SemaTemplate.cpp revision d8120f709086b16b9948c63f9020111cc403f131
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "Sema.h"
13#include "Lookup.h"
14#include "TreeTransform.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/DeclTemplate.h"
19#include "clang/Parse/DeclSpec.h"
20#include "clang/Parse/Template.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "llvm/ADT/StringExtras.h"
24using namespace clang;
25
26/// \brief Determine whether the declaration found is acceptable as the name
27/// of a template and, if so, return that template declaration. Otherwise,
28/// returns NULL.
29static NamedDecl *isAcceptableTemplateName(ASTContext &Context, NamedDecl *D) {
30  if (!D)
31    return 0;
32
33  if (isa<TemplateDecl>(D))
34    return D;
35
36  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
37    // C++ [temp.local]p1:
38    //   Like normal (non-template) classes, class templates have an
39    //   injected-class-name (Clause 9). The injected-class-name
40    //   can be used with or without a template-argument-list. When
41    //   it is used without a template-argument-list, it is
42    //   equivalent to the injected-class-name followed by the
43    //   template-parameters of the class template enclosed in
44    //   <>. When it is used with a template-argument-list, it
45    //   refers to the specified class template specialization,
46    //   which could be the current specialization or another
47    //   specialization.
48    if (Record->isInjectedClassName()) {
49      Record = cast<CXXRecordDecl>(Record->getDeclContext());
50      if (Record->getDescribedClassTemplate())
51        return Record->getDescribedClassTemplate();
52
53      if (ClassTemplateSpecializationDecl *Spec
54            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
55        return Spec->getSpecializedTemplate();
56    }
57
58    return 0;
59  }
60
61  return 0;
62}
63
64static void FilterAcceptableTemplateNames(ASTContext &C, LookupResult &R) {
65  LookupResult::Filter filter = R.makeFilter();
66  while (filter.hasNext()) {
67    NamedDecl *Orig = filter.next();
68    NamedDecl *Repl = isAcceptableTemplateName(C, Orig->getUnderlyingDecl());
69    if (!Repl)
70      filter.erase();
71    else if (Repl != Orig)
72      filter.replace(Repl);
73  }
74  filter.done();
75}
76
77TemplateNameKind Sema::isTemplateName(Scope *S,
78                                      const CXXScopeSpec &SS,
79                                      UnqualifiedId &Name,
80                                      TypeTy *ObjectTypePtr,
81                                      bool EnteringContext,
82                                      TemplateTy &TemplateResult) {
83  assert(getLangOptions().CPlusPlus && "No template names in C!");
84
85  DeclarationName TName;
86
87  switch (Name.getKind()) {
88  case UnqualifiedId::IK_Identifier:
89    TName = DeclarationName(Name.Identifier);
90    break;
91
92  case UnqualifiedId::IK_OperatorFunctionId:
93    TName = Context.DeclarationNames.getCXXOperatorName(
94                                              Name.OperatorFunctionId.Operator);
95    break;
96
97  case UnqualifiedId::IK_LiteralOperatorId:
98    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
99    break;
100
101  default:
102    return TNK_Non_template;
103  }
104
105  QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
106
107  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
108                 LookupOrdinaryName);
109  R.suppressDiagnostics();
110  LookupTemplateName(R, S, SS, ObjectType, EnteringContext);
111  if (R.empty())
112    return TNK_Non_template;
113
114  TemplateName Template;
115  TemplateNameKind TemplateKind;
116
117  unsigned ResultCount = R.end() - R.begin();
118  if (ResultCount > 1) {
119    // We assume that we'll preserve the qualifier from a function
120    // template name in other ways.
121    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
122    TemplateKind = TNK_Function_template;
123  } else {
124    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
125
126    if (SS.isSet() && !SS.isInvalid()) {
127      NestedNameSpecifier *Qualifier
128        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
129      Template = Context.getQualifiedTemplateName(Qualifier, false, TD);
130    } else {
131      Template = TemplateName(TD);
132    }
133
134    if (isa<FunctionTemplateDecl>(TD))
135      TemplateKind = TNK_Function_template;
136    else {
137      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD));
138      TemplateKind = TNK_Type_template;
139    }
140  }
141
142  TemplateResult = TemplateTy::make(Template);
143  return TemplateKind;
144}
145
146bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
147                                       SourceLocation IILoc,
148                                       Scope *S,
149                                       const CXXScopeSpec *SS,
150                                       TemplateTy &SuggestedTemplate,
151                                       TemplateNameKind &SuggestedKind) {
152  // We can't recover unless there's a dependent scope specifier preceding the
153  // template name.
154  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
155      computeDeclContext(*SS))
156    return false;
157
158  // The code is missing a 'template' keyword prior to the dependent template
159  // name.
160  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
161  Diag(IILoc, diag::err_template_kw_missing)
162    << Qualifier << II.getName()
163    << CodeModificationHint::CreateInsertion(IILoc, "template ");
164  SuggestedTemplate
165    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
166  SuggestedKind = TNK_Dependent_template_name;
167  return true;
168}
169
170void Sema::LookupTemplateName(LookupResult &Found,
171                              Scope *S, const CXXScopeSpec &SS,
172                              QualType ObjectType,
173                              bool EnteringContext) {
174  // Determine where to perform name lookup
175  DeclContext *LookupCtx = 0;
176  bool isDependent = false;
177  if (!ObjectType.isNull()) {
178    // This nested-name-specifier occurs in a member access expression, e.g.,
179    // x->B::f, and we are looking into the type of the object.
180    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
181    LookupCtx = computeDeclContext(ObjectType);
182    isDependent = ObjectType->isDependentType();
183    assert((isDependent || !ObjectType->isIncompleteType()) &&
184           "Caller should have completed object type");
185  } else if (SS.isSet()) {
186    // This nested-name-specifier occurs after another nested-name-specifier,
187    // so long into the context associated with the prior nested-name-specifier.
188    LookupCtx = computeDeclContext(SS, EnteringContext);
189    isDependent = isDependentScopeSpecifier(SS);
190
191    // The declaration context must be complete.
192    if (LookupCtx && RequireCompleteDeclContext(SS))
193      return;
194  }
195
196  bool ObjectTypeSearchedInScope = false;
197  if (LookupCtx) {
198    // Perform "qualified" name lookup into the declaration context we
199    // computed, which is either the type of the base of a member access
200    // expression or the declaration context associated with a prior
201    // nested-name-specifier.
202    LookupQualifiedName(Found, LookupCtx);
203
204    if (!ObjectType.isNull() && Found.empty()) {
205      // C++ [basic.lookup.classref]p1:
206      //   In a class member access expression (5.2.5), if the . or -> token is
207      //   immediately followed by an identifier followed by a <, the
208      //   identifier must be looked up to determine whether the < is the
209      //   beginning of a template argument list (14.2) or a less-than operator.
210      //   The identifier is first looked up in the class of the object
211      //   expression. If the identifier is not found, it is then looked up in
212      //   the context of the entire postfix-expression and shall name a class
213      //   or function template.
214      //
215      // FIXME: When we're instantiating a template, do we actually have to
216      // look in the scope of the template? Seems fishy...
217      if (S) LookupName(Found, S);
218      ObjectTypeSearchedInScope = true;
219    }
220  } else if (isDependent) {
221    // We cannot look into a dependent object type or nested nme
222    // specifier.
223    return;
224  } else {
225    // Perform unqualified name lookup in the current scope.
226    LookupName(Found, S);
227  }
228
229  // FIXME: Cope with ambiguous name-lookup results.
230  assert(!Found.isAmbiguous() &&
231         "Cannot handle template name-lookup ambiguities");
232
233  if (Found.empty() && !isDependent) {
234    // If we did not find any names, attempt to correct any typos.
235    DeclarationName Name = Found.getLookupName();
236    if (CorrectTypo(Found, S, &SS, LookupCtx)) {
237      FilterAcceptableTemplateNames(Context, Found);
238      if (!Found.empty() && isa<TemplateDecl>(*Found.begin())) {
239        if (LookupCtx)
240          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
241            << Name << LookupCtx << Found.getLookupName() << SS.getRange()
242            << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
243                                          Found.getLookupName().getAsString());
244        else
245          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
246            << Name << Found.getLookupName()
247            << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
248                                          Found.getLookupName().getAsString());
249        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
250          Diag(Template->getLocation(), diag::note_previous_decl)
251            << Template->getDeclName();
252      } else
253        Found.clear();
254    } else {
255      Found.clear();
256    }
257  }
258
259  FilterAcceptableTemplateNames(Context, Found);
260  if (Found.empty())
261    return;
262
263  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
264    // C++ [basic.lookup.classref]p1:
265    //   [...] If the lookup in the class of the object expression finds a
266    //   template, the name is also looked up in the context of the entire
267    //   postfix-expression and [...]
268    //
269    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
270                            LookupOrdinaryName);
271    LookupName(FoundOuter, S);
272    FilterAcceptableTemplateNames(Context, FoundOuter);
273    // FIXME: Handle ambiguities in this lookup better
274
275    if (FoundOuter.empty()) {
276      //   - if the name is not found, the name found in the class of the
277      //     object expression is used, otherwise
278    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>()) {
279      //   - if the name is found in the context of the entire
280      //     postfix-expression and does not name a class template, the name
281      //     found in the class of the object expression is used, otherwise
282    } else {
283      //   - if the name found is a class template, it must refer to the same
284      //     entity as the one found in the class of the object expression,
285      //     otherwise the program is ill-formed.
286      if (!Found.isSingleResult() ||
287          Found.getFoundDecl()->getCanonicalDecl()
288            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
289        Diag(Found.getNameLoc(),
290             diag::err_nested_name_member_ref_lookup_ambiguous)
291          << Found.getLookupName();
292        Diag(Found.getRepresentativeDecl()->getLocation(),
293             diag::note_ambig_member_ref_object_type)
294          << ObjectType;
295        Diag(FoundOuter.getFoundDecl()->getLocation(),
296             diag::note_ambig_member_ref_scope);
297
298        // Recover by taking the template that we found in the object
299        // expression's type.
300      }
301    }
302  }
303}
304
305/// ActOnDependentIdExpression - Handle a dependent id-expression that
306/// was just parsed.  This is only possible with an explicit scope
307/// specifier naming a dependent type.
308Sema::OwningExprResult
309Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
310                                 DeclarationName Name,
311                                 SourceLocation NameLoc,
312                                 bool isAddressOfOperand,
313                           const TemplateArgumentListInfo *TemplateArgs) {
314  NestedNameSpecifier *Qualifier
315    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
316
317  if (!isAddressOfOperand &&
318      isa<CXXMethodDecl>(CurContext) &&
319      cast<CXXMethodDecl>(CurContext)->isInstance()) {
320    QualType ThisType = cast<CXXMethodDecl>(CurContext)->getThisType(Context);
321
322    // Since the 'this' expression is synthesized, we don't need to
323    // perform the double-lookup check.
324    NamedDecl *FirstQualifierInScope = 0;
325
326    return Owned(CXXDependentScopeMemberExpr::Create(Context,
327                                                     /*This*/ 0, ThisType,
328                                                     /*IsArrow*/ true,
329                                                     /*Op*/ SourceLocation(),
330                                                     Qualifier, SS.getRange(),
331                                                     FirstQualifierInScope,
332                                                     Name, NameLoc,
333                                                     TemplateArgs));
334  }
335
336  return BuildDependentDeclRefExpr(SS, Name, NameLoc, TemplateArgs);
337}
338
339Sema::OwningExprResult
340Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
341                                DeclarationName Name,
342                                SourceLocation NameLoc,
343                                const TemplateArgumentListInfo *TemplateArgs) {
344  return Owned(DependentScopeDeclRefExpr::Create(Context,
345               static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
346                                                 SS.getRange(),
347                                                 Name, NameLoc,
348                                                 TemplateArgs));
349}
350
351/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
352/// that the template parameter 'PrevDecl' is being shadowed by a new
353/// declaration at location Loc. Returns true to indicate that this is
354/// an error, and false otherwise.
355bool Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
356  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
357
358  // Microsoft Visual C++ permits template parameters to be shadowed.
359  if (getLangOptions().Microsoft)
360    return false;
361
362  // C++ [temp.local]p4:
363  //   A template-parameter shall not be redeclared within its
364  //   scope (including nested scopes).
365  Diag(Loc, diag::err_template_param_shadow)
366    << cast<NamedDecl>(PrevDecl)->getDeclName();
367  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
368  return true;
369}
370
371/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
372/// the parameter D to reference the templated declaration and return a pointer
373/// to the template declaration. Otherwise, do nothing to D and return null.
374TemplateDecl *Sema::AdjustDeclIfTemplate(DeclPtrTy &D) {
375  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D.getAs<Decl>())) {
376    D = DeclPtrTy::make(Temp->getTemplatedDecl());
377    return Temp;
378  }
379  return 0;
380}
381
382static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
383                                            const ParsedTemplateArgument &Arg) {
384
385  switch (Arg.getKind()) {
386  case ParsedTemplateArgument::Type: {
387    TypeSourceInfo *DI;
388    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
389    if (!DI)
390      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
391    return TemplateArgumentLoc(TemplateArgument(T), DI);
392  }
393
394  case ParsedTemplateArgument::NonType: {
395    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
396    return TemplateArgumentLoc(TemplateArgument(E), E);
397  }
398
399  case ParsedTemplateArgument::Template: {
400    TemplateName Template
401      = TemplateName::getFromVoidPointer(Arg.getAsTemplate().get());
402    return TemplateArgumentLoc(TemplateArgument(Template),
403                               Arg.getScopeSpec().getRange(),
404                               Arg.getLocation());
405  }
406  }
407
408  llvm_unreachable("Unhandled parsed template argument");
409  return TemplateArgumentLoc();
410}
411
412/// \brief Translates template arguments as provided by the parser
413/// into template arguments used by semantic analysis.
414void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
415                                      TemplateArgumentListInfo &TemplateArgs) {
416 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
417   TemplateArgs.addArgument(translateTemplateArgument(*this,
418                                                      TemplateArgsIn[I]));
419}
420
421/// ActOnTypeParameter - Called when a C++ template type parameter
422/// (e.g., "typename T") has been parsed. Typename specifies whether
423/// the keyword "typename" was used to declare the type parameter
424/// (otherwise, "class" was used), and KeyLoc is the location of the
425/// "class" or "typename" keyword. ParamName is the name of the
426/// parameter (NULL indicates an unnamed template parameter) and
427/// ParamName is the location of the parameter name (if any).
428/// If the type parameter has a default argument, it will be added
429/// later via ActOnTypeParameterDefault.
430Sema::DeclPtrTy Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
431                                         SourceLocation EllipsisLoc,
432                                         SourceLocation KeyLoc,
433                                         IdentifierInfo *ParamName,
434                                         SourceLocation ParamNameLoc,
435                                         unsigned Depth, unsigned Position) {
436  assert(S->isTemplateParamScope() &&
437         "Template type parameter not in template parameter scope!");
438  bool Invalid = false;
439
440  if (ParamName) {
441    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
442    if (PrevDecl && PrevDecl->isTemplateParameter())
443      Invalid = Invalid || DiagnoseTemplateParameterShadow(ParamNameLoc,
444                                                           PrevDecl);
445  }
446
447  SourceLocation Loc = ParamNameLoc;
448  if (!ParamName)
449    Loc = KeyLoc;
450
451  TemplateTypeParmDecl *Param
452    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
453                                   Loc, Depth, Position, ParamName, Typename,
454                                   Ellipsis);
455  if (Invalid)
456    Param->setInvalidDecl();
457
458  if (ParamName) {
459    // Add the template parameter into the current scope.
460    S->AddDecl(DeclPtrTy::make(Param));
461    IdResolver.AddDecl(Param);
462  }
463
464  return DeclPtrTy::make(Param);
465}
466
467/// ActOnTypeParameterDefault - Adds a default argument (the type
468/// Default) to the given template type parameter (TypeParam).
469void Sema::ActOnTypeParameterDefault(DeclPtrTy TypeParam,
470                                     SourceLocation EqualLoc,
471                                     SourceLocation DefaultLoc,
472                                     TypeTy *DefaultT) {
473  TemplateTypeParmDecl *Parm
474    = cast<TemplateTypeParmDecl>(TypeParam.getAs<Decl>());
475
476  TypeSourceInfo *DefaultTInfo;
477  GetTypeFromParser(DefaultT, &DefaultTInfo);
478
479  assert(DefaultTInfo && "expected source information for type");
480
481  // C++0x [temp.param]p9:
482  // A default template-argument may be specified for any kind of
483  // template-parameter that is not a template parameter pack.
484  if (Parm->isParameterPack()) {
485    Diag(DefaultLoc, diag::err_template_param_pack_default_arg);
486    return;
487  }
488
489  // C++ [temp.param]p14:
490  //   A template-parameter shall not be used in its own default argument.
491  // FIXME: Implement this check! Needs a recursive walk over the types.
492
493  // Check the template argument itself.
494  if (CheckTemplateArgument(Parm, DefaultTInfo)) {
495    Parm->setInvalidDecl();
496    return;
497  }
498
499  Parm->setDefaultArgument(DefaultTInfo, false);
500}
501
502/// \brief Check that the type of a non-type template parameter is
503/// well-formed.
504///
505/// \returns the (possibly-promoted) parameter type if valid;
506/// otherwise, produces a diagnostic and returns a NULL type.
507QualType
508Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
509  // C++ [temp.param]p4:
510  //
511  // A non-type template-parameter shall have one of the following
512  // (optionally cv-qualified) types:
513  //
514  //       -- integral or enumeration type,
515  if (T->isIntegralType() || T->isEnumeralType() ||
516      //   -- pointer to object or pointer to function,
517      (T->isPointerType() &&
518       (T->getAs<PointerType>()->getPointeeType()->isObjectType() ||
519        T->getAs<PointerType>()->getPointeeType()->isFunctionType())) ||
520      //   -- reference to object or reference to function,
521      T->isReferenceType() ||
522      //   -- pointer to member.
523      T->isMemberPointerType() ||
524      // If T is a dependent type, we can't do the check now, so we
525      // assume that it is well-formed.
526      T->isDependentType())
527    return T;
528  // C++ [temp.param]p8:
529  //
530  //   A non-type template-parameter of type "array of T" or
531  //   "function returning T" is adjusted to be of type "pointer to
532  //   T" or "pointer to function returning T", respectively.
533  else if (T->isArrayType())
534    // FIXME: Keep the type prior to promotion?
535    return Context.getArrayDecayedType(T);
536  else if (T->isFunctionType())
537    // FIXME: Keep the type prior to promotion?
538    return Context.getPointerType(T);
539
540  Diag(Loc, diag::err_template_nontype_parm_bad_type)
541    << T;
542
543  return QualType();
544}
545
546/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
547/// template parameter (e.g., "int Size" in "template<int Size>
548/// class Array") has been parsed. S is the current scope and D is
549/// the parsed declarator.
550Sema::DeclPtrTy Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
551                                                    unsigned Depth,
552                                                    unsigned Position) {
553  TypeSourceInfo *TInfo = 0;
554  QualType T = GetTypeForDeclarator(D, S, &TInfo);
555
556  assert(S->isTemplateParamScope() &&
557         "Non-type template parameter not in template parameter scope!");
558  bool Invalid = false;
559
560  IdentifierInfo *ParamName = D.getIdentifier();
561  if (ParamName) {
562    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, LookupTagName);
563    if (PrevDecl && PrevDecl->isTemplateParameter())
564      Invalid = Invalid || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
565                                                           PrevDecl);
566  }
567
568  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
569  if (T.isNull()) {
570    T = Context.IntTy; // Recover with an 'int' type.
571    Invalid = true;
572  }
573
574  NonTypeTemplateParmDecl *Param
575    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
576                                      D.getIdentifierLoc(),
577                                      Depth, Position, ParamName, T, TInfo);
578  if (Invalid)
579    Param->setInvalidDecl();
580
581  if (D.getIdentifier()) {
582    // Add the template parameter into the current scope.
583    S->AddDecl(DeclPtrTy::make(Param));
584    IdResolver.AddDecl(Param);
585  }
586  return DeclPtrTy::make(Param);
587}
588
589/// \brief Adds a default argument to the given non-type template
590/// parameter.
591void Sema::ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParamD,
592                                                SourceLocation EqualLoc,
593                                                ExprArg DefaultE) {
594  NonTypeTemplateParmDecl *TemplateParm
595    = cast<NonTypeTemplateParmDecl>(TemplateParamD.getAs<Decl>());
596  Expr *Default = static_cast<Expr *>(DefaultE.get());
597
598  // C++ [temp.param]p14:
599  //   A template-parameter shall not be used in its own default argument.
600  // FIXME: Implement this check! Needs a recursive walk over the types.
601
602  // Check the well-formedness of the default template argument.
603  TemplateArgument Converted;
604  if (CheckTemplateArgument(TemplateParm, TemplateParm->getType(), Default,
605                            Converted)) {
606    TemplateParm->setInvalidDecl();
607    return;
608  }
609
610  TemplateParm->setDefaultArgument(DefaultE.takeAs<Expr>());
611}
612
613
614/// ActOnTemplateTemplateParameter - Called when a C++ template template
615/// parameter (e.g. T in template <template <typename> class T> class array)
616/// has been parsed. S is the current scope.
617Sema::DeclPtrTy Sema::ActOnTemplateTemplateParameter(Scope* S,
618                                                     SourceLocation TmpLoc,
619                                                     TemplateParamsTy *Params,
620                                                     IdentifierInfo *Name,
621                                                     SourceLocation NameLoc,
622                                                     unsigned Depth,
623                                                     unsigned Position) {
624  assert(S->isTemplateParamScope() &&
625         "Template template parameter not in template parameter scope!");
626
627  // Construct the parameter object.
628  TemplateTemplateParmDecl *Param =
629    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
630                                     TmpLoc, Depth, Position, Name,
631                                     (TemplateParameterList*)Params);
632
633  // Make sure the parameter is valid.
634  // FIXME: Decl object is not currently invalidated anywhere so this doesn't
635  // do anything yet. However, if the template parameter list or (eventual)
636  // default value is ever invalidated, that will propagate here.
637  bool Invalid = false;
638  if (Invalid) {
639    Param->setInvalidDecl();
640  }
641
642  // If the tt-param has a name, then link the identifier into the scope
643  // and lookup mechanisms.
644  if (Name) {
645    S->AddDecl(DeclPtrTy::make(Param));
646    IdResolver.AddDecl(Param);
647  }
648
649  return DeclPtrTy::make(Param);
650}
651
652/// \brief Adds a default argument to the given template template
653/// parameter.
654void Sema::ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParamD,
655                                                 SourceLocation EqualLoc,
656                                        const ParsedTemplateArgument &Default) {
657  TemplateTemplateParmDecl *TemplateParm
658    = cast<TemplateTemplateParmDecl>(TemplateParamD.getAs<Decl>());
659
660  // C++ [temp.param]p14:
661  //   A template-parameter shall not be used in its own default argument.
662  // FIXME: Implement this check! Needs a recursive walk over the types.
663
664  // Check only that we have a template template argument. We don't want to
665  // try to check well-formedness now, because our template template parameter
666  // might have dependent types in its template parameters, which we wouldn't
667  // be able to match now.
668  //
669  // If none of the template template parameter's template arguments mention
670  // other template parameters, we could actually perform more checking here.
671  // However, it isn't worth doing.
672  TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
673  if (DefaultArg.getArgument().getAsTemplate().isNull()) {
674    Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
675      << DefaultArg.getSourceRange();
676    return;
677  }
678
679  TemplateParm->setDefaultArgument(DefaultArg);
680}
681
682/// ActOnTemplateParameterList - Builds a TemplateParameterList that
683/// contains the template parameters in Params/NumParams.
684Sema::TemplateParamsTy *
685Sema::ActOnTemplateParameterList(unsigned Depth,
686                                 SourceLocation ExportLoc,
687                                 SourceLocation TemplateLoc,
688                                 SourceLocation LAngleLoc,
689                                 DeclPtrTy *Params, unsigned NumParams,
690                                 SourceLocation RAngleLoc) {
691  if (ExportLoc.isValid())
692    Diag(ExportLoc, diag::warn_template_export_unsupported);
693
694  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
695                                       (NamedDecl**)Params, NumParams,
696                                       RAngleLoc);
697}
698
699Sema::DeclResult
700Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
701                         SourceLocation KWLoc, const CXXScopeSpec &SS,
702                         IdentifierInfo *Name, SourceLocation NameLoc,
703                         AttributeList *Attr,
704                         TemplateParameterList *TemplateParams,
705                         AccessSpecifier AS) {
706  assert(TemplateParams && TemplateParams->size() > 0 &&
707         "No template parameters");
708  assert(TUK != TUK_Reference && "Can only declare or define class templates");
709  bool Invalid = false;
710
711  // Check that we can declare a template here.
712  if (CheckTemplateDeclScope(S, TemplateParams))
713    return true;
714
715  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
716  assert(Kind != TagDecl::TK_enum && "can't build template of enumerated type");
717
718  // There is no such thing as an unnamed class template.
719  if (!Name) {
720    Diag(KWLoc, diag::err_template_unnamed_class);
721    return true;
722  }
723
724  // Find any previous declaration with this name.
725  DeclContext *SemanticContext;
726  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
727                        ForRedeclaration);
728  if (SS.isNotEmpty() && !SS.isInvalid()) {
729    if (RequireCompleteDeclContext(SS))
730      return true;
731
732    SemanticContext = computeDeclContext(SS, true);
733    if (!SemanticContext) {
734      // FIXME: Produce a reasonable diagnostic here
735      return true;
736    }
737
738    LookupQualifiedName(Previous, SemanticContext);
739  } else {
740    SemanticContext = CurContext;
741    LookupName(Previous, S);
742  }
743
744  assert(!Previous.isAmbiguous() && "Ambiguity in class template redecl?");
745  NamedDecl *PrevDecl = 0;
746  if (Previous.begin() != Previous.end())
747    PrevDecl = *Previous.begin();
748
749  // If there is a previous declaration with the same name, check
750  // whether this is a valid redeclaration.
751  ClassTemplateDecl *PrevClassTemplate
752    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
753
754  // We may have found the injected-class-name of a class template,
755  // class template partial specialization, or class template specialization.
756  // In these cases, grab the template that is being defined or specialized.
757  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
758      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
759    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
760    PrevClassTemplate
761      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
762    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
763      PrevClassTemplate
764        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
765            ->getSpecializedTemplate();
766    }
767  }
768
769  if (TUK == TUK_Friend) {
770    // C++ [namespace.memdef]p3:
771    //   [...] When looking for a prior declaration of a class or a function
772    //   declared as a friend, and when the name of the friend class or
773    //   function is neither a qualified name nor a template-id, scopes outside
774    //   the innermost enclosing namespace scope are not considered.
775    DeclContext *OutermostContext = CurContext;
776    while (!OutermostContext->isFileContext())
777      OutermostContext = OutermostContext->getLookupParent();
778
779    if (PrevDecl &&
780        (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
781         OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
782      SemanticContext = PrevDecl->getDeclContext();
783    } else {
784      // Declarations in outer scopes don't matter. However, the outermost
785      // context we computed is the semantic context for our new
786      // declaration.
787      PrevDecl = PrevClassTemplate = 0;
788      SemanticContext = OutermostContext;
789    }
790
791    if (CurContext->isDependentContext()) {
792      // If this is a dependent context, we don't want to link the friend
793      // class template to the template in scope, because that would perform
794      // checking of the template parameter lists that can't be performed
795      // until the outer context is instantiated.
796      PrevDecl = PrevClassTemplate = 0;
797    }
798  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
799    PrevDecl = PrevClassTemplate = 0;
800
801  if (PrevClassTemplate) {
802    // Ensure that the template parameter lists are compatible.
803    if (!TemplateParameterListsAreEqual(TemplateParams,
804                                   PrevClassTemplate->getTemplateParameters(),
805                                        /*Complain=*/true,
806                                        TPL_TemplateMatch))
807      return true;
808
809    // C++ [temp.class]p4:
810    //   In a redeclaration, partial specialization, explicit
811    //   specialization or explicit instantiation of a class template,
812    //   the class-key shall agree in kind with the original class
813    //   template declaration (7.1.5.3).
814    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
815    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, KWLoc, *Name)) {
816      Diag(KWLoc, diag::err_use_with_wrong_tag)
817        << Name
818        << CodeModificationHint::CreateReplacement(KWLoc,
819                            PrevRecordDecl->getKindName());
820      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
821      Kind = PrevRecordDecl->getTagKind();
822    }
823
824    // Check for redefinition of this class template.
825    if (TUK == TUK_Definition) {
826      if (TagDecl *Def = PrevRecordDecl->getDefinition(Context)) {
827        Diag(NameLoc, diag::err_redefinition) << Name;
828        Diag(Def->getLocation(), diag::note_previous_definition);
829        // FIXME: Would it make sense to try to "forget" the previous
830        // definition, as part of error recovery?
831        return true;
832      }
833    }
834  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
835    // Maybe we will complain about the shadowed template parameter.
836    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
837    // Just pretend that we didn't see the previous declaration.
838    PrevDecl = 0;
839  } else if (PrevDecl) {
840    // C++ [temp]p5:
841    //   A class template shall not have the same name as any other
842    //   template, class, function, object, enumeration, enumerator,
843    //   namespace, or type in the same scope (3.3), except as specified
844    //   in (14.5.4).
845    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
846    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
847    return true;
848  }
849
850  // Check the template parameter list of this declaration, possibly
851  // merging in the template parameter list from the previous class
852  // template declaration.
853  if (CheckTemplateParameterList(TemplateParams,
854            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
855                                 TPC_ClassTemplate))
856    Invalid = true;
857
858  // FIXME: If we had a scope specifier, we better have a previous template
859  // declaration!
860
861  CXXRecordDecl *NewClass =
862    CXXRecordDecl::Create(Context, Kind, SemanticContext, NameLoc, Name, KWLoc,
863                          PrevClassTemplate?
864                            PrevClassTemplate->getTemplatedDecl() : 0,
865                          /*DelayTypeCreation=*/true);
866
867  ClassTemplateDecl *NewTemplate
868    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
869                                DeclarationName(Name), TemplateParams,
870                                NewClass, PrevClassTemplate);
871  NewClass->setDescribedClassTemplate(NewTemplate);
872
873  // Build the type for the class template declaration now.
874  QualType T =
875    Context.getTypeDeclType(NewClass,
876                            PrevClassTemplate?
877                              PrevClassTemplate->getTemplatedDecl() : 0);
878  assert(T->isDependentType() && "Class template type is not dependent?");
879  (void)T;
880
881  // If we are providing an explicit specialization of a member that is a
882  // class template, make a note of that.
883  if (PrevClassTemplate &&
884      PrevClassTemplate->getInstantiatedFromMemberTemplate())
885    PrevClassTemplate->setMemberSpecialization();
886
887  // Set the access specifier.
888  if (!Invalid && TUK != TUK_Friend)
889    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
890
891  // Set the lexical context of these templates
892  NewClass->setLexicalDeclContext(CurContext);
893  NewTemplate->setLexicalDeclContext(CurContext);
894
895  if (TUK == TUK_Definition)
896    NewClass->startDefinition();
897
898  if (Attr)
899    ProcessDeclAttributeList(S, NewClass, Attr);
900
901  if (TUK != TUK_Friend)
902    PushOnScopeChains(NewTemplate, S);
903  else {
904    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
905      NewTemplate->setAccess(PrevClassTemplate->getAccess());
906      NewClass->setAccess(PrevClassTemplate->getAccess());
907    }
908
909    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
910                                       PrevClassTemplate != NULL);
911
912    // Friend templates are visible in fairly strange ways.
913    if (!CurContext->isDependentContext()) {
914      DeclContext *DC = SemanticContext->getLookupContext();
915      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
916      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
917        PushOnScopeChains(NewTemplate, EnclosingScope,
918                          /* AddToContext = */ false);
919    }
920
921    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
922                                            NewClass->getLocation(),
923                                            NewTemplate,
924                                    /*FIXME:*/NewClass->getLocation());
925    Friend->setAccess(AS_public);
926    CurContext->addDecl(Friend);
927  }
928
929  if (Invalid) {
930    NewTemplate->setInvalidDecl();
931    NewClass->setInvalidDecl();
932  }
933  return DeclPtrTy::make(NewTemplate);
934}
935
936/// \brief Diagnose the presence of a default template argument on a
937/// template parameter, which is ill-formed in certain contexts.
938///
939/// \returns true if the default template argument should be dropped.
940static bool DiagnoseDefaultTemplateArgument(Sema &S,
941                                            Sema::TemplateParamListContext TPC,
942                                            SourceLocation ParamLoc,
943                                            SourceRange DefArgRange) {
944  switch (TPC) {
945  case Sema::TPC_ClassTemplate:
946    return false;
947
948  case Sema::TPC_FunctionTemplate:
949    // C++ [temp.param]p9:
950    //   A default template-argument shall not be specified in a
951    //   function template declaration or a function template
952    //   definition [...]
953    // (This sentence is not in C++0x, per DR226).
954    if (!S.getLangOptions().CPlusPlus0x)
955      S.Diag(ParamLoc,
956             diag::err_template_parameter_default_in_function_template)
957        << DefArgRange;
958    return false;
959
960  case Sema::TPC_ClassTemplateMember:
961    // C++0x [temp.param]p9:
962    //   A default template-argument shall not be specified in the
963    //   template-parameter-lists of the definition of a member of a
964    //   class template that appears outside of the member's class.
965    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
966      << DefArgRange;
967    return true;
968
969  case Sema::TPC_FriendFunctionTemplate:
970    // C++ [temp.param]p9:
971    //   A default template-argument shall not be specified in a
972    //   friend template declaration.
973    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
974      << DefArgRange;
975    return true;
976
977    // FIXME: C++0x [temp.param]p9 allows default template-arguments
978    // for friend function templates if there is only a single
979    // declaration (and it is a definition). Strange!
980  }
981
982  return false;
983}
984
985/// \brief Checks the validity of a template parameter list, possibly
986/// considering the template parameter list from a previous
987/// declaration.
988///
989/// If an "old" template parameter list is provided, it must be
990/// equivalent (per TemplateParameterListsAreEqual) to the "new"
991/// template parameter list.
992///
993/// \param NewParams Template parameter list for a new template
994/// declaration. This template parameter list will be updated with any
995/// default arguments that are carried through from the previous
996/// template parameter list.
997///
998/// \param OldParams If provided, template parameter list from a
999/// previous declaration of the same template. Default template
1000/// arguments will be merged from the old template parameter list to
1001/// the new template parameter list.
1002///
1003/// \param TPC Describes the context in which we are checking the given
1004/// template parameter list.
1005///
1006/// \returns true if an error occurred, false otherwise.
1007bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1008                                      TemplateParameterList *OldParams,
1009                                      TemplateParamListContext TPC) {
1010  bool Invalid = false;
1011
1012  // C++ [temp.param]p10:
1013  //   The set of default template-arguments available for use with a
1014  //   template declaration or definition is obtained by merging the
1015  //   default arguments from the definition (if in scope) and all
1016  //   declarations in scope in the same way default function
1017  //   arguments are (8.3.6).
1018  bool SawDefaultArgument = false;
1019  SourceLocation PreviousDefaultArgLoc;
1020
1021  bool SawParameterPack = false;
1022  SourceLocation ParameterPackLoc;
1023
1024  // Dummy initialization to avoid warnings.
1025  TemplateParameterList::iterator OldParam = NewParams->end();
1026  if (OldParams)
1027    OldParam = OldParams->begin();
1028
1029  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1030                                    NewParamEnd = NewParams->end();
1031       NewParam != NewParamEnd; ++NewParam) {
1032    // Variables used to diagnose redundant default arguments
1033    bool RedundantDefaultArg = false;
1034    SourceLocation OldDefaultLoc;
1035    SourceLocation NewDefaultLoc;
1036
1037    // Variables used to diagnose missing default arguments
1038    bool MissingDefaultArg = false;
1039
1040    // C++0x [temp.param]p11:
1041    // If a template parameter of a class template is a template parameter pack,
1042    // it must be the last template parameter.
1043    if (SawParameterPack) {
1044      Diag(ParameterPackLoc,
1045           diag::err_template_param_pack_must_be_last_template_parameter);
1046      Invalid = true;
1047    }
1048
1049    if (TemplateTypeParmDecl *NewTypeParm
1050          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1051      // Check the presence of a default argument here.
1052      if (NewTypeParm->hasDefaultArgument() &&
1053          DiagnoseDefaultTemplateArgument(*this, TPC,
1054                                          NewTypeParm->getLocation(),
1055               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1056                                                       .getFullSourceRange()))
1057        NewTypeParm->removeDefaultArgument();
1058
1059      // Merge default arguments for template type parameters.
1060      TemplateTypeParmDecl *OldTypeParm
1061          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1062
1063      if (NewTypeParm->isParameterPack()) {
1064        assert(!NewTypeParm->hasDefaultArgument() &&
1065               "Parameter packs can't have a default argument!");
1066        SawParameterPack = true;
1067        ParameterPackLoc = NewTypeParm->getLocation();
1068      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1069                 NewTypeParm->hasDefaultArgument()) {
1070        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1071        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1072        SawDefaultArgument = true;
1073        RedundantDefaultArg = true;
1074        PreviousDefaultArgLoc = NewDefaultLoc;
1075      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1076        // Merge the default argument from the old declaration to the
1077        // new declaration.
1078        SawDefaultArgument = true;
1079        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1080                                        true);
1081        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1082      } else if (NewTypeParm->hasDefaultArgument()) {
1083        SawDefaultArgument = true;
1084        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1085      } else if (SawDefaultArgument)
1086        MissingDefaultArg = true;
1087    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1088               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1089      // Check the presence of a default argument here.
1090      if (NewNonTypeParm->hasDefaultArgument() &&
1091          DiagnoseDefaultTemplateArgument(*this, TPC,
1092                                          NewNonTypeParm->getLocation(),
1093                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1094        NewNonTypeParm->getDefaultArgument()->Destroy(Context);
1095        NewNonTypeParm->setDefaultArgument(0);
1096      }
1097
1098      // Merge default arguments for non-type template parameters
1099      NonTypeTemplateParmDecl *OldNonTypeParm
1100        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1101      if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1102          NewNonTypeParm->hasDefaultArgument()) {
1103        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1104        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1105        SawDefaultArgument = true;
1106        RedundantDefaultArg = true;
1107        PreviousDefaultArgLoc = NewDefaultLoc;
1108      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1109        // Merge the default argument from the old declaration to the
1110        // new declaration.
1111        SawDefaultArgument = true;
1112        // FIXME: We need to create a new kind of "default argument"
1113        // expression that points to a previous template template
1114        // parameter.
1115        NewNonTypeParm->setDefaultArgument(
1116                                        OldNonTypeParm->getDefaultArgument());
1117        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1118      } else if (NewNonTypeParm->hasDefaultArgument()) {
1119        SawDefaultArgument = true;
1120        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1121      } else if (SawDefaultArgument)
1122        MissingDefaultArg = true;
1123    } else {
1124      // Check the presence of a default argument here.
1125      TemplateTemplateParmDecl *NewTemplateParm
1126        = cast<TemplateTemplateParmDecl>(*NewParam);
1127      if (NewTemplateParm->hasDefaultArgument() &&
1128          DiagnoseDefaultTemplateArgument(*this, TPC,
1129                                          NewTemplateParm->getLocation(),
1130                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1131        NewTemplateParm->setDefaultArgument(TemplateArgumentLoc());
1132
1133      // Merge default arguments for template template parameters
1134      TemplateTemplateParmDecl *OldTemplateParm
1135        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1136      if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1137          NewTemplateParm->hasDefaultArgument()) {
1138        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1139        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1140        SawDefaultArgument = true;
1141        RedundantDefaultArg = true;
1142        PreviousDefaultArgLoc = NewDefaultLoc;
1143      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1144        // Merge the default argument from the old declaration to the
1145        // new declaration.
1146        SawDefaultArgument = true;
1147        // FIXME: We need to create a new kind of "default argument" expression
1148        // that points to a previous template template parameter.
1149        NewTemplateParm->setDefaultArgument(
1150                                        OldTemplateParm->getDefaultArgument());
1151        PreviousDefaultArgLoc
1152          = OldTemplateParm->getDefaultArgument().getLocation();
1153      } else if (NewTemplateParm->hasDefaultArgument()) {
1154        SawDefaultArgument = true;
1155        PreviousDefaultArgLoc
1156          = NewTemplateParm->getDefaultArgument().getLocation();
1157      } else if (SawDefaultArgument)
1158        MissingDefaultArg = true;
1159    }
1160
1161    if (RedundantDefaultArg) {
1162      // C++ [temp.param]p12:
1163      //   A template-parameter shall not be given default arguments
1164      //   by two different declarations in the same scope.
1165      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1166      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1167      Invalid = true;
1168    } else if (MissingDefaultArg) {
1169      // C++ [temp.param]p11:
1170      //   If a template-parameter has a default template-argument,
1171      //   all subsequent template-parameters shall have a default
1172      //   template-argument supplied.
1173      Diag((*NewParam)->getLocation(),
1174           diag::err_template_param_default_arg_missing);
1175      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1176      Invalid = true;
1177    }
1178
1179    // If we have an old template parameter list that we're merging
1180    // in, move on to the next parameter.
1181    if (OldParams)
1182      ++OldParam;
1183  }
1184
1185  return Invalid;
1186}
1187
1188/// \brief Match the given template parameter lists to the given scope
1189/// specifier, returning the template parameter list that applies to the
1190/// name.
1191///
1192/// \param DeclStartLoc the start of the declaration that has a scope
1193/// specifier or a template parameter list.
1194///
1195/// \param SS the scope specifier that will be matched to the given template
1196/// parameter lists. This scope specifier precedes a qualified name that is
1197/// being declared.
1198///
1199/// \param ParamLists the template parameter lists, from the outermost to the
1200/// innermost template parameter lists.
1201///
1202/// \param NumParamLists the number of template parameter lists in ParamLists.
1203///
1204/// \param IsExplicitSpecialization will be set true if the entity being
1205/// declared is an explicit specialization, false otherwise.
1206///
1207/// \returns the template parameter list, if any, that corresponds to the
1208/// name that is preceded by the scope specifier @p SS. This template
1209/// parameter list may be have template parameters (if we're declaring a
1210/// template) or may have no template parameters (if we're declaring a
1211/// template specialization), or may be NULL (if we were's declaring isn't
1212/// itself a template).
1213TemplateParameterList *
1214Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1215                                              const CXXScopeSpec &SS,
1216                                          TemplateParameterList **ParamLists,
1217                                              unsigned NumParamLists,
1218                                              bool &IsExplicitSpecialization) {
1219  IsExplicitSpecialization = false;
1220
1221  // Find the template-ids that occur within the nested-name-specifier. These
1222  // template-ids will match up with the template parameter lists.
1223  llvm::SmallVector<const TemplateSpecializationType *, 4>
1224    TemplateIdsInSpecifier;
1225  llvm::SmallVector<ClassTemplateSpecializationDecl *, 4>
1226    ExplicitSpecializationsInSpecifier;
1227  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1228       NNS; NNS = NNS->getPrefix()) {
1229    const Type *T = NNS->getAsType();
1230    if (!T) break;
1231
1232    // C++0x [temp.expl.spec]p17:
1233    //   A member or a member template may be nested within many
1234    //   enclosing class templates. In an explicit specialization for
1235    //   such a member, the member declaration shall be preceded by a
1236    //   template<> for each enclosing class template that is
1237    //   explicitly specialized.
1238    // We interpret this as forbidding typedefs of template
1239    // specializations in the scope specifiers of out-of-line decls.
1240    if (const TypedefType *TT = dyn_cast<TypedefType>(T)) {
1241      const Type *UnderlyingT = TT->LookThroughTypedefs().getTypePtr();
1242      if (isa<TemplateSpecializationType>(UnderlyingT))
1243        // FIXME: better source location information.
1244        Diag(DeclStartLoc, diag::err_typedef_in_def_scope) << QualType(T,0);
1245      T = UnderlyingT;
1246    }
1247
1248    if (const TemplateSpecializationType *SpecType
1249          = dyn_cast<TemplateSpecializationType>(T)) {
1250      TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
1251      if (!Template)
1252        continue; // FIXME: should this be an error? probably...
1253
1254      if (const RecordType *Record = SpecType->getAs<RecordType>()) {
1255        ClassTemplateSpecializationDecl *SpecDecl
1256          = cast<ClassTemplateSpecializationDecl>(Record->getDecl());
1257        // If the nested name specifier refers to an explicit specialization,
1258        // we don't need a template<> header.
1259        if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization) {
1260          ExplicitSpecializationsInSpecifier.push_back(SpecDecl);
1261          continue;
1262        }
1263      }
1264
1265      TemplateIdsInSpecifier.push_back(SpecType);
1266    }
1267  }
1268
1269  // Reverse the list of template-ids in the scope specifier, so that we can
1270  // more easily match up the template-ids and the template parameter lists.
1271  std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
1272
1273  SourceLocation FirstTemplateLoc = DeclStartLoc;
1274  if (NumParamLists)
1275    FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
1276
1277  // Match the template-ids found in the specifier to the template parameter
1278  // lists.
1279  unsigned Idx = 0;
1280  for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
1281       Idx != NumTemplateIds; ++Idx) {
1282    QualType TemplateId = QualType(TemplateIdsInSpecifier[Idx], 0);
1283    bool DependentTemplateId = TemplateId->isDependentType();
1284    if (Idx >= NumParamLists) {
1285      // We have a template-id without a corresponding template parameter
1286      // list.
1287      if (DependentTemplateId) {
1288        // FIXME: the location information here isn't great.
1289        Diag(SS.getRange().getBegin(),
1290             diag::err_template_spec_needs_template_parameters)
1291          << TemplateId
1292          << SS.getRange();
1293      } else {
1294        Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
1295          << SS.getRange()
1296          << CodeModificationHint::CreateInsertion(FirstTemplateLoc,
1297                                                   "template<> ");
1298        IsExplicitSpecialization = true;
1299      }
1300      return 0;
1301    }
1302
1303    // Check the template parameter list against its corresponding template-id.
1304    if (DependentTemplateId) {
1305      TemplateDecl *Template
1306        = TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
1307
1308      if (ClassTemplateDecl *ClassTemplate
1309            = dyn_cast<ClassTemplateDecl>(Template)) {
1310        TemplateParameterList *ExpectedTemplateParams = 0;
1311        // Is this template-id naming the primary template?
1312        if (Context.hasSameType(TemplateId,
1313                             ClassTemplate->getInjectedClassNameType(Context)))
1314          ExpectedTemplateParams = ClassTemplate->getTemplateParameters();
1315        // ... or a partial specialization?
1316        else if (ClassTemplatePartialSpecializationDecl *PartialSpec
1317                   = ClassTemplate->findPartialSpecialization(TemplateId))
1318          ExpectedTemplateParams = PartialSpec->getTemplateParameters();
1319
1320        if (ExpectedTemplateParams)
1321          TemplateParameterListsAreEqual(ParamLists[Idx],
1322                                         ExpectedTemplateParams,
1323                                         true, TPL_TemplateMatch);
1324      }
1325
1326      CheckTemplateParameterList(ParamLists[Idx], 0, TPC_ClassTemplateMember);
1327    } else if (ParamLists[Idx]->size() > 0)
1328      Diag(ParamLists[Idx]->getTemplateLoc(),
1329           diag::err_template_param_list_matches_nontemplate)
1330        << TemplateId
1331        << ParamLists[Idx]->getSourceRange();
1332    else
1333      IsExplicitSpecialization = true;
1334  }
1335
1336  // If there were at least as many template-ids as there were template
1337  // parameter lists, then there are no template parameter lists remaining for
1338  // the declaration itself.
1339  if (Idx >= NumParamLists)
1340    return 0;
1341
1342  // If there were too many template parameter lists, complain about that now.
1343  if (Idx != NumParamLists - 1) {
1344    while (Idx < NumParamLists - 1) {
1345      bool isExplicitSpecHeader = ParamLists[Idx]->size() == 0;
1346      Diag(ParamLists[Idx]->getTemplateLoc(),
1347           isExplicitSpecHeader? diag::warn_template_spec_extra_headers
1348                               : diag::err_template_spec_extra_headers)
1349        << SourceRange(ParamLists[Idx]->getTemplateLoc(),
1350                       ParamLists[Idx]->getRAngleLoc());
1351
1352      if (isExplicitSpecHeader && !ExplicitSpecializationsInSpecifier.empty()) {
1353        Diag(ExplicitSpecializationsInSpecifier.back()->getLocation(),
1354             diag::note_explicit_template_spec_does_not_need_header)
1355          << ExplicitSpecializationsInSpecifier.back();
1356        ExplicitSpecializationsInSpecifier.pop_back();
1357      }
1358
1359      ++Idx;
1360    }
1361  }
1362
1363  // Return the last template parameter list, which corresponds to the
1364  // entity being declared.
1365  return ParamLists[NumParamLists - 1];
1366}
1367
1368QualType Sema::CheckTemplateIdType(TemplateName Name,
1369                                   SourceLocation TemplateLoc,
1370                              const TemplateArgumentListInfo &TemplateArgs) {
1371  TemplateDecl *Template = Name.getAsTemplateDecl();
1372  if (!Template) {
1373    // The template name does not resolve to a template, so we just
1374    // build a dependent template-id type.
1375    return Context.getTemplateSpecializationType(Name, TemplateArgs);
1376  }
1377
1378  // Check that the template argument list is well-formed for this
1379  // template.
1380  TemplateArgumentListBuilder Converted(Template->getTemplateParameters(),
1381                                        TemplateArgs.size());
1382  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1383                                false, Converted))
1384    return QualType();
1385
1386  assert((Converted.structuredSize() ==
1387            Template->getTemplateParameters()->size()) &&
1388         "Converted template argument list is too short!");
1389
1390  QualType CanonType;
1391
1392  if (Name.isDependent() ||
1393      TemplateSpecializationType::anyDependentTemplateArguments(
1394                                                      TemplateArgs)) {
1395    // This class template specialization is a dependent
1396    // type. Therefore, its canonical type is another class template
1397    // specialization type that contains all of the converted
1398    // arguments in canonical form. This ensures that, e.g., A<T> and
1399    // A<T, T> have identical types when A is declared as:
1400    //
1401    //   template<typename T, typename U = T> struct A;
1402    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1403    CanonType = Context.getTemplateSpecializationType(CanonName,
1404                                                   Converted.getFlatArguments(),
1405                                                   Converted.flatSize());
1406
1407    // FIXME: CanonType is not actually the canonical type, and unfortunately
1408    // it is a TemplateSpecializationType that we will never use again.
1409    // In the future, we need to teach getTemplateSpecializationType to only
1410    // build the canonical type and return that to us.
1411    CanonType = Context.getCanonicalType(CanonType);
1412  } else if (ClassTemplateDecl *ClassTemplate
1413               = dyn_cast<ClassTemplateDecl>(Template)) {
1414    // Find the class template specialization declaration that
1415    // corresponds to these arguments.
1416    llvm::FoldingSetNodeID ID;
1417    ClassTemplateSpecializationDecl::Profile(ID,
1418                                             Converted.getFlatArguments(),
1419                                             Converted.flatSize(),
1420                                             Context);
1421    void *InsertPos = 0;
1422    ClassTemplateSpecializationDecl *Decl
1423      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
1424    if (!Decl) {
1425      // This is the first time we have referenced this class template
1426      // specialization. Create the canonical declaration and add it to
1427      // the set of specializations.
1428      Decl = ClassTemplateSpecializationDecl::Create(Context,
1429                                    ClassTemplate->getDeclContext(),
1430                                    ClassTemplate->getLocation(),
1431                                    ClassTemplate,
1432                                    Converted, 0);
1433      ClassTemplate->getSpecializations().InsertNode(Decl, InsertPos);
1434      Decl->setLexicalDeclContext(CurContext);
1435    }
1436
1437    CanonType = Context.getTypeDeclType(Decl);
1438  }
1439
1440  // Build the fully-sugared type for this class template
1441  // specialization, which refers back to the class template
1442  // specialization we created or found.
1443  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
1444}
1445
1446Action::TypeResult
1447Sema::ActOnTemplateIdType(TemplateTy TemplateD, SourceLocation TemplateLoc,
1448                          SourceLocation LAngleLoc,
1449                          ASTTemplateArgsPtr TemplateArgsIn,
1450                          SourceLocation RAngleLoc) {
1451  TemplateName Template = TemplateD.getAsVal<TemplateName>();
1452
1453  // Translate the parser's template argument list in our AST format.
1454  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
1455  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
1456
1457  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
1458  TemplateArgsIn.release();
1459
1460  if (Result.isNull())
1461    return true;
1462
1463  TypeSourceInfo *DI = Context.CreateTypeSourceInfo(Result);
1464  TemplateSpecializationTypeLoc TL
1465    = cast<TemplateSpecializationTypeLoc>(DI->getTypeLoc());
1466  TL.setTemplateNameLoc(TemplateLoc);
1467  TL.setLAngleLoc(LAngleLoc);
1468  TL.setRAngleLoc(RAngleLoc);
1469  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
1470    TL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
1471
1472  return CreateLocInfoType(Result, DI).getAsOpaquePtr();
1473}
1474
1475Sema::TypeResult Sema::ActOnTagTemplateIdType(TypeResult TypeResult,
1476                                              TagUseKind TUK,
1477                                              DeclSpec::TST TagSpec,
1478                                              SourceLocation TagLoc) {
1479  if (TypeResult.isInvalid())
1480    return Sema::TypeResult();
1481
1482  // FIXME: preserve source info, ideally without copying the DI.
1483  TypeSourceInfo *DI;
1484  QualType Type = GetTypeFromParser(TypeResult.get(), &DI);
1485
1486  // Verify the tag specifier.
1487  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
1488
1489  if (const RecordType *RT = Type->getAs<RecordType>()) {
1490    RecordDecl *D = RT->getDecl();
1491
1492    IdentifierInfo *Id = D->getIdentifier();
1493    assert(Id && "templated class must have an identifier");
1494
1495    if (!isAcceptableTagRedeclaration(D, TagKind, TagLoc, *Id)) {
1496      Diag(TagLoc, diag::err_use_with_wrong_tag)
1497        << Type
1498        << CodeModificationHint::CreateReplacement(SourceRange(TagLoc),
1499                                                   D->getKindName());
1500      Diag(D->getLocation(), diag::note_previous_use);
1501    }
1502  }
1503
1504  QualType ElabType = Context.getElaboratedType(Type, TagKind);
1505
1506  return ElabType.getAsOpaquePtr();
1507}
1508
1509Sema::OwningExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
1510                                                 LookupResult &R,
1511                                                 bool RequiresADL,
1512                                 const TemplateArgumentListInfo &TemplateArgs) {
1513  // FIXME: Can we do any checking at this point? I guess we could check the
1514  // template arguments that we have against the template name, if the template
1515  // name refers to a single template. That's not a terribly common case,
1516  // though.
1517
1518  // These should be filtered out by our callers.
1519  assert(!R.empty() && "empty lookup results when building templateid");
1520  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
1521
1522  NestedNameSpecifier *Qualifier = 0;
1523  SourceRange QualifierRange;
1524  if (SS.isSet()) {
1525    Qualifier = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1526    QualifierRange = SS.getRange();
1527  }
1528
1529  // We don't want lookup warnings at this point.
1530  R.suppressDiagnostics();
1531
1532  bool Dependent
1533    = UnresolvedLookupExpr::ComputeDependence(R.begin(), R.end(),
1534                                              &TemplateArgs);
1535  UnresolvedLookupExpr *ULE
1536    = UnresolvedLookupExpr::Create(Context, Dependent, R.getNamingClass(),
1537                                   Qualifier, QualifierRange,
1538                                   R.getLookupName(), R.getNameLoc(),
1539                                   RequiresADL, TemplateArgs);
1540  ULE->addDecls(R.begin(), R.end());
1541
1542  return Owned(ULE);
1543}
1544
1545// We actually only call this from template instantiation.
1546Sema::OwningExprResult
1547Sema::BuildQualifiedTemplateIdExpr(const CXXScopeSpec &SS,
1548                                   DeclarationName Name,
1549                                   SourceLocation NameLoc,
1550                             const TemplateArgumentListInfo &TemplateArgs) {
1551  DeclContext *DC;
1552  if (!(DC = computeDeclContext(SS, false)) ||
1553      DC->isDependentContext() ||
1554      RequireCompleteDeclContext(SS))
1555    return BuildDependentDeclRefExpr(SS, Name, NameLoc, &TemplateArgs);
1556
1557  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName);
1558  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false);
1559
1560  if (R.isAmbiguous())
1561    return ExprError();
1562
1563  if (R.empty()) {
1564    Diag(NameLoc, diag::err_template_kw_refers_to_non_template)
1565      << Name << SS.getRange();
1566    return ExprError();
1567  }
1568
1569  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
1570    Diag(NameLoc, diag::err_template_kw_refers_to_class_template)
1571      << (NestedNameSpecifier*) SS.getScopeRep() << Name << SS.getRange();
1572    Diag(Temp->getLocation(), diag::note_referenced_class_template);
1573    return ExprError();
1574  }
1575
1576  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
1577}
1578
1579/// \brief Form a dependent template name.
1580///
1581/// This action forms a dependent template name given the template
1582/// name and its (presumably dependent) scope specifier. For
1583/// example, given "MetaFun::template apply", the scope specifier \p
1584/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
1585/// of the "template" keyword, and "apply" is the \p Name.
1586Sema::TemplateTy
1587Sema::ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
1588                                 const CXXScopeSpec &SS,
1589                                 UnqualifiedId &Name,
1590                                 TypeTy *ObjectType,
1591                                 bool EnteringContext) {
1592  DeclContext *LookupCtx = 0;
1593  if (SS.isSet())
1594    LookupCtx = computeDeclContext(SS, EnteringContext);
1595  if (!LookupCtx && ObjectType)
1596    LookupCtx = computeDeclContext(QualType::getFromOpaquePtr(ObjectType));
1597  if (LookupCtx) {
1598    // C++0x [temp.names]p5:
1599    //   If a name prefixed by the keyword template is not the name of
1600    //   a template, the program is ill-formed. [Note: the keyword
1601    //   template may not be applied to non-template members of class
1602    //   templates. -end note ] [ Note: as is the case with the
1603    //   typename prefix, the template prefix is allowed in cases
1604    //   where it is not strictly necessary; i.e., when the
1605    //   nested-name-specifier or the expression on the left of the ->
1606    //   or . is not dependent on a template-parameter, or the use
1607    //   does not appear in the scope of a template. -end note]
1608    //
1609    // Note: C++03 was more strict here, because it banned the use of
1610    // the "template" keyword prior to a template-name that was not a
1611    // dependent name. C++ DR468 relaxed this requirement (the
1612    // "template" keyword is now permitted). We follow the C++0x
1613    // rules, even in C++03 mode, retroactively applying the DR.
1614    TemplateTy Template;
1615    TemplateNameKind TNK = isTemplateName(0, SS, Name, ObjectType,
1616                                          EnteringContext, Template);
1617    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
1618        isa<CXXRecordDecl>(LookupCtx) &&
1619        cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()) {
1620      // This is a dependent template.
1621    } else if (TNK == TNK_Non_template) {
1622      Diag(Name.getSourceRange().getBegin(),
1623           diag::err_template_kw_refers_to_non_template)
1624        << GetNameFromUnqualifiedId(Name)
1625        << Name.getSourceRange();
1626      return TemplateTy();
1627    } else {
1628      // We found something; return it.
1629      return Template;
1630    }
1631  }
1632
1633  NestedNameSpecifier *Qualifier
1634    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
1635
1636  switch (Name.getKind()) {
1637  case UnqualifiedId::IK_Identifier:
1638    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1639                                                             Name.Identifier));
1640
1641  case UnqualifiedId::IK_OperatorFunctionId:
1642    return TemplateTy::make(Context.getDependentTemplateName(Qualifier,
1643                                             Name.OperatorFunctionId.Operator));
1644
1645  case UnqualifiedId::IK_LiteralOperatorId:
1646    assert(false && "We don't support these; Parse shouldn't have allowed propagation");
1647
1648  default:
1649    break;
1650  }
1651
1652  Diag(Name.getSourceRange().getBegin(),
1653       diag::err_template_kw_refers_to_non_template)
1654    << GetNameFromUnqualifiedId(Name)
1655    << Name.getSourceRange();
1656  return TemplateTy();
1657}
1658
1659bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
1660                                     const TemplateArgumentLoc &AL,
1661                                     TemplateArgumentListBuilder &Converted) {
1662  const TemplateArgument &Arg = AL.getArgument();
1663
1664  // Check template type parameter.
1665  if (Arg.getKind() != TemplateArgument::Type) {
1666    // C++ [temp.arg.type]p1:
1667    //   A template-argument for a template-parameter which is a
1668    //   type shall be a type-id.
1669
1670    // We have a template type parameter but the template argument
1671    // is not a type.
1672    SourceRange SR = AL.getSourceRange();
1673    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
1674    Diag(Param->getLocation(), diag::note_template_param_here);
1675
1676    return true;
1677  }
1678
1679  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
1680    return true;
1681
1682  // Add the converted template type argument.
1683  Converted.Append(
1684                 TemplateArgument(Context.getCanonicalType(Arg.getAsType())));
1685  return false;
1686}
1687
1688/// \brief Substitute template arguments into the default template argument for
1689/// the given template type parameter.
1690///
1691/// \param SemaRef the semantic analysis object for which we are performing
1692/// the substitution.
1693///
1694/// \param Template the template that we are synthesizing template arguments
1695/// for.
1696///
1697/// \param TemplateLoc the location of the template name that started the
1698/// template-id we are checking.
1699///
1700/// \param RAngleLoc the location of the right angle bracket ('>') that
1701/// terminates the template-id.
1702///
1703/// \param Param the template template parameter whose default we are
1704/// substituting into.
1705///
1706/// \param Converted the list of template arguments provided for template
1707/// parameters that precede \p Param in the template parameter list.
1708///
1709/// \returns the substituted template argument, or NULL if an error occurred.
1710static TypeSourceInfo *
1711SubstDefaultTemplateArgument(Sema &SemaRef,
1712                             TemplateDecl *Template,
1713                             SourceLocation TemplateLoc,
1714                             SourceLocation RAngleLoc,
1715                             TemplateTypeParmDecl *Param,
1716                             TemplateArgumentListBuilder &Converted) {
1717  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
1718
1719  // If the argument type is dependent, instantiate it now based
1720  // on the previously-computed template arguments.
1721  if (ArgType->getType()->isDependentType()) {
1722    TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1723                                      /*TakeArgs=*/false);
1724
1725    MultiLevelTemplateArgumentList AllTemplateArgs
1726      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1727
1728    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1729                                     Template, Converted.getFlatArguments(),
1730                                     Converted.flatSize(),
1731                                     SourceRange(TemplateLoc, RAngleLoc));
1732
1733    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
1734                                Param->getDefaultArgumentLoc(),
1735                                Param->getDeclName());
1736  }
1737
1738  return ArgType;
1739}
1740
1741/// \brief Substitute template arguments into the default template argument for
1742/// the given non-type template parameter.
1743///
1744/// \param SemaRef the semantic analysis object for which we are performing
1745/// the substitution.
1746///
1747/// \param Template the template that we are synthesizing template arguments
1748/// for.
1749///
1750/// \param TemplateLoc the location of the template name that started the
1751/// template-id we are checking.
1752///
1753/// \param RAngleLoc the location of the right angle bracket ('>') that
1754/// terminates the template-id.
1755///
1756/// \param Param the non-type template parameter whose default we are
1757/// substituting into.
1758///
1759/// \param Converted the list of template arguments provided for template
1760/// parameters that precede \p Param in the template parameter list.
1761///
1762/// \returns the substituted template argument, or NULL if an error occurred.
1763static Sema::OwningExprResult
1764SubstDefaultTemplateArgument(Sema &SemaRef,
1765                             TemplateDecl *Template,
1766                             SourceLocation TemplateLoc,
1767                             SourceLocation RAngleLoc,
1768                             NonTypeTemplateParmDecl *Param,
1769                             TemplateArgumentListBuilder &Converted) {
1770  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1771                                    /*TakeArgs=*/false);
1772
1773  MultiLevelTemplateArgumentList AllTemplateArgs
1774    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1775
1776  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1777                                   Template, Converted.getFlatArguments(),
1778                                   Converted.flatSize(),
1779                                   SourceRange(TemplateLoc, RAngleLoc));
1780
1781  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
1782}
1783
1784/// \brief Substitute template arguments into the default template argument for
1785/// the given template template parameter.
1786///
1787/// \param SemaRef the semantic analysis object for which we are performing
1788/// the substitution.
1789///
1790/// \param Template the template that we are synthesizing template arguments
1791/// for.
1792///
1793/// \param TemplateLoc the location of the template name that started the
1794/// template-id we are checking.
1795///
1796/// \param RAngleLoc the location of the right angle bracket ('>') that
1797/// terminates the template-id.
1798///
1799/// \param Param the template template parameter whose default we are
1800/// substituting into.
1801///
1802/// \param Converted the list of template arguments provided for template
1803/// parameters that precede \p Param in the template parameter list.
1804///
1805/// \returns the substituted template argument, or NULL if an error occurred.
1806static TemplateName
1807SubstDefaultTemplateArgument(Sema &SemaRef,
1808                             TemplateDecl *Template,
1809                             SourceLocation TemplateLoc,
1810                             SourceLocation RAngleLoc,
1811                             TemplateTemplateParmDecl *Param,
1812                             TemplateArgumentListBuilder &Converted) {
1813  TemplateArgumentList TemplateArgs(SemaRef.Context, Converted,
1814                                    /*TakeArgs=*/false);
1815
1816  MultiLevelTemplateArgumentList AllTemplateArgs
1817    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
1818
1819  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
1820                                   Template, Converted.getFlatArguments(),
1821                                   Converted.flatSize(),
1822                                   SourceRange(TemplateLoc, RAngleLoc));
1823
1824  return SemaRef.SubstTemplateName(
1825                      Param->getDefaultArgument().getArgument().getAsTemplate(),
1826                              Param->getDefaultArgument().getTemplateNameLoc(),
1827                                   AllTemplateArgs);
1828}
1829
1830/// \brief If the given template parameter has a default template
1831/// argument, substitute into that default template argument and
1832/// return the corresponding template argument.
1833TemplateArgumentLoc
1834Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
1835                                              SourceLocation TemplateLoc,
1836                                              SourceLocation RAngleLoc,
1837                                              Decl *Param,
1838                                     TemplateArgumentListBuilder &Converted) {
1839  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
1840    if (!TypeParm->hasDefaultArgument())
1841      return TemplateArgumentLoc();
1842
1843    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
1844                                                      TemplateLoc,
1845                                                      RAngleLoc,
1846                                                      TypeParm,
1847                                                      Converted);
1848    if (DI)
1849      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
1850
1851    return TemplateArgumentLoc();
1852  }
1853
1854  if (NonTypeTemplateParmDecl *NonTypeParm
1855        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1856    if (!NonTypeParm->hasDefaultArgument())
1857      return TemplateArgumentLoc();
1858
1859    OwningExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
1860                                                        TemplateLoc,
1861                                                        RAngleLoc,
1862                                                        NonTypeParm,
1863                                                        Converted);
1864    if (Arg.isInvalid())
1865      return TemplateArgumentLoc();
1866
1867    Expr *ArgE = Arg.takeAs<Expr>();
1868    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
1869  }
1870
1871  TemplateTemplateParmDecl *TempTempParm
1872    = cast<TemplateTemplateParmDecl>(Param);
1873  if (!TempTempParm->hasDefaultArgument())
1874    return TemplateArgumentLoc();
1875
1876  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
1877                                                    TemplateLoc,
1878                                                    RAngleLoc,
1879                                                    TempTempParm,
1880                                                    Converted);
1881  if (TName.isNull())
1882    return TemplateArgumentLoc();
1883
1884  return TemplateArgumentLoc(TemplateArgument(TName),
1885                TempTempParm->getDefaultArgument().getTemplateQualifierRange(),
1886                TempTempParm->getDefaultArgument().getTemplateNameLoc());
1887}
1888
1889/// \brief Check that the given template argument corresponds to the given
1890/// template parameter.
1891bool Sema::CheckTemplateArgument(NamedDecl *Param,
1892                                 const TemplateArgumentLoc &Arg,
1893                                 TemplateDecl *Template,
1894                                 SourceLocation TemplateLoc,
1895                                 SourceLocation RAngleLoc,
1896                                 TemplateArgumentListBuilder &Converted) {
1897  // Check template type parameters.
1898  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
1899    return CheckTemplateTypeArgument(TTP, Arg, Converted);
1900
1901  // Check non-type template parameters.
1902  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1903    // Do substitution on the type of the non-type template parameter
1904    // with the template arguments we've seen thus far.
1905    QualType NTTPType = NTTP->getType();
1906    if (NTTPType->isDependentType()) {
1907      // Do substitution on the type of the non-type template parameter.
1908      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
1909                                 NTTP, Converted.getFlatArguments(),
1910                                 Converted.flatSize(),
1911                                 SourceRange(TemplateLoc, RAngleLoc));
1912
1913      TemplateArgumentList TemplateArgs(Context, Converted,
1914                                        /*TakeArgs=*/false);
1915      NTTPType = SubstType(NTTPType,
1916                           MultiLevelTemplateArgumentList(TemplateArgs),
1917                           NTTP->getLocation(),
1918                           NTTP->getDeclName());
1919      // If that worked, check the non-type template parameter type
1920      // for validity.
1921      if (!NTTPType.isNull())
1922        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
1923                                                     NTTP->getLocation());
1924      if (NTTPType.isNull())
1925        return true;
1926    }
1927
1928    switch (Arg.getArgument().getKind()) {
1929    case TemplateArgument::Null:
1930      assert(false && "Should never see a NULL template argument here");
1931      return true;
1932
1933    case TemplateArgument::Expression: {
1934      Expr *E = Arg.getArgument().getAsExpr();
1935      TemplateArgument Result;
1936      if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1937        return true;
1938
1939      Converted.Append(Result);
1940      break;
1941    }
1942
1943    case TemplateArgument::Declaration:
1944    case TemplateArgument::Integral:
1945      // We've already checked this template argument, so just copy
1946      // it to the list of converted arguments.
1947      Converted.Append(Arg.getArgument());
1948      break;
1949
1950    case TemplateArgument::Template:
1951      // We were given a template template argument. It may not be ill-formed;
1952      // see below.
1953      if (DependentTemplateName *DTN
1954            = Arg.getArgument().getAsTemplate().getAsDependentTemplateName()) {
1955        // We have a template argument such as \c T::template X, which we
1956        // parsed as a template template argument. However, since we now
1957        // know that we need a non-type template argument, convert this
1958        // template name into an expression.
1959        Expr *E = DependentScopeDeclRefExpr::Create(Context,
1960                                                    DTN->getQualifier(),
1961                                               Arg.getTemplateQualifierRange(),
1962                                                    DTN->getIdentifier(),
1963                                                    Arg.getTemplateNameLoc());
1964
1965        TemplateArgument Result;
1966        if (CheckTemplateArgument(NTTP, NTTPType, E, Result))
1967          return true;
1968
1969        Converted.Append(Result);
1970        break;
1971      }
1972
1973      // We have a template argument that actually does refer to a class
1974      // template, template alias, or template template parameter, and
1975      // therefore cannot be a non-type template argument.
1976      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
1977        << Arg.getSourceRange();
1978
1979      Diag(Param->getLocation(), diag::note_template_param_here);
1980      return true;
1981
1982    case TemplateArgument::Type: {
1983      // We have a non-type template parameter but the template
1984      // argument is a type.
1985
1986      // C++ [temp.arg]p2:
1987      //   In a template-argument, an ambiguity between a type-id and
1988      //   an expression is resolved to a type-id, regardless of the
1989      //   form of the corresponding template-parameter.
1990      //
1991      // We warn specifically about this case, since it can be rather
1992      // confusing for users.
1993      QualType T = Arg.getArgument().getAsType();
1994      SourceRange SR = Arg.getSourceRange();
1995      if (T->isFunctionType())
1996        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
1997      else
1998        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
1999      Diag(Param->getLocation(), diag::note_template_param_here);
2000      return true;
2001    }
2002
2003    case TemplateArgument::Pack:
2004      llvm_unreachable("Caller must expand template argument packs");
2005      break;
2006    }
2007
2008    return false;
2009  }
2010
2011
2012  // Check template template parameters.
2013  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2014
2015  // Substitute into the template parameter list of the template
2016  // template parameter, since previously-supplied template arguments
2017  // may appear within the template template parameter.
2018  {
2019    // Set up a template instantiation context.
2020    LocalInstantiationScope Scope(*this);
2021    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2022                               TempParm, Converted.getFlatArguments(),
2023                               Converted.flatSize(),
2024                               SourceRange(TemplateLoc, RAngleLoc));
2025
2026    TemplateArgumentList TemplateArgs(Context, Converted,
2027                                      /*TakeArgs=*/false);
2028    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2029                      SubstDecl(TempParm, CurContext,
2030                                MultiLevelTemplateArgumentList(TemplateArgs)));
2031    if (!TempParm)
2032      return true;
2033
2034    // FIXME: TempParam is leaked.
2035  }
2036
2037  switch (Arg.getArgument().getKind()) {
2038  case TemplateArgument::Null:
2039    assert(false && "Should never see a NULL template argument here");
2040    return true;
2041
2042  case TemplateArgument::Template:
2043    if (CheckTemplateArgument(TempParm, Arg))
2044      return true;
2045
2046    Converted.Append(Arg.getArgument());
2047    break;
2048
2049  case TemplateArgument::Expression:
2050  case TemplateArgument::Type:
2051    // We have a template template parameter but the template
2052    // argument does not refer to a template.
2053    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template);
2054    return true;
2055
2056  case TemplateArgument::Declaration:
2057    llvm_unreachable(
2058                       "Declaration argument with template template parameter");
2059    break;
2060  case TemplateArgument::Integral:
2061    llvm_unreachable(
2062                          "Integral argument with template template parameter");
2063    break;
2064
2065  case TemplateArgument::Pack:
2066    llvm_unreachable("Caller must expand template argument packs");
2067    break;
2068  }
2069
2070  return false;
2071}
2072
2073/// \brief Check that the given template argument list is well-formed
2074/// for specializing the given template.
2075bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2076                                     SourceLocation TemplateLoc,
2077                                const TemplateArgumentListInfo &TemplateArgs,
2078                                     bool PartialTemplateArgs,
2079                                     TemplateArgumentListBuilder &Converted) {
2080  TemplateParameterList *Params = Template->getTemplateParameters();
2081  unsigned NumParams = Params->size();
2082  unsigned NumArgs = TemplateArgs.size();
2083  bool Invalid = false;
2084
2085  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2086
2087  bool HasParameterPack =
2088    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2089
2090  if ((NumArgs > NumParams && !HasParameterPack) ||
2091      (NumArgs < Params->getMinRequiredArguments() &&
2092       !PartialTemplateArgs)) {
2093    // FIXME: point at either the first arg beyond what we can handle,
2094    // or the '>', depending on whether we have too many or too few
2095    // arguments.
2096    SourceRange Range;
2097    if (NumArgs > NumParams)
2098      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2099    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2100      << (NumArgs > NumParams)
2101      << (isa<ClassTemplateDecl>(Template)? 0 :
2102          isa<FunctionTemplateDecl>(Template)? 1 :
2103          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2104      << Template << Range;
2105    Diag(Template->getLocation(), diag::note_template_decl_here)
2106      << Params->getSourceRange();
2107    Invalid = true;
2108  }
2109
2110  // C++ [temp.arg]p1:
2111  //   [...] The type and form of each template-argument specified in
2112  //   a template-id shall match the type and form specified for the
2113  //   corresponding parameter declared by the template in its
2114  //   template-parameter-list.
2115  unsigned ArgIdx = 0;
2116  for (TemplateParameterList::iterator Param = Params->begin(),
2117                                       ParamEnd = Params->end();
2118       Param != ParamEnd; ++Param, ++ArgIdx) {
2119    if (ArgIdx > NumArgs && PartialTemplateArgs)
2120      break;
2121
2122    // If we have a template parameter pack, check every remaining template
2123    // argument against that template parameter pack.
2124    if ((*Param)->isTemplateParameterPack()) {
2125      Converted.BeginPack();
2126      for (; ArgIdx < NumArgs; ++ArgIdx) {
2127        if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2128                                  TemplateLoc, RAngleLoc, Converted)) {
2129          Invalid = true;
2130          break;
2131        }
2132      }
2133      Converted.EndPack();
2134      continue;
2135    }
2136
2137    if (ArgIdx < NumArgs) {
2138      // Check the template argument we were given.
2139      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2140                                TemplateLoc, RAngleLoc, Converted))
2141        return true;
2142
2143      continue;
2144    }
2145
2146    // We have a default template argument that we will use.
2147    TemplateArgumentLoc Arg;
2148
2149    // Retrieve the default template argument from the template
2150    // parameter. For each kind of template parameter, we substitute the
2151    // template arguments provided thus far and any "outer" template arguments
2152    // (when the template parameter was part of a nested template) into
2153    // the default argument.
2154    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2155      if (!TTP->hasDefaultArgument()) {
2156        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2157        break;
2158      }
2159
2160      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2161                                                             Template,
2162                                                             TemplateLoc,
2163                                                             RAngleLoc,
2164                                                             TTP,
2165                                                             Converted);
2166      if (!ArgType)
2167        return true;
2168
2169      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2170                                ArgType);
2171    } else if (NonTypeTemplateParmDecl *NTTP
2172                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2173      if (!NTTP->hasDefaultArgument()) {
2174        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2175        break;
2176      }
2177
2178      Sema::OwningExprResult E = SubstDefaultTemplateArgument(*this, Template,
2179                                                              TemplateLoc,
2180                                                              RAngleLoc,
2181                                                              NTTP,
2182                                                              Converted);
2183      if (E.isInvalid())
2184        return true;
2185
2186      Expr *Ex = E.takeAs<Expr>();
2187      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
2188    } else {
2189      TemplateTemplateParmDecl *TempParm
2190        = cast<TemplateTemplateParmDecl>(*Param);
2191
2192      if (!TempParm->hasDefaultArgument()) {
2193        assert((Invalid || PartialTemplateArgs) && "Missing default argument");
2194        break;
2195      }
2196
2197      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
2198                                                       TemplateLoc,
2199                                                       RAngleLoc,
2200                                                       TempParm,
2201                                                       Converted);
2202      if (Name.isNull())
2203        return true;
2204
2205      Arg = TemplateArgumentLoc(TemplateArgument(Name),
2206                  TempParm->getDefaultArgument().getTemplateQualifierRange(),
2207                  TempParm->getDefaultArgument().getTemplateNameLoc());
2208    }
2209
2210    // Introduce an instantiation record that describes where we are using
2211    // the default template argument.
2212    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
2213                                        Converted.getFlatArguments(),
2214                                        Converted.flatSize(),
2215                                        SourceRange(TemplateLoc, RAngleLoc));
2216
2217    // Check the default template argument.
2218    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
2219                              RAngleLoc, Converted))
2220      return true;
2221  }
2222
2223  return Invalid;
2224}
2225
2226/// \brief Check a template argument against its corresponding
2227/// template type parameter.
2228///
2229/// This routine implements the semantics of C++ [temp.arg.type]. It
2230/// returns true if an error occurred, and false otherwise.
2231bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
2232                                 TypeSourceInfo *ArgInfo) {
2233  assert(ArgInfo && "invalid TypeSourceInfo");
2234  QualType Arg = ArgInfo->getType();
2235
2236  // C++ [temp.arg.type]p2:
2237  //   A local type, a type with no linkage, an unnamed type or a type
2238  //   compounded from any of these types shall not be used as a
2239  //   template-argument for a template type-parameter.
2240  //
2241  // FIXME: Perform the recursive and no-linkage type checks.
2242  const TagType *Tag = 0;
2243  if (const EnumType *EnumT = Arg->getAs<EnumType>())
2244    Tag = EnumT;
2245  else if (const RecordType *RecordT = Arg->getAs<RecordType>())
2246    Tag = RecordT;
2247  if (Tag && Tag->getDecl()->getDeclContext()->isFunctionOrMethod()) {
2248    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2249    return Diag(SR.getBegin(), diag::err_template_arg_local_type)
2250      << QualType(Tag, 0) << SR;
2251  } else if (Tag && !Tag->getDecl()->getDeclName() &&
2252           !Tag->getDecl()->getTypedefForAnonDecl()) {
2253    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2254    Diag(SR.getBegin(), diag::err_template_arg_unnamed_type) << SR;
2255    Diag(Tag->getDecl()->getLocation(), diag::note_template_unnamed_type_here);
2256    return true;
2257  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
2258    SourceRange SR = ArgInfo->getTypeLoc().getFullSourceRange();
2259    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
2260  }
2261
2262  return false;
2263}
2264
2265/// \brief Checks whether the given template argument is the address
2266/// of an object or function according to C++ [temp.arg.nontype]p1.
2267bool Sema::CheckTemplateArgumentAddressOfObjectOrFunction(Expr *Arg,
2268                                                          NamedDecl *&Entity) {
2269  bool Invalid = false;
2270
2271  // See through any implicit casts we added to fix the type.
2272  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2273    Arg = Cast->getSubExpr();
2274
2275  // C++0x allows nullptr, and there's no further checking to be done for that.
2276  if (Arg->getType()->isNullPtrType())
2277    return false;
2278
2279  // C++ [temp.arg.nontype]p1:
2280  //
2281  //   A template-argument for a non-type, non-template
2282  //   template-parameter shall be one of: [...]
2283  //
2284  //     -- the address of an object or function with external
2285  //        linkage, including function templates and function
2286  //        template-ids but excluding non-static class members,
2287  //        expressed as & id-expression where the & is optional if
2288  //        the name refers to a function or array, or if the
2289  //        corresponding template-parameter is a reference; or
2290  DeclRefExpr *DRE = 0;
2291
2292  // Ignore (and complain about) any excess parentheses.
2293  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2294    if (!Invalid) {
2295      Diag(Arg->getSourceRange().getBegin(),
2296           diag::err_template_arg_extra_parens)
2297        << Arg->getSourceRange();
2298      Invalid = true;
2299    }
2300
2301    Arg = Parens->getSubExpr();
2302  }
2303
2304  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2305    if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2306      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2307  } else
2308    DRE = dyn_cast<DeclRefExpr>(Arg);
2309
2310  if (!DRE)
2311    return Diag(Arg->getSourceRange().getBegin(),
2312                diag::err_template_arg_not_decl_ref)
2313      << Arg->getSourceRange();
2314
2315  // Stop checking the precise nature of the argument if it is value dependent,
2316  // it should be checked when instantiated.
2317  if (Arg->isValueDependent())
2318    return false;
2319
2320  if (!isa<ValueDecl>(DRE->getDecl()))
2321    return Diag(Arg->getSourceRange().getBegin(),
2322                diag::err_template_arg_not_object_or_func_form)
2323      << Arg->getSourceRange();
2324
2325  // Cannot refer to non-static data members
2326  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl()))
2327    return Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
2328      << Field << Arg->getSourceRange();
2329
2330  // Cannot refer to non-static member functions
2331  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
2332    if (!Method->isStatic())
2333      return Diag(Arg->getSourceRange().getBegin(),
2334                  diag::err_template_arg_method)
2335        << Method << Arg->getSourceRange();
2336
2337  // Functions must have external linkage.
2338  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
2339    if (!isExternalLinkage(Func->getLinkage())) {
2340      Diag(Arg->getSourceRange().getBegin(),
2341           diag::err_template_arg_function_not_extern)
2342        << Func << Arg->getSourceRange();
2343      Diag(Func->getLocation(), diag::note_template_arg_internal_object)
2344        << true;
2345      return true;
2346    }
2347
2348    // Okay: we've named a function with external linkage.
2349    Entity = Func;
2350    return Invalid;
2351  }
2352
2353  if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
2354    if (!isExternalLinkage(Var->getLinkage())) {
2355      Diag(Arg->getSourceRange().getBegin(),
2356           diag::err_template_arg_object_not_extern)
2357        << Var << Arg->getSourceRange();
2358      Diag(Var->getLocation(), diag::note_template_arg_internal_object)
2359        << true;
2360      return true;
2361    }
2362
2363    // Okay: we've named an object with external linkage
2364    Entity = Var;
2365    return Invalid;
2366  }
2367
2368  // We found something else, but we don't know specifically what it is.
2369  Diag(Arg->getSourceRange().getBegin(),
2370       diag::err_template_arg_not_object_or_func)
2371      << Arg->getSourceRange();
2372  Diag(DRE->getDecl()->getLocation(),
2373       diag::note_template_arg_refers_here);
2374  return true;
2375}
2376
2377/// \brief Checks whether the given template argument is a pointer to
2378/// member constant according to C++ [temp.arg.nontype]p1.
2379bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
2380                                                TemplateArgument &Converted) {
2381  bool Invalid = false;
2382
2383  // See through any implicit casts we added to fix the type.
2384  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
2385    Arg = Cast->getSubExpr();
2386
2387  // C++0x allows nullptr, and there's no further checking to be done for that.
2388  if (Arg->getType()->isNullPtrType())
2389    return false;
2390
2391  // C++ [temp.arg.nontype]p1:
2392  //
2393  //   A template-argument for a non-type, non-template
2394  //   template-parameter shall be one of: [...]
2395  //
2396  //     -- a pointer to member expressed as described in 5.3.1.
2397  DeclRefExpr *DRE = 0;
2398
2399  // Ignore (and complain about) any excess parentheses.
2400  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
2401    if (!Invalid) {
2402      Diag(Arg->getSourceRange().getBegin(),
2403           diag::err_template_arg_extra_parens)
2404        << Arg->getSourceRange();
2405      Invalid = true;
2406    }
2407
2408    Arg = Parens->getSubExpr();
2409  }
2410
2411  // A pointer-to-member constant written &Class::member.
2412  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
2413    if (UnOp->getOpcode() == UnaryOperator::AddrOf) {
2414      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
2415      if (DRE && !DRE->getQualifier())
2416        DRE = 0;
2417    }
2418  }
2419  // A constant of pointer-to-member type.
2420  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
2421    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
2422      if (VD->getType()->isMemberPointerType()) {
2423        if (isa<NonTypeTemplateParmDecl>(VD) ||
2424            (isa<VarDecl>(VD) &&
2425             Context.getCanonicalType(VD->getType()).isConstQualified())) {
2426          if (Arg->isTypeDependent() || Arg->isValueDependent())
2427            Converted = TemplateArgument(Arg->Retain());
2428          else
2429            Converted = TemplateArgument(VD->getCanonicalDecl());
2430          return Invalid;
2431        }
2432      }
2433    }
2434
2435    DRE = 0;
2436  }
2437
2438  if (!DRE)
2439    return Diag(Arg->getSourceRange().getBegin(),
2440                diag::err_template_arg_not_pointer_to_member_form)
2441      << Arg->getSourceRange();
2442
2443  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
2444    assert((isa<FieldDecl>(DRE->getDecl()) ||
2445            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
2446           "Only non-static member pointers can make it here");
2447
2448    // Okay: this is the address of a non-static member, and therefore
2449    // a member pointer constant.
2450    if (Arg->isTypeDependent() || Arg->isValueDependent())
2451      Converted = TemplateArgument(Arg->Retain());
2452    else
2453      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
2454    return Invalid;
2455  }
2456
2457  // We found something else, but we don't know specifically what it is.
2458  Diag(Arg->getSourceRange().getBegin(),
2459       diag::err_template_arg_not_pointer_to_member_form)
2460      << Arg->getSourceRange();
2461  Diag(DRE->getDecl()->getLocation(),
2462       diag::note_template_arg_refers_here);
2463  return true;
2464}
2465
2466/// \brief Check a template argument against its corresponding
2467/// non-type template parameter.
2468///
2469/// This routine implements the semantics of C++ [temp.arg.nontype].
2470/// It returns true if an error occurred, and false otherwise. \p
2471/// InstantiatedParamType is the type of the non-type template
2472/// parameter after it has been instantiated.
2473///
2474/// If no error was detected, Converted receives the converted template argument.
2475bool Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
2476                                 QualType InstantiatedParamType, Expr *&Arg,
2477                                 TemplateArgument &Converted) {
2478  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
2479
2480  // If either the parameter has a dependent type or the argument is
2481  // type-dependent, there's nothing we can check now.
2482  // FIXME: Add template argument to Converted!
2483  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
2484    // FIXME: Produce a cloned, canonical expression?
2485    Converted = TemplateArgument(Arg);
2486    return false;
2487  }
2488
2489  // C++ [temp.arg.nontype]p5:
2490  //   The following conversions are performed on each expression used
2491  //   as a non-type template-argument. If a non-type
2492  //   template-argument cannot be converted to the type of the
2493  //   corresponding template-parameter then the program is
2494  //   ill-formed.
2495  //
2496  //     -- for a non-type template-parameter of integral or
2497  //        enumeration type, integral promotions (4.5) and integral
2498  //        conversions (4.7) are applied.
2499  QualType ParamType = InstantiatedParamType;
2500  QualType ArgType = Arg->getType();
2501  if (ParamType->isIntegralType() || ParamType->isEnumeralType()) {
2502    // C++ [temp.arg.nontype]p1:
2503    //   A template-argument for a non-type, non-template
2504    //   template-parameter shall be one of:
2505    //
2506    //     -- an integral constant-expression of integral or enumeration
2507    //        type; or
2508    //     -- the name of a non-type template-parameter; or
2509    SourceLocation NonConstantLoc;
2510    llvm::APSInt Value;
2511    if (!ArgType->isIntegralType() && !ArgType->isEnumeralType()) {
2512      Diag(Arg->getSourceRange().getBegin(),
2513           diag::err_template_arg_not_integral_or_enumeral)
2514        << ArgType << Arg->getSourceRange();
2515      Diag(Param->getLocation(), diag::note_template_param_here);
2516      return true;
2517    } else if (!Arg->isValueDependent() &&
2518               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
2519      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
2520        << ArgType << Arg->getSourceRange();
2521      return true;
2522    }
2523
2524    // FIXME: We need some way to more easily get the unqualified form
2525    // of the types without going all the way to the
2526    // canonical type.
2527    if (Context.getCanonicalType(ParamType).getCVRQualifiers())
2528      ParamType = Context.getCanonicalType(ParamType).getUnqualifiedType();
2529    if (Context.getCanonicalType(ArgType).getCVRQualifiers())
2530      ArgType = Context.getCanonicalType(ArgType).getUnqualifiedType();
2531
2532    // Try to convert the argument to the parameter's type.
2533    if (Context.hasSameType(ParamType, ArgType)) {
2534      // Okay: no conversion necessary
2535    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
2536               !ParamType->isEnumeralType()) {
2537      // This is an integral promotion or conversion.
2538      ImpCastExprToType(Arg, ParamType, CastExpr::CK_IntegralCast);
2539    } else {
2540      // We can't perform this conversion.
2541      Diag(Arg->getSourceRange().getBegin(),
2542           diag::err_template_arg_not_convertible)
2543        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2544      Diag(Param->getLocation(), diag::note_template_param_here);
2545      return true;
2546    }
2547
2548    QualType IntegerType = Context.getCanonicalType(ParamType);
2549    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
2550      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
2551
2552    if (!Arg->isValueDependent()) {
2553      // Check that an unsigned parameter does not receive a negative
2554      // value.
2555      if (IntegerType->isUnsignedIntegerType()
2556          && (Value.isSigned() && Value.isNegative())) {
2557        Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_negative)
2558          << Value.toString(10) << Param->getType()
2559          << Arg->getSourceRange();
2560        Diag(Param->getLocation(), diag::note_template_param_here);
2561        return true;
2562      }
2563
2564      // Check that we don't overflow the template parameter type.
2565      unsigned AllowedBits = Context.getTypeSize(IntegerType);
2566      unsigned RequiredBits;
2567      if (IntegerType->isUnsignedIntegerType())
2568        RequiredBits = Value.getActiveBits();
2569      else if (Value.isUnsigned())
2570        RequiredBits = Value.getActiveBits() + 1;
2571      else
2572        RequiredBits = Value.getMinSignedBits();
2573      if (RequiredBits > AllowedBits) {
2574        Diag(Arg->getSourceRange().getBegin(),
2575             diag::err_template_arg_too_large)
2576          << Value.toString(10) << Param->getType()
2577          << Arg->getSourceRange();
2578        Diag(Param->getLocation(), diag::note_template_param_here);
2579        return true;
2580      }
2581
2582      if (Value.getBitWidth() != AllowedBits)
2583        Value.extOrTrunc(AllowedBits);
2584      Value.setIsSigned(IntegerType->isSignedIntegerType());
2585    }
2586
2587    // Add the value of this argument to the list of converted
2588    // arguments. We use the bitwidth and signedness of the template
2589    // parameter.
2590    if (Arg->isValueDependent()) {
2591      // The argument is value-dependent. Create a new
2592      // TemplateArgument with the converted expression.
2593      Converted = TemplateArgument(Arg);
2594      return false;
2595    }
2596
2597    Converted = TemplateArgument(Value,
2598                                 ParamType->isEnumeralType() ? ParamType
2599                                                             : IntegerType);
2600    return false;
2601  }
2602
2603  // Handle pointer-to-function, reference-to-function, and
2604  // pointer-to-member-function all in (roughly) the same way.
2605  if (// -- For a non-type template-parameter of type pointer to
2606      //    function, only the function-to-pointer conversion (4.3) is
2607      //    applied. If the template-argument represents a set of
2608      //    overloaded functions (or a pointer to such), the matching
2609      //    function is selected from the set (13.4).
2610      // In C++0x, any std::nullptr_t value can be converted.
2611      (ParamType->isPointerType() &&
2612       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
2613      // -- For a non-type template-parameter of type reference to
2614      //    function, no conversions apply. If the template-argument
2615      //    represents a set of overloaded functions, the matching
2616      //    function is selected from the set (13.4).
2617      (ParamType->isReferenceType() &&
2618       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
2619      // -- For a non-type template-parameter of type pointer to
2620      //    member function, no conversions apply. If the
2621      //    template-argument represents a set of overloaded member
2622      //    functions, the matching member function is selected from
2623      //    the set (13.4).
2624      // Again, C++0x allows a std::nullptr_t value.
2625      (ParamType->isMemberPointerType() &&
2626       ParamType->getAs<MemberPointerType>()->getPointeeType()
2627         ->isFunctionType())) {
2628    if (Context.hasSameUnqualifiedType(ArgType,
2629                                       ParamType.getNonReferenceType())) {
2630      // We don't have to do anything: the types already match.
2631    } else if (ArgType->isNullPtrType() && (ParamType->isPointerType() ||
2632                 ParamType->isMemberPointerType())) {
2633      ArgType = ParamType;
2634      if (ParamType->isMemberPointerType())
2635        ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2636      else
2637        ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2638    } else if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2639      ArgType = Context.getPointerType(ArgType);
2640      ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2641    } else if (FunctionDecl *Fn
2642                 = ResolveAddressOfOverloadedFunction(Arg, ParamType, true)) {
2643      if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
2644        return true;
2645
2646      Arg = FixOverloadedFunctionReference(Arg, Fn);
2647      ArgType = Arg->getType();
2648      if (ArgType->isFunctionType() && ParamType->isPointerType()) {
2649        ArgType = Context.getPointerType(Arg->getType());
2650        ImpCastExprToType(Arg, ArgType, CastExpr::CK_FunctionToPointerDecay);
2651      }
2652    }
2653
2654    if (!Context.hasSameUnqualifiedType(ArgType,
2655                                        ParamType.getNonReferenceType())) {
2656      // We can't perform this conversion.
2657      Diag(Arg->getSourceRange().getBegin(),
2658           diag::err_template_arg_not_convertible)
2659        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2660      Diag(Param->getLocation(), diag::note_template_param_here);
2661      return true;
2662    }
2663
2664    if (ParamType->isMemberPointerType())
2665      return CheckTemplateArgumentPointerToMember(Arg, Converted);
2666
2667    NamedDecl *Entity = 0;
2668    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2669      return true;
2670
2671    if (Arg->isValueDependent()) {
2672      Converted = TemplateArgument(Arg);
2673    } else {
2674      if (Entity)
2675        Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2676      Converted = TemplateArgument(Entity);
2677    }
2678    return false;
2679  }
2680
2681  if (ParamType->isPointerType()) {
2682    //   -- for a non-type template-parameter of type pointer to
2683    //      object, qualification conversions (4.4) and the
2684    //      array-to-pointer conversion (4.2) are applied.
2685    // C++0x also allows a value of std::nullptr_t.
2686    assert(ParamType->getAs<PointerType>()->getPointeeType()->isObjectType() &&
2687           "Only object pointers allowed here");
2688
2689    if (ArgType->isNullPtrType()) {
2690      ArgType = ParamType;
2691      ImpCastExprToType(Arg, ParamType, CastExpr::CK_BitCast);
2692    } else if (ArgType->isArrayType()) {
2693      ArgType = Context.getArrayDecayedType(ArgType);
2694      ImpCastExprToType(Arg, ArgType, CastExpr::CK_ArrayToPointerDecay);
2695    }
2696
2697    if (IsQualificationConversion(ArgType, ParamType)) {
2698      ArgType = ParamType;
2699      ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2700    }
2701
2702    if (!Context.hasSameUnqualifiedType(ArgType, ParamType)) {
2703      // We can't perform this conversion.
2704      Diag(Arg->getSourceRange().getBegin(),
2705           diag::err_template_arg_not_convertible)
2706        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2707      Diag(Param->getLocation(), diag::note_template_param_here);
2708      return true;
2709    }
2710
2711    NamedDecl *Entity = 0;
2712    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2713      return true;
2714
2715    if (Arg->isValueDependent()) {
2716      Converted = TemplateArgument(Arg);
2717    } else {
2718      if (Entity)
2719        Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2720      Converted = TemplateArgument(Entity);
2721    }
2722    return false;
2723  }
2724
2725  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
2726    //   -- For a non-type template-parameter of type reference to
2727    //      object, no conversions apply. The type referred to by the
2728    //      reference may be more cv-qualified than the (otherwise
2729    //      identical) type of the template-argument. The
2730    //      template-parameter is bound directly to the
2731    //      template-argument, which must be an lvalue.
2732    assert(ParamRefType->getPointeeType()->isObjectType() &&
2733           "Only object references allowed here");
2734
2735    QualType ReferredType = ParamRefType->getPointeeType();
2736    if (!Context.hasSameUnqualifiedType(ReferredType, ArgType)) {
2737      Diag(Arg->getSourceRange().getBegin(),
2738           diag::err_template_arg_no_ref_bind)
2739        << InstantiatedParamType << Arg->getType()
2740        << Arg->getSourceRange();
2741      Diag(Param->getLocation(), diag::note_template_param_here);
2742      return true;
2743    }
2744
2745    unsigned ParamQuals
2746      = Context.getCanonicalType(ReferredType).getCVRQualifiers();
2747    unsigned ArgQuals = Context.getCanonicalType(ArgType).getCVRQualifiers();
2748
2749    if ((ParamQuals | ArgQuals) != ParamQuals) {
2750      Diag(Arg->getSourceRange().getBegin(),
2751           diag::err_template_arg_ref_bind_ignores_quals)
2752        << InstantiatedParamType << Arg->getType()
2753        << Arg->getSourceRange();
2754      Diag(Param->getLocation(), diag::note_template_param_here);
2755      return true;
2756    }
2757
2758    NamedDecl *Entity = 0;
2759    if (CheckTemplateArgumentAddressOfObjectOrFunction(Arg, Entity))
2760      return true;
2761
2762    if (Arg->isValueDependent()) {
2763      Converted = TemplateArgument(Arg);
2764    } else {
2765      Entity = cast<NamedDecl>(Entity->getCanonicalDecl());
2766      Converted = TemplateArgument(Entity);
2767    }
2768    return false;
2769  }
2770
2771  //     -- For a non-type template-parameter of type pointer to data
2772  //        member, qualification conversions (4.4) are applied.
2773  // C++0x allows std::nullptr_t values.
2774  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
2775
2776  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
2777    // Types match exactly: nothing more to do here.
2778  } else if (ArgType->isNullPtrType()) {
2779    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NullToMemberPointer);
2780  } else if (IsQualificationConversion(ArgType, ParamType)) {
2781    ImpCastExprToType(Arg, ParamType, CastExpr::CK_NoOp);
2782  } else {
2783    // We can't perform this conversion.
2784    Diag(Arg->getSourceRange().getBegin(),
2785         diag::err_template_arg_not_convertible)
2786      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
2787    Diag(Param->getLocation(), diag::note_template_param_here);
2788    return true;
2789  }
2790
2791  return CheckTemplateArgumentPointerToMember(Arg, Converted);
2792}
2793
2794/// \brief Check a template argument against its corresponding
2795/// template template parameter.
2796///
2797/// This routine implements the semantics of C++ [temp.arg.template].
2798/// It returns true if an error occurred, and false otherwise.
2799bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
2800                                 const TemplateArgumentLoc &Arg) {
2801  TemplateName Name = Arg.getArgument().getAsTemplate();
2802  TemplateDecl *Template = Name.getAsTemplateDecl();
2803  if (!Template) {
2804    // Any dependent template name is fine.
2805    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
2806    return false;
2807  }
2808
2809  // C++ [temp.arg.template]p1:
2810  //   A template-argument for a template template-parameter shall be
2811  //   the name of a class template, expressed as id-expression. Only
2812  //   primary class templates are considered when matching the
2813  //   template template argument with the corresponding parameter;
2814  //   partial specializations are not considered even if their
2815  //   parameter lists match that of the template template parameter.
2816  //
2817  // Note that we also allow template template parameters here, which
2818  // will happen when we are dealing with, e.g., class template
2819  // partial specializations.
2820  if (!isa<ClassTemplateDecl>(Template) &&
2821      !isa<TemplateTemplateParmDecl>(Template)) {
2822    assert(isa<FunctionTemplateDecl>(Template) &&
2823           "Only function templates are possible here");
2824    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
2825    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
2826      << Template;
2827  }
2828
2829  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
2830                                         Param->getTemplateParameters(),
2831                                         true,
2832                                         TPL_TemplateTemplateArgumentMatch,
2833                                         Arg.getLocation());
2834}
2835
2836/// \brief Determine whether the given template parameter lists are
2837/// equivalent.
2838///
2839/// \param New  The new template parameter list, typically written in the
2840/// source code as part of a new template declaration.
2841///
2842/// \param Old  The old template parameter list, typically found via
2843/// name lookup of the template declared with this template parameter
2844/// list.
2845///
2846/// \param Complain  If true, this routine will produce a diagnostic if
2847/// the template parameter lists are not equivalent.
2848///
2849/// \param Kind describes how we are to match the template parameter lists.
2850///
2851/// \param TemplateArgLoc If this source location is valid, then we
2852/// are actually checking the template parameter list of a template
2853/// argument (New) against the template parameter list of its
2854/// corresponding template template parameter (Old). We produce
2855/// slightly different diagnostics in this scenario.
2856///
2857/// \returns True if the template parameter lists are equal, false
2858/// otherwise.
2859bool
2860Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
2861                                     TemplateParameterList *Old,
2862                                     bool Complain,
2863                                     TemplateParameterListEqualKind Kind,
2864                                     SourceLocation TemplateArgLoc) {
2865  if (Old->size() != New->size()) {
2866    if (Complain) {
2867      unsigned NextDiag = diag::err_template_param_list_different_arity;
2868      if (TemplateArgLoc.isValid()) {
2869        Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2870        NextDiag = diag::note_template_param_list_different_arity;
2871      }
2872      Diag(New->getTemplateLoc(), NextDiag)
2873          << (New->size() > Old->size())
2874          << (Kind != TPL_TemplateMatch)
2875          << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
2876      Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
2877        << (Kind != TPL_TemplateMatch)
2878        << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
2879    }
2880
2881    return false;
2882  }
2883
2884  for (TemplateParameterList::iterator OldParm = Old->begin(),
2885         OldParmEnd = Old->end(), NewParm = New->begin();
2886       OldParm != OldParmEnd; ++OldParm, ++NewParm) {
2887    if ((*OldParm)->getKind() != (*NewParm)->getKind()) {
2888      if (Complain) {
2889        unsigned NextDiag = diag::err_template_param_different_kind;
2890        if (TemplateArgLoc.isValid()) {
2891          Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
2892          NextDiag = diag::note_template_param_different_kind;
2893        }
2894        Diag((*NewParm)->getLocation(), NextDiag)
2895          << (Kind != TPL_TemplateMatch);
2896        Diag((*OldParm)->getLocation(), diag::note_template_prev_declaration)
2897          << (Kind != TPL_TemplateMatch);
2898      }
2899      return false;
2900    }
2901
2902    if (isa<TemplateTypeParmDecl>(*OldParm)) {
2903      // Okay; all template type parameters are equivalent (since we
2904      // know we're at the same index).
2905    } else if (NonTypeTemplateParmDecl *OldNTTP
2906                 = dyn_cast<NonTypeTemplateParmDecl>(*OldParm)) {
2907      // The types of non-type template parameters must agree.
2908      NonTypeTemplateParmDecl *NewNTTP
2909        = cast<NonTypeTemplateParmDecl>(*NewParm);
2910
2911      // If we are matching a template template argument to a template
2912      // template parameter and one of the non-type template parameter types
2913      // is dependent, then we must wait until template instantiation time
2914      // to actually compare the arguments.
2915      if (Kind == TPL_TemplateTemplateArgumentMatch &&
2916          (OldNTTP->getType()->isDependentType() ||
2917           NewNTTP->getType()->isDependentType()))
2918        continue;
2919
2920      if (Context.getCanonicalType(OldNTTP->getType()) !=
2921            Context.getCanonicalType(NewNTTP->getType())) {
2922        if (Complain) {
2923          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
2924          if (TemplateArgLoc.isValid()) {
2925            Diag(TemplateArgLoc,
2926                 diag::err_template_arg_template_params_mismatch);
2927            NextDiag = diag::note_template_nontype_parm_different_type;
2928          }
2929          Diag(NewNTTP->getLocation(), NextDiag)
2930            << NewNTTP->getType()
2931            << (Kind != TPL_TemplateMatch);
2932          Diag(OldNTTP->getLocation(),
2933               diag::note_template_nontype_parm_prev_declaration)
2934            << OldNTTP->getType();
2935        }
2936        return false;
2937      }
2938    } else {
2939      // The template parameter lists of template template
2940      // parameters must agree.
2941      assert(isa<TemplateTemplateParmDecl>(*OldParm) &&
2942             "Only template template parameters handled here");
2943      TemplateTemplateParmDecl *OldTTP
2944        = cast<TemplateTemplateParmDecl>(*OldParm);
2945      TemplateTemplateParmDecl *NewTTP
2946        = cast<TemplateTemplateParmDecl>(*NewParm);
2947      if (!TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
2948                                          OldTTP->getTemplateParameters(),
2949                                          Complain,
2950              (Kind == TPL_TemplateMatch? TPL_TemplateTemplateParmMatch : Kind),
2951                                          TemplateArgLoc))
2952        return false;
2953    }
2954  }
2955
2956  return true;
2957}
2958
2959/// \brief Check whether a template can be declared within this scope.
2960///
2961/// If the template declaration is valid in this scope, returns
2962/// false. Otherwise, issues a diagnostic and returns true.
2963bool
2964Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
2965  // Find the nearest enclosing declaration scope.
2966  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2967         (S->getFlags() & Scope::TemplateParamScope) != 0)
2968    S = S->getParent();
2969
2970  // C++ [temp]p2:
2971  //   A template-declaration can appear only as a namespace scope or
2972  //   class scope declaration.
2973  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
2974  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
2975      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
2976    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
2977             << TemplateParams->getSourceRange();
2978
2979  while (Ctx && isa<LinkageSpecDecl>(Ctx))
2980    Ctx = Ctx->getParent();
2981
2982  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
2983    return false;
2984
2985  return Diag(TemplateParams->getTemplateLoc(),
2986              diag::err_template_outside_namespace_or_class_scope)
2987    << TemplateParams->getSourceRange();
2988}
2989
2990/// \brief Determine what kind of template specialization the given declaration
2991/// is.
2992static TemplateSpecializationKind getTemplateSpecializationKind(NamedDecl *D) {
2993  if (!D)
2994    return TSK_Undeclared;
2995
2996  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
2997    return Record->getTemplateSpecializationKind();
2998  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2999    return Function->getTemplateSpecializationKind();
3000  if (VarDecl *Var = dyn_cast<VarDecl>(D))
3001    return Var->getTemplateSpecializationKind();
3002
3003  return TSK_Undeclared;
3004}
3005
3006/// \brief Check whether a specialization is well-formed in the current
3007/// context.
3008///
3009/// This routine determines whether a template specialization can be declared
3010/// in the current context (C++ [temp.expl.spec]p2).
3011///
3012/// \param S the semantic analysis object for which this check is being
3013/// performed.
3014///
3015/// \param Specialized the entity being specialized or instantiated, which
3016/// may be a kind of template (class template, function template, etc.) or
3017/// a member of a class template (member function, static data member,
3018/// member class).
3019///
3020/// \param PrevDecl the previous declaration of this entity, if any.
3021///
3022/// \param Loc the location of the explicit specialization or instantiation of
3023/// this entity.
3024///
3025/// \param IsPartialSpecialization whether this is a partial specialization of
3026/// a class template.
3027///
3028/// \returns true if there was an error that we cannot recover from, false
3029/// otherwise.
3030static bool CheckTemplateSpecializationScope(Sema &S,
3031                                             NamedDecl *Specialized,
3032                                             NamedDecl *PrevDecl,
3033                                             SourceLocation Loc,
3034                                             bool IsPartialSpecialization) {
3035  // Keep these "kind" numbers in sync with the %select statements in the
3036  // various diagnostics emitted by this routine.
3037  int EntityKind = 0;
3038  bool isTemplateSpecialization = false;
3039  if (isa<ClassTemplateDecl>(Specialized)) {
3040    EntityKind = IsPartialSpecialization? 1 : 0;
3041    isTemplateSpecialization = true;
3042  } else if (isa<FunctionTemplateDecl>(Specialized)) {
3043    EntityKind = 2;
3044    isTemplateSpecialization = true;
3045  } else if (isa<CXXMethodDecl>(Specialized))
3046    EntityKind = 3;
3047  else if (isa<VarDecl>(Specialized))
3048    EntityKind = 4;
3049  else if (isa<RecordDecl>(Specialized))
3050    EntityKind = 5;
3051  else {
3052    S.Diag(Loc, diag::err_template_spec_unknown_kind);
3053    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3054    return true;
3055  }
3056
3057  // C++ [temp.expl.spec]p2:
3058  //   An explicit specialization shall be declared in the namespace
3059  //   of which the template is a member, or, for member templates, in
3060  //   the namespace of which the enclosing class or enclosing class
3061  //   template is a member. An explicit specialization of a member
3062  //   function, member class or static data member of a class
3063  //   template shall be declared in the namespace of which the class
3064  //   template is a member. Such a declaration may also be a
3065  //   definition. If the declaration is not a definition, the
3066  //   specialization may be defined later in the name- space in which
3067  //   the explicit specialization was declared, or in a namespace
3068  //   that encloses the one in which the explicit specialization was
3069  //   declared.
3070  if (S.CurContext->getLookupContext()->isFunctionOrMethod()) {
3071    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
3072      << Specialized;
3073    return true;
3074  }
3075
3076  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
3077    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
3078      << Specialized;
3079    return true;
3080  }
3081
3082  // C++ [temp.class.spec]p6:
3083  //   A class template partial specialization may be declared or redeclared
3084  //   in any namespace scope in which its definition may be defined (14.5.1
3085  //   and 14.5.2).
3086  bool ComplainedAboutScope = false;
3087  DeclContext *SpecializedContext
3088    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
3089  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
3090  if ((!PrevDecl ||
3091       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
3092       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
3093    // There is no prior declaration of this entity, so this
3094    // specialization must be in the same context as the template
3095    // itself.
3096    if (!DC->Equals(SpecializedContext)) {
3097      if (isa<TranslationUnitDecl>(SpecializedContext))
3098        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
3099        << EntityKind << Specialized;
3100      else if (isa<NamespaceDecl>(SpecializedContext))
3101        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope)
3102        << EntityKind << Specialized
3103        << cast<NamedDecl>(SpecializedContext);
3104
3105      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3106      ComplainedAboutScope = true;
3107    }
3108  }
3109
3110  // Make sure that this redeclaration (or definition) occurs in an enclosing
3111  // namespace.
3112  // Note that HandleDeclarator() performs this check for explicit
3113  // specializations of function templates, static data members, and member
3114  // functions, so we skip the check here for those kinds of entities.
3115  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
3116  // Should we refactor that check, so that it occurs later?
3117  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
3118      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
3119        isa<FunctionDecl>(Specialized))) {
3120    if (isa<TranslationUnitDecl>(SpecializedContext))
3121      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
3122        << EntityKind << Specialized;
3123    else if (isa<NamespaceDecl>(SpecializedContext))
3124      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
3125        << EntityKind << Specialized
3126        << cast<NamedDecl>(SpecializedContext);
3127
3128    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
3129  }
3130
3131  // FIXME: check for specialization-after-instantiation errors and such.
3132
3133  return false;
3134}
3135
3136/// \brief Check the non-type template arguments of a class template
3137/// partial specialization according to C++ [temp.class.spec]p9.
3138///
3139/// \param TemplateParams the template parameters of the primary class
3140/// template.
3141///
3142/// \param TemplateArg the template arguments of the class template
3143/// partial specialization.
3144///
3145/// \param MirrorsPrimaryTemplate will be set true if the class
3146/// template partial specialization arguments are identical to the
3147/// implicit template arguments of the primary template. This is not
3148/// necessarily an error (C++0x), and it is left to the caller to diagnose
3149/// this condition when it is an error.
3150///
3151/// \returns true if there was an error, false otherwise.
3152bool Sema::CheckClassTemplatePartialSpecializationArgs(
3153                                        TemplateParameterList *TemplateParams,
3154                             const TemplateArgumentListBuilder &TemplateArgs,
3155                                        bool &MirrorsPrimaryTemplate) {
3156  // FIXME: the interface to this function will have to change to
3157  // accommodate variadic templates.
3158  MirrorsPrimaryTemplate = true;
3159
3160  const TemplateArgument *ArgList = TemplateArgs.getFlatArguments();
3161
3162  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3163    // Determine whether the template argument list of the partial
3164    // specialization is identical to the implicit argument list of
3165    // the primary template. The caller may need to diagnostic this as
3166    // an error per C++ [temp.class.spec]p9b3.
3167    if (MirrorsPrimaryTemplate) {
3168      if (TemplateTypeParmDecl *TTP
3169            = dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(I))) {
3170        if (Context.getCanonicalType(Context.getTypeDeclType(TTP)) !=
3171              Context.getCanonicalType(ArgList[I].getAsType()))
3172          MirrorsPrimaryTemplate = false;
3173      } else if (TemplateTemplateParmDecl *TTP
3174                   = dyn_cast<TemplateTemplateParmDecl>(
3175                                                 TemplateParams->getParam(I))) {
3176        TemplateName Name = ArgList[I].getAsTemplate();
3177        TemplateTemplateParmDecl *ArgDecl
3178          = dyn_cast_or_null<TemplateTemplateParmDecl>(Name.getAsTemplateDecl());
3179        if (!ArgDecl ||
3180            ArgDecl->getIndex() != TTP->getIndex() ||
3181            ArgDecl->getDepth() != TTP->getDepth())
3182          MirrorsPrimaryTemplate = false;
3183      }
3184    }
3185
3186    NonTypeTemplateParmDecl *Param
3187      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
3188    if (!Param) {
3189      continue;
3190    }
3191
3192    Expr *ArgExpr = ArgList[I].getAsExpr();
3193    if (!ArgExpr) {
3194      MirrorsPrimaryTemplate = false;
3195      continue;
3196    }
3197
3198    // C++ [temp.class.spec]p8:
3199    //   A non-type argument is non-specialized if it is the name of a
3200    //   non-type parameter. All other non-type arguments are
3201    //   specialized.
3202    //
3203    // Below, we check the two conditions that only apply to
3204    // specialized non-type arguments, so skip any non-specialized
3205    // arguments.
3206    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
3207      if (NonTypeTemplateParmDecl *NTTP
3208            = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) {
3209        if (MirrorsPrimaryTemplate &&
3210            (Param->getIndex() != NTTP->getIndex() ||
3211             Param->getDepth() != NTTP->getDepth()))
3212          MirrorsPrimaryTemplate = false;
3213
3214        continue;
3215      }
3216
3217    // C++ [temp.class.spec]p9:
3218    //   Within the argument list of a class template partial
3219    //   specialization, the following restrictions apply:
3220    //     -- A partially specialized non-type argument expression
3221    //        shall not involve a template parameter of the partial
3222    //        specialization except when the argument expression is a
3223    //        simple identifier.
3224    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
3225      Diag(ArgExpr->getLocStart(),
3226           diag::err_dependent_non_type_arg_in_partial_spec)
3227        << ArgExpr->getSourceRange();
3228      return true;
3229    }
3230
3231    //     -- The type of a template parameter corresponding to a
3232    //        specialized non-type argument shall not be dependent on a
3233    //        parameter of the specialization.
3234    if (Param->getType()->isDependentType()) {
3235      Diag(ArgExpr->getLocStart(),
3236           diag::err_dependent_typed_non_type_arg_in_partial_spec)
3237        << Param->getType()
3238        << ArgExpr->getSourceRange();
3239      Diag(Param->getLocation(), diag::note_template_param_here);
3240      return true;
3241    }
3242
3243    MirrorsPrimaryTemplate = false;
3244  }
3245
3246  return false;
3247}
3248
3249Sema::DeclResult
3250Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
3251                                       TagUseKind TUK,
3252                                       SourceLocation KWLoc,
3253                                       const CXXScopeSpec &SS,
3254                                       TemplateTy TemplateD,
3255                                       SourceLocation TemplateNameLoc,
3256                                       SourceLocation LAngleLoc,
3257                                       ASTTemplateArgsPtr TemplateArgsIn,
3258                                       SourceLocation RAngleLoc,
3259                                       AttributeList *Attr,
3260                               MultiTemplateParamsArg TemplateParameterLists) {
3261  assert(TUK != TUK_Reference && "References are not specializations");
3262
3263  // Find the class template we're specializing
3264  TemplateName Name = TemplateD.getAsVal<TemplateName>();
3265  ClassTemplateDecl *ClassTemplate
3266    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
3267
3268  if (!ClassTemplate) {
3269    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
3270      << (Name.getAsTemplateDecl() &&
3271          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
3272    return true;
3273  }
3274
3275  bool isExplicitSpecialization = false;
3276  bool isPartialSpecialization = false;
3277
3278  // Check the validity of the template headers that introduce this
3279  // template.
3280  // FIXME: We probably shouldn't complain about these headers for
3281  // friend declarations.
3282  TemplateParameterList *TemplateParams
3283    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc, SS,
3284                        (TemplateParameterList**)TemplateParameterLists.get(),
3285                                              TemplateParameterLists.size(),
3286                                              isExplicitSpecialization);
3287  if (TemplateParams && TemplateParams->size() > 0) {
3288    isPartialSpecialization = true;
3289
3290    // C++ [temp.class.spec]p10:
3291    //   The template parameter list of a specialization shall not
3292    //   contain default template argument values.
3293    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
3294      Decl *Param = TemplateParams->getParam(I);
3295      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
3296        if (TTP->hasDefaultArgument()) {
3297          Diag(TTP->getDefaultArgumentLoc(),
3298               diag::err_default_arg_in_partial_spec);
3299          TTP->removeDefaultArgument();
3300        }
3301      } else if (NonTypeTemplateParmDecl *NTTP
3302                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3303        if (Expr *DefArg = NTTP->getDefaultArgument()) {
3304          Diag(NTTP->getDefaultArgumentLoc(),
3305               diag::err_default_arg_in_partial_spec)
3306            << DefArg->getSourceRange();
3307          NTTP->setDefaultArgument(0);
3308          DefArg->Destroy(Context);
3309        }
3310      } else {
3311        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
3312        if (TTP->hasDefaultArgument()) {
3313          Diag(TTP->getDefaultArgument().getLocation(),
3314               diag::err_default_arg_in_partial_spec)
3315            << TTP->getDefaultArgument().getSourceRange();
3316          TTP->setDefaultArgument(TemplateArgumentLoc());
3317        }
3318      }
3319    }
3320  } else if (TemplateParams) {
3321    if (TUK == TUK_Friend)
3322      Diag(KWLoc, diag::err_template_spec_friend)
3323        << CodeModificationHint::CreateRemoval(
3324                                SourceRange(TemplateParams->getTemplateLoc(),
3325                                            TemplateParams->getRAngleLoc()))
3326        << SourceRange(LAngleLoc, RAngleLoc);
3327    else
3328      isExplicitSpecialization = true;
3329  } else if (TUK != TUK_Friend) {
3330    Diag(KWLoc, diag::err_template_spec_needs_header)
3331      << CodeModificationHint::CreateInsertion(KWLoc, "template<> ");
3332    isExplicitSpecialization = true;
3333  }
3334
3335  // Check that the specialization uses the same tag kind as the
3336  // original template.
3337  TagDecl::TagKind Kind;
3338  switch (TagSpec) {
3339  default: assert(0 && "Unknown tag type!");
3340  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3341  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3342  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3343  }
3344  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
3345                                    Kind, KWLoc,
3346                                    *ClassTemplate->getIdentifier())) {
3347    Diag(KWLoc, diag::err_use_with_wrong_tag)
3348      << ClassTemplate
3349      << CodeModificationHint::CreateReplacement(KWLoc,
3350                            ClassTemplate->getTemplatedDecl()->getKindName());
3351    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
3352         diag::note_previous_use);
3353    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
3354  }
3355
3356  // Translate the parser's template argument list in our AST format.
3357  TemplateArgumentListInfo TemplateArgs;
3358  TemplateArgs.setLAngleLoc(LAngleLoc);
3359  TemplateArgs.setRAngleLoc(RAngleLoc);
3360  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3361
3362  // Check that the template argument list is well-formed for this
3363  // template.
3364  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
3365                                        TemplateArgs.size());
3366  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
3367                                TemplateArgs, false, Converted))
3368    return true;
3369
3370  assert((Converted.structuredSize() ==
3371            ClassTemplate->getTemplateParameters()->size()) &&
3372         "Converted template argument list is too short!");
3373
3374  // Find the class template (partial) specialization declaration that
3375  // corresponds to these arguments.
3376  llvm::FoldingSetNodeID ID;
3377  if (isPartialSpecialization) {
3378    bool MirrorsPrimaryTemplate;
3379    if (CheckClassTemplatePartialSpecializationArgs(
3380                                         ClassTemplate->getTemplateParameters(),
3381                                         Converted, MirrorsPrimaryTemplate))
3382      return true;
3383
3384    if (MirrorsPrimaryTemplate) {
3385      // C++ [temp.class.spec]p9b3:
3386      //
3387      //   -- The argument list of the specialization shall not be identical
3388      //      to the implicit argument list of the primary template.
3389      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
3390        << (TUK == TUK_Definition)
3391        << CodeModificationHint::CreateRemoval(SourceRange(LAngleLoc,
3392                                                           RAngleLoc));
3393      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
3394                                ClassTemplate->getIdentifier(),
3395                                TemplateNameLoc,
3396                                Attr,
3397                                TemplateParams,
3398                                AS_none);
3399    }
3400
3401    // FIXME: Diagnose friend partial specializations
3402
3403    if (!Name.isDependent() &&
3404        !TemplateSpecializationType::anyDependentTemplateArguments(
3405                                             TemplateArgs.getArgumentArray(),
3406                                                         TemplateArgs.size())) {
3407      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
3408        << ClassTemplate->getDeclName();
3409      isPartialSpecialization = false;
3410    } else {
3411      // FIXME: Template parameter list matters, too
3412      ClassTemplatePartialSpecializationDecl::Profile(ID,
3413                                                  Converted.getFlatArguments(),
3414                                                      Converted.flatSize(),
3415                                                      Context);
3416    }
3417  }
3418
3419  if (!isPartialSpecialization)
3420    ClassTemplateSpecializationDecl::Profile(ID,
3421                                             Converted.getFlatArguments(),
3422                                             Converted.flatSize(),
3423                                             Context);
3424  void *InsertPos = 0;
3425  ClassTemplateSpecializationDecl *PrevDecl = 0;
3426
3427  if (isPartialSpecialization)
3428    PrevDecl
3429      = ClassTemplate->getPartialSpecializations().FindNodeOrInsertPos(ID,
3430                                                                    InsertPos);
3431  else
3432    PrevDecl
3433      = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
3434
3435  ClassTemplateSpecializationDecl *Specialization = 0;
3436
3437  // Check whether we can declare a class template specialization in
3438  // the current scope.
3439  if (TUK != TUK_Friend &&
3440      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
3441                                       TemplateNameLoc,
3442                                       isPartialSpecialization))
3443    return true;
3444
3445  // The canonical type
3446  QualType CanonType;
3447  if (PrevDecl &&
3448      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
3449               TUK == TUK_Friend)) {
3450    // Since the only prior class template specialization with these
3451    // arguments was referenced but not declared, or we're only
3452    // referencing this specialization as a friend, reuse that
3453    // declaration node as our own, updating its source location to
3454    // reflect our new declaration.
3455    Specialization = PrevDecl;
3456    Specialization->setLocation(TemplateNameLoc);
3457    PrevDecl = 0;
3458    CanonType = Context.getTypeDeclType(Specialization);
3459  } else if (isPartialSpecialization) {
3460    // Build the canonical type that describes the converted template
3461    // arguments of the class template partial specialization.
3462    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
3463    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
3464                                                  Converted.getFlatArguments(),
3465                                                  Converted.flatSize());
3466
3467    // Create a new class template partial specialization declaration node.
3468    ClassTemplatePartialSpecializationDecl *PrevPartial
3469      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
3470    ClassTemplatePartialSpecializationDecl *Partial
3471      = ClassTemplatePartialSpecializationDecl::Create(Context,
3472                                             ClassTemplate->getDeclContext(),
3473                                                       TemplateNameLoc,
3474                                                       TemplateParams,
3475                                                       ClassTemplate,
3476                                                       Converted,
3477                                                       TemplateArgs,
3478                                                       PrevPartial);
3479
3480    if (PrevPartial) {
3481      ClassTemplate->getPartialSpecializations().RemoveNode(PrevPartial);
3482      ClassTemplate->getPartialSpecializations().GetOrInsertNode(Partial);
3483    } else {
3484      ClassTemplate->getPartialSpecializations().InsertNode(Partial, InsertPos);
3485    }
3486    Specialization = Partial;
3487
3488    // If we are providing an explicit specialization of a member class
3489    // template specialization, make a note of that.
3490    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
3491      PrevPartial->setMemberSpecialization();
3492
3493    // Check that all of the template parameters of the class template
3494    // partial specialization are deducible from the template
3495    // arguments. If not, this class template partial specialization
3496    // will never be used.
3497    llvm::SmallVector<bool, 8> DeducibleParams;
3498    DeducibleParams.resize(TemplateParams->size());
3499    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
3500                               TemplateParams->getDepth(),
3501                               DeducibleParams);
3502    unsigned NumNonDeducible = 0;
3503    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
3504      if (!DeducibleParams[I])
3505        ++NumNonDeducible;
3506
3507    if (NumNonDeducible) {
3508      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
3509        << (NumNonDeducible > 1)
3510        << SourceRange(TemplateNameLoc, RAngleLoc);
3511      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
3512        if (!DeducibleParams[I]) {
3513          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
3514          if (Param->getDeclName())
3515            Diag(Param->getLocation(),
3516                 diag::note_partial_spec_unused_parameter)
3517              << Param->getDeclName();
3518          else
3519            Diag(Param->getLocation(),
3520                 diag::note_partial_spec_unused_parameter)
3521              << std::string("<anonymous>");
3522        }
3523      }
3524    }
3525  } else {
3526    // Create a new class template specialization declaration node for
3527    // this explicit specialization or friend declaration.
3528    Specialization
3529      = ClassTemplateSpecializationDecl::Create(Context,
3530                                             ClassTemplate->getDeclContext(),
3531                                                TemplateNameLoc,
3532                                                ClassTemplate,
3533                                                Converted,
3534                                                PrevDecl);
3535
3536    if (PrevDecl) {
3537      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
3538      ClassTemplate->getSpecializations().GetOrInsertNode(Specialization);
3539    } else {
3540      ClassTemplate->getSpecializations().InsertNode(Specialization,
3541                                                     InsertPos);
3542    }
3543
3544    CanonType = Context.getTypeDeclType(Specialization);
3545  }
3546
3547  // C++ [temp.expl.spec]p6:
3548  //   If a template, a member template or the member of a class template is
3549  //   explicitly specialized then that specialization shall be declared
3550  //   before the first use of that specialization that would cause an implicit
3551  //   instantiation to take place, in every translation unit in which such a
3552  //   use occurs; no diagnostic is required.
3553  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
3554    SourceRange Range(TemplateNameLoc, RAngleLoc);
3555    Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
3556      << Context.getTypeDeclType(Specialization) << Range;
3557
3558    Diag(PrevDecl->getPointOfInstantiation(),
3559         diag::note_instantiation_required_here)
3560      << (PrevDecl->getTemplateSpecializationKind()
3561                                                != TSK_ImplicitInstantiation);
3562    return true;
3563  }
3564
3565  // If this is not a friend, note that this is an explicit specialization.
3566  if (TUK != TUK_Friend)
3567    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
3568
3569  // Check that this isn't a redefinition of this specialization.
3570  if (TUK == TUK_Definition) {
3571    if (RecordDecl *Def = Specialization->getDefinition(Context)) {
3572      SourceRange Range(TemplateNameLoc, RAngleLoc);
3573      Diag(TemplateNameLoc, diag::err_redefinition)
3574        << Context.getTypeDeclType(Specialization) << Range;
3575      Diag(Def->getLocation(), diag::note_previous_definition);
3576      Specialization->setInvalidDecl();
3577      return true;
3578    }
3579  }
3580
3581  // Build the fully-sugared type for this class template
3582  // specialization as the user wrote in the specialization
3583  // itself. This means that we'll pretty-print the type retrieved
3584  // from the specialization's declaration the way that the user
3585  // actually wrote the specialization, rather than formatting the
3586  // name based on the "canonical" representation used to store the
3587  // template arguments in the specialization.
3588  QualType WrittenTy
3589    = Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3590  if (TUK != TUK_Friend)
3591    Specialization->setTypeAsWritten(WrittenTy);
3592  TemplateArgsIn.release();
3593
3594  // C++ [temp.expl.spec]p9:
3595  //   A template explicit specialization is in the scope of the
3596  //   namespace in which the template was defined.
3597  //
3598  // We actually implement this paragraph where we set the semantic
3599  // context (in the creation of the ClassTemplateSpecializationDecl),
3600  // but we also maintain the lexical context where the actual
3601  // definition occurs.
3602  Specialization->setLexicalDeclContext(CurContext);
3603
3604  // We may be starting the definition of this specialization.
3605  if (TUK == TUK_Definition)
3606    Specialization->startDefinition();
3607
3608  if (TUK == TUK_Friend) {
3609    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
3610                                            TemplateNameLoc,
3611                                            WrittenTy.getTypePtr(),
3612                                            /*FIXME:*/KWLoc);
3613    Friend->setAccess(AS_public);
3614    CurContext->addDecl(Friend);
3615  } else {
3616    // Add the specialization into its lexical context, so that it can
3617    // be seen when iterating through the list of declarations in that
3618    // context. However, specializations are not found by name lookup.
3619    CurContext->addDecl(Specialization);
3620  }
3621  return DeclPtrTy::make(Specialization);
3622}
3623
3624Sema::DeclPtrTy
3625Sema::ActOnTemplateDeclarator(Scope *S,
3626                              MultiTemplateParamsArg TemplateParameterLists,
3627                              Declarator &D) {
3628  return HandleDeclarator(S, D, move(TemplateParameterLists), false);
3629}
3630
3631Sema::DeclPtrTy
3632Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
3633                               MultiTemplateParamsArg TemplateParameterLists,
3634                                      Declarator &D) {
3635  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3636  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3637         "Not a function declarator!");
3638  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3639
3640  if (FTI.hasPrototype) {
3641    // FIXME: Diagnose arguments without names in C.
3642  }
3643
3644  Scope *ParentScope = FnBodyScope->getParent();
3645
3646  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3647                                  move(TemplateParameterLists),
3648                                  /*IsFunctionDefinition=*/true);
3649  if (FunctionTemplateDecl *FunctionTemplate
3650        = dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
3651    return ActOnStartOfFunctionDef(FnBodyScope,
3652                      DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
3653  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
3654    return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
3655  return DeclPtrTy();
3656}
3657
3658/// \brief Diagnose cases where we have an explicit template specialization
3659/// before/after an explicit template instantiation, producing diagnostics
3660/// for those cases where they are required and determining whether the
3661/// new specialization/instantiation will have any effect.
3662///
3663/// \param NewLoc the location of the new explicit specialization or
3664/// instantiation.
3665///
3666/// \param NewTSK the kind of the new explicit specialization or instantiation.
3667///
3668/// \param PrevDecl the previous declaration of the entity.
3669///
3670/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
3671///
3672/// \param PrevPointOfInstantiation if valid, indicates where the previus
3673/// declaration was instantiated (either implicitly or explicitly).
3674///
3675/// \param SuppressNew will be set to true to indicate that the new
3676/// specialization or instantiation has no effect and should be ignored.
3677///
3678/// \returns true if there was an error that should prevent the introduction of
3679/// the new declaration into the AST, false otherwise.
3680bool
3681Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
3682                                             TemplateSpecializationKind NewTSK,
3683                                             NamedDecl *PrevDecl,
3684                                             TemplateSpecializationKind PrevTSK,
3685                                        SourceLocation PrevPointOfInstantiation,
3686                                             bool &SuppressNew) {
3687  SuppressNew = false;
3688
3689  switch (NewTSK) {
3690  case TSK_Undeclared:
3691  case TSK_ImplicitInstantiation:
3692    assert(false && "Don't check implicit instantiations here");
3693    return false;
3694
3695  case TSK_ExplicitSpecialization:
3696    switch (PrevTSK) {
3697    case TSK_Undeclared:
3698    case TSK_ExplicitSpecialization:
3699      // Okay, we're just specializing something that is either already
3700      // explicitly specialized or has merely been mentioned without any
3701      // instantiation.
3702      return false;
3703
3704    case TSK_ImplicitInstantiation:
3705      if (PrevPointOfInstantiation.isInvalid()) {
3706        // The declaration itself has not actually been instantiated, so it is
3707        // still okay to specialize it.
3708        return false;
3709      }
3710      // Fall through
3711
3712    case TSK_ExplicitInstantiationDeclaration:
3713    case TSK_ExplicitInstantiationDefinition:
3714      assert((PrevTSK == TSK_ImplicitInstantiation ||
3715              PrevPointOfInstantiation.isValid()) &&
3716             "Explicit instantiation without point of instantiation?");
3717
3718      // C++ [temp.expl.spec]p6:
3719      //   If a template, a member template or the member of a class template
3720      //   is explicitly specialized then that specialization shall be declared
3721      //   before the first use of that specialization that would cause an
3722      //   implicit instantiation to take place, in every translation unit in
3723      //   which such a use occurs; no diagnostic is required.
3724      Diag(NewLoc, diag::err_specialization_after_instantiation)
3725        << PrevDecl;
3726      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
3727        << (PrevTSK != TSK_ImplicitInstantiation);
3728
3729      return true;
3730    }
3731    break;
3732
3733  case TSK_ExplicitInstantiationDeclaration:
3734    switch (PrevTSK) {
3735    case TSK_ExplicitInstantiationDeclaration:
3736      // This explicit instantiation declaration is redundant (that's okay).
3737      SuppressNew = true;
3738      return false;
3739
3740    case TSK_Undeclared:
3741    case TSK_ImplicitInstantiation:
3742      // We're explicitly instantiating something that may have already been
3743      // implicitly instantiated; that's fine.
3744      return false;
3745
3746    case TSK_ExplicitSpecialization:
3747      // C++0x [temp.explicit]p4:
3748      //   For a given set of template parameters, if an explicit instantiation
3749      //   of a template appears after a declaration of an explicit
3750      //   specialization for that template, the explicit instantiation has no
3751      //   effect.
3752      return false;
3753
3754    case TSK_ExplicitInstantiationDefinition:
3755      // C++0x [temp.explicit]p10:
3756      //   If an entity is the subject of both an explicit instantiation
3757      //   declaration and an explicit instantiation definition in the same
3758      //   translation unit, the definition shall follow the declaration.
3759      Diag(NewLoc,
3760           diag::err_explicit_instantiation_declaration_after_definition);
3761      Diag(PrevPointOfInstantiation,
3762           diag::note_explicit_instantiation_definition_here);
3763      assert(PrevPointOfInstantiation.isValid() &&
3764             "Explicit instantiation without point of instantiation?");
3765      SuppressNew = true;
3766      return false;
3767    }
3768    break;
3769
3770  case TSK_ExplicitInstantiationDefinition:
3771    switch (PrevTSK) {
3772    case TSK_Undeclared:
3773    case TSK_ImplicitInstantiation:
3774      // We're explicitly instantiating something that may have already been
3775      // implicitly instantiated; that's fine.
3776      return false;
3777
3778    case TSK_ExplicitSpecialization:
3779      // C++ DR 259, C++0x [temp.explicit]p4:
3780      //   For a given set of template parameters, if an explicit
3781      //   instantiation of a template appears after a declaration of
3782      //   an explicit specialization for that template, the explicit
3783      //   instantiation has no effect.
3784      //
3785      // In C++98/03 mode, we only give an extension warning here, because it
3786      // is not not harmful to try to explicitly instantiate something that
3787      // has been explicitly specialized.
3788      if (!getLangOptions().CPlusPlus0x) {
3789        Diag(NewLoc, diag::ext_explicit_instantiation_after_specialization)
3790          << PrevDecl;
3791        Diag(PrevDecl->getLocation(),
3792             diag::note_previous_template_specialization);
3793      }
3794      SuppressNew = true;
3795      return false;
3796
3797    case TSK_ExplicitInstantiationDeclaration:
3798      // We're explicity instantiating a definition for something for which we
3799      // were previously asked to suppress instantiations. That's fine.
3800      return false;
3801
3802    case TSK_ExplicitInstantiationDefinition:
3803      // C++0x [temp.spec]p5:
3804      //   For a given template and a given set of template-arguments,
3805      //     - an explicit instantiation definition shall appear at most once
3806      //       in a program,
3807      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
3808        << PrevDecl;
3809      Diag(PrevPointOfInstantiation,
3810           diag::note_previous_explicit_instantiation);
3811      SuppressNew = true;
3812      return false;
3813    }
3814    break;
3815  }
3816
3817  assert(false && "Missing specialization/instantiation case?");
3818
3819  return false;
3820}
3821
3822/// \brief Perform semantic analysis for the given function template
3823/// specialization.
3824///
3825/// This routine performs all of the semantic analysis required for an
3826/// explicit function template specialization. On successful completion,
3827/// the function declaration \p FD will become a function template
3828/// specialization.
3829///
3830/// \param FD the function declaration, which will be updated to become a
3831/// function template specialization.
3832///
3833/// \param HasExplicitTemplateArgs whether any template arguments were
3834/// explicitly provided.
3835///
3836/// \param LAngleLoc the location of the left angle bracket ('<'), if
3837/// template arguments were explicitly provided.
3838///
3839/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
3840/// if any.
3841///
3842/// \param NumExplicitTemplateArgs the number of explicitly-provided template
3843/// arguments. This number may be zero even when HasExplicitTemplateArgs is
3844/// true as in, e.g., \c void sort<>(char*, char*);
3845///
3846/// \param RAngleLoc the location of the right angle bracket ('>'), if
3847/// template arguments were explicitly provided.
3848///
3849/// \param PrevDecl the set of declarations that
3850bool
3851Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
3852                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
3853                                          LookupResult &Previous) {
3854  // The set of function template specializations that could match this
3855  // explicit function template specialization.
3856  UnresolvedSet<8> Candidates;
3857
3858  DeclContext *FDLookupContext = FD->getDeclContext()->getLookupContext();
3859  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3860         I != E; ++I) {
3861    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
3862    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
3863      // Only consider templates found within the same semantic lookup scope as
3864      // FD.
3865      if (!FDLookupContext->Equals(Ovl->getDeclContext()->getLookupContext()))
3866        continue;
3867
3868      // C++ [temp.expl.spec]p11:
3869      //   A trailing template-argument can be left unspecified in the
3870      //   template-id naming an explicit function template specialization
3871      //   provided it can be deduced from the function argument type.
3872      // Perform template argument deduction to determine whether we may be
3873      // specializing this template.
3874      // FIXME: It is somewhat wasteful to build
3875      TemplateDeductionInfo Info(Context, FD->getLocation());
3876      FunctionDecl *Specialization = 0;
3877      if (TemplateDeductionResult TDK
3878            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
3879                                      FD->getType(),
3880                                      Specialization,
3881                                      Info)) {
3882        // FIXME: Template argument deduction failed; record why it failed, so
3883        // that we can provide nifty diagnostics.
3884        (void)TDK;
3885        continue;
3886      }
3887
3888      // Record this candidate.
3889      Candidates.addDecl(Specialization, I.getAccess());
3890    }
3891  }
3892
3893  // Find the most specialized function template.
3894  UnresolvedSetIterator Result
3895    = getMostSpecialized(Candidates.begin(), Candidates.end(),
3896                         TPOC_Other, FD->getLocation(),
3897                  PartialDiagnostic(diag::err_function_template_spec_no_match)
3898                    << FD->getDeclName(),
3899                  PartialDiagnostic(diag::err_function_template_spec_ambiguous)
3900                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
3901                  PartialDiagnostic(diag::note_function_template_spec_matched));
3902  if (Result == Candidates.end())
3903    return true;
3904
3905  // Ignore access information;  it doesn't figure into redeclaration checking.
3906  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
3907
3908  // FIXME: Check if the prior specialization has a point of instantiation.
3909  // If so, we have run afoul of .
3910
3911  // Check the scope of this explicit specialization.
3912  if (CheckTemplateSpecializationScope(*this,
3913                                       Specialization->getPrimaryTemplate(),
3914                                       Specialization, FD->getLocation(),
3915                                       false))
3916    return true;
3917
3918  // C++ [temp.expl.spec]p6:
3919  //   If a template, a member template or the member of a class template is
3920  //   explicitly specialized then that specialization shall be declared
3921  //   before the first use of that specialization that would cause an implicit
3922  //   instantiation to take place, in every translation unit in which such a
3923  //   use occurs; no diagnostic is required.
3924  FunctionTemplateSpecializationInfo *SpecInfo
3925    = Specialization->getTemplateSpecializationInfo();
3926  assert(SpecInfo && "Function template specialization info missing?");
3927  if (SpecInfo->getPointOfInstantiation().isValid()) {
3928    Diag(FD->getLocation(), diag::err_specialization_after_instantiation)
3929      << FD;
3930    Diag(SpecInfo->getPointOfInstantiation(),
3931         diag::note_instantiation_required_here)
3932      << (Specialization->getTemplateSpecializationKind()
3933                                                != TSK_ImplicitInstantiation);
3934    return true;
3935  }
3936
3937  // Mark the prior declaration as an explicit specialization, so that later
3938  // clients know that this is an explicit specialization.
3939  SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
3940
3941  // Turn the given function declaration into a function template
3942  // specialization, with the template arguments from the previous
3943  // specialization.
3944  FD->setFunctionTemplateSpecialization(Context,
3945                                        Specialization->getPrimaryTemplate(),
3946                         new (Context) TemplateArgumentList(
3947                             *Specialization->getTemplateSpecializationArgs()),
3948                                        /*InsertPos=*/0,
3949                                        TSK_ExplicitSpecialization);
3950
3951  // The "previous declaration" for this function template specialization is
3952  // the prior function template specialization.
3953  Previous.clear();
3954  Previous.addDecl(Specialization);
3955  return false;
3956}
3957
3958/// \brief Perform semantic analysis for the given non-template member
3959/// specialization.
3960///
3961/// This routine performs all of the semantic analysis required for an
3962/// explicit member function specialization. On successful completion,
3963/// the function declaration \p FD will become a member function
3964/// specialization.
3965///
3966/// \param Member the member declaration, which will be updated to become a
3967/// specialization.
3968///
3969/// \param Previous the set of declarations, one of which may be specialized
3970/// by this function specialization;  the set will be modified to contain the
3971/// redeclared member.
3972bool
3973Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
3974  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
3975
3976  // Try to find the member we are instantiating.
3977  NamedDecl *Instantiation = 0;
3978  NamedDecl *InstantiatedFrom = 0;
3979  MemberSpecializationInfo *MSInfo = 0;
3980
3981  if (Previous.empty()) {
3982    // Nowhere to look anyway.
3983  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
3984    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3985           I != E; ++I) {
3986      NamedDecl *D = (*I)->getUnderlyingDecl();
3987      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
3988        if (Context.hasSameType(Function->getType(), Method->getType())) {
3989          Instantiation = Method;
3990          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
3991          MSInfo = Method->getMemberSpecializationInfo();
3992          break;
3993        }
3994      }
3995    }
3996  } else if (isa<VarDecl>(Member)) {
3997    VarDecl *PrevVar;
3998    if (Previous.isSingleResult() &&
3999        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
4000      if (PrevVar->isStaticDataMember()) {
4001        Instantiation = PrevVar;
4002        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
4003        MSInfo = PrevVar->getMemberSpecializationInfo();
4004      }
4005  } else if (isa<RecordDecl>(Member)) {
4006    CXXRecordDecl *PrevRecord;
4007    if (Previous.isSingleResult() &&
4008        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
4009      Instantiation = PrevRecord;
4010      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
4011      MSInfo = PrevRecord->getMemberSpecializationInfo();
4012    }
4013  }
4014
4015  if (!Instantiation) {
4016    // There is no previous declaration that matches. Since member
4017    // specializations are always out-of-line, the caller will complain about
4018    // this mismatch later.
4019    return false;
4020  }
4021
4022  // Make sure that this is a specialization of a member.
4023  if (!InstantiatedFrom) {
4024    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
4025      << Member;
4026    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
4027    return true;
4028  }
4029
4030  // C++ [temp.expl.spec]p6:
4031  //   If a template, a member template or the member of a class template is
4032  //   explicitly specialized then that spe- cialization shall be declared
4033  //   before the first use of that specialization that would cause an implicit
4034  //   instantiation to take place, in every translation unit in which such a
4035  //   use occurs; no diagnostic is required.
4036  assert(MSInfo && "Member specialization info missing?");
4037  if (MSInfo->getPointOfInstantiation().isValid()) {
4038    Diag(Member->getLocation(), diag::err_specialization_after_instantiation)
4039      << Member;
4040    Diag(MSInfo->getPointOfInstantiation(),
4041         diag::note_instantiation_required_here)
4042      << (MSInfo->getTemplateSpecializationKind() != TSK_ImplicitInstantiation);
4043    return true;
4044  }
4045
4046  // Check the scope of this explicit specialization.
4047  if (CheckTemplateSpecializationScope(*this,
4048                                       InstantiatedFrom,
4049                                       Instantiation, Member->getLocation(),
4050                                       false))
4051    return true;
4052
4053  // Note that this is an explicit instantiation of a member.
4054  // the original declaration to note that it is an explicit specialization
4055  // (if it was previously an implicit instantiation). This latter step
4056  // makes bookkeeping easier.
4057  if (isa<FunctionDecl>(Member)) {
4058    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
4059    if (InstantiationFunction->getTemplateSpecializationKind() ==
4060          TSK_ImplicitInstantiation) {
4061      InstantiationFunction->setTemplateSpecializationKind(
4062                                                  TSK_ExplicitSpecialization);
4063      InstantiationFunction->setLocation(Member->getLocation());
4064    }
4065
4066    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
4067                                        cast<CXXMethodDecl>(InstantiatedFrom),
4068                                                  TSK_ExplicitSpecialization);
4069  } else if (isa<VarDecl>(Member)) {
4070    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
4071    if (InstantiationVar->getTemplateSpecializationKind() ==
4072          TSK_ImplicitInstantiation) {
4073      InstantiationVar->setTemplateSpecializationKind(
4074                                                  TSK_ExplicitSpecialization);
4075      InstantiationVar->setLocation(Member->getLocation());
4076    }
4077
4078    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
4079                                                cast<VarDecl>(InstantiatedFrom),
4080                                                TSK_ExplicitSpecialization);
4081  } else {
4082    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
4083    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
4084    if (InstantiationClass->getTemplateSpecializationKind() ==
4085          TSK_ImplicitInstantiation) {
4086      InstantiationClass->setTemplateSpecializationKind(
4087                                                   TSK_ExplicitSpecialization);
4088      InstantiationClass->setLocation(Member->getLocation());
4089    }
4090
4091    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
4092                                        cast<CXXRecordDecl>(InstantiatedFrom),
4093                                                   TSK_ExplicitSpecialization);
4094  }
4095
4096  // Save the caller the trouble of having to figure out which declaration
4097  // this specialization matches.
4098  Previous.clear();
4099  Previous.addDecl(Instantiation);
4100  return false;
4101}
4102
4103/// \brief Check the scope of an explicit instantiation.
4104static void CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
4105                                            SourceLocation InstLoc,
4106                                            bool WasQualifiedName) {
4107  DeclContext *ExpectedContext
4108    = D->getDeclContext()->getEnclosingNamespaceContext()->getLookupContext();
4109  DeclContext *CurContext = S.CurContext->getLookupContext();
4110
4111  // C++0x [temp.explicit]p2:
4112  //   An explicit instantiation shall appear in an enclosing namespace of its
4113  //   template.
4114  //
4115  // This is DR275, which we do not retroactively apply to C++98/03.
4116  if (S.getLangOptions().CPlusPlus0x &&
4117      !CurContext->Encloses(ExpectedContext)) {
4118    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ExpectedContext))
4119      S.Diag(InstLoc, diag::err_explicit_instantiation_out_of_scope)
4120        << D << NS;
4121    else
4122      S.Diag(InstLoc, diag::err_explicit_instantiation_must_be_global)
4123        << D;
4124    S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4125    return;
4126  }
4127
4128  // C++0x [temp.explicit]p2:
4129  //   If the name declared in the explicit instantiation is an unqualified
4130  //   name, the explicit instantiation shall appear in the namespace where
4131  //   its template is declared or, if that namespace is inline (7.3.1), any
4132  //   namespace from its enclosing namespace set.
4133  if (WasQualifiedName)
4134    return;
4135
4136  if (CurContext->Equals(ExpectedContext))
4137    return;
4138
4139  S.Diag(InstLoc, diag::err_explicit_instantiation_unqualified_wrong_namespace)
4140    << D << ExpectedContext;
4141  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
4142}
4143
4144/// \brief Determine whether the given scope specifier has a template-id in it.
4145static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
4146  if (!SS.isSet())
4147    return false;
4148
4149  // C++0x [temp.explicit]p2:
4150  //   If the explicit instantiation is for a member function, a member class
4151  //   or a static data member of a class template specialization, the name of
4152  //   the class template specialization in the qualified-id for the member
4153  //   name shall be a simple-template-id.
4154  //
4155  // C++98 has the same restriction, just worded differently.
4156  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
4157       NNS; NNS = NNS->getPrefix())
4158    if (Type *T = NNS->getAsType())
4159      if (isa<TemplateSpecializationType>(T))
4160        return true;
4161
4162  return false;
4163}
4164
4165// Explicit instantiation of a class template specialization
4166// FIXME: Implement extern template semantics
4167Sema::DeclResult
4168Sema::ActOnExplicitInstantiation(Scope *S,
4169                                 SourceLocation ExternLoc,
4170                                 SourceLocation TemplateLoc,
4171                                 unsigned TagSpec,
4172                                 SourceLocation KWLoc,
4173                                 const CXXScopeSpec &SS,
4174                                 TemplateTy TemplateD,
4175                                 SourceLocation TemplateNameLoc,
4176                                 SourceLocation LAngleLoc,
4177                                 ASTTemplateArgsPtr TemplateArgsIn,
4178                                 SourceLocation RAngleLoc,
4179                                 AttributeList *Attr) {
4180  // Find the class template we're specializing
4181  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4182  ClassTemplateDecl *ClassTemplate
4183    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
4184
4185  // Check that the specialization uses the same tag kind as the
4186  // original template.
4187  TagDecl::TagKind Kind;
4188  switch (TagSpec) {
4189  default: assert(0 && "Unknown tag type!");
4190  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
4191  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
4192  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
4193  }
4194  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4195                                    Kind, KWLoc,
4196                                    *ClassTemplate->getIdentifier())) {
4197    Diag(KWLoc, diag::err_use_with_wrong_tag)
4198      << ClassTemplate
4199      << CodeModificationHint::CreateReplacement(KWLoc,
4200                            ClassTemplate->getTemplatedDecl()->getKindName());
4201    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4202         diag::note_previous_use);
4203    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4204  }
4205
4206  // C++0x [temp.explicit]p2:
4207  //   There are two forms of explicit instantiation: an explicit instantiation
4208  //   definition and an explicit instantiation declaration. An explicit
4209  //   instantiation declaration begins with the extern keyword. [...]
4210  TemplateSpecializationKind TSK
4211    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4212                           : TSK_ExplicitInstantiationDeclaration;
4213
4214  // Translate the parser's template argument list in our AST format.
4215  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4216  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4217
4218  // Check that the template argument list is well-formed for this
4219  // template.
4220  TemplateArgumentListBuilder Converted(ClassTemplate->getTemplateParameters(),
4221                                        TemplateArgs.size());
4222  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4223                                TemplateArgs, false, Converted))
4224    return true;
4225
4226  assert((Converted.structuredSize() ==
4227            ClassTemplate->getTemplateParameters()->size()) &&
4228         "Converted template argument list is too short!");
4229
4230  // Find the class template specialization declaration that
4231  // corresponds to these arguments.
4232  llvm::FoldingSetNodeID ID;
4233  ClassTemplateSpecializationDecl::Profile(ID,
4234                                           Converted.getFlatArguments(),
4235                                           Converted.flatSize(),
4236                                           Context);
4237  void *InsertPos = 0;
4238  ClassTemplateSpecializationDecl *PrevDecl
4239    = ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4240
4241  // C++0x [temp.explicit]p2:
4242  //   [...] An explicit instantiation shall appear in an enclosing
4243  //   namespace of its template. [...]
4244  //
4245  // This is C++ DR 275.
4246  CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
4247                                  SS.isSet());
4248
4249  ClassTemplateSpecializationDecl *Specialization = 0;
4250
4251  bool ReusedDecl = false;
4252  if (PrevDecl) {
4253    bool SuppressNew = false;
4254    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
4255                                               PrevDecl,
4256                                              PrevDecl->getSpecializationKind(),
4257                                            PrevDecl->getPointOfInstantiation(),
4258                                               SuppressNew))
4259      return DeclPtrTy::make(PrevDecl);
4260
4261    if (SuppressNew)
4262      return DeclPtrTy::make(PrevDecl);
4263
4264    if (PrevDecl->getSpecializationKind() == TSK_ImplicitInstantiation ||
4265        PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4266      // Since the only prior class template specialization with these
4267      // arguments was referenced but not declared, reuse that
4268      // declaration node as our own, updating its source location to
4269      // reflect our new declaration.
4270      Specialization = PrevDecl;
4271      Specialization->setLocation(TemplateNameLoc);
4272      PrevDecl = 0;
4273      ReusedDecl = true;
4274    }
4275  }
4276
4277  if (!Specialization) {
4278    // Create a new class template specialization declaration node for
4279    // this explicit specialization.
4280    Specialization
4281      = ClassTemplateSpecializationDecl::Create(Context,
4282                                             ClassTemplate->getDeclContext(),
4283                                                TemplateNameLoc,
4284                                                ClassTemplate,
4285                                                Converted, PrevDecl);
4286
4287    if (PrevDecl) {
4288      // Remove the previous declaration from the folding set, since we want
4289      // to introduce a new declaration.
4290      ClassTemplate->getSpecializations().RemoveNode(PrevDecl);
4291      ClassTemplate->getSpecializations().FindNodeOrInsertPos(ID, InsertPos);
4292    }
4293
4294    // Insert the new specialization.
4295    ClassTemplate->getSpecializations().InsertNode(Specialization, InsertPos);
4296  }
4297
4298  // Build the fully-sugared type for this explicit instantiation as
4299  // the user wrote in the explicit instantiation itself. This means
4300  // that we'll pretty-print the type retrieved from the
4301  // specialization's declaration the way that the user actually wrote
4302  // the explicit instantiation, rather than formatting the name based
4303  // on the "canonical" representation used to store the template
4304  // arguments in the specialization.
4305  QualType WrittenTy
4306    = Context.getTemplateSpecializationType(Name, TemplateArgs,
4307                                  Context.getTypeDeclType(Specialization));
4308  Specialization->setTypeAsWritten(WrittenTy);
4309  TemplateArgsIn.release();
4310
4311  if (!ReusedDecl) {
4312    // Add the explicit instantiation into its lexical context. However,
4313    // since explicit instantiations are never found by name lookup, we
4314    // just put it into the declaration context directly.
4315    Specialization->setLexicalDeclContext(CurContext);
4316    CurContext->addDecl(Specialization);
4317  }
4318
4319  // C++ [temp.explicit]p3:
4320  //   A definition of a class template or class member template
4321  //   shall be in scope at the point of the explicit instantiation of
4322  //   the class template or class member template.
4323  //
4324  // This check comes when we actually try to perform the
4325  // instantiation.
4326  ClassTemplateSpecializationDecl *Def
4327    = cast_or_null<ClassTemplateSpecializationDecl>(
4328                                        Specialization->getDefinition(Context));
4329  if (!Def)
4330    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
4331
4332  // Instantiate the members of this class template specialization.
4333  Def = cast_or_null<ClassTemplateSpecializationDecl>(
4334                                       Specialization->getDefinition(Context));
4335  if (Def)
4336    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
4337
4338  return DeclPtrTy::make(Specialization);
4339}
4340
4341// Explicit instantiation of a member class of a class template.
4342Sema::DeclResult
4343Sema::ActOnExplicitInstantiation(Scope *S,
4344                                 SourceLocation ExternLoc,
4345                                 SourceLocation TemplateLoc,
4346                                 unsigned TagSpec,
4347                                 SourceLocation KWLoc,
4348                                 const CXXScopeSpec &SS,
4349                                 IdentifierInfo *Name,
4350                                 SourceLocation NameLoc,
4351                                 AttributeList *Attr) {
4352
4353  bool Owned = false;
4354  bool IsDependent = false;
4355  DeclPtrTy TagD = ActOnTag(S, TagSpec, Action::TUK_Reference,
4356                            KWLoc, SS, Name, NameLoc, Attr, AS_none,
4357                            MultiTemplateParamsArg(*this, 0, 0),
4358                            Owned, IsDependent);
4359  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
4360
4361  if (!TagD)
4362    return true;
4363
4364  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4365  if (Tag->isEnum()) {
4366    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
4367      << Context.getTypeDeclType(Tag);
4368    return true;
4369  }
4370
4371  if (Tag->isInvalidDecl())
4372    return true;
4373
4374  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
4375  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
4376  if (!Pattern) {
4377    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
4378      << Context.getTypeDeclType(Record);
4379    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
4380    return true;
4381  }
4382
4383  // C++0x [temp.explicit]p2:
4384  //   If the explicit instantiation is for a class or member class, the
4385  //   elaborated-type-specifier in the declaration shall include a
4386  //   simple-template-id.
4387  //
4388  // C++98 has the same restriction, just worded differently.
4389  if (!ScopeSpecifierHasTemplateId(SS))
4390    Diag(TemplateLoc, diag::err_explicit_instantiation_without_qualified_id)
4391      << Record << SS.getRange();
4392
4393  // C++0x [temp.explicit]p2:
4394  //   There are two forms of explicit instantiation: an explicit instantiation
4395  //   definition and an explicit instantiation declaration. An explicit
4396  //   instantiation declaration begins with the extern keyword. [...]
4397  TemplateSpecializationKind TSK
4398    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4399                           : TSK_ExplicitInstantiationDeclaration;
4400
4401  // C++0x [temp.explicit]p2:
4402  //   [...] An explicit instantiation shall appear in an enclosing
4403  //   namespace of its template. [...]
4404  //
4405  // This is C++ DR 275.
4406  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
4407
4408  // Verify that it is okay to explicitly instantiate here.
4409  CXXRecordDecl *PrevDecl
4410    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
4411  if (!PrevDecl && Record->getDefinition(Context))
4412    PrevDecl = Record;
4413  if (PrevDecl) {
4414    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
4415    bool SuppressNew = false;
4416    assert(MSInfo && "No member specialization information?");
4417    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
4418                                               PrevDecl,
4419                                        MSInfo->getTemplateSpecializationKind(),
4420                                             MSInfo->getPointOfInstantiation(),
4421                                               SuppressNew))
4422      return true;
4423    if (SuppressNew)
4424      return TagD;
4425  }
4426
4427  CXXRecordDecl *RecordDef
4428    = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4429  if (!RecordDef) {
4430    // C++ [temp.explicit]p3:
4431    //   A definition of a member class of a class template shall be in scope
4432    //   at the point of an explicit instantiation of the member class.
4433    CXXRecordDecl *Def
4434      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition(Context));
4435    if (!Def) {
4436      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
4437        << 0 << Record->getDeclName() << Record->getDeclContext();
4438      Diag(Pattern->getLocation(), diag::note_forward_declaration)
4439        << Pattern;
4440      return true;
4441    } else {
4442      if (InstantiateClass(NameLoc, Record, Def,
4443                           getTemplateInstantiationArgs(Record),
4444                           TSK))
4445        return true;
4446
4447      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition(Context));
4448      if (!RecordDef)
4449        return true;
4450    }
4451  }
4452
4453  // Instantiate all of the members of the class.
4454  InstantiateClassMembers(NameLoc, RecordDef,
4455                          getTemplateInstantiationArgs(Record), TSK);
4456
4457  // FIXME: We don't have any representation for explicit instantiations of
4458  // member classes. Such a representation is not needed for compilation, but it
4459  // should be available for clients that want to see all of the declarations in
4460  // the source code.
4461  return TagD;
4462}
4463
4464Sema::DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
4465                                                  SourceLocation ExternLoc,
4466                                                  SourceLocation TemplateLoc,
4467                                                  Declarator &D) {
4468  // Explicit instantiations always require a name.
4469  DeclarationName Name = GetNameForDeclarator(D);
4470  if (!Name) {
4471    if (!D.isInvalidType())
4472      Diag(D.getDeclSpec().getSourceRange().getBegin(),
4473           diag::err_explicit_instantiation_requires_name)
4474        << D.getDeclSpec().getSourceRange()
4475        << D.getSourceRange();
4476
4477    return true;
4478  }
4479
4480  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4481  // we find one that is.
4482  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4483         (S->getFlags() & Scope::TemplateParamScope) != 0)
4484    S = S->getParent();
4485
4486  // Determine the type of the declaration.
4487  QualType R = GetTypeForDeclarator(D, S, 0);
4488  if (R.isNull())
4489    return true;
4490
4491  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4492    // Cannot explicitly instantiate a typedef.
4493    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
4494      << Name;
4495    return true;
4496  }
4497
4498  // C++0x [temp.explicit]p1:
4499  //   [...] An explicit instantiation of a function template shall not use the
4500  //   inline or constexpr specifiers.
4501  // Presumably, this also applies to member functions of class templates as
4502  // well.
4503  if (D.getDeclSpec().isInlineSpecified() && getLangOptions().CPlusPlus0x)
4504    Diag(D.getDeclSpec().getInlineSpecLoc(),
4505         diag::err_explicit_instantiation_inline)
4506      <<CodeModificationHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4507
4508  // FIXME: check for constexpr specifier.
4509
4510  // C++0x [temp.explicit]p2:
4511  //   There are two forms of explicit instantiation: an explicit instantiation
4512  //   definition and an explicit instantiation declaration. An explicit
4513  //   instantiation declaration begins with the extern keyword. [...]
4514  TemplateSpecializationKind TSK
4515    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
4516                           : TSK_ExplicitInstantiationDeclaration;
4517
4518  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName);
4519  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
4520
4521  if (!R->isFunctionType()) {
4522    // C++ [temp.explicit]p1:
4523    //   A [...] static data member of a class template can be explicitly
4524    //   instantiated from the member definition associated with its class
4525    //   template.
4526    if (Previous.isAmbiguous())
4527      return true;
4528
4529    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
4530    if (!Prev || !Prev->isStaticDataMember()) {
4531      // We expect to see a data data member here.
4532      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
4533        << Name;
4534      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4535           P != PEnd; ++P)
4536        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
4537      return true;
4538    }
4539
4540    if (!Prev->getInstantiatedFromStaticDataMember()) {
4541      // FIXME: Check for explicit specialization?
4542      Diag(D.getIdentifierLoc(),
4543           diag::err_explicit_instantiation_data_member_not_instantiated)
4544        << Prev;
4545      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
4546      // FIXME: Can we provide a note showing where this was declared?
4547      return true;
4548    }
4549
4550    // C++0x [temp.explicit]p2:
4551    //   If the explicit instantiation is for a member function, a member class
4552    //   or a static data member of a class template specialization, the name of
4553    //   the class template specialization in the qualified-id for the member
4554    //   name shall be a simple-template-id.
4555    //
4556    // C++98 has the same restriction, just worded differently.
4557    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4558      Diag(D.getIdentifierLoc(),
4559           diag::err_explicit_instantiation_without_qualified_id)
4560        << Prev << D.getCXXScopeSpec().getRange();
4561
4562    // Check the scope of this explicit instantiation.
4563    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
4564
4565    // Verify that it is okay to explicitly instantiate here.
4566    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
4567    assert(MSInfo && "Missing static data member specialization info?");
4568    bool SuppressNew = false;
4569    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
4570                                        MSInfo->getTemplateSpecializationKind(),
4571                                              MSInfo->getPointOfInstantiation(),
4572                                               SuppressNew))
4573      return true;
4574    if (SuppressNew)
4575      return DeclPtrTy();
4576
4577    // Instantiate static data member.
4578    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4579    if (TSK == TSK_ExplicitInstantiationDefinition)
4580      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev, false,
4581                                            /*DefinitionRequired=*/true);
4582
4583    // FIXME: Create an ExplicitInstantiation node?
4584    return DeclPtrTy();
4585  }
4586
4587  // If the declarator is a template-id, translate the parser's template
4588  // argument list into our AST format.
4589  bool HasExplicitTemplateArgs = false;
4590  TemplateArgumentListInfo TemplateArgs;
4591  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4592    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4593    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4594    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4595    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4596                                       TemplateId->getTemplateArgs(),
4597                                       TemplateId->NumArgs);
4598    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
4599    HasExplicitTemplateArgs = true;
4600    TemplateArgsPtr.release();
4601  }
4602
4603  // C++ [temp.explicit]p1:
4604  //   A [...] function [...] can be explicitly instantiated from its template.
4605  //   A member function [...] of a class template can be explicitly
4606  //  instantiated from the member definition associated with its class
4607  //  template.
4608  UnresolvedSet<8> Matches;
4609  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
4610       P != PEnd; ++P) {
4611    NamedDecl *Prev = *P;
4612    if (!HasExplicitTemplateArgs) {
4613      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
4614        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
4615          Matches.clear();
4616
4617          Matches.addDecl(Method, P.getAccess());
4618          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
4619            break;
4620        }
4621      }
4622    }
4623
4624    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
4625    if (!FunTmpl)
4626      continue;
4627
4628    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
4629    FunctionDecl *Specialization = 0;
4630    if (TemplateDeductionResult TDK
4631          = DeduceTemplateArguments(FunTmpl,
4632                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4633                                    R, Specialization, Info)) {
4634      // FIXME: Keep track of almost-matches?
4635      (void)TDK;
4636      continue;
4637    }
4638
4639    Matches.addDecl(Specialization, P.getAccess());
4640  }
4641
4642  // Find the most specialized function template specialization.
4643  UnresolvedSetIterator Result
4644    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other,
4645                         D.getIdentifierLoc(),
4646          PartialDiagnostic(diag::err_explicit_instantiation_not_known) << Name,
4647          PartialDiagnostic(diag::err_explicit_instantiation_ambiguous) << Name,
4648                PartialDiagnostic(diag::note_explicit_instantiation_candidate));
4649
4650  if (Result == Matches.end())
4651    return true;
4652
4653  // Ignore access control bits, we don't need them for redeclaration checking.
4654  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
4655
4656  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
4657    Diag(D.getIdentifierLoc(),
4658         diag::err_explicit_instantiation_member_function_not_instantiated)
4659      << Specialization
4660      << (Specialization->getTemplateSpecializationKind() ==
4661          TSK_ExplicitSpecialization);
4662    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
4663    return true;
4664  }
4665
4666  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
4667  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
4668    PrevDecl = Specialization;
4669
4670  if (PrevDecl) {
4671    bool SuppressNew = false;
4672    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
4673                                               PrevDecl,
4674                                     PrevDecl->getTemplateSpecializationKind(),
4675                                          PrevDecl->getPointOfInstantiation(),
4676                                               SuppressNew))
4677      return true;
4678
4679    // FIXME: We may still want to build some representation of this
4680    // explicit specialization.
4681    if (SuppressNew)
4682      return DeclPtrTy();
4683  }
4684
4685  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
4686
4687  if (TSK == TSK_ExplicitInstantiationDefinition)
4688    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization,
4689                                  false, /*DefinitionRequired=*/true);
4690
4691  // C++0x [temp.explicit]p2:
4692  //   If the explicit instantiation is for a member function, a member class
4693  //   or a static data member of a class template specialization, the name of
4694  //   the class template specialization in the qualified-id for the member
4695  //   name shall be a simple-template-id.
4696  //
4697  // C++98 has the same restriction, just worded differently.
4698  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
4699  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
4700      D.getCXXScopeSpec().isSet() &&
4701      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
4702    Diag(D.getIdentifierLoc(),
4703         diag::err_explicit_instantiation_without_qualified_id)
4704    << Specialization << D.getCXXScopeSpec().getRange();
4705
4706  CheckExplicitInstantiationScope(*this,
4707                   FunTmpl? (NamedDecl *)FunTmpl
4708                          : Specialization->getInstantiatedFromMemberFunction(),
4709                                  D.getIdentifierLoc(),
4710                                  D.getCXXScopeSpec().isSet());
4711
4712  // FIXME: Create some kind of ExplicitInstantiationDecl here.
4713  return DeclPtrTy();
4714}
4715
4716Sema::TypeResult
4717Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4718                        const CXXScopeSpec &SS, IdentifierInfo *Name,
4719                        SourceLocation TagLoc, SourceLocation NameLoc) {
4720  // This has to hold, because SS is expected to be defined.
4721  assert(Name && "Expected a name in a dependent tag");
4722
4723  NestedNameSpecifier *NNS
4724    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4725  if (!NNS)
4726    return true;
4727
4728  QualType T = CheckTypenameType(NNS, *Name, SourceRange(TagLoc, NameLoc));
4729  if (T.isNull())
4730    return true;
4731
4732  TagDecl::TagKind TagKind = TagDecl::getTagKindForTypeSpec(TagSpec);
4733  QualType ElabType = Context.getElaboratedType(T, TagKind);
4734
4735  return ElabType.getAsOpaquePtr();
4736}
4737
4738Sema::TypeResult
4739Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4740                        const IdentifierInfo &II, SourceLocation IdLoc) {
4741  NestedNameSpecifier *NNS
4742    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4743  if (!NNS)
4744    return true;
4745
4746  QualType T = CheckTypenameType(NNS, II, SourceRange(TypenameLoc, IdLoc));
4747  if (T.isNull())
4748    return true;
4749  return T.getAsOpaquePtr();
4750}
4751
4752Sema::TypeResult
4753Sema::ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
4754                        SourceLocation TemplateLoc, TypeTy *Ty) {
4755  QualType T = GetTypeFromParser(Ty);
4756  NestedNameSpecifier *NNS
4757    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4758  const TemplateSpecializationType *TemplateId
4759    = T->getAs<TemplateSpecializationType>();
4760  assert(TemplateId && "Expected a template specialization type");
4761
4762  if (computeDeclContext(SS, false)) {
4763    // If we can compute a declaration context, then the "typename"
4764    // keyword was superfluous. Just build a QualifiedNameType to keep
4765    // track of the nested-name-specifier.
4766
4767    // FIXME: Note that the QualifiedNameType had the "typename" keyword!
4768    return Context.getQualifiedNameType(NNS, T).getAsOpaquePtr();
4769  }
4770
4771  return Context.getTypenameType(NNS, TemplateId).getAsOpaquePtr();
4772}
4773
4774/// \brief Build the type that describes a C++ typename specifier,
4775/// e.g., "typename T::type".
4776QualType
4777Sema::CheckTypenameType(NestedNameSpecifier *NNS, const IdentifierInfo &II,
4778                        SourceRange Range) {
4779  CXXRecordDecl *CurrentInstantiation = 0;
4780  if (NNS->isDependent()) {
4781    CurrentInstantiation = getCurrentInstantiationOf(NNS);
4782
4783    // If the nested-name-specifier does not refer to the current
4784    // instantiation, then build a typename type.
4785    if (!CurrentInstantiation)
4786      return Context.getTypenameType(NNS, &II);
4787
4788    // The nested-name-specifier refers to the current instantiation, so the
4789    // "typename" keyword itself is superfluous. In C++03, the program is
4790    // actually ill-formed. However, DR 382 (in C++0x CD1) allows such
4791    // extraneous "typename" keywords, and we retroactively apply this DR to
4792    // C++03 code.
4793  }
4794
4795  DeclContext *Ctx = 0;
4796
4797  if (CurrentInstantiation)
4798    Ctx = CurrentInstantiation;
4799  else {
4800    CXXScopeSpec SS;
4801    SS.setScopeRep(NNS);
4802    SS.setRange(Range);
4803    if (RequireCompleteDeclContext(SS))
4804      return QualType();
4805
4806    Ctx = computeDeclContext(SS);
4807  }
4808  assert(Ctx && "No declaration context?");
4809
4810  DeclarationName Name(&II);
4811  LookupResult Result(*this, Name, Range.getEnd(), LookupOrdinaryName);
4812  LookupQualifiedName(Result, Ctx);
4813  unsigned DiagID = 0;
4814  Decl *Referenced = 0;
4815  switch (Result.getResultKind()) {
4816  case LookupResult::NotFound:
4817    DiagID = diag::err_typename_nested_not_found;
4818    break;
4819
4820  case LookupResult::NotFoundInCurrentInstantiation:
4821    // Okay, it's a member of an unknown instantiation.
4822    return Context.getTypenameType(NNS, &II);
4823
4824  case LookupResult::Found:
4825    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
4826      // We found a type. Build a QualifiedNameType, since the
4827      // typename-specifier was just sugar. FIXME: Tell
4828      // QualifiedNameType that it has a "typename" prefix.
4829      return Context.getQualifiedNameType(NNS, Context.getTypeDeclType(Type));
4830    }
4831
4832    DiagID = diag::err_typename_nested_not_type;
4833    Referenced = Result.getFoundDecl();
4834    break;
4835
4836  case LookupResult::FoundUnresolvedValue:
4837    llvm_unreachable("unresolved using decl in non-dependent context");
4838    return QualType();
4839
4840  case LookupResult::FoundOverloaded:
4841    DiagID = diag::err_typename_nested_not_type;
4842    Referenced = *Result.begin();
4843    break;
4844
4845  case LookupResult::Ambiguous:
4846    return QualType();
4847  }
4848
4849  // If we get here, it's because name lookup did not find a
4850  // type. Emit an appropriate diagnostic and return an error.
4851  Diag(Range.getEnd(), DiagID) << Range << Name << Ctx;
4852  if (Referenced)
4853    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
4854      << Name;
4855  return QualType();
4856}
4857
4858namespace {
4859  // See Sema::RebuildTypeInCurrentInstantiation
4860  class CurrentInstantiationRebuilder
4861    : public TreeTransform<CurrentInstantiationRebuilder> {
4862    SourceLocation Loc;
4863    DeclarationName Entity;
4864
4865  public:
4866    CurrentInstantiationRebuilder(Sema &SemaRef,
4867                                  SourceLocation Loc,
4868                                  DeclarationName Entity)
4869    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
4870      Loc(Loc), Entity(Entity) { }
4871
4872    /// \brief Determine whether the given type \p T has already been
4873    /// transformed.
4874    ///
4875    /// For the purposes of type reconstruction, a type has already been
4876    /// transformed if it is NULL or if it is not dependent.
4877    bool AlreadyTransformed(QualType T) {
4878      return T.isNull() || !T->isDependentType();
4879    }
4880
4881    /// \brief Returns the location of the entity whose type is being
4882    /// rebuilt.
4883    SourceLocation getBaseLocation() { return Loc; }
4884
4885    /// \brief Returns the name of the entity whose type is being rebuilt.
4886    DeclarationName getBaseEntity() { return Entity; }
4887
4888    /// \brief Sets the "base" location and entity when that
4889    /// information is known based on another transformation.
4890    void setBase(SourceLocation Loc, DeclarationName Entity) {
4891      this->Loc = Loc;
4892      this->Entity = Entity;
4893    }
4894
4895    /// \brief Transforms an expression by returning the expression itself
4896    /// (an identity function).
4897    ///
4898    /// FIXME: This is completely unsafe; we will need to actually clone the
4899    /// expressions.
4900    Sema::OwningExprResult TransformExpr(Expr *E) {
4901      return getSema().Owned(E);
4902    }
4903
4904    /// \brief Transforms a typename type by determining whether the type now
4905    /// refers to a member of the current instantiation, and then
4906    /// type-checking and building a QualifiedNameType (when possible).
4907    QualType TransformTypenameType(TypeLocBuilder &TLB, TypenameTypeLoc TL);
4908  };
4909}
4910
4911QualType
4912CurrentInstantiationRebuilder::TransformTypenameType(TypeLocBuilder &TLB,
4913                                                     TypenameTypeLoc TL) {
4914  TypenameType *T = TL.getTypePtr();
4915
4916  NestedNameSpecifier *NNS
4917    = TransformNestedNameSpecifier(T->getQualifier(),
4918                              /*FIXME:*/SourceRange(getBaseLocation()));
4919  if (!NNS)
4920    return QualType();
4921
4922  // If the nested-name-specifier did not change, and we cannot compute the
4923  // context corresponding to the nested-name-specifier, then this
4924  // typename type will not change; exit early.
4925  CXXScopeSpec SS;
4926  SS.setRange(SourceRange(getBaseLocation()));
4927  SS.setScopeRep(NNS);
4928
4929  QualType Result;
4930  if (NNS == T->getQualifier() && getSema().computeDeclContext(SS) == 0)
4931    Result = QualType(T, 0);
4932
4933  // Rebuild the typename type, which will probably turn into a
4934  // QualifiedNameType.
4935  else if (const TemplateSpecializationType *TemplateId = T->getTemplateId()) {
4936    QualType NewTemplateId
4937      = TransformType(QualType(TemplateId, 0));
4938    if (NewTemplateId.isNull())
4939      return QualType();
4940
4941    if (NNS == T->getQualifier() &&
4942        NewTemplateId == QualType(TemplateId, 0))
4943      Result = QualType(T, 0);
4944    else
4945      Result = getDerived().RebuildTypenameType(NNS, NewTemplateId);
4946  } else
4947    Result = getDerived().RebuildTypenameType(NNS, T->getIdentifier(),
4948                                              SourceRange(TL.getNameLoc()));
4949
4950  TypenameTypeLoc NewTL = TLB.push<TypenameTypeLoc>(Result);
4951  NewTL.setNameLoc(TL.getNameLoc());
4952  return Result;
4953}
4954
4955/// \brief Rebuilds a type within the context of the current instantiation.
4956///
4957/// The type \p T is part of the type of an out-of-line member definition of
4958/// a class template (or class template partial specialization) that was parsed
4959/// and constructed before we entered the scope of the class template (or
4960/// partial specialization thereof). This routine will rebuild that type now
4961/// that we have entered the declarator's scope, which may produce different
4962/// canonical types, e.g.,
4963///
4964/// \code
4965/// template<typename T>
4966/// struct X {
4967///   typedef T* pointer;
4968///   pointer data();
4969/// };
4970///
4971/// template<typename T>
4972/// typename X<T>::pointer X<T>::data() { ... }
4973/// \endcode
4974///
4975/// Here, the type "typename X<T>::pointer" will be created as a TypenameType,
4976/// since we do not know that we can look into X<T> when we parsed the type.
4977/// This function will rebuild the type, performing the lookup of "pointer"
4978/// in X<T> and returning a QualifiedNameType whose canonical type is the same
4979/// as the canonical type of T*, allowing the return types of the out-of-line
4980/// definition and the declaration to match.
4981QualType Sema::RebuildTypeInCurrentInstantiation(QualType T, SourceLocation Loc,
4982                                                 DeclarationName Name) {
4983  if (T.isNull() || !T->isDependentType())
4984    return T;
4985
4986  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
4987  return Rebuilder.TransformType(T);
4988}
4989
4990/// \brief Produces a formatted string that describes the binding of
4991/// template parameters to template arguments.
4992std::string
4993Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
4994                                      const TemplateArgumentList &Args) {
4995  // FIXME: For variadic templates, we'll need to get the structured list.
4996  return getTemplateArgumentBindingsText(Params, Args.getFlatArgumentList(),
4997                                         Args.flat_size());
4998}
4999
5000std::string
5001Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
5002                                      const TemplateArgument *Args,
5003                                      unsigned NumArgs) {
5004  std::string Result;
5005
5006  if (!Params || Params->size() == 0 || NumArgs == 0)
5007    return Result;
5008
5009  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
5010    if (I >= NumArgs)
5011      break;
5012
5013    if (I == 0)
5014      Result += "[with ";
5015    else
5016      Result += ", ";
5017
5018    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
5019      Result += Id->getName();
5020    } else {
5021      Result += '$';
5022      Result += llvm::utostr(I);
5023    }
5024
5025    Result += " = ";
5026
5027    switch (Args[I].getKind()) {
5028      case TemplateArgument::Null:
5029        Result += "<no value>";
5030        break;
5031
5032      case TemplateArgument::Type: {
5033        std::string TypeStr;
5034        Args[I].getAsType().getAsStringInternal(TypeStr,
5035                                                Context.PrintingPolicy);
5036        Result += TypeStr;
5037        break;
5038      }
5039
5040      case TemplateArgument::Declaration: {
5041        bool Unnamed = true;
5042        if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Args[I].getAsDecl())) {
5043          if (ND->getDeclName()) {
5044            Unnamed = false;
5045            Result += ND->getNameAsString();
5046          }
5047        }
5048
5049        if (Unnamed) {
5050          Result += "<anonymous>";
5051        }
5052        break;
5053      }
5054
5055      case TemplateArgument::Template: {
5056        std::string Str;
5057        llvm::raw_string_ostream OS(Str);
5058        Args[I].getAsTemplate().print(OS, Context.PrintingPolicy);
5059        Result += OS.str();
5060        break;
5061      }
5062
5063      case TemplateArgument::Integral: {
5064        Result += Args[I].getAsIntegral()->toString(10);
5065        break;
5066      }
5067
5068      case TemplateArgument::Expression: {
5069        assert(false && "No expressions in deduced template arguments!");
5070        Result += "<expression>";
5071        break;
5072      }
5073
5074      case TemplateArgument::Pack:
5075        // FIXME: Format template argument packs
5076        Result += "<template argument pack>";
5077        break;
5078    }
5079  }
5080
5081  Result += ']';
5082  return Result;
5083}
5084