SemaTemplate.cpp revision ca1bdd7c269a2390d43c040a60511edd017ee130
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "TreeTransform.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Expr.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Basic/LangOptions.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/ADT/StringExtras.h"
23using namespace clang;
24
25/// \brief Determine whether the declaration found is acceptable as the name
26/// of a template and, if so, return that template declaration. Otherwise,
27/// returns NULL.
28static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
29  if (!D)
30    return 0;
31
32  if (isa<TemplateDecl>(D))
33    return D;
34
35  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
36    // C++ [temp.local]p1:
37    //   Like normal (non-template) classes, class templates have an
38    //   injected-class-name (Clause 9). The injected-class-name
39    //   can be used with or without a template-argument-list. When
40    //   it is used without a template-argument-list, it is
41    //   equivalent to the injected-class-name followed by the
42    //   template-parameters of the class template enclosed in
43    //   <>. When it is used with a template-argument-list, it
44    //   refers to the specified class template specialization,
45    //   which could be the current specialization or another
46    //   specialization.
47    if (Record->isInjectedClassName()) {
48      Record = cast<CXXRecordDecl>(Record->getDeclContext());
49      if (Record->getDescribedClassTemplate())
50        return Record->getDescribedClassTemplate();
51
52      if (ClassTemplateSpecializationDecl *Spec
53            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
54        return Spec->getSpecializedTemplate();
55    }
56
57    return 0;
58  }
59
60  OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D);
61  if (!Ovl)
62    return 0;
63
64  for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
65                                              FEnd = Ovl->function_end();
66       F != FEnd; ++F) {
67    if (FunctionTemplateDecl *FuncTmpl = dyn_cast<FunctionTemplateDecl>(*F)) {
68      // We've found a function template. Determine whether there are
69      // any other function templates we need to bundle together in an
70      // OverloadedFunctionDecl
71      for (++F; F != FEnd; ++F) {
72        if (isa<FunctionTemplateDecl>(*F))
73          break;
74      }
75
76      if (F != FEnd) {
77        // Build an overloaded function decl containing only the
78        // function templates in Ovl.
79        OverloadedFunctionDecl *OvlTemplate
80          = OverloadedFunctionDecl::Create(Context,
81                                           Ovl->getDeclContext(),
82                                           Ovl->getDeclName());
83        OvlTemplate->addOverload(FuncTmpl);
84        OvlTemplate->addOverload(*F);
85        for (++F; F != FEnd; ++F) {
86          if (isa<FunctionTemplateDecl>(*F))
87            OvlTemplate->addOverload(*F);
88        }
89
90        return OvlTemplate;
91      }
92
93      return FuncTmpl;
94    }
95  }
96
97  return 0;
98}
99
100TemplateNameKind Sema::isTemplateName(Scope *S,
101                                      const CXXScopeSpec &SS,
102                                      UnqualifiedId &Name,
103                                      TypeTy *ObjectTypePtr,
104                                      bool EnteringContext,
105                                      TemplateTy &TemplateResult) {
106  DeclarationName TName;
107
108  switch (Name.getKind()) {
109  case UnqualifiedId::IK_Identifier:
110    TName = DeclarationName(Name.Identifier);
111    break;
112
113  case UnqualifiedId::IK_OperatorFunctionId:
114    TName = Context.DeclarationNames.getCXXOperatorName(
115                                              Name.OperatorFunctionId.Operator);
116    break;
117
118  default:
119    return TNK_Non_template;
120  }
121
122  // Determine where to perform name lookup
123  DeclContext *LookupCtx = 0;
124  bool isDependent = false;
125  if (ObjectTypePtr) {
126    // This nested-name-specifier occurs in a member access expression, e.g.,
127    // x->B::f, and we are looking into the type of the object.
128    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
129    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
130    LookupCtx = computeDeclContext(ObjectType);
131    isDependent = ObjectType->isDependentType();
132  } else if (SS.isSet()) {
133    // This nested-name-specifier occurs after another nested-name-specifier,
134    // so long into the context associated with the prior nested-name-specifier.
135
136    LookupCtx = computeDeclContext(SS, EnteringContext);
137    isDependent = isDependentScopeSpecifier(SS);
138  }
139
140  LookupResult Found;
141  bool ObjectTypeSearchedInScope = false;
142  if (LookupCtx) {
143    // Perform "qualified" name lookup into the declaration context we
144    // computed, which is either the type of the base of a member access
145    // expression or the declaration context associated with a prior
146    // nested-name-specifier.
147
148    // The declaration context must be complete.
149    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS))
150      return TNK_Non_template;
151
152    LookupQualifiedName(Found, LookupCtx, TName, LookupOrdinaryName);
153
154    if (ObjectTypePtr && Found.getKind() == LookupResult::NotFound) {
155      // C++ [basic.lookup.classref]p1:
156      //   In a class member access expression (5.2.5), if the . or -> token is
157      //   immediately followed by an identifier followed by a <, the
158      //   identifier must be looked up to determine whether the < is the
159      //   beginning of a template argument list (14.2) or a less-than operator.
160      //   The identifier is first looked up in the class of the object
161      //   expression. If the identifier is not found, it is then looked up in
162      //   the context of the entire postfix-expression and shall name a class
163      //   or function template.
164      //
165      // FIXME: When we're instantiating a template, do we actually have to
166      // look in the scope of the template? Seems fishy...
167      LookupName(Found, S, TName, LookupOrdinaryName);
168      ObjectTypeSearchedInScope = true;
169    }
170  } else if (isDependent) {
171    // We cannot look into a dependent object type or
172    return TNK_Non_template;
173  } else {
174    // Perform unqualified name lookup in the current scope.
175    LookupName(Found, S, TName, LookupOrdinaryName);
176  }
177
178  // FIXME: Cope with ambiguous name-lookup results.
179  assert(!Found.isAmbiguous() &&
180         "Cannot handle template name-lookup ambiguities");
181
182  NamedDecl *Template
183    = isAcceptableTemplateName(Context, Found.getAsSingleDecl(Context));
184  if (!Template)
185    return TNK_Non_template;
186
187  if (ObjectTypePtr && !ObjectTypeSearchedInScope) {
188    // C++ [basic.lookup.classref]p1:
189    //   [...] If the lookup in the class of the object expression finds a
190    //   template, the name is also looked up in the context of the entire
191    //   postfix-expression and [...]
192    //
193    LookupResult FoundOuter;
194    LookupName(FoundOuter, S, TName, LookupOrdinaryName);
195    // FIXME: Handle ambiguities in this lookup better
196    NamedDecl *OuterTemplate
197      = isAcceptableTemplateName(Context, FoundOuter.getAsSingleDecl(Context));
198
199    if (!OuterTemplate) {
200      //   - if the name is not found, the name found in the class of the
201      //     object expression is used, otherwise
202    } else if (!isa<ClassTemplateDecl>(OuterTemplate)) {
203      //   - if the name is found in the context of the entire
204      //     postfix-expression and does not name a class template, the name
205      //     found in the class of the object expression is used, otherwise
206    } else {
207      //   - if the name found is a class template, it must refer to the same
208      //     entity as the one found in the class of the object expression,
209      //     otherwise the program is ill-formed.
210      if (OuterTemplate->getCanonicalDecl() != Template->getCanonicalDecl()) {
211        Diag(Name.getSourceRange().getBegin(),
212             diag::err_nested_name_member_ref_lookup_ambiguous)
213          << TName
214          << Name.getSourceRange();
215        Diag(Template->getLocation(), diag::note_ambig_member_ref_object_type)
216          << QualType::getFromOpaquePtr(ObjectTypePtr);
217        Diag(OuterTemplate->getLocation(), diag::note_ambig_member_ref_scope);
218
219        // Recover by taking the template that we found in the object
220        // expression's type.
221      }
222    }
223  }
224
225  if (SS.isSet() && !SS.isInvalid()) {
226    NestedNameSpecifier *Qualifier
227      = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
228    if (OverloadedFunctionDecl *Ovl
229          = dyn_cast<OverloadedFunctionDecl>(Template))
230      TemplateResult
231        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
232                                                            Ovl));
233    else
234      TemplateResult
235        = TemplateTy::make(Context.getQualifiedTemplateName(Qualifier, false,
236                                                 cast<TemplateDecl>(Template)));
237  } else if (OverloadedFunctionDecl *Ovl
238               = dyn_cast<OverloadedFunctionDecl>(Template)) {
239    TemplateResult = TemplateTy::make(TemplateName(Ovl));
240  } else {
241    TemplateResult = TemplateTy::make(
242                                  TemplateName(cast<TemplateDecl>(Template)));
243  }
244
245  if (isa<ClassTemplateDecl>(Template) ||
246      isa<TemplateTemplateParmDecl>(Template))
247    return TNK_Type_template;
248
249  assert((isa<FunctionTemplateDecl>(Template) ||
250          isa<OverloadedFunctionDecl>(Template)) &&
251         "Unhandled template kind in Sema::isTemplateName");
252  return TNK_Function_template;
253}
254
255/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
256/// that the template parameter 'PrevDecl' is being shadowed by a new
257/// declaration at location Loc. Returns true to indicate that this is
258/// an error, and false otherwise.
259bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
260  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
261
262  // Microsoft Visual C++ permits template parameters to be shadowed.
263  if (getLangOptions().Microsoft)
264    return false;
265
266  // C++ [temp.local]p4:
267  //   A template-parameter shall not be redeclared within its
268  //   scope (including nested scopes).
269  Diag(Loc, diag::err_template_param_shadow)
270    << cast<NamedDecl>(PrevDecl)->getDeclName();
271  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
272  return true;
273}
274
275/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
276/// the parameter D to reference the templated declaration and return a pointer
277/// to the template declaration. Otherwise, do nothing to D and return null.
278TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
279  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
280    D = DeclPtrTy::make(Temp->getTemplatedDecl());
281    return Temp;
282  }
283  return 0;
284}
285
286/// ActOnTypeParameter - Called when a C++ template type parameter
287/// (e.g., "typename T") has been parsed. Typename specifies whether
288/// the keyword "typename" was used to declare the type parameter
289/// (otherwise, "class" was used), and KeyLoc is the location of the
290/// "class" or "typename" keyword. ParamName is the name of the
291/// parameter (NULL indicates an unnamed template parameter) and
292/// ParamName is the location of the parameter name (if any).
293/// If the type parameter has a default argument, it will be added
294/// later via ActOnTypeParameterDefault.
295Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
296                                         SourceLocation EllipsisLoc,
297                                         SourceLocation KeyLoc,
298                                         IdentifierInfo *ParamName,
299                                         SourceLocation ParamNameLoc,
300                                         unsigned Depth, unsigned Position) {
301  assert(S->isTemplateParamScope() &&
302         "Template type parameter not in template parameter scope!");
303  bool Invalid = false;
304
305  if (ParamName) {
306    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
307    if (PrevDecl && PrevDecl->isTemplateParameter())
308      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
309                                                           PrevDecl);
310  }
311
312  SourceLocation Loc = ParamNameLoc;
313  if (!ParamName)
314    Loc = KeyLoc;
315
316  TemplateTypeParmDecl *Param
317    = TemplateTypeParmDecl::Create(Context, CurContext, Loc,
318                                   Depth, Position, ParamName, Typename,
319                                   Ellipsis);
320  if (Invalid)
321    Param->setInvalidDecl();
322
323  if (ParamName) {
324    // Add the template parameter into the current scope.
325    S->AddDecl(DeclPtrTy::make(Param));
326    IdResolver.AddDecl(Param);
327  }
328
329  return DeclPtrTy::make(Param);
330}
331
332/// ActOnTypeParameterDefault - Adds a default argument (the type
333/// Default) to the given template type parameter (TypeParam).
334void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
335                                     SourceLocation EqualLoc,
336                                     SourceLocation DefaultLoc,
337                                     TypeTy *DefaultT) {
338  TemplateTypeParmDecl *Parm
339    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
340
341  DeclaratorInfo *DefaultDInfo;
342  GetTypeFromParser(DefaultT, &DefaultDInfo);
343
344  assert(DefaultDInfo && "expected source information for type");
345
346  // C++0x [temp.param]p9:
347  // A default template-argument may be specified for any kind of
348  // template-parameter that is not a template parameter pack.
349  if (Parm->isParameterPack()) {
350    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
351    return;
352  }
353
354  // C++ [temp.param]p14:
355  //   A template-parameter shall not be used in its own default argument.
356  // FIXME: Implement this check! Needs a recursive walk over the types.
357
358  // Check the template argument itself.
359  if (CheckTemplateArgument(Parm, DefaultDInfo)) {
360    Parm->setInvalidDecl();
361    return;
362  }
363
364  Parm->setDefaultArgument(DefaultDInfo, false);
365}
366
367/// \brief Check that the type of a non-type template parameter is
368/// well-formed.
369///
370/// \returns the (possibly-promoted) parameter type if valid;
371/// otherwise, produces a diagnostic and returns a NULL type.
372QualType
373Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
374  // C++ [temp.param]p4:
375  //
376  // A non-type template-parameter shall have one of the following
377  // (optionally cv-qualified) types:
378  //
379  //       -- integral or enumeration type,
380  if (T->isIntegralType() || T->isEnumeralType() ||
381      //   -- pointer to object or pointer to function,
382      (T->isPointerType() &&
383       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
384        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
385      //   -- reference to object or reference to function,
386      T->isReferenceType() ||
387      //   -- pointer to member.
388      T->isMemberPointerType() ||
389      // If T is a dependent type, we can't do the check now, so we
390      // assume that it is well-formed.
391      T->isDependentType())
392    return T;
393  // C++ [temp.param]p8:
394  //
395  //   A non-type template-parameter of type "array of T" or
396  //   "function returning T" is adjusted to be of type "pointer to
397  //   T" or "pointer to function returning T", respectively.
398  else if (T->isArrayType())
399    // FIXME: Keep the type prior to promotion?
400    return Context.getArrayDecayedType(T);
401  else if (T->isFunctionType())
402    // FIXME: Keep the type prior to promotion?
403    return Context.getPointerType(T);
404
405  Diag(Loc, diag::err_template_nontype_parm_bad_type)
406    << T;
407
408  return QualType();
409}
410
411/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
412/// template parameter (e.g., "int Size" in "template<int Size>
413/// class Array") has been parsed. S is the current scope and D is
414/// the parsed declarator.
415Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
416                                                    unsigned Depth,
417                                                    unsigned Position) {
418  DeclaratorInfo *DInfo = 0;
419  QualType T = GetTypeForDeclarator(D, S, &DInfo);
420
421  assert(S->isTemplateParamScope() &&
422         "Non-type template parameter not in template parameter scope!");
423  bool Invalid = false;
424
425  IdentifierInfo *ParamName = D.getIdentifier();
426  if (ParamName) {
427    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
428    if (PrevDecl && PrevDecl->isTemplateParameter())
429      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
430                                                           PrevDecl);
431  }
432
433  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
434  if (T.isNull()) {
435    T = Context.IntTy; // Recover with an 'int' type.
436    Invalid = true;
437  }
438
439  NonTypeTemplateParmDecl *Param
440    = NonTypeTemplateParmDecl::Create(Context, CurContext, D.getIdentifierLoc(),
441                                      Depth, Position, ParamName, T, DInfo);
442  if (Invalid)
443    Param->setInvalidDecl();
444
445  if (D.getIdentifier()) {
446    // Add the template parameter into the current scope.
447    S->AddDecl(DeclPtrTy::make(Param));
448    IdResolver.AddDecl(Param);
449  }
450  return DeclPtrTy::make(Param);
451}
452
453/// \brief Adds a default argument to the given non-type template
454/// parameter.
455void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
456                                                SourceLocation EqualLoc,
457                                                ExprArg DefaultE) {
458  NonTypeTemplateParmDecl *TemplateParm
459    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
460  Expr *Default = static_cast<Expr *>(DefaultE.get());
461
462  // C++ [temp.param]p14:
463  //   A template-parameter shall not be used in its own default argument.
464  // FIXME: Implement this check! Needs a recursive walk over the types.
465
466  // Check the well-formedness of the default template argument.
467  TemplateArgument Converted;
468  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
469                            Converted)) {
470    TemplateParm->setInvalidDecl();
471    return;
472  }
473
474  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
475}
476
477
478/// ActOnTemplateTemplateParameter - Called when a C++ template template
479/// parameter (e.g. T in template <template <typename> class T> class array)
480/// has been parsed. S is the current scope.
481Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
482                                                     SourceLocation TmpLoc,
483                                                     TemplateParamsTy *Params,
484                                                     IdentifierInfo *Name,
485                                                     SourceLocation NameLoc,
486                                                     unsigned Depth,
487                                                     unsigned Position) {
488  assert(S->isTemplateParamScope() &&
489         "Template template parameter not in template parameter scope!");
490
491  // Construct the parameter object.
492  TemplateTemplateParmDecl *Param =
493    TemplateTemplateParmDecl::Create(Context, CurContext, TmpLoc, Depth,
494                                     Position, Name,
495                                     (TemplateParameterList*)Params);
496
497  // Make sure the parameter is valid.
498  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
499  // do anything yet. However, if the template parameter list or (eventual)
500  // default value is ever invalidated, that will propagate here.
501  bool Invalid = false;
502  if (Invalid) {
503    Param->setInvalidDecl();
504  }
505
506  // If the tt-param has a name, then link the identifier into the scope
507  // and lookup mechanisms.
508  if (Name) {
509    S->AddDecl(DeclPtrTy::make(Param));
510    IdResolver.AddDecl(Param);
511  }
512
513  return DeclPtrTy::make(Param);
514}
515
516/// \brief Adds a default argument to the given template template
517/// parameter.
518void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
519                                                 SourceLocation EqualLoc,
520                                                 ExprArg DefaultE) {
521  TemplateTemplateParmDecl *TemplateParm
522    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
523
524  // Since a template-template parameter's default argument is an
525  // id-expression, it must be a DeclRefExpr.
526  DeclRefExpr *Default
527    = cast<DeclRefExpr>(static_cast<Expr *>(DefaultE.get()));
528
529  // C++ [temp.param]p14:
530  //   A template-parameter shall not be used in its own default argument.
531  // FIXME: Implement this check! Needs a recursive walk over the types.
532
533  // Check the well-formedness of the template argument.
534  if (!isa<TemplateDecl>(Default->getDecl())) {
535    Diag(Default->getSourceRange().getBegin(),
536         diag::err_template_arg_must_be_template)
537      << Default->getSourceRange();
538    TemplateParm->setInvalidDecl();
539    return;
540  }
541  if (CheckTemplateArgument(TemplateParm, Default)) {
542    TemplateParm->setInvalidDecl();
543    return;
544  }
545
546  DefaultE.release();
547  TemplateParm->setDefaultArgument(Default);
548}
549
550/// ActOnTemplateParameterList - Builds a TemplateParameterList that
551/// contains the template parameters in Params/NumParams.
552Sema::TemplateParamsTy *
553Sema::ActOnTemplateParameterList(unsigned Depth,
554                                 SourceLocation ExportLoc,
555                                 SourceLocation TemplateLoc,
556                                 SourceLocation LAngleLoc,
557                                 DeclPtrTy *Params, unsigned NumParams,
558                                 SourceLocation RAngleLoc) {
559  if (ExportLoc.isValid())
560    Diag(ExportLoc, diag::note_template_export_unsupported);
561
562  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
563                                       (NamedDecl**)Params, NumParams,
564                                       RAngleLoc);
565}
566
567Sema::DeclResult
568Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
569                         SourceLocation KWLoc, const CXXScopeSpec &SS,
570                         IdentifierInfo *Name, SourceLocation NameLoc,
571                         AttributeList *Attr,
572                         TemplateParameterList *TemplateParams,
573                         AccessSpecifier AS) {
574  assert(TemplateParams && TemplateParams->size() > 0 &&
575         "No template parameters");
576  assert(TUK != TUK_Reference && "Can only declare or define class templates");
577  bool Invalid = false;
578
579  // Check that we can declare a template here.
580  if (CheckTemplateDeclScope(S, TemplateParams))
581    return true;
582
583  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
584  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
585
586  // There is no such thing as an unnamed class template.
587  if (!Name) {
588    Diag(KWLoc, diag::err_template_unnamed_class);
589    return true;
590  }
591
592  // Find any previous declaration with this name.
593  DeclContext *SemanticContext;
594  LookupResult Previous;
595  if (SS.isNotEmpty() && !SS.isInvalid()) {
596    if (RequireCompleteDeclContext(SS))
597      return true;
598
599    SemanticContext = computeDeclContext(SS, true);
600    if (!SemanticContext) {
601      // FIXME: Produce a reasonable diagnostic here
602      return true;
603    }
604
605    LookupQualifiedName(Previous, SemanticContext, Name, LookupOrdinaryName,
606                                   true);
607  } else {
608    SemanticContext = CurContext;
609    LookupName(Previous, S, Name, LookupOrdinaryName, true);
610  }
611
612  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
613  NamedDecl *PrevDecl = 0;
614  if (Previous.begin() != Previous.end())
615    PrevDecl = *Previous.begin();
616
617  if (PrevDecl && TUK == TUK_Friend) {
618    // C++ [namespace.memdef]p3:
619    //   [...] When looking for a prior declaration of a class or a function
620    //   declared as a friend, and when the name of the friend class or
621    //   function is neither a qualified name nor a template-id, scopes outside
622    //   the innermost enclosing namespace scope are not considered.
623    DeclContext *OutermostContext = CurContext;
624    while (!OutermostContext->isFileContext())
625      OutermostContext = OutermostContext->getLookupParent();
626
627    if (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
628        OutermostContext->Encloses(PrevDecl->getDeclContext())) {
629      SemanticContext = PrevDecl->getDeclContext();
630    } else {
631      // Declarations in outer scopes don't matter. However, the outermost
632      // context we computed is the semantic context for our new
633      // declaration.
634      PrevDecl = 0;
635      SemanticContext = OutermostContext;
636    }
637
638    if (CurContext->isDependentContext()) {
639      // If this is a dependent context, we don't want to link the friend
640      // class template to the template in scope, because that would perform
641      // checking of the template parameter lists that can't be performed
642      // until the outer context is instantiated.
643      PrevDecl = 0;
644    }
645  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
646    PrevDecl = 0;
647
648  // If there is a previous declaration with the same name, check
649  // whether this is a valid redeclaration.
650  ClassTemplateDecl *PrevClassTemplate
651    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
652
653  // We may have found the injected-class-name of a class template,
654  // class template partial specialization, or class template specialization.
655  // In these cases, grab the template that is being defined or specialized.
656  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
657      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
658    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
659    PrevClassTemplate
660      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
661    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
662      PrevClassTemplate
663        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
664            ->getSpecializedTemplate();
665    }
666  }
667
668  if (PrevClassTemplate) {
669    // Ensure that the template parameter lists are compatible.
670    if (!TemplateParameterListsAreEqual(TemplateParams,
671                                   PrevClassTemplate->getTemplateParameters(),
672                                        /*Complain=*/true))
673      return true;
674
675    // C++ [temp.class]p4:
676    //   In a redeclaration, partial specialization, explicit
677    //   specialization or explicit instantiation of a class template,
678    //   the class-key shall agree in kind with the original class
679    //   template declaration (7.1.5.3).
680    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
681    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
682      Diag(KWLoc, diag::err_use_with_wrong_tag)
683        << Name
684        << CodeModificationHint::CreateReplacement(KWLoc,
685                            PrevRecordDecl->getKindName());
686      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
687      Kind = PrevRecordDecl->getTagKind();
688    }
689
690    // Check for redefinition of this class template.
691    if (TUK == TUK_Definition) {
692      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
693        Diag(NameLoc, diag::err_redefinition) << Name;
694        Diag(Def->getLocation(), diag::note_previous_definition);
695        // FIXME: Would it make sense to try to "forget" the previous
696        // definition, as part of error recovery?
697        return true;
698      }
699    }
700  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
701    // Maybe we will complain about the shadowed template parameter.
702    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
703    // Just pretend that we didn't see the previous declaration.
704    PrevDecl = 0;
705  } else if (PrevDecl) {
706    // C++ [temp]p5:
707    //   A class template shall not have the same name as any other
708    //   template, class, function, object, enumeration, enumerator,
709    //   namespace, or type in the same scope (3.3), except as specified
710    //   in (14.5.4).
711    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
712    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
713    return true;
714  }
715
716  // Check the template parameter list of this declaration, possibly
717  // merging in the template parameter list from the previous class
718  // template declaration.
719  if (CheckTemplateParameterList(TemplateParams,
720            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0))
721    Invalid = true;
722
723  // FIXME: If we had a scope specifier, we better have a previous template
724  // declaration!
725
726  CXXRecordDecl *NewClass =
727    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
728                          PrevClassTemplate?
729                            PrevClassTemplate->getTemplatedDecl() : 0,
730                          /*DelayTypeCreation=*/true);
731
732  ClassTemplateDecl *NewTemplate
733    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
734                                DeclarationName(Name), TemplateParams,
735                                NewClass, PrevClassTemplate);
736  NewClass->setDescribedClassTemplate(NewTemplate);
737
738  // Build the type for the class template declaration now.
739  QualType T =
740    Context.getTypeDeclType(NewClass,
741                            PrevClassTemplate?
742                              PrevClassTemplate->getTemplatedDecl() : 0);
743  assert(T->isDependentType() && "Class template type is not dependent?");
744  (void)T;
745
746  // If we are providing an explicit specialization of a member that is a
747  // class template, make a note of that.
748  if (PrevClassTemplate &&
749      PrevClassTemplate->getInstantiatedFromMemberTemplate())
750    PrevClassTemplate->setMemberSpecialization();
751
752  // Set the access specifier.
753  if (!Invalid && TUK != TUK_Friend)
754    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
755
756  // Set the lexical context of these templates
757  NewClass->setLexicalDeclContext(CurContext);
758  NewTemplate->setLexicalDeclContext(CurContext);
759
760  if (TUK == TUK_Definition)
761    NewClass->startDefinition();
762
763  if (Attr)
764    ProcessDeclAttributeList(S, NewClass, Attr);
765
766  if (TUK != TUK_Friend)
767    PushOnScopeChains(NewTemplate, S);
768  else {
769    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
770      NewTemplate->setAccess(PrevClassTemplate->getAccess());
771      NewClass->setAccess(PrevClassTemplate->getAccess());
772    }
773
774    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
775                                       PrevClassTemplate != NULL);
776
777    // Friend templates are visible in fairly strange ways.
778    if (!CurContext->isDependentContext()) {
779      DeclContext *DC = SemanticContext->getLookupContext();
780      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
781      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
782        PushOnScopeChains(NewTemplate, EnclosingScope,
783                          /* AddToContext = */ false);
784    }
785
786    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
787                                            NewClass->getLocation(),
788                                            NewTemplate,
789                                    /*FIXME:*/NewClass->getLocation());
790    Friend->setAccess(AS_public);
791    CurContext->addDecl(Friend);
792  }
793
794  if (Invalid) {
795    NewTemplate->setInvalidDecl();
796    NewClass->setInvalidDecl();
797  }
798  return DeclPtrTy::make(NewTemplate);
799}
800
801/// \brief Checks the validity of a template parameter list, possibly
802/// considering the template parameter list from a previous
803/// declaration.
804///
805/// If an "old" template parameter list is provided, it must be
806/// equivalent (per TemplateParameterListsAreEqual) to the "new"
807/// template parameter list.
808///
809/// \param NewParams Template parameter list for a new template
810/// declaration. This template parameter list will be updated with any
811/// default arguments that are carried through from the previous
812/// template parameter list.
813///
814/// \param OldParams If provided, template parameter list from a
815/// previous declaration of the same template. Default template
816/// arguments will be merged from the old template parameter list to
817/// the new template parameter list.
818///
819/// \returns true if an error occurred, false otherwise.
820bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
821                                      TemplateParameterList *OldParams) {
822  bool Invalid = false;
823
824  // C++ [temp.param]p10:
825  //   The set of default template-arguments available for use with a
826  //   template declaration or definition is obtained by merging the
827  //   default arguments from the definition (if in scope) and all
828  //   declarations in scope in the same way default function
829  //   arguments are (8.3.6).
830  bool SawDefaultArgument = false;
831  SourceLocation PreviousDefaultArgLoc;
832
833  bool SawParameterPack = false;
834  SourceLocation ParameterPackLoc;
835
836  // Dummy initialization to avoid warnings.
837  TemplateParameterList::iterator OldParam = NewParams->end();
838  if (OldParams)
839    OldParam = OldParams->begin();
840
841  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
842                                    NewParamEnd = NewParams->end();
843       NewParam != NewParamEnd; ++NewParam) {
844    // Variables used to diagnose redundant default arguments
845    bool RedundantDefaultArg = false;
846    SourceLocation OldDefaultLoc;
847    SourceLocation NewDefaultLoc;
848
849    // Variables used to diagnose missing default arguments
850    bool MissingDefaultArg = false;
851
852    // C++0x [temp.param]p11:
853    // If a template parameter of a class template is a template parameter pack,
854    // it must be the last template parameter.
855    if (SawParameterPack) {
856      Diag(ParameterPackLoc,
857           diag::err_template_param_pack_must_be_last_template_parameter);
858      Invalid = true;
859    }
860
861    // Merge default arguments for template type parameters.
862    if (TemplateTypeParmDecl *NewTypeParm
863          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
864      TemplateTypeParmDecl *OldTypeParm
865          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
866
867      if (NewTypeParm->isParameterPack()) {
868        assert(!NewTypeParm->hasDefaultArgument() &&
869               "Parameter packs can't have a default argument!");
870        SawParameterPack = true;
871        ParameterPackLoc = NewTypeParm->getLocation();
872      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
873                 NewTypeParm->hasDefaultArgument()) {
874        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
875        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
876        SawDefaultArgument = true;
877        RedundantDefaultArg = true;
878        PreviousDefaultArgLoc = NewDefaultLoc;
879      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
880        // Merge the default argument from the old declaration to the
881        // new declaration.
882        SawDefaultArgument = true;
883        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
884                                        true);
885        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
886      } else if (NewTypeParm->hasDefaultArgument()) {
887        SawDefaultArgument = true;
888        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
889      } else if (SawDefaultArgument)
890        MissingDefaultArg = true;
891    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
892               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
893      // Merge default arguments for non-type template parameters
894      NonTypeTemplateParmDecl *OldNonTypeParm
895        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
896      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
897          NewNonTypeParm->hasDefaultArgument()) {
898        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
899        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
900        SawDefaultArgument = true;
901        RedundantDefaultArg = true;
902        PreviousDefaultArgLoc = NewDefaultLoc;
903      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
904        // Merge the default argument from the old declaration to the
905        // new declaration.
906        SawDefaultArgument = true;
907        // FIXME: We need to create a new kind of "default argument"
908        // expression that points to a previous template template
909        // parameter.
910        NewNonTypeParm->setDefaultArgument(
911                                        OldNonTypeParm->getDefaultArgument());
912        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
913      } else if (NewNonTypeParm->hasDefaultArgument()) {
914        SawDefaultArgument = true;
915        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
916      } else if (SawDefaultArgument)
917        MissingDefaultArg = true;
918    } else {
919    // Merge default arguments for template template parameters
920      TemplateTemplateParmDecl *NewTemplateParm
921        = cast<TemplateTemplateParmDecl>(*NewParam);
922      TemplateTemplateParmDecl *OldTemplateParm
923        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
924      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
925          NewTemplateParm->hasDefaultArgument()) {
926        OldDefaultLoc = OldTemplateParm->getDefaultArgumentLoc();
927        NewDefaultLoc = NewTemplateParm->getDefaultArgumentLoc();
928        SawDefaultArgument = true;
929        RedundantDefaultArg = true;
930        PreviousDefaultArgLoc = NewDefaultLoc;
931      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
932        // Merge the default argument from the old declaration to the
933        // new declaration.
934        SawDefaultArgument = true;
935        // FIXME: We need to create a new kind of "default argument" expression
936        // that points to a previous template template parameter.
937        NewTemplateParm->setDefaultArgument(
938                                        OldTemplateParm->getDefaultArgument());
939        PreviousDefaultArgLoc = OldTemplateParm->getDefaultArgumentLoc();
940      } else if (NewTemplateParm->hasDefaultArgument()) {
941        SawDefaultArgument = true;
942        PreviousDefaultArgLoc = NewTemplateParm->getDefaultArgumentLoc();
943      } else if (SawDefaultArgument)
944        MissingDefaultArg = true;
945    }
946
947    if (RedundantDefaultArg) {
948      // C++ [temp.param]p12:
949      //   A template-parameter shall not be given default arguments
950      //   by two different declarations in the same scope.
951      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
952      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
953      Invalid = true;
954    } else if (MissingDefaultArg) {
955      // C++ [temp.param]p11:
956      //   If a template-parameter has a default template-argument,
957      //   all subsequent template-parameters shall have a default
958      //   template-argument supplied.
959      Diag((*NewParam)->getLocation(),
960           diag::err_template_param_default_arg_missing);
961      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
962      Invalid = true;
963    }
964
965    // If we have an old template parameter list that we're merging
966    // in, move on to the next parameter.
967    if (OldParams)
968      ++OldParam;
969  }
970
971  return Invalid;
972}
973
974/// \brief Match the given template parameter lists to the given scope
975/// specifier, returning the template parameter list that applies to the
976/// name.
977///
978/// \param DeclStartLoc the start of the declaration that has a scope
979/// specifier or a template parameter list.
980///
981/// \param SS the scope specifier that will be matched to the given template
982/// parameter lists. This scope specifier precedes a qualified name that is
983/// being declared.
984///
985/// \param ParamLists the template parameter lists, from the outermost to the
986/// innermost template parameter lists.
987///
988/// \param NumParamLists the number of template parameter lists in ParamLists.
989///
990/// \param IsExplicitSpecialization will be set true if the entity being
991/// declared is an explicit specialization, false otherwise.
992///
993/// \returns the template parameter list, if any, that corresponds to the
994/// name that is preceded by the scope specifier @p SS. This template
995/// parameter list may be have template parameters (if we're declaring a
996/// template) or may have no template parameters (if we're declaring a
997/// template specialization), or may be NULL (if we were's declaring isn't
998/// itself a template).
999TemplateParameterList *
1000Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1001                                              const CXXScopeSpec &SS,
1002                                          TemplateParameterList **ParamLists,
1003                                              unsigned NumParamLists,
1004                                              bool &IsExplicitSpecialization) {
1005  IsExplicitSpecialization = false;
1006
1007  // Find the template-ids that occur within the nested-name-specifier. These
1008  // template-ids will match up with the template parameter lists.
1009  llvm::SmallVector<const TemplateSpecializationType *, 4>
1010    TemplateIdsInSpecifier;
1011  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1012       NNS; NNS = NNS->getPrefix()) {
1013    if (const TemplateSpecializationType *SpecType
1014          = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
1015      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1016      if (!Template)
1017        continue; // FIXME: should this be an error? probably...
1018
1019      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1020        ClassTemplateSpecializationDecl *SpecDecl
1021          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1022        // If the nested name specifier refers to an explicit specialization,
1023        // we don't need a template<> header.
1024        // FIXME: revisit this approach once we cope with specializations
1025        // properly.
1026        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
1027          continue;
1028      }
1029
1030      TemplateIdsInSpecifier.push_back(SpecType);
1031    }
1032  }
1033
1034  // Reverse the list of template-ids in the scope specifier, so that we can
1035  // more easily match up the template-ids and the template parameter lists.
1036  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1037
1038  SourceLocation FirstTemplateLoc = DeclStartLoc;
1039  if (NumParamLists)
1040    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1041
1042  // Match the template-ids found in the specifier to the template parameter
1043  // lists.
1044  unsigned Idx = 0;
1045  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1046       Idx != NumTemplateIds; ++Idx) {
1047    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1048    bool DependentTemplateId = TemplateId->isDependentType();
1049    if (Idx >= NumParamLists) {
1050      // We have a template-id without a corresponding template parameter
1051      // list.
1052      if (DependentTemplateId) {
1053        // FIXME: the location information here isn't great.
1054        Diag(SS.getRange().getBegin(),
1055             diag::err_template_spec_needs_template_parameters)
1056          << TemplateId
1057          << SS.getRange();
1058      } else {
1059        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1060          << SS.getRange()
1061          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1062                                                   "template<> ");
1063        IsExplicitSpecialization = true;
1064      }
1065      return 0;
1066    }
1067
1068    // Check the template parameter list against its corresponding template-id.
1069    if (DependentTemplateId) {
1070      TemplateDecl *Template
1071        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1072
1073      if (ClassTemplateDecl *ClassTemplate
1074            = dyn_cast<ClassTemplateDecl>(Template)) {
1075        TemplateParameterList *ExpectedTemplateParams = 0;
1076        // Is this template-id naming the primary template?
1077        if (Context.hasSameType(TemplateId,
1078                             ClassTemplate->getInjectedClassNameType(Context)))
1079          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1080        // ... or a partial specialization?
1081        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1082                   = ClassTemplate->findPartialSpecialization(TemplateId))
1083          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1084
1085        if (ExpectedTemplateParams)
1086          TemplateParameterListsAreEqual(ParamLists[Idx],
1087                                         ExpectedTemplateParams,
1088                                         true);
1089      }
1090    } else if (ParamLists[Idx]->size() > 0)
1091      Diag(ParamLists[Idx]->getTemplateLoc(),
1092           diag::err_template_param_list_matches_nontemplate)
1093        << TemplateId
1094        << ParamLists[Idx]->getSourceRange();
1095    else
1096      IsExplicitSpecialization = true;
1097  }
1098
1099  // If there were at least as many template-ids as there were template
1100  // parameter lists, then there are no template parameter lists remaining for
1101  // the declaration itself.
1102  if (Idx >= NumParamLists)
1103    return 0;
1104
1105  // If there were too many template parameter lists, complain about that now.
1106  if (Idx != NumParamLists - 1) {
1107    while (Idx < NumParamLists - 1) {
1108      Diag(ParamLists[Idx]->getTemplateLoc(),
1109           diag::err_template_spec_extra_headers)
1110        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1111                       ParamLists[Idx]->getRAngleLoc());
1112      ++Idx;
1113    }
1114  }
1115
1116  // Return the last template parameter list, which corresponds to the
1117  // entity being declared.
1118  return ParamLists[NumParamLists - 1];
1119}
1120
1121/// \brief Translates template arguments as provided by the parser
1122/// into template arguments used by semantic analysis.
1123void Sema::translateTemplateArguments(ASTTemplateArgsPtr &TemplateArgsIn,
1124                                      SourceLocation *TemplateArgLocs,
1125                  llvm::SmallVector<TemplateArgumentLoc, 16> &TemplateArgs) {
1126  TemplateArgs.reserve(TemplateArgsIn.size());
1127
1128  void **Args = TemplateArgsIn.getArgs();
1129  bool *ArgIsType = TemplateArgsIn.getArgIsType();
1130  for (unsigned Arg = 0, Last = TemplateArgsIn.size(); Arg != Last; ++Arg) {
1131    if (ArgIsType[Arg]) {
1132      DeclaratorInfo *DI;
1133      QualType T = Sema::GetTypeFromParser(Args[Arg], &DI);
1134      if (!DI) DI = Context.getTrivialDeclaratorInfo(T, TemplateArgLocs[Arg]);
1135      TemplateArgs.push_back(TemplateArgumentLoc(TemplateArgument(T), DI));
1136    } else {
1137      Expr *E = reinterpret_cast<Expr *>(Args[Arg]);
1138      TemplateArgs.push_back(TemplateArgumentLoc(TemplateArgument(E), E));
1139    }
1140  }
1141}
1142
1143QualType Sema::CheckTemplateIdType(TemplateName Name,
1144                                   SourceLocation TemplateLoc,
1145                                   SourceLocation LAngleLoc,
1146                                   const TemplateArgumentLoc *TemplateArgs,
1147                                   unsigned NumTemplateArgs,
1148                                   SourceLocation RAngleLoc) {
1149  TemplateDecl *Template = Name.getAsTemplateDecl();
1150  if (!Template) {
1151    // The template name does not resolve to a template, so we just
1152    // build a dependent template-id type.
1153    return Context.getTemplateSpecializationType(Name, TemplateArgs,
1154                                                 NumTemplateArgs);
1155  }
1156
1157  // Check that the template argument list is well-formed for this
1158  // template.
1159  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1160                                        NumTemplateArgs);
1161  if (CheckTemplateArgumentList(Template, TemplateLoc, LAngleLoc,
1162                                TemplateArgs, NumTemplateArgs, RAngleLoc,
1163                                false, Converted))
1164    return QualType();
1165
1166  assert((Converted.structuredSize() ==
1167            Template->getTemplateParameters()->size()) &&
1168         "Converted template argument list is too short!");
1169
1170  QualType CanonType;
1171
1172  if (TemplateSpecializationType::anyDependentTemplateArguments(
1173                                                      TemplateArgs,
1174                                                      NumTemplateArgs)) {
1175    // This class template specialization is a dependent
1176    // type. Therefore, its canonical type is another class template
1177    // specialization type that contains all of the converted
1178    // arguments in canonical form. This ensures that, e.g., A<T> and
1179    // A<T, T> have identical types when A is declared as:
1180    //
1181    //   template<typename T, typename U = T> struct A;
1182    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1183    CanonType = Context.getTemplateSpecializationType(CanonName,
1184                                                   Converted.getFlatArguments(),
1185                                                   Converted.flatSize());
1186
1187    // FIXME: CanonType is not actually the canonical type, and unfortunately
1188    // it is a TemplateSpecializationType that we will never use again.
1189    // In the future, we need to teach getTemplateSpecializationType to only
1190    // build the canonical type and return that to us.
1191    CanonType = Context.getCanonicalType(CanonType);
1192  } else if (ClassTemplateDecl *ClassTemplate
1193               = dyn_cast<ClassTemplateDecl>(Template)) {
1194    // Find the class template specialization declaration that
1195    // corresponds to these arguments.
1196    llvm::FoldingSetNodeID ID;
1197    ClassTemplateSpecializationDecl::Profile(ID,
1198                                             Converted.getFlatArguments(),
1199                                             Converted.flatSize(),
1200                                             Context);
1201    void *InsertPos = 0;
1202    ClassTemplateSpecializationDecl *Decl
1203      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1204    if (!Decl) {
1205      // This is the first time we have referenced this class template
1206      // specialization. Create the canonical declaration and add it to
1207      // the set of specializations.
1208      Decl = ClassTemplateSpecializationDecl::Create(Context,
1209                                    ClassTemplate->getDeclContext(),
1210                                    ClassTemplate->getLocation(),
1211                                    ClassTemplate,
1212                                    Converted, 0);
1213      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1214      Decl->setLexicalDeclContext(CurContext);
1215    }
1216
1217    CanonType = Context.getTypeDeclType(Decl);
1218  }
1219
1220  // Build the fully-sugared type for this class template
1221  // specialization, which refers back to the class template
1222  // specialization we created or found.
1223  return Context.getTemplateSpecializationType(Name, TemplateArgs,
1224                                               NumTemplateArgs, CanonType);
1225}
1226
1227Action::TypeResult
1228Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1229                          SourceLocation LAngleLoc,
1230                          ASTTemplateArgsPtr TemplateArgsIn,
1231                          SourceLocation *TemplateArgLocsIn,
1232                          SourceLocation RAngleLoc) {
1233  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1234
1235  // Translate the parser's template argument list in our AST format.
1236  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
1237  translateTemplateArguments(TemplateArgsIn, TemplateArgLocsIn, TemplateArgs);
1238
1239  QualType Result = CheckTemplateIdType(Template, TemplateLoc, LAngleLoc,
1240                                        TemplateArgs.data(),
1241                                        TemplateArgs.size(),
1242                                        RAngleLoc);
1243  TemplateArgsIn.release();
1244
1245  if (Result.isNull())
1246    return true;
1247
1248  DeclaratorInfo *DI = Context.CreateDeclaratorInfo(Result);
1249  TemplateSpecializationTypeLoc TL
1250    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1251  TL.setTemplateNameLoc(TemplateLoc);
1252  TL.setLAngleLoc(LAngleLoc);
1253  TL.setRAngleLoc(RAngleLoc);
1254  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1255    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1256
1257  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1258}
1259
1260Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1261                                              TagUseKind TUK,
1262                                              DeclSpec::TST TagSpec,
1263                                              SourceLocation TagLoc) {
1264  if (TypeResult.isInvalid())
1265    return Sema::TypeResult();
1266
1267  // FIXME: preserve source info, ideally without copying the DI.
1268  DeclaratorInfo *DI;
1269  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1270
1271  // Verify the tag specifier.
1272  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1273
1274  if (const RecordType *RT = Type->getAs<RecordType>()) {
1275    RecordDecl *D = RT->getDecl();
1276
1277    IdentifierInfo *Id = D->getIdentifier();
1278    assert(Id && "templated class must have an identifier");
1279
1280    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1281      Diag(TagLoc, diag::err_use_with_wrong_tag)
1282        << Type
1283        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1284                                                   D->getKindName());
1285      Diag(D->getLocation(), diag::note_previous_use);
1286    }
1287  }
1288
1289  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1290
1291  return ElabType.getAsOpaquePtr();
1292}
1293
1294Sema::OwningExprResult Sema::BuildTemplateIdExpr(NestedNameSpecifier *Qualifier,
1295                                                 SourceRange QualifierRange,
1296                                                 TemplateName Template,
1297                                                 SourceLocation TemplateNameLoc,
1298                                                 SourceLocation LAngleLoc,
1299                                        const TemplateArgumentLoc *TemplateArgs,
1300                                                 unsigned NumTemplateArgs,
1301                                                 SourceLocation RAngleLoc) {
1302  // FIXME: Can we do any checking at this point? I guess we could check the
1303  // template arguments that we have against the template name, if the template
1304  // name refers to a single template. That's not a terribly common case,
1305  // though.
1306
1307  // Cope with an implicit member access in a C++ non-static member function.
1308  NamedDecl *D = Template.getAsTemplateDecl();
1309  if (!D)
1310    D = Template.getAsOverloadedFunctionDecl();
1311
1312  CXXScopeSpec SS;
1313  SS.setRange(QualifierRange);
1314  SS.setScopeRep(Qualifier);
1315  QualType ThisType, MemberType;
1316  if (D && isImplicitMemberReference(&SS, D, TemplateNameLoc,
1317                                     ThisType, MemberType)) {
1318    Expr *This = new (Context) CXXThisExpr(SourceLocation(), ThisType);
1319    return Owned(MemberExpr::Create(Context, This, true,
1320                                    Qualifier, QualifierRange,
1321                                    D, TemplateNameLoc, true,
1322                                    LAngleLoc, TemplateArgs,
1323                                    NumTemplateArgs, RAngleLoc,
1324                                    Context.OverloadTy));
1325  }
1326
1327  return Owned(TemplateIdRefExpr::Create(Context, Context.OverloadTy,
1328                                         Qualifier, QualifierRange,
1329                                         Template, TemplateNameLoc, LAngleLoc,
1330                                         TemplateArgs,
1331                                         NumTemplateArgs, RAngleLoc));
1332}
1333
1334Sema::OwningExprResult Sema::ActOnTemplateIdExpr(const CXXScopeSpec &SS,
1335                                                 TemplateTy TemplateD,
1336                                                 SourceLocation TemplateNameLoc,
1337                                                 SourceLocation LAngleLoc,
1338                                              ASTTemplateArgsPtr TemplateArgsIn,
1339                                                SourceLocation *TemplateArgSLs,
1340                                                 SourceLocation RAngleLoc) {
1341  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1342
1343  // Translate the parser's template argument list in our AST format.
1344  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
1345  translateTemplateArguments(TemplateArgsIn, TemplateArgSLs, TemplateArgs);
1346  TemplateArgsIn.release();
1347
1348  return BuildTemplateIdExpr((NestedNameSpecifier *)SS.getScopeRep(),
1349                             SS.getRange(),
1350                             Template, TemplateNameLoc, LAngleLoc,
1351                             TemplateArgs.data(), TemplateArgs.size(),
1352                             RAngleLoc);
1353}
1354
1355/// \brief Form a dependent template name.
1356///
1357/// This action forms a dependent template name given the template
1358/// name and its (presumably dependent) scope specifier. For
1359/// example, given "MetaFun::template apply", the scope specifier \p
1360/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1361/// of the "template" keyword, and "apply" is the \p Name.
1362Sema::TemplateTy
1363Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1364                                 const CXXScopeSpec &SS,
1365                                 UnqualifiedId &Name,
1366                                 TypeTy *ObjectType) {
1367  if ((ObjectType &&
1368       computeDeclContext(QualType::getFromOpaquePtr(ObjectType))) ||
1369      (SS.isSet() && computeDeclContext(SS, false))) {
1370    // C++0x [temp.names]p5:
1371    //   If a name prefixed by the keyword template is not the name of
1372    //   a template, the program is ill-formed. [Note: the keyword
1373    //   template may not be applied to non-template members of class
1374    //   templates. -end note ] [ Note: as is the case with the
1375    //   typename prefix, the template prefix is allowed in cases
1376    //   where it is not strictly necessary; i.e., when the
1377    //   nested-name-specifier or the expression on the left of the ->
1378    //   or . is not dependent on a template-parameter, or the use
1379    //   does not appear in the scope of a template. -end note]
1380    //
1381    // Note: C++03 was more strict here, because it banned the use of
1382    // the "template" keyword prior to a template-name that was not a
1383    // dependent name. C++ DR468 relaxed this requirement (the
1384    // "template" keyword is now permitted). We follow the C++0x
1385    // rules, even in C++03 mode, retroactively applying the DR.
1386    TemplateTy Template;
1387    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1388                                          false, Template);
1389    if (TNK == TNK_Non_template) {
1390      Diag(Name.getSourceRange().getBegin(),
1391           diag::err_template_kw_refers_to_non_template)
1392        << GetNameFromUnqualifiedId(Name)
1393        << Name.getSourceRange();
1394      return TemplateTy();
1395    }
1396
1397    return Template;
1398  }
1399
1400  NestedNameSpecifier *Qualifier
1401    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1402
1403  switch (Name.getKind()) {
1404  case UnqualifiedId::IK_Identifier:
1405    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1406                                                             Name.Identifier));
1407
1408  case UnqualifiedId::IK_OperatorFunctionId:
1409    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1410                                             Name.OperatorFunctionId.Operator));
1411
1412  default:
1413    break;
1414  }
1415
1416  Diag(Name.getSourceRange().getBegin(),
1417       diag::err_template_kw_refers_to_non_template)
1418    << GetNameFromUnqualifiedId(Name)
1419    << Name.getSourceRange();
1420  return TemplateTy();
1421}
1422
1423bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1424                                     const TemplateArgumentLoc &AL,
1425                                     TemplateArgumentListBuilder &Converted) {
1426  const TemplateArgument &Arg = AL.getArgument();
1427
1428  // Check template type parameter.
1429  if (Arg.getKind() != TemplateArgument::Type) {
1430    // C++ [temp.arg.type]p1:
1431    //   A template-argument for a template-parameter which is a
1432    //   type shall be a type-id.
1433
1434    // We have a template type parameter but the template argument
1435    // is not a type.
1436    SourceRange SR = AL.getSourceRange();
1437    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1438    Diag(Param->getLocation(), diag::note_template_param_here);
1439
1440    return true;
1441  }
1442
1443  if (CheckTemplateArgument(Param, AL.getSourceDeclaratorInfo()))
1444    return true;
1445
1446  // Add the converted template type argument.
1447  Converted.Append(
1448                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1449  return false;
1450}
1451
1452/// \brief Check that the given template argument list is well-formed
1453/// for specializing the given template.
1454bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
1455                                     SourceLocation TemplateLoc,
1456                                     SourceLocation LAngleLoc,
1457                                     const TemplateArgumentLoc *TemplateArgs,
1458                                     unsigned NumTemplateArgs,
1459                                     SourceLocation RAngleLoc,
1460                                     bool PartialTemplateArgs,
1461                                     TemplateArgumentListBuilder &Converted) {
1462  TemplateParameterList *Params = Template->getTemplateParameters();
1463  unsigned NumParams = Params->size();
1464  unsigned NumArgs = NumTemplateArgs;
1465  bool Invalid = false;
1466
1467  bool HasParameterPack =
1468    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
1469
1470  if ((NumArgs > NumParams && !HasParameterPack) ||
1471      (NumArgs < Params->getMinRequiredArguments() &&
1472       !PartialTemplateArgs)) {
1473    // FIXME: point at either the first arg beyond what we can handle,
1474    // or the '>', depending on whether we have too many or too few
1475    // arguments.
1476    SourceRange Range;
1477    if (NumArgs > NumParams)
1478      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
1479    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
1480      << (NumArgs > NumParams)
1481      << (isa<ClassTemplateDecl>(Template)? 0 :
1482          isa<FunctionTemplateDecl>(Template)? 1 :
1483          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
1484      << Template << Range;
1485    Diag(Template->getLocation(), diag::note_template_decl_here)
1486      << Params->getSourceRange();
1487    Invalid = true;
1488  }
1489
1490  // C++ [temp.arg]p1:
1491  //   [...] The type and form of each template-argument specified in
1492  //   a template-id shall match the type and form specified for the
1493  //   corresponding parameter declared by the template in its
1494  //   template-parameter-list.
1495  unsigned ArgIdx = 0;
1496  for (TemplateParameterList::iterator Param = Params->begin(),
1497                                       ParamEnd = Params->end();
1498       Param != ParamEnd; ++Param, ++ArgIdx) {
1499    if (ArgIdx > NumArgs && PartialTemplateArgs)
1500      break;
1501
1502    // Decode the template argument
1503    TemplateArgumentLoc Arg;
1504
1505    if (ArgIdx >= NumArgs) {
1506      // Retrieve the default template argument from the template
1507      // parameter.
1508      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1509        if (TTP->isParameterPack()) {
1510          // We have an empty argument pack.
1511          Converted.BeginPack();
1512          Converted.EndPack();
1513          break;
1514        }
1515
1516        if (!TTP->hasDefaultArgument())
1517          break;
1518
1519        DeclaratorInfo *ArgType = TTP->getDefaultArgumentInfo();
1520
1521        // If the argument type is dependent, instantiate it now based
1522        // on the previously-computed template arguments.
1523        if (ArgType->getType()->isDependentType()) {
1524          InstantiatingTemplate Inst(*this, TemplateLoc,
1525                                     Template, Converted.getFlatArguments(),
1526                                     Converted.flatSize(),
1527                                     SourceRange(TemplateLoc, RAngleLoc));
1528
1529          TemplateArgumentList TemplateArgs(Context, Converted,
1530                                            /*TakeArgs=*/false);
1531          ArgType = SubstType(ArgType,
1532                              MultiLevelTemplateArgumentList(TemplateArgs),
1533                              TTP->getDefaultArgumentLoc(),
1534                              TTP->getDeclName());
1535        }
1536
1537        if (!ArgType)
1538          return true;
1539
1540        Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), ArgType);
1541      } else if (NonTypeTemplateParmDecl *NTTP
1542                   = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1543        if (!NTTP->hasDefaultArgument())
1544          break;
1545
1546        InstantiatingTemplate Inst(*this, TemplateLoc,
1547                                   Template, Converted.getFlatArguments(),
1548                                   Converted.flatSize(),
1549                                   SourceRange(TemplateLoc, RAngleLoc));
1550
1551        TemplateArgumentList TemplateArgs(Context, Converted,
1552                                          /*TakeArgs=*/false);
1553
1554        Sema::OwningExprResult E
1555          = SubstExpr(NTTP->getDefaultArgument(),
1556                      MultiLevelTemplateArgumentList(TemplateArgs));
1557        if (E.isInvalid())
1558          return true;
1559
1560        Expr *Ex = E.takeAs<Expr>();
1561        Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
1562      } else {
1563        TemplateTemplateParmDecl *TempParm
1564          = cast<TemplateTemplateParmDecl>(*Param);
1565
1566        if (!TempParm->hasDefaultArgument())
1567          break;
1568
1569        // FIXME: Subst default argument
1570        Arg = TemplateArgumentLoc(TemplateArgument(TempParm->getDefaultArgument()),
1571                                  TempParm->getDefaultArgument());
1572      }
1573    } else {
1574      // Retrieve the template argument produced by the user.
1575      Arg = TemplateArgs[ArgIdx];
1576    }
1577
1578
1579    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
1580      if (TTP->isParameterPack()) {
1581        Converted.BeginPack();
1582        // Check all the remaining arguments (if any).
1583        for (; ArgIdx < NumArgs; ++ArgIdx) {
1584          if (CheckTemplateTypeArgument(TTP, TemplateArgs[ArgIdx], Converted))
1585            Invalid = true;
1586        }
1587
1588        Converted.EndPack();
1589      } else {
1590        if (CheckTemplateTypeArgument(TTP, Arg, Converted))
1591          Invalid = true;
1592      }
1593    } else if (NonTypeTemplateParmDecl *NTTP
1594                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
1595      // Check non-type template parameters.
1596
1597      // Do substitution on the type of the non-type template parameter
1598      // with the template arguments we've seen thus far.
1599      QualType NTTPType = NTTP->getType();
1600      if (NTTPType->isDependentType()) {
1601        // Do substitution on the type of the non-type template parameter.
1602        InstantiatingTemplate Inst(*this, TemplateLoc,
1603                                   Template, Converted.getFlatArguments(),
1604                                   Converted.flatSize(),
1605                                   SourceRange(TemplateLoc, RAngleLoc));
1606
1607        TemplateArgumentList TemplateArgs(Context, Converted,
1608                                          /*TakeArgs=*/false);
1609        NTTPType = SubstType(NTTPType,
1610                             MultiLevelTemplateArgumentList(TemplateArgs),
1611                             NTTP->getLocation(),
1612                             NTTP->getDeclName());
1613        // If that worked, check the non-type template parameter type
1614        // for validity.
1615        if (!NTTPType.isNull())
1616          NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1617                                                       NTTP->getLocation());
1618        if (NTTPType.isNull()) {
1619          Invalid = true;
1620          break;
1621        }
1622      }
1623
1624      switch (Arg.getArgument().getKind()) {
1625      case TemplateArgument::Null:
1626        assert(false && "Should never see a NULL template argument here");
1627        break;
1628
1629      case TemplateArgument::Expression: {
1630        Expr *E = Arg.getArgument().getAsExpr();
1631        TemplateArgument Result;
1632        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1633          Invalid = true;
1634        else
1635          Converted.Append(Result);
1636        break;
1637      }
1638
1639      case TemplateArgument::Declaration:
1640      case TemplateArgument::Integral:
1641        // We've already checked this template argument, so just copy
1642        // it to the list of converted arguments.
1643        Converted.Append(Arg.getArgument());
1644        break;
1645
1646      case TemplateArgument::Type: {
1647        // We have a non-type template parameter but the template
1648        // argument is a type.
1649
1650        // C++ [temp.arg]p2:
1651        //   In a template-argument, an ambiguity between a type-id and
1652        //   an expression is resolved to a type-id, regardless of the
1653        //   form of the corresponding template-parameter.
1654        //
1655        // We warn specifically about this case, since it can be rather
1656        // confusing for users.
1657        QualType T = Arg.getArgument().getAsType();
1658        SourceRange SR = Arg.getSourceRange();
1659        if (T->isFunctionType())
1660          Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig)
1661            << SR << T;
1662        else
1663          Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1664        Diag((*Param)->getLocation(), diag::note_template_param_here);
1665        Invalid = true;
1666        break;
1667      }
1668
1669      case TemplateArgument::Pack:
1670        assert(0 && "FIXME: Implement!");
1671        break;
1672      }
1673    } else {
1674      // Check template template parameters.
1675      TemplateTemplateParmDecl *TempParm
1676        = cast<TemplateTemplateParmDecl>(*Param);
1677
1678      switch (Arg.getArgument().getKind()) {
1679      case TemplateArgument::Null:
1680        assert(false && "Should never see a NULL template argument here");
1681        break;
1682
1683      case TemplateArgument::Expression: {
1684        Expr *ArgExpr = Arg.getArgument().getAsExpr();
1685        if (ArgExpr && isa<DeclRefExpr>(ArgExpr) &&
1686            isa<TemplateDecl>(cast<DeclRefExpr>(ArgExpr)->getDecl())) {
1687          if (CheckTemplateArgument(TempParm, cast<DeclRefExpr>(ArgExpr)))
1688            Invalid = true;
1689
1690          // Add the converted template argument.
1691          Decl *D
1692            = cast<DeclRefExpr>(ArgExpr)->getDecl()->getCanonicalDecl();
1693          Converted.Append(TemplateArgument(D));
1694          continue;
1695        }
1696      }
1697        // fall through
1698
1699      case TemplateArgument::Type: {
1700        // We have a template template parameter but the template
1701        // argument does not refer to a template.
1702        Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
1703        Invalid = true;
1704        break;
1705      }
1706
1707      case TemplateArgument::Declaration:
1708        // We've already checked this template argument, so just copy
1709        // it to the list of converted arguments.
1710        Converted.Append(Arg.getArgument());
1711        break;
1712
1713      case TemplateArgument::Integral:
1714        assert(false && "Integral argument with template template parameter");
1715        break;
1716
1717      case TemplateArgument::Pack:
1718        assert(0 && "FIXME: Implement!");
1719        break;
1720      }
1721    }
1722  }
1723
1724  return Invalid;
1725}
1726
1727/// \brief Check a template argument against its corresponding
1728/// template type parameter.
1729///
1730/// This routine implements the semantics of C++ [temp.arg.type]. It
1731/// returns true if an error occurred, and false otherwise.
1732bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
1733                                 DeclaratorInfo *ArgInfo) {
1734  assert(ArgInfo && "invalid DeclaratorInfo");
1735  QualType Arg = ArgInfo->getType();
1736
1737  // C++ [temp.arg.type]p2:
1738  //   A local type, a type with no linkage, an unnamed type or a type
1739  //   compounded from any of these types shall not be used as a
1740  //   template-argument for a template type-parameter.
1741  //
1742  // FIXME: Perform the recursive and no-linkage type checks.
1743  const TagType *Tag = 0;
1744  if (const EnumType *EnumT = Arg->getAs<EnumType>())
1745    Tag = EnumT;
1746  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
1747    Tag = RecordT;
1748  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
1749    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1750    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
1751      << QualType(Tag, 0) << SR;
1752  } else if (Tag && !Tag->getDecl()->getDeclName() &&
1753           !Tag->getDecl()->getTypedefForAnonDecl()) {
1754    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
1755    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
1756    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
1757    return true;
1758  }
1759
1760  return false;
1761}
1762
1763/// \brief Checks whether the given template argument is the address
1764/// of an object or function according to C++ [temp.arg.nontype]p1.
1765bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
1766                                                          NamedDecl *&Entity) {
1767  bool Invalid = false;
1768
1769  // See through any implicit casts we added to fix the type.
1770  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1771    Arg = Cast->getSubExpr();
1772
1773  // C++0x allows nullptr, and there's no further checking to be done for that.
1774  if (Arg->getType()->isNullPtrType())
1775    return false;
1776
1777  // C++ [temp.arg.nontype]p1:
1778  //
1779  //   A template-argument for a non-type, non-template
1780  //   template-parameter shall be one of: [...]
1781  //
1782  //     -- the address of an object or function with external
1783  //        linkage, including function templates and function
1784  //        template-ids but excluding non-static class members,
1785  //        expressed as & id-expression where the & is optional if
1786  //        the name refers to a function or array, or if the
1787  //        corresponding template-parameter is a reference; or
1788  DeclRefExpr *DRE = 0;
1789
1790  // Ignore (and complain about) any excess parentheses.
1791  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1792    if (!Invalid) {
1793      Diag(Arg->getSourceRange().getBegin(),
1794           diag::err_template_arg_extra_parens)
1795        << Arg->getSourceRange();
1796      Invalid = true;
1797    }
1798
1799    Arg = Parens->getSubExpr();
1800  }
1801
1802  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
1803    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
1804      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1805  } else
1806    DRE = dyn_cast<DeclRefExpr>(Arg);
1807
1808  if (!DRE || !isa<ValueDecl>(DRE->getDecl()))
1809    return Diag(Arg->getSourceRange().getBegin(),
1810                diag::err_template_arg_not_object_or_func_form)
1811      << Arg->getSourceRange();
1812
1813  // Cannot refer to non-static data members
1814  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
1815    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
1816      << Field << Arg->getSourceRange();
1817
1818  // Cannot refer to non-static member functions
1819  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
1820    if (!Method->isStatic())
1821      return Diag(Arg->getSourceRange().getBegin(),
1822                  diag::err_template_arg_method)
1823        << Method << Arg->getSourceRange();
1824
1825  // Functions must have external linkage.
1826  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1827    if (Func->getStorageClass() == FunctionDecl::Static) {
1828      Diag(Arg->getSourceRange().getBegin(),
1829           diag::err_template_arg_function_not_extern)
1830        << Func << Arg->getSourceRange();
1831      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
1832        << true;
1833      return true;
1834    }
1835
1836    // Okay: we've named a function with external linkage.
1837    Entity = Func;
1838    return Invalid;
1839  }
1840
1841  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
1842    if (!Var->hasGlobalStorage()) {
1843      Diag(Arg->getSourceRange().getBegin(),
1844           diag::err_template_arg_object_not_extern)
1845        << Var << Arg->getSourceRange();
1846      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
1847        << true;
1848      return true;
1849    }
1850
1851    // Okay: we've named an object with external linkage
1852    Entity = Var;
1853    return Invalid;
1854  }
1855
1856  // We found something else, but we don't know specifically what it is.
1857  Diag(Arg->getSourceRange().getBegin(),
1858       diag::err_template_arg_not_object_or_func)
1859      << Arg->getSourceRange();
1860  Diag(DRE->getDecl()->getLocation(),
1861       diag::note_template_arg_refers_here);
1862  return true;
1863}
1864
1865/// \brief Checks whether the given template argument is a pointer to
1866/// member constant according to C++ [temp.arg.nontype]p1.
1867bool
1868Sema::CheckTemplateArgumentPointerToMember(Expr *Arg, NamedDecl *&Member) {
1869  bool Invalid = false;
1870
1871  // See through any implicit casts we added to fix the type.
1872  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
1873    Arg = Cast->getSubExpr();
1874
1875  // C++0x allows nullptr, and there's no further checking to be done for that.
1876  if (Arg->getType()->isNullPtrType())
1877    return false;
1878
1879  // C++ [temp.arg.nontype]p1:
1880  //
1881  //   A template-argument for a non-type, non-template
1882  //   template-parameter shall be one of: [...]
1883  //
1884  //     -- a pointer to member expressed as described in 5.3.1.
1885  DeclRefExpr *DRE = 0;
1886
1887  // Ignore (and complain about) any excess parentheses.
1888  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
1889    if (!Invalid) {
1890      Diag(Arg->getSourceRange().getBegin(),
1891           diag::err_template_arg_extra_parens)
1892        << Arg->getSourceRange();
1893      Invalid = true;
1894    }
1895
1896    Arg = Parens->getSubExpr();
1897  }
1898
1899  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg))
1900    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
1901      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
1902      if (DRE && !DRE->getQualifier())
1903        DRE = 0;
1904    }
1905
1906  if (!DRE)
1907    return Diag(Arg->getSourceRange().getBegin(),
1908                diag::err_template_arg_not_pointer_to_member_form)
1909      << Arg->getSourceRange();
1910
1911  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
1912    assert((isa<FieldDecl>(DRE->getDecl()) ||
1913            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
1914           "Only non-static member pointers can make it here");
1915
1916    // Okay: this is the address of a non-static member, and therefore
1917    // a member pointer constant.
1918    Member = DRE->getDecl();
1919    return Invalid;
1920  }
1921
1922  // We found something else, but we don't know specifically what it is.
1923  Diag(Arg->getSourceRange().getBegin(),
1924       diag::err_template_arg_not_pointer_to_member_form)
1925      << Arg->getSourceRange();
1926  Diag(DRE->getDecl()->getLocation(),
1927       diag::note_template_arg_refers_here);
1928  return true;
1929}
1930
1931/// \brief Check a template argument against its corresponding
1932/// non-type template parameter.
1933///
1934/// This routine implements the semantics of C++ [temp.arg.nontype].
1935/// It returns true if an error occurred, and false otherwise. \p
1936/// InstantiatedParamType is the type of the non-type template
1937/// parameter after it has been instantiated.
1938///
1939/// If no error was detected, Converted receives the converted template argument.
1940bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
1941                                 QualType InstantiatedParamType, Expr *&Arg,
1942                                 TemplateArgument &Converted) {
1943  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
1944
1945  // If either the parameter has a dependent type or the argument is
1946  // type-dependent, there's nothing we can check now.
1947  // FIXME: Add template argument to Converted!
1948  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
1949    // FIXME: Produce a cloned, canonical expression?
1950    Converted = TemplateArgument(Arg);
1951    return false;
1952  }
1953
1954  // C++ [temp.arg.nontype]p5:
1955  //   The following conversions are performed on each expression used
1956  //   as a non-type template-argument. If a non-type
1957  //   template-argument cannot be converted to the type of the
1958  //   corresponding template-parameter then the program is
1959  //   ill-formed.
1960  //
1961  //     -- for a non-type template-parameter of integral or
1962  //        enumeration type, integral promotions (4.5) and integral
1963  //        conversions (4.7) are applied.
1964  QualType ParamType = InstantiatedParamType;
1965  QualType ArgType = Arg->getType();
1966  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
1967    // C++ [temp.arg.nontype]p1:
1968    //   A template-argument for a non-type, non-template
1969    //   template-parameter shall be one of:
1970    //
1971    //     -- an integral constant-expression of integral or enumeration
1972    //        type; or
1973    //     -- the name of a non-type template-parameter; or
1974    SourceLocation NonConstantLoc;
1975    llvm::APSInt Value;
1976    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
1977      Diag(Arg->getSourceRange().getBegin(),
1978           diag::err_template_arg_not_integral_or_enumeral)
1979        << ArgType << Arg->getSourceRange();
1980      Diag(Param->getLocation(), diag::note_template_param_here);
1981      return true;
1982    } else if (!Arg->isValueDependent() &&
1983               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
1984      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
1985        << ArgType << Arg->getSourceRange();
1986      return true;
1987    }
1988
1989    // FIXME: We need some way to more easily get the unqualified form
1990    // of the types without going all the way to the
1991    // canonical type.
1992    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
1993      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
1994    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
1995      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
1996
1997    // Try to convert the argument to the parameter's type.
1998    if (ParamType == ArgType) {
1999      // Okay: no conversion necessary
2000    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2001               !ParamType->isEnumeralType()) {
2002      // This is an integral promotion or conversion.
2003      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2004    } else {
2005      // We can't perform this conversion.
2006      Diag(Arg->getSourceRange().getBegin(),
2007           diag::err_template_arg_not_convertible)
2008        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2009      Diag(Param->getLocation(), diag::note_template_param_here);
2010      return true;
2011    }
2012
2013    QualType IntegerType = Context.getCanonicalType(ParamType);
2014    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2015      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2016
2017    if (!Arg->isValueDependent()) {
2018      // Check that an unsigned parameter does not receive a negative
2019      // value.
2020      if (IntegerType->isUnsignedIntegerType()
2021          && (Value.isSigned() && Value.isNegative())) {
2022        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2023          << Value.toString(10) << Param->getType()
2024          << Arg->getSourceRange();
2025        Diag(Param->getLocation(), diag::note_template_param_here);
2026        return true;
2027      }
2028
2029      // Check that we don't overflow the template parameter type.
2030      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2031      if (Value.getActiveBits() > AllowedBits) {
2032        Diag(Arg->getSourceRange().getBegin(),
2033             diag::err_template_arg_too_large)
2034          << Value.toString(10) << Param->getType()
2035          << Arg->getSourceRange();
2036        Diag(Param->getLocation(), diag::note_template_param_here);
2037        return true;
2038      }
2039
2040      if (Value.getBitWidth() != AllowedBits)
2041        Value.extOrTrunc(AllowedBits);
2042      Value.setIsSigned(IntegerType->isSignedIntegerType());
2043    }
2044
2045    // Add the value of this argument to the list of converted
2046    // arguments. We use the bitwidth and signedness of the template
2047    // parameter.
2048    if (Arg->isValueDependent()) {
2049      // The argument is value-dependent. Create a new
2050      // TemplateArgument with the converted expression.
2051      Converted = TemplateArgument(Arg);
2052      return false;
2053    }
2054
2055    Converted = TemplateArgument(Value,
2056                                 ParamType->isEnumeralType() ? ParamType
2057                                                             : IntegerType);
2058    return false;
2059  }
2060
2061  // Handle pointer-to-function, reference-to-function, and
2062  // pointer-to-member-function all in (roughly) the same way.
2063  if (// -- For a non-type template-parameter of type pointer to
2064      //    function, only the function-to-pointer conversion (4.3) is
2065      //    applied. If the template-argument represents a set of
2066      //    overloaded functions (or a pointer to such), the matching
2067      //    function is selected from the set (13.4).
2068      // In C++0x, any std::nullptr_t value can be converted.
2069      (ParamType->isPointerType() &&
2070       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2071      // -- For a non-type template-parameter of type reference to
2072      //    function, no conversions apply. If the template-argument
2073      //    represents a set of overloaded functions, the matching
2074      //    function is selected from the set (13.4).
2075      (ParamType->isReferenceType() &&
2076       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2077      // -- For a non-type template-parameter of type pointer to
2078      //    member function, no conversions apply. If the
2079      //    template-argument represents a set of overloaded member
2080      //    functions, the matching member function is selected from
2081      //    the set (13.4).
2082      // Again, C++0x allows a std::nullptr_t value.
2083      (ParamType->isMemberPointerType() &&
2084       ParamType->getAs<MemberPointerType>()->getPointeeType()
2085         ->isFunctionType())) {
2086    if (Context.hasSameUnqualifiedType(ArgType,
2087                                       ParamType.getNonReferenceType())) {
2088      // We don't have to do anything: the types already match.
2089    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2090                 ParamType->isMemberPointerType())) {
2091      ArgType = ParamType;
2092      if (ParamType->isMemberPointerType())
2093        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2094      else
2095        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2096    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2097      ArgType = Context.getPointerType(ArgType);
2098      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2099    } else if (FunctionDecl *Fn
2100                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2101      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2102        return true;
2103
2104      Arg = FixOverloadedFunctionReference(Arg, Fn);
2105      ArgType = Arg->getType();
2106      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2107        ArgType = Context.getPointerType(Arg->getType());
2108        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2109      }
2110    }
2111
2112    if (!Context.hasSameUnqualifiedType(ArgType,
2113                                        ParamType.getNonReferenceType())) {
2114      // We can't perform this conversion.
2115      Diag(Arg->getSourceRange().getBegin(),
2116           diag::err_template_arg_not_convertible)
2117        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2118      Diag(Param->getLocation(), diag::note_template_param_here);
2119      return true;
2120    }
2121
2122    if (ParamType->isMemberPointerType()) {
2123      NamedDecl *Member = 0;
2124      if (CheckTemplateArgumentPointerToMember(Arg, Member))
2125        return true;
2126
2127      if (Member)
2128        Member = cast<NamedDecl>(Member->getCanonicalDecl());
2129      Converted = TemplateArgument(Member);
2130      return false;
2131    }
2132
2133    NamedDecl *Entity = 0;
2134    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2135      return true;
2136
2137    if (Entity)
2138      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2139    Converted = TemplateArgument(Entity);
2140    return false;
2141  }
2142
2143  if (ParamType->isPointerType()) {
2144    //   -- for a non-type template-parameter of type pointer to
2145    //      object, qualification conversions (4.4) and the
2146    //      array-to-pointer conversion (4.2) are applied.
2147    // C++0x also allows a value of std::nullptr_t.
2148    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2149           "Only object pointers allowed here");
2150
2151    if (ArgType->isNullPtrType()) {
2152      ArgType = ParamType;
2153      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2154    } else if (ArgType->isArrayType()) {
2155      ArgType = Context.getArrayDecayedType(ArgType);
2156      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2157    }
2158
2159    if (IsQualificationConversion(ArgType, ParamType)) {
2160      ArgType = ParamType;
2161      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2162    }
2163
2164    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2165      // We can't perform this conversion.
2166      Diag(Arg->getSourceRange().getBegin(),
2167           diag::err_template_arg_not_convertible)
2168        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2169      Diag(Param->getLocation(), diag::note_template_param_here);
2170      return true;
2171    }
2172
2173    NamedDecl *Entity = 0;
2174    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2175      return true;
2176
2177    if (Entity)
2178      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2179    Converted = TemplateArgument(Entity);
2180    return false;
2181  }
2182
2183  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2184    //   -- For a non-type template-parameter of type reference to
2185    //      object, no conversions apply. The type referred to by the
2186    //      reference may be more cv-qualified than the (otherwise
2187    //      identical) type of the template-argument. The
2188    //      template-parameter is bound directly to the
2189    //      template-argument, which must be an lvalue.
2190    assert(ParamRefType->getPointeeType()->isObjectType() &&
2191           "Only object references allowed here");
2192
2193    if (!Context.hasSameUnqualifiedType(ParamRefType->getPointeeType(), ArgType)) {
2194      Diag(Arg->getSourceRange().getBegin(),
2195           diag::err_template_arg_no_ref_bind)
2196        << InstantiatedParamType << Arg->getType()
2197        << Arg->getSourceRange();
2198      Diag(Param->getLocation(), diag::note_template_param_here);
2199      return true;
2200    }
2201
2202    unsigned ParamQuals
2203      = Context.getCanonicalType(ParamType).getCVRQualifiers();
2204    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2205
2206    if ((ParamQuals | ArgQuals) != ParamQuals) {
2207      Diag(Arg->getSourceRange().getBegin(),
2208           diag::err_template_arg_ref_bind_ignores_quals)
2209        << InstantiatedParamType << Arg->getType()
2210        << Arg->getSourceRange();
2211      Diag(Param->getLocation(), diag::note_template_param_here);
2212      return true;
2213    }
2214
2215    NamedDecl *Entity = 0;
2216    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2217      return true;
2218
2219    Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2220    Converted = TemplateArgument(Entity);
2221    return false;
2222  }
2223
2224  //     -- For a non-type template-parameter of type pointer to data
2225  //        member, qualification conversions (4.4) are applied.
2226  // C++0x allows std::nullptr_t values.
2227  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2228
2229  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2230    // Types match exactly: nothing more to do here.
2231  } else if (ArgType->isNullPtrType()) {
2232    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2233  } else if (IsQualificationConversion(ArgType, ParamType)) {
2234    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2235  } else {
2236    // We can't perform this conversion.
2237    Diag(Arg->getSourceRange().getBegin(),
2238         diag::err_template_arg_not_convertible)
2239      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2240    Diag(Param->getLocation(), diag::note_template_param_here);
2241    return true;
2242  }
2243
2244  NamedDecl *Member = 0;
2245  if (CheckTemplateArgumentPointerToMember(Arg, Member))
2246    return true;
2247
2248  if (Member)
2249    Member = cast<NamedDecl>(Member->getCanonicalDecl());
2250  Converted = TemplateArgument(Member);
2251  return false;
2252}
2253
2254/// \brief Check a template argument against its corresponding
2255/// template template parameter.
2256///
2257/// This routine implements the semantics of C++ [temp.arg.template].
2258/// It returns true if an error occurred, and false otherwise.
2259bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2260                                 DeclRefExpr *Arg) {
2261  assert(isa<TemplateDecl>(Arg->getDecl()) && "Only template decls allowed");
2262  TemplateDecl *Template = cast<TemplateDecl>(Arg->getDecl());
2263
2264  // C++ [temp.arg.template]p1:
2265  //   A template-argument for a template template-parameter shall be
2266  //   the name of a class template, expressed as id-expression. Only
2267  //   primary class templates are considered when matching the
2268  //   template template argument with the corresponding parameter;
2269  //   partial specializations are not considered even if their
2270  //   parameter lists match that of the template template parameter.
2271  //
2272  // Note that we also allow template template parameters here, which
2273  // will happen when we are dealing with, e.g., class template
2274  // partial specializations.
2275  if (!isa<ClassTemplateDecl>(Template) &&
2276      !isa<TemplateTemplateParmDecl>(Template)) {
2277    assert(isa<FunctionTemplateDecl>(Template) &&
2278           "Only function templates are possible here");
2279    Diag(Arg->getLocStart(), diag::err_template_arg_not_class_template);
2280    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2281      << Template;
2282  }
2283
2284  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2285                                         Param->getTemplateParameters(),
2286                                         true, true,
2287                                         Arg->getSourceRange().getBegin());
2288}
2289
2290/// \brief Determine whether the given template parameter lists are
2291/// equivalent.
2292///
2293/// \param New  The new template parameter list, typically written in the
2294/// source code as part of a new template declaration.
2295///
2296/// \param Old  The old template parameter list, typically found via
2297/// name lookup of the template declared with this template parameter
2298/// list.
2299///
2300/// \param Complain  If true, this routine will produce a diagnostic if
2301/// the template parameter lists are not equivalent.
2302///
2303/// \param IsTemplateTemplateParm  If true, this routine is being
2304/// called to compare the template parameter lists of a template
2305/// template parameter.
2306///
2307/// \param TemplateArgLoc If this source location is valid, then we
2308/// are actually checking the template parameter list of a template
2309/// argument (New) against the template parameter list of its
2310/// corresponding template template parameter (Old). We produce
2311/// slightly different diagnostics in this scenario.
2312///
2313/// \returns True if the template parameter lists are equal, false
2314/// otherwise.
2315bool
2316Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2317                                     TemplateParameterList *Old,
2318                                     bool Complain,
2319                                     bool IsTemplateTemplateParm,
2320                                     SourceLocation TemplateArgLoc) {
2321  if (Old->size() != New->size()) {
2322    if (Complain) {
2323      unsigned NextDiag = diag::err_template_param_list_different_arity;
2324      if (TemplateArgLoc.isValid()) {
2325        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2326        NextDiag = diag::note_template_param_list_different_arity;
2327      }
2328      Diag(New->getTemplateLoc(), NextDiag)
2329          << (New->size() > Old->size())
2330          << IsTemplateTemplateParm
2331          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2332      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2333        << IsTemplateTemplateParm
2334        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2335    }
2336
2337    return false;
2338  }
2339
2340  for (TemplateParameterList::iterator OldParm = Old->begin(),
2341         OldParmEnd = Old->end(), NewParm = New->begin();
2342       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2343    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2344      if (Complain) {
2345        unsigned NextDiag = diag::err_template_param_different_kind;
2346        if (TemplateArgLoc.isValid()) {
2347          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2348          NextDiag = diag::note_template_param_different_kind;
2349        }
2350        Diag((*NewParm)->getLocation(), NextDiag)
2351        << IsTemplateTemplateParm;
2352        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2353        << IsTemplateTemplateParm;
2354      }
2355      return false;
2356    }
2357
2358    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2359      // Okay; all template type parameters are equivalent (since we
2360      // know we're at the same index).
2361#if 0
2362      // FIXME: Enable this code in debug mode *after* we properly go through
2363      // and "instantiate" the template parameter lists of template template
2364      // parameters. It's only after this instantiation that (1) any dependent
2365      // types within the template parameter list of the template template
2366      // parameter can be checked, and (2) the template type parameter depths
2367      // will match up.
2368      QualType OldParmType
2369        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*OldParm));
2370      QualType NewParmType
2371        = Context.getTypeDeclType(cast<TemplateTypeParmDecl>(*NewParm));
2372      assert(Context.getCanonicalType(OldParmType) ==
2373             Context.getCanonicalType(NewParmType) &&
2374             "type parameter mismatch?");
2375#endif
2376    } else if (NonTypeTemplateParmDecl *OldNTTP
2377                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2378      // The types of non-type template parameters must agree.
2379      NonTypeTemplateParmDecl *NewNTTP
2380        = cast<NonTypeTemplateParmDecl>(*NewParm);
2381      if (Context.getCanonicalType(OldNTTP->getType()) !=
2382            Context.getCanonicalType(NewNTTP->getType())) {
2383        if (Complain) {
2384          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2385          if (TemplateArgLoc.isValid()) {
2386            Diag(TemplateArgLoc,
2387                 diag::err_template_arg_template_params_mismatch);
2388            NextDiag = diag::note_template_nontype_parm_different_type;
2389          }
2390          Diag(NewNTTP->getLocation(), NextDiag)
2391            << NewNTTP->getType()
2392            << IsTemplateTemplateParm;
2393          Diag(OldNTTP->getLocation(),
2394               diag::note_template_nontype_parm_prev_declaration)
2395            << OldNTTP->getType();
2396        }
2397        return false;
2398      }
2399    } else {
2400      // The template parameter lists of template template
2401      // parameters must agree.
2402      // FIXME: Could we perform a faster "type" comparison here?
2403      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2404             "Only template template parameters handled here");
2405      TemplateTemplateParmDecl *OldTTP
2406        = cast<TemplateTemplateParmDecl>(*OldParm);
2407      TemplateTemplateParmDecl *NewTTP
2408        = cast<TemplateTemplateParmDecl>(*NewParm);
2409      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2410                                          OldTTP->getTemplateParameters(),
2411                                          Complain,
2412                                          /*IsTemplateTemplateParm=*/true,
2413                                          TemplateArgLoc))
2414        return false;
2415    }
2416  }
2417
2418  return true;
2419}
2420
2421/// \brief Check whether a template can be declared within this scope.
2422///
2423/// If the template declaration is valid in this scope, returns
2424/// false. Otherwise, issues a diagnostic and returns true.
2425bool
2426Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2427  // Find the nearest enclosing declaration scope.
2428  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2429         (S->getFlags() & Scope::TemplateParamScope) != 0)
2430    S = S->getParent();
2431
2432  // C++ [temp]p2:
2433  //   A template-declaration can appear only as a namespace scope or
2434  //   class scope declaration.
2435  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2436  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2437      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2438    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2439             << TemplateParams->getSourceRange();
2440
2441  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2442    Ctx = Ctx->getParent();
2443
2444  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2445    return false;
2446
2447  return Diag(TemplateParams->getTemplateLoc(),
2448              diag::err_template_outside_namespace_or_class_scope)
2449    << TemplateParams->getSourceRange();
2450}
2451
2452/// \brief Determine what kind of template specialization the given declaration
2453/// is.
2454static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2455  if (!D)
2456    return TSK_Undeclared;
2457
2458  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2459    return Record->getTemplateSpecializationKind();
2460  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2461    return Function->getTemplateSpecializationKind();
2462  if (VarDecl *Var = dyn_cast<VarDecl>(D))
2463    return Var->getTemplateSpecializationKind();
2464
2465  return TSK_Undeclared;
2466}
2467
2468/// \brief Check whether a specialization is well-formed in the current
2469/// context.
2470///
2471/// This routine determines whether a template specialization can be declared
2472/// in the current context (C++ [temp.expl.spec]p2).
2473///
2474/// \param S the semantic analysis object for which this check is being
2475/// performed.
2476///
2477/// \param Specialized the entity being specialized or instantiated, which
2478/// may be a kind of template (class template, function template, etc.) or
2479/// a member of a class template (member function, static data member,
2480/// member class).
2481///
2482/// \param PrevDecl the previous declaration of this entity, if any.
2483///
2484/// \param Loc the location of the explicit specialization or instantiation of
2485/// this entity.
2486///
2487/// \param IsPartialSpecialization whether this is a partial specialization of
2488/// a class template.
2489///
2490/// \returns true if there was an error that we cannot recover from, false
2491/// otherwise.
2492static bool CheckTemplateSpecializationScope(Sema &S,
2493                                             NamedDecl *Specialized,
2494                                             NamedDecl *PrevDecl,
2495                                             SourceLocation Loc,
2496                                             bool IsPartialSpecialization) {
2497  // Keep these "kind" numbers in sync with the %select statements in the
2498  // various diagnostics emitted by this routine.
2499  int EntityKind = 0;
2500  bool isTemplateSpecialization = false;
2501  if (isa<ClassTemplateDecl>(Specialized)) {
2502    EntityKind = IsPartialSpecialization? 1 : 0;
2503    isTemplateSpecialization = true;
2504  } else if (isa<FunctionTemplateDecl>(Specialized)) {
2505    EntityKind = 2;
2506    isTemplateSpecialization = true;
2507  } else if (isa<CXXMethodDecl>(Specialized))
2508    EntityKind = 3;
2509  else if (isa<VarDecl>(Specialized))
2510    EntityKind = 4;
2511  else if (isa<RecordDecl>(Specialized))
2512    EntityKind = 5;
2513  else {
2514    S.Diag(Loc, diag::err_template_spec_unknown_kind);
2515    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2516    return true;
2517  }
2518
2519  // C++ [temp.expl.spec]p2:
2520  //   An explicit specialization shall be declared in the namespace
2521  //   of which the template is a member, or, for member templates, in
2522  //   the namespace of which the enclosing class or enclosing class
2523  //   template is a member. An explicit specialization of a member
2524  //   function, member class or static data member of a class
2525  //   template shall be declared in the namespace of which the class
2526  //   template is a member. Such a declaration may also be a
2527  //   definition. If the declaration is not a definition, the
2528  //   specialization may be defined later in the name- space in which
2529  //   the explicit specialization was declared, or in a namespace
2530  //   that encloses the one in which the explicit specialization was
2531  //   declared.
2532  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
2533    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
2534      << Specialized;
2535    return true;
2536  }
2537
2538  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
2539    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
2540      << Specialized;
2541    return true;
2542  }
2543
2544  // C++ [temp.class.spec]p6:
2545  //   A class template partial specialization may be declared or redeclared
2546  //   in any namespace scope in which its definition may be defined (14.5.1
2547  //   and 14.5.2).
2548  bool ComplainedAboutScope = false;
2549  DeclContext *SpecializedContext
2550    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
2551  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
2552  if ((!PrevDecl ||
2553       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
2554       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
2555    // There is no prior declaration of this entity, so this
2556    // specialization must be in the same context as the template
2557    // itself.
2558    if (!DC->Equals(SpecializedContext)) {
2559      if (isa<TranslationUnitDecl>(SpecializedContext))
2560        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
2561        << EntityKind << Specialized;
2562      else if (isa<NamespaceDecl>(SpecializedContext))
2563        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
2564        << EntityKind << Specialized
2565        << cast<NamedDecl>(SpecializedContext);
2566
2567      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2568      ComplainedAboutScope = true;
2569    }
2570  }
2571
2572  // Make sure that this redeclaration (or definition) occurs in an enclosing
2573  // namespace.
2574  // Note that HandleDeclarator() performs this check for explicit
2575  // specializations of function templates, static data members, and member
2576  // functions, so we skip the check here for those kinds of entities.
2577  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
2578  // Should we refactor that check, so that it occurs later?
2579  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
2580      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
2581        isa<FunctionDecl>(Specialized))) {
2582    if (isa<TranslationUnitDecl>(SpecializedContext))
2583      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
2584        << EntityKind << Specialized;
2585    else if (isa<NamespaceDecl>(SpecializedContext))
2586      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
2587        << EntityKind << Specialized
2588        << cast<NamedDecl>(SpecializedContext);
2589
2590    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
2591  }
2592
2593  // FIXME: check for specialization-after-instantiation errors and such.
2594
2595  return false;
2596}
2597
2598/// \brief Check the non-type template arguments of a class template
2599/// partial specialization according to C++ [temp.class.spec]p9.
2600///
2601/// \param TemplateParams the template parameters of the primary class
2602/// template.
2603///
2604/// \param TemplateArg the template arguments of the class template
2605/// partial specialization.
2606///
2607/// \param MirrorsPrimaryTemplate will be set true if the class
2608/// template partial specialization arguments are identical to the
2609/// implicit template arguments of the primary template. This is not
2610/// necessarily an error (C++0x), and it is left to the caller to diagnose
2611/// this condition when it is an error.
2612///
2613/// \returns true if there was an error, false otherwise.
2614bool Sema::CheckClassTemplatePartialSpecializationArgs(
2615                                        TemplateParameterList *TemplateParams,
2616                             const TemplateArgumentListBuilder &TemplateArgs,
2617                                        bool &MirrorsPrimaryTemplate) {
2618  // FIXME: the interface to this function will have to change to
2619  // accommodate variadic templates.
2620  MirrorsPrimaryTemplate = true;
2621
2622  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
2623
2624  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2625    // Determine whether the template argument list of the partial
2626    // specialization is identical to the implicit argument list of
2627    // the primary template. The caller may need to diagnostic this as
2628    // an error per C++ [temp.class.spec]p9b3.
2629    if (MirrorsPrimaryTemplate) {
2630      if (TemplateTypeParmDecl *TTP
2631            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
2632        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
2633              Context.getCanonicalType(ArgList[I].getAsType()))
2634          MirrorsPrimaryTemplate = false;
2635      } else if (TemplateTemplateParmDecl *TTP
2636                   = dyn_cast<TemplateTemplateParmDecl>(
2637                                                 TemplateParams->getParam(I))) {
2638        // FIXME: We should settle on either Declaration storage or
2639        // Expression storage for template template parameters.
2640        TemplateTemplateParmDecl *ArgDecl
2641          = dyn_cast_or_null<TemplateTemplateParmDecl>(
2642                                                  ArgList[I].getAsDecl());
2643        if (!ArgDecl)
2644          if (DeclRefExpr *DRE
2645                = dyn_cast_or_null<DeclRefExpr>(ArgList[I].getAsExpr()))
2646            ArgDecl = dyn_cast<TemplateTemplateParmDecl>(DRE->getDecl());
2647
2648        if (!ArgDecl ||
2649            ArgDecl->getIndex() != TTP->getIndex() ||
2650            ArgDecl->getDepth() != TTP->getDepth())
2651          MirrorsPrimaryTemplate = false;
2652      }
2653    }
2654
2655    NonTypeTemplateParmDecl *Param
2656      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
2657    if (!Param) {
2658      continue;
2659    }
2660
2661    Expr *ArgExpr = ArgList[I].getAsExpr();
2662    if (!ArgExpr) {
2663      MirrorsPrimaryTemplate = false;
2664      continue;
2665    }
2666
2667    // C++ [temp.class.spec]p8:
2668    //   A non-type argument is non-specialized if it is the name of a
2669    //   non-type parameter. All other non-type arguments are
2670    //   specialized.
2671    //
2672    // Below, we check the two conditions that only apply to
2673    // specialized non-type arguments, so skip any non-specialized
2674    // arguments.
2675    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
2676      if (NonTypeTemplateParmDecl *NTTP
2677            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
2678        if (MirrorsPrimaryTemplate &&
2679            (Param->getIndex() != NTTP->getIndex() ||
2680             Param->getDepth() != NTTP->getDepth()))
2681          MirrorsPrimaryTemplate = false;
2682
2683        continue;
2684      }
2685
2686    // C++ [temp.class.spec]p9:
2687    //   Within the argument list of a class template partial
2688    //   specialization, the following restrictions apply:
2689    //     -- A partially specialized non-type argument expression
2690    //        shall not involve a template parameter of the partial
2691    //        specialization except when the argument expression is a
2692    //        simple identifier.
2693    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
2694      Diag(ArgExpr->getLocStart(),
2695           diag::err_dependent_non_type_arg_in_partial_spec)
2696        << ArgExpr->getSourceRange();
2697      return true;
2698    }
2699
2700    //     -- The type of a template parameter corresponding to a
2701    //        specialized non-type argument shall not be dependent on a
2702    //        parameter of the specialization.
2703    if (Param->getType()->isDependentType()) {
2704      Diag(ArgExpr->getLocStart(),
2705           diag::err_dependent_typed_non_type_arg_in_partial_spec)
2706        << Param->getType()
2707        << ArgExpr->getSourceRange();
2708      Diag(Param->getLocation(), diag::note_template_param_here);
2709      return true;
2710    }
2711
2712    MirrorsPrimaryTemplate = false;
2713  }
2714
2715  return false;
2716}
2717
2718Sema::DeclResult
2719Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
2720                                       TagUseKind TUK,
2721                                       SourceLocation KWLoc,
2722                                       const CXXScopeSpec &SS,
2723                                       TemplateTy TemplateD,
2724                                       SourceLocation TemplateNameLoc,
2725                                       SourceLocation LAngleLoc,
2726                                       ASTTemplateArgsPtr TemplateArgsIn,
2727                                       SourceLocation *TemplateArgLocs,
2728                                       SourceLocation RAngleLoc,
2729                                       AttributeList *Attr,
2730                               MultiTemplateParamsArg TemplateParameterLists) {
2731  assert(TUK != TUK_Reference && "References are not specializations");
2732
2733  // Find the class template we're specializing
2734  TemplateName Name = TemplateD.getAsVal<TemplateName>();
2735  ClassTemplateDecl *ClassTemplate
2736    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
2737
2738  bool isExplicitSpecialization = false;
2739  bool isPartialSpecialization = false;
2740
2741  // Check the validity of the template headers that introduce this
2742  // template.
2743  // FIXME: We probably shouldn't complain about these headers for
2744  // friend declarations.
2745  TemplateParameterList *TemplateParams
2746    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
2747                        (TemplateParameterList**)TemplateParameterLists.get(),
2748                                              TemplateParameterLists.size(),
2749                                              isExplicitSpecialization);
2750  if (TemplateParams && TemplateParams->size() > 0) {
2751    isPartialSpecialization = true;
2752
2753    // C++ [temp.class.spec]p10:
2754    //   The template parameter list of a specialization shall not
2755    //   contain default template argument values.
2756    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2757      Decl *Param = TemplateParams->getParam(I);
2758      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
2759        if (TTP->hasDefaultArgument()) {
2760          Diag(TTP->getDefaultArgumentLoc(),
2761               diag::err_default_arg_in_partial_spec);
2762          TTP->removeDefaultArgument();
2763        }
2764      } else if (NonTypeTemplateParmDecl *NTTP
2765                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2766        if (Expr *DefArg = NTTP->getDefaultArgument()) {
2767          Diag(NTTP->getDefaultArgumentLoc(),
2768               diag::err_default_arg_in_partial_spec)
2769            << DefArg->getSourceRange();
2770          NTTP->setDefaultArgument(0);
2771          DefArg->Destroy(Context);
2772        }
2773      } else {
2774        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
2775        if (Expr *DefArg = TTP->getDefaultArgument()) {
2776          Diag(TTP->getDefaultArgumentLoc(),
2777               diag::err_default_arg_in_partial_spec)
2778            << DefArg->getSourceRange();
2779          TTP->setDefaultArgument(0);
2780          DefArg->Destroy(Context);
2781        }
2782      }
2783    }
2784  } else if (TemplateParams) {
2785    if (TUK == TUK_Friend)
2786      Diag(KWLoc, diag::err_template_spec_friend)
2787        << CodeModificationHint::CreateRemoval(
2788                                SourceRange(TemplateParams->getTemplateLoc(),
2789                                            TemplateParams->getRAngleLoc()))
2790        << SourceRange(LAngleLoc, RAngleLoc);
2791    else
2792      isExplicitSpecialization = true;
2793  } else if (TUK != TUK_Friend) {
2794    Diag(KWLoc, diag::err_template_spec_needs_header)
2795      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
2796    isExplicitSpecialization = true;
2797  }
2798
2799  // Check that the specialization uses the same tag kind as the
2800  // original template.
2801  TagDecl::TagKind Kind;
2802  switch (TagSpec) {
2803  default: assert(0 && "Unknown tag type!");
2804  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2805  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2806  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2807  }
2808  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
2809                                    Kind, KWLoc,
2810                                    *ClassTemplate->getIdentifier())) {
2811    Diag(KWLoc, diag::err_use_with_wrong_tag)
2812      << ClassTemplate
2813      << CodeModificationHint::CreateReplacement(KWLoc,
2814                            ClassTemplate->getTemplatedDecl()->getKindName());
2815    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
2816         diag::note_previous_use);
2817    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
2818  }
2819
2820  // Translate the parser's template argument list in our AST format.
2821  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2822  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
2823
2824  // Check that the template argument list is well-formed for this
2825  // template.
2826  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
2827                                        TemplateArgs.size());
2828  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
2829                                TemplateArgs.data(), TemplateArgs.size(),
2830                                RAngleLoc, false, Converted))
2831    return true;
2832
2833  assert((Converted.structuredSize() ==
2834            ClassTemplate->getTemplateParameters()->size()) &&
2835         "Converted template argument list is too short!");
2836
2837  // Find the class template (partial) specialization declaration that
2838  // corresponds to these arguments.
2839  llvm::FoldingSetNodeID ID;
2840  if (isPartialSpecialization) {
2841    bool MirrorsPrimaryTemplate;
2842    if (CheckClassTemplatePartialSpecializationArgs(
2843                                         ClassTemplate->getTemplateParameters(),
2844                                         Converted, MirrorsPrimaryTemplate))
2845      return true;
2846
2847    if (MirrorsPrimaryTemplate) {
2848      // C++ [temp.class.spec]p9b3:
2849      //
2850      //   -- The argument list of the specialization shall not be identical
2851      //      to the implicit argument list of the primary template.
2852      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2853        << (TUK == TUK_Definition)
2854        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
2855                                                           RAngleLoc));
2856      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
2857                                ClassTemplate->getIdentifier(),
2858                                TemplateNameLoc,
2859                                Attr,
2860                                TemplateParams,
2861                                AS_none);
2862    }
2863
2864    // FIXME: Diagnose friend partial specializations
2865
2866    // FIXME: Template parameter list matters, too
2867    ClassTemplatePartialSpecializationDecl::Profile(ID,
2868                                                   Converted.getFlatArguments(),
2869                                                   Converted.flatSize(),
2870                                                    Context);
2871  } else
2872    ClassTemplateSpecializationDecl::Profile(ID,
2873                                             Converted.getFlatArguments(),
2874                                             Converted.flatSize(),
2875                                             Context);
2876  void *InsertPos = 0;
2877  ClassTemplateSpecializationDecl *PrevDecl = 0;
2878
2879  if (isPartialSpecialization)
2880    PrevDecl
2881      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
2882                                                                    InsertPos);
2883  else
2884    PrevDecl
2885      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
2886
2887  ClassTemplateSpecializationDecl *Specialization = 0;
2888
2889  // Check whether we can declare a class template specialization in
2890  // the current scope.
2891  if (TUK != TUK_Friend &&
2892      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
2893                                       TemplateNameLoc,
2894                                       isPartialSpecialization))
2895    return true;
2896
2897  // The canonical type
2898  QualType CanonType;
2899  if (PrevDecl &&
2900      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
2901       TUK == TUK_Friend)) {
2902    // Since the only prior class template specialization with these
2903    // arguments was referenced but not declared, or we're only
2904    // referencing this specialization as a friend, reuse that
2905    // declaration node as our own, updating its source location to
2906    // reflect our new declaration.
2907    Specialization = PrevDecl;
2908    Specialization->setLocation(TemplateNameLoc);
2909    PrevDecl = 0;
2910    CanonType = Context.getTypeDeclType(Specialization);
2911  } else if (isPartialSpecialization) {
2912    // Build the canonical type that describes the converted template
2913    // arguments of the class template partial specialization.
2914    CanonType = Context.getTemplateSpecializationType(
2915                                                  TemplateName(ClassTemplate),
2916                                                  Converted.getFlatArguments(),
2917                                                  Converted.flatSize());
2918
2919    // Create a new class template partial specialization declaration node.
2920    ClassTemplatePartialSpecializationDecl *PrevPartial
2921      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
2922    ClassTemplatePartialSpecializationDecl *Partial
2923      = ClassTemplatePartialSpecializationDecl::Create(Context,
2924                                             ClassTemplate->getDeclContext(),
2925                                                       TemplateNameLoc,
2926                                                       TemplateParams,
2927                                                       ClassTemplate,
2928                                                       Converted,
2929                                                       TemplateArgs.data(),
2930                                                       TemplateArgs.size(),
2931                                                       PrevPartial);
2932
2933    if (PrevPartial) {
2934      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
2935      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
2936    } else {
2937      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
2938    }
2939    Specialization = Partial;
2940
2941    // If we are providing an explicit specialization of a member class
2942    // template specialization, make a note of that.
2943    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2944      PrevPartial->setMemberSpecialization();
2945
2946    // Check that all of the template parameters of the class template
2947    // partial specialization are deducible from the template
2948    // arguments. If not, this class template partial specialization
2949    // will never be used.
2950    llvm::SmallVector<bool, 8> DeducibleParams;
2951    DeducibleParams.resize(TemplateParams->size());
2952    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2953                               TemplateParams->getDepth(),
2954                               DeducibleParams);
2955    unsigned NumNonDeducible = 0;
2956    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
2957      if (!DeducibleParams[I])
2958        ++NumNonDeducible;
2959
2960    if (NumNonDeducible) {
2961      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2962        << (NumNonDeducible > 1)
2963        << SourceRange(TemplateNameLoc, RAngleLoc);
2964      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2965        if (!DeducibleParams[I]) {
2966          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2967          if (Param->getDeclName())
2968            Diag(Param->getLocation(),
2969                 diag::note_partial_spec_unused_parameter)
2970              << Param->getDeclName();
2971          else
2972            Diag(Param->getLocation(),
2973                 diag::note_partial_spec_unused_parameter)
2974              << std::string("<anonymous>");
2975        }
2976      }
2977    }
2978  } else {
2979    // Create a new class template specialization declaration node for
2980    // this explicit specialization or friend declaration.
2981    Specialization
2982      = ClassTemplateSpecializationDecl::Create(Context,
2983                                             ClassTemplate->getDeclContext(),
2984                                                TemplateNameLoc,
2985                                                ClassTemplate,
2986                                                Converted,
2987                                                PrevDecl);
2988
2989    if (PrevDecl) {
2990      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
2991      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
2992    } else {
2993      ClassTemplate->getSpecializations().InsertNode(Specialization,
2994                                                     InsertPos);
2995    }
2996
2997    CanonType = Context.getTypeDeclType(Specialization);
2998  }
2999
3000  // C++ [temp.expl.spec]p6:
3001  //   If a template, a member template or the member of a class template is
3002  //   explicitly specialized then that specialization shall be declared
3003  //   before the first use of that specialization that would cause an implicit
3004  //   instantiation to take place, in every translation unit in which such a
3005  //   use occurs; no diagnostic is required.
3006  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3007    SourceRange Range(TemplateNameLoc, RAngleLoc);
3008    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3009      << Context.getTypeDeclType(Specialization) << Range;
3010
3011    Diag(PrevDecl->getPointOfInstantiation(),
3012         diag::note_instantiation_required_here)
3013      << (PrevDecl->getTemplateSpecializationKind()
3014                                                != TSK_ImplicitInstantiation);
3015    return true;
3016  }
3017
3018  // If this is not a friend, note that this is an explicit specialization.
3019  if (TUK != TUK_Friend)
3020    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3021
3022  // Check that this isn't a redefinition of this specialization.
3023  if (TUK == TUK_Definition) {
3024    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3025      SourceRange Range(TemplateNameLoc, RAngleLoc);
3026      Diag(TemplateNameLoc, diag::err_redefinition)
3027        << Context.getTypeDeclType(Specialization) << Range;
3028      Diag(Def->getLocation(), diag::note_previous_definition);
3029      Specialization->setInvalidDecl();
3030      return true;
3031    }
3032  }
3033
3034  // Build the fully-sugared type for this class template
3035  // specialization as the user wrote in the specialization
3036  // itself. This means that we'll pretty-print the type retrieved
3037  // from the specialization's declaration the way that the user
3038  // actually wrote the specialization, rather than formatting the
3039  // name based on the "canonical" representation used to store the
3040  // template arguments in the specialization.
3041  QualType WrittenTy
3042    = Context.getTemplateSpecializationType(Name,
3043                                            TemplateArgs.data(),
3044                                            TemplateArgs.size(),
3045                                            CanonType);
3046  if (TUK != TUK_Friend)
3047    Specialization->setTypeAsWritten(WrittenTy);
3048  TemplateArgsIn.release();
3049
3050  // C++ [temp.expl.spec]p9:
3051  //   A template explicit specialization is in the scope of the
3052  //   namespace in which the template was defined.
3053  //
3054  // We actually implement this paragraph where we set the semantic
3055  // context (in the creation of the ClassTemplateSpecializationDecl),
3056  // but we also maintain the lexical context where the actual
3057  // definition occurs.
3058  Specialization->setLexicalDeclContext(CurContext);
3059
3060  // We may be starting the definition of this specialization.
3061  if (TUK == TUK_Definition)
3062    Specialization->startDefinition();
3063
3064  if (TUK == TUK_Friend) {
3065    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3066                                            TemplateNameLoc,
3067                                            WrittenTy.getTypePtr(),
3068                                            /*FIXME:*/KWLoc);
3069    Friend->setAccess(AS_public);
3070    CurContext->addDecl(Friend);
3071  } else {
3072    // Add the specialization into its lexical context, so that it can
3073    // be seen when iterating through the list of declarations in that
3074    // context. However, specializations are not found by name lookup.
3075    CurContext->addDecl(Specialization);
3076  }
3077  return DeclPtrTy::make(Specialization);
3078}
3079
3080Sema::DeclPtrTy
3081Sema::ActOnTemplateDeclarator(Scope *S,
3082                              MultiTemplateParamsArg TemplateParameterLists,
3083                              Declarator &D) {
3084  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3085}
3086
3087Sema::DeclPtrTy
3088Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3089                               MultiTemplateParamsArg TemplateParameterLists,
3090                                      Declarator &D) {
3091  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3092  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3093         "Not a function declarator!");
3094  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3095
3096  if (FTI.hasPrototype) {
3097    // FIXME: Diagnose arguments without names in C.
3098  }
3099
3100  Scope *ParentScope = FnBodyScope->getParent();
3101
3102  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3103                                  move(TemplateParameterLists),
3104                                  /*IsFunctionDefinition=*/true);
3105  if (FunctionTemplateDecl *FunctionTemplate
3106        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3107    return ActOnStartOfFunctionDef(FnBodyScope,
3108                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3109  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3110    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3111  return DeclPtrTy();
3112}
3113
3114/// \brief Diagnose cases where we have an explicit template specialization
3115/// before/after an explicit template instantiation, producing diagnostics
3116/// for those cases where they are required and determining whether the
3117/// new specialization/instantiation will have any effect.
3118///
3119/// \param NewLoc the location of the new explicit specialization or
3120/// instantiation.
3121///
3122/// \param NewTSK the kind of the new explicit specialization or instantiation.
3123///
3124/// \param PrevDecl the previous declaration of the entity.
3125///
3126/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3127///
3128/// \param PrevPointOfInstantiation if valid, indicates where the previus
3129/// declaration was instantiated (either implicitly or explicitly).
3130///
3131/// \param SuppressNew will be set to true to indicate that the new
3132/// specialization or instantiation has no effect and should be ignored.
3133///
3134/// \returns true if there was an error that should prevent the introduction of
3135/// the new declaration into the AST, false otherwise.
3136bool
3137Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3138                                             TemplateSpecializationKind NewTSK,
3139                                             NamedDecl *PrevDecl,
3140                                             TemplateSpecializationKind PrevTSK,
3141                                        SourceLocation PrevPointOfInstantiation,
3142                                             bool &SuppressNew) {
3143  SuppressNew = false;
3144
3145  switch (NewTSK) {
3146  case TSK_Undeclared:
3147  case TSK_ImplicitInstantiation:
3148    assert(false && "Don't check implicit instantiations here");
3149    return false;
3150
3151  case TSK_ExplicitSpecialization:
3152    switch (PrevTSK) {
3153    case TSK_Undeclared:
3154    case TSK_ExplicitSpecialization:
3155      // Okay, we're just specializing something that is either already
3156      // explicitly specialized or has merely been mentioned without any
3157      // instantiation.
3158      return false;
3159
3160    case TSK_ImplicitInstantiation:
3161      if (PrevPointOfInstantiation.isInvalid()) {
3162        // The declaration itself has not actually been instantiated, so it is
3163        // still okay to specialize it.
3164        return false;
3165      }
3166      // Fall through
3167
3168    case TSK_ExplicitInstantiationDeclaration:
3169    case TSK_ExplicitInstantiationDefinition:
3170      assert((PrevTSK == TSK_ImplicitInstantiation ||
3171              PrevPointOfInstantiation.isValid()) &&
3172             "Explicit instantiation without point of instantiation?");
3173
3174      // C++ [temp.expl.spec]p6:
3175      //   If a template, a member template or the member of a class template
3176      //   is explicitly specialized then that specialization shall be declared
3177      //   before the first use of that specialization that would cause an
3178      //   implicit instantiation to take place, in every translation unit in
3179      //   which such a use occurs; no diagnostic is required.
3180      Diag(NewLoc, diag::err_specialization_after_instantiation)
3181        << PrevDecl;
3182      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3183        << (PrevTSK != TSK_ImplicitInstantiation);
3184
3185      return true;
3186    }
3187    break;
3188
3189  case TSK_ExplicitInstantiationDeclaration:
3190    switch (PrevTSK) {
3191    case TSK_ExplicitInstantiationDeclaration:
3192      // This explicit instantiation declaration is redundant (that's okay).
3193      SuppressNew = true;
3194      return false;
3195
3196    case TSK_Undeclared:
3197    case TSK_ImplicitInstantiation:
3198      // We're explicitly instantiating something that may have already been
3199      // implicitly instantiated; that's fine.
3200      return false;
3201
3202    case TSK_ExplicitSpecialization:
3203      // C++0x [temp.explicit]p4:
3204      //   For a given set of template parameters, if an explicit instantiation
3205      //   of a template appears after a declaration of an explicit
3206      //   specialization for that template, the explicit instantiation has no
3207      //   effect.
3208      return false;
3209
3210    case TSK_ExplicitInstantiationDefinition:
3211      // C++0x [temp.explicit]p10:
3212      //   If an entity is the subject of both an explicit instantiation
3213      //   declaration and an explicit instantiation definition in the same
3214      //   translation unit, the definition shall follow the declaration.
3215      Diag(NewLoc,
3216           diag::err_explicit_instantiation_declaration_after_definition);
3217      Diag(PrevPointOfInstantiation,
3218           diag::note_explicit_instantiation_definition_here);
3219      assert(PrevPointOfInstantiation.isValid() &&
3220             "Explicit instantiation without point of instantiation?");
3221      SuppressNew = true;
3222      return false;
3223    }
3224    break;
3225
3226  case TSK_ExplicitInstantiationDefinition:
3227    switch (PrevTSK) {
3228    case TSK_Undeclared:
3229    case TSK_ImplicitInstantiation:
3230      // We're explicitly instantiating something that may have already been
3231      // implicitly instantiated; that's fine.
3232      return false;
3233
3234    case TSK_ExplicitSpecialization:
3235      // C++ DR 259, C++0x [temp.explicit]p4:
3236      //   For a given set of template parameters, if an explicit
3237      //   instantiation of a template appears after a declaration of
3238      //   an explicit specialization for that template, the explicit
3239      //   instantiation has no effect.
3240      //
3241      // In C++98/03 mode, we only give an extension warning here, because it
3242      // is not not harmful to try to explicitly instantiate something that
3243      // has been explicitly specialized.
3244      if (!getLangOptions().CPlusPlus0x) {
3245        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3246          << PrevDecl;
3247        Diag(PrevDecl->getLocation(),
3248             diag::note_previous_template_specialization);
3249      }
3250      SuppressNew = true;
3251      return false;
3252
3253    case TSK_ExplicitInstantiationDeclaration:
3254      // We're explicity instantiating a definition for something for which we
3255      // were previously asked to suppress instantiations. That's fine.
3256      return false;
3257
3258    case TSK_ExplicitInstantiationDefinition:
3259      // C++0x [temp.spec]p5:
3260      //   For a given template and a given set of template-arguments,
3261      //     - an explicit instantiation definition shall appear at most once
3262      //       in a program,
3263      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3264        << PrevDecl;
3265      Diag(PrevPointOfInstantiation,
3266           diag::note_previous_explicit_instantiation);
3267      SuppressNew = true;
3268      return false;
3269    }
3270    break;
3271  }
3272
3273  assert(false && "Missing specialization/instantiation case?");
3274
3275  return false;
3276}
3277
3278/// \brief Perform semantic analysis for the given function template
3279/// specialization.
3280///
3281/// This routine performs all of the semantic analysis required for an
3282/// explicit function template specialization. On successful completion,
3283/// the function declaration \p FD will become a function template
3284/// specialization.
3285///
3286/// \param FD the function declaration, which will be updated to become a
3287/// function template specialization.
3288///
3289/// \param HasExplicitTemplateArgs whether any template arguments were
3290/// explicitly provided.
3291///
3292/// \param LAngleLoc the location of the left angle bracket ('<'), if
3293/// template arguments were explicitly provided.
3294///
3295/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3296/// if any.
3297///
3298/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3299/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3300/// true as in, e.g., \c void sort<>(char*, char*);
3301///
3302/// \param RAngleLoc the location of the right angle bracket ('>'), if
3303/// template arguments were explicitly provided.
3304///
3305/// \param PrevDecl the set of declarations that
3306bool
3307Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3308                                          bool HasExplicitTemplateArgs,
3309                                          SourceLocation LAngleLoc,
3310                           const TemplateArgumentLoc *ExplicitTemplateArgs,
3311                                          unsigned NumExplicitTemplateArgs,
3312                                          SourceLocation RAngleLoc,
3313                                          NamedDecl *&PrevDecl) {
3314  // The set of function template specializations that could match this
3315  // explicit function template specialization.
3316  typedef llvm::SmallVector<FunctionDecl *, 8> CandidateSet;
3317  CandidateSet Candidates;
3318
3319  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3320  for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) {
3321    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(*Ovl)) {
3322      // Only consider templates found within the same semantic lookup scope as
3323      // FD.
3324      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3325        continue;
3326
3327      // C++ [temp.expl.spec]p11:
3328      //   A trailing template-argument can be left unspecified in the
3329      //   template-id naming an explicit function template specialization
3330      //   provided it can be deduced from the function argument type.
3331      // Perform template argument deduction to determine whether we may be
3332      // specializing this template.
3333      // FIXME: It is somewhat wasteful to build
3334      TemplateDeductionInfo Info(Context);
3335      FunctionDecl *Specialization = 0;
3336      if (TemplateDeductionResult TDK
3337            = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
3338                                      ExplicitTemplateArgs,
3339                                      NumExplicitTemplateArgs,
3340                                      FD->getType(),
3341                                      Specialization,
3342                                      Info)) {
3343        // FIXME: Template argument deduction failed; record why it failed, so
3344        // that we can provide nifty diagnostics.
3345        (void)TDK;
3346        continue;
3347      }
3348
3349      // Record this candidate.
3350      Candidates.push_back(Specialization);
3351    }
3352  }
3353
3354  // Find the most specialized function template.
3355  FunctionDecl *Specialization = getMostSpecialized(Candidates.data(),
3356                                                    Candidates.size(),
3357                                                    TPOC_Other,
3358                                                    FD->getLocation(),
3359                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3360                    << FD->getDeclName(),
3361                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3362                    << FD->getDeclName() << HasExplicitTemplateArgs,
3363                  PartialDiagnostic(diag::note_function_template_spec_matched));
3364  if (!Specialization)
3365    return true;
3366
3367  // FIXME: Check if the prior specialization has a point of instantiation.
3368  // If so, we have run afoul of .
3369
3370  // Check the scope of this explicit specialization.
3371  if (CheckTemplateSpecializationScope(*this,
3372                                       Specialization->getPrimaryTemplate(),
3373                                       Specialization, FD->getLocation(),
3374                                       false))
3375    return true;
3376
3377  // C++ [temp.expl.spec]p6:
3378  //   If a template, a member template or the member of a class template is
3379  //   explicitly specialized then that specialization shall be declared
3380  //   before the first use of that specialization that would cause an implicit
3381  //   instantiation to take place, in every translation unit in which such a
3382  //   use occurs; no diagnostic is required.
3383  FunctionTemplateSpecializationInfo *SpecInfo
3384    = Specialization->getTemplateSpecializationInfo();
3385  assert(SpecInfo && "Function template specialization info missing?");
3386  if (SpecInfo->getPointOfInstantiation().isValid()) {
3387    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3388      << FD;
3389    Diag(SpecInfo->getPointOfInstantiation(),
3390         diag::note_instantiation_required_here)
3391      << (Specialization->getTemplateSpecializationKind()
3392                                                != TSK_ImplicitInstantiation);
3393    return true;
3394  }
3395
3396  // Mark the prior declaration as an explicit specialization, so that later
3397  // clients know that this is an explicit specialization.
3398  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3399
3400  // Turn the given function declaration into a function template
3401  // specialization, with the template arguments from the previous
3402  // specialization.
3403  FD->setFunctionTemplateSpecialization(Context,
3404                                        Specialization->getPrimaryTemplate(),
3405                         new (Context) TemplateArgumentList(
3406                             *Specialization->getTemplateSpecializationArgs()),
3407                                        /*InsertPos=*/0,
3408                                        TSK_ExplicitSpecialization);
3409
3410  // The "previous declaration" for this function template specialization is
3411  // the prior function template specialization.
3412  PrevDecl = Specialization;
3413  return false;
3414}
3415
3416/// \brief Perform semantic analysis for the given non-template member
3417/// specialization.
3418///
3419/// This routine performs all of the semantic analysis required for an
3420/// explicit member function specialization. On successful completion,
3421/// the function declaration \p FD will become a member function
3422/// specialization.
3423///
3424/// \param Member the member declaration, which will be updated to become a
3425/// specialization.
3426///
3427/// \param PrevDecl the set of declarations, one of which may be specialized
3428/// by this function specialization.
3429bool
3430Sema::CheckMemberSpecialization(NamedDecl *Member, NamedDecl *&PrevDecl) {
3431  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3432
3433  // Try to find the member we are instantiating.
3434  NamedDecl *Instantiation = 0;
3435  NamedDecl *InstantiatedFrom = 0;
3436  MemberSpecializationInfo *MSInfo = 0;
3437
3438  if (!PrevDecl) {
3439    // Nowhere to look anyway.
3440  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3441    for (OverloadIterator Ovl(PrevDecl), OvlEnd; Ovl != OvlEnd; ++Ovl) {
3442      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Ovl)) {
3443        if (Context.hasSameType(Function->getType(), Method->getType())) {
3444          Instantiation = Method;
3445          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3446          MSInfo = Method->getMemberSpecializationInfo();
3447          break;
3448        }
3449      }
3450    }
3451  } else if (isa<VarDecl>(Member)) {
3452    if (VarDecl *PrevVar = dyn_cast<VarDecl>(PrevDecl))
3453      if (PrevVar->isStaticDataMember()) {
3454        Instantiation = PrevDecl;
3455        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
3456        MSInfo = PrevVar->getMemberSpecializationInfo();
3457      }
3458  } else if (isa<RecordDecl>(Member)) {
3459    if (CXXRecordDecl *PrevRecord = dyn_cast<CXXRecordDecl>(PrevDecl)) {
3460      Instantiation = PrevDecl;
3461      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
3462      MSInfo = PrevRecord->getMemberSpecializationInfo();
3463    }
3464  }
3465
3466  if (!Instantiation) {
3467    // There is no previous declaration that matches. Since member
3468    // specializations are always out-of-line, the caller will complain about
3469    // this mismatch later.
3470    return false;
3471  }
3472
3473  // Make sure that this is a specialization of a member.
3474  if (!InstantiatedFrom) {
3475    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
3476      << Member;
3477    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
3478    return true;
3479  }
3480
3481  // C++ [temp.expl.spec]p6:
3482  //   If a template, a member template or the member of a class template is
3483  //   explicitly specialized then that spe- cialization shall be declared
3484  //   before the first use of that specialization that would cause an implicit
3485  //   instantiation to take place, in every translation unit in which such a
3486  //   use occurs; no diagnostic is required.
3487  assert(MSInfo && "Member specialization info missing?");
3488  if (MSInfo->getPointOfInstantiation().isValid()) {
3489    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
3490      << Member;
3491    Diag(MSInfo->getPointOfInstantiation(),
3492         diag::note_instantiation_required_here)
3493      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
3494    return true;
3495  }
3496
3497  // Check the scope of this explicit specialization.
3498  if (CheckTemplateSpecializationScope(*this,
3499                                       InstantiatedFrom,
3500                                       Instantiation, Member->getLocation(),
3501                                       false))
3502    return true;
3503
3504  // Note that this is an explicit instantiation of a member.
3505  // the original declaration to note that it is an explicit specialization
3506  // (if it was previously an implicit instantiation). This latter step
3507  // makes bookkeeping easier.
3508  if (isa<FunctionDecl>(Member)) {
3509    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
3510    if (InstantiationFunction->getTemplateSpecializationKind() ==
3511          TSK_ImplicitInstantiation) {
3512      InstantiationFunction->setTemplateSpecializationKind(
3513                                                  TSK_ExplicitSpecialization);
3514      InstantiationFunction->setLocation(Member->getLocation());
3515    }
3516
3517    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
3518                                        cast<CXXMethodDecl>(InstantiatedFrom),
3519                                                  TSK_ExplicitSpecialization);
3520  } else if (isa<VarDecl>(Member)) {
3521    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
3522    if (InstantiationVar->getTemplateSpecializationKind() ==
3523          TSK_ImplicitInstantiation) {
3524      InstantiationVar->setTemplateSpecializationKind(
3525                                                  TSK_ExplicitSpecialization);
3526      InstantiationVar->setLocation(Member->getLocation());
3527    }
3528
3529    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
3530                                                cast<VarDecl>(InstantiatedFrom),
3531                                                TSK_ExplicitSpecialization);
3532  } else {
3533    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
3534    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
3535    if (InstantiationClass->getTemplateSpecializationKind() ==
3536          TSK_ImplicitInstantiation) {
3537      InstantiationClass->setTemplateSpecializationKind(
3538                                                   TSK_ExplicitSpecialization);
3539      InstantiationClass->setLocation(Member->getLocation());
3540    }
3541
3542    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
3543                                        cast<CXXRecordDecl>(InstantiatedFrom),
3544                                                   TSK_ExplicitSpecialization);
3545  }
3546
3547  // Save the caller the trouble of having to figure out which declaration
3548  // this specialization matches.
3549  PrevDecl = Instantiation;
3550  return false;
3551}
3552
3553/// \brief Check the scope of an explicit instantiation.
3554static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
3555                                            SourceLocation InstLoc,
3556                                            bool WasQualifiedName) {
3557  DeclContext *ExpectedContext
3558    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
3559  DeclContext *CurContext = S.CurContext->getLookupContext();
3560
3561  // C++0x [temp.explicit]p2:
3562  //   An explicit instantiation shall appear in an enclosing namespace of its
3563  //   template.
3564  //
3565  // This is DR275, which we do not retroactively apply to C++98/03.
3566  if (S.getLangOptions().CPlusPlus0x &&
3567      !CurContext->Encloses(ExpectedContext)) {
3568    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
3569      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
3570        << D << NS;
3571    else
3572      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
3573        << D;
3574    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3575    return;
3576  }
3577
3578  // C++0x [temp.explicit]p2:
3579  //   If the name declared in the explicit instantiation is an unqualified
3580  //   name, the explicit instantiation shall appear in the namespace where
3581  //   its template is declared or, if that namespace is inline (7.3.1), any
3582  //   namespace from its enclosing namespace set.
3583  if (WasQualifiedName)
3584    return;
3585
3586  if (CurContext->Equals(ExpectedContext))
3587    return;
3588
3589  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
3590    << D << ExpectedContext;
3591  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
3592}
3593
3594/// \brief Determine whether the given scope specifier has a template-id in it.
3595static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
3596  if (!SS.isSet())
3597    return false;
3598
3599  // C++0x [temp.explicit]p2:
3600  //   If the explicit instantiation is for a member function, a member class
3601  //   or a static data member of a class template specialization, the name of
3602  //   the class template specialization in the qualified-id for the member
3603  //   name shall be a simple-template-id.
3604  //
3605  // C++98 has the same restriction, just worded differently.
3606  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
3607       NNS; NNS = NNS->getPrefix())
3608    if (Type *T = NNS->getAsType())
3609      if (isa<TemplateSpecializationType>(T))
3610        return true;
3611
3612  return false;
3613}
3614
3615// Explicit instantiation of a class template specialization
3616// FIXME: Implement extern template semantics
3617Sema::DeclResult
3618Sema::ActOnExplicitInstantiation(Scope *S,
3619                                 SourceLocation ExternLoc,
3620                                 SourceLocation TemplateLoc,
3621                                 unsigned TagSpec,
3622                                 SourceLocation KWLoc,
3623                                 const CXXScopeSpec &SS,
3624                                 TemplateTy TemplateD,
3625                                 SourceLocation TemplateNameLoc,
3626                                 SourceLocation LAngleLoc,
3627                                 ASTTemplateArgsPtr TemplateArgsIn,
3628                                 SourceLocation *TemplateArgLocs,
3629                                 SourceLocation RAngleLoc,
3630                                 AttributeList *Attr) {
3631  // Find the class template we're specializing
3632  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3633  ClassTemplateDecl *ClassTemplate
3634    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
3635
3636  // Check that the specialization uses the same tag kind as the
3637  // original template.
3638  TagDecl::TagKind Kind;
3639  switch (TagSpec) {
3640  default: assert(0 && "Unknown tag type!");
3641  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3642  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3643  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3644  }
3645  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3646                                    Kind, KWLoc,
3647                                    *ClassTemplate->getIdentifier())) {
3648    Diag(KWLoc, diag::err_use_with_wrong_tag)
3649      << ClassTemplate
3650      << CodeModificationHint::CreateReplacement(KWLoc,
3651                            ClassTemplate->getTemplatedDecl()->getKindName());
3652    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3653         diag::note_previous_use);
3654    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3655  }
3656
3657  // C++0x [temp.explicit]p2:
3658  //   There are two forms of explicit instantiation: an explicit instantiation
3659  //   definition and an explicit instantiation declaration. An explicit
3660  //   instantiation declaration begins with the extern keyword. [...]
3661  TemplateSpecializationKind TSK
3662    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3663                           : TSK_ExplicitInstantiationDeclaration;
3664
3665  // Translate the parser's template argument list in our AST format.
3666  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
3667  translateTemplateArguments(TemplateArgsIn, TemplateArgLocs, TemplateArgs);
3668
3669  // Check that the template argument list is well-formed for this
3670  // template.
3671  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3672                                        TemplateArgs.size());
3673  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, LAngleLoc,
3674                                TemplateArgs.data(), TemplateArgs.size(),
3675                                RAngleLoc, false, Converted))
3676    return true;
3677
3678  assert((Converted.structuredSize() ==
3679            ClassTemplate->getTemplateParameters()->size()) &&
3680         "Converted template argument list is too short!");
3681
3682  // Find the class template specialization declaration that
3683  // corresponds to these arguments.
3684  llvm::FoldingSetNodeID ID;
3685  ClassTemplateSpecializationDecl::Profile(ID,
3686                                           Converted.getFlatArguments(),
3687                                           Converted.flatSize(),
3688                                           Context);
3689  void *InsertPos = 0;
3690  ClassTemplateSpecializationDecl *PrevDecl
3691    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3692
3693  // C++0x [temp.explicit]p2:
3694  //   [...] An explicit instantiation shall appear in an enclosing
3695  //   namespace of its template. [...]
3696  //
3697  // This is C++ DR 275.
3698  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
3699                                  SS.isSet());
3700
3701  ClassTemplateSpecializationDecl *Specialization = 0;
3702
3703  if (PrevDecl) {
3704    bool SuppressNew = false;
3705    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
3706                                               PrevDecl,
3707                                              PrevDecl->getSpecializationKind(),
3708                                            PrevDecl->getPointOfInstantiation(),
3709                                               SuppressNew))
3710      return DeclPtrTy::make(PrevDecl);
3711
3712    if (SuppressNew)
3713      return DeclPtrTy::make(PrevDecl);
3714
3715    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
3716        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
3717      // Since the only prior class template specialization with these
3718      // arguments was referenced but not declared, reuse that
3719      // declaration node as our own, updating its source location to
3720      // reflect our new declaration.
3721      Specialization = PrevDecl;
3722      Specialization->setLocation(TemplateNameLoc);
3723      PrevDecl = 0;
3724    }
3725  }
3726
3727  if (!Specialization) {
3728    // Create a new class template specialization declaration node for
3729    // this explicit specialization.
3730    Specialization
3731      = ClassTemplateSpecializationDecl::Create(Context,
3732                                             ClassTemplate->getDeclContext(),
3733                                                TemplateNameLoc,
3734                                                ClassTemplate,
3735                                                Converted, PrevDecl);
3736
3737    if (PrevDecl) {
3738      // Remove the previous declaration from the folding set, since we want
3739      // to introduce a new declaration.
3740      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3741      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3742    }
3743
3744    // Insert the new specialization.
3745    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
3746  }
3747
3748  // Build the fully-sugared type for this explicit instantiation as
3749  // the user wrote in the explicit instantiation itself. This means
3750  // that we'll pretty-print the type retrieved from the
3751  // specialization's declaration the way that the user actually wrote
3752  // the explicit instantiation, rather than formatting the name based
3753  // on the "canonical" representation used to store the template
3754  // arguments in the specialization.
3755  QualType WrittenTy
3756    = Context.getTemplateSpecializationType(Name,
3757                                            TemplateArgs.data(),
3758                                            TemplateArgs.size(),
3759                                  Context.getTypeDeclType(Specialization));
3760  Specialization->setTypeAsWritten(WrittenTy);
3761  TemplateArgsIn.release();
3762
3763  // Add the explicit instantiation into its lexical context. However,
3764  // since explicit instantiations are never found by name lookup, we
3765  // just put it into the declaration context directly.
3766  Specialization->setLexicalDeclContext(CurContext);
3767  CurContext->addDecl(Specialization);
3768
3769  // C++ [temp.explicit]p3:
3770  //   A definition of a class template or class member template
3771  //   shall be in scope at the point of the explicit instantiation of
3772  //   the class template or class member template.
3773  //
3774  // This check comes when we actually try to perform the
3775  // instantiation.
3776  ClassTemplateSpecializationDecl *Def
3777    = cast_or_null<ClassTemplateSpecializationDecl>(
3778                                        Specialization->getDefinition(Context));
3779  if (!Def)
3780    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
3781
3782  // Instantiate the members of this class template specialization.
3783  Def = cast_or_null<ClassTemplateSpecializationDecl>(
3784                                       Specialization->getDefinition(Context));
3785  if (Def)
3786    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
3787
3788  return DeclPtrTy::make(Specialization);
3789}
3790
3791// Explicit instantiation of a member class of a class template.
3792Sema::DeclResult
3793Sema::ActOnExplicitInstantiation(Scope *S,
3794                                 SourceLocation ExternLoc,
3795                                 SourceLocation TemplateLoc,
3796                                 unsigned TagSpec,
3797                                 SourceLocation KWLoc,
3798                                 const CXXScopeSpec &SS,
3799                                 IdentifierInfo *Name,
3800                                 SourceLocation NameLoc,
3801                                 AttributeList *Attr) {
3802
3803  bool Owned = false;
3804  bool IsDependent = false;
3805  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
3806                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
3807                            MultiTemplateParamsArg(*this, 0, 0),
3808                            Owned, IsDependent);
3809  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
3810
3811  if (!TagD)
3812    return true;
3813
3814  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3815  if (Tag->isEnum()) {
3816    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
3817      << Context.getTypeDeclType(Tag);
3818    return true;
3819  }
3820
3821  if (Tag->isInvalidDecl())
3822    return true;
3823
3824  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
3825  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
3826  if (!Pattern) {
3827    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
3828      << Context.getTypeDeclType(Record);
3829    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
3830    return true;
3831  }
3832
3833  // C++0x [temp.explicit]p2:
3834  //   If the explicit instantiation is for a class or member class, the
3835  //   elaborated-type-specifier in the declaration shall include a
3836  //   simple-template-id.
3837  //
3838  // C++98 has the same restriction, just worded differently.
3839  if (!ScopeSpecifierHasTemplateId(SS))
3840    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
3841      << Record << SS.getRange();
3842
3843  // C++0x [temp.explicit]p2:
3844  //   There are two forms of explicit instantiation: an explicit instantiation
3845  //   definition and an explicit instantiation declaration. An explicit
3846  //   instantiation declaration begins with the extern keyword. [...]
3847  TemplateSpecializationKind TSK
3848    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3849                           : TSK_ExplicitInstantiationDeclaration;
3850
3851  // C++0x [temp.explicit]p2:
3852  //   [...] An explicit instantiation shall appear in an enclosing
3853  //   namespace of its template. [...]
3854  //
3855  // This is C++ DR 275.
3856  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
3857
3858  // Verify that it is okay to explicitly instantiate here.
3859  CXXRecordDecl *PrevDecl
3860    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
3861  if (!PrevDecl && Record->getDefinition(Context))
3862    PrevDecl = Record;
3863  if (PrevDecl) {
3864    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
3865    bool SuppressNew = false;
3866    assert(MSInfo && "No member specialization information?");
3867    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
3868                                               PrevDecl,
3869                                        MSInfo->getTemplateSpecializationKind(),
3870                                             MSInfo->getPointOfInstantiation(),
3871                                               SuppressNew))
3872      return true;
3873    if (SuppressNew)
3874      return TagD;
3875  }
3876
3877  CXXRecordDecl *RecordDef
3878    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
3879  if (!RecordDef) {
3880    // C++ [temp.explicit]p3:
3881    //   A definition of a member class of a class template shall be in scope
3882    //   at the point of an explicit instantiation of the member class.
3883    CXXRecordDecl *Def
3884      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
3885    if (!Def) {
3886      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
3887        << 0 << Record->getDeclName() << Record->getDeclContext();
3888      Diag(Pattern->getLocation(), diag::note_forward_declaration)
3889        << Pattern;
3890      return true;
3891    } else {
3892      if (InstantiateClass(NameLoc, Record, Def,
3893                           getTemplateInstantiationArgs(Record),
3894                           TSK))
3895        return true;
3896
3897      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
3898      if (!RecordDef)
3899        return true;
3900    }
3901  }
3902
3903  // Instantiate all of the members of the class.
3904  InstantiateClassMembers(NameLoc, RecordDef,
3905                          getTemplateInstantiationArgs(Record), TSK);
3906
3907  // FIXME: We don't have any representation for explicit instantiations of
3908  // member classes. Such a representation is not needed for compilation, but it
3909  // should be available for clients that want to see all of the declarations in
3910  // the source code.
3911  return TagD;
3912}
3913
3914Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
3915                                                  SourceLocation ExternLoc,
3916                                                  SourceLocation TemplateLoc,
3917                                                  Declarator &D) {
3918  // Explicit instantiations always require a name.
3919  DeclarationName Name = GetNameForDeclarator(D);
3920  if (!Name) {
3921    if (!D.isInvalidType())
3922      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3923           diag::err_explicit_instantiation_requires_name)
3924        << D.getDeclSpec().getSourceRange()
3925        << D.getSourceRange();
3926
3927    return true;
3928  }
3929
3930  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3931  // we find one that is.
3932  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3933         (S->getFlags() & Scope::TemplateParamScope) != 0)
3934    S = S->getParent();
3935
3936  // Determine the type of the declaration.
3937  QualType R = GetTypeForDeclarator(D, S, 0);
3938  if (R.isNull())
3939    return true;
3940
3941  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3942    // Cannot explicitly instantiate a typedef.
3943    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
3944      << Name;
3945    return true;
3946  }
3947
3948  // C++0x [temp.explicit]p1:
3949  //   [...] An explicit instantiation of a function template shall not use the
3950  //   inline or constexpr specifiers.
3951  // Presumably, this also applies to member functions of class templates as
3952  // well.
3953  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
3954    Diag(D.getDeclSpec().getInlineSpecLoc(),
3955         diag::err_explicit_instantiation_inline)
3956      << CodeModificationHint::CreateRemoval(
3957                              SourceRange(D.getDeclSpec().getInlineSpecLoc()));
3958
3959  // FIXME: check for constexpr specifier.
3960
3961  // C++0x [temp.explicit]p2:
3962  //   There are two forms of explicit instantiation: an explicit instantiation
3963  //   definition and an explicit instantiation declaration. An explicit
3964  //   instantiation declaration begins with the extern keyword. [...]
3965  TemplateSpecializationKind TSK
3966    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
3967                           : TSK_ExplicitInstantiationDeclaration;
3968
3969  LookupResult Previous;
3970  LookupParsedName(Previous, S, &D.getCXXScopeSpec(),
3971                   Name, LookupOrdinaryName);
3972
3973  if (!R->isFunctionType()) {
3974    // C++ [temp.explicit]p1:
3975    //   A [...] static data member of a class template can be explicitly
3976    //   instantiated from the member definition associated with its class
3977    //   template.
3978    if (Previous.isAmbiguous()) {
3979      return DiagnoseAmbiguousLookup(Previous, Name, D.getIdentifierLoc(),
3980                                     D.getSourceRange());
3981    }
3982
3983    VarDecl *Prev = dyn_cast_or_null<VarDecl>(
3984        Previous.getAsSingleDecl(Context));
3985    if (!Prev || !Prev->isStaticDataMember()) {
3986      // We expect to see a data data member here.
3987      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
3988        << Name;
3989      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
3990           P != PEnd; ++P)
3991        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
3992      return true;
3993    }
3994
3995    if (!Prev->getInstantiatedFromStaticDataMember()) {
3996      // FIXME: Check for explicit specialization?
3997      Diag(D.getIdentifierLoc(),
3998           diag::err_explicit_instantiation_data_member_not_instantiated)
3999        << Prev;
4000      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4001      // FIXME: Can we provide a note showing where this was declared?
4002      return true;
4003    }
4004
4005    // C++0x [temp.explicit]p2:
4006    //   If the explicit instantiation is for a member function, a member class
4007    //   or a static data member of a class template specialization, the name of
4008    //   the class template specialization in the qualified-id for the member
4009    //   name shall be a simple-template-id.
4010    //
4011    // C++98 has the same restriction, just worded differently.
4012    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4013      Diag(D.getIdentifierLoc(),
4014           diag::err_explicit_instantiation_without_qualified_id)
4015        << Prev << D.getCXXScopeSpec().getRange();
4016
4017    // Check the scope of this explicit instantiation.
4018    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4019
4020    // Verify that it is okay to explicitly instantiate here.
4021    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4022    assert(MSInfo && "Missing static data member specialization info?");
4023    bool SuppressNew = false;
4024    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4025                                        MSInfo->getTemplateSpecializationKind(),
4026                                              MSInfo->getPointOfInstantiation(),
4027                                               SuppressNew))
4028      return true;
4029    if (SuppressNew)
4030      return DeclPtrTy();
4031
4032    // Instantiate static data member.
4033    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4034    if (TSK == TSK_ExplicitInstantiationDefinition)
4035      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4036                                            /*DefinitionRequired=*/true);
4037
4038    // FIXME: Create an ExplicitInstantiation node?
4039    return DeclPtrTy();
4040  }
4041
4042  // If the declarator is a template-id, translate the parser's template
4043  // argument list into our AST format.
4044  bool HasExplicitTemplateArgs = false;
4045  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
4046  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4047    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4048    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4049                                       TemplateId->getTemplateArgs(),
4050                                       TemplateId->getTemplateArgIsType(),
4051                                       TemplateId->NumArgs);
4052    translateTemplateArguments(TemplateArgsPtr,
4053                               TemplateId->getTemplateArgLocations(),
4054                               TemplateArgs);
4055    HasExplicitTemplateArgs = true;
4056    TemplateArgsPtr.release();
4057  }
4058
4059  // C++ [temp.explicit]p1:
4060  //   A [...] function [...] can be explicitly instantiated from its template.
4061  //   A member function [...] of a class template can be explicitly
4062  //  instantiated from the member definition associated with its class
4063  //  template.
4064  llvm::SmallVector<FunctionDecl *, 8> Matches;
4065  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4066       P != PEnd; ++P) {
4067    NamedDecl *Prev = *P;
4068    if (!HasExplicitTemplateArgs) {
4069      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4070        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4071          Matches.clear();
4072          Matches.push_back(Method);
4073          break;
4074        }
4075      }
4076    }
4077
4078    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4079    if (!FunTmpl)
4080      continue;
4081
4082    TemplateDeductionInfo Info(Context);
4083    FunctionDecl *Specialization = 0;
4084    if (TemplateDeductionResult TDK
4085          = DeduceTemplateArguments(FunTmpl, HasExplicitTemplateArgs,
4086                                    TemplateArgs.data(), TemplateArgs.size(),
4087                                    R, Specialization, Info)) {
4088      // FIXME: Keep track of almost-matches?
4089      (void)TDK;
4090      continue;
4091    }
4092
4093    Matches.push_back(Specialization);
4094  }
4095
4096  // Find the most specialized function template specialization.
4097  FunctionDecl *Specialization
4098    = getMostSpecialized(Matches.data(), Matches.size(), TPOC_Other,
4099                         D.getIdentifierLoc(),
4100          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4101          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4102                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4103
4104  if (!Specialization)
4105    return true;
4106
4107  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4108    Diag(D.getIdentifierLoc(),
4109         diag::err_explicit_instantiation_member_function_not_instantiated)
4110      << Specialization
4111      << (Specialization->getTemplateSpecializationKind() ==
4112          TSK_ExplicitSpecialization);
4113    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4114    return true;
4115  }
4116
4117  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4118  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4119    PrevDecl = Specialization;
4120
4121  if (PrevDecl) {
4122    bool SuppressNew = false;
4123    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4124                                               PrevDecl,
4125                                     PrevDecl->getTemplateSpecializationKind(),
4126                                          PrevDecl->getPointOfInstantiation(),
4127                                               SuppressNew))
4128      return true;
4129
4130    // FIXME: We may still want to build some representation of this
4131    // explicit specialization.
4132    if (SuppressNew)
4133      return DeclPtrTy();
4134  }
4135
4136  if (TSK == TSK_ExplicitInstantiationDefinition)
4137    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4138                                  false, /*DefinitionRequired=*/true);
4139
4140  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4141
4142  // C++0x [temp.explicit]p2:
4143  //   If the explicit instantiation is for a member function, a member class
4144  //   or a static data member of a class template specialization, the name of
4145  //   the class template specialization in the qualified-id for the member
4146  //   name shall be a simple-template-id.
4147  //
4148  // C++98 has the same restriction, just worded differently.
4149  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4150  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4151      D.getCXXScopeSpec().isSet() &&
4152      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4153    Diag(D.getIdentifierLoc(),
4154         diag::err_explicit_instantiation_without_qualified_id)
4155    << Specialization << D.getCXXScopeSpec().getRange();
4156
4157  CheckExplicitInstantiationScope(*this,
4158                   FunTmpl? (NamedDecl *)FunTmpl
4159                          : Specialization->getInstantiatedFromMemberFunction(),
4160                                  D.getIdentifierLoc(),
4161                                  D.getCXXScopeSpec().isSet());
4162
4163  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4164  return DeclPtrTy();
4165}
4166
4167Sema::TypeResult
4168Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4169                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4170                        SourceLocation TagLoc, SourceLocation NameLoc) {
4171  // This has to hold, because SS is expected to be defined.
4172  assert(Name && "Expected a name in a dependent tag");
4173
4174  NestedNameSpecifier *NNS
4175    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4176  if (!NNS)
4177    return true;
4178
4179  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4180  if (T.isNull())
4181    return true;
4182
4183  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4184  QualType ElabType = Context.getElaboratedType(T, TagKind);
4185
4186  return ElabType.getAsOpaquePtr();
4187}
4188
4189Sema::TypeResult
4190Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4191                        const IdentifierInfo &II, SourceLocation IdLoc) {
4192  NestedNameSpecifier *NNS
4193    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4194  if (!NNS)
4195    return true;
4196
4197  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4198  if (T.isNull())
4199    return true;
4200  return T.getAsOpaquePtr();
4201}
4202
4203Sema::TypeResult
4204Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4205                        SourceLocation TemplateLoc, TypeTy *Ty) {
4206  QualType T = GetTypeFromParser(Ty);
4207  NestedNameSpecifier *NNS
4208    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4209  const TemplateSpecializationType *TemplateId
4210    = T->getAs<TemplateSpecializationType>();
4211  assert(TemplateId && "Expected a template specialization type");
4212
4213  if (computeDeclContext(SS, false)) {
4214    // If we can compute a declaration context, then the "typename"
4215    // keyword was superfluous. Just build a QualifiedNameType to keep
4216    // track of the nested-name-specifier.
4217
4218    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4219    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4220  }
4221
4222  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4223}
4224
4225/// \brief Build the type that describes a C++ typename specifier,
4226/// e.g., "typename T::type".
4227QualType
4228Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4229                        SourceRange Range) {
4230  CXXRecordDecl *CurrentInstantiation = 0;
4231  if (NNS->isDependent()) {
4232    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4233
4234    // If the nested-name-specifier does not refer to the current
4235    // instantiation, then build a typename type.
4236    if (!CurrentInstantiation)
4237      return Context.getTypenameType(NNS, &II);
4238
4239    // The nested-name-specifier refers to the current instantiation, so the
4240    // "typename" keyword itself is superfluous. In C++03, the program is
4241    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4242    // extraneous "typename" keywords, and we retroactively apply this DR to
4243    // C++03 code.
4244  }
4245
4246  DeclContext *Ctx = 0;
4247
4248  if (CurrentInstantiation)
4249    Ctx = CurrentInstantiation;
4250  else {
4251    CXXScopeSpec SS;
4252    SS.setScopeRep(NNS);
4253    SS.setRange(Range);
4254    if (RequireCompleteDeclContext(SS))
4255      return QualType();
4256
4257    Ctx = computeDeclContext(SS);
4258  }
4259  assert(Ctx && "No declaration context?");
4260
4261  DeclarationName Name(&II);
4262  LookupResult Result;
4263  LookupQualifiedName(Result, Ctx, Name, LookupOrdinaryName, false);
4264  unsigned DiagID = 0;
4265  Decl *Referenced = 0;
4266  switch (Result.getKind()) {
4267  case LookupResult::NotFound:
4268    DiagID = diag::err_typename_nested_not_found;
4269    break;
4270
4271  case LookupResult::Found:
4272    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4273      // We found a type. Build a QualifiedNameType, since the
4274      // typename-specifier was just sugar. FIXME: Tell
4275      // QualifiedNameType that it has a "typename" prefix.
4276      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4277    }
4278
4279    DiagID = diag::err_typename_nested_not_type;
4280    Referenced = Result.getFoundDecl();
4281    break;
4282
4283  case LookupResult::FoundOverloaded:
4284    DiagID = diag::err_typename_nested_not_type;
4285    Referenced = *Result.begin();
4286    break;
4287
4288  case LookupResult::Ambiguous:
4289    DiagnoseAmbiguousLookup(Result, Name, Range.getEnd(), Range);
4290    return QualType();
4291  }
4292
4293  // If we get here, it's because name lookup did not find a
4294  // type. Emit an appropriate diagnostic and return an error.
4295  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4296  if (Referenced)
4297    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4298      << Name;
4299  return QualType();
4300}
4301
4302namespace {
4303  // See Sema::RebuildTypeInCurrentInstantiation
4304  class VISIBILITY_HIDDEN CurrentInstantiationRebuilder
4305    : public TreeTransform<CurrentInstantiationRebuilder> {
4306    SourceLocation Loc;
4307    DeclarationName Entity;
4308
4309  public:
4310    CurrentInstantiationRebuilder(Sema &SemaRef,
4311                                  SourceLocation Loc,
4312                                  DeclarationName Entity)
4313    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4314      Loc(Loc), Entity(Entity) { }
4315
4316    /// \brief Determine whether the given type \p T has already been
4317    /// transformed.
4318    ///
4319    /// For the purposes of type reconstruction, a type has already been
4320    /// transformed if it is NULL or if it is not dependent.
4321    bool AlreadyTransformed(QualType T) {
4322      return T.isNull() || !T->isDependentType();
4323    }
4324
4325    /// \brief Returns the location of the entity whose type is being
4326    /// rebuilt.
4327    SourceLocation getBaseLocation() { return Loc; }
4328
4329    /// \brief Returns the name of the entity whose type is being rebuilt.
4330    DeclarationName getBaseEntity() { return Entity; }
4331
4332    /// \brief Sets the "base" location and entity when that
4333    /// information is known based on another transformation.
4334    void setBase(SourceLocation Loc, DeclarationName Entity) {
4335      this->Loc = Loc;
4336      this->Entity = Entity;
4337    }
4338
4339    /// \brief Transforms an expression by returning the expression itself
4340    /// (an identity function).
4341    ///
4342    /// FIXME: This is completely unsafe; we will need to actually clone the
4343    /// expressions.
4344    Sema::OwningExprResult TransformExpr(Expr *E) {
4345      return getSema().Owned(E);
4346    }
4347
4348    /// \brief Transforms a typename type by determining whether the type now
4349    /// refers to a member of the current instantiation, and then
4350    /// type-checking and building a QualifiedNameType (when possible).
4351    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4352  };
4353}
4354
4355QualType
4356CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4357                                                     TypenameTypeLoc TL) {
4358  TypenameType *T = TL.getTypePtr();
4359
4360  NestedNameSpecifier *NNS
4361    = TransformNestedNameSpecifier(T->getQualifier(),
4362                              /*FIXME:*/SourceRange(getBaseLocation()));
4363  if (!NNS)
4364    return QualType();
4365
4366  // If the nested-name-specifier did not change, and we cannot compute the
4367  // context corresponding to the nested-name-specifier, then this
4368  // typename type will not change; exit early.
4369  CXXScopeSpec SS;
4370  SS.setRange(SourceRange(getBaseLocation()));
4371  SS.setScopeRep(NNS);
4372
4373  QualType Result;
4374  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4375    Result = QualType(T, 0);
4376
4377  // Rebuild the typename type, which will probably turn into a
4378  // QualifiedNameType.
4379  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4380    QualType NewTemplateId
4381      = TransformType(QualType(TemplateId, 0));
4382    if (NewTemplateId.isNull())
4383      return QualType();
4384
4385    if (NNS == T->getQualifier() &&
4386        NewTemplateId == QualType(TemplateId, 0))
4387      Result = QualType(T, 0);
4388    else
4389      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4390  } else
4391    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4392                                              SourceRange(TL.getNameLoc()));
4393
4394  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4395  NewTL.setNameLoc(TL.getNameLoc());
4396  return Result;
4397}
4398
4399/// \brief Rebuilds a type within the context of the current instantiation.
4400///
4401/// The type \p T is part of the type of an out-of-line member definition of
4402/// a class template (or class template partial specialization) that was parsed
4403/// and constructed before we entered the scope of the class template (or
4404/// partial specialization thereof). This routine will rebuild that type now
4405/// that we have entered the declarator's scope, which may produce different
4406/// canonical types, e.g.,
4407///
4408/// \code
4409/// template<typename T>
4410/// struct X {
4411///   typedef T* pointer;
4412///   pointer data();
4413/// };
4414///
4415/// template<typename T>
4416/// typename X<T>::pointer X<T>::data() { ... }
4417/// \endcode
4418///
4419/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4420/// since we do not know that we can look into X<T> when we parsed the type.
4421/// This function will rebuild the type, performing the lookup of "pointer"
4422/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4423/// as the canonical type of T*, allowing the return types of the out-of-line
4424/// definition and the declaration to match.
4425QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4426                                                 DeclarationName Name) {
4427  if (T.isNull() || !T->isDependentType())
4428    return T;
4429
4430  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4431  return Rebuilder.TransformType(T);
4432}
4433
4434/// \brief Produces a formatted string that describes the binding of
4435/// template parameters to template arguments.
4436std::string
4437Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4438                                      const TemplateArgumentList &Args) {
4439  std::string Result;
4440
4441  if (!Params || Params->size() == 0)
4442    return Result;
4443
4444  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
4445    if (I == 0)
4446      Result += "[with ";
4447    else
4448      Result += ", ";
4449
4450    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
4451      Result += Id->getName();
4452    } else {
4453      Result += '$';
4454      Result += llvm::utostr(I);
4455    }
4456
4457    Result += " = ";
4458
4459    switch (Args[I].getKind()) {
4460      case TemplateArgument::Null:
4461        Result += "<no value>";
4462        break;
4463
4464      case TemplateArgument::Type: {
4465        std::string TypeStr;
4466        Args[I].getAsType().getAsStringInternal(TypeStr,
4467                                                Context.PrintingPolicy);
4468        Result += TypeStr;
4469        break;
4470      }
4471
4472      case TemplateArgument::Declaration: {
4473        bool Unnamed = true;
4474        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
4475          if (ND->getDeclName()) {
4476            Unnamed = false;
4477            Result += ND->getNameAsString();
4478          }
4479        }
4480
4481        if (Unnamed) {
4482          Result += "<anonymous>";
4483        }
4484        break;
4485      }
4486
4487      case TemplateArgument::Integral: {
4488        Result += Args[I].getAsIntegral()->toString(10);
4489        break;
4490      }
4491
4492      case TemplateArgument::Expression: {
4493        assert(false && "No expressions in deduced template arguments!");
4494        Result += "<expression>";
4495        break;
4496      }
4497
4498      case TemplateArgument::Pack:
4499        // FIXME: Format template argument packs
4500        Result += "<template argument pack>";
4501        break;
4502    }
4503  }
4504
4505  Result += ']';
4506  return Result;
4507}
4508