SemaTemplate.cpp revision f785a7d611404cf4747287a2bbc59b4d0e6a5a8c
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements semantic analysis for C++ templates.
10//===----------------------------------------------------------------------===/
11
12#include "clang/Sema/SemaInternal.h"
13#include "clang/Sema/Lookup.h"
14#include "clang/Sema/Scope.h"
15#include "clang/Sema/Template.h"
16#include "clang/Sema/TemplateDeduction.h"
17#include "TreeTransform.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/TypeVisitor.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/ParsedTemplate.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "llvm/ADT/StringExtras.h"
30using namespace clang;
31using namespace sema;
32
33// Exported for use by Parser.
34SourceRange
35clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
36                              unsigned N) {
37  if (!N) return SourceRange();
38  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
39}
40
41/// \brief Determine whether the declaration found is acceptable as the name
42/// of a template and, if so, return that template declaration. Otherwise,
43/// returns NULL.
44static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
45                                           NamedDecl *Orig) {
46  NamedDecl *D = Orig->getUnderlyingDecl();
47
48  if (isa<TemplateDecl>(D))
49    return Orig;
50
51  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
52    // C++ [temp.local]p1:
53    //   Like normal (non-template) classes, class templates have an
54    //   injected-class-name (Clause 9). The injected-class-name
55    //   can be used with or without a template-argument-list. When
56    //   it is used without a template-argument-list, it is
57    //   equivalent to the injected-class-name followed by the
58    //   template-parameters of the class template enclosed in
59    //   <>. When it is used with a template-argument-list, it
60    //   refers to the specified class template specialization,
61    //   which could be the current specialization or another
62    //   specialization.
63    if (Record->isInjectedClassName()) {
64      Record = cast<CXXRecordDecl>(Record->getDeclContext());
65      if (Record->getDescribedClassTemplate())
66        return Record->getDescribedClassTemplate();
67
68      if (ClassTemplateSpecializationDecl *Spec
69            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
70        return Spec->getSpecializedTemplate();
71    }
72
73    return 0;
74  }
75
76  return 0;
77}
78
79void Sema::FilterAcceptableTemplateNames(LookupResult &R) {
80  // The set of class templates we've already seen.
81  llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
82  LookupResult::Filter filter = R.makeFilter();
83  while (filter.hasNext()) {
84    NamedDecl *Orig = filter.next();
85    NamedDecl *Repl = isAcceptableTemplateName(Context, Orig);
86    if (!Repl)
87      filter.erase();
88    else if (Repl != Orig) {
89
90      // C++ [temp.local]p3:
91      //   A lookup that finds an injected-class-name (10.2) can result in an
92      //   ambiguity in certain cases (for example, if it is found in more than
93      //   one base class). If all of the injected-class-names that are found
94      //   refer to specializations of the same class template, and if the name
95      //   is used as a template-name, the reference refers to the class
96      //   template itself and not a specialization thereof, and is not
97      //   ambiguous.
98      if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
99        if (!ClassTemplates.insert(ClassTmpl)) {
100          filter.erase();
101          continue;
102        }
103
104      // FIXME: we promote access to public here as a workaround to
105      // the fact that LookupResult doesn't let us remember that we
106      // found this template through a particular injected class name,
107      // which means we end up doing nasty things to the invariants.
108      // Pretending that access is public is *much* safer.
109      filter.replace(Repl, AS_public);
110    }
111  }
112  filter.done();
113}
114
115bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R) {
116  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
117    if (isAcceptableTemplateName(Context, *I))
118      return true;
119
120  return false;
121}
122
123TemplateNameKind Sema::isTemplateName(Scope *S,
124                                      CXXScopeSpec &SS,
125                                      bool hasTemplateKeyword,
126                                      UnqualifiedId &Name,
127                                      ParsedType ObjectTypePtr,
128                                      bool EnteringContext,
129                                      TemplateTy &TemplateResult,
130                                      bool &MemberOfUnknownSpecialization) {
131  assert(getLangOptions().CPlusPlus && "No template names in C!");
132
133  DeclarationName TName;
134  MemberOfUnknownSpecialization = false;
135
136  switch (Name.getKind()) {
137  case UnqualifiedId::IK_Identifier:
138    TName = DeclarationName(Name.Identifier);
139    break;
140
141  case UnqualifiedId::IK_OperatorFunctionId:
142    TName = Context.DeclarationNames.getCXXOperatorName(
143                                              Name.OperatorFunctionId.Operator);
144    break;
145
146  case UnqualifiedId::IK_LiteralOperatorId:
147    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
148    break;
149
150  default:
151    return TNK_Non_template;
152  }
153
154  QualType ObjectType = ObjectTypePtr.get();
155
156  LookupResult R(*this, TName, Name.getSourceRange().getBegin(),
157                 LookupOrdinaryName);
158  LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
159                     MemberOfUnknownSpecialization);
160  if (R.empty()) return TNK_Non_template;
161  if (R.isAmbiguous()) {
162    // Suppress diagnostics;  we'll redo this lookup later.
163    R.suppressDiagnostics();
164
165    // FIXME: we might have ambiguous templates, in which case we
166    // should at least parse them properly!
167    return TNK_Non_template;
168  }
169
170  TemplateName Template;
171  TemplateNameKind TemplateKind;
172
173  unsigned ResultCount = R.end() - R.begin();
174  if (ResultCount > 1) {
175    // We assume that we'll preserve the qualifier from a function
176    // template name in other ways.
177    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
178    TemplateKind = TNK_Function_template;
179
180    // We'll do this lookup again later.
181    R.suppressDiagnostics();
182  } else {
183    TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
184
185    if (SS.isSet() && !SS.isInvalid()) {
186      NestedNameSpecifier *Qualifier
187        = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
188      Template = Context.getQualifiedTemplateName(Qualifier,
189                                                  hasTemplateKeyword, TD);
190    } else {
191      Template = TemplateName(TD);
192    }
193
194    if (isa<FunctionTemplateDecl>(TD)) {
195      TemplateKind = TNK_Function_template;
196
197      // We'll do this lookup again later.
198      R.suppressDiagnostics();
199    } else {
200      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
201             isa<TypeAliasTemplateDecl>(TD));
202      TemplateKind = TNK_Type_template;
203    }
204  }
205
206  TemplateResult = TemplateTy::make(Template);
207  return TemplateKind;
208}
209
210bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
211                                       SourceLocation IILoc,
212                                       Scope *S,
213                                       const CXXScopeSpec *SS,
214                                       TemplateTy &SuggestedTemplate,
215                                       TemplateNameKind &SuggestedKind) {
216  // We can't recover unless there's a dependent scope specifier preceding the
217  // template name.
218  // FIXME: Typo correction?
219  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
220      computeDeclContext(*SS))
221    return false;
222
223  // The code is missing a 'template' keyword prior to the dependent template
224  // name.
225  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
226  Diag(IILoc, diag::err_template_kw_missing)
227    << Qualifier << II.getName()
228    << FixItHint::CreateInsertion(IILoc, "template ");
229  SuggestedTemplate
230    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
231  SuggestedKind = TNK_Dependent_template_name;
232  return true;
233}
234
235void Sema::LookupTemplateName(LookupResult &Found,
236                              Scope *S, CXXScopeSpec &SS,
237                              QualType ObjectType,
238                              bool EnteringContext,
239                              bool &MemberOfUnknownSpecialization) {
240  // Determine where to perform name lookup
241  MemberOfUnknownSpecialization = false;
242  DeclContext *LookupCtx = 0;
243  bool isDependent = false;
244  if (!ObjectType.isNull()) {
245    // This nested-name-specifier occurs in a member access expression, e.g.,
246    // x->B::f, and we are looking into the type of the object.
247    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
248    LookupCtx = computeDeclContext(ObjectType);
249    isDependent = ObjectType->isDependentType();
250    assert((isDependent || !ObjectType->isIncompleteType()) &&
251           "Caller should have completed object type");
252
253    // Template names cannot appear inside an Objective-C class or object type.
254    if (ObjectType->isObjCObjectOrInterfaceType()) {
255      Found.clear();
256      return;
257    }
258  } else if (SS.isSet()) {
259    // This nested-name-specifier occurs after another nested-name-specifier,
260    // so long into the context associated with the prior nested-name-specifier.
261    LookupCtx = computeDeclContext(SS, EnteringContext);
262    isDependent = isDependentScopeSpecifier(SS);
263
264    // The declaration context must be complete.
265    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
266      return;
267  }
268
269  bool ObjectTypeSearchedInScope = false;
270  if (LookupCtx) {
271    // Perform "qualified" name lookup into the declaration context we
272    // computed, which is either the type of the base of a member access
273    // expression or the declaration context associated with a prior
274    // nested-name-specifier.
275    LookupQualifiedName(Found, LookupCtx);
276
277    if (!ObjectType.isNull() && Found.empty()) {
278      // C++ [basic.lookup.classref]p1:
279      //   In a class member access expression (5.2.5), if the . or -> token is
280      //   immediately followed by an identifier followed by a <, the
281      //   identifier must be looked up to determine whether the < is the
282      //   beginning of a template argument list (14.2) or a less-than operator.
283      //   The identifier is first looked up in the class of the object
284      //   expression. If the identifier is not found, it is then looked up in
285      //   the context of the entire postfix-expression and shall name a class
286      //   or function template.
287      if (S) LookupName(Found, S);
288      ObjectTypeSearchedInScope = true;
289    }
290  } else if (isDependent && (!S || ObjectType.isNull())) {
291    // We cannot look into a dependent object type or nested nme
292    // specifier.
293    MemberOfUnknownSpecialization = true;
294    return;
295  } else {
296    // Perform unqualified name lookup in the current scope.
297    LookupName(Found, S);
298  }
299
300  if (Found.empty() && !isDependent) {
301    // If we did not find any names, attempt to correct any typos.
302    DeclarationName Name = Found.getLookupName();
303    Found.clear();
304    // Simple filter callback that, for keywords, only accepts the C++ *_cast
305    CorrectionCandidateCallback FilterCCC;
306    FilterCCC.WantTypeSpecifiers = false;
307    FilterCCC.WantExpressionKeywords = false;
308    FilterCCC.WantRemainingKeywords = false;
309    FilterCCC.WantCXXNamedCasts = true;
310    if (TypoCorrection Corrected = CorrectTypo(Found.getLookupNameInfo(),
311                                               Found.getLookupKind(), S, &SS,
312                                               &FilterCCC, LookupCtx)) {
313      Found.setLookupName(Corrected.getCorrection());
314      if (Corrected.getCorrectionDecl())
315        Found.addDecl(Corrected.getCorrectionDecl());
316      FilterAcceptableTemplateNames(Found);
317      if (!Found.empty()) {
318        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
319        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
320        if (LookupCtx)
321          Diag(Found.getNameLoc(), diag::err_no_member_template_suggest)
322            << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
323            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
324        else
325          Diag(Found.getNameLoc(), diag::err_no_template_suggest)
326            << Name << CorrectedQuotedStr
327            << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
328        if (TemplateDecl *Template = Found.getAsSingle<TemplateDecl>())
329          Diag(Template->getLocation(), diag::note_previous_decl)
330            << CorrectedQuotedStr;
331      }
332    } else {
333      Found.setLookupName(Name);
334    }
335  }
336
337  FilterAcceptableTemplateNames(Found);
338  if (Found.empty()) {
339    if (isDependent)
340      MemberOfUnknownSpecialization = true;
341    return;
342  }
343
344  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope) {
345    // C++ [basic.lookup.classref]p1:
346    //   [...] If the lookup in the class of the object expression finds a
347    //   template, the name is also looked up in the context of the entire
348    //   postfix-expression and [...]
349    //
350    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
351                            LookupOrdinaryName);
352    LookupName(FoundOuter, S);
353    FilterAcceptableTemplateNames(FoundOuter);
354
355    if (FoundOuter.empty()) {
356      //   - if the name is not found, the name found in the class of the
357      //     object expression is used, otherwise
358    } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
359               FoundOuter.isAmbiguous()) {
360      //   - if the name is found in the context of the entire
361      //     postfix-expression and does not name a class template, the name
362      //     found in the class of the object expression is used, otherwise
363      FoundOuter.clear();
364    } else if (!Found.isSuppressingDiagnostics()) {
365      //   - if the name found is a class template, it must refer to the same
366      //     entity as the one found in the class of the object expression,
367      //     otherwise the program is ill-formed.
368      if (!Found.isSingleResult() ||
369          Found.getFoundDecl()->getCanonicalDecl()
370            != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
371        Diag(Found.getNameLoc(),
372             diag::ext_nested_name_member_ref_lookup_ambiguous)
373          << Found.getLookupName()
374          << ObjectType;
375        Diag(Found.getRepresentativeDecl()->getLocation(),
376             diag::note_ambig_member_ref_object_type)
377          << ObjectType;
378        Diag(FoundOuter.getFoundDecl()->getLocation(),
379             diag::note_ambig_member_ref_scope);
380
381        // Recover by taking the template that we found in the object
382        // expression's type.
383      }
384    }
385  }
386}
387
388/// ActOnDependentIdExpression - Handle a dependent id-expression that
389/// was just parsed.  This is only possible with an explicit scope
390/// specifier naming a dependent type.
391ExprResult
392Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
393                                 const DeclarationNameInfo &NameInfo,
394                                 bool isAddressOfOperand,
395                           const TemplateArgumentListInfo *TemplateArgs) {
396  DeclContext *DC = getFunctionLevelDeclContext();
397
398  if (!isAddressOfOperand &&
399      isa<CXXMethodDecl>(DC) &&
400      cast<CXXMethodDecl>(DC)->isInstance()) {
401    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
402
403    // Since the 'this' expression is synthesized, we don't need to
404    // perform the double-lookup check.
405    NamedDecl *FirstQualifierInScope = 0;
406
407    return Owned(CXXDependentScopeMemberExpr::Create(Context,
408                                                     /*This*/ 0, ThisType,
409                                                     /*IsArrow*/ true,
410                                                     /*Op*/ SourceLocation(),
411                                               SS.getWithLocInContext(Context),
412                                                     FirstQualifierInScope,
413                                                     NameInfo,
414                                                     TemplateArgs));
415  }
416
417  return BuildDependentDeclRefExpr(SS, NameInfo, TemplateArgs);
418}
419
420ExprResult
421Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
422                                const DeclarationNameInfo &NameInfo,
423                                const TemplateArgumentListInfo *TemplateArgs) {
424  return Owned(DependentScopeDeclRefExpr::Create(Context,
425                                               SS.getWithLocInContext(Context),
426                                                 NameInfo,
427                                                 TemplateArgs));
428}
429
430/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
431/// that the template parameter 'PrevDecl' is being shadowed by a new
432/// declaration at location Loc. Returns true to indicate that this is
433/// an error, and false otherwise.
434void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
435  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
436
437  // Microsoft Visual C++ permits template parameters to be shadowed.
438  if (getLangOptions().MicrosoftExt)
439    return;
440
441  // C++ [temp.local]p4:
442  //   A template-parameter shall not be redeclared within its
443  //   scope (including nested scopes).
444  Diag(Loc, diag::err_template_param_shadow)
445    << cast<NamedDecl>(PrevDecl)->getDeclName();
446  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
447  return;
448}
449
450/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
451/// the parameter D to reference the templated declaration and return a pointer
452/// to the template declaration. Otherwise, do nothing to D and return null.
453TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
454  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
455    D = Temp->getTemplatedDecl();
456    return Temp;
457  }
458  return 0;
459}
460
461ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
462                                             SourceLocation EllipsisLoc) const {
463  assert(Kind == Template &&
464         "Only template template arguments can be pack expansions here");
465  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
466         "Template template argument pack expansion without packs");
467  ParsedTemplateArgument Result(*this);
468  Result.EllipsisLoc = EllipsisLoc;
469  return Result;
470}
471
472static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
473                                            const ParsedTemplateArgument &Arg) {
474
475  switch (Arg.getKind()) {
476  case ParsedTemplateArgument::Type: {
477    TypeSourceInfo *DI;
478    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
479    if (!DI)
480      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
481    return TemplateArgumentLoc(TemplateArgument(T), DI);
482  }
483
484  case ParsedTemplateArgument::NonType: {
485    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
486    return TemplateArgumentLoc(TemplateArgument(E), E);
487  }
488
489  case ParsedTemplateArgument::Template: {
490    TemplateName Template = Arg.getAsTemplate().get();
491    TemplateArgument TArg;
492    if (Arg.getEllipsisLoc().isValid())
493      TArg = TemplateArgument(Template, llvm::Optional<unsigned int>());
494    else
495      TArg = Template;
496    return TemplateArgumentLoc(TArg,
497                               Arg.getScopeSpec().getWithLocInContext(
498                                                              SemaRef.Context),
499                               Arg.getLocation(),
500                               Arg.getEllipsisLoc());
501  }
502  }
503
504  llvm_unreachable("Unhandled parsed template argument");
505  return TemplateArgumentLoc();
506}
507
508/// \brief Translates template arguments as provided by the parser
509/// into template arguments used by semantic analysis.
510void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
511                                      TemplateArgumentListInfo &TemplateArgs) {
512 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
513   TemplateArgs.addArgument(translateTemplateArgument(*this,
514                                                      TemplateArgsIn[I]));
515}
516
517/// ActOnTypeParameter - Called when a C++ template type parameter
518/// (e.g., "typename T") has been parsed. Typename specifies whether
519/// the keyword "typename" was used to declare the type parameter
520/// (otherwise, "class" was used), and KeyLoc is the location of the
521/// "class" or "typename" keyword. ParamName is the name of the
522/// parameter (NULL indicates an unnamed template parameter) and
523/// ParamNameLoc is the location of the parameter name (if any).
524/// If the type parameter has a default argument, it will be added
525/// later via ActOnTypeParameterDefault.
526Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
527                               SourceLocation EllipsisLoc,
528                               SourceLocation KeyLoc,
529                               IdentifierInfo *ParamName,
530                               SourceLocation ParamNameLoc,
531                               unsigned Depth, unsigned Position,
532                               SourceLocation EqualLoc,
533                               ParsedType DefaultArg) {
534  assert(S->isTemplateParamScope() &&
535         "Template type parameter not in template parameter scope!");
536  bool Invalid = false;
537
538  if (ParamName) {
539    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, ParamNameLoc,
540                                           LookupOrdinaryName,
541                                           ForRedeclaration);
542    if (PrevDecl && PrevDecl->isTemplateParameter()) {
543      DiagnoseTemplateParameterShadow(ParamNameLoc, PrevDecl);
544      PrevDecl = 0;
545    }
546  }
547
548  SourceLocation Loc = ParamNameLoc;
549  if (!ParamName)
550    Loc = KeyLoc;
551
552  TemplateTypeParmDecl *Param
553    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
554                                   KeyLoc, Loc, Depth, Position, ParamName,
555                                   Typename, Ellipsis);
556  Param->setAccess(AS_public);
557  if (Invalid)
558    Param->setInvalidDecl();
559
560  if (ParamName) {
561    // Add the template parameter into the current scope.
562    S->AddDecl(Param);
563    IdResolver.AddDecl(Param);
564  }
565
566  // C++0x [temp.param]p9:
567  //   A default template-argument may be specified for any kind of
568  //   template-parameter that is not a template parameter pack.
569  if (DefaultArg && Ellipsis) {
570    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
571    DefaultArg = ParsedType();
572  }
573
574  // Handle the default argument, if provided.
575  if (DefaultArg) {
576    TypeSourceInfo *DefaultTInfo;
577    GetTypeFromParser(DefaultArg, &DefaultTInfo);
578
579    assert(DefaultTInfo && "expected source information for type");
580
581    // Check for unexpanded parameter packs.
582    if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
583                                        UPPC_DefaultArgument))
584      return Param;
585
586    // Check the template argument itself.
587    if (CheckTemplateArgument(Param, DefaultTInfo)) {
588      Param->setInvalidDecl();
589      return Param;
590    }
591
592    Param->setDefaultArgument(DefaultTInfo, false);
593  }
594
595  return Param;
596}
597
598/// \brief Check that the type of a non-type template parameter is
599/// well-formed.
600///
601/// \returns the (possibly-promoted) parameter type if valid;
602/// otherwise, produces a diagnostic and returns a NULL type.
603QualType
604Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
605  // We don't allow variably-modified types as the type of non-type template
606  // parameters.
607  if (T->isVariablyModifiedType()) {
608    Diag(Loc, diag::err_variably_modified_nontype_template_param)
609      << T;
610    return QualType();
611  }
612
613  // C++ [temp.param]p4:
614  //
615  // A non-type template-parameter shall have one of the following
616  // (optionally cv-qualified) types:
617  //
618  //       -- integral or enumeration type,
619  if (T->isIntegralOrEnumerationType() ||
620      //   -- pointer to object or pointer to function,
621      T->isPointerType() ||
622      //   -- reference to object or reference to function,
623      T->isReferenceType() ||
624      //   -- pointer to member,
625      T->isMemberPointerType() ||
626      //   -- std::nullptr_t.
627      T->isNullPtrType() ||
628      // If T is a dependent type, we can't do the check now, so we
629      // assume that it is well-formed.
630      T->isDependentType())
631    return T;
632  // C++ [temp.param]p8:
633  //
634  //   A non-type template-parameter of type "array of T" or
635  //   "function returning T" is adjusted to be of type "pointer to
636  //   T" or "pointer to function returning T", respectively.
637  else if (T->isArrayType())
638    // FIXME: Keep the type prior to promotion?
639    return Context.getArrayDecayedType(T);
640  else if (T->isFunctionType())
641    // FIXME: Keep the type prior to promotion?
642    return Context.getPointerType(T);
643
644  Diag(Loc, diag::err_template_nontype_parm_bad_type)
645    << T;
646
647  return QualType();
648}
649
650Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
651                                          unsigned Depth,
652                                          unsigned Position,
653                                          SourceLocation EqualLoc,
654                                          Expr *Default) {
655  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
656  QualType T = TInfo->getType();
657
658  assert(S->isTemplateParamScope() &&
659         "Non-type template parameter not in template parameter scope!");
660  bool Invalid = false;
661
662  IdentifierInfo *ParamName = D.getIdentifier();
663  if (ParamName) {
664    NamedDecl *PrevDecl = LookupSingleName(S, ParamName, D.getIdentifierLoc(),
665                                           LookupOrdinaryName,
666                                           ForRedeclaration);
667    if (PrevDecl && PrevDecl->isTemplateParameter()) {
668      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
669      PrevDecl = 0;
670    }
671  }
672
673  T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
674  if (T.isNull()) {
675    T = Context.IntTy; // Recover with an 'int' type.
676    Invalid = true;
677  }
678
679  bool IsParameterPack = D.hasEllipsis();
680  NonTypeTemplateParmDecl *Param
681    = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
682                                      D.getSourceRange().getBegin(),
683                                      D.getIdentifierLoc(),
684                                      Depth, Position, ParamName, T,
685                                      IsParameterPack, TInfo);
686  Param->setAccess(AS_public);
687
688  if (Invalid)
689    Param->setInvalidDecl();
690
691  if (D.getIdentifier()) {
692    // Add the template parameter into the current scope.
693    S->AddDecl(Param);
694    IdResolver.AddDecl(Param);
695  }
696
697  // C++0x [temp.param]p9:
698  //   A default template-argument may be specified for any kind of
699  //   template-parameter that is not a template parameter pack.
700  if (Default && IsParameterPack) {
701    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
702    Default = 0;
703  }
704
705  // Check the well-formedness of the default template argument, if provided.
706  if (Default) {
707    // Check for unexpanded parameter packs.
708    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
709      return Param;
710
711    TemplateArgument Converted;
712    ExprResult DefaultRes = CheckTemplateArgument(Param, Param->getType(), Default, Converted);
713    if (DefaultRes.isInvalid()) {
714      Param->setInvalidDecl();
715      return Param;
716    }
717    Default = DefaultRes.take();
718
719    Param->setDefaultArgument(Default, false);
720  }
721
722  return Param;
723}
724
725/// ActOnTemplateTemplateParameter - Called when a C++ template template
726/// parameter (e.g. T in template <template <typename> class T> class array)
727/// has been parsed. S is the current scope.
728Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
729                                           SourceLocation TmpLoc,
730                                           TemplateParameterList *Params,
731                                           SourceLocation EllipsisLoc,
732                                           IdentifierInfo *Name,
733                                           SourceLocation NameLoc,
734                                           unsigned Depth,
735                                           unsigned Position,
736                                           SourceLocation EqualLoc,
737                                           ParsedTemplateArgument Default) {
738  assert(S->isTemplateParamScope() &&
739         "Template template parameter not in template parameter scope!");
740
741  // Construct the parameter object.
742  bool IsParameterPack = EllipsisLoc.isValid();
743  TemplateTemplateParmDecl *Param =
744    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
745                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
746                                     Depth, Position, IsParameterPack,
747                                     Name, Params);
748  Param->setAccess(AS_public);
749
750  // If the template template parameter has a name, then link the identifier
751  // into the scope and lookup mechanisms.
752  if (Name) {
753    S->AddDecl(Param);
754    IdResolver.AddDecl(Param);
755  }
756
757  if (Params->size() == 0) {
758    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
759    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
760    Param->setInvalidDecl();
761  }
762
763  // C++0x [temp.param]p9:
764  //   A default template-argument may be specified for any kind of
765  //   template-parameter that is not a template parameter pack.
766  if (IsParameterPack && !Default.isInvalid()) {
767    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
768    Default = ParsedTemplateArgument();
769  }
770
771  if (!Default.isInvalid()) {
772    // Check only that we have a template template argument. We don't want to
773    // try to check well-formedness now, because our template template parameter
774    // might have dependent types in its template parameters, which we wouldn't
775    // be able to match now.
776    //
777    // If none of the template template parameter's template arguments mention
778    // other template parameters, we could actually perform more checking here.
779    // However, it isn't worth doing.
780    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
781    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
782      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
783        << DefaultArg.getSourceRange();
784      return Param;
785    }
786
787    // Check for unexpanded parameter packs.
788    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
789                                        DefaultArg.getArgument().getAsTemplate(),
790                                        UPPC_DefaultArgument))
791      return Param;
792
793    Param->setDefaultArgument(DefaultArg, false);
794  }
795
796  return Param;
797}
798
799/// ActOnTemplateParameterList - Builds a TemplateParameterList that
800/// contains the template parameters in Params/NumParams.
801TemplateParameterList *
802Sema::ActOnTemplateParameterList(unsigned Depth,
803                                 SourceLocation ExportLoc,
804                                 SourceLocation TemplateLoc,
805                                 SourceLocation LAngleLoc,
806                                 Decl **Params, unsigned NumParams,
807                                 SourceLocation RAngleLoc) {
808  if (ExportLoc.isValid())
809    Diag(ExportLoc, diag::warn_template_export_unsupported);
810
811  return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
812                                       (NamedDecl**)Params, NumParams,
813                                       RAngleLoc);
814}
815
816static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
817  if (SS.isSet())
818    T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
819}
820
821DeclResult
822Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
823                         SourceLocation KWLoc, CXXScopeSpec &SS,
824                         IdentifierInfo *Name, SourceLocation NameLoc,
825                         AttributeList *Attr,
826                         TemplateParameterList *TemplateParams,
827                         AccessSpecifier AS, SourceLocation ModulePrivateLoc,
828                         unsigned NumOuterTemplateParamLists,
829                         TemplateParameterList** OuterTemplateParamLists) {
830  assert(TemplateParams && TemplateParams->size() > 0 &&
831         "No template parameters");
832  assert(TUK != TUK_Reference && "Can only declare or define class templates");
833  bool Invalid = false;
834
835  // Check that we can declare a template here.
836  if (CheckTemplateDeclScope(S, TemplateParams))
837    return true;
838
839  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
840  assert(Kind != TTK_Enum && "can't build template of enumerated type");
841
842  // There is no such thing as an unnamed class template.
843  if (!Name) {
844    Diag(KWLoc, diag::err_template_unnamed_class);
845    return true;
846  }
847
848  // Find any previous declaration with this name.
849  DeclContext *SemanticContext;
850  LookupResult Previous(*this, Name, NameLoc, LookupOrdinaryName,
851                        ForRedeclaration);
852  if (SS.isNotEmpty() && !SS.isInvalid()) {
853    SemanticContext = computeDeclContext(SS, true);
854    if (!SemanticContext) {
855      // FIXME: Produce a reasonable diagnostic here
856      return true;
857    }
858
859    if (RequireCompleteDeclContext(SS, SemanticContext))
860      return true;
861
862    // If we're adding a template to a dependent context, we may need to
863    // rebuilding some of the types used within the template parameter list,
864    // now that we know what the current instantiation is.
865    if (SemanticContext->isDependentContext()) {
866      ContextRAII SavedContext(*this, SemanticContext);
867      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
868        Invalid = true;
869    }
870
871    LookupQualifiedName(Previous, SemanticContext);
872  } else {
873    SemanticContext = CurContext;
874    LookupName(Previous, S);
875  }
876
877  if (Previous.isAmbiguous())
878    return true;
879
880  NamedDecl *PrevDecl = 0;
881  if (Previous.begin() != Previous.end())
882    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
883
884  // If there is a previous declaration with the same name, check
885  // whether this is a valid redeclaration.
886  ClassTemplateDecl *PrevClassTemplate
887    = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
888
889  // We may have found the injected-class-name of a class template,
890  // class template partial specialization, or class template specialization.
891  // In these cases, grab the template that is being defined or specialized.
892  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
893      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
894    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
895    PrevClassTemplate
896      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
897    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
898      PrevClassTemplate
899        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
900            ->getSpecializedTemplate();
901    }
902  }
903
904  if (TUK == TUK_Friend) {
905    // C++ [namespace.memdef]p3:
906    //   [...] When looking for a prior declaration of a class or a function
907    //   declared as a friend, and when the name of the friend class or
908    //   function is neither a qualified name nor a template-id, scopes outside
909    //   the innermost enclosing namespace scope are not considered.
910    if (!SS.isSet()) {
911      DeclContext *OutermostContext = CurContext;
912      while (!OutermostContext->isFileContext())
913        OutermostContext = OutermostContext->getLookupParent();
914
915      if (PrevDecl &&
916          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
917           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
918        SemanticContext = PrevDecl->getDeclContext();
919      } else {
920        // Declarations in outer scopes don't matter. However, the outermost
921        // context we computed is the semantic context for our new
922        // declaration.
923        PrevDecl = PrevClassTemplate = 0;
924        SemanticContext = OutermostContext;
925      }
926    }
927
928    if (CurContext->isDependentContext()) {
929      // If this is a dependent context, we don't want to link the friend
930      // class template to the template in scope, because that would perform
931      // checking of the template parameter lists that can't be performed
932      // until the outer context is instantiated.
933      PrevDecl = PrevClassTemplate = 0;
934    }
935  } else if (PrevDecl && !isDeclInScope(PrevDecl, SemanticContext, S))
936    PrevDecl = PrevClassTemplate = 0;
937
938  if (PrevClassTemplate) {
939    // Ensure that the template parameter lists are compatible.
940    if (!TemplateParameterListsAreEqual(TemplateParams,
941                                   PrevClassTemplate->getTemplateParameters(),
942                                        /*Complain=*/true,
943                                        TPL_TemplateMatch))
944      return true;
945
946    // C++ [temp.class]p4:
947    //   In a redeclaration, partial specialization, explicit
948    //   specialization or explicit instantiation of a class template,
949    //   the class-key shall agree in kind with the original class
950    //   template declaration (7.1.5.3).
951    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
952    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
953                                      TUK == TUK_Definition,  KWLoc, *Name)) {
954      Diag(KWLoc, diag::err_use_with_wrong_tag)
955        << Name
956        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
957      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
958      Kind = PrevRecordDecl->getTagKind();
959    }
960
961    // Check for redefinition of this class template.
962    if (TUK == TUK_Definition) {
963      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
964        Diag(NameLoc, diag::err_redefinition) << Name;
965        Diag(Def->getLocation(), diag::note_previous_definition);
966        // FIXME: Would it make sense to try to "forget" the previous
967        // definition, as part of error recovery?
968        return true;
969      }
970    }
971  } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
972    // Maybe we will complain about the shadowed template parameter.
973    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
974    // Just pretend that we didn't see the previous declaration.
975    PrevDecl = 0;
976  } else if (PrevDecl) {
977    // C++ [temp]p5:
978    //   A class template shall not have the same name as any other
979    //   template, class, function, object, enumeration, enumerator,
980    //   namespace, or type in the same scope (3.3), except as specified
981    //   in (14.5.4).
982    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
983    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
984    return true;
985  }
986
987  // Check the template parameter list of this declaration, possibly
988  // merging in the template parameter list from the previous class
989  // template declaration.
990  if (CheckTemplateParameterList(TemplateParams,
991            PrevClassTemplate? PrevClassTemplate->getTemplateParameters() : 0,
992                                 (SS.isSet() && SemanticContext &&
993                                  SemanticContext->isRecord() &&
994                                  SemanticContext->isDependentContext())
995                                   ? TPC_ClassTemplateMember
996                                   : TPC_ClassTemplate))
997    Invalid = true;
998
999  if (SS.isSet()) {
1000    // If the name of the template was qualified, we must be defining the
1001    // template out-of-line.
1002    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate &&
1003        !(TUK == TUK_Friend && CurContext->isDependentContext())) {
1004      Diag(NameLoc, diag::err_member_def_does_not_match)
1005        << Name << SemanticContext << SS.getRange();
1006      Invalid = true;
1007    }
1008  }
1009
1010  CXXRecordDecl *NewClass =
1011    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1012                          PrevClassTemplate?
1013                            PrevClassTemplate->getTemplatedDecl() : 0,
1014                          /*DelayTypeCreation=*/true);
1015  SetNestedNameSpecifier(NewClass, SS);
1016  if (NumOuterTemplateParamLists > 0)
1017    NewClass->setTemplateParameterListsInfo(Context,
1018                                            NumOuterTemplateParamLists,
1019                                            OuterTemplateParamLists);
1020
1021  ClassTemplateDecl *NewTemplate
1022    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1023                                DeclarationName(Name), TemplateParams,
1024                                NewClass, PrevClassTemplate);
1025  NewClass->setDescribedClassTemplate(NewTemplate);
1026
1027  if (ModulePrivateLoc.isValid())
1028    NewTemplate->setModulePrivate();
1029
1030  // Build the type for the class template declaration now.
1031  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1032  T = Context.getInjectedClassNameType(NewClass, T);
1033  assert(T->isDependentType() && "Class template type is not dependent?");
1034  (void)T;
1035
1036  // If we are providing an explicit specialization of a member that is a
1037  // class template, make a note of that.
1038  if (PrevClassTemplate &&
1039      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1040    PrevClassTemplate->setMemberSpecialization();
1041
1042  // Set the access specifier.
1043  if (!Invalid && TUK != TUK_Friend)
1044    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1045
1046  // Set the lexical context of these templates
1047  NewClass->setLexicalDeclContext(CurContext);
1048  NewTemplate->setLexicalDeclContext(CurContext);
1049
1050  if (TUK == TUK_Definition)
1051    NewClass->startDefinition();
1052
1053  if (Attr)
1054    ProcessDeclAttributeList(S, NewClass, Attr);
1055
1056  if (TUK != TUK_Friend)
1057    PushOnScopeChains(NewTemplate, S);
1058  else {
1059    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1060      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1061      NewClass->setAccess(PrevClassTemplate->getAccess());
1062    }
1063
1064    NewTemplate->setObjectOfFriendDecl(/* PreviouslyDeclared = */
1065                                       PrevClassTemplate != NULL);
1066
1067    // Friend templates are visible in fairly strange ways.
1068    if (!CurContext->isDependentContext()) {
1069      DeclContext *DC = SemanticContext->getRedeclContext();
1070      DC->makeDeclVisibleInContext(NewTemplate, /* Recoverable = */ false);
1071      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1072        PushOnScopeChains(NewTemplate, EnclosingScope,
1073                          /* AddToContext = */ false);
1074    }
1075
1076    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
1077                                            NewClass->getLocation(),
1078                                            NewTemplate,
1079                                    /*FIXME:*/NewClass->getLocation());
1080    Friend->setAccess(AS_public);
1081    CurContext->addDecl(Friend);
1082  }
1083
1084  if (Invalid) {
1085    NewTemplate->setInvalidDecl();
1086    NewClass->setInvalidDecl();
1087  }
1088  return NewTemplate;
1089}
1090
1091/// \brief Diagnose the presence of a default template argument on a
1092/// template parameter, which is ill-formed in certain contexts.
1093///
1094/// \returns true if the default template argument should be dropped.
1095static bool DiagnoseDefaultTemplateArgument(Sema &S,
1096                                            Sema::TemplateParamListContext TPC,
1097                                            SourceLocation ParamLoc,
1098                                            SourceRange DefArgRange) {
1099  switch (TPC) {
1100  case Sema::TPC_ClassTemplate:
1101  case Sema::TPC_TypeAliasTemplate:
1102    return false;
1103
1104  case Sema::TPC_FunctionTemplate:
1105  case Sema::TPC_FriendFunctionTemplateDefinition:
1106    // C++ [temp.param]p9:
1107    //   A default template-argument shall not be specified in a
1108    //   function template declaration or a function template
1109    //   definition [...]
1110    //   If a friend function template declaration specifies a default
1111    //   template-argument, that declaration shall be a definition and shall be
1112    //   the only declaration of the function template in the translation unit.
1113    // (C++98/03 doesn't have this wording; see DR226).
1114    S.Diag(ParamLoc, S.getLangOptions().CPlusPlus0x ?
1115         diag::warn_cxx98_compat_template_parameter_default_in_function_template
1116           : diag::ext_template_parameter_default_in_function_template)
1117      << DefArgRange;
1118    return false;
1119
1120  case Sema::TPC_ClassTemplateMember:
1121    // C++0x [temp.param]p9:
1122    //   A default template-argument shall not be specified in the
1123    //   template-parameter-lists of the definition of a member of a
1124    //   class template that appears outside of the member's class.
1125    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1126      << DefArgRange;
1127    return true;
1128
1129  case Sema::TPC_FriendFunctionTemplate:
1130    // C++ [temp.param]p9:
1131    //   A default template-argument shall not be specified in a
1132    //   friend template declaration.
1133    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1134      << DefArgRange;
1135    return true;
1136
1137    // FIXME: C++0x [temp.param]p9 allows default template-arguments
1138    // for friend function templates if there is only a single
1139    // declaration (and it is a definition). Strange!
1140  }
1141
1142  return false;
1143}
1144
1145/// \brief Check for unexpanded parameter packs within the template parameters
1146/// of a template template parameter, recursively.
1147static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1148                                             TemplateTemplateParmDecl *TTP) {
1149  TemplateParameterList *Params = TTP->getTemplateParameters();
1150  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1151    NamedDecl *P = Params->getParam(I);
1152    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1153      if (S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1154                                            NTTP->getTypeSourceInfo(),
1155                                      Sema::UPPC_NonTypeTemplateParameterType))
1156        return true;
1157
1158      continue;
1159    }
1160
1161    if (TemplateTemplateParmDecl *InnerTTP
1162                                        = dyn_cast<TemplateTemplateParmDecl>(P))
1163      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1164        return true;
1165  }
1166
1167  return false;
1168}
1169
1170/// \brief Checks the validity of a template parameter list, possibly
1171/// considering the template parameter list from a previous
1172/// declaration.
1173///
1174/// If an "old" template parameter list is provided, it must be
1175/// equivalent (per TemplateParameterListsAreEqual) to the "new"
1176/// template parameter list.
1177///
1178/// \param NewParams Template parameter list for a new template
1179/// declaration. This template parameter list will be updated with any
1180/// default arguments that are carried through from the previous
1181/// template parameter list.
1182///
1183/// \param OldParams If provided, template parameter list from a
1184/// previous declaration of the same template. Default template
1185/// arguments will be merged from the old template parameter list to
1186/// the new template parameter list.
1187///
1188/// \param TPC Describes the context in which we are checking the given
1189/// template parameter list.
1190///
1191/// \returns true if an error occurred, false otherwise.
1192bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1193                                      TemplateParameterList *OldParams,
1194                                      TemplateParamListContext TPC) {
1195  bool Invalid = false;
1196
1197  // C++ [temp.param]p10:
1198  //   The set of default template-arguments available for use with a
1199  //   template declaration or definition is obtained by merging the
1200  //   default arguments from the definition (if in scope) and all
1201  //   declarations in scope in the same way default function
1202  //   arguments are (8.3.6).
1203  bool SawDefaultArgument = false;
1204  SourceLocation PreviousDefaultArgLoc;
1205
1206  // Dummy initialization to avoid warnings.
1207  TemplateParameterList::iterator OldParam = NewParams->end();
1208  if (OldParams)
1209    OldParam = OldParams->begin();
1210
1211  bool RemoveDefaultArguments = false;
1212  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1213                                    NewParamEnd = NewParams->end();
1214       NewParam != NewParamEnd; ++NewParam) {
1215    // Variables used to diagnose redundant default arguments
1216    bool RedundantDefaultArg = false;
1217    SourceLocation OldDefaultLoc;
1218    SourceLocation NewDefaultLoc;
1219
1220    // Variable used to diagnose missing default arguments
1221    bool MissingDefaultArg = false;
1222
1223    // Variable used to diagnose non-final parameter packs
1224    bool SawParameterPack = false;
1225
1226    if (TemplateTypeParmDecl *NewTypeParm
1227          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1228      // Check the presence of a default argument here.
1229      if (NewTypeParm->hasDefaultArgument() &&
1230          DiagnoseDefaultTemplateArgument(*this, TPC,
1231                                          NewTypeParm->getLocation(),
1232               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1233                                                       .getSourceRange()))
1234        NewTypeParm->removeDefaultArgument();
1235
1236      // Merge default arguments for template type parameters.
1237      TemplateTypeParmDecl *OldTypeParm
1238          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : 0;
1239
1240      if (NewTypeParm->isParameterPack()) {
1241        assert(!NewTypeParm->hasDefaultArgument() &&
1242               "Parameter packs can't have a default argument!");
1243        SawParameterPack = true;
1244      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument() &&
1245                 NewTypeParm->hasDefaultArgument()) {
1246        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1247        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1248        SawDefaultArgument = true;
1249        RedundantDefaultArg = true;
1250        PreviousDefaultArgLoc = NewDefaultLoc;
1251      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1252        // Merge the default argument from the old declaration to the
1253        // new declaration.
1254        SawDefaultArgument = true;
1255        NewTypeParm->setDefaultArgument(OldTypeParm->getDefaultArgumentInfo(),
1256                                        true);
1257        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1258      } else if (NewTypeParm->hasDefaultArgument()) {
1259        SawDefaultArgument = true;
1260        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1261      } else if (SawDefaultArgument)
1262        MissingDefaultArg = true;
1263    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1264               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1265      // Check for unexpanded parameter packs.
1266      if (DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1267                                          NewNonTypeParm->getTypeSourceInfo(),
1268                                          UPPC_NonTypeTemplateParameterType)) {
1269        Invalid = true;
1270        continue;
1271      }
1272
1273      // Check the presence of a default argument here.
1274      if (NewNonTypeParm->hasDefaultArgument() &&
1275          DiagnoseDefaultTemplateArgument(*this, TPC,
1276                                          NewNonTypeParm->getLocation(),
1277                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1278        NewNonTypeParm->removeDefaultArgument();
1279      }
1280
1281      // Merge default arguments for non-type template parameters
1282      NonTypeTemplateParmDecl *OldNonTypeParm
1283        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : 0;
1284      if (NewNonTypeParm->isParameterPack()) {
1285        assert(!NewNonTypeParm->hasDefaultArgument() &&
1286               "Parameter packs can't have a default argument!");
1287        SawParameterPack = true;
1288      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument() &&
1289          NewNonTypeParm->hasDefaultArgument()) {
1290        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1291        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1292        SawDefaultArgument = true;
1293        RedundantDefaultArg = true;
1294        PreviousDefaultArgLoc = NewDefaultLoc;
1295      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1296        // Merge the default argument from the old declaration to the
1297        // new declaration.
1298        SawDefaultArgument = true;
1299        // FIXME: We need to create a new kind of "default argument"
1300        // expression that points to a previous non-type template
1301        // parameter.
1302        NewNonTypeParm->setDefaultArgument(
1303                                         OldNonTypeParm->getDefaultArgument(),
1304                                         /*Inherited=*/ true);
1305        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1306      } else if (NewNonTypeParm->hasDefaultArgument()) {
1307        SawDefaultArgument = true;
1308        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1309      } else if (SawDefaultArgument)
1310        MissingDefaultArg = true;
1311    } else {
1312      TemplateTemplateParmDecl *NewTemplateParm
1313        = cast<TemplateTemplateParmDecl>(*NewParam);
1314
1315      // Check for unexpanded parameter packs, recursively.
1316      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1317        Invalid = true;
1318        continue;
1319      }
1320
1321      // Check the presence of a default argument here.
1322      if (NewTemplateParm->hasDefaultArgument() &&
1323          DiagnoseDefaultTemplateArgument(*this, TPC,
1324                                          NewTemplateParm->getLocation(),
1325                     NewTemplateParm->getDefaultArgument().getSourceRange()))
1326        NewTemplateParm->removeDefaultArgument();
1327
1328      // Merge default arguments for template template parameters
1329      TemplateTemplateParmDecl *OldTemplateParm
1330        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : 0;
1331      if (NewTemplateParm->isParameterPack()) {
1332        assert(!NewTemplateParm->hasDefaultArgument() &&
1333               "Parameter packs can't have a default argument!");
1334        SawParameterPack = true;
1335      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument() &&
1336          NewTemplateParm->hasDefaultArgument()) {
1337        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1338        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1339        SawDefaultArgument = true;
1340        RedundantDefaultArg = true;
1341        PreviousDefaultArgLoc = NewDefaultLoc;
1342      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1343        // Merge the default argument from the old declaration to the
1344        // new declaration.
1345        SawDefaultArgument = true;
1346        // FIXME: We need to create a new kind of "default argument" expression
1347        // that points to a previous template template parameter.
1348        NewTemplateParm->setDefaultArgument(
1349                                          OldTemplateParm->getDefaultArgument(),
1350                                          /*Inherited=*/ true);
1351        PreviousDefaultArgLoc
1352          = OldTemplateParm->getDefaultArgument().getLocation();
1353      } else if (NewTemplateParm->hasDefaultArgument()) {
1354        SawDefaultArgument = true;
1355        PreviousDefaultArgLoc
1356          = NewTemplateParm->getDefaultArgument().getLocation();
1357      } else if (SawDefaultArgument)
1358        MissingDefaultArg = true;
1359    }
1360
1361    // C++0x [temp.param]p11:
1362    //   If a template parameter of a primary class template or alias template
1363    //   is a template parameter pack, it shall be the last template parameter.
1364    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1365        (TPC == TPC_ClassTemplate || TPC == TPC_TypeAliasTemplate)) {
1366      Diag((*NewParam)->getLocation(),
1367           diag::err_template_param_pack_must_be_last_template_parameter);
1368      Invalid = true;
1369    }
1370
1371    if (RedundantDefaultArg) {
1372      // C++ [temp.param]p12:
1373      //   A template-parameter shall not be given default arguments
1374      //   by two different declarations in the same scope.
1375      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1376      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1377      Invalid = true;
1378    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1379      // C++ [temp.param]p11:
1380      //   If a template-parameter of a class template has a default
1381      //   template-argument, each subsequent template-parameter shall either
1382      //   have a default template-argument supplied or be a template parameter
1383      //   pack.
1384      Diag((*NewParam)->getLocation(),
1385           diag::err_template_param_default_arg_missing);
1386      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1387      Invalid = true;
1388      RemoveDefaultArguments = true;
1389    }
1390
1391    // If we have an old template parameter list that we're merging
1392    // in, move on to the next parameter.
1393    if (OldParams)
1394      ++OldParam;
1395  }
1396
1397  // We were missing some default arguments at the end of the list, so remove
1398  // all of the default arguments.
1399  if (RemoveDefaultArguments) {
1400    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1401                                      NewParamEnd = NewParams->end();
1402         NewParam != NewParamEnd; ++NewParam) {
1403      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1404        TTP->removeDefaultArgument();
1405      else if (NonTypeTemplateParmDecl *NTTP
1406                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1407        NTTP->removeDefaultArgument();
1408      else
1409        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1410    }
1411  }
1412
1413  return Invalid;
1414}
1415
1416namespace {
1417
1418/// A class which looks for a use of a certain level of template
1419/// parameter.
1420struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1421  typedef RecursiveASTVisitor<DependencyChecker> super;
1422
1423  unsigned Depth;
1424  bool Match;
1425
1426  DependencyChecker(TemplateParameterList *Params) : Match(false) {
1427    NamedDecl *ND = Params->getParam(0);
1428    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1429      Depth = PD->getDepth();
1430    } else if (NonTypeTemplateParmDecl *PD =
1431                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1432      Depth = PD->getDepth();
1433    } else {
1434      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1435    }
1436  }
1437
1438  bool Matches(unsigned ParmDepth) {
1439    if (ParmDepth >= Depth) {
1440      Match = true;
1441      return true;
1442    }
1443    return false;
1444  }
1445
1446  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1447    return !Matches(T->getDepth());
1448  }
1449
1450  bool TraverseTemplateName(TemplateName N) {
1451    if (TemplateTemplateParmDecl *PD =
1452          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1453      if (Matches(PD->getDepth())) return false;
1454    return super::TraverseTemplateName(N);
1455  }
1456
1457  bool VisitDeclRefExpr(DeclRefExpr *E) {
1458    if (NonTypeTemplateParmDecl *PD =
1459          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) {
1460      if (PD->getDepth() == Depth) {
1461        Match = true;
1462        return false;
1463      }
1464    }
1465    return super::VisitDeclRefExpr(E);
1466  }
1467
1468  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1469    return TraverseType(T->getInjectedSpecializationType());
1470  }
1471};
1472}
1473
1474/// Determines whether a given type depends on the given parameter
1475/// list.
1476static bool
1477DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1478  DependencyChecker Checker(Params);
1479  Checker.TraverseType(T);
1480  return Checker.Match;
1481}
1482
1483// Find the source range corresponding to the named type in the given
1484// nested-name-specifier, if any.
1485static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1486                                                       QualType T,
1487                                                       const CXXScopeSpec &SS) {
1488  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1489  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1490    if (const Type *CurType = NNS->getAsType()) {
1491      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1492        return NNSLoc.getTypeLoc().getSourceRange();
1493    } else
1494      break;
1495
1496    NNSLoc = NNSLoc.getPrefix();
1497  }
1498
1499  return SourceRange();
1500}
1501
1502/// \brief Match the given template parameter lists to the given scope
1503/// specifier, returning the template parameter list that applies to the
1504/// name.
1505///
1506/// \param DeclStartLoc the start of the declaration that has a scope
1507/// specifier or a template parameter list.
1508///
1509/// \param DeclLoc The location of the declaration itself.
1510///
1511/// \param SS the scope specifier that will be matched to the given template
1512/// parameter lists. This scope specifier precedes a qualified name that is
1513/// being declared.
1514///
1515/// \param ParamLists the template parameter lists, from the outermost to the
1516/// innermost template parameter lists.
1517///
1518/// \param NumParamLists the number of template parameter lists in ParamLists.
1519///
1520/// \param IsFriend Whether to apply the slightly different rules for
1521/// matching template parameters to scope specifiers in friend
1522/// declarations.
1523///
1524/// \param IsExplicitSpecialization will be set true if the entity being
1525/// declared is an explicit specialization, false otherwise.
1526///
1527/// \returns the template parameter list, if any, that corresponds to the
1528/// name that is preceded by the scope specifier @p SS. This template
1529/// parameter list may have template parameters (if we're declaring a
1530/// template) or may have no template parameters (if we're declaring a
1531/// template specialization), or may be NULL (if what we're declaring isn't
1532/// itself a template).
1533TemplateParameterList *
1534Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
1535                                              SourceLocation DeclLoc,
1536                                              const CXXScopeSpec &SS,
1537                                          TemplateParameterList **ParamLists,
1538                                              unsigned NumParamLists,
1539                                              bool IsFriend,
1540                                              bool &IsExplicitSpecialization,
1541                                              bool &Invalid) {
1542  IsExplicitSpecialization = false;
1543  Invalid = false;
1544
1545  // The sequence of nested types to which we will match up the template
1546  // parameter lists. We first build this list by starting with the type named
1547  // by the nested-name-specifier and walking out until we run out of types.
1548  SmallVector<QualType, 4> NestedTypes;
1549  QualType T;
1550  if (SS.getScopeRep()) {
1551    if (CXXRecordDecl *Record
1552              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1553      T = Context.getTypeDeclType(Record);
1554    else
1555      T = QualType(SS.getScopeRep()->getAsType(), 0);
1556  }
1557
1558  // If we found an explicit specialization that prevents us from needing
1559  // 'template<>' headers, this will be set to the location of that
1560  // explicit specialization.
1561  SourceLocation ExplicitSpecLoc;
1562
1563  while (!T.isNull()) {
1564    NestedTypes.push_back(T);
1565
1566    // Retrieve the parent of a record type.
1567    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1568      // If this type is an explicit specialization, we're done.
1569      if (ClassTemplateSpecializationDecl *Spec
1570          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1571        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1572            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1573          ExplicitSpecLoc = Spec->getLocation();
1574          break;
1575        }
1576      } else if (Record->getTemplateSpecializationKind()
1577                                                == TSK_ExplicitSpecialization) {
1578        ExplicitSpecLoc = Record->getLocation();
1579        break;
1580      }
1581
1582      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1583        T = Context.getTypeDeclType(Parent);
1584      else
1585        T = QualType();
1586      continue;
1587    }
1588
1589    if (const TemplateSpecializationType *TST
1590                                     = T->getAs<TemplateSpecializationType>()) {
1591      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1592        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1593          T = Context.getTypeDeclType(Parent);
1594        else
1595          T = QualType();
1596        continue;
1597      }
1598    }
1599
1600    // Look one step prior in a dependent template specialization type.
1601    if (const DependentTemplateSpecializationType *DependentTST
1602                          = T->getAs<DependentTemplateSpecializationType>()) {
1603      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1604        T = QualType(NNS->getAsType(), 0);
1605      else
1606        T = QualType();
1607      continue;
1608    }
1609
1610    // Look one step prior in a dependent name type.
1611    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1612      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1613        T = QualType(NNS->getAsType(), 0);
1614      else
1615        T = QualType();
1616      continue;
1617    }
1618
1619    // Retrieve the parent of an enumeration type.
1620    if (const EnumType *EnumT = T->getAs<EnumType>()) {
1621      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1622      // check here.
1623      EnumDecl *Enum = EnumT->getDecl();
1624
1625      // Get to the parent type.
1626      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1627        T = Context.getTypeDeclType(Parent);
1628      else
1629        T = QualType();
1630      continue;
1631    }
1632
1633    T = QualType();
1634  }
1635  // Reverse the nested types list, since we want to traverse from the outermost
1636  // to the innermost while checking template-parameter-lists.
1637  std::reverse(NestedTypes.begin(), NestedTypes.end());
1638
1639  // C++0x [temp.expl.spec]p17:
1640  //   A member or a member template may be nested within many
1641  //   enclosing class templates. In an explicit specialization for
1642  //   such a member, the member declaration shall be preceded by a
1643  //   template<> for each enclosing class template that is
1644  //   explicitly specialized.
1645  bool SawNonEmptyTemplateParameterList = false;
1646  unsigned ParamIdx = 0;
1647  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1648       ++TypeIdx) {
1649    T = NestedTypes[TypeIdx];
1650
1651    // Whether we expect a 'template<>' header.
1652    bool NeedEmptyTemplateHeader = false;
1653
1654    // Whether we expect a template header with parameters.
1655    bool NeedNonemptyTemplateHeader = false;
1656
1657    // For a dependent type, the set of template parameters that we
1658    // expect to see.
1659    TemplateParameterList *ExpectedTemplateParams = 0;
1660
1661    // C++0x [temp.expl.spec]p15:
1662    //   A member or a member template may be nested within many enclosing
1663    //   class templates. In an explicit specialization for such a member, the
1664    //   member declaration shall be preceded by a template<> for each
1665    //   enclosing class template that is explicitly specialized.
1666    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1667      if (ClassTemplatePartialSpecializationDecl *Partial
1668            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1669        ExpectedTemplateParams = Partial->getTemplateParameters();
1670        NeedNonemptyTemplateHeader = true;
1671      } else if (Record->isDependentType()) {
1672        if (Record->getDescribedClassTemplate()) {
1673          ExpectedTemplateParams = Record->getDescribedClassTemplate()
1674                                                      ->getTemplateParameters();
1675          NeedNonemptyTemplateHeader = true;
1676        }
1677      } else if (ClassTemplateSpecializationDecl *Spec
1678                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1679        // C++0x [temp.expl.spec]p4:
1680        //   Members of an explicitly specialized class template are defined
1681        //   in the same manner as members of normal classes, and not using
1682        //   the template<> syntax.
1683        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1684          NeedEmptyTemplateHeader = true;
1685        else
1686          continue;
1687      } else if (Record->getTemplateSpecializationKind()) {
1688        if (Record->getTemplateSpecializationKind()
1689                                                != TSK_ExplicitSpecialization &&
1690            TypeIdx == NumTypes - 1)
1691          IsExplicitSpecialization = true;
1692
1693        continue;
1694      }
1695    } else if (const TemplateSpecializationType *TST
1696                                     = T->getAs<TemplateSpecializationType>()) {
1697      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1698        ExpectedTemplateParams = Template->getTemplateParameters();
1699        NeedNonemptyTemplateHeader = true;
1700      }
1701    } else if (T->getAs<DependentTemplateSpecializationType>()) {
1702      // FIXME:  We actually could/should check the template arguments here
1703      // against the corresponding template parameter list.
1704      NeedNonemptyTemplateHeader = false;
1705    }
1706
1707    // C++ [temp.expl.spec]p16:
1708    //   In an explicit specialization declaration for a member of a class
1709    //   template or a member template that ap- pears in namespace scope, the
1710    //   member template and some of its enclosing class templates may remain
1711    //   unspecialized, except that the declaration shall not explicitly
1712    //   specialize a class member template if its en- closing class templates
1713    //   are not explicitly specialized as well.
1714    if (ParamIdx < NumParamLists) {
1715      if (ParamLists[ParamIdx]->size() == 0) {
1716        if (SawNonEmptyTemplateParameterList) {
1717          Diag(DeclLoc, diag::err_specialize_member_of_template)
1718            << ParamLists[ParamIdx]->getSourceRange();
1719          Invalid = true;
1720          IsExplicitSpecialization = false;
1721          return 0;
1722        }
1723      } else
1724        SawNonEmptyTemplateParameterList = true;
1725    }
1726
1727    if (NeedEmptyTemplateHeader) {
1728      // If we're on the last of the types, and we need a 'template<>' header
1729      // here, then it's an explicit specialization.
1730      if (TypeIdx == NumTypes - 1)
1731        IsExplicitSpecialization = true;
1732
1733      if (ParamIdx < NumParamLists) {
1734        if (ParamLists[ParamIdx]->size() > 0) {
1735          // The header has template parameters when it shouldn't. Complain.
1736          Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1737               diag::err_template_param_list_matches_nontemplate)
1738            << T
1739            << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1740                           ParamLists[ParamIdx]->getRAngleLoc())
1741            << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1742          Invalid = true;
1743          return 0;
1744        }
1745
1746        // Consume this template header.
1747        ++ParamIdx;
1748        continue;
1749      }
1750
1751      if (!IsFriend) {
1752        // We don't have a template header, but we should.
1753        SourceLocation ExpectedTemplateLoc;
1754        if (NumParamLists > 0)
1755          ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1756        else
1757          ExpectedTemplateLoc = DeclStartLoc;
1758
1759        Diag(DeclLoc, diag::err_template_spec_needs_header)
1760          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS)
1761          << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1762      }
1763
1764      continue;
1765    }
1766
1767    if (NeedNonemptyTemplateHeader) {
1768      // In friend declarations we can have template-ids which don't
1769      // depend on the corresponding template parameter lists.  But
1770      // assume that empty parameter lists are supposed to match this
1771      // template-id.
1772      if (IsFriend && T->isDependentType()) {
1773        if (ParamIdx < NumParamLists &&
1774            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1775          ExpectedTemplateParams = 0;
1776        else
1777          continue;
1778      }
1779
1780      if (ParamIdx < NumParamLists) {
1781        // Check the template parameter list, if we can.
1782        if (ExpectedTemplateParams &&
1783            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1784                                            ExpectedTemplateParams,
1785                                            true, TPL_TemplateMatch))
1786          Invalid = true;
1787
1788        if (!Invalid &&
1789            CheckTemplateParameterList(ParamLists[ParamIdx], 0,
1790                                       TPC_ClassTemplateMember))
1791          Invalid = true;
1792
1793        ++ParamIdx;
1794        continue;
1795      }
1796
1797      Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1798        << T
1799        << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1800      Invalid = true;
1801      continue;
1802    }
1803  }
1804
1805  // If there were at least as many template-ids as there were template
1806  // parameter lists, then there are no template parameter lists remaining for
1807  // the declaration itself.
1808  if (ParamIdx >= NumParamLists)
1809    return 0;
1810
1811  // If there were too many template parameter lists, complain about that now.
1812  if (ParamIdx < NumParamLists - 1) {
1813    bool HasAnyExplicitSpecHeader = false;
1814    bool AllExplicitSpecHeaders = true;
1815    for (unsigned I = ParamIdx; I != NumParamLists - 1; ++I) {
1816      if (ParamLists[I]->size() == 0)
1817        HasAnyExplicitSpecHeader = true;
1818      else
1819        AllExplicitSpecHeaders = false;
1820    }
1821
1822    Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1823         AllExplicitSpecHeaders? diag::warn_template_spec_extra_headers
1824                               : diag::err_template_spec_extra_headers)
1825      << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1826                     ParamLists[NumParamLists - 2]->getRAngleLoc());
1827
1828    // If there was a specialization somewhere, such that 'template<>' is
1829    // not required, and there were any 'template<>' headers, note where the
1830    // specialization occurred.
1831    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1832      Diag(ExplicitSpecLoc,
1833           diag::note_explicit_template_spec_does_not_need_header)
1834        << NestedTypes.back();
1835
1836    // We have a template parameter list with no corresponding scope, which
1837    // means that the resulting template declaration can't be instantiated
1838    // properly (we'll end up with dependent nodes when we shouldn't).
1839    if (!AllExplicitSpecHeaders)
1840      Invalid = true;
1841  }
1842
1843  // C++ [temp.expl.spec]p16:
1844  //   In an explicit specialization declaration for a member of a class
1845  //   template or a member template that ap- pears in namespace scope, the
1846  //   member template and some of its enclosing class templates may remain
1847  //   unspecialized, except that the declaration shall not explicitly
1848  //   specialize a class member template if its en- closing class templates
1849  //   are not explicitly specialized as well.
1850  if (ParamLists[NumParamLists - 1]->size() == 0 &&
1851      SawNonEmptyTemplateParameterList) {
1852    Diag(DeclLoc, diag::err_specialize_member_of_template)
1853      << ParamLists[ParamIdx]->getSourceRange();
1854    Invalid = true;
1855    IsExplicitSpecialization = false;
1856    return 0;
1857  }
1858
1859  // Return the last template parameter list, which corresponds to the
1860  // entity being declared.
1861  return ParamLists[NumParamLists - 1];
1862}
1863
1864void Sema::NoteAllFoundTemplates(TemplateName Name) {
1865  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1866    Diag(Template->getLocation(), diag::note_template_declared_here)
1867      << (isa<FunctionTemplateDecl>(Template)? 0
1868          : isa<ClassTemplateDecl>(Template)? 1
1869          : isa<TypeAliasTemplateDecl>(Template)? 2
1870          : 3)
1871      << Template->getDeclName();
1872    return;
1873  }
1874
1875  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
1876    for (OverloadedTemplateStorage::iterator I = OST->begin(),
1877                                          IEnd = OST->end();
1878         I != IEnd; ++I)
1879      Diag((*I)->getLocation(), diag::note_template_declared_here)
1880        << 0 << (*I)->getDeclName();
1881
1882    return;
1883  }
1884}
1885
1886
1887QualType Sema::CheckTemplateIdType(TemplateName Name,
1888                                   SourceLocation TemplateLoc,
1889                                   TemplateArgumentListInfo &TemplateArgs) {
1890  DependentTemplateName *DTN
1891    = Name.getUnderlying().getAsDependentTemplateName();
1892  if (DTN && DTN->isIdentifier())
1893    // When building a template-id where the template-name is dependent,
1894    // assume the template is a type template. Either our assumption is
1895    // correct, or the code is ill-formed and will be diagnosed when the
1896    // dependent name is substituted.
1897    return Context.getDependentTemplateSpecializationType(ETK_None,
1898                                                          DTN->getQualifier(),
1899                                                          DTN->getIdentifier(),
1900                                                          TemplateArgs);
1901
1902  TemplateDecl *Template = Name.getAsTemplateDecl();
1903  if (!Template || isa<FunctionTemplateDecl>(Template)) {
1904    // We might have a substituted template template parameter pack. If so,
1905    // build a template specialization type for it.
1906    if (Name.getAsSubstTemplateTemplateParmPack())
1907      return Context.getTemplateSpecializationType(Name, TemplateArgs);
1908
1909    Diag(TemplateLoc, diag::err_template_id_not_a_type)
1910      << Name;
1911    NoteAllFoundTemplates(Name);
1912    return QualType();
1913  }
1914
1915  // Check that the template argument list is well-formed for this
1916  // template.
1917  SmallVector<TemplateArgument, 4> Converted;
1918  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
1919                                false, Converted))
1920    return QualType();
1921
1922  assert((Converted.size() == Template->getTemplateParameters()->size()) &&
1923         "Converted template argument list is too short!");
1924
1925  QualType CanonType;
1926
1927  bool InstantiationDependent = false;
1928  if (TypeAliasTemplateDecl *AliasTemplate
1929        = dyn_cast<TypeAliasTemplateDecl>(Template)) {
1930    // Find the canonical type for this type alias template specialization.
1931    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
1932    if (Pattern->isInvalidDecl())
1933      return QualType();
1934
1935    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1936                                      Converted.data(), Converted.size());
1937
1938    // Only substitute for the innermost template argument list.
1939    MultiLevelTemplateArgumentList TemplateArgLists;
1940    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
1941    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
1942    for (unsigned I = 0; I < Depth; ++I)
1943      TemplateArgLists.addOuterTemplateArguments(0, 0);
1944
1945    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
1946    CanonType = SubstType(Pattern->getUnderlyingType(),
1947                          TemplateArgLists, AliasTemplate->getLocation(),
1948                          AliasTemplate->getDeclName());
1949    if (CanonType.isNull())
1950      return QualType();
1951  } else if (Name.isDependent() ||
1952             TemplateSpecializationType::anyDependentTemplateArguments(
1953               TemplateArgs, InstantiationDependent)) {
1954    // This class template specialization is a dependent
1955    // type. Therefore, its canonical type is another class template
1956    // specialization type that contains all of the converted
1957    // arguments in canonical form. This ensures that, e.g., A<T> and
1958    // A<T, T> have identical types when A is declared as:
1959    //
1960    //   template<typename T, typename U = T> struct A;
1961    TemplateName CanonName = Context.getCanonicalTemplateName(Name);
1962    CanonType = Context.getTemplateSpecializationType(CanonName,
1963                                                      Converted.data(),
1964                                                      Converted.size());
1965
1966    // FIXME: CanonType is not actually the canonical type, and unfortunately
1967    // it is a TemplateSpecializationType that we will never use again.
1968    // In the future, we need to teach getTemplateSpecializationType to only
1969    // build the canonical type and return that to us.
1970    CanonType = Context.getCanonicalType(CanonType);
1971
1972    // This might work out to be a current instantiation, in which
1973    // case the canonical type needs to be the InjectedClassNameType.
1974    //
1975    // TODO: in theory this could be a simple hashtable lookup; most
1976    // changes to CurContext don't change the set of current
1977    // instantiations.
1978    if (isa<ClassTemplateDecl>(Template)) {
1979      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
1980        // If we get out to a namespace, we're done.
1981        if (Ctx->isFileContext()) break;
1982
1983        // If this isn't a record, keep looking.
1984        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
1985        if (!Record) continue;
1986
1987        // Look for one of the two cases with InjectedClassNameTypes
1988        // and check whether it's the same template.
1989        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
1990            !Record->getDescribedClassTemplate())
1991          continue;
1992
1993        // Fetch the injected class name type and check whether its
1994        // injected type is equal to the type we just built.
1995        QualType ICNT = Context.getTypeDeclType(Record);
1996        QualType Injected = cast<InjectedClassNameType>(ICNT)
1997          ->getInjectedSpecializationType();
1998
1999        if (CanonType != Injected->getCanonicalTypeInternal())
2000          continue;
2001
2002        // If so, the canonical type of this TST is the injected
2003        // class name type of the record we just found.
2004        assert(ICNT.isCanonical());
2005        CanonType = ICNT;
2006        break;
2007      }
2008    }
2009  } else if (ClassTemplateDecl *ClassTemplate
2010               = dyn_cast<ClassTemplateDecl>(Template)) {
2011    // Find the class template specialization declaration that
2012    // corresponds to these arguments.
2013    void *InsertPos = 0;
2014    ClassTemplateSpecializationDecl *Decl
2015      = ClassTemplate->findSpecialization(Converted.data(), Converted.size(),
2016                                          InsertPos);
2017    if (!Decl) {
2018      // This is the first time we have referenced this class template
2019      // specialization. Create the canonical declaration and add it to
2020      // the set of specializations.
2021      Decl = ClassTemplateSpecializationDecl::Create(Context,
2022                            ClassTemplate->getTemplatedDecl()->getTagKind(),
2023                                                ClassTemplate->getDeclContext(),
2024                            ClassTemplate->getTemplatedDecl()->getLocStart(),
2025                                                ClassTemplate->getLocation(),
2026                                                     ClassTemplate,
2027                                                     Converted.data(),
2028                                                     Converted.size(), 0);
2029      ClassTemplate->AddSpecialization(Decl, InsertPos);
2030      Decl->setLexicalDeclContext(CurContext);
2031    }
2032
2033    CanonType = Context.getTypeDeclType(Decl);
2034    assert(isa<RecordType>(CanonType) &&
2035           "type of non-dependent specialization is not a RecordType");
2036  }
2037
2038  // Build the fully-sugared type for this class template
2039  // specialization, which refers back to the class template
2040  // specialization we created or found.
2041  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2042}
2043
2044TypeResult
2045Sema::ActOnTemplateIdType(CXXScopeSpec &SS,
2046                          TemplateTy TemplateD, SourceLocation TemplateLoc,
2047                          SourceLocation LAngleLoc,
2048                          ASTTemplateArgsPtr TemplateArgsIn,
2049                          SourceLocation RAngleLoc) {
2050  if (SS.isInvalid())
2051    return true;
2052
2053  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2054
2055  // Translate the parser's template argument list in our AST format.
2056  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2057  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2058
2059  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2060    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
2061                                                           DTN->getQualifier(),
2062                                                           DTN->getIdentifier(),
2063                                                                TemplateArgs);
2064
2065    // Build type-source information.
2066    TypeLocBuilder TLB;
2067    DependentTemplateSpecializationTypeLoc SpecTL
2068      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2069    SpecTL.setKeywordLoc(SourceLocation());
2070    SpecTL.setNameLoc(TemplateLoc);
2071    SpecTL.setLAngleLoc(LAngleLoc);
2072    SpecTL.setRAngleLoc(RAngleLoc);
2073    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2074    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2075      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2076    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2077  }
2078
2079  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2080  TemplateArgsIn.release();
2081
2082  if (Result.isNull())
2083    return true;
2084
2085  // Build type-source information.
2086  TypeLocBuilder TLB;
2087  TemplateSpecializationTypeLoc SpecTL
2088    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2089  SpecTL.setTemplateNameLoc(TemplateLoc);
2090  SpecTL.setLAngleLoc(LAngleLoc);
2091  SpecTL.setRAngleLoc(RAngleLoc);
2092  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2093    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2094
2095  if (SS.isNotEmpty()) {
2096    // Create an elaborated-type-specifier containing the nested-name-specifier.
2097    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2098    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2099    ElabTL.setKeywordLoc(SourceLocation());
2100    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2101  }
2102
2103  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2104}
2105
2106TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2107                                        TypeSpecifierType TagSpec,
2108                                        SourceLocation TagLoc,
2109                                        CXXScopeSpec &SS,
2110                                        TemplateTy TemplateD,
2111                                        SourceLocation TemplateLoc,
2112                                        SourceLocation LAngleLoc,
2113                                        ASTTemplateArgsPtr TemplateArgsIn,
2114                                        SourceLocation RAngleLoc) {
2115  TemplateName Template = TemplateD.getAsVal<TemplateName>();
2116
2117  // Translate the parser's template argument list in our AST format.
2118  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2119  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2120
2121  // Determine the tag kind
2122  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2123  ElaboratedTypeKeyword Keyword
2124    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2125
2126  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2127    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2128                                                          DTN->getQualifier(),
2129                                                          DTN->getIdentifier(),
2130                                                                TemplateArgs);
2131
2132    // Build type-source information.
2133    TypeLocBuilder TLB;
2134    DependentTemplateSpecializationTypeLoc SpecTL
2135    = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2136    SpecTL.setKeywordLoc(TagLoc);
2137    SpecTL.setNameLoc(TemplateLoc);
2138    SpecTL.setLAngleLoc(LAngleLoc);
2139    SpecTL.setRAngleLoc(RAngleLoc);
2140    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2141    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2142      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2143    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2144  }
2145
2146  if (TypeAliasTemplateDecl *TAT =
2147        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2148    // C++0x [dcl.type.elab]p2:
2149    //   If the identifier resolves to a typedef-name or the simple-template-id
2150    //   resolves to an alias template specialization, the
2151    //   elaborated-type-specifier is ill-formed.
2152    Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2153    Diag(TAT->getLocation(), diag::note_declared_at);
2154  }
2155
2156  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2157  if (Result.isNull())
2158    return TypeResult(true);
2159
2160  // Check the tag kind
2161  if (const RecordType *RT = Result->getAs<RecordType>()) {
2162    RecordDecl *D = RT->getDecl();
2163
2164    IdentifierInfo *Id = D->getIdentifier();
2165    assert(Id && "templated class must have an identifier");
2166
2167    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2168                                      TagLoc, *Id)) {
2169      Diag(TagLoc, diag::err_use_with_wrong_tag)
2170        << Result
2171        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2172      Diag(D->getLocation(), diag::note_previous_use);
2173    }
2174  }
2175
2176  // Provide source-location information for the template specialization.
2177  TypeLocBuilder TLB;
2178  TemplateSpecializationTypeLoc SpecTL
2179    = TLB.push<TemplateSpecializationTypeLoc>(Result);
2180  SpecTL.setTemplateNameLoc(TemplateLoc);
2181  SpecTL.setLAngleLoc(LAngleLoc);
2182  SpecTL.setRAngleLoc(RAngleLoc);
2183  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2184    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2185
2186  // Construct an elaborated type containing the nested-name-specifier (if any)
2187  // and keyword.
2188  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2189  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2190  ElabTL.setKeywordLoc(TagLoc);
2191  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2192  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2193}
2194
2195ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2196                                     LookupResult &R,
2197                                     bool RequiresADL,
2198                                 const TemplateArgumentListInfo &TemplateArgs) {
2199  // FIXME: Can we do any checking at this point? I guess we could check the
2200  // template arguments that we have against the template name, if the template
2201  // name refers to a single template. That's not a terribly common case,
2202  // though.
2203  // foo<int> could identify a single function unambiguously
2204  // This approach does NOT work, since f<int>(1);
2205  // gets resolved prior to resorting to overload resolution
2206  // i.e., template<class T> void f(double);
2207  //       vs template<class T, class U> void f(U);
2208
2209  // These should be filtered out by our callers.
2210  assert(!R.empty() && "empty lookup results when building templateid");
2211  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2212
2213  // We don't want lookup warnings at this point.
2214  R.suppressDiagnostics();
2215
2216  UnresolvedLookupExpr *ULE
2217    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2218                                   SS.getWithLocInContext(Context),
2219                                   R.getLookupNameInfo(),
2220                                   RequiresADL, TemplateArgs,
2221                                   R.begin(), R.end());
2222
2223  return Owned(ULE);
2224}
2225
2226// We actually only call this from template instantiation.
2227ExprResult
2228Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2229                                   const DeclarationNameInfo &NameInfo,
2230                             const TemplateArgumentListInfo &TemplateArgs) {
2231  DeclContext *DC;
2232  if (!(DC = computeDeclContext(SS, false)) ||
2233      DC->isDependentContext() ||
2234      RequireCompleteDeclContext(SS, DC))
2235    return BuildDependentDeclRefExpr(SS, NameInfo, &TemplateArgs);
2236
2237  bool MemberOfUnknownSpecialization;
2238  LookupResult R(*this, NameInfo, LookupOrdinaryName);
2239  LookupTemplateName(R, (Scope*) 0, SS, QualType(), /*Entering*/ false,
2240                     MemberOfUnknownSpecialization);
2241
2242  if (R.isAmbiguous())
2243    return ExprError();
2244
2245  if (R.empty()) {
2246    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2247      << NameInfo.getName() << SS.getRange();
2248    return ExprError();
2249  }
2250
2251  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2252    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2253      << (NestedNameSpecifier*) SS.getScopeRep()
2254      << NameInfo.getName() << SS.getRange();
2255    Diag(Temp->getLocation(), diag::note_referenced_class_template);
2256    return ExprError();
2257  }
2258
2259  return BuildTemplateIdExpr(SS, R, /* ADL */ false, TemplateArgs);
2260}
2261
2262/// \brief Form a dependent template name.
2263///
2264/// This action forms a dependent template name given the template
2265/// name and its (presumably dependent) scope specifier. For
2266/// example, given "MetaFun::template apply", the scope specifier \p
2267/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2268/// of the "template" keyword, and "apply" is the \p Name.
2269TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2270                                                  SourceLocation TemplateKWLoc,
2271                                                  CXXScopeSpec &SS,
2272                                                  UnqualifiedId &Name,
2273                                                  ParsedType ObjectType,
2274                                                  bool EnteringContext,
2275                                                  TemplateTy &Result) {
2276  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2277    Diag(TemplateKWLoc,
2278         getLangOptions().CPlusPlus0x ?
2279           diag::warn_cxx98_compat_template_outside_of_template :
2280           diag::ext_template_outside_of_template)
2281      << FixItHint::CreateRemoval(TemplateKWLoc);
2282
2283  DeclContext *LookupCtx = 0;
2284  if (SS.isSet())
2285    LookupCtx = computeDeclContext(SS, EnteringContext);
2286  if (!LookupCtx && ObjectType)
2287    LookupCtx = computeDeclContext(ObjectType.get());
2288  if (LookupCtx) {
2289    // C++0x [temp.names]p5:
2290    //   If a name prefixed by the keyword template is not the name of
2291    //   a template, the program is ill-formed. [Note: the keyword
2292    //   template may not be applied to non-template members of class
2293    //   templates. -end note ] [ Note: as is the case with the
2294    //   typename prefix, the template prefix is allowed in cases
2295    //   where it is not strictly necessary; i.e., when the
2296    //   nested-name-specifier or the expression on the left of the ->
2297    //   or . is not dependent on a template-parameter, or the use
2298    //   does not appear in the scope of a template. -end note]
2299    //
2300    // Note: C++03 was more strict here, because it banned the use of
2301    // the "template" keyword prior to a template-name that was not a
2302    // dependent name. C++ DR468 relaxed this requirement (the
2303    // "template" keyword is now permitted). We follow the C++0x
2304    // rules, even in C++03 mode with a warning, retroactively applying the DR.
2305    bool MemberOfUnknownSpecialization;
2306    TemplateNameKind TNK = isTemplateName(0, SS, TemplateKWLoc.isValid(), Name,
2307                                          ObjectType, EnteringContext, Result,
2308                                          MemberOfUnknownSpecialization);
2309    if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
2310        isa<CXXRecordDecl>(LookupCtx) &&
2311        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
2312         cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
2313      // This is a dependent template. Handle it below.
2314    } else if (TNK == TNK_Non_template) {
2315      Diag(Name.getSourceRange().getBegin(),
2316           diag::err_template_kw_refers_to_non_template)
2317        << GetNameFromUnqualifiedId(Name).getName()
2318        << Name.getSourceRange()
2319        << TemplateKWLoc;
2320      return TNK_Non_template;
2321    } else {
2322      // We found something; return it.
2323      return TNK;
2324    }
2325  }
2326
2327  NestedNameSpecifier *Qualifier
2328    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2329
2330  switch (Name.getKind()) {
2331  case UnqualifiedId::IK_Identifier:
2332    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2333                                                              Name.Identifier));
2334    return TNK_Dependent_template_name;
2335
2336  case UnqualifiedId::IK_OperatorFunctionId:
2337    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
2338                                             Name.OperatorFunctionId.Operator));
2339    return TNK_Dependent_template_name;
2340
2341  case UnqualifiedId::IK_LiteralOperatorId:
2342    llvm_unreachable(
2343            "We don't support these; Parse shouldn't have allowed propagation");
2344
2345  default:
2346    break;
2347  }
2348
2349  Diag(Name.getSourceRange().getBegin(),
2350       diag::err_template_kw_refers_to_non_template)
2351    << GetNameFromUnqualifiedId(Name).getName()
2352    << Name.getSourceRange()
2353    << TemplateKWLoc;
2354  return TNK_Non_template;
2355}
2356
2357bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
2358                                     const TemplateArgumentLoc &AL,
2359                          SmallVectorImpl<TemplateArgument> &Converted) {
2360  const TemplateArgument &Arg = AL.getArgument();
2361
2362  // Check template type parameter.
2363  switch(Arg.getKind()) {
2364  case TemplateArgument::Type:
2365    // C++ [temp.arg.type]p1:
2366    //   A template-argument for a template-parameter which is a
2367    //   type shall be a type-id.
2368    break;
2369  case TemplateArgument::Template: {
2370    // We have a template type parameter but the template argument
2371    // is a template without any arguments.
2372    SourceRange SR = AL.getSourceRange();
2373    TemplateName Name = Arg.getAsTemplate();
2374    Diag(SR.getBegin(), diag::err_template_missing_args)
2375      << Name << SR;
2376    if (TemplateDecl *Decl = Name.getAsTemplateDecl())
2377      Diag(Decl->getLocation(), diag::note_template_decl_here);
2378
2379    return true;
2380  }
2381  default: {
2382    // We have a template type parameter but the template argument
2383    // is not a type.
2384    SourceRange SR = AL.getSourceRange();
2385    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
2386    Diag(Param->getLocation(), diag::note_template_param_here);
2387
2388    return true;
2389  }
2390  }
2391
2392  if (CheckTemplateArgument(Param, AL.getTypeSourceInfo()))
2393    return true;
2394
2395  // Add the converted template type argument.
2396  QualType ArgType = Context.getCanonicalType(Arg.getAsType());
2397
2398  // Objective-C ARC:
2399  //   If an explicitly-specified template argument type is a lifetime type
2400  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
2401  if (getLangOptions().ObjCAutoRefCount &&
2402      ArgType->isObjCLifetimeType() &&
2403      !ArgType.getObjCLifetime()) {
2404    Qualifiers Qs;
2405    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
2406    ArgType = Context.getQualifiedType(ArgType, Qs);
2407  }
2408
2409  Converted.push_back(TemplateArgument(ArgType));
2410  return false;
2411}
2412
2413/// \brief Substitute template arguments into the default template argument for
2414/// the given template type parameter.
2415///
2416/// \param SemaRef the semantic analysis object for which we are performing
2417/// the substitution.
2418///
2419/// \param Template the template that we are synthesizing template arguments
2420/// for.
2421///
2422/// \param TemplateLoc the location of the template name that started the
2423/// template-id we are checking.
2424///
2425/// \param RAngleLoc the location of the right angle bracket ('>') that
2426/// terminates the template-id.
2427///
2428/// \param Param the template template parameter whose default we are
2429/// substituting into.
2430///
2431/// \param Converted the list of template arguments provided for template
2432/// parameters that precede \p Param in the template parameter list.
2433/// \returns the substituted template argument, or NULL if an error occurred.
2434static TypeSourceInfo *
2435SubstDefaultTemplateArgument(Sema &SemaRef,
2436                             TemplateDecl *Template,
2437                             SourceLocation TemplateLoc,
2438                             SourceLocation RAngleLoc,
2439                             TemplateTypeParmDecl *Param,
2440                         SmallVectorImpl<TemplateArgument> &Converted) {
2441  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
2442
2443  // If the argument type is dependent, instantiate it now based
2444  // on the previously-computed template arguments.
2445  if (ArgType->getType()->isDependentType()) {
2446    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2447                                      Converted.data(), Converted.size());
2448
2449    MultiLevelTemplateArgumentList AllTemplateArgs
2450      = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2451
2452    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2453                                     Template, Converted.data(),
2454                                     Converted.size(),
2455                                     SourceRange(TemplateLoc, RAngleLoc));
2456
2457    ArgType = SemaRef.SubstType(ArgType, AllTemplateArgs,
2458                                Param->getDefaultArgumentLoc(),
2459                                Param->getDeclName());
2460  }
2461
2462  return ArgType;
2463}
2464
2465/// \brief Substitute template arguments into the default template argument for
2466/// the given non-type template parameter.
2467///
2468/// \param SemaRef the semantic analysis object for which we are performing
2469/// the substitution.
2470///
2471/// \param Template the template that we are synthesizing template arguments
2472/// for.
2473///
2474/// \param TemplateLoc the location of the template name that started the
2475/// template-id we are checking.
2476///
2477/// \param RAngleLoc the location of the right angle bracket ('>') that
2478/// terminates the template-id.
2479///
2480/// \param Param the non-type template parameter whose default we are
2481/// substituting into.
2482///
2483/// \param Converted the list of template arguments provided for template
2484/// parameters that precede \p Param in the template parameter list.
2485///
2486/// \returns the substituted template argument, or NULL if an error occurred.
2487static ExprResult
2488SubstDefaultTemplateArgument(Sema &SemaRef,
2489                             TemplateDecl *Template,
2490                             SourceLocation TemplateLoc,
2491                             SourceLocation RAngleLoc,
2492                             NonTypeTemplateParmDecl *Param,
2493                        SmallVectorImpl<TemplateArgument> &Converted) {
2494  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2495                                    Converted.data(), Converted.size());
2496
2497  MultiLevelTemplateArgumentList AllTemplateArgs
2498    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2499
2500  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2501                                   Template, Converted.data(),
2502                                   Converted.size(),
2503                                   SourceRange(TemplateLoc, RAngleLoc));
2504
2505  return SemaRef.SubstExpr(Param->getDefaultArgument(), AllTemplateArgs);
2506}
2507
2508/// \brief Substitute template arguments into the default template argument for
2509/// the given template template parameter.
2510///
2511/// \param SemaRef the semantic analysis object for which we are performing
2512/// the substitution.
2513///
2514/// \param Template the template that we are synthesizing template arguments
2515/// for.
2516///
2517/// \param TemplateLoc the location of the template name that started the
2518/// template-id we are checking.
2519///
2520/// \param RAngleLoc the location of the right angle bracket ('>') that
2521/// terminates the template-id.
2522///
2523/// \param Param the template template parameter whose default we are
2524/// substituting into.
2525///
2526/// \param Converted the list of template arguments provided for template
2527/// parameters that precede \p Param in the template parameter list.
2528///
2529/// \param QualifierLoc Will be set to the nested-name-specifier (with
2530/// source-location information) that precedes the template name.
2531///
2532/// \returns the substituted template argument, or NULL if an error occurred.
2533static TemplateName
2534SubstDefaultTemplateArgument(Sema &SemaRef,
2535                             TemplateDecl *Template,
2536                             SourceLocation TemplateLoc,
2537                             SourceLocation RAngleLoc,
2538                             TemplateTemplateParmDecl *Param,
2539                       SmallVectorImpl<TemplateArgument> &Converted,
2540                             NestedNameSpecifierLoc &QualifierLoc) {
2541  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2542                                    Converted.data(), Converted.size());
2543
2544  MultiLevelTemplateArgumentList AllTemplateArgs
2545    = SemaRef.getTemplateInstantiationArgs(Template, &TemplateArgs);
2546
2547  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
2548                                   Template, Converted.data(),
2549                                   Converted.size(),
2550                                   SourceRange(TemplateLoc, RAngleLoc));
2551
2552  // Substitute into the nested-name-specifier first,
2553  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
2554  if (QualifierLoc) {
2555    QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
2556                                                       AllTemplateArgs);
2557    if (!QualifierLoc)
2558      return TemplateName();
2559  }
2560
2561  return SemaRef.SubstTemplateName(QualifierLoc,
2562                      Param->getDefaultArgument().getArgument().getAsTemplate(),
2563                              Param->getDefaultArgument().getTemplateNameLoc(),
2564                                   AllTemplateArgs);
2565}
2566
2567/// \brief If the given template parameter has a default template
2568/// argument, substitute into that default template argument and
2569/// return the corresponding template argument.
2570TemplateArgumentLoc
2571Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
2572                                              SourceLocation TemplateLoc,
2573                                              SourceLocation RAngleLoc,
2574                                              Decl *Param,
2575                      SmallVectorImpl<TemplateArgument> &Converted) {
2576   if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
2577    if (!TypeParm->hasDefaultArgument())
2578      return TemplateArgumentLoc();
2579
2580    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
2581                                                      TemplateLoc,
2582                                                      RAngleLoc,
2583                                                      TypeParm,
2584                                                      Converted);
2585    if (DI)
2586      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
2587
2588    return TemplateArgumentLoc();
2589  }
2590
2591  if (NonTypeTemplateParmDecl *NonTypeParm
2592        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2593    if (!NonTypeParm->hasDefaultArgument())
2594      return TemplateArgumentLoc();
2595
2596    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
2597                                                  TemplateLoc,
2598                                                  RAngleLoc,
2599                                                  NonTypeParm,
2600                                                  Converted);
2601    if (Arg.isInvalid())
2602      return TemplateArgumentLoc();
2603
2604    Expr *ArgE = Arg.takeAs<Expr>();
2605    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
2606  }
2607
2608  TemplateTemplateParmDecl *TempTempParm
2609    = cast<TemplateTemplateParmDecl>(Param);
2610  if (!TempTempParm->hasDefaultArgument())
2611    return TemplateArgumentLoc();
2612
2613
2614  NestedNameSpecifierLoc QualifierLoc;
2615  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
2616                                                    TemplateLoc,
2617                                                    RAngleLoc,
2618                                                    TempTempParm,
2619                                                    Converted,
2620                                                    QualifierLoc);
2621  if (TName.isNull())
2622    return TemplateArgumentLoc();
2623
2624  return TemplateArgumentLoc(TemplateArgument(TName),
2625                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
2626                TempTempParm->getDefaultArgument().getTemplateNameLoc());
2627}
2628
2629/// \brief Check that the given template argument corresponds to the given
2630/// template parameter.
2631///
2632/// \param Param The template parameter against which the argument will be
2633/// checked.
2634///
2635/// \param Arg The template argument.
2636///
2637/// \param Template The template in which the template argument resides.
2638///
2639/// \param TemplateLoc The location of the template name for the template
2640/// whose argument list we're matching.
2641///
2642/// \param RAngleLoc The location of the right angle bracket ('>') that closes
2643/// the template argument list.
2644///
2645/// \param ArgumentPackIndex The index into the argument pack where this
2646/// argument will be placed. Only valid if the parameter is a parameter pack.
2647///
2648/// \param Converted The checked, converted argument will be added to the
2649/// end of this small vector.
2650///
2651/// \param CTAK Describes how we arrived at this particular template argument:
2652/// explicitly written, deduced, etc.
2653///
2654/// \returns true on error, false otherwise.
2655bool Sema::CheckTemplateArgument(NamedDecl *Param,
2656                                 const TemplateArgumentLoc &Arg,
2657                                 NamedDecl *Template,
2658                                 SourceLocation TemplateLoc,
2659                                 SourceLocation RAngleLoc,
2660                                 unsigned ArgumentPackIndex,
2661                            SmallVectorImpl<TemplateArgument> &Converted,
2662                                 CheckTemplateArgumentKind CTAK) {
2663  // Check template type parameters.
2664  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
2665    return CheckTemplateTypeArgument(TTP, Arg, Converted);
2666
2667  // Check non-type template parameters.
2668  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2669    // Do substitution on the type of the non-type template parameter
2670    // with the template arguments we've seen thus far.  But if the
2671    // template has a dependent context then we cannot substitute yet.
2672    QualType NTTPType = NTTP->getType();
2673    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
2674      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
2675
2676    if (NTTPType->isDependentType() &&
2677        !isa<TemplateTemplateParmDecl>(Template) &&
2678        !Template->getDeclContext()->isDependentContext()) {
2679      // Do substitution on the type of the non-type template parameter.
2680      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2681                                 NTTP, Converted.data(), Converted.size(),
2682                                 SourceRange(TemplateLoc, RAngleLoc));
2683
2684      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2685                                        Converted.data(), Converted.size());
2686      NTTPType = SubstType(NTTPType,
2687                           MultiLevelTemplateArgumentList(TemplateArgs),
2688                           NTTP->getLocation(),
2689                           NTTP->getDeclName());
2690      // If that worked, check the non-type template parameter type
2691      // for validity.
2692      if (!NTTPType.isNull())
2693        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
2694                                                     NTTP->getLocation());
2695      if (NTTPType.isNull())
2696        return true;
2697    }
2698
2699    switch (Arg.getArgument().getKind()) {
2700    case TemplateArgument::Null:
2701      llvm_unreachable("Should never see a NULL template argument here");
2702
2703    case TemplateArgument::Expression: {
2704      TemplateArgument Result;
2705      ExprResult Res =
2706        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
2707                              Result, CTAK);
2708      if (Res.isInvalid())
2709        return true;
2710
2711      Converted.push_back(Result);
2712      break;
2713    }
2714
2715    case TemplateArgument::Declaration:
2716    case TemplateArgument::Integral:
2717      // We've already checked this template argument, so just copy
2718      // it to the list of converted arguments.
2719      Converted.push_back(Arg.getArgument());
2720      break;
2721
2722    case TemplateArgument::Template:
2723    case TemplateArgument::TemplateExpansion:
2724      // We were given a template template argument. It may not be ill-formed;
2725      // see below.
2726      if (DependentTemplateName *DTN
2727            = Arg.getArgument().getAsTemplateOrTemplatePattern()
2728                                              .getAsDependentTemplateName()) {
2729        // We have a template argument such as \c T::template X, which we
2730        // parsed as a template template argument. However, since we now
2731        // know that we need a non-type template argument, convert this
2732        // template name into an expression.
2733
2734        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
2735                                     Arg.getTemplateNameLoc());
2736
2737        CXXScopeSpec SS;
2738        SS.Adopt(Arg.getTemplateQualifierLoc());
2739        ExprResult E = Owned(DependentScopeDeclRefExpr::Create(Context,
2740                                                SS.getWithLocInContext(Context),
2741                                                    NameInfo));
2742
2743        // If we parsed the template argument as a pack expansion, create a
2744        // pack expansion expression.
2745        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
2746          E = ActOnPackExpansion(E.take(), Arg.getTemplateEllipsisLoc());
2747          if (E.isInvalid())
2748            return true;
2749        }
2750
2751        TemplateArgument Result;
2752        E = CheckTemplateArgument(NTTP, NTTPType, E.take(), Result);
2753        if (E.isInvalid())
2754          return true;
2755
2756        Converted.push_back(Result);
2757        break;
2758      }
2759
2760      // We have a template argument that actually does refer to a class
2761      // template, alias template, or template template parameter, and
2762      // therefore cannot be a non-type template argument.
2763      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
2764        << Arg.getSourceRange();
2765
2766      Diag(Param->getLocation(), diag::note_template_param_here);
2767      return true;
2768
2769    case TemplateArgument::Type: {
2770      // We have a non-type template parameter but the template
2771      // argument is a type.
2772
2773      // C++ [temp.arg]p2:
2774      //   In a template-argument, an ambiguity between a type-id and
2775      //   an expression is resolved to a type-id, regardless of the
2776      //   form of the corresponding template-parameter.
2777      //
2778      // We warn specifically about this case, since it can be rather
2779      // confusing for users.
2780      QualType T = Arg.getArgument().getAsType();
2781      SourceRange SR = Arg.getSourceRange();
2782      if (T->isFunctionType())
2783        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
2784      else
2785        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
2786      Diag(Param->getLocation(), diag::note_template_param_here);
2787      return true;
2788    }
2789
2790    case TemplateArgument::Pack:
2791      llvm_unreachable("Caller must expand template argument packs");
2792      break;
2793    }
2794
2795    return false;
2796  }
2797
2798
2799  // Check template template parameters.
2800  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
2801
2802  // Substitute into the template parameter list of the template
2803  // template parameter, since previously-supplied template arguments
2804  // may appear within the template template parameter.
2805  {
2806    // Set up a template instantiation context.
2807    LocalInstantiationScope Scope(*this);
2808    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
2809                               TempParm, Converted.data(), Converted.size(),
2810                               SourceRange(TemplateLoc, RAngleLoc));
2811
2812    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2813                                      Converted.data(), Converted.size());
2814    TempParm = cast_or_null<TemplateTemplateParmDecl>(
2815                      SubstDecl(TempParm, CurContext,
2816                                MultiLevelTemplateArgumentList(TemplateArgs)));
2817    if (!TempParm)
2818      return true;
2819  }
2820
2821  switch (Arg.getArgument().getKind()) {
2822  case TemplateArgument::Null:
2823    llvm_unreachable("Should never see a NULL template argument here");
2824
2825  case TemplateArgument::Template:
2826  case TemplateArgument::TemplateExpansion:
2827    if (CheckTemplateArgument(TempParm, Arg))
2828      return true;
2829
2830    Converted.push_back(Arg.getArgument());
2831    break;
2832
2833  case TemplateArgument::Expression:
2834  case TemplateArgument::Type:
2835    // We have a template template parameter but the template
2836    // argument does not refer to a template.
2837    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
2838      << getLangOptions().CPlusPlus0x;
2839    return true;
2840
2841  case TemplateArgument::Declaration:
2842    llvm_unreachable(
2843                       "Declaration argument with template template parameter");
2844    break;
2845  case TemplateArgument::Integral:
2846    llvm_unreachable(
2847                          "Integral argument with template template parameter");
2848    break;
2849
2850  case TemplateArgument::Pack:
2851    llvm_unreachable("Caller must expand template argument packs");
2852    break;
2853  }
2854
2855  return false;
2856}
2857
2858/// \brief Check that the given template argument list is well-formed
2859/// for specializing the given template.
2860bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
2861                                     SourceLocation TemplateLoc,
2862                                     TemplateArgumentListInfo &TemplateArgs,
2863                                     bool PartialTemplateArgs,
2864                          SmallVectorImpl<TemplateArgument> &Converted) {
2865  TemplateParameterList *Params = Template->getTemplateParameters();
2866  unsigned NumParams = Params->size();
2867  unsigned NumArgs = TemplateArgs.size();
2868  bool Invalid = false;
2869
2870  SourceLocation RAngleLoc = TemplateArgs.getRAngleLoc();
2871
2872  bool HasParameterPack =
2873    NumParams > 0 && Params->getParam(NumParams - 1)->isTemplateParameterPack();
2874
2875  if ((NumArgs > NumParams && !HasParameterPack) ||
2876      (NumArgs < Params->getMinRequiredArguments() &&
2877       !PartialTemplateArgs)) {
2878    // FIXME: point at either the first arg beyond what we can handle,
2879    // or the '>', depending on whether we have too many or too few
2880    // arguments.
2881    SourceRange Range;
2882    if (NumArgs > NumParams)
2883      Range = SourceRange(TemplateArgs[NumParams].getLocation(), RAngleLoc);
2884    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2885      << (NumArgs > NumParams)
2886      << (isa<ClassTemplateDecl>(Template)? 0 :
2887          isa<FunctionTemplateDecl>(Template)? 1 :
2888          isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2889      << Template << Range;
2890    Diag(Template->getLocation(), diag::note_template_decl_here)
2891      << Params->getSourceRange();
2892    Invalid = true;
2893  }
2894
2895  // C++ [temp.arg]p1:
2896  //   [...] The type and form of each template-argument specified in
2897  //   a template-id shall match the type and form specified for the
2898  //   corresponding parameter declared by the template in its
2899  //   template-parameter-list.
2900  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
2901  SmallVector<TemplateArgument, 2> ArgumentPack;
2902  TemplateParameterList::iterator Param = Params->begin(),
2903                               ParamEnd = Params->end();
2904  unsigned ArgIdx = 0;
2905  LocalInstantiationScope InstScope(*this, true);
2906  while (Param != ParamEnd) {
2907    if (ArgIdx < NumArgs) {
2908      // If we have an expanded parameter pack, make sure we don't have too
2909      // many arguments.
2910      if (NonTypeTemplateParmDecl *NTTP
2911                                = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2912        if (NTTP->isExpandedParameterPack() &&
2913            ArgumentPack.size() >= NTTP->getNumExpansionTypes()) {
2914          Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
2915            << true
2916            << (isa<ClassTemplateDecl>(Template)? 0 :
2917                isa<FunctionTemplateDecl>(Template)? 1 :
2918                isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
2919            << Template;
2920          Diag(Template->getLocation(), diag::note_template_decl_here)
2921            << Params->getSourceRange();
2922          return true;
2923        }
2924      }
2925
2926      // Check the template argument we were given.
2927      if (CheckTemplateArgument(*Param, TemplateArgs[ArgIdx], Template,
2928                                TemplateLoc, RAngleLoc,
2929                                ArgumentPack.size(), Converted))
2930        return true;
2931
2932      if ((*Param)->isTemplateParameterPack()) {
2933        // The template parameter was a template parameter pack, so take the
2934        // deduced argument and place it on the argument pack. Note that we
2935        // stay on the same template parameter so that we can deduce more
2936        // arguments.
2937        ArgumentPack.push_back(Converted.back());
2938        Converted.pop_back();
2939      } else {
2940        // Move to the next template parameter.
2941        ++Param;
2942      }
2943      ++ArgIdx;
2944      continue;
2945    }
2946
2947    // If we're checking a partial template argument list, we're done.
2948    if (PartialTemplateArgs) {
2949      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
2950        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
2951                                                         ArgumentPack.data(),
2952                                                         ArgumentPack.size()));
2953
2954      return Invalid;
2955    }
2956
2957    // If we have a template parameter pack with no more corresponding
2958    // arguments, just break out now and we'll fill in the argument pack below.
2959    if ((*Param)->isTemplateParameterPack())
2960      break;
2961
2962    // We have a default template argument that we will use.
2963    TemplateArgumentLoc Arg;
2964
2965    // Retrieve the default template argument from the template
2966    // parameter. For each kind of template parameter, we substitute the
2967    // template arguments provided thus far and any "outer" template arguments
2968    // (when the template parameter was part of a nested template) into
2969    // the default argument.
2970    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
2971      if (!TTP->hasDefaultArgument()) {
2972        assert(Invalid && "Missing default argument");
2973        break;
2974      }
2975
2976      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
2977                                                             Template,
2978                                                             TemplateLoc,
2979                                                             RAngleLoc,
2980                                                             TTP,
2981                                                             Converted);
2982      if (!ArgType)
2983        return true;
2984
2985      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
2986                                ArgType);
2987    } else if (NonTypeTemplateParmDecl *NTTP
2988                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
2989      if (!NTTP->hasDefaultArgument()) {
2990        assert(Invalid && "Missing default argument");
2991        break;
2992      }
2993
2994      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
2995                                                              TemplateLoc,
2996                                                              RAngleLoc,
2997                                                              NTTP,
2998                                                              Converted);
2999      if (E.isInvalid())
3000        return true;
3001
3002      Expr *Ex = E.takeAs<Expr>();
3003      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3004    } else {
3005      TemplateTemplateParmDecl *TempParm
3006        = cast<TemplateTemplateParmDecl>(*Param);
3007
3008      if (!TempParm->hasDefaultArgument()) {
3009        assert(Invalid && "Missing default argument");
3010        break;
3011      }
3012
3013      NestedNameSpecifierLoc QualifierLoc;
3014      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3015                                                       TemplateLoc,
3016                                                       RAngleLoc,
3017                                                       TempParm,
3018                                                       Converted,
3019                                                       QualifierLoc);
3020      if (Name.isNull())
3021        return true;
3022
3023      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3024                           TempParm->getDefaultArgument().getTemplateNameLoc());
3025    }
3026
3027    // Introduce an instantiation record that describes where we are using
3028    // the default template argument.
3029    InstantiatingTemplate Instantiating(*this, RAngleLoc, Template, *Param,
3030                                        Converted.data(), Converted.size(),
3031                                        SourceRange(TemplateLoc, RAngleLoc));
3032
3033    // Check the default template argument.
3034    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3035                              RAngleLoc, 0, Converted))
3036      return true;
3037
3038    // Core issue 150 (assumed resolution): if this is a template template
3039    // parameter, keep track of the default template arguments from the
3040    // template definition.
3041    if (isTemplateTemplateParameter)
3042      TemplateArgs.addArgument(Arg);
3043
3044    // Move to the next template parameter and argument.
3045    ++Param;
3046    ++ArgIdx;
3047  }
3048
3049  // Form argument packs for each of the parameter packs remaining.
3050  while (Param != ParamEnd) {
3051    // If we're checking a partial list of template arguments, don't fill
3052    // in arguments for non-template parameter packs.
3053
3054    if ((*Param)->isTemplateParameterPack()) {
3055      if (!HasParameterPack)
3056        return true;
3057      if (ArgumentPack.empty())
3058        Converted.push_back(TemplateArgument(0, 0));
3059      else {
3060        Converted.push_back(TemplateArgument::CreatePackCopy(Context,
3061                                                          ArgumentPack.data(),
3062                                                         ArgumentPack.size()));
3063        ArgumentPack.clear();
3064      }
3065    }
3066
3067    ++Param;
3068  }
3069
3070  return Invalid;
3071}
3072
3073namespace {
3074  class UnnamedLocalNoLinkageFinder
3075    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3076  {
3077    Sema &S;
3078    SourceRange SR;
3079
3080    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3081
3082  public:
3083    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
3084
3085    bool Visit(QualType T) {
3086      return inherited::Visit(T.getTypePtr());
3087    }
3088
3089#define TYPE(Class, Parent) \
3090    bool Visit##Class##Type(const Class##Type *);
3091#define ABSTRACT_TYPE(Class, Parent) \
3092    bool Visit##Class##Type(const Class##Type *) { return false; }
3093#define NON_CANONICAL_TYPE(Class, Parent) \
3094    bool Visit##Class##Type(const Class##Type *) { return false; }
3095#include "clang/AST/TypeNodes.def"
3096
3097    bool VisitTagDecl(const TagDecl *Tag);
3098    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
3099  };
3100}
3101
3102bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
3103  return false;
3104}
3105
3106bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
3107  return Visit(T->getElementType());
3108}
3109
3110bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
3111  return Visit(T->getPointeeType());
3112}
3113
3114bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
3115                                                    const BlockPointerType* T) {
3116  return Visit(T->getPointeeType());
3117}
3118
3119bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
3120                                                const LValueReferenceType* T) {
3121  return Visit(T->getPointeeType());
3122}
3123
3124bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
3125                                                const RValueReferenceType* T) {
3126  return Visit(T->getPointeeType());
3127}
3128
3129bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
3130                                                  const MemberPointerType* T) {
3131  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
3132}
3133
3134bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
3135                                                  const ConstantArrayType* T) {
3136  return Visit(T->getElementType());
3137}
3138
3139bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
3140                                                 const IncompleteArrayType* T) {
3141  return Visit(T->getElementType());
3142}
3143
3144bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
3145                                                   const VariableArrayType* T) {
3146  return Visit(T->getElementType());
3147}
3148
3149bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
3150                                            const DependentSizedArrayType* T) {
3151  return Visit(T->getElementType());
3152}
3153
3154bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
3155                                         const DependentSizedExtVectorType* T) {
3156  return Visit(T->getElementType());
3157}
3158
3159bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
3160  return Visit(T->getElementType());
3161}
3162
3163bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
3164  return Visit(T->getElementType());
3165}
3166
3167bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
3168                                                  const FunctionProtoType* T) {
3169  for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(),
3170                                         AEnd = T->arg_type_end();
3171       A != AEnd; ++A) {
3172    if (Visit(*A))
3173      return true;
3174  }
3175
3176  return Visit(T->getResultType());
3177}
3178
3179bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
3180                                               const FunctionNoProtoType* T) {
3181  return Visit(T->getResultType());
3182}
3183
3184bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
3185                                                  const UnresolvedUsingType*) {
3186  return false;
3187}
3188
3189bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
3190  return false;
3191}
3192
3193bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
3194  return Visit(T->getUnderlyingType());
3195}
3196
3197bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
3198  return false;
3199}
3200
3201bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
3202                                                    const UnaryTransformType*) {
3203  return false;
3204}
3205
3206bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
3207  return Visit(T->getDeducedType());
3208}
3209
3210bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
3211  return VisitTagDecl(T->getDecl());
3212}
3213
3214bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
3215  return VisitTagDecl(T->getDecl());
3216}
3217
3218bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
3219                                                 const TemplateTypeParmType*) {
3220  return false;
3221}
3222
3223bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
3224                                        const SubstTemplateTypeParmPackType *) {
3225  return false;
3226}
3227
3228bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
3229                                            const TemplateSpecializationType*) {
3230  return false;
3231}
3232
3233bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
3234                                              const InjectedClassNameType* T) {
3235  return VisitTagDecl(T->getDecl());
3236}
3237
3238bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
3239                                                   const DependentNameType* T) {
3240  return VisitNestedNameSpecifier(T->getQualifier());
3241}
3242
3243bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
3244                                 const DependentTemplateSpecializationType* T) {
3245  return VisitNestedNameSpecifier(T->getQualifier());
3246}
3247
3248bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
3249                                                   const PackExpansionType* T) {
3250  return Visit(T->getPattern());
3251}
3252
3253bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
3254  return false;
3255}
3256
3257bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
3258                                                   const ObjCInterfaceType *) {
3259  return false;
3260}
3261
3262bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
3263                                                const ObjCObjectPointerType *) {
3264  return false;
3265}
3266
3267bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
3268  return Visit(T->getValueType());
3269}
3270
3271bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
3272  if (Tag->getDeclContext()->isFunctionOrMethod()) {
3273    S.Diag(SR.getBegin(),
3274           S.getLangOptions().CPlusPlus0x ?
3275             diag::warn_cxx98_compat_template_arg_local_type :
3276             diag::ext_template_arg_local_type)
3277      << S.Context.getTypeDeclType(Tag) << SR;
3278    return true;
3279  }
3280
3281  if (!Tag->getDeclName() && !Tag->getTypedefNameForAnonDecl()) {
3282    S.Diag(SR.getBegin(),
3283           S.getLangOptions().CPlusPlus0x ?
3284             diag::warn_cxx98_compat_template_arg_unnamed_type :
3285             diag::ext_template_arg_unnamed_type) << SR;
3286    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
3287    return true;
3288  }
3289
3290  return false;
3291}
3292
3293bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
3294                                                    NestedNameSpecifier *NNS) {
3295  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
3296    return true;
3297
3298  switch (NNS->getKind()) {
3299  case NestedNameSpecifier::Identifier:
3300  case NestedNameSpecifier::Namespace:
3301  case NestedNameSpecifier::NamespaceAlias:
3302  case NestedNameSpecifier::Global:
3303    return false;
3304
3305  case NestedNameSpecifier::TypeSpec:
3306  case NestedNameSpecifier::TypeSpecWithTemplate:
3307    return Visit(QualType(NNS->getAsType(), 0));
3308  }
3309  return false;
3310}
3311
3312
3313/// \brief Check a template argument against its corresponding
3314/// template type parameter.
3315///
3316/// This routine implements the semantics of C++ [temp.arg.type]. It
3317/// returns true if an error occurred, and false otherwise.
3318bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
3319                                 TypeSourceInfo *ArgInfo) {
3320  assert(ArgInfo && "invalid TypeSourceInfo");
3321  QualType Arg = ArgInfo->getType();
3322  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
3323
3324  if (Arg->isVariablyModifiedType()) {
3325    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
3326  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
3327    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
3328  }
3329
3330  // C++03 [temp.arg.type]p2:
3331  //   A local type, a type with no linkage, an unnamed type or a type
3332  //   compounded from any of these types shall not be used as a
3333  //   template-argument for a template type-parameter.
3334  //
3335  // C++11 allows these, and even in C++03 we allow them as an extension with
3336  // a warning.
3337  if (LangOpts.CPlusPlus0x ?
3338     Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_unnamed_type,
3339                              SR.getBegin()) != DiagnosticsEngine::Ignored ||
3340      Diags.getDiagnosticLevel(diag::warn_cxx98_compat_template_arg_local_type,
3341                               SR.getBegin()) != DiagnosticsEngine::Ignored :
3342      Arg->hasUnnamedOrLocalType()) {
3343    UnnamedLocalNoLinkageFinder Finder(*this, SR);
3344    (void)Finder.Visit(Context.getCanonicalType(Arg));
3345  }
3346
3347  return false;
3348}
3349
3350/// \brief Checks whether the given template argument is the address
3351/// of an object or function according to C++ [temp.arg.nontype]p1.
3352static bool
3353CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
3354                                               NonTypeTemplateParmDecl *Param,
3355                                               QualType ParamType,
3356                                               Expr *ArgIn,
3357                                               TemplateArgument &Converted) {
3358  bool Invalid = false;
3359  Expr *Arg = ArgIn;
3360  QualType ArgType = Arg->getType();
3361
3362  // See through any implicit casts we added to fix the type.
3363  Arg = Arg->IgnoreImpCasts();
3364
3365  // C++ [temp.arg.nontype]p1:
3366  //
3367  //   A template-argument for a non-type, non-template
3368  //   template-parameter shall be one of: [...]
3369  //
3370  //     -- the address of an object or function with external
3371  //        linkage, including function templates and function
3372  //        template-ids but excluding non-static class members,
3373  //        expressed as & id-expression where the & is optional if
3374  //        the name refers to a function or array, or if the
3375  //        corresponding template-parameter is a reference; or
3376
3377  // In C++98/03 mode, give an extension warning on any extra parentheses.
3378  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3379  bool ExtraParens = false;
3380  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3381    if (!Invalid && !ExtraParens) {
3382      S.Diag(Arg->getSourceRange().getBegin(),
3383             S.getLangOptions().CPlusPlus0x ?
3384               diag::warn_cxx98_compat_template_arg_extra_parens :
3385               diag::ext_template_arg_extra_parens)
3386        << Arg->getSourceRange();
3387      ExtraParens = true;
3388    }
3389
3390    Arg = Parens->getSubExpr();
3391  }
3392
3393  while (SubstNonTypeTemplateParmExpr *subst =
3394           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3395    Arg = subst->getReplacement()->IgnoreImpCasts();
3396
3397  bool AddressTaken = false;
3398  SourceLocation AddrOpLoc;
3399  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3400    if (UnOp->getOpcode() == UO_AddrOf) {
3401      Arg = UnOp->getSubExpr();
3402      AddressTaken = true;
3403      AddrOpLoc = UnOp->getOperatorLoc();
3404    }
3405  }
3406
3407  if (S.getLangOptions().MicrosoftExt && isa<CXXUuidofExpr>(Arg)) {
3408    Converted = TemplateArgument(ArgIn);
3409    return false;
3410  }
3411
3412  while (SubstNonTypeTemplateParmExpr *subst =
3413           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3414    Arg = subst->getReplacement()->IgnoreImpCasts();
3415
3416  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
3417  if (!DRE) {
3418    S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
3419      << Arg->getSourceRange();
3420    S.Diag(Param->getLocation(), diag::note_template_param_here);
3421    return true;
3422  }
3423
3424  // Stop checking the precise nature of the argument if it is value dependent,
3425  // it should be checked when instantiated.
3426  if (Arg->isValueDependent()) {
3427    Converted = TemplateArgument(ArgIn);
3428    return false;
3429  }
3430
3431  if (!isa<ValueDecl>(DRE->getDecl())) {
3432    S.Diag(Arg->getSourceRange().getBegin(),
3433           diag::err_template_arg_not_object_or_func_form)
3434      << Arg->getSourceRange();
3435    S.Diag(Param->getLocation(), diag::note_template_param_here);
3436    return true;
3437  }
3438
3439  NamedDecl *Entity = 0;
3440
3441  // Cannot refer to non-static data members
3442  if (FieldDecl *Field = dyn_cast<FieldDecl>(DRE->getDecl())) {
3443    S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_field)
3444      << Field << Arg->getSourceRange();
3445    S.Diag(Param->getLocation(), diag::note_template_param_here);
3446    return true;
3447  }
3448
3449  // Cannot refer to non-static member functions
3450  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(DRE->getDecl()))
3451    if (!Method->isStatic()) {
3452      S.Diag(Arg->getSourceRange().getBegin(), diag::err_template_arg_method)
3453        << Method << Arg->getSourceRange();
3454      S.Diag(Param->getLocation(), diag::note_template_param_here);
3455      return true;
3456    }
3457
3458  // Functions must have external linkage.
3459  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3460    if (!isExternalLinkage(Func->getLinkage())) {
3461      S.Diag(Arg->getSourceRange().getBegin(),
3462             diag::err_template_arg_function_not_extern)
3463        << Func << Arg->getSourceRange();
3464      S.Diag(Func->getLocation(), diag::note_template_arg_internal_object)
3465        << true;
3466      return true;
3467    }
3468
3469    // Okay: we've named a function with external linkage.
3470    Entity = Func;
3471
3472    // If the template parameter has pointer type, the function decays.
3473    if (ParamType->isPointerType() && !AddressTaken)
3474      ArgType = S.Context.getPointerType(Func->getType());
3475    else if (AddressTaken && ParamType->isReferenceType()) {
3476      // If we originally had an address-of operator, but the
3477      // parameter has reference type, complain and (if things look
3478      // like they will work) drop the address-of operator.
3479      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
3480                                            ParamType.getNonReferenceType())) {
3481        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3482          << ParamType;
3483        S.Diag(Param->getLocation(), diag::note_template_param_here);
3484        return true;
3485      }
3486
3487      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3488        << ParamType
3489        << FixItHint::CreateRemoval(AddrOpLoc);
3490      S.Diag(Param->getLocation(), diag::note_template_param_here);
3491
3492      ArgType = Func->getType();
3493    }
3494  } else if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
3495    if (!isExternalLinkage(Var->getLinkage())) {
3496      S.Diag(Arg->getSourceRange().getBegin(),
3497             diag::err_template_arg_object_not_extern)
3498        << Var << Arg->getSourceRange();
3499      S.Diag(Var->getLocation(), diag::note_template_arg_internal_object)
3500        << true;
3501      return true;
3502    }
3503
3504    // A value of reference type is not an object.
3505    if (Var->getType()->isReferenceType()) {
3506      S.Diag(Arg->getSourceRange().getBegin(),
3507             diag::err_template_arg_reference_var)
3508        << Var->getType() << Arg->getSourceRange();
3509      S.Diag(Param->getLocation(), diag::note_template_param_here);
3510      return true;
3511    }
3512
3513    // Okay: we've named an object with external linkage
3514    Entity = Var;
3515
3516    // If the template parameter has pointer type, we must have taken
3517    // the address of this object.
3518    if (ParamType->isReferenceType()) {
3519      if (AddressTaken) {
3520        // If we originally had an address-of operator, but the
3521        // parameter has reference type, complain and (if things look
3522        // like they will work) drop the address-of operator.
3523        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
3524                                            ParamType.getNonReferenceType())) {
3525          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3526            << ParamType;
3527          S.Diag(Param->getLocation(), diag::note_template_param_here);
3528          return true;
3529        }
3530
3531        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
3532          << ParamType
3533          << FixItHint::CreateRemoval(AddrOpLoc);
3534        S.Diag(Param->getLocation(), diag::note_template_param_here);
3535
3536        ArgType = Var->getType();
3537      }
3538    } else if (!AddressTaken && ParamType->isPointerType()) {
3539      if (Var->getType()->isArrayType()) {
3540        // Array-to-pointer decay.
3541        ArgType = S.Context.getArrayDecayedType(Var->getType());
3542      } else {
3543        // If the template parameter has pointer type but the address of
3544        // this object was not taken, complain and (possibly) recover by
3545        // taking the address of the entity.
3546        ArgType = S.Context.getPointerType(Var->getType());
3547        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
3548          S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3549            << ParamType;
3550          S.Diag(Param->getLocation(), diag::note_template_param_here);
3551          return true;
3552        }
3553
3554        S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
3555          << ParamType
3556          << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
3557
3558        S.Diag(Param->getLocation(), diag::note_template_param_here);
3559      }
3560    }
3561  } else {
3562    // We found something else, but we don't know specifically what it is.
3563    S.Diag(Arg->getSourceRange().getBegin(),
3564           diag::err_template_arg_not_object_or_func)
3565      << Arg->getSourceRange();
3566    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
3567    return true;
3568  }
3569
3570  bool ObjCLifetimeConversion;
3571  if (ParamType->isPointerType() &&
3572      !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
3573      S.IsQualificationConversion(ArgType, ParamType, false,
3574                                  ObjCLifetimeConversion)) {
3575    // For pointer-to-object types, qualification conversions are
3576    // permitted.
3577  } else {
3578    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
3579      if (!ParamRef->getPointeeType()->isFunctionType()) {
3580        // C++ [temp.arg.nontype]p5b3:
3581        //   For a non-type template-parameter of type reference to
3582        //   object, no conversions apply. The type referred to by the
3583        //   reference may be more cv-qualified than the (otherwise
3584        //   identical) type of the template- argument. The
3585        //   template-parameter is bound directly to the
3586        //   template-argument, which shall be an lvalue.
3587
3588        // FIXME: Other qualifiers?
3589        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
3590        unsigned ArgQuals = ArgType.getCVRQualifiers();
3591
3592        if ((ParamQuals | ArgQuals) != ParamQuals) {
3593          S.Diag(Arg->getSourceRange().getBegin(),
3594                 diag::err_template_arg_ref_bind_ignores_quals)
3595            << ParamType << Arg->getType()
3596            << Arg->getSourceRange();
3597          S.Diag(Param->getLocation(), diag::note_template_param_here);
3598          return true;
3599        }
3600      }
3601    }
3602
3603    // At this point, the template argument refers to an object or
3604    // function with external linkage. We now need to check whether the
3605    // argument and parameter types are compatible.
3606    if (!S.Context.hasSameUnqualifiedType(ArgType,
3607                                          ParamType.getNonReferenceType())) {
3608      // We can't perform this conversion or binding.
3609      if (ParamType->isReferenceType())
3610        S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
3611          << ParamType << ArgIn->getType() << Arg->getSourceRange();
3612      else
3613        S.Diag(Arg->getLocStart(),  diag::err_template_arg_not_convertible)
3614          << ArgIn->getType() << ParamType << Arg->getSourceRange();
3615      S.Diag(Param->getLocation(), diag::note_template_param_here);
3616      return true;
3617    }
3618  }
3619
3620  // Create the template argument.
3621  Converted = TemplateArgument(Entity->getCanonicalDecl());
3622  S.MarkDeclarationReferenced(Arg->getLocStart(), Entity);
3623  return false;
3624}
3625
3626/// \brief Checks whether the given template argument is a pointer to
3627/// member constant according to C++ [temp.arg.nontype]p1.
3628bool Sema::CheckTemplateArgumentPointerToMember(Expr *Arg,
3629                                                TemplateArgument &Converted) {
3630  bool Invalid = false;
3631
3632  // See through any implicit casts we added to fix the type.
3633  while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
3634    Arg = Cast->getSubExpr();
3635
3636  // C++ [temp.arg.nontype]p1:
3637  //
3638  //   A template-argument for a non-type, non-template
3639  //   template-parameter shall be one of: [...]
3640  //
3641  //     -- a pointer to member expressed as described in 5.3.1.
3642  DeclRefExpr *DRE = 0;
3643
3644  // In C++98/03 mode, give an extension warning on any extra parentheses.
3645  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
3646  bool ExtraParens = false;
3647  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
3648    if (!Invalid && !ExtraParens) {
3649      Diag(Arg->getSourceRange().getBegin(),
3650           getLangOptions().CPlusPlus0x ?
3651             diag::warn_cxx98_compat_template_arg_extra_parens :
3652             diag::ext_template_arg_extra_parens)
3653        << Arg->getSourceRange();
3654      ExtraParens = true;
3655    }
3656
3657    Arg = Parens->getSubExpr();
3658  }
3659
3660  while (SubstNonTypeTemplateParmExpr *subst =
3661           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
3662    Arg = subst->getReplacement()->IgnoreImpCasts();
3663
3664  // A pointer-to-member constant written &Class::member.
3665  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
3666    if (UnOp->getOpcode() == UO_AddrOf) {
3667      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
3668      if (DRE && !DRE->getQualifier())
3669        DRE = 0;
3670    }
3671  }
3672  // A constant of pointer-to-member type.
3673  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
3674    if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
3675      if (VD->getType()->isMemberPointerType()) {
3676        if (isa<NonTypeTemplateParmDecl>(VD) ||
3677            (isa<VarDecl>(VD) &&
3678             Context.getCanonicalType(VD->getType()).isConstQualified())) {
3679          if (Arg->isTypeDependent() || Arg->isValueDependent())
3680            Converted = TemplateArgument(Arg);
3681          else
3682            Converted = TemplateArgument(VD->getCanonicalDecl());
3683          return Invalid;
3684        }
3685      }
3686    }
3687
3688    DRE = 0;
3689  }
3690
3691  if (!DRE)
3692    return Diag(Arg->getSourceRange().getBegin(),
3693                diag::err_template_arg_not_pointer_to_member_form)
3694      << Arg->getSourceRange();
3695
3696  if (isa<FieldDecl>(DRE->getDecl()) || isa<CXXMethodDecl>(DRE->getDecl())) {
3697    assert((isa<FieldDecl>(DRE->getDecl()) ||
3698            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
3699           "Only non-static member pointers can make it here");
3700
3701    // Okay: this is the address of a non-static member, and therefore
3702    // a member pointer constant.
3703    if (Arg->isTypeDependent() || Arg->isValueDependent())
3704      Converted = TemplateArgument(Arg);
3705    else
3706      Converted = TemplateArgument(DRE->getDecl()->getCanonicalDecl());
3707    return Invalid;
3708  }
3709
3710  // We found something else, but we don't know specifically what it is.
3711  Diag(Arg->getSourceRange().getBegin(),
3712       diag::err_template_arg_not_pointer_to_member_form)
3713      << Arg->getSourceRange();
3714  Diag(DRE->getDecl()->getLocation(),
3715       diag::note_template_arg_refers_here);
3716  return true;
3717}
3718
3719/// \brief Check a template argument against its corresponding
3720/// non-type template parameter.
3721///
3722/// This routine implements the semantics of C++ [temp.arg.nontype].
3723/// If an error occurred, it returns ExprError(); otherwise, it
3724/// returns the converted template argument. \p
3725/// InstantiatedParamType is the type of the non-type template
3726/// parameter after it has been instantiated.
3727ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
3728                                       QualType InstantiatedParamType, Expr *Arg,
3729                                       TemplateArgument &Converted,
3730                                       CheckTemplateArgumentKind CTAK) {
3731  SourceLocation StartLoc = Arg->getSourceRange().getBegin();
3732
3733  // If either the parameter has a dependent type or the argument is
3734  // type-dependent, there's nothing we can check now.
3735  if (InstantiatedParamType->isDependentType() || Arg->isTypeDependent()) {
3736    // FIXME: Produce a cloned, canonical expression?
3737    Converted = TemplateArgument(Arg);
3738    return Owned(Arg);
3739  }
3740
3741  // C++ [temp.arg.nontype]p5:
3742  //   The following conversions are performed on each expression used
3743  //   as a non-type template-argument. If a non-type
3744  //   template-argument cannot be converted to the type of the
3745  //   corresponding template-parameter then the program is
3746  //   ill-formed.
3747  //
3748  //     -- for a non-type template-parameter of integral or
3749  //        enumeration type, integral promotions (4.5) and integral
3750  //        conversions (4.7) are applied.
3751  QualType ParamType = InstantiatedParamType;
3752  if (ParamType->isIntegralOrEnumerationType()) {
3753    // FIXME: In C++11, the argument is a converted constant expression of the
3754    // type of the template parameter.
3755    ExprResult ArgResult = DefaultLvalueConversion(Arg);
3756    if (ArgResult.isInvalid())
3757      return ExprError();
3758    Arg = ArgResult.take();
3759
3760    QualType ArgType = Arg->getType();
3761
3762    // C++ [temp.arg.nontype]p1:
3763    //   A template-argument for a non-type, non-template
3764    //   template-parameter shall be one of:
3765    //
3766    //     -- an integral constant-expression of integral or enumeration
3767    //        type; or
3768    //     -- the name of a non-type template-parameter; or
3769    SourceLocation NonConstantLoc;
3770    llvm::APSInt Value;
3771    if (!ArgType->isIntegralOrEnumerationType()) {
3772      Diag(Arg->getSourceRange().getBegin(),
3773           diag::err_template_arg_not_integral_or_enumeral)
3774        << ArgType << Arg->getSourceRange();
3775      Diag(Param->getLocation(), diag::note_template_param_here);
3776      return ExprError();
3777    } else if (!Arg->isValueDependent() &&
3778               !Arg->isIntegerConstantExpr(Value, Context, &NonConstantLoc)) {
3779      Diag(NonConstantLoc, diag::err_template_arg_not_ice)
3780        << ArgType << Arg->getSourceRange();
3781      return ExprError();
3782    }
3783
3784    // From here on out, all we care about are the unqualified forms
3785    // of the parameter and argument types.
3786    ParamType = ParamType.getUnqualifiedType();
3787    ArgType = ArgType.getUnqualifiedType();
3788
3789    // Try to convert the argument to the parameter's type.
3790    if (Context.hasSameType(ParamType, ArgType)) {
3791      // Okay: no conversion necessary
3792    } else if (CTAK == CTAK_Deduced) {
3793      // C++ [temp.deduct.type]p17:
3794      //   If, in the declaration of a function template with a non-type
3795      //   template-parameter, the non-type template- parameter is used
3796      //   in an expression in the function parameter-list and, if the
3797      //   corresponding template-argument is deduced, the
3798      //   template-argument type shall match the type of the
3799      //   template-parameter exactly, except that a template-argument
3800      //   deduced from an array bound may be of any integral type.
3801      Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
3802        << ArgType << ParamType;
3803      Diag(Param->getLocation(), diag::note_template_param_here);
3804      return ExprError();
3805    } else if (ParamType->isBooleanType()) {
3806      // This is an integral-to-boolean conversion.
3807      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).take();
3808    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
3809               !ParamType->isEnumeralType()) {
3810      // This is an integral promotion or conversion.
3811      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).take();
3812    } else {
3813      // We can't perform this conversion.
3814      Diag(Arg->getSourceRange().getBegin(),
3815           diag::err_template_arg_not_convertible)
3816        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3817      Diag(Param->getLocation(), diag::note_template_param_here);
3818      return ExprError();
3819    }
3820
3821    // Add the value of this argument to the list of converted
3822    // arguments. We use the bitwidth and signedness of the template
3823    // parameter.
3824    if (Arg->isValueDependent()) {
3825      // The argument is value-dependent. Create a new
3826      // TemplateArgument with the converted expression.
3827      Converted = TemplateArgument(Arg);
3828      return Owned(Arg);
3829    }
3830
3831    QualType IntegerType = Context.getCanonicalType(ParamType);
3832    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
3833      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
3834
3835    if (ParamType->isBooleanType()) {
3836      // Value must be zero or one.
3837      Value = Value != 0;
3838      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3839      if (Value.getBitWidth() != AllowedBits)
3840        Value = Value.extOrTrunc(AllowedBits);
3841      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3842    } else {
3843      llvm::APSInt OldValue = Value;
3844
3845      // Coerce the template argument's value to the value it will have
3846      // based on the template parameter's type.
3847      unsigned AllowedBits = Context.getTypeSize(IntegerType);
3848      if (Value.getBitWidth() != AllowedBits)
3849        Value = Value.extOrTrunc(AllowedBits);
3850      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
3851
3852      // Complain if an unsigned parameter received a negative value.
3853      if (IntegerType->isUnsignedIntegerOrEnumerationType()
3854               && (OldValue.isSigned() && OldValue.isNegative())) {
3855        Diag(Arg->getSourceRange().getBegin(), diag::warn_template_arg_negative)
3856          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3857          << Arg->getSourceRange();
3858        Diag(Param->getLocation(), diag::note_template_param_here);
3859      }
3860
3861      // Complain if we overflowed the template parameter's type.
3862      unsigned RequiredBits;
3863      if (IntegerType->isUnsignedIntegerOrEnumerationType())
3864        RequiredBits = OldValue.getActiveBits();
3865      else if (OldValue.isUnsigned())
3866        RequiredBits = OldValue.getActiveBits() + 1;
3867      else
3868        RequiredBits = OldValue.getMinSignedBits();
3869      if (RequiredBits > AllowedBits) {
3870        Diag(Arg->getSourceRange().getBegin(),
3871             diag::warn_template_arg_too_large)
3872          << OldValue.toString(10) << Value.toString(10) << Param->getType()
3873          << Arg->getSourceRange();
3874        Diag(Param->getLocation(), diag::note_template_param_here);
3875      }
3876    }
3877
3878    Converted = TemplateArgument(Value,
3879                                 ParamType->isEnumeralType()
3880                                   ? Context.getCanonicalType(ParamType)
3881                                   : IntegerType);
3882    return Owned(Arg);
3883  }
3884
3885  QualType ArgType = Arg->getType();
3886  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
3887
3888  // C++0x [temp.arg.nontype]p5 bullets 2, 4 and 6 permit conversion
3889  // from a template argument of type std::nullptr_t to a non-type
3890  // template parameter of type pointer to object, pointer to
3891  // function, or pointer-to-member, respectively.
3892  if (ArgType->isNullPtrType()) {
3893    if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
3894      Converted = TemplateArgument((NamedDecl *)0);
3895      return Owned(Arg);
3896    }
3897
3898    if (ParamType->isNullPtrType()) {
3899      llvm::APSInt Zero(Context.getTypeSize(Context.NullPtrTy), true);
3900      Converted = TemplateArgument(Zero, Context.NullPtrTy);
3901      return Owned(Arg);
3902    }
3903  }
3904
3905  // Handle pointer-to-function, reference-to-function, and
3906  // pointer-to-member-function all in (roughly) the same way.
3907  if (// -- For a non-type template-parameter of type pointer to
3908      //    function, only the function-to-pointer conversion (4.3) is
3909      //    applied. If the template-argument represents a set of
3910      //    overloaded functions (or a pointer to such), the matching
3911      //    function is selected from the set (13.4).
3912      (ParamType->isPointerType() &&
3913       ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
3914      // -- For a non-type template-parameter of type reference to
3915      //    function, no conversions apply. If the template-argument
3916      //    represents a set of overloaded functions, the matching
3917      //    function is selected from the set (13.4).
3918      (ParamType->isReferenceType() &&
3919       ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
3920      // -- For a non-type template-parameter of type pointer to
3921      //    member function, no conversions apply. If the
3922      //    template-argument represents a set of overloaded member
3923      //    functions, the matching member function is selected from
3924      //    the set (13.4).
3925      (ParamType->isMemberPointerType() &&
3926       ParamType->getAs<MemberPointerType>()->getPointeeType()
3927         ->isFunctionType())) {
3928
3929    if (Arg->getType() == Context.OverloadTy) {
3930      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
3931                                                                true,
3932                                                                FoundResult)) {
3933        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
3934          return ExprError();
3935
3936        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
3937        ArgType = Arg->getType();
3938      } else
3939        return ExprError();
3940    }
3941
3942    if (!ParamType->isMemberPointerType()) {
3943      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3944                                                         ParamType,
3945                                                         Arg, Converted))
3946        return ExprError();
3947      return Owned(Arg);
3948    }
3949
3950    bool ObjCLifetimeConversion;
3951    if (IsQualificationConversion(ArgType, ParamType.getNonReferenceType(),
3952                                  false, ObjCLifetimeConversion)) {
3953      Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
3954                              Arg->getValueKind()).take();
3955    } else if (!Context.hasSameUnqualifiedType(ArgType,
3956                                           ParamType.getNonReferenceType())) {
3957      // We can't perform this conversion.
3958      Diag(Arg->getSourceRange().getBegin(),
3959           diag::err_template_arg_not_convertible)
3960        << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
3961      Diag(Param->getLocation(), diag::note_template_param_here);
3962      return ExprError();
3963    }
3964
3965    if (CheckTemplateArgumentPointerToMember(Arg, Converted))
3966      return ExprError();
3967    return Owned(Arg);
3968  }
3969
3970  if (ParamType->isPointerType()) {
3971    //   -- for a non-type template-parameter of type pointer to
3972    //      object, qualification conversions (4.4) and the
3973    //      array-to-pointer conversion (4.2) are applied.
3974    // C++0x also allows a value of std::nullptr_t.
3975    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
3976           "Only object pointers allowed here");
3977
3978    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
3979                                                       ParamType,
3980                                                       Arg, Converted))
3981      return ExprError();
3982    return Owned(Arg);
3983  }
3984
3985  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
3986    //   -- For a non-type template-parameter of type reference to
3987    //      object, no conversions apply. The type referred to by the
3988    //      reference may be more cv-qualified than the (otherwise
3989    //      identical) type of the template-argument. The
3990    //      template-parameter is bound directly to the
3991    //      template-argument, which must be an lvalue.
3992    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
3993           "Only object references allowed here");
3994
3995    if (Arg->getType() == Context.OverloadTy) {
3996      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
3997                                                 ParamRefType->getPointeeType(),
3998                                                                true,
3999                                                                FoundResult)) {
4000        if (DiagnoseUseOfDecl(Fn, Arg->getSourceRange().getBegin()))
4001          return ExprError();
4002
4003        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
4004        ArgType = Arg->getType();
4005      } else
4006        return ExprError();
4007    }
4008
4009    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
4010                                                       ParamType,
4011                                                       Arg, Converted))
4012      return ExprError();
4013    return Owned(Arg);
4014  }
4015
4016  //     -- For a non-type template-parameter of type pointer to data
4017  //        member, qualification conversions (4.4) are applied.
4018  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
4019
4020  bool ObjCLifetimeConversion;
4021  if (Context.hasSameUnqualifiedType(ParamType, ArgType)) {
4022    // Types match exactly: nothing more to do here.
4023  } else if (IsQualificationConversion(ArgType, ParamType, false,
4024                                       ObjCLifetimeConversion)) {
4025    Arg = ImpCastExprToType(Arg, ParamType, CK_NoOp,
4026                            Arg->getValueKind()).take();
4027  } else {
4028    // We can't perform this conversion.
4029    Diag(Arg->getSourceRange().getBegin(),
4030         diag::err_template_arg_not_convertible)
4031      << Arg->getType() << InstantiatedParamType << Arg->getSourceRange();
4032    Diag(Param->getLocation(), diag::note_template_param_here);
4033    return ExprError();
4034  }
4035
4036  if (CheckTemplateArgumentPointerToMember(Arg, Converted))
4037    return ExprError();
4038  return Owned(Arg);
4039}
4040
4041/// \brief Check a template argument against its corresponding
4042/// template template parameter.
4043///
4044/// This routine implements the semantics of C++ [temp.arg.template].
4045/// It returns true if an error occurred, and false otherwise.
4046bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
4047                                 const TemplateArgumentLoc &Arg) {
4048  TemplateName Name = Arg.getArgument().getAsTemplate();
4049  TemplateDecl *Template = Name.getAsTemplateDecl();
4050  if (!Template) {
4051    // Any dependent template name is fine.
4052    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
4053    return false;
4054  }
4055
4056  // C++0x [temp.arg.template]p1:
4057  //   A template-argument for a template template-parameter shall be
4058  //   the name of a class template or an alias template, expressed as an
4059  //   id-expression. When the template-argument names a class template, only
4060  //   primary class templates are considered when matching the
4061  //   template template argument with the corresponding parameter;
4062  //   partial specializations are not considered even if their
4063  //   parameter lists match that of the template template parameter.
4064  //
4065  // Note that we also allow template template parameters here, which
4066  // will happen when we are dealing with, e.g., class template
4067  // partial specializations.
4068  if (!isa<ClassTemplateDecl>(Template) &&
4069      !isa<TemplateTemplateParmDecl>(Template) &&
4070      !isa<TypeAliasTemplateDecl>(Template)) {
4071    assert(isa<FunctionTemplateDecl>(Template) &&
4072           "Only function templates are possible here");
4073    Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
4074    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
4075      << Template;
4076  }
4077
4078  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
4079                                         Param->getTemplateParameters(),
4080                                         true,
4081                                         TPL_TemplateTemplateArgumentMatch,
4082                                         Arg.getLocation());
4083}
4084
4085/// \brief Given a non-type template argument that refers to a
4086/// declaration and the type of its corresponding non-type template
4087/// parameter, produce an expression that properly refers to that
4088/// declaration.
4089ExprResult
4090Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
4091                                              QualType ParamType,
4092                                              SourceLocation Loc) {
4093  assert(Arg.getKind() == TemplateArgument::Declaration &&
4094         "Only declaration template arguments permitted here");
4095  ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
4096
4097  if (VD->getDeclContext()->isRecord() &&
4098      (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD))) {
4099    // If the value is a class member, we might have a pointer-to-member.
4100    // Determine whether the non-type template template parameter is of
4101    // pointer-to-member type. If so, we need to build an appropriate
4102    // expression for a pointer-to-member, since a "normal" DeclRefExpr
4103    // would refer to the member itself.
4104    if (ParamType->isMemberPointerType()) {
4105      QualType ClassType
4106        = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
4107      NestedNameSpecifier *Qualifier
4108        = NestedNameSpecifier::Create(Context, 0, false,
4109                                      ClassType.getTypePtr());
4110      CXXScopeSpec SS;
4111      SS.MakeTrivial(Context, Qualifier, Loc);
4112
4113      // The actual value-ness of this is unimportant, but for
4114      // internal consistency's sake, references to instance methods
4115      // are r-values.
4116      ExprValueKind VK = VK_LValue;
4117      if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
4118        VK = VK_RValue;
4119
4120      ExprResult RefExpr = BuildDeclRefExpr(VD,
4121                                            VD->getType().getNonReferenceType(),
4122                                            VK,
4123                                            Loc,
4124                                            &SS);
4125      if (RefExpr.isInvalid())
4126        return ExprError();
4127
4128      RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4129
4130      // We might need to perform a trailing qualification conversion, since
4131      // the element type on the parameter could be more qualified than the
4132      // element type in the expression we constructed.
4133      bool ObjCLifetimeConversion;
4134      if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
4135                                    ParamType.getUnqualifiedType(), false,
4136                                    ObjCLifetimeConversion))
4137        RefExpr = ImpCastExprToType(RefExpr.take(), ParamType.getUnqualifiedType(), CK_NoOp);
4138
4139      assert(!RefExpr.isInvalid() &&
4140             Context.hasSameType(((Expr*) RefExpr.get())->getType(),
4141                                 ParamType.getUnqualifiedType()));
4142      return move(RefExpr);
4143    }
4144  }
4145
4146  QualType T = VD->getType().getNonReferenceType();
4147  if (ParamType->isPointerType()) {
4148    // When the non-type template parameter is a pointer, take the
4149    // address of the declaration.
4150    ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
4151    if (RefExpr.isInvalid())
4152      return ExprError();
4153
4154    if (T->isFunctionType() || T->isArrayType()) {
4155      // Decay functions and arrays.
4156      RefExpr = DefaultFunctionArrayConversion(RefExpr.take());
4157      if (RefExpr.isInvalid())
4158        return ExprError();
4159
4160      return move(RefExpr);
4161    }
4162
4163    // Take the address of everything else
4164    return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
4165  }
4166
4167  ExprValueKind VK = VK_RValue;
4168
4169  // If the non-type template parameter has reference type, qualify the
4170  // resulting declaration reference with the extra qualifiers on the
4171  // type that the reference refers to.
4172  if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
4173    VK = VK_LValue;
4174    T = Context.getQualifiedType(T,
4175                              TargetRef->getPointeeType().getQualifiers());
4176  }
4177
4178  return BuildDeclRefExpr(VD, T, VK, Loc);
4179}
4180
4181/// \brief Construct a new expression that refers to the given
4182/// integral template argument with the given source-location
4183/// information.
4184///
4185/// This routine takes care of the mapping from an integral template
4186/// argument (which may have any integral type) to the appropriate
4187/// literal value.
4188ExprResult
4189Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
4190                                                  SourceLocation Loc) {
4191  assert(Arg.getKind() == TemplateArgument::Integral &&
4192         "Operation is only valid for integral template arguments");
4193  QualType T = Arg.getIntegralType();
4194  if (T->isAnyCharacterType()) {
4195    CharacterLiteral::CharacterKind Kind;
4196    if (T->isWideCharType())
4197      Kind = CharacterLiteral::Wide;
4198    else if (T->isChar16Type())
4199      Kind = CharacterLiteral::UTF16;
4200    else if (T->isChar32Type())
4201      Kind = CharacterLiteral::UTF32;
4202    else
4203      Kind = CharacterLiteral::Ascii;
4204
4205    return Owned(new (Context) CharacterLiteral(
4206                                            Arg.getAsIntegral()->getZExtValue(),
4207                                            Kind, T, Loc));
4208  }
4209
4210  if (T->isBooleanType())
4211    return Owned(new (Context) CXXBoolLiteralExpr(
4212                                            Arg.getAsIntegral()->getBoolValue(),
4213                                            T, Loc));
4214
4215  if (T->isNullPtrType())
4216    return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
4217
4218  // If this is an enum type that we're instantiating, we need to use an integer
4219  // type the same size as the enumerator.  We don't want to build an
4220  // IntegerLiteral with enum type.
4221  QualType BT;
4222  if (const EnumType *ET = T->getAs<EnumType>())
4223    BT = ET->getDecl()->getIntegerType();
4224  else
4225    BT = T;
4226
4227  Expr *E = IntegerLiteral::Create(Context, *Arg.getAsIntegral(), BT, Loc);
4228  if (T->isEnumeralType()) {
4229    // FIXME: This is a hack. We need a better way to handle substituted
4230    // non-type template parameters.
4231    E = CStyleCastExpr::Create(Context, T, VK_RValue, CK_IntegralCast, E, 0,
4232                               Context.getTrivialTypeSourceInfo(T, Loc),
4233                               Loc, Loc);
4234  }
4235
4236  return Owned(E);
4237}
4238
4239/// \brief Match two template parameters within template parameter lists.
4240static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
4241                                       bool Complain,
4242                                     Sema::TemplateParameterListEqualKind Kind,
4243                                       SourceLocation TemplateArgLoc) {
4244  // Check the actual kind (type, non-type, template).
4245  if (Old->getKind() != New->getKind()) {
4246    if (Complain) {
4247      unsigned NextDiag = diag::err_template_param_different_kind;
4248      if (TemplateArgLoc.isValid()) {
4249        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4250        NextDiag = diag::note_template_param_different_kind;
4251      }
4252      S.Diag(New->getLocation(), NextDiag)
4253        << (Kind != Sema::TPL_TemplateMatch);
4254      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
4255        << (Kind != Sema::TPL_TemplateMatch);
4256    }
4257
4258    return false;
4259  }
4260
4261  // Check that both are parameter packs are neither are parameter packs.
4262  // However, if we are matching a template template argument to a
4263  // template template parameter, the template template parameter can have
4264  // a parameter pack where the template template argument does not.
4265  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
4266      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4267        Old->isTemplateParameterPack())) {
4268    if (Complain) {
4269      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
4270      if (TemplateArgLoc.isValid()) {
4271        S.Diag(TemplateArgLoc,
4272             diag::err_template_arg_template_params_mismatch);
4273        NextDiag = diag::note_template_parameter_pack_non_pack;
4274      }
4275
4276      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
4277                      : isa<NonTypeTemplateParmDecl>(New)? 1
4278                      : 2;
4279      S.Diag(New->getLocation(), NextDiag)
4280        << ParamKind << New->isParameterPack();
4281      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
4282        << ParamKind << Old->isParameterPack();
4283    }
4284
4285    return false;
4286  }
4287
4288  // For non-type template parameters, check the type of the parameter.
4289  if (NonTypeTemplateParmDecl *OldNTTP
4290                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
4291    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
4292
4293    // If we are matching a template template argument to a template
4294    // template parameter and one of the non-type template parameter types
4295    // is dependent, then we must wait until template instantiation time
4296    // to actually compare the arguments.
4297    if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
4298        (OldNTTP->getType()->isDependentType() ||
4299         NewNTTP->getType()->isDependentType()))
4300      return true;
4301
4302    if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
4303      if (Complain) {
4304        unsigned NextDiag = diag::err_template_nontype_parm_different_type;
4305        if (TemplateArgLoc.isValid()) {
4306          S.Diag(TemplateArgLoc,
4307                 diag::err_template_arg_template_params_mismatch);
4308          NextDiag = diag::note_template_nontype_parm_different_type;
4309        }
4310        S.Diag(NewNTTP->getLocation(), NextDiag)
4311          << NewNTTP->getType()
4312          << (Kind != Sema::TPL_TemplateMatch);
4313        S.Diag(OldNTTP->getLocation(),
4314               diag::note_template_nontype_parm_prev_declaration)
4315          << OldNTTP->getType();
4316      }
4317
4318      return false;
4319    }
4320
4321    return true;
4322  }
4323
4324  // For template template parameters, check the template parameter types.
4325  // The template parameter lists of template template
4326  // parameters must agree.
4327  if (TemplateTemplateParmDecl *OldTTP
4328                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
4329    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
4330    return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
4331                                            OldTTP->getTemplateParameters(),
4332                                            Complain,
4333                                        (Kind == Sema::TPL_TemplateMatch
4334                                           ? Sema::TPL_TemplateTemplateParmMatch
4335                                           : Kind),
4336                                            TemplateArgLoc);
4337  }
4338
4339  return true;
4340}
4341
4342/// \brief Diagnose a known arity mismatch when comparing template argument
4343/// lists.
4344static
4345void DiagnoseTemplateParameterListArityMismatch(Sema &S,
4346                                                TemplateParameterList *New,
4347                                                TemplateParameterList *Old,
4348                                      Sema::TemplateParameterListEqualKind Kind,
4349                                                SourceLocation TemplateArgLoc) {
4350  unsigned NextDiag = diag::err_template_param_list_different_arity;
4351  if (TemplateArgLoc.isValid()) {
4352    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
4353    NextDiag = diag::note_template_param_list_different_arity;
4354  }
4355  S.Diag(New->getTemplateLoc(), NextDiag)
4356    << (New->size() > Old->size())
4357    << (Kind != Sema::TPL_TemplateMatch)
4358    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
4359  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
4360    << (Kind != Sema::TPL_TemplateMatch)
4361    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
4362}
4363
4364/// \brief Determine whether the given template parameter lists are
4365/// equivalent.
4366///
4367/// \param New  The new template parameter list, typically written in the
4368/// source code as part of a new template declaration.
4369///
4370/// \param Old  The old template parameter list, typically found via
4371/// name lookup of the template declared with this template parameter
4372/// list.
4373///
4374/// \param Complain  If true, this routine will produce a diagnostic if
4375/// the template parameter lists are not equivalent.
4376///
4377/// \param Kind describes how we are to match the template parameter lists.
4378///
4379/// \param TemplateArgLoc If this source location is valid, then we
4380/// are actually checking the template parameter list of a template
4381/// argument (New) against the template parameter list of its
4382/// corresponding template template parameter (Old). We produce
4383/// slightly different diagnostics in this scenario.
4384///
4385/// \returns True if the template parameter lists are equal, false
4386/// otherwise.
4387bool
4388Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
4389                                     TemplateParameterList *Old,
4390                                     bool Complain,
4391                                     TemplateParameterListEqualKind Kind,
4392                                     SourceLocation TemplateArgLoc) {
4393  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
4394    if (Complain)
4395      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4396                                                 TemplateArgLoc);
4397
4398    return false;
4399  }
4400
4401  // C++0x [temp.arg.template]p3:
4402  //   A template-argument matches a template template-parameter (call it P)
4403  //   when each of the template parameters in the template-parameter-list of
4404  //   the template-argument's corresponding class template or alias template
4405  //   (call it A) matches the corresponding template parameter in the
4406  //   template-parameter-list of P. [...]
4407  TemplateParameterList::iterator NewParm = New->begin();
4408  TemplateParameterList::iterator NewParmEnd = New->end();
4409  for (TemplateParameterList::iterator OldParm = Old->begin(),
4410                                    OldParmEnd = Old->end();
4411       OldParm != OldParmEnd; ++OldParm) {
4412    if (Kind != TPL_TemplateTemplateArgumentMatch ||
4413        !(*OldParm)->isTemplateParameterPack()) {
4414      if (NewParm == NewParmEnd) {
4415        if (Complain)
4416          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4417                                                     TemplateArgLoc);
4418
4419        return false;
4420      }
4421
4422      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4423                                      Kind, TemplateArgLoc))
4424        return false;
4425
4426      ++NewParm;
4427      continue;
4428    }
4429
4430    // C++0x [temp.arg.template]p3:
4431    //   [...] When P's template- parameter-list contains a template parameter
4432    //   pack (14.5.3), the template parameter pack will match zero or more
4433    //   template parameters or template parameter packs in the
4434    //   template-parameter-list of A with the same type and form as the
4435    //   template parameter pack in P (ignoring whether those template
4436    //   parameters are template parameter packs).
4437    for (; NewParm != NewParmEnd; ++NewParm) {
4438      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
4439                                      Kind, TemplateArgLoc))
4440        return false;
4441    }
4442  }
4443
4444  // Make sure we exhausted all of the arguments.
4445  if (NewParm != NewParmEnd) {
4446    if (Complain)
4447      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
4448                                                 TemplateArgLoc);
4449
4450    return false;
4451  }
4452
4453  return true;
4454}
4455
4456/// \brief Check whether a template can be declared within this scope.
4457///
4458/// If the template declaration is valid in this scope, returns
4459/// false. Otherwise, issues a diagnostic and returns true.
4460bool
4461Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
4462  if (!S)
4463    return false;
4464
4465  // Find the nearest enclosing declaration scope.
4466  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4467         (S->getFlags() & Scope::TemplateParamScope) != 0)
4468    S = S->getParent();
4469
4470  // C++ [temp]p2:
4471  //   A template-declaration can appear only as a namespace scope or
4472  //   class scope declaration.
4473  DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
4474  if (Ctx && isa<LinkageSpecDecl>(Ctx) &&
4475      cast<LinkageSpecDecl>(Ctx)->getLanguage() != LinkageSpecDecl::lang_cxx)
4476    return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
4477             << TemplateParams->getSourceRange();
4478
4479  while (Ctx && isa<LinkageSpecDecl>(Ctx))
4480    Ctx = Ctx->getParent();
4481
4482  if (Ctx && (Ctx->isFileContext() || Ctx->isRecord()))
4483    return false;
4484
4485  return Diag(TemplateParams->getTemplateLoc(),
4486              diag::err_template_outside_namespace_or_class_scope)
4487    << TemplateParams->getSourceRange();
4488}
4489
4490/// \brief Determine what kind of template specialization the given declaration
4491/// is.
4492static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
4493  if (!D)
4494    return TSK_Undeclared;
4495
4496  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
4497    return Record->getTemplateSpecializationKind();
4498  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
4499    return Function->getTemplateSpecializationKind();
4500  if (VarDecl *Var = dyn_cast<VarDecl>(D))
4501    return Var->getTemplateSpecializationKind();
4502
4503  return TSK_Undeclared;
4504}
4505
4506/// \brief Check whether a specialization is well-formed in the current
4507/// context.
4508///
4509/// This routine determines whether a template specialization can be declared
4510/// in the current context (C++ [temp.expl.spec]p2).
4511///
4512/// \param S the semantic analysis object for which this check is being
4513/// performed.
4514///
4515/// \param Specialized the entity being specialized or instantiated, which
4516/// may be a kind of template (class template, function template, etc.) or
4517/// a member of a class template (member function, static data member,
4518/// member class).
4519///
4520/// \param PrevDecl the previous declaration of this entity, if any.
4521///
4522/// \param Loc the location of the explicit specialization or instantiation of
4523/// this entity.
4524///
4525/// \param IsPartialSpecialization whether this is a partial specialization of
4526/// a class template.
4527///
4528/// \returns true if there was an error that we cannot recover from, false
4529/// otherwise.
4530static bool CheckTemplateSpecializationScope(Sema &S,
4531                                             NamedDecl *Specialized,
4532                                             NamedDecl *PrevDecl,
4533                                             SourceLocation Loc,
4534                                             bool IsPartialSpecialization) {
4535  // Keep these "kind" numbers in sync with the %select statements in the
4536  // various diagnostics emitted by this routine.
4537  int EntityKind = 0;
4538  if (isa<ClassTemplateDecl>(Specialized))
4539    EntityKind = IsPartialSpecialization? 1 : 0;
4540  else if (isa<FunctionTemplateDecl>(Specialized))
4541    EntityKind = 2;
4542  else if (isa<CXXMethodDecl>(Specialized))
4543    EntityKind = 3;
4544  else if (isa<VarDecl>(Specialized))
4545    EntityKind = 4;
4546  else if (isa<RecordDecl>(Specialized))
4547    EntityKind = 5;
4548  else {
4549    S.Diag(Loc, diag::err_template_spec_unknown_kind);
4550    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4551    return true;
4552  }
4553
4554  // C++ [temp.expl.spec]p2:
4555  //   An explicit specialization shall be declared in the namespace
4556  //   of which the template is a member, or, for member templates, in
4557  //   the namespace of which the enclosing class or enclosing class
4558  //   template is a member. An explicit specialization of a member
4559  //   function, member class or static data member of a class
4560  //   template shall be declared in the namespace of which the class
4561  //   template is a member. Such a declaration may also be a
4562  //   definition. If the declaration is not a definition, the
4563  //   specialization may be defined later in the name- space in which
4564  //   the explicit specialization was declared, or in a namespace
4565  //   that encloses the one in which the explicit specialization was
4566  //   declared.
4567  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4568    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
4569      << Specialized;
4570    return true;
4571  }
4572
4573  if (S.CurContext->isRecord() && !IsPartialSpecialization) {
4574    if (S.getLangOptions().MicrosoftExt) {
4575      // Do not warn for class scope explicit specialization during
4576      // instantiation, warning was already emitted during pattern
4577      // semantic analysis.
4578      if (!S.ActiveTemplateInstantiations.size())
4579        S.Diag(Loc, diag::ext_function_specialization_in_class)
4580          << Specialized;
4581    } else {
4582      S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4583        << Specialized;
4584      return true;
4585    }
4586  }
4587
4588  if (S.CurContext->isRecord() &&
4589      !S.CurContext->Equals(Specialized->getDeclContext())) {
4590    // Make sure that we're specializing in the right record context.
4591    // Otherwise, things can go horribly wrong.
4592    S.Diag(Loc, diag::err_template_spec_decl_class_scope)
4593      << Specialized;
4594    return true;
4595  }
4596
4597  // C++ [temp.class.spec]p6:
4598  //   A class template partial specialization may be declared or redeclared
4599  //   in any namespace scope in which its definition may be defined (14.5.1
4600  //   and 14.5.2).
4601  bool ComplainedAboutScope = false;
4602  DeclContext *SpecializedContext
4603    = Specialized->getDeclContext()->getEnclosingNamespaceContext();
4604  DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
4605  if ((!PrevDecl ||
4606       getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
4607       getTemplateSpecializationKind(PrevDecl) == TSK_ImplicitInstantiation)){
4608    // C++ [temp.exp.spec]p2:
4609    //   An explicit specialization shall be declared in the namespace of which
4610    //   the template is a member, or, for member templates, in the namespace
4611    //   of which the enclosing class or enclosing class template is a member.
4612    //   An explicit specialization of a member function, member class or
4613    //   static data member of a class template shall be declared in the
4614    //   namespace of which the class template is a member.
4615    //
4616    // C++0x [temp.expl.spec]p2:
4617    //   An explicit specialization shall be declared in a namespace enclosing
4618    //   the specialized template.
4619    if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
4620      bool IsCPlusPlus0xExtension = DC->Encloses(SpecializedContext);
4621      if (isa<TranslationUnitDecl>(SpecializedContext)) {
4622        assert(!IsCPlusPlus0xExtension &&
4623               "DC encloses TU but isn't in enclosing namespace set");
4624        S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
4625          << EntityKind << Specialized;
4626      } else if (isa<NamespaceDecl>(SpecializedContext)) {
4627        int Diag;
4628        if (!IsCPlusPlus0xExtension)
4629          Diag = diag::err_template_spec_decl_out_of_scope;
4630        else if (!S.getLangOptions().CPlusPlus0x)
4631          Diag = diag::ext_template_spec_decl_out_of_scope;
4632        else
4633          Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
4634        S.Diag(Loc, Diag)
4635          << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
4636      }
4637
4638      S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4639      ComplainedAboutScope =
4640        !(IsCPlusPlus0xExtension && S.getLangOptions().CPlusPlus0x);
4641    }
4642  }
4643
4644  // Make sure that this redeclaration (or definition) occurs in an enclosing
4645  // namespace.
4646  // Note that HandleDeclarator() performs this check for explicit
4647  // specializations of function templates, static data members, and member
4648  // functions, so we skip the check here for those kinds of entities.
4649  // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
4650  // Should we refactor that check, so that it occurs later?
4651  if (!ComplainedAboutScope && !DC->Encloses(SpecializedContext) &&
4652      !(isa<FunctionTemplateDecl>(Specialized) || isa<VarDecl>(Specialized) ||
4653        isa<FunctionDecl>(Specialized))) {
4654    if (isa<TranslationUnitDecl>(SpecializedContext))
4655      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
4656        << EntityKind << Specialized;
4657    else if (isa<NamespaceDecl>(SpecializedContext))
4658      S.Diag(Loc, diag::err_template_spec_redecl_out_of_scope)
4659        << EntityKind << Specialized
4660        << cast<NamedDecl>(SpecializedContext);
4661
4662    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
4663  }
4664
4665  // FIXME: check for specialization-after-instantiation errors and such.
4666
4667  return false;
4668}
4669
4670/// \brief Subroutine of Sema::CheckClassTemplatePartialSpecializationArgs
4671/// that checks non-type template partial specialization arguments.
4672static bool CheckNonTypeClassTemplatePartialSpecializationArgs(Sema &S,
4673                                                NonTypeTemplateParmDecl *Param,
4674                                                  const TemplateArgument *Args,
4675                                                        unsigned NumArgs) {
4676  for (unsigned I = 0; I != NumArgs; ++I) {
4677    if (Args[I].getKind() == TemplateArgument::Pack) {
4678      if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4679                                                           Args[I].pack_begin(),
4680                                                           Args[I].pack_size()))
4681        return true;
4682
4683      continue;
4684    }
4685
4686    Expr *ArgExpr = Args[I].getAsExpr();
4687    if (!ArgExpr) {
4688      continue;
4689    }
4690
4691    // We can have a pack expansion of any of the bullets below.
4692    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
4693      ArgExpr = Expansion->getPattern();
4694
4695    // Strip off any implicit casts we added as part of type checking.
4696    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
4697      ArgExpr = ICE->getSubExpr();
4698
4699    // C++ [temp.class.spec]p8:
4700    //   A non-type argument is non-specialized if it is the name of a
4701    //   non-type parameter. All other non-type arguments are
4702    //   specialized.
4703    //
4704    // Below, we check the two conditions that only apply to
4705    // specialized non-type arguments, so skip any non-specialized
4706    // arguments.
4707    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
4708      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
4709        continue;
4710
4711    // C++ [temp.class.spec]p9:
4712    //   Within the argument list of a class template partial
4713    //   specialization, the following restrictions apply:
4714    //     -- A partially specialized non-type argument expression
4715    //        shall not involve a template parameter of the partial
4716    //        specialization except when the argument expression is a
4717    //        simple identifier.
4718    if (ArgExpr->isTypeDependent() || ArgExpr->isValueDependent()) {
4719      S.Diag(ArgExpr->getLocStart(),
4720           diag::err_dependent_non_type_arg_in_partial_spec)
4721        << ArgExpr->getSourceRange();
4722      return true;
4723    }
4724
4725    //     -- The type of a template parameter corresponding to a
4726    //        specialized non-type argument shall not be dependent on a
4727    //        parameter of the specialization.
4728    if (Param->getType()->isDependentType()) {
4729      S.Diag(ArgExpr->getLocStart(),
4730           diag::err_dependent_typed_non_type_arg_in_partial_spec)
4731        << Param->getType()
4732        << ArgExpr->getSourceRange();
4733      S.Diag(Param->getLocation(), diag::note_template_param_here);
4734      return true;
4735    }
4736  }
4737
4738  return false;
4739}
4740
4741/// \brief Check the non-type template arguments of a class template
4742/// partial specialization according to C++ [temp.class.spec]p9.
4743///
4744/// \param TemplateParams the template parameters of the primary class
4745/// template.
4746///
4747/// \param TemplateArg the template arguments of the class template
4748/// partial specialization.
4749///
4750/// \returns true if there was an error, false otherwise.
4751static bool CheckClassTemplatePartialSpecializationArgs(Sema &S,
4752                                        TemplateParameterList *TemplateParams,
4753                       SmallVectorImpl<TemplateArgument> &TemplateArgs) {
4754  const TemplateArgument *ArgList = TemplateArgs.data();
4755
4756  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4757    NonTypeTemplateParmDecl *Param
4758      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
4759    if (!Param)
4760      continue;
4761
4762    if (CheckNonTypeClassTemplatePartialSpecializationArgs(S, Param,
4763                                                           &ArgList[I], 1))
4764      return true;
4765  }
4766
4767  return false;
4768}
4769
4770DeclResult
4771Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
4772                                       TagUseKind TUK,
4773                                       SourceLocation KWLoc,
4774                                       SourceLocation ModulePrivateLoc,
4775                                       CXXScopeSpec &SS,
4776                                       TemplateTy TemplateD,
4777                                       SourceLocation TemplateNameLoc,
4778                                       SourceLocation LAngleLoc,
4779                                       ASTTemplateArgsPtr TemplateArgsIn,
4780                                       SourceLocation RAngleLoc,
4781                                       AttributeList *Attr,
4782                               MultiTemplateParamsArg TemplateParameterLists) {
4783  assert(TUK != TUK_Reference && "References are not specializations");
4784
4785  // NOTE: KWLoc is the location of the tag keyword. This will instead
4786  // store the location of the outermost template keyword in the declaration.
4787  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
4788    ? TemplateParameterLists.get()[0]->getTemplateLoc() : SourceLocation();
4789
4790  // Find the class template we're specializing
4791  TemplateName Name = TemplateD.getAsVal<TemplateName>();
4792  ClassTemplateDecl *ClassTemplate
4793    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
4794
4795  if (!ClassTemplate) {
4796    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
4797      << (Name.getAsTemplateDecl() &&
4798          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
4799    return true;
4800  }
4801
4802  bool isExplicitSpecialization = false;
4803  bool isPartialSpecialization = false;
4804
4805  // Check the validity of the template headers that introduce this
4806  // template.
4807  // FIXME: We probably shouldn't complain about these headers for
4808  // friend declarations.
4809  bool Invalid = false;
4810  TemplateParameterList *TemplateParams
4811    = MatchTemplateParametersToScopeSpecifier(TemplateNameLoc,
4812                                              TemplateNameLoc,
4813                                              SS,
4814                        (TemplateParameterList**)TemplateParameterLists.get(),
4815                                              TemplateParameterLists.size(),
4816                                              TUK == TUK_Friend,
4817                                              isExplicitSpecialization,
4818                                              Invalid);
4819  if (Invalid)
4820    return true;
4821
4822  if (TemplateParams && TemplateParams->size() > 0) {
4823    isPartialSpecialization = true;
4824
4825    if (TUK == TUK_Friend) {
4826      Diag(KWLoc, diag::err_partial_specialization_friend)
4827        << SourceRange(LAngleLoc, RAngleLoc);
4828      return true;
4829    }
4830
4831    // C++ [temp.class.spec]p10:
4832    //   The template parameter list of a specialization shall not
4833    //   contain default template argument values.
4834    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
4835      Decl *Param = TemplateParams->getParam(I);
4836      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4837        if (TTP->hasDefaultArgument()) {
4838          Diag(TTP->getDefaultArgumentLoc(),
4839               diag::err_default_arg_in_partial_spec);
4840          TTP->removeDefaultArgument();
4841        }
4842      } else if (NonTypeTemplateParmDecl *NTTP
4843                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4844        if (Expr *DefArg = NTTP->getDefaultArgument()) {
4845          Diag(NTTP->getDefaultArgumentLoc(),
4846               diag::err_default_arg_in_partial_spec)
4847            << DefArg->getSourceRange();
4848          NTTP->removeDefaultArgument();
4849        }
4850      } else {
4851        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
4852        if (TTP->hasDefaultArgument()) {
4853          Diag(TTP->getDefaultArgument().getLocation(),
4854               diag::err_default_arg_in_partial_spec)
4855            << TTP->getDefaultArgument().getSourceRange();
4856          TTP->removeDefaultArgument();
4857        }
4858      }
4859    }
4860  } else if (TemplateParams) {
4861    if (TUK == TUK_Friend)
4862      Diag(KWLoc, diag::err_template_spec_friend)
4863        << FixItHint::CreateRemoval(
4864                                SourceRange(TemplateParams->getTemplateLoc(),
4865                                            TemplateParams->getRAngleLoc()))
4866        << SourceRange(LAngleLoc, RAngleLoc);
4867    else
4868      isExplicitSpecialization = true;
4869  } else if (TUK != TUK_Friend) {
4870    Diag(KWLoc, diag::err_template_spec_needs_header)
4871      << FixItHint::CreateInsertion(KWLoc, "template<> ");
4872    isExplicitSpecialization = true;
4873  }
4874
4875  // Check that the specialization uses the same tag kind as the
4876  // original template.
4877  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
4878  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
4879  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
4880                                    Kind, TUK == TUK_Definition, KWLoc,
4881                                    *ClassTemplate->getIdentifier())) {
4882    Diag(KWLoc, diag::err_use_with_wrong_tag)
4883      << ClassTemplate
4884      << FixItHint::CreateReplacement(KWLoc,
4885                            ClassTemplate->getTemplatedDecl()->getKindName());
4886    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
4887         diag::note_previous_use);
4888    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
4889  }
4890
4891  // Translate the parser's template argument list in our AST format.
4892  TemplateArgumentListInfo TemplateArgs;
4893  TemplateArgs.setLAngleLoc(LAngleLoc);
4894  TemplateArgs.setRAngleLoc(RAngleLoc);
4895  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4896
4897  // Check for unexpanded parameter packs in any of the template arguments.
4898  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4899    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4900                                        UPPC_PartialSpecialization))
4901      return true;
4902
4903  // Check that the template argument list is well-formed for this
4904  // template.
4905  SmallVector<TemplateArgument, 4> Converted;
4906  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
4907                                TemplateArgs, false, Converted))
4908    return true;
4909
4910  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
4911         "Converted template argument list is too short!");
4912
4913  // Find the class template (partial) specialization declaration that
4914  // corresponds to these arguments.
4915  if (isPartialSpecialization) {
4916    if (CheckClassTemplatePartialSpecializationArgs(*this,
4917                                         ClassTemplate->getTemplateParameters(),
4918                                         Converted))
4919      return true;
4920
4921    bool InstantiationDependent;
4922    if (!Name.isDependent() &&
4923        !TemplateSpecializationType::anyDependentTemplateArguments(
4924                                             TemplateArgs.getArgumentArray(),
4925                                                         TemplateArgs.size(),
4926                                                     InstantiationDependent)) {
4927      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4928        << ClassTemplate->getDeclName();
4929      isPartialSpecialization = false;
4930    }
4931  }
4932
4933  void *InsertPos = 0;
4934  ClassTemplateSpecializationDecl *PrevDecl = 0;
4935
4936  if (isPartialSpecialization)
4937    // FIXME: Template parameter list matters, too
4938    PrevDecl
4939      = ClassTemplate->findPartialSpecialization(Converted.data(),
4940                                                 Converted.size(),
4941                                                 InsertPos);
4942  else
4943    PrevDecl
4944      = ClassTemplate->findSpecialization(Converted.data(),
4945                                          Converted.size(), InsertPos);
4946
4947  ClassTemplateSpecializationDecl *Specialization = 0;
4948
4949  // Check whether we can declare a class template specialization in
4950  // the current scope.
4951  if (TUK != TUK_Friend &&
4952      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
4953                                       TemplateNameLoc,
4954                                       isPartialSpecialization))
4955    return true;
4956
4957  // The canonical type
4958  QualType CanonType;
4959  if (PrevDecl &&
4960      (PrevDecl->getSpecializationKind() == TSK_Undeclared ||
4961               TUK == TUK_Friend)) {
4962    // Since the only prior class template specialization with these
4963    // arguments was referenced but not declared, or we're only
4964    // referencing this specialization as a friend, reuse that
4965    // declaration node as our own, updating its source location and
4966    // the list of outer template parameters to reflect our new declaration.
4967    Specialization = PrevDecl;
4968    Specialization->setLocation(TemplateNameLoc);
4969    if (TemplateParameterLists.size() > 0) {
4970      Specialization->setTemplateParameterListsInfo(Context,
4971                                              TemplateParameterLists.size(),
4972                    (TemplateParameterList**) TemplateParameterLists.release());
4973    }
4974    PrevDecl = 0;
4975    CanonType = Context.getTypeDeclType(Specialization);
4976  } else if (isPartialSpecialization) {
4977    // Build the canonical type that describes the converted template
4978    // arguments of the class template partial specialization.
4979    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
4980    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
4981                                                      Converted.data(),
4982                                                      Converted.size());
4983
4984    if (Context.hasSameType(CanonType,
4985                        ClassTemplate->getInjectedClassNameSpecialization())) {
4986      // C++ [temp.class.spec]p9b3:
4987      //
4988      //   -- The argument list of the specialization shall not be identical
4989      //      to the implicit argument list of the primary template.
4990      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4991        << (TUK == TUK_Definition)
4992        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4993      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
4994                                ClassTemplate->getIdentifier(),
4995                                TemplateNameLoc,
4996                                Attr,
4997                                TemplateParams,
4998                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
4999                                TemplateParameterLists.size() - 1,
5000                  (TemplateParameterList**) TemplateParameterLists.release());
5001    }
5002
5003    // Create a new class template partial specialization declaration node.
5004    ClassTemplatePartialSpecializationDecl *PrevPartial
5005      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
5006    unsigned SequenceNumber = PrevPartial? PrevPartial->getSequenceNumber()
5007                            : ClassTemplate->getNextPartialSpecSequenceNumber();
5008    ClassTemplatePartialSpecializationDecl *Partial
5009      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
5010                                             ClassTemplate->getDeclContext(),
5011                                                       KWLoc, TemplateNameLoc,
5012                                                       TemplateParams,
5013                                                       ClassTemplate,
5014                                                       Converted.data(),
5015                                                       Converted.size(),
5016                                                       TemplateArgs,
5017                                                       CanonType,
5018                                                       PrevPartial,
5019                                                       SequenceNumber);
5020    SetNestedNameSpecifier(Partial, SS);
5021    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
5022      Partial->setTemplateParameterListsInfo(Context,
5023                                             TemplateParameterLists.size() - 1,
5024                    (TemplateParameterList**) TemplateParameterLists.release());
5025    }
5026
5027    if (!PrevPartial)
5028      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
5029    Specialization = Partial;
5030
5031    // If we are providing an explicit specialization of a member class
5032    // template specialization, make a note of that.
5033    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
5034      PrevPartial->setMemberSpecialization();
5035
5036    // Check that all of the template parameters of the class template
5037    // partial specialization are deducible from the template
5038    // arguments. If not, this class template partial specialization
5039    // will never be used.
5040    SmallVector<bool, 8> DeducibleParams;
5041    DeducibleParams.resize(TemplateParams->size());
5042    MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
5043                               TemplateParams->getDepth(),
5044                               DeducibleParams);
5045    unsigned NumNonDeducible = 0;
5046    for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I)
5047      if (!DeducibleParams[I])
5048        ++NumNonDeducible;
5049
5050    if (NumNonDeducible) {
5051      Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
5052        << (NumNonDeducible > 1)
5053        << SourceRange(TemplateNameLoc, RAngleLoc);
5054      for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
5055        if (!DeducibleParams[I]) {
5056          NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
5057          if (Param->getDeclName())
5058            Diag(Param->getLocation(),
5059                 diag::note_partial_spec_unused_parameter)
5060              << Param->getDeclName();
5061          else
5062            Diag(Param->getLocation(),
5063                 diag::note_partial_spec_unused_parameter)
5064              << "<anonymous>";
5065        }
5066      }
5067    }
5068  } else {
5069    // Create a new class template specialization declaration node for
5070    // this explicit specialization or friend declaration.
5071    Specialization
5072      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5073                                             ClassTemplate->getDeclContext(),
5074                                                KWLoc, TemplateNameLoc,
5075                                                ClassTemplate,
5076                                                Converted.data(),
5077                                                Converted.size(),
5078                                                PrevDecl);
5079    SetNestedNameSpecifier(Specialization, SS);
5080    if (TemplateParameterLists.size() > 0) {
5081      Specialization->setTemplateParameterListsInfo(Context,
5082                                              TemplateParameterLists.size(),
5083                    (TemplateParameterList**) TemplateParameterLists.release());
5084    }
5085
5086    if (!PrevDecl)
5087      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5088
5089    CanonType = Context.getTypeDeclType(Specialization);
5090  }
5091
5092  // C++ [temp.expl.spec]p6:
5093  //   If a template, a member template or the member of a class template is
5094  //   explicitly specialized then that specialization shall be declared
5095  //   before the first use of that specialization that would cause an implicit
5096  //   instantiation to take place, in every translation unit in which such a
5097  //   use occurs; no diagnostic is required.
5098  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
5099    bool Okay = false;
5100    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5101      // Is there any previous explicit specialization declaration?
5102      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5103        Okay = true;
5104        break;
5105      }
5106    }
5107
5108    if (!Okay) {
5109      SourceRange Range(TemplateNameLoc, RAngleLoc);
5110      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
5111        << Context.getTypeDeclType(Specialization) << Range;
5112
5113      Diag(PrevDecl->getPointOfInstantiation(),
5114           diag::note_instantiation_required_here)
5115        << (PrevDecl->getTemplateSpecializationKind()
5116                                                != TSK_ImplicitInstantiation);
5117      return true;
5118    }
5119  }
5120
5121  // If this is not a friend, note that this is an explicit specialization.
5122  if (TUK != TUK_Friend)
5123    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
5124
5125  // Check that this isn't a redefinition of this specialization.
5126  if (TUK == TUK_Definition) {
5127    if (RecordDecl *Def = Specialization->getDefinition()) {
5128      SourceRange Range(TemplateNameLoc, RAngleLoc);
5129      Diag(TemplateNameLoc, diag::err_redefinition)
5130        << Context.getTypeDeclType(Specialization) << Range;
5131      Diag(Def->getLocation(), diag::note_previous_definition);
5132      Specialization->setInvalidDecl();
5133      return true;
5134    }
5135  }
5136
5137  if (Attr)
5138    ProcessDeclAttributeList(S, Specialization, Attr);
5139
5140  if (ModulePrivateLoc.isValid())
5141    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
5142      << (isPartialSpecialization? 1 : 0)
5143      << FixItHint::CreateRemoval(ModulePrivateLoc);
5144
5145  // Build the fully-sugared type for this class template
5146  // specialization as the user wrote in the specialization
5147  // itself. This means that we'll pretty-print the type retrieved
5148  // from the specialization's declaration the way that the user
5149  // actually wrote the specialization, rather than formatting the
5150  // name based on the "canonical" representation used to store the
5151  // template arguments in the specialization.
5152  TypeSourceInfo *WrittenTy
5153    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5154                                                TemplateArgs, CanonType);
5155  if (TUK != TUK_Friend) {
5156    Specialization->setTypeAsWritten(WrittenTy);
5157    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
5158  }
5159  TemplateArgsIn.release();
5160
5161  // C++ [temp.expl.spec]p9:
5162  //   A template explicit specialization is in the scope of the
5163  //   namespace in which the template was defined.
5164  //
5165  // We actually implement this paragraph where we set the semantic
5166  // context (in the creation of the ClassTemplateSpecializationDecl),
5167  // but we also maintain the lexical context where the actual
5168  // definition occurs.
5169  Specialization->setLexicalDeclContext(CurContext);
5170
5171  // We may be starting the definition of this specialization.
5172  if (TUK == TUK_Definition)
5173    Specialization->startDefinition();
5174
5175  if (TUK == TUK_Friend) {
5176    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
5177                                            TemplateNameLoc,
5178                                            WrittenTy,
5179                                            /*FIXME:*/KWLoc);
5180    Friend->setAccess(AS_public);
5181    CurContext->addDecl(Friend);
5182  } else {
5183    // Add the specialization into its lexical context, so that it can
5184    // be seen when iterating through the list of declarations in that
5185    // context. However, specializations are not found by name lookup.
5186    CurContext->addDecl(Specialization);
5187  }
5188  return Specialization;
5189}
5190
5191Decl *Sema::ActOnTemplateDeclarator(Scope *S,
5192                              MultiTemplateParamsArg TemplateParameterLists,
5193                                    Declarator &D) {
5194  return HandleDeclarator(S, D, move(TemplateParameterLists));
5195}
5196
5197Decl *Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
5198                               MultiTemplateParamsArg TemplateParameterLists,
5199                                            Declarator &D) {
5200  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5201  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5202
5203  if (FTI.hasPrototype) {
5204    // FIXME: Diagnose arguments without names in C.
5205  }
5206
5207  Scope *ParentScope = FnBodyScope->getParent();
5208
5209  D.setFunctionDefinitionKind(FDK_Definition);
5210  Decl *DP = HandleDeclarator(ParentScope, D,
5211                              move(TemplateParameterLists));
5212  if (FunctionTemplateDecl *FunctionTemplate
5213        = dyn_cast_or_null<FunctionTemplateDecl>(DP))
5214    return ActOnStartOfFunctionDef(FnBodyScope,
5215                                   FunctionTemplate->getTemplatedDecl());
5216  if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP))
5217    return ActOnStartOfFunctionDef(FnBodyScope, Function);
5218  return 0;
5219}
5220
5221/// \brief Strips various properties off an implicit instantiation
5222/// that has just been explicitly specialized.
5223static void StripImplicitInstantiation(NamedDecl *D) {
5224  D->dropAttrs();
5225
5226  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5227    FD->setInlineSpecified(false);
5228  }
5229}
5230
5231/// \brief Compute the diagnostic location for an explicit instantiation
5232//  declaration or definition.
5233static SourceLocation DiagLocForExplicitInstantiation(
5234    NamedDecl* D, SourceLocation PointOfInstantiation) {
5235  // Explicit instantiations following a specialization have no effect and
5236  // hence no PointOfInstantiation. In that case, walk decl backwards
5237  // until a valid name loc is found.
5238  SourceLocation PrevDiagLoc = PointOfInstantiation;
5239  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
5240       Prev = Prev->getPreviousDecl()) {
5241    PrevDiagLoc = Prev->getLocation();
5242  }
5243  assert(PrevDiagLoc.isValid() &&
5244         "Explicit instantiation without point of instantiation?");
5245  return PrevDiagLoc;
5246}
5247
5248/// \brief Diagnose cases where we have an explicit template specialization
5249/// before/after an explicit template instantiation, producing diagnostics
5250/// for those cases where they are required and determining whether the
5251/// new specialization/instantiation will have any effect.
5252///
5253/// \param NewLoc the location of the new explicit specialization or
5254/// instantiation.
5255///
5256/// \param NewTSK the kind of the new explicit specialization or instantiation.
5257///
5258/// \param PrevDecl the previous declaration of the entity.
5259///
5260/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
5261///
5262/// \param PrevPointOfInstantiation if valid, indicates where the previus
5263/// declaration was instantiated (either implicitly or explicitly).
5264///
5265/// \param HasNoEffect will be set to true to indicate that the new
5266/// specialization or instantiation has no effect and should be ignored.
5267///
5268/// \returns true if there was an error that should prevent the introduction of
5269/// the new declaration into the AST, false otherwise.
5270bool
5271Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
5272                                             TemplateSpecializationKind NewTSK,
5273                                             NamedDecl *PrevDecl,
5274                                             TemplateSpecializationKind PrevTSK,
5275                                        SourceLocation PrevPointOfInstantiation,
5276                                             bool &HasNoEffect) {
5277  HasNoEffect = false;
5278
5279  switch (NewTSK) {
5280  case TSK_Undeclared:
5281  case TSK_ImplicitInstantiation:
5282    llvm_unreachable("Don't check implicit instantiations here");
5283
5284  case TSK_ExplicitSpecialization:
5285    switch (PrevTSK) {
5286    case TSK_Undeclared:
5287    case TSK_ExplicitSpecialization:
5288      // Okay, we're just specializing something that is either already
5289      // explicitly specialized or has merely been mentioned without any
5290      // instantiation.
5291      return false;
5292
5293    case TSK_ImplicitInstantiation:
5294      if (PrevPointOfInstantiation.isInvalid()) {
5295        // The declaration itself has not actually been instantiated, so it is
5296        // still okay to specialize it.
5297        StripImplicitInstantiation(PrevDecl);
5298        return false;
5299      }
5300      // Fall through
5301
5302    case TSK_ExplicitInstantiationDeclaration:
5303    case TSK_ExplicitInstantiationDefinition:
5304      assert((PrevTSK == TSK_ImplicitInstantiation ||
5305              PrevPointOfInstantiation.isValid()) &&
5306             "Explicit instantiation without point of instantiation?");
5307
5308      // C++ [temp.expl.spec]p6:
5309      //   If a template, a member template or the member of a class template
5310      //   is explicitly specialized then that specialization shall be declared
5311      //   before the first use of that specialization that would cause an
5312      //   implicit instantiation to take place, in every translation unit in
5313      //   which such a use occurs; no diagnostic is required.
5314      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5315        // Is there any previous explicit specialization declaration?
5316        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
5317          return false;
5318      }
5319
5320      Diag(NewLoc, diag::err_specialization_after_instantiation)
5321        << PrevDecl;
5322      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
5323        << (PrevTSK != TSK_ImplicitInstantiation);
5324
5325      return true;
5326    }
5327    break;
5328
5329  case TSK_ExplicitInstantiationDeclaration:
5330    switch (PrevTSK) {
5331    case TSK_ExplicitInstantiationDeclaration:
5332      // This explicit instantiation declaration is redundant (that's okay).
5333      HasNoEffect = true;
5334      return false;
5335
5336    case TSK_Undeclared:
5337    case TSK_ImplicitInstantiation:
5338      // We're explicitly instantiating something that may have already been
5339      // implicitly instantiated; that's fine.
5340      return false;
5341
5342    case TSK_ExplicitSpecialization:
5343      // C++0x [temp.explicit]p4:
5344      //   For a given set of template parameters, if an explicit instantiation
5345      //   of a template appears after a declaration of an explicit
5346      //   specialization for that template, the explicit instantiation has no
5347      //   effect.
5348      HasNoEffect = true;
5349      return false;
5350
5351    case TSK_ExplicitInstantiationDefinition:
5352      // C++0x [temp.explicit]p10:
5353      //   If an entity is the subject of both an explicit instantiation
5354      //   declaration and an explicit instantiation definition in the same
5355      //   translation unit, the definition shall follow the declaration.
5356      Diag(NewLoc,
5357           diag::err_explicit_instantiation_declaration_after_definition);
5358
5359      // Explicit instantiations following a specialization have no effect and
5360      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
5361      // until a valid name loc is found.
5362      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5363           diag::note_explicit_instantiation_definition_here);
5364      HasNoEffect = true;
5365      return false;
5366    }
5367    break;
5368
5369  case TSK_ExplicitInstantiationDefinition:
5370    switch (PrevTSK) {
5371    case TSK_Undeclared:
5372    case TSK_ImplicitInstantiation:
5373      // We're explicitly instantiating something that may have already been
5374      // implicitly instantiated; that's fine.
5375      return false;
5376
5377    case TSK_ExplicitSpecialization:
5378      // C++ DR 259, C++0x [temp.explicit]p4:
5379      //   For a given set of template parameters, if an explicit
5380      //   instantiation of a template appears after a declaration of
5381      //   an explicit specialization for that template, the explicit
5382      //   instantiation has no effect.
5383      //
5384      // In C++98/03 mode, we only give an extension warning here, because it
5385      // is not harmful to try to explicitly instantiate something that
5386      // has been explicitly specialized.
5387      Diag(NewLoc, getLangOptions().CPlusPlus0x ?
5388           diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
5389           diag::ext_explicit_instantiation_after_specialization)
5390        << PrevDecl;
5391      Diag(PrevDecl->getLocation(),
5392           diag::note_previous_template_specialization);
5393      HasNoEffect = true;
5394      return false;
5395
5396    case TSK_ExplicitInstantiationDeclaration:
5397      // We're explicity instantiating a definition for something for which we
5398      // were previously asked to suppress instantiations. That's fine.
5399
5400      // C++0x [temp.explicit]p4:
5401      //   For a given set of template parameters, if an explicit instantiation
5402      //   of a template appears after a declaration of an explicit
5403      //   specialization for that template, the explicit instantiation has no
5404      //   effect.
5405      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
5406        // Is there any previous explicit specialization declaration?
5407        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
5408          HasNoEffect = true;
5409          break;
5410        }
5411      }
5412
5413      return false;
5414
5415    case TSK_ExplicitInstantiationDefinition:
5416      // C++0x [temp.spec]p5:
5417      //   For a given template and a given set of template-arguments,
5418      //     - an explicit instantiation definition shall appear at most once
5419      //       in a program,
5420      Diag(NewLoc, diag::err_explicit_instantiation_duplicate)
5421        << PrevDecl;
5422      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
5423           diag::note_previous_explicit_instantiation);
5424      HasNoEffect = true;
5425      return false;
5426    }
5427    break;
5428  }
5429
5430  llvm_unreachable("Missing specialization/instantiation case?");
5431}
5432
5433/// \brief Perform semantic analysis for the given dependent function
5434/// template specialization.  The only possible way to get a dependent
5435/// function template specialization is with a friend declaration,
5436/// like so:
5437///
5438///   template <class T> void foo(T);
5439///   template <class T> class A {
5440///     friend void foo<>(T);
5441///   };
5442///
5443/// There really isn't any useful analysis we can do here, so we
5444/// just store the information.
5445bool
5446Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
5447                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
5448                                                   LookupResult &Previous) {
5449  // Remove anything from Previous that isn't a function template in
5450  // the correct context.
5451  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5452  LookupResult::Filter F = Previous.makeFilter();
5453  while (F.hasNext()) {
5454    NamedDecl *D = F.next()->getUnderlyingDecl();
5455    if (!isa<FunctionTemplateDecl>(D) ||
5456        !FDLookupContext->InEnclosingNamespaceSetOf(
5457                              D->getDeclContext()->getRedeclContext()))
5458      F.erase();
5459  }
5460  F.done();
5461
5462  // Should this be diagnosed here?
5463  if (Previous.empty()) return true;
5464
5465  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
5466                                         ExplicitTemplateArgs);
5467  return false;
5468}
5469
5470/// \brief Perform semantic analysis for the given function template
5471/// specialization.
5472///
5473/// This routine performs all of the semantic analysis required for an
5474/// explicit function template specialization. On successful completion,
5475/// the function declaration \p FD will become a function template
5476/// specialization.
5477///
5478/// \param FD the function declaration, which will be updated to become a
5479/// function template specialization.
5480///
5481/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
5482/// if any. Note that this may be valid info even when 0 arguments are
5483/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
5484/// as it anyway contains info on the angle brackets locations.
5485///
5486/// \param Previous the set of declarations that may be specialized by
5487/// this function specialization.
5488bool
5489Sema::CheckFunctionTemplateSpecialization(FunctionDecl *FD,
5490                                 TemplateArgumentListInfo *ExplicitTemplateArgs,
5491                                          LookupResult &Previous) {
5492  // The set of function template specializations that could match this
5493  // explicit function template specialization.
5494  UnresolvedSet<8> Candidates;
5495
5496  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
5497  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5498         I != E; ++I) {
5499    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
5500    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
5501      // Only consider templates found within the same semantic lookup scope as
5502      // FD.
5503      if (!FDLookupContext->InEnclosingNamespaceSetOf(
5504                                Ovl->getDeclContext()->getRedeclContext()))
5505        continue;
5506
5507      // C++ [temp.expl.spec]p11:
5508      //   A trailing template-argument can be left unspecified in the
5509      //   template-id naming an explicit function template specialization
5510      //   provided it can be deduced from the function argument type.
5511      // Perform template argument deduction to determine whether we may be
5512      // specializing this template.
5513      // FIXME: It is somewhat wasteful to build
5514      TemplateDeductionInfo Info(Context, FD->getLocation());
5515      FunctionDecl *Specialization = 0;
5516      if (TemplateDeductionResult TDK
5517            = DeduceTemplateArguments(FunTmpl, ExplicitTemplateArgs,
5518                                      FD->getType(),
5519                                      Specialization,
5520                                      Info)) {
5521        // FIXME: Template argument deduction failed; record why it failed, so
5522        // that we can provide nifty diagnostics.
5523        (void)TDK;
5524        continue;
5525      }
5526
5527      // Record this candidate.
5528      Candidates.addDecl(Specialization, I.getAccess());
5529    }
5530  }
5531
5532  // Find the most specialized function template.
5533  UnresolvedSetIterator Result
5534    = getMostSpecialized(Candidates.begin(), Candidates.end(),
5535                         TPOC_Other, 0, FD->getLocation(),
5536                  PDiag(diag::err_function_template_spec_no_match)
5537                    << FD->getDeclName(),
5538                  PDiag(diag::err_function_template_spec_ambiguous)
5539                    << FD->getDeclName() << (ExplicitTemplateArgs != 0),
5540                  PDiag(diag::note_function_template_spec_matched));
5541  if (Result == Candidates.end())
5542    return true;
5543
5544  // Ignore access information;  it doesn't figure into redeclaration checking.
5545  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
5546
5547  FunctionTemplateSpecializationInfo *SpecInfo
5548    = Specialization->getTemplateSpecializationInfo();
5549  assert(SpecInfo && "Function template specialization info missing?");
5550
5551  // Note: do not overwrite location info if previous template
5552  // specialization kind was explicit.
5553  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
5554  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation)
5555    Specialization->setLocation(FD->getLocation());
5556
5557  // FIXME: Check if the prior specialization has a point of instantiation.
5558  // If so, we have run afoul of .
5559
5560  // If this is a friend declaration, then we're not really declaring
5561  // an explicit specialization.
5562  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
5563
5564  // Check the scope of this explicit specialization.
5565  if (!isFriend &&
5566      CheckTemplateSpecializationScope(*this,
5567                                       Specialization->getPrimaryTemplate(),
5568                                       Specialization, FD->getLocation(),
5569                                       false))
5570    return true;
5571
5572  // C++ [temp.expl.spec]p6:
5573  //   If a template, a member template or the member of a class template is
5574  //   explicitly specialized then that specialization shall be declared
5575  //   before the first use of that specialization that would cause an implicit
5576  //   instantiation to take place, in every translation unit in which such a
5577  //   use occurs; no diagnostic is required.
5578  bool HasNoEffect = false;
5579  if (!isFriend &&
5580      CheckSpecializationInstantiationRedecl(FD->getLocation(),
5581                                             TSK_ExplicitSpecialization,
5582                                             Specialization,
5583                                   SpecInfo->getTemplateSpecializationKind(),
5584                                         SpecInfo->getPointOfInstantiation(),
5585                                             HasNoEffect))
5586    return true;
5587
5588  // Mark the prior declaration as an explicit specialization, so that later
5589  // clients know that this is an explicit specialization.
5590  if (!isFriend) {
5591    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
5592    MarkUnusedFileScopedDecl(Specialization);
5593  }
5594
5595  // Turn the given function declaration into a function template
5596  // specialization, with the template arguments from the previous
5597  // specialization.
5598  // Take copies of (semantic and syntactic) template argument lists.
5599  const TemplateArgumentList* TemplArgs = new (Context)
5600    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
5601  FD->setFunctionTemplateSpecialization(Specialization->getPrimaryTemplate(),
5602                                        TemplArgs, /*InsertPos=*/0,
5603                                    SpecInfo->getTemplateSpecializationKind(),
5604                                        ExplicitTemplateArgs);
5605  FD->setStorageClass(Specialization->getStorageClass());
5606
5607  // The "previous declaration" for this function template specialization is
5608  // the prior function template specialization.
5609  Previous.clear();
5610  Previous.addDecl(Specialization);
5611  return false;
5612}
5613
5614/// \brief Perform semantic analysis for the given non-template member
5615/// specialization.
5616///
5617/// This routine performs all of the semantic analysis required for an
5618/// explicit member function specialization. On successful completion,
5619/// the function declaration \p FD will become a member function
5620/// specialization.
5621///
5622/// \param Member the member declaration, which will be updated to become a
5623/// specialization.
5624///
5625/// \param Previous the set of declarations, one of which may be specialized
5626/// by this function specialization;  the set will be modified to contain the
5627/// redeclared member.
5628bool
5629Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
5630  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
5631
5632  // Try to find the member we are instantiating.
5633  NamedDecl *Instantiation = 0;
5634  NamedDecl *InstantiatedFrom = 0;
5635  MemberSpecializationInfo *MSInfo = 0;
5636
5637  if (Previous.empty()) {
5638    // Nowhere to look anyway.
5639  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
5640    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5641           I != E; ++I) {
5642      NamedDecl *D = (*I)->getUnderlyingDecl();
5643      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5644        if (Context.hasSameType(Function->getType(), Method->getType())) {
5645          Instantiation = Method;
5646          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
5647          MSInfo = Method->getMemberSpecializationInfo();
5648          break;
5649        }
5650      }
5651    }
5652  } else if (isa<VarDecl>(Member)) {
5653    VarDecl *PrevVar;
5654    if (Previous.isSingleResult() &&
5655        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
5656      if (PrevVar->isStaticDataMember()) {
5657        Instantiation = PrevVar;
5658        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
5659        MSInfo = PrevVar->getMemberSpecializationInfo();
5660      }
5661  } else if (isa<RecordDecl>(Member)) {
5662    CXXRecordDecl *PrevRecord;
5663    if (Previous.isSingleResult() &&
5664        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
5665      Instantiation = PrevRecord;
5666      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
5667      MSInfo = PrevRecord->getMemberSpecializationInfo();
5668    }
5669  }
5670
5671  if (!Instantiation) {
5672    // There is no previous declaration that matches. Since member
5673    // specializations are always out-of-line, the caller will complain about
5674    // this mismatch later.
5675    return false;
5676  }
5677
5678  // If this is a friend, just bail out here before we start turning
5679  // things into explicit specializations.
5680  if (Member->getFriendObjectKind() != Decl::FOK_None) {
5681    // Preserve instantiation information.
5682    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
5683      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
5684                                      cast<CXXMethodDecl>(InstantiatedFrom),
5685        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
5686    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
5687      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5688                                      cast<CXXRecordDecl>(InstantiatedFrom),
5689        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
5690    }
5691
5692    Previous.clear();
5693    Previous.addDecl(Instantiation);
5694    return false;
5695  }
5696
5697  // Make sure that this is a specialization of a member.
5698  if (!InstantiatedFrom) {
5699    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
5700      << Member;
5701    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
5702    return true;
5703  }
5704
5705  // C++ [temp.expl.spec]p6:
5706  //   If a template, a member template or the member of a class template is
5707  //   explicitly specialized then that specialization shall be declared
5708  //   before the first use of that specialization that would cause an implicit
5709  //   instantiation to take place, in every translation unit in which such a
5710  //   use occurs; no diagnostic is required.
5711  assert(MSInfo && "Member specialization info missing?");
5712
5713  bool HasNoEffect = false;
5714  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
5715                                             TSK_ExplicitSpecialization,
5716                                             Instantiation,
5717                                     MSInfo->getTemplateSpecializationKind(),
5718                                           MSInfo->getPointOfInstantiation(),
5719                                             HasNoEffect))
5720    return true;
5721
5722  // Check the scope of this explicit specialization.
5723  if (CheckTemplateSpecializationScope(*this,
5724                                       InstantiatedFrom,
5725                                       Instantiation, Member->getLocation(),
5726                                       false))
5727    return true;
5728
5729  // Note that this is an explicit instantiation of a member.
5730  // the original declaration to note that it is an explicit specialization
5731  // (if it was previously an implicit instantiation). This latter step
5732  // makes bookkeeping easier.
5733  if (isa<FunctionDecl>(Member)) {
5734    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
5735    if (InstantiationFunction->getTemplateSpecializationKind() ==
5736          TSK_ImplicitInstantiation) {
5737      InstantiationFunction->setTemplateSpecializationKind(
5738                                                  TSK_ExplicitSpecialization);
5739      InstantiationFunction->setLocation(Member->getLocation());
5740    }
5741
5742    cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
5743                                        cast<CXXMethodDecl>(InstantiatedFrom),
5744                                                  TSK_ExplicitSpecialization);
5745    MarkUnusedFileScopedDecl(InstantiationFunction);
5746  } else if (isa<VarDecl>(Member)) {
5747    VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
5748    if (InstantiationVar->getTemplateSpecializationKind() ==
5749          TSK_ImplicitInstantiation) {
5750      InstantiationVar->setTemplateSpecializationKind(
5751                                                  TSK_ExplicitSpecialization);
5752      InstantiationVar->setLocation(Member->getLocation());
5753    }
5754
5755    Context.setInstantiatedFromStaticDataMember(cast<VarDecl>(Member),
5756                                                cast<VarDecl>(InstantiatedFrom),
5757                                                TSK_ExplicitSpecialization);
5758    MarkUnusedFileScopedDecl(InstantiationVar);
5759  } else {
5760    assert(isa<CXXRecordDecl>(Member) && "Only member classes remain");
5761    CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
5762    if (InstantiationClass->getTemplateSpecializationKind() ==
5763          TSK_ImplicitInstantiation) {
5764      InstantiationClass->setTemplateSpecializationKind(
5765                                                   TSK_ExplicitSpecialization);
5766      InstantiationClass->setLocation(Member->getLocation());
5767    }
5768
5769    cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
5770                                        cast<CXXRecordDecl>(InstantiatedFrom),
5771                                                   TSK_ExplicitSpecialization);
5772  }
5773
5774  // Save the caller the trouble of having to figure out which declaration
5775  // this specialization matches.
5776  Previous.clear();
5777  Previous.addDecl(Instantiation);
5778  return false;
5779}
5780
5781/// \brief Check the scope of an explicit instantiation.
5782///
5783/// \returns true if a serious error occurs, false otherwise.
5784static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
5785                                            SourceLocation InstLoc,
5786                                            bool WasQualifiedName) {
5787  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
5788  DeclContext *CurContext = S.CurContext->getRedeclContext();
5789
5790  if (CurContext->isRecord()) {
5791    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
5792      << D;
5793    return true;
5794  }
5795
5796  // C++11 [temp.explicit]p3:
5797  //   An explicit instantiation shall appear in an enclosing namespace of its
5798  //   template. If the name declared in the explicit instantiation is an
5799  //   unqualified name, the explicit instantiation shall appear in the
5800  //   namespace where its template is declared or, if that namespace is inline
5801  //   (7.3.1), any namespace from its enclosing namespace set.
5802  //
5803  // This is DR275, which we do not retroactively apply to C++98/03.
5804  if (WasQualifiedName) {
5805    if (CurContext->Encloses(OrigContext))
5806      return false;
5807  } else {
5808    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
5809      return false;
5810  }
5811
5812  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
5813    if (WasQualifiedName)
5814      S.Diag(InstLoc,
5815             S.getLangOptions().CPlusPlus0x?
5816               diag::err_explicit_instantiation_out_of_scope :
5817               diag::warn_explicit_instantiation_out_of_scope_0x)
5818        << D << NS;
5819    else
5820      S.Diag(InstLoc,
5821             S.getLangOptions().CPlusPlus0x?
5822               diag::err_explicit_instantiation_unqualified_wrong_namespace :
5823               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
5824        << D << NS;
5825  } else
5826    S.Diag(InstLoc,
5827           S.getLangOptions().CPlusPlus0x?
5828             diag::err_explicit_instantiation_must_be_global :
5829             diag::warn_explicit_instantiation_must_be_global_0x)
5830      << D;
5831  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
5832  return false;
5833}
5834
5835/// \brief Determine whether the given scope specifier has a template-id in it.
5836static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
5837  if (!SS.isSet())
5838    return false;
5839
5840  // C++11 [temp.explicit]p3:
5841  //   If the explicit instantiation is for a member function, a member class
5842  //   or a static data member of a class template specialization, the name of
5843  //   the class template specialization in the qualified-id for the member
5844  //   name shall be a simple-template-id.
5845  //
5846  // C++98 has the same restriction, just worded differently.
5847  for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
5848       NNS; NNS = NNS->getPrefix())
5849    if (const Type *T = NNS->getAsType())
5850      if (isa<TemplateSpecializationType>(T))
5851        return true;
5852
5853  return false;
5854}
5855
5856// Explicit instantiation of a class template specialization
5857DeclResult
5858Sema::ActOnExplicitInstantiation(Scope *S,
5859                                 SourceLocation ExternLoc,
5860                                 SourceLocation TemplateLoc,
5861                                 unsigned TagSpec,
5862                                 SourceLocation KWLoc,
5863                                 const CXXScopeSpec &SS,
5864                                 TemplateTy TemplateD,
5865                                 SourceLocation TemplateNameLoc,
5866                                 SourceLocation LAngleLoc,
5867                                 ASTTemplateArgsPtr TemplateArgsIn,
5868                                 SourceLocation RAngleLoc,
5869                                 AttributeList *Attr) {
5870  // Find the class template we're specializing
5871  TemplateName Name = TemplateD.getAsVal<TemplateName>();
5872  ClassTemplateDecl *ClassTemplate
5873    = cast<ClassTemplateDecl>(Name.getAsTemplateDecl());
5874
5875  // Check that the specialization uses the same tag kind as the
5876  // original template.
5877  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5878  assert(Kind != TTK_Enum &&
5879         "Invalid enum tag in class template explicit instantiation!");
5880  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
5881                                    Kind, /*isDefinition*/false, KWLoc,
5882                                    *ClassTemplate->getIdentifier())) {
5883    Diag(KWLoc, diag::err_use_with_wrong_tag)
5884      << ClassTemplate
5885      << FixItHint::CreateReplacement(KWLoc,
5886                            ClassTemplate->getTemplatedDecl()->getKindName());
5887    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
5888         diag::note_previous_use);
5889    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
5890  }
5891
5892  // C++0x [temp.explicit]p2:
5893  //   There are two forms of explicit instantiation: an explicit instantiation
5894  //   definition and an explicit instantiation declaration. An explicit
5895  //   instantiation declaration begins with the extern keyword. [...]
5896  TemplateSpecializationKind TSK
5897    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
5898                           : TSK_ExplicitInstantiationDeclaration;
5899
5900  // Translate the parser's template argument list in our AST format.
5901  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
5902  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
5903
5904  // Check that the template argument list is well-formed for this
5905  // template.
5906  SmallVector<TemplateArgument, 4> Converted;
5907  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
5908                                TemplateArgs, false, Converted))
5909    return true;
5910
5911  assert((Converted.size() == ClassTemplate->getTemplateParameters()->size()) &&
5912         "Converted template argument list is too short!");
5913
5914  // Find the class template specialization declaration that
5915  // corresponds to these arguments.
5916  void *InsertPos = 0;
5917  ClassTemplateSpecializationDecl *PrevDecl
5918    = ClassTemplate->findSpecialization(Converted.data(),
5919                                        Converted.size(), InsertPos);
5920
5921  TemplateSpecializationKind PrevDecl_TSK
5922    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
5923
5924  // C++0x [temp.explicit]p2:
5925  //   [...] An explicit instantiation shall appear in an enclosing
5926  //   namespace of its template. [...]
5927  //
5928  // This is C++ DR 275.
5929  if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
5930                                      SS.isSet()))
5931    return true;
5932
5933  ClassTemplateSpecializationDecl *Specialization = 0;
5934
5935  bool HasNoEffect = false;
5936  if (PrevDecl) {
5937    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
5938                                               PrevDecl, PrevDecl_TSK,
5939                                            PrevDecl->getPointOfInstantiation(),
5940                                               HasNoEffect))
5941      return PrevDecl;
5942
5943    // Even though HasNoEffect == true means that this explicit instantiation
5944    // has no effect on semantics, we go on to put its syntax in the AST.
5945
5946    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
5947        PrevDecl_TSK == TSK_Undeclared) {
5948      // Since the only prior class template specialization with these
5949      // arguments was referenced but not declared, reuse that
5950      // declaration node as our own, updating the source location
5951      // for the template name to reflect our new declaration.
5952      // (Other source locations will be updated later.)
5953      Specialization = PrevDecl;
5954      Specialization->setLocation(TemplateNameLoc);
5955      PrevDecl = 0;
5956    }
5957  }
5958
5959  if (!Specialization) {
5960    // Create a new class template specialization declaration node for
5961    // this explicit specialization.
5962    Specialization
5963      = ClassTemplateSpecializationDecl::Create(Context, Kind,
5964                                             ClassTemplate->getDeclContext(),
5965                                                KWLoc, TemplateNameLoc,
5966                                                ClassTemplate,
5967                                                Converted.data(),
5968                                                Converted.size(),
5969                                                PrevDecl);
5970    SetNestedNameSpecifier(Specialization, SS);
5971
5972    if (!HasNoEffect && !PrevDecl) {
5973      // Insert the new specialization.
5974      ClassTemplate->AddSpecialization(Specialization, InsertPos);
5975    }
5976  }
5977
5978  // Build the fully-sugared type for this explicit instantiation as
5979  // the user wrote in the explicit instantiation itself. This means
5980  // that we'll pretty-print the type retrieved from the
5981  // specialization's declaration the way that the user actually wrote
5982  // the explicit instantiation, rather than formatting the name based
5983  // on the "canonical" representation used to store the template
5984  // arguments in the specialization.
5985  TypeSourceInfo *WrittenTy
5986    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
5987                                                TemplateArgs,
5988                                  Context.getTypeDeclType(Specialization));
5989  Specialization->setTypeAsWritten(WrittenTy);
5990  TemplateArgsIn.release();
5991
5992  // Set source locations for keywords.
5993  Specialization->setExternLoc(ExternLoc);
5994  Specialization->setTemplateKeywordLoc(TemplateLoc);
5995
5996  if (Attr)
5997    ProcessDeclAttributeList(S, Specialization, Attr);
5998
5999  // Add the explicit instantiation into its lexical context. However,
6000  // since explicit instantiations are never found by name lookup, we
6001  // just put it into the declaration context directly.
6002  Specialization->setLexicalDeclContext(CurContext);
6003  CurContext->addDecl(Specialization);
6004
6005  // Syntax is now OK, so return if it has no other effect on semantics.
6006  if (HasNoEffect) {
6007    // Set the template specialization kind.
6008    Specialization->setTemplateSpecializationKind(TSK);
6009    return Specialization;
6010  }
6011
6012  // C++ [temp.explicit]p3:
6013  //   A definition of a class template or class member template
6014  //   shall be in scope at the point of the explicit instantiation of
6015  //   the class template or class member template.
6016  //
6017  // This check comes when we actually try to perform the
6018  // instantiation.
6019  ClassTemplateSpecializationDecl *Def
6020    = cast_or_null<ClassTemplateSpecializationDecl>(
6021                                              Specialization->getDefinition());
6022  if (!Def)
6023    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
6024  else if (TSK == TSK_ExplicitInstantiationDefinition) {
6025    MarkVTableUsed(TemplateNameLoc, Specialization, true);
6026    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
6027  }
6028
6029  // Instantiate the members of this class template specialization.
6030  Def = cast_or_null<ClassTemplateSpecializationDecl>(
6031                                       Specialization->getDefinition());
6032  if (Def) {
6033    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
6034
6035    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
6036    // TSK_ExplicitInstantiationDefinition
6037    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
6038        TSK == TSK_ExplicitInstantiationDefinition)
6039      Def->setTemplateSpecializationKind(TSK);
6040
6041    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
6042  }
6043
6044  // Set the template specialization kind.
6045  Specialization->setTemplateSpecializationKind(TSK);
6046  return Specialization;
6047}
6048
6049// Explicit instantiation of a member class of a class template.
6050DeclResult
6051Sema::ActOnExplicitInstantiation(Scope *S,
6052                                 SourceLocation ExternLoc,
6053                                 SourceLocation TemplateLoc,
6054                                 unsigned TagSpec,
6055                                 SourceLocation KWLoc,
6056                                 CXXScopeSpec &SS,
6057                                 IdentifierInfo *Name,
6058                                 SourceLocation NameLoc,
6059                                 AttributeList *Attr) {
6060
6061  bool Owned = false;
6062  bool IsDependent = false;
6063  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
6064                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
6065                        /*ModulePrivateLoc=*/SourceLocation(),
6066                        MultiTemplateParamsArg(*this, 0, 0),
6067                        Owned, IsDependent, SourceLocation(), false,
6068                        TypeResult());
6069  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
6070
6071  if (!TagD)
6072    return true;
6073
6074  TagDecl *Tag = cast<TagDecl>(TagD);
6075  if (Tag->isEnum()) {
6076    Diag(TemplateLoc, diag::err_explicit_instantiation_enum)
6077      << Context.getTypeDeclType(Tag);
6078    return true;
6079  }
6080
6081  if (Tag->isInvalidDecl())
6082    return true;
6083
6084  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
6085  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
6086  if (!Pattern) {
6087    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
6088      << Context.getTypeDeclType(Record);
6089    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
6090    return true;
6091  }
6092
6093  // C++0x [temp.explicit]p2:
6094  //   If the explicit instantiation is for a class or member class, the
6095  //   elaborated-type-specifier in the declaration shall include a
6096  //   simple-template-id.
6097  //
6098  // C++98 has the same restriction, just worded differently.
6099  if (!ScopeSpecifierHasTemplateId(SS))
6100    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
6101      << Record << SS.getRange();
6102
6103  // C++0x [temp.explicit]p2:
6104  //   There are two forms of explicit instantiation: an explicit instantiation
6105  //   definition and an explicit instantiation declaration. An explicit
6106  //   instantiation declaration begins with the extern keyword. [...]
6107  TemplateSpecializationKind TSK
6108    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6109                           : TSK_ExplicitInstantiationDeclaration;
6110
6111  // C++0x [temp.explicit]p2:
6112  //   [...] An explicit instantiation shall appear in an enclosing
6113  //   namespace of its template. [...]
6114  //
6115  // This is C++ DR 275.
6116  CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
6117
6118  // Verify that it is okay to explicitly instantiate here.
6119  CXXRecordDecl *PrevDecl
6120    = cast_or_null<CXXRecordDecl>(Record->getPreviousDeclaration());
6121  if (!PrevDecl && Record->getDefinition())
6122    PrevDecl = Record;
6123  if (PrevDecl) {
6124    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
6125    bool HasNoEffect = false;
6126    assert(MSInfo && "No member specialization information?");
6127    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
6128                                               PrevDecl,
6129                                        MSInfo->getTemplateSpecializationKind(),
6130                                             MSInfo->getPointOfInstantiation(),
6131                                               HasNoEffect))
6132      return true;
6133    if (HasNoEffect)
6134      return TagD;
6135  }
6136
6137  CXXRecordDecl *RecordDef
6138    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6139  if (!RecordDef) {
6140    // C++ [temp.explicit]p3:
6141    //   A definition of a member class of a class template shall be in scope
6142    //   at the point of an explicit instantiation of the member class.
6143    CXXRecordDecl *Def
6144      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
6145    if (!Def) {
6146      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
6147        << 0 << Record->getDeclName() << Record->getDeclContext();
6148      Diag(Pattern->getLocation(), diag::note_forward_declaration)
6149        << Pattern;
6150      return true;
6151    } else {
6152      if (InstantiateClass(NameLoc, Record, Def,
6153                           getTemplateInstantiationArgs(Record),
6154                           TSK))
6155        return true;
6156
6157      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
6158      if (!RecordDef)
6159        return true;
6160    }
6161  }
6162
6163  // Instantiate all of the members of the class.
6164  InstantiateClassMembers(NameLoc, RecordDef,
6165                          getTemplateInstantiationArgs(Record), TSK);
6166
6167  if (TSK == TSK_ExplicitInstantiationDefinition)
6168    MarkVTableUsed(NameLoc, RecordDef, true);
6169
6170  // FIXME: We don't have any representation for explicit instantiations of
6171  // member classes. Such a representation is not needed for compilation, but it
6172  // should be available for clients that want to see all of the declarations in
6173  // the source code.
6174  return TagD;
6175}
6176
6177DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
6178                                            SourceLocation ExternLoc,
6179                                            SourceLocation TemplateLoc,
6180                                            Declarator &D) {
6181  // Explicit instantiations always require a name.
6182  // TODO: check if/when DNInfo should replace Name.
6183  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6184  DeclarationName Name = NameInfo.getName();
6185  if (!Name) {
6186    if (!D.isInvalidType())
6187      Diag(D.getDeclSpec().getSourceRange().getBegin(),
6188           diag::err_explicit_instantiation_requires_name)
6189        << D.getDeclSpec().getSourceRange()
6190        << D.getSourceRange();
6191
6192    return true;
6193  }
6194
6195  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6196  // we find one that is.
6197  while ((S->getFlags() & Scope::DeclScope) == 0 ||
6198         (S->getFlags() & Scope::TemplateParamScope) != 0)
6199    S = S->getParent();
6200
6201  // Determine the type of the declaration.
6202  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
6203  QualType R = T->getType();
6204  if (R.isNull())
6205    return true;
6206
6207  // C++ [dcl.stc]p1:
6208  //   A storage-class-specifier shall not be specified in [...] an explicit
6209  //   instantiation (14.7.2) directive.
6210  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6211    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
6212      << Name;
6213    return true;
6214  } else if (D.getDeclSpec().getStorageClassSpec()
6215                                                != DeclSpec::SCS_unspecified) {
6216    // Complain about then remove the storage class specifier.
6217    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
6218      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6219
6220    D.getMutableDeclSpec().ClearStorageClassSpecs();
6221  }
6222
6223  // C++0x [temp.explicit]p1:
6224  //   [...] An explicit instantiation of a function template shall not use the
6225  //   inline or constexpr specifiers.
6226  // Presumably, this also applies to member functions of class templates as
6227  // well.
6228  if (D.getDeclSpec().isInlineSpecified())
6229    Diag(D.getDeclSpec().getInlineSpecLoc(),
6230         getLangOptions().CPlusPlus0x ?
6231           diag::err_explicit_instantiation_inline :
6232           diag::warn_explicit_instantiation_inline_0x)
6233      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6234  if (D.getDeclSpec().isConstexprSpecified())
6235    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
6236    // not already specified.
6237    Diag(D.getDeclSpec().getConstexprSpecLoc(),
6238         diag::err_explicit_instantiation_constexpr);
6239
6240  // C++0x [temp.explicit]p2:
6241  //   There are two forms of explicit instantiation: an explicit instantiation
6242  //   definition and an explicit instantiation declaration. An explicit
6243  //   instantiation declaration begins with the extern keyword. [...]
6244  TemplateSpecializationKind TSK
6245    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
6246                           : TSK_ExplicitInstantiationDeclaration;
6247
6248  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
6249  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
6250
6251  if (!R->isFunctionType()) {
6252    // C++ [temp.explicit]p1:
6253    //   A [...] static data member of a class template can be explicitly
6254    //   instantiated from the member definition associated with its class
6255    //   template.
6256    if (Previous.isAmbiguous())
6257      return true;
6258
6259    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
6260    if (!Prev || !Prev->isStaticDataMember()) {
6261      // We expect to see a data data member here.
6262      Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
6263        << Name;
6264      for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6265           P != PEnd; ++P)
6266        Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
6267      return true;
6268    }
6269
6270    if (!Prev->getInstantiatedFromStaticDataMember()) {
6271      // FIXME: Check for explicit specialization?
6272      Diag(D.getIdentifierLoc(),
6273           diag::err_explicit_instantiation_data_member_not_instantiated)
6274        << Prev;
6275      Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
6276      // FIXME: Can we provide a note showing where this was declared?
6277      return true;
6278    }
6279
6280    // C++0x [temp.explicit]p2:
6281    //   If the explicit instantiation is for a member function, a member class
6282    //   or a static data member of a class template specialization, the name of
6283    //   the class template specialization in the qualified-id for the member
6284    //   name shall be a simple-template-id.
6285    //
6286    // C++98 has the same restriction, just worded differently.
6287    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6288      Diag(D.getIdentifierLoc(),
6289           diag::ext_explicit_instantiation_without_qualified_id)
6290        << Prev << D.getCXXScopeSpec().getRange();
6291
6292    // Check the scope of this explicit instantiation.
6293    CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
6294
6295    // Verify that it is okay to explicitly instantiate here.
6296    MemberSpecializationInfo *MSInfo = Prev->getMemberSpecializationInfo();
6297    assert(MSInfo && "Missing static data member specialization info?");
6298    bool HasNoEffect = false;
6299    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
6300                                        MSInfo->getTemplateSpecializationKind(),
6301                                              MSInfo->getPointOfInstantiation(),
6302                                               HasNoEffect))
6303      return true;
6304    if (HasNoEffect)
6305      return (Decl*) 0;
6306
6307    // Instantiate static data member.
6308    Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6309    if (TSK == TSK_ExplicitInstantiationDefinition)
6310      InstantiateStaticDataMemberDefinition(D.getIdentifierLoc(), Prev);
6311
6312    // FIXME: Create an ExplicitInstantiation node?
6313    return (Decl*) 0;
6314  }
6315
6316  // If the declarator is a template-id, translate the parser's template
6317  // argument list into our AST format.
6318  bool HasExplicitTemplateArgs = false;
6319  TemplateArgumentListInfo TemplateArgs;
6320  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6321    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6322    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6323    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6324    ASTTemplateArgsPtr TemplateArgsPtr(*this,
6325                                       TemplateId->getTemplateArgs(),
6326                                       TemplateId->NumArgs);
6327    translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
6328    HasExplicitTemplateArgs = true;
6329    TemplateArgsPtr.release();
6330  }
6331
6332  // C++ [temp.explicit]p1:
6333  //   A [...] function [...] can be explicitly instantiated from its template.
6334  //   A member function [...] of a class template can be explicitly
6335  //  instantiated from the member definition associated with its class
6336  //  template.
6337  UnresolvedSet<8> Matches;
6338  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
6339       P != PEnd; ++P) {
6340    NamedDecl *Prev = *P;
6341    if (!HasExplicitTemplateArgs) {
6342      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
6343        if (Context.hasSameUnqualifiedType(Method->getType(), R)) {
6344          Matches.clear();
6345
6346          Matches.addDecl(Method, P.getAccess());
6347          if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
6348            break;
6349        }
6350      }
6351    }
6352
6353    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
6354    if (!FunTmpl)
6355      continue;
6356
6357    TemplateDeductionInfo Info(Context, D.getIdentifierLoc());
6358    FunctionDecl *Specialization = 0;
6359    if (TemplateDeductionResult TDK
6360          = DeduceTemplateArguments(FunTmpl,
6361                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6362                                    R, Specialization, Info)) {
6363      // FIXME: Keep track of almost-matches?
6364      (void)TDK;
6365      continue;
6366    }
6367
6368    Matches.addDecl(Specialization, P.getAccess());
6369  }
6370
6371  // Find the most specialized function template specialization.
6372  UnresolvedSetIterator Result
6373    = getMostSpecialized(Matches.begin(), Matches.end(), TPOC_Other, 0,
6374                         D.getIdentifierLoc(),
6375                     PDiag(diag::err_explicit_instantiation_not_known) << Name,
6376                     PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
6377                         PDiag(diag::note_explicit_instantiation_candidate));
6378
6379  if (Result == Matches.end())
6380    return true;
6381
6382  // Ignore access control bits, we don't need them for redeclaration checking.
6383  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6384
6385  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
6386    Diag(D.getIdentifierLoc(),
6387         diag::err_explicit_instantiation_member_function_not_instantiated)
6388      << Specialization
6389      << (Specialization->getTemplateSpecializationKind() ==
6390          TSK_ExplicitSpecialization);
6391    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
6392    return true;
6393  }
6394
6395  FunctionDecl *PrevDecl = Specialization->getPreviousDeclaration();
6396  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
6397    PrevDecl = Specialization;
6398
6399  if (PrevDecl) {
6400    bool HasNoEffect = false;
6401    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
6402                                               PrevDecl,
6403                                     PrevDecl->getTemplateSpecializationKind(),
6404                                          PrevDecl->getPointOfInstantiation(),
6405                                               HasNoEffect))
6406      return true;
6407
6408    // FIXME: We may still want to build some representation of this
6409    // explicit specialization.
6410    if (HasNoEffect)
6411      return (Decl*) 0;
6412  }
6413
6414  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
6415  AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
6416  if (Attr)
6417    ProcessDeclAttributeList(S, Specialization, Attr);
6418
6419  if (TSK == TSK_ExplicitInstantiationDefinition)
6420    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
6421
6422  // C++0x [temp.explicit]p2:
6423  //   If the explicit instantiation is for a member function, a member class
6424  //   or a static data member of a class template specialization, the name of
6425  //   the class template specialization in the qualified-id for the member
6426  //   name shall be a simple-template-id.
6427  //
6428  // C++98 has the same restriction, just worded differently.
6429  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
6430  if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
6431      D.getCXXScopeSpec().isSet() &&
6432      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
6433    Diag(D.getIdentifierLoc(),
6434         diag::ext_explicit_instantiation_without_qualified_id)
6435    << Specialization << D.getCXXScopeSpec().getRange();
6436
6437  CheckExplicitInstantiationScope(*this,
6438                   FunTmpl? (NamedDecl *)FunTmpl
6439                          : Specialization->getInstantiatedFromMemberFunction(),
6440                                  D.getIdentifierLoc(),
6441                                  D.getCXXScopeSpec().isSet());
6442
6443  // FIXME: Create some kind of ExplicitInstantiationDecl here.
6444  return (Decl*) 0;
6445}
6446
6447TypeResult
6448Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6449                        const CXXScopeSpec &SS, IdentifierInfo *Name,
6450                        SourceLocation TagLoc, SourceLocation NameLoc) {
6451  // This has to hold, because SS is expected to be defined.
6452  assert(Name && "Expected a name in a dependent tag");
6453
6454  NestedNameSpecifier *NNS
6455    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6456  if (!NNS)
6457    return true;
6458
6459  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6460
6461  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
6462    Diag(NameLoc, diag::err_dependent_tag_decl)
6463      << (TUK == TUK_Definition) << Kind << SS.getRange();
6464    return true;
6465  }
6466
6467  // Create the resulting type.
6468  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6469  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
6470
6471  // Create type-source location information for this type.
6472  TypeLocBuilder TLB;
6473  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
6474  TL.setKeywordLoc(TagLoc);
6475  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6476  TL.setNameLoc(NameLoc);
6477  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
6478}
6479
6480TypeResult
6481Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6482                        const CXXScopeSpec &SS, const IdentifierInfo &II,
6483                        SourceLocation IdLoc) {
6484  if (SS.isInvalid())
6485    return true;
6486
6487  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6488    Diag(TypenameLoc,
6489         getLangOptions().CPlusPlus0x ?
6490           diag::warn_cxx98_compat_typename_outside_of_template :
6491           diag::ext_typename_outside_of_template)
6492      << FixItHint::CreateRemoval(TypenameLoc);
6493
6494  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6495  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
6496                                 TypenameLoc, QualifierLoc, II, IdLoc);
6497  if (T.isNull())
6498    return true;
6499
6500  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6501  if (isa<DependentNameType>(T)) {
6502    DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6503    TL.setKeywordLoc(TypenameLoc);
6504    TL.setQualifierLoc(QualifierLoc);
6505    TL.setNameLoc(IdLoc);
6506  } else {
6507    ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6508    TL.setKeywordLoc(TypenameLoc);
6509    TL.setQualifierLoc(QualifierLoc);
6510    cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(IdLoc);
6511  }
6512
6513  return CreateParsedType(T, TSI);
6514}
6515
6516TypeResult
6517Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
6518                        const CXXScopeSpec &SS,
6519                        SourceLocation TemplateLoc,
6520                        TemplateTy TemplateIn,
6521                        SourceLocation TemplateNameLoc,
6522                        SourceLocation LAngleLoc,
6523                        ASTTemplateArgsPtr TemplateArgsIn,
6524                        SourceLocation RAngleLoc) {
6525  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
6526    Diag(TypenameLoc,
6527         getLangOptions().CPlusPlus0x ?
6528           diag::warn_cxx98_compat_typename_outside_of_template :
6529           diag::ext_typename_outside_of_template)
6530      << FixItHint::CreateRemoval(TypenameLoc);
6531
6532  // Translate the parser's template argument list in our AST format.
6533  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
6534  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
6535
6536  TemplateName Template = TemplateIn.get();
6537  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
6538    // Construct a dependent template specialization type.
6539    assert(DTN && "dependent template has non-dependent name?");
6540    assert(DTN->getQualifier()
6541           == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
6542    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
6543                                                          DTN->getQualifier(),
6544                                                          DTN->getIdentifier(),
6545                                                                TemplateArgs);
6546
6547    // Create source-location information for this type.
6548    TypeLocBuilder Builder;
6549    DependentTemplateSpecializationTypeLoc SpecTL
6550    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
6551    SpecTL.setLAngleLoc(LAngleLoc);
6552    SpecTL.setRAngleLoc(RAngleLoc);
6553    SpecTL.setKeywordLoc(TypenameLoc);
6554    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
6555    SpecTL.setNameLoc(TemplateNameLoc);
6556    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6557      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6558    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
6559  }
6560
6561  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
6562  if (T.isNull())
6563    return true;
6564
6565  // Provide source-location information for the template specialization
6566  // type.
6567  TypeLocBuilder Builder;
6568  TemplateSpecializationTypeLoc SpecTL
6569    = Builder.push<TemplateSpecializationTypeLoc>(T);
6570
6571  // FIXME: No place to set the location of the 'template' keyword!
6572  SpecTL.setLAngleLoc(LAngleLoc);
6573  SpecTL.setRAngleLoc(RAngleLoc);
6574  SpecTL.setTemplateNameLoc(TemplateNameLoc);
6575  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6576    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
6577
6578  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
6579  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
6580  TL.setKeywordLoc(TypenameLoc);
6581  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6582
6583  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
6584  return CreateParsedType(T, TSI);
6585}
6586
6587
6588/// \brief Build the type that describes a C++ typename specifier,
6589/// e.g., "typename T::type".
6590QualType
6591Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
6592                        SourceLocation KeywordLoc,
6593                        NestedNameSpecifierLoc QualifierLoc,
6594                        const IdentifierInfo &II,
6595                        SourceLocation IILoc) {
6596  CXXScopeSpec SS;
6597  SS.Adopt(QualifierLoc);
6598
6599  DeclContext *Ctx = computeDeclContext(SS);
6600  if (!Ctx) {
6601    // If the nested-name-specifier is dependent and couldn't be
6602    // resolved to a type, build a typename type.
6603    assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
6604    return Context.getDependentNameType(Keyword,
6605                                        QualifierLoc.getNestedNameSpecifier(),
6606                                        &II);
6607  }
6608
6609  // If the nested-name-specifier refers to the current instantiation,
6610  // the "typename" keyword itself is superfluous. In C++03, the
6611  // program is actually ill-formed. However, DR 382 (in C++0x CD1)
6612  // allows such extraneous "typename" keywords, and we retroactively
6613  // apply this DR to C++03 code with only a warning. In any case we continue.
6614
6615  if (RequireCompleteDeclContext(SS, Ctx))
6616    return QualType();
6617
6618  DeclarationName Name(&II);
6619  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
6620  LookupQualifiedName(Result, Ctx);
6621  unsigned DiagID = 0;
6622  Decl *Referenced = 0;
6623  switch (Result.getResultKind()) {
6624  case LookupResult::NotFound:
6625    DiagID = diag::err_typename_nested_not_found;
6626    break;
6627
6628  case LookupResult::FoundUnresolvedValue: {
6629    // We found a using declaration that is a value. Most likely, the using
6630    // declaration itself is meant to have the 'typename' keyword.
6631    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6632                          IILoc);
6633    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
6634      << Name << Ctx << FullRange;
6635    if (UnresolvedUsingValueDecl *Using
6636          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
6637      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
6638      Diag(Loc, diag::note_using_value_decl_missing_typename)
6639        << FixItHint::CreateInsertion(Loc, "typename ");
6640    }
6641  }
6642  // Fall through to create a dependent typename type, from which we can recover
6643  // better.
6644
6645  case LookupResult::NotFoundInCurrentInstantiation:
6646    // Okay, it's a member of an unknown instantiation.
6647    return Context.getDependentNameType(Keyword,
6648                                        QualifierLoc.getNestedNameSpecifier(),
6649                                        &II);
6650
6651  case LookupResult::Found:
6652    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
6653      // We found a type. Build an ElaboratedType, since the
6654      // typename-specifier was just sugar.
6655      return Context.getElaboratedType(ETK_Typename,
6656                                       QualifierLoc.getNestedNameSpecifier(),
6657                                       Context.getTypeDeclType(Type));
6658    }
6659
6660    DiagID = diag::err_typename_nested_not_type;
6661    Referenced = Result.getFoundDecl();
6662    break;
6663
6664  case LookupResult::FoundOverloaded:
6665    DiagID = diag::err_typename_nested_not_type;
6666    Referenced = *Result.begin();
6667    break;
6668
6669  case LookupResult::Ambiguous:
6670    return QualType();
6671  }
6672
6673  // If we get here, it's because name lookup did not find a
6674  // type. Emit an appropriate diagnostic and return an error.
6675  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
6676                        IILoc);
6677  Diag(IILoc, DiagID) << FullRange << Name << Ctx;
6678  if (Referenced)
6679    Diag(Referenced->getLocation(), diag::note_typename_refers_here)
6680      << Name;
6681  return QualType();
6682}
6683
6684namespace {
6685  // See Sema::RebuildTypeInCurrentInstantiation
6686  class CurrentInstantiationRebuilder
6687    : public TreeTransform<CurrentInstantiationRebuilder> {
6688    SourceLocation Loc;
6689    DeclarationName Entity;
6690
6691  public:
6692    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
6693
6694    CurrentInstantiationRebuilder(Sema &SemaRef,
6695                                  SourceLocation Loc,
6696                                  DeclarationName Entity)
6697    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
6698      Loc(Loc), Entity(Entity) { }
6699
6700    /// \brief Determine whether the given type \p T has already been
6701    /// transformed.
6702    ///
6703    /// For the purposes of type reconstruction, a type has already been
6704    /// transformed if it is NULL or if it is not dependent.
6705    bool AlreadyTransformed(QualType T) {
6706      return T.isNull() || !T->isDependentType();
6707    }
6708
6709    /// \brief Returns the location of the entity whose type is being
6710    /// rebuilt.
6711    SourceLocation getBaseLocation() { return Loc; }
6712
6713    /// \brief Returns the name of the entity whose type is being rebuilt.
6714    DeclarationName getBaseEntity() { return Entity; }
6715
6716    /// \brief Sets the "base" location and entity when that
6717    /// information is known based on another transformation.
6718    void setBase(SourceLocation Loc, DeclarationName Entity) {
6719      this->Loc = Loc;
6720      this->Entity = Entity;
6721    }
6722  };
6723}
6724
6725/// \brief Rebuilds a type within the context of the current instantiation.
6726///
6727/// The type \p T is part of the type of an out-of-line member definition of
6728/// a class template (or class template partial specialization) that was parsed
6729/// and constructed before we entered the scope of the class template (or
6730/// partial specialization thereof). This routine will rebuild that type now
6731/// that we have entered the declarator's scope, which may produce different
6732/// canonical types, e.g.,
6733///
6734/// \code
6735/// template<typename T>
6736/// struct X {
6737///   typedef T* pointer;
6738///   pointer data();
6739/// };
6740///
6741/// template<typename T>
6742/// typename X<T>::pointer X<T>::data() { ... }
6743/// \endcode
6744///
6745/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
6746/// since we do not know that we can look into X<T> when we parsed the type.
6747/// This function will rebuild the type, performing the lookup of "pointer"
6748/// in X<T> and returning an ElaboratedType whose canonical type is the same
6749/// as the canonical type of T*, allowing the return types of the out-of-line
6750/// definition and the declaration to match.
6751TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
6752                                                        SourceLocation Loc,
6753                                                        DeclarationName Name) {
6754  if (!T || !T->getType()->isDependentType())
6755    return T;
6756
6757  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
6758  return Rebuilder.TransformType(T);
6759}
6760
6761ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
6762  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
6763                                          DeclarationName());
6764  return Rebuilder.TransformExpr(E);
6765}
6766
6767bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
6768  if (SS.isInvalid())
6769    return true;
6770
6771  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6772  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
6773                                          DeclarationName());
6774  NestedNameSpecifierLoc Rebuilt
6775    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
6776  if (!Rebuilt)
6777    return true;
6778
6779  SS.Adopt(Rebuilt);
6780  return false;
6781}
6782
6783/// \brief Rebuild the template parameters now that we know we're in a current
6784/// instantiation.
6785bool Sema::RebuildTemplateParamsInCurrentInstantiation(
6786                                               TemplateParameterList *Params) {
6787  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6788    Decl *Param = Params->getParam(I);
6789
6790    // There is nothing to rebuild in a type parameter.
6791    if (isa<TemplateTypeParmDecl>(Param))
6792      continue;
6793
6794    // Rebuild the template parameter list of a template template parameter.
6795    if (TemplateTemplateParmDecl *TTP
6796        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
6797      if (RebuildTemplateParamsInCurrentInstantiation(
6798            TTP->getTemplateParameters()))
6799        return true;
6800
6801      continue;
6802    }
6803
6804    // Rebuild the type of a non-type template parameter.
6805    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
6806    TypeSourceInfo *NewTSI
6807      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
6808                                          NTTP->getLocation(),
6809                                          NTTP->getDeclName());
6810    if (!NewTSI)
6811      return true;
6812
6813    if (NewTSI != NTTP->getTypeSourceInfo()) {
6814      NTTP->setTypeSourceInfo(NewTSI);
6815      NTTP->setType(NewTSI->getType());
6816    }
6817  }
6818
6819  return false;
6820}
6821
6822/// \brief Produces a formatted string that describes the binding of
6823/// template parameters to template arguments.
6824std::string
6825Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6826                                      const TemplateArgumentList &Args) {
6827  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
6828}
6829
6830std::string
6831Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
6832                                      const TemplateArgument *Args,
6833                                      unsigned NumArgs) {
6834  llvm::SmallString<128> Str;
6835  llvm::raw_svector_ostream Out(Str);
6836
6837  if (!Params || Params->size() == 0 || NumArgs == 0)
6838    return std::string();
6839
6840  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
6841    if (I >= NumArgs)
6842      break;
6843
6844    if (I == 0)
6845      Out << "[with ";
6846    else
6847      Out << ", ";
6848
6849    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
6850      Out << Id->getName();
6851    } else {
6852      Out << '$' << I;
6853    }
6854
6855    Out << " = ";
6856    Args[I].print(getPrintingPolicy(), Out);
6857  }
6858
6859  Out << ']';
6860  return Out.str();
6861}
6862
6863void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, bool Flag) {
6864  if (!FD)
6865    return;
6866  FD->setLateTemplateParsed(Flag);
6867}
6868
6869bool Sema::IsInsideALocalClassWithinATemplateFunction() {
6870  DeclContext *DC = CurContext;
6871
6872  while (DC) {
6873    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
6874      const FunctionDecl *FD = RD->isLocalClass();
6875      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
6876    } else if (DC->isTranslationUnit() || DC->isNamespace())
6877      return false;
6878
6879    DC = DC->getParent();
6880  }
6881  return false;
6882}
6883