplateArgs = false;
5106  TemplateArgumentListInfo TemplateArgs;
5107  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5108    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5109    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5110    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5111    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5112                                       TemplateId->getTemplateArgs(),
5113                                       TemplateId->NumArgs);
5114    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
5115    HasExplicitTemplateArgs = true;
5116    TemplateArgsPtr.release();
5117  }
5118
5119  // C++ [temp.explicit]p1:
5120  //   A [...] function [...] can be explicitly instantiated from its template.
5121  //   A member function [...] of a class template can be explicitly
5122  //  instantiated from the member definition associated with its class
5123  //  template.
5124  UnresolvedSet<8> Matches;
5125  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
5126       P != PEnd; ++P) {
5127    NamedDecl *Prev = *P;
5128    if (!HasExplicitTemplateArgs) {
5129      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
5130        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
5131          Matches.clear();
5132
5133          Matches.addDecl(Method, P.getAccess());
5134          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
5135            break;
5136        }
5137      }
5138    }
5139
5140    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
5141    if (!FunTmpl)
5142      continue;
5143
5144    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
5145    FunctionDecl *Specialization = 0;
5146    if (TemplateDeductionResult TDK
5147          = DeduceTemplateArguments(FunTmpl,
5148                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5149                                    R, Specialization, Info)) {
5150      // FIXME: Keep track of almost-matches?
5151      (void)TDK;
5152      continue;
5153    }
5154
5155    Matches.addDecl(Specialization, P.getAccess());
5156  }
5157
5158  // Find the most specialized function template specialization.
5159  UnresolvedSetIterator Result
5160    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
5161                         D.getIdentifierLoc(),
5162                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
5163                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
5164                         PDiag(diag::note_explicit_instantiation_candidate));
5165
5166  if (Result == Matches.end())
5167    return true;
5168
5169  // Ignore access control bits, we don't need them for redeclaration checking.
5170  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5171
5172  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
5173    Diag(D.getIdentifierLoc(),
5174         diag::err_explicit_instantiation_member_function_not_instantiated)
5175      << Specialization
5176      << (Specialization->getTemplateSpecializationKind() ==
5177          TSK_ExplicitSpecialization);
5178    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
5179    return true;
5180  }
5181
5182  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
5183  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
5184    PrevDecl = Specialization;
5185
5186  if (PrevDecl) {
5187    bool HasNoEffect = false;
5188    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
5189                                               PrevDecl,
5190                                     PrevDecl->getTemplateSpecializationKind(),
5191                                          PrevDecl->getPointOfInstantiation(),
5192                                               HasNoEffect))
5193      return true;
5194
5195    // FIXME: We may still want to build some representation of this
5196    // explicit specialization.
5197    if (HasNoEffect)
5198      return (Decl*) 0;
5199  }
5200
5201  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
5202
5203  if (TSK == TSK_ExplicitInstantiationDefinition)
5204    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
5205
5206  // C++0x [temp.explicit]p2:
5207  //   If the explicit instantiation is for a member function, a member class
5208  //   or a static data member of a class template specialization, the name of
5209  //   the class template specialization in the qualified-id for the member
5210  //   name shall be a simple-template-id.
5211  //
5212  // C++98 has the same restriction, just worded differently.
5213  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
5214  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
5215      D.getCXXScopeSpec().isSet() &&
5216      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
5217    Diag(D.getIdentifierLoc(),
5218         diag::ext_explicit_instantiation_without_qualified_id)
5219    << Specialization << D.getCXXScopeSpec().getRange();
5220
5221  CheckExplicitInstantiationScope(*this,
5222                   FunTmpl? (NamedDecl *)FunTmpl
5223                          : Specialization->getInstantiatedFromMemberFunction(),
5224                                  D.getIdentifierLoc(),
5225                                  D.getCXXScopeSpec().isSet());
5226
5227  // FIXME: Create some kind of ExplicitInstantiationDecl here.
5228  return (Decl*) 0;
5229}
5230
5231TypeResult
5232Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5233                        const CXXScopeSpec &SS, IdentifierInfo *Name,
5234                        SourceLocation TagLoc, SourceLocation NameLoc) {
5235  // This has to hold, because SS is expected to be defined.
5236  assert(Name && "Expected a name in a dependent tag");
5237
5238  NestedNameSpecifier *NNS
5239    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5240  if (!NNS)
5241    return true;
5242
5243  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5244
5245  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
5246    Diag(NameLoc, diag::err_dependent_tag_decl)
5247      << (TUK == TUK_Definition) << Kind << SS.getRange();
5248    return true;
5249  }
5250
5251  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
5252  return ParsedType::make(Context.getDependentNameType(Kwd, NNS, Name));
5253}
5254
5255TypeResult
5256Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5257                        const CXXScopeSpec &SS, const IdentifierInfo &II,
5258                        SourceLocation IdLoc) {
5259  NestedNameSpecifier *NNS
5260    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5261  if (!NNS)
5262    return true;
5263
5264  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5265      !getLangOptions().CPlusPlus0x)
5266    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5267      << FixItHint::CreateRemoval(TypenameLoc);
5268
5269  QualType T = CheckTypenameType(ETK_Typename, NNS, II,
5270                                 TypenameLoc, SS.getRange(), IdLoc);
5271  if (T.isNull())
5272    return true;
5273
5274  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5275  if (isa<DependentNameType>(T)) {
5276    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
5277    TL.setKeywordLoc(TypenameLoc);
5278    TL.setQualifierRange(SS.getRange());
5279    TL.setNameLoc(IdLoc);
5280  } else {
5281    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
5282    TL.setKeywordLoc(TypenameLoc);
5283    TL.setQualifierRange(SS.getRange());
5284    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
5285  }
5286
5287  return CreateParsedType(T, TSI);
5288}
5289
5290TypeResult
5291Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
5292                        const CXXScopeSpec &SS, SourceLocation TemplateLoc,
5293                        ParsedType Ty) {
5294  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent() &&
5295      !getLangOptions().CPlusPlus0x)
5296    Diag(TypenameLoc, diag::ext_typename_outside_of_template)
5297      << FixItHint::CreateRemoval(TypenameLoc);
5298
5299  TypeSourceInfo *InnerTSI = 0;
5300  QualType T = GetTypeFromParser(Ty, &InnerTSI);
5301
5302  assert(isa<TemplateSpecializationType>(T) &&
5303         "Expected a template specialization type");
5304
5305  if (computeDeclContext(SS, false)) {
5306    // If we can compute a declaration context, then the "typename"
5307    // keyword was superfluous. Just build an ElaboratedType to keep
5308    // track of the nested-name-specifier.
5309
5310    // Push the inner type, preserving its source locations if possible.
5311    TypeLocBuilder Builder;
5312    if (InnerTSI)
5313      Builder.pushFullCopy(InnerTSI->getTypeLoc());
5314    else
5315      Builder.push<TemplateSpecializationTypeLoc>(T).initialize(TemplateLoc);
5316
5317    /* Note: NNS already embedded in template specialization type T. */
5318    T = Context.getElaboratedType(ETK_Typename, /*NNS=*/0, T);
5319    ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
5320    TL.setKeywordLoc(TypenameLoc);
5321    TL.setQualifierRange(SS.getRange());
5322
5323    TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
5324    return CreateParsedType(T, TSI);
5325  }
5326
5327  // TODO: it's really silly that we make a template specialization
5328  // type earlier only to drop it again here.
5329  TemplateSpecializationType *TST = cast<TemplateSpecializationType>(T);
5330  DependentTemplateName *DTN =
5331    TST->getTemplateName().getAsDependentTemplateName();
5332  assert(DTN && "dependent template has non-dependent name?");
5333  assert(DTN->getQualifier()
5334         == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
5335  T = Context.getDependentTemplateSpecializationType(ETK_Typename,
5336                                                     DTN->getQualifier(),
5337                                                     DTN->getIdentifier(),
5338                                                     TST->getNumArgs(),
5339                                                     TST->getArgs());
5340  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
5341  DependentTemplateSpecializationTypeLoc TL =
5342    cast<DependentTemplateSpecializationTypeLoc>(TSI->getTypeLoc());
5343  if (InnerTSI) {
5344    TemplateSpecializationTypeLoc TSTL =
5345      cast<TemplateSpecializationTypeLoc>(InnerTSI->getTypeLoc());
5346    TL.setLAngleLoc(TSTL.getLAngleLoc());
5347    TL.setRAngleLoc(TSTL.getRAngleLoc());
5348    for (unsigned I = 0, E = TST->getNumArgs(); I != E; ++I)
5349      TL.setArgLocInfo(I, TSTL.getArgLocInfo(I));
5350  } else {
5351    TL.initializeLocal(SourceLocation());
5352  }
5353  TL.setKeywordLoc(TypenameLoc);
5354  TL.setQualifierRange(SS.getRange());
5355  return CreateParsedType(T, TSI);
5356}
5357
5358/// \brief Build the type that describes a C++ typename specifier,
5359/// e.g., "typename T::type".
5360QualType
5361Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
5362                        NestedNameSpecifier *NNS, const IdentifierInfo &II,
5363                        SourceLocation KeywordLoc, SourceRange NNSRange,
5364                        SourceLocation IILoc) {
5365  CXXScopeSpec SS;
5366  SS.setScopeRep(NNS);
5367  SS.setRange(NNSRange);
5368
5369  DeclContext *Ctx = computeDeclContext(SS);
5370  if (!Ctx) {
5371    // If the nested-name-specifier is dependent and couldn't be
5372    // resolved to a type, build a typename type.
5373    assert(NNS->isDependent());
5374    return Context.getDependentNameType(Keyword, NNS, &II);
5375  }
5376
5377  // If the nested-name-specifier refers to the current instantiation,
5378  // the "typename" keyword itself is superfluous. In C++03, the
5379  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
5380  // allows such extraneous "typename" keywords, and we retroactively
5381  // apply this DR to C++03 code with only a warning. In any case we continue.
5382
5383  if (RequireCompleteDeclContext(SS, Ctx))
5384    return QualType();
5385
5386  DeclarationName Name(&II);
5387  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
5388  LookupQualifiedName(Result, Ctx);
5389  unsigned DiagID = 0;
5390  Decl *Referenced = 0;
5391  switch (Result.getResultKind()) {
5392  case LookupResult::NotFound:
5393    DiagID = diag::err_typename_nested_not_found;
5394    break;
5395
5396  case LookupResult::NotFoundInCurrentInstantiation:
5397    // Okay, it's a member of an unknown instantiation.
5398    return Context.getDependentNameType(Keyword, NNS, &II);
5399
5400  case LookupResult::Found:
5401    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
5402      // We found a type. Build an ElaboratedType, since the
5403      // typename-specifier was just sugar.
5404      return Context.getElaboratedType(ETK_Typename, NNS,
5405                                       Context.getTypeDeclType(Type));
5406    }
5407
5408    DiagID = diag::err_typename_nested_not_type;
5409    Referenced = Result.getFoundDecl();
5410    break;
5411
5412  case LookupResult::FoundUnresolvedValue:
5413    llvm_unreachable("unresolved using decl in non-dependent context");
5414    return QualType();
5415
5416  case LookupResult::FoundOverloaded:
5417    DiagID = diag::err_typename_nested_not_type;
5418    Referenced = *Result.begin();
5419    break;
5420
5421  case LookupResult::Ambiguous:
5422    return QualType();
5423  }
5424
5425  // If we get here, it's because name lookup did not find a
5426  // type. Emit an appropriate diagnostic and return an error.
5427  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : NNSRange.getBegin(),
5428                        IILoc);
5429  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
5430  if (Referenced)
5431    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
5432      << Name;
5433  return QualType();
5434}
5435
5436namespace {
5437  // See Sema::RebuildTypeInCurrentInstantiation
5438  class CurrentInstantiationRebuilder
5439    : public TreeTransform<CurrentInstantiationRebuilder> {
5440    SourceLocation Loc;
5441    DeclarationName Entity;
5442
5443  public:
5444    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
5445
5446    CurrentInstantiationRebuilder(Sema &SemaRef,
5447                                  SourceLocation Loc,
5448                                  DeclarationName Entity)
5449    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
5450      Loc(Loc), Entity(Entity) { }
5451
5452    /// \brief Determine whether the given type \p T has already been
5453    /// transformed.
5454    ///
5455    /// For the purposes of type reconstruction, a type has already been
5456    /// transformed if it is NULL or if it is not dependent.
5457    bool AlreadyTransformed(QualType T) {
5458      return T.isNull() || !T->isDependentType();
5459    }
5460
5461    /// \brief Returns the location of the entity whose type is being
5462    /// rebuilt.
5463    SourceLocation getBaseLocation() { return Loc; }
5464
5465    /// \brief Returns the name of the entity whose type is being rebuilt.
5466    DeclarationName getBaseEntity() { return Entity; }
5467
5468    /// \brief Sets the "base" location and entity when that
5469    /// information is known based on another transformation.
5470    void setBase(SourceLocation Loc, DeclarationName Entity) {
5471      this->Loc = Loc;
5472      this->Entity = Entity;
5473    }
5474  };
5475}
5476
5477/// \brief Rebuilds a type within the context of the current instantiation.
5478///
5479/// The type \p T is part of the type of an out-of-line member definition of
5480/// a class template (or class template partial specialization) that was parsed
5481/// and constructed before we entered the scope of the class template (or
5482/// partial specialization thereof). This routine will rebuild that type now
5483/// that we have entered the declarator's scope, which may produce different
5484/// canonical types, e.g.,
5485///
5486/// \code
5487/// template<typename T>
5488/// struct X {
5489///   typedef T* pointer;
5490///   pointer data();
5491/// };
5492///
5493/// template<typename T>
5494/// typename X<T>::pointer X<T>::data() { ... }
5495/// \endcode
5496///
5497/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
5498/// since we do not know that we can look into X<T> when we parsed the type.
5499/// This function will rebuild the type, performing the lookup of "pointer"
5500/// in X<T> and returning an ElaboratedType whose canonical type is the same
5501/// as the canonical type of T*, allowing the return types of the out-of-line
5502/// definition and the declaration to match.
5503TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
5504                                                        SourceLocation Loc,
5505                                                        DeclarationName Name) {
5506  if (!T || !T->getType()->isDependentType())
5507    return T;
5508
5509  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
5510  return Rebuilder.TransformType(T);
5511}
5512
5513ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
5514  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
5515                                          DeclarationName());
5516  return Rebuilder.TransformExpr(E);
5517}
5518
5519bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
5520  if (SS.isInvalid()) return true;
5521
5522  NestedNameSpecifier *NNS = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5523  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
5524                                          DeclarationName());
5525  NestedNameSpecifier *Rebuilt =
5526    Rebuilder.TransformNestedNameSpecifier(NNS, SS.getRange());
5527  if (!Rebuilt) return true;
5528
5529  SS.setScopeRep(Rebuilt);
5530  return false;
5531}
5532
5533/// \brief Produces a formatted string that describes the binding of
5534/// template parameters to template arguments.
5535std::string
5536Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5537                                      const TemplateArgumentList &Args) {
5538  // FIXME: For variadic templates, we'll need to get the structured list.
5539  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
5540                                         Args.flat_size());
5541}
5542
5543std::string
5544Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5545                                      const TemplateArgument *Args,
5546                                      unsigned NumArgs) {
5547  std::string Result;
5548
5549  if (!Params || Params->size() == 0 || NumArgs == 0)
5550    return Result;
5551
5552  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5553    if (I >= NumArgs)
5554      break;
5555
5556    if (I == 0)
5557      Result += "[with ";
5558    else
5559      Result += ", ";
5560
5561    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5562      Result += Id->getName();
5563    } else {
5564      Result += '$';
5565      Result += llvm::utostr(I);
5566    }
5567
5568    Result += " = ";
5569
5570    switch (Args[I].getKind()) {
5571      case TemplateArgument::Null:
5572        Result += "<no value>";
5573        break;
5574
5575      case TemplateArgument::Type: {
5576        std::string TypeStr;
5577        Args[I].getAsType().getAsStringInternal(TypeStr,
5578                                                Context.PrintingPolicy);
5579        Result += TypeStr;
5580        break;
5581      }
5582
5583      case TemplateArgument::Declaration: {
5584        bool Unnamed = true;
5585        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5586          if (ND->getDeclName()) {
5587            Unnamed = false;
5588            Result += ND->getNameAsString();
5589          }
5590        }
5591
5592        if (Unnamed) {
5593          Result += "<anonymous>";
5594        }
5595        break;
5596      }
5597
5598      case TemplateArgument::Template: {
5599        std::string Str;
5600        llvm::raw_string_ostream OS(Str);
5601        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5602        Result += OS.str();
5603        break;
5604      }
5605
5606      case TemplateArgument::Integral: {
5607        Result += Args[I].getAsIntegral()->toString(10);
5608        break;
5609      }
5610
5611      case TemplateArgument::Expression: {
5612        // FIXME: This is non-optimal, since we're regurgitating the
5613        // expression we were given.
5614        std::string Str;
5615        {
5616          llvm::raw_string_ostream OS(Str);
5617          Args[I].getAsExpr()->printPretty(OS, Context, 0,
5618                                           Context.PrintingPolicy);
5619        }
5620        Result += Str;
5621        break;
5622      }
5623
5624      case TemplateArgument::Pack:
5625        // FIXME: Format template argument packs
5626        Result += "<template argument pack>";
5627        break;
5628    }
5629  }
5630
5631  Result += ']';
5632  return Result;
5633}
5634